WorldWideScience

Sample records for organic photovoltaic energy

  1. Organic photovoltaic energy in Japan

    International Nuclear Information System (INIS)

    2007-01-01

    Japan finances research programs on photovoltaic conversion since 1974. Research in this domain is one of the 11 priorities of NEDO, the agency of means of the ministry of economy, trade and industry of Japan. The search for an abatement of production costs and of an increase of cells efficiency is mentioned in NEDO's programs as soon as the beginning of the 1990's. A road map has been defined which foresees photovoltaic energy production costs equivalent to the ones of thermal conversion by 2030, i.e. 7 yen/kWh (4.4 cents of euro/kWh). The use of new materials in dye-sensitized solar cells (DSSC) or organic solar cells, and of new structures (multi-junctions) is explored to reach this objective. The organic photovoltaic technology is more particularly considered for small generation units in mobile or domestic technologies. Japan is particularly in advance in the improvement of DSSC cells efficiency, in particular in the domain of the research on solid electrolytes. Europe seems more in advance in the domain of the new generation of organic solar cells. Therefore, a complementarity may be found between Japan and French teams in the domain of organic solar cells improvement through collaboration programs. (J.S.)

  2. Organic photovoltaics

    DEFF Research Database (Denmark)

    Demming, Anna; Krebs, Frederik C; Chen, Hongzheng

    2013-01-01

    's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic...... solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency...... of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating...

  3. Energy level alignment at interfaces in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Opitz, Andreas; Frisch, Johannes; Schlesinger, Raphael; Wilke, Andreas; Koch, Norbert

    2013-01-01

    Highlights: ► Energy level alignment is crucial for organic solar cell efficiency. ► Photoelectron spectroscopy can reliably determine energy levels of organic material interfaces. ► Care must be taken to avoid even subtle sample damage. -- Abstract: The alignment of energy levels at interfaces in organic photovoltaic devices is crucial for their energy conversion efficiency. Photoelectron spectroscopy (PES) is a well-established and widely used technique for determining the electronic structure of materials; at the same time PES measurements of conjugated organic materials often pose significant challenges, such as obtaining sufficiently defined sample structures and radiation-induced damage of the organic layers. Here we report how these challenges can be tackled to unravel the energy levels at interfaces in organic photovoltaic devices, i.e., electrode/organic and organic/organic interfaces. The electronic structure across entire photovoltaic multilayer devices can thus be reconciled. Finally, general considerations for correlating the electronic structure and the photovoltaic performance of devices will be discussed

  4. Organic photovoltaic energy in Japan; Le photovoltaique organique au Japon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Japan finances research programs on photovoltaic conversion since 1974. Research in this domain is one of the 11 priorities of NEDO, the agency of means of the ministry of economy, trade and industry of Japan. The search for an abatement of production costs and of an increase of cells efficiency is mentioned in NEDO's programs as soon as the beginning of the 1990's. A road map has been defined which foresees photovoltaic energy production costs equivalent to the ones of thermal conversion by 2030, i.e. 7 yen/kWh (4.4 cents of euro/kWh). The use of new materials in dye-sensitized solar cells (DSSC) or organic solar cells, and of new structures (multi-junctions) is explored to reach this objective. The organic photovoltaic technology is more particularly considered for small generation units in mobile or domestic technologies. Japan is particularly in advance in the improvement of DSSC cells efficiency, in particular in the domain of the research on solid electrolytes. Europe seems more in advance in the domain of the new generation of organic solar cells. Therefore, a complementarity may be found between Japan and French teams in the domain of organic solar cells improvement through collaboration programs. (J.S.)

  5. Organic photovoltaics

    Science.gov (United States)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  6. Organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the International Conference and Exhibition at 16th September,2010 at the Maritim Hotel (Wuerzburg, Federal Republic of Germany) the following lectures were held: (1) History of Organic Photovoltaics (Niyazi Serdar Sariciftci); (2) PV Activities at the ZAE Bayern (Vladimir Dyakonov); (3) Progress in Solid State DSC (Peter Erk); (4) Polymer Semiconductors for OPV (Mats Andersson); (5) Fullerene Derivative N-Types in Organic Solar Cells (David Kronholm); (6) Modelling Charge-Transport in Organic Photovoltaic Materials (Jenny Nelson); (7) Multi Junction Modules R and D Status and Outlook (Paul Blom); (8) Imaging Technologies for Organic Solar Cells (Jonas Bachmann); (9) Production of Multi-junction Organic Photovoltaic Cells and Modules (Martin Pfeiffer); (10) Upscaling of Polymer Solar Cell Fabrication Using Full Roll-to-roll Processing (Frederik Christian Krebs); (11) Industrial Aspects and Large Scale OPV Production (Jens Hauch).

  7. Exciton management in organic photovoltaic multidonor energy cascades.

    Science.gov (United States)

    Griffith, Olga L; Forrest, Stephen R

    2014-05-14

    Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.

  8. Realizing Efficient Energy Harvesting from Organic Photovoltaic Cells

    Science.gov (United States)

    Zou, Yunlong

    Organic photovoltaic cells (OPVs) are emerging field of research in renewable energy. The development of OPVs in recent years has made this technology viable for many niche applications. In order to realize widespread application however, the power conversion efficiency requires further improvement. The efficiency of an OPV depends on the short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor (FF). For state-of-the-art devices, JSC is mostly optimized with the application of novel low-bandgap materials and a bulk heterojunction device architecture (internal quantum efficiency approaching 100%). The remaining limiting factors are the low VOC and FF. This work focuses on overcoming these bottlenecks for improved efficiency. Temperature dependent measurements of device performance are used to examine both charge transfer and exciton ionization process in OPVs. The results permit an improved understanding of the intrinsic limit for VOC in various device architectures and provide insight on device operation. Efforts have also been directed at engineering device architecture for optimized FF, realizing a very high efficiency of 8% for vapor deposited small molecule OPVs. With collaborators, new molecules with tailored desired energy levels are being designed for further improvements in efficiency. A new type of hybrid organic-inorganic perovskite material is also included in this study. By addressing processing issues and anomalous hysteresis effects, a very high efficiency of 19.1% is achieved. Moving forward, topics including engineering film crystallinity, exploring tandem architectures and understanding degradation mechanisms will further push OPVs toward broad commercialization.

  9. Current challenges in organic photovoltaic solar energy conversion.

    Science.gov (United States)

    Schlenker, Cody W; Thompson, Mark E

    2012-01-01

    Over the last 10 years, significant interest in utilizing conjugated organic molecules for solid-state solar to electric conversion has produced rapid improvement in device efficiencies. Organic photovoltaic (OPV) devices are attractive for their compatibility with low-cost processing techniques and thin-film applicability to flexible and conformal applications. However, many of the processes that lead to power losses in these systems still remain poorly understood, posing a significant challenge for the future efficiency improvements required to make these devices an attractive solar technology. While semiconductor band models have been employed to describe OPV operation, a more appropriate molecular picture of the pertinent processes is beginning to emerge. This chapter presents mechanisms of OPV device operation, based on the bound molecular nature of the involved transient species. With the intention to underscore the importance of considering both thermodynamic and kinetic factors, recent progress in elucidating molecular characteristics that dictate photovoltage losses in heterojunction organic photovoltaics is also discussed.

  10. Organic Semiconductor Photovoltaics

    Science.gov (United States)

    Sariciftci, Niyazi Serdar

    2005-03-01

    Recent developments on organic photovoltaic elements are reviewed. Semiconducting conjugated polymers and molecules as well as nanocrystalline inorganic semiconductors are used in composite thin films. The photophysics of such photoactive devices is based on the photoinduced charge transfer from donor type semiconducting molecules onto acceptor type molecules such as Buckminsterfullerene, C60 and/or nanoparticles. Similar to the first steps in natural photosynthesis, this photoinduced electron transfer leads to a number of potentially interesting applications which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are discussed with their potential in terrestrial solar energy conversion. Several materials are introduced and discussed for their photovoltaic activities. Furthermore, nanomorphology has been investigated with AFM, SEM and TEM. The morphology/property relationship for a given photoactive system is found to be a major effect.

  11. The development of the market for photovoltaic energy in the Netherlands. Vision of the Organization for Renewable Energy (ODE)

    International Nuclear Information System (INIS)

    Cace, J.

    2004-01-01

    A brief overview is given of the vision of the Dutch Organization for Renewable Energy (ODE, abbreviated in Dutch) on the development of the market for photovoltaic energy in the Netherlands, focusing on the investment cost, bottlenecks and solutions, and parties involved [nl

  12. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  13. Photovoltaic energy systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The ongoing research, development, and demonstration efforts of the Photovoltaics Program are highlighted and each of the US Department of Energy's current photovoltaics projects initiated or renewed during fiscal year 1981 is described, including its title, directing organization, project engineer, contractor, principal investigator, contract period, funding, and objectives. The Photovoltaics Program is briefly summarized, including the history and organization and highlights of the research and development and of planning, assessment, and integration. Also summarized is the Federal Photovoltaic Utilization Program. An exhaustive bibliography is included. (LEW)

  14. Thermionic photovoltaic energy converter

    Science.gov (United States)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  15. Optimum energy levels and offsets for organic donor/acceptor binary photovoltaic materials and solar cells

    International Nuclear Information System (INIS)

    Sun, S.-S.

    2005-01-01

    Optimum frontier orbital energy levels and offsets of an organic donor/acceptor binary type photovoltaic material have been analyzed using classic Marcus electron transfer theory in order to achieve the most efficient photo induced charge separation. This study reveals that, an exciton quenching parameter (EQP) yields one optimum donor/acceptor frontier orbital energy offset that equals the sum of the exciton binding energy and the charge separation reorganization energy, where the photo generated excitons are converted into charges most efficiently. A recombination quenching parameter (RQP) yields a second optimum donor/acceptor energy offset where the ratio of charge separation rate constant over charge recombination rate constant becomes largest. It is desirable that the maximum RQP is coincidence or close to the maximum EQP. A third energy offset is also identified where charge recombination becomes most severe. It is desirable that the most severe charge recombination offset is far away from maximum EQP offset. These findings are very critical for evaluating and fine tuning frontier orbital energy levels of a donor/acceptor pair in order to realize high efficiency organic photovoltaic materials

  16. Correlation between the Open-Circuit Voltage and Charge Transfer State Energy in Organic Photovoltaic Cells.

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell J

    2015-08-26

    In order to further improve the performance of organic photovoltaic cells (OPVs), it is essential to better understand the factors that limit the open-circuit voltage (VOC). Previous work has sought to correlate the value of VOC in donor-acceptor (D-A) OPVs to the interface energy level offset (EDA). In this work, measurements of electroluminescence are used to extract the charge transfer (CT) state energy for multiple small molecule D-A pairings. The CT state as measured from electroluminescence is found to show better correlation to the maximum VOC than EDA. The difference between EDA and the CT state energy is attributed to the Coulombic binding energy of the CT state. This correlation is demonstrated explicitly by inserting an insulating spacer layer between the donor and acceptor materials, reducing the binding energy of the CT state and increasing the measured VOC. These results demonstrate a direct correlation between maximum VOC and CT state energy.

  17. Depletion layer characteristics and photovoltaic energy conversion in organic P-N heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, G A

    1983-11-01

    The depletion layer characteristics of an organic p-n heterojunction were investigated by measuring the temperature variation of the capacitance, rectification and photovoltaic short-circuit current and open-circuit voltage. The cell consisted of indium-tin-oxide-coated glass/n-type malachite green/p-type merocyanine/Au exposed to chlorine vapour, in the absence of air, to effect the marked rectification and photovoltaic properties observed. Capacitance measurements indicate that a depletion layer of about 65 nm and a barrier height of about 0.8 eV are formed between the two dyes. The forward dark current is dominated by electron tunnelling from the malachite green to the merocyanine. Using an asymmetric trapping model, the reverse saturation current was explained as the thermally activated emission of electrons from filled traps at the Fermi energy of the merocyanine to empty traps in the malachite green over a barrier of 0.72+-0.1 eV. When the cell is working in the photovoltaic mode, the photocurrent is limited by the poor carrier photogeneration efficiency in the malachite green.

  18. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  19. Directing energy transport in organic photovoltaic cells using interfacial exciton gates.

    Science.gov (United States)

    Menke, S Matthew; Mullenbach, Tyler K; Holmes, Russell J

    2015-04-28

    Exciton transport in organic semiconductors is a critical, mediating process in many optoelectronic devices. Often, the diffusive and subdiffusive nature of excitons in these systems can limit device performance, motivating the development of strategies to direct exciton transport. In this work, directed exciton transport is achieved with the incorporation of exciton permeable interfaces. These interfaces introduce a symmetry-breaking imbalance in exciton energy transfer, leading to directed motion. Despite their obvious utility for enhanced exciton harvesting in organic photovoltaic cells (OPVs), the emergent properties of these interfaces are as yet uncharacterized. Here, directed exciton transport is conclusively demonstrated in both dilute donor and energy-cascade OPVs where judicious optimization of the interface allows exciton transport to the donor-acceptor heterojunction to occur considerably faster than when relying on simple diffusion. Generalized systems incorporating multiple exciton permeable interfaces are also explored, demonstrating the ability to further harness this phenomenon and expeditiously direct exciton motion, overcoming the diffusive limit.

  20. Substrate dependence of energy level alignment at the donor-acceptor interface in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Zhou, Y.C.; Liu, Z.T.; Tang, J.X.; Lee, C.S.; Lee, S.T.

    2009-01-01

    The interface energy level alignment between copper phthalocyanine (CuPC) and fullerene (C60), the widely studied donor-acceptor pair in organic photovoltaics (OPVs), on indium-tin oxide (ITO) and Mg substrate was investigated. The CuPC/C60 interface formed on ITO shows a nearly common vacuum level, but a dipole and band bending exist, resulting in a 0.8 eV band offset at the same interface on Mg. This observation indicates that the energy difference between the highest occupied molecular orbital of CuPC and the lowest unoccupied molecular orbital of C60, which dictates the open circuit voltage of the CuPC/C60 OPV, can be tuned by the work function of the substrate. Furthermore, the substrate effect on the energy alignment at the donor/acceptor interface can satisfactorily explain that a device with an anode of a smaller work function can provide a higher open circuit voltage.

  1. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  2. Energy level alignment at C{sub 60}/DTDCTB/PEDOT:PSS interfaces in organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jisu; Jung, Kwanwook; Jeong, Junkyeong; Hyun, Gyeongho [Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Hyunbok, E-mail: hyunbok@kangwon.ac.kr [Department of Physics, Kangwon National University, Chuncheon-si, Gangwon-do 24341 (Korea, Republic of); Yi, Yeonjin, E-mail: yeonjin@yonsei.ac.kr [Institute of Physics and Applied Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of)

    2017-04-30

    Highlights: • The interfacial energy level alignment of C{sub 60}/DTDCTB/PEDOT:PSS was determined via in situ UPS and IPES measurements. • A large photovoltaic gap of 1.30 eV was evaluated between the DTDCTB donor and C{sub 60} acceptor. • A low hole extraction barrier of 0.42 eV from DTDCTB to PEDOT:PSS was evaluated. • The excellent electronic properties of DTDCTB with a narrow band gap were the source of its high OPV power conversion efficiencies. - Abstract: The electronic structure of a narrow band gap small molecule ditolylaminothienyl–benzothiadiazole–dicyanovinylene (DTDCTB), possessing a donor-acceptor-acceptor configuration, was investigated with regard to its application as an efficient donor material in organic photovoltaics (OPVs). The interfacial orbital alignment of C{sub 60}/DTDCTB/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was determined using in situ ultraviolet photoelectron and inverse photoelectron spectroscopic methods. The ionization energy and electron affinity values of DTDCTB were measured to be 5.27 eV and 3.65 eV, respectively, and thus a very small transport gap of 1.62 eV was evaluated. Large band bending of DTDCTB on PEDOT:PSS was observed, resulting in a low hole extraction barrier. Additionally, the photovoltaic gap between the highest occupied molecular orbital level of the DTDCTB donor and the lowest unoccupied molecular orbital level of the C{sub 60} acceptor was estimated to be 1.30 eV, which is known to be the theoretical maximum open-circuit voltage in OPVs employing the C{sub 60}/DTDCTB active layer. The unique electronic structures of DTDCTB contributed toward the recently reported excellent power conversion efficiencies of OPVs containing a DTDCTB donor material.

  3. A Review of Organic Photovoltaic Energy Source and Its Technological Designs

    Directory of Open Access Journals (Sweden)

    Egidius Rutatizibwa Rwenyagila

    2017-01-01

    Full Text Available This study reviews and describes some of the existing research and mechanisms of operation of organic photovoltaic (OPV cells. Introduced first are problems that exist with traditional fossil fuels that result in most of the world energy challenges such as environmental pollution. This is followed by the description of baseline organic solar cell (OSC structures and materials. Then, some of the existing modelling approaches that have implemented either a one- or a two-dimensional drift-diffusion model to examine OSC structures are reviewed, and their reproducibility is examined. Both experimental and modelling approaches reviewed are particularly important for more and better designed research to probe practical procedural problems associated with OSCs that hinder the commercialization of OPV technology.

  4. Lifetime of organic photovoltaics

    DEFF Research Database (Denmark)

    Corazza, Michael; Krebs, Frederik C; Gevorgyan, Suren A.

    2015-01-01

    tests. Comparison of the indoor and outdoor lifetimes was performed by means of the o-diagram, which constitutes the initial steps towards establishing a method for predicting the lifetime of an organic photovoltaic device under real operational conditions based on a selection of accelerated indoor...

  5. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    Science.gov (United States)

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  6. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells.

    Science.gov (United States)

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-28

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  7. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells

    Science.gov (United States)

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-01

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  8. Energy-cascade organic photovoltaic devices incorporating a host-guest architecture.

    Science.gov (United States)

    Menke, S Matthew; Holmes, Russell J

    2015-02-04

    In planar heterojunction organic photovoltaic devices (OPVs), broad spectral coverage can be realized by incorporating multiple molecular absorbers in an energy-cascade architecture. Here, this approach is combined with a host-guest donor layer architecture previously shown to optimize exciton transport for the fluorescent organic semiconductor boron subphthalocyanine chloride (SubPc) when diluted in an optically transparent host. In order to maximize the absorption efficiency, energy-cascade OPVs that utilize both photoactive host and guest donor materials are examined using the pairing of SubPc and boron subnaphthalocyanine chloride (SubNc), respectively. In a planar heterojunction architecture, excitons generated on the SubPc host rapidly energy transfer to the SubNc guest, where they may migrate toward the dissociating, donor-acceptor interface. Overall, the incorporation of a photoactive host leads to a 13% enhancement in the short-circuit current density and a 20% enhancement in the power conversion efficiency relative to an optimized host-guest OPV combining SubNc with a nonabsorbing host. This work underscores the potential for further design refinements in planar heterojunction OPVs and demonstrates progress toward the effective separation of functionality between constituent OPV materials.

  9. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    Science.gov (United States)

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-09-01

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C 61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C 60 ). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan 3 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Light Harvesting for Organic Photovoltaics

    Science.gov (United States)

    2016-01-01

    The field of organic photovoltaics has developed rapidly over the last 2 decades, and small solar cells with power conversion efficiencies of 13% have been demonstrated. Light absorbed in the organic layers forms tightly bound excitons that are split into free electrons and holes using heterojunctions of electron donor and acceptor materials, which are then extracted at electrodes to give useful electrical power. This review gives a concise description of the fundamental processes in photovoltaic devices, with the main emphasis on the characterization of energy transfer and its role in dictating device architecture, including multilayer planar heterojunctions, and on the factors that impact free carrier generation from dissociated excitons. We briefly discuss harvesting of triplet excitons, which now attracts substantial interest when used in conjunction with singlet fission. Finally, we introduce the techniques used by researchers for characterization and engineering of bulk heterojunctions to realize large photocurrents, and examine the formed morphology in three prototypical blends. PMID:27951633

  11. Organic solar cell modules for specific applications-From energy autonomous systems to large area photovoltaics

    International Nuclear Information System (INIS)

    Niggemann, M.; Zimmermann, B.; Haschke, J.; Glatthaar, M.; Gombert, A.

    2008-01-01

    We report on the development of two types of organic solar cell modules one for energy autonomous systems and one for large area energy harvesting. The first requires a specific tailoring of the solar cell geometry and cell interconnection in order to power an energy autonomous system under its specific operating conditions. We present an organic solar cell module with 22 interconnected solar cells. A power conversion efficiency of 2% under solar illumination has been reached on the active area of 46.2 cm 2 . A voltage of 4 V at the maximum power point has been obtained under indoor illumination conditions. Micro contact printing of a self assembling monolayer was employed for the patterning of the polymer anode. Large area photovoltaic modules have to meet the requirements on efficiency, lifetime and costs simultaneously. To minimize the production costs, a suitable concept for efficient reel-to-reel production of large area modules is needed. A major contribution to reduce the costs is the substitution of the commonly used indium tin oxide electrode by a cheap material. We present the state of the art of the anode wrap through concept as a reel-to-reel suited module concept and show comparative calculations of the module interconnection of the wrap through concept and the standard ITO-based cell architecture. As a result, the calculated overall module efficiency of the anode wrap through module exceeds the overall efficiency of modules based on ITO on glass (sheet resistance 15 Ω/square) and on foils (sheet resistance 60 Ω/square)

  12. Efficient Energy Sensitization of C 60 and Application to Organic Photovoltaics

    KAUST Repository

    Trinh, Cong

    2013-08-14

    Fullerenes are currently the most popular electron-acceptor material used in organic photovoltaics (OPVs) due to their superior properties, such as good electron conductivity and efficient charge separation at the donor/acceptor interface. However, low absorptivity in the visible spectral region is a significant drawback of fullerenes. In this study, we have designed a zinc chlorodipyrrin derivative (ZCl) that absorbs strongly in the visible region (450-600 nm) with an optical density 7-fold higher than a C60 film. ZCl efficiently transfers absorbed photoenergy to C60 in mixed films. Application of ZCl as an energy sensitizer in OPV devices leads to an increase in the photocurrent from the acceptor layer, without changing the other device characteristics, i.e., open circuit voltage and fill factor. For example, C 60-based OPVs with and without the sensitizer give 4.03 and 3.05 mA/cm2, respectively, while both have VOC = 0.88 V and FF = 0.44. Our ZCl sensitization approach improves the absorbance of the electron-acceptor layer while still utilizing the beneficial characteristics of C60 in OPVs. © 2013 American Chemical Society.

  13. Efficient Energy Sensitization of C 60 and Application to Organic Photovoltaics

    KAUST Repository

    Trinh, Cong; Kirlikovali, Kent O.; Bartynski, Andrew N.; Tassone, Christopher J.; Toney, Michael F.; Burkhard, George F.; McGehee, Michael D.; Djurovich, Peter I.; Thompson, Mark E.

    2013-01-01

    Fullerenes are currently the most popular electron-acceptor material used in organic photovoltaics (OPVs) due to their superior properties, such as good electron conductivity and efficient charge separation at the donor/acceptor interface. However, low absorptivity in the visible spectral region is a significant drawback of fullerenes. In this study, we have designed a zinc chlorodipyrrin derivative (ZCl) that absorbs strongly in the visible region (450-600 nm) with an optical density 7-fold higher than a C60 film. ZCl efficiently transfers absorbed photoenergy to C60 in mixed films. Application of ZCl as an energy sensitizer in OPV devices leads to an increase in the photocurrent from the acceptor layer, without changing the other device characteristics, i.e., open circuit voltage and fill factor. For example, C 60-based OPVs with and without the sensitizer give 4.03 and 3.05 mA/cm2, respectively, while both have VOC = 0.88 V and FF = 0.44. Our ZCl sensitization approach improves the absorbance of the electron-acceptor layer while still utilizing the beneficial characteristics of C60 in OPVs. © 2013 American Chemical Society.

  14. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  15. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  16. Solar energy developments: photovoltaics

    International Nuclear Information System (INIS)

    Sivoththaman, S.

    2006-01-01

    The annual photovoltaic (PV) energy production crossed the 1 Gigawatt mark a couple of years ago, and continues to grow at rates exceeding 40%. The cost of PV has been continuously dropping due to increased production and also thanks to the technological advances made over the past two decades at the material, device, and system levels. Although PV is still considered expensive, cost-competitiveness is expected to be achieved in the next 5-10 years. With the current PV market 90% dominated by crystalline silicon (Si) material, advances are being made in tackling the Si shortage issue, and new approaches in feedstock refinement are getting shape. On the other hand, progress is being made on thin film-based advanced devices and on novel organic semiconductors. Novel concepts based on quantum physics and nanotechnology do have the ability to improve device performance beyond traditional theoretical limits. The domination of Si is expected to shift when these next generation technologies mature into industry-level scalability. On the system level, advanced back-end electronics provides more efficient power conditioning for modern PV modules. Systems level combinations such as solar thermal/PV hybrids and PV/hydrogen systems are also promising. An overview of recent technology developments will be presented with highlights in the Canadian scenario. (author)

  17. Correction: An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells.

    Science.gov (United States)

    Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C

    2017-09-21

    Correction for 'An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells' by Abby-Jo Payne et al., Chem. Commun., 2017, 53, 10168-10171.

  18. Organic photovoltaics. Technology and market

    International Nuclear Information System (INIS)

    Brabec, Christoph J.

    2004-01-01

    Organic photovoltaics has come into the international research focus during the past three years. Up to now main efforts have focused on the improvement of the solar conversion efficiency, and in recent efforts 5% white light efficiencies on the device level have been realized. Despite this in comparison to inorganic technologies low efficiency, organic photovoltaics is evaluated as one of the future key technologies opening up completely new applications and markets for photovoltaics. The key property which makes organic photovoltaics so attractive is the potential of reel to reel processing on low cost substrates with standard coating and printing processes. In this contribution we discuss the economical and technical production aspects for organic photovoltaics

  19. Visualization of phase evolution in model organic photovoltaic structures via energy-filtered transmission electron microscopy.

    Science.gov (United States)

    Herzing, Andrew A; Ro, Hyun Wook; Soles, Christopher L; DeLongchamp, Dean M

    2013-09-24

    The morphology of the active layer in an organic photovoltaic bulk-heterojunction device is controlled by the extent and nature of phase separation during processing. We have studied the effects of fullerene crystallinity during heat treatment in model structures consisting of a layer of poly(3-hexylthiophene) (P3HT) sandwiched between two layers of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Utilizing a combination of focused ion-beam milling and energy-filtered transmission electron microscopy, we monitored the local changes in phase distribution as a function of annealing time at 140 °C. In both cases, dissolution of PCBM within the surrounding P3HT was directly visualized and quantitatively described. In the absence of crystalline PCBM, the overall phase distribution remained stable after intermediate annealing times up to 60 s, whereas microscale PCBM aggregates were observed after annealing for 300 s. Aggregate growth proceeded vertically from the substrate interface via uptake of PCBM from the surrounding region, resulting in a large PCBM-depleted region in their vicinity. When precrystallized PCBM was present, amorphous PCBM was observed to segregate from the intermediate P3HT layer and ripen the crystalline PCBM underneath, owing to the far lower solubility of crystalline PCBM within P3HT. This process occurred rapidly, with segregation already evident after annealing for 10 s and with uptake of nearly all of the amorphous PCBM by the crystalline layer after 60 s. No microscale aggregates were observed in the precrystallized system, even after annealing for 300 s.

  20. Photovoltaic solar energy

    International Nuclear Information System (INIS)

    Mouratoglou, P.; Therond, P.G.

    2009-01-01

    The most important assets of photovoltaic energy for sustainable development are its simplicity (no need for complicated thermodynamical cycles) and the universal availability of the sun which explains its great popularity. The main restraint to its full development is the high cost of the technologies used. The silicon technology is the historical technology, it has high conversion rates but is expensive because of high fabrication costs. This technology represents 80% of the market. On the other hand the thin film technology with CdTe, CIS or CIGS is promising in terms of costs but requires research works to increase its conversion rate. Japan and Germany are the leader countries in terms of photovoltaic for research, industrial fabrication or state support, they are followed by Spain, Usa, and China. (A.C.)

  1. Organic photovoltaics concepts and realization

    CERN Document Server

    Dyakonov, Vladimir; Parisi, Jürgen; Sariciftci, Niyazi

    2003-01-01

    Achieving efficient solar energy conversion at both large scale and low cost is among the most important technological challenges for the near future. The present volume describes and explains the fundamentals of organic/plastic solar cells in a manner accessible to both researchers and students. It provides a comprehensive analysis of the operational principles underlying several types of solar cells that have absorber layers based on polymer materials and small molecules. It addresses competing approaches, such as polymer solar cells and dye-sensitized cells, while considering the thermodynamic principles within the context of these schemes. Organic Photovoltaics also analyzes in detail the charge-transfer processes in the bulk-heterojunction devices corresponding to the relevant mechanism of carrier generation. Emphasized throughout is the concept of interpenetrating polymer-fullerene networks, due to their high potential for improving power efficiency.

  2. Photovoltaic conversion of laser energy

    Science.gov (United States)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  3. Final Report: Transforming Organic Photovoltaics into a Fully Practical Energy Solution

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Stephen R. [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-08-03

    The main purpose of this project is to advance the organic photovoltaic cell technology by addressing the three pillars: (I) efficiency, (II) reliability, and (III) low cost and scalability. This project uses several proprietary technologies, such as multi-junction planar mixed solar cells, exciton blocking layers, organic vapor phase deposition (OVPD), liquid and vacuum-phase deposition processes, developed at the University of Michigan. The methods used are based primarily (although not exclusively) on small molecular weight organic materials used in high power conversion efficiency (PCE) single- and multi-junction cells. At the same time, we explore the operational lifetime, and fundamental failure modes for both discrete and multijunction cells employing our most efficient materials sets (as already developed, or to be developed under separate funding). Large test modules consisting of up to (10 cm)2 arrays of 1 cm2 devices will be made using scalable growth technologies including organic vapor phase deposition (OVPD), liquid and vacuum-phase deposition processes developed in our laboratory. All deposition techniques used have the ability to scale to very large substrates, including having compatibility with roll-to-roll deposition.

  4. Photovoltaic energy generation in Germany

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    An overview is given of the current state of the art regarding photovoltaic research and demonstration programmes in the Federal Republic of Germany. Also attention is paid to the companies and research institutes involved, and the long-term economical and technical prospects of photovoltaic energy. 13 figs., 4 tabs., 10 refs

  5. Photovoltaic energy barometer

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    The european photovoltaic market once again reached the heights in 2006, thanks to the dynamism of the German market. White paper objectives have thus been fulfilled four years ahead of schedule. The european photovoltaic sector remains however very heterogeneous with both an ultra-dominant German market (estimated at 1150 MWp in 2006) and other countries of the European Union that vary from a few kWP to a few dozen MWp. This analysis provides statistical data on the market, the capacity installed during 2005 and 2006, the photovoltaic parks and the evolution of the photovoltaic cell production. (A.L.B.)

  6. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells.

    Science.gov (United States)

    Ryuzaki, Sou; Onoe, Jun

    2013-01-01

    Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells.

  7. The Harvard organic photovoltaic dataset.

    Science.gov (United States)

    Lopez, Steven A; Pyzer-Knapp, Edward O; Simm, Gregor N; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-09-27

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications.

  8. The Harvard organic photovoltaic dataset

    Science.gov (United States)

    Lopez, Steven A.; Pyzer-Knapp, Edward O.; Simm, Gregor N.; Lutzow, Trevor; Li, Kewei; Seress, Laszlo R.; Hachmann, Johannes; Aspuru-Guzik, Alán

    2016-01-01

    The Harvard Organic Photovoltaic Dataset (HOPV15) presented in this work is a collation of experimental photovoltaic data from the literature, and corresponding quantum-chemical calculations performed over a range of conformers, each with quantum chemical results using a variety of density functionals and basis sets. It is anticipated that this dataset will be of use in both relating electronic structure calculations to experimental observations through the generation of calibration schemes, as well as for the creation of new semi-empirical methods and the benchmarking of current and future model chemistries for organic electronic applications. PMID:27676312

  9. The photovoltaic energy in Japan

    International Nuclear Information System (INIS)

    Georgel, O.

    2005-07-01

    Today the Japan is the leader of the photovoltaic energy. The first reason of this success is an action of the government integrating subventions for the installation of photovoltaic systems and a support of the scientific research. To explain this success, the author presents the energy situation in Japan, details the national programs, the industrial sector (market, silicon needs, recycling, manufacturers, building industry) and presents the main actors. (A.L.B.)

  10. Photovoltaic energy barometer

    International Nuclear Information System (INIS)

    Anon

    2006-01-01

    The european market showed all of its strength and soundness in 2005. The 2005 installed cells growth could have been even greater if the market had not been continually curbed by a lack of raw materials. Germany remained the leading photovoltaic market in the world in 2005, positioned far ahead of Japan and the USA. This unabashed success inspired both Spain and Italy, which set up conditions in order to rapidly develop their photovoltaic sectors. (A.L.B.)

  11. Novel Structuring Routines for Organic Photovoltaics

    OpenAIRE

    Meier, Robert

    2012-01-01

    Organic photovoltaic devices are promising candidates for a future energy production at low-costs. In the framework of this thesis, fundamental aspects of organic solar cells based on different blend systems were investigated. X-ray scattering revealed a strong dependency of the inner film morphology of such devices on the layer thickness and the film composition. Applying optical methods, an enhanced photochemical degradation of blend films upon UV-irradiation was observed if ...

  12. Organic photovoltaic films

    OpenAIRE

    Nelson, Jenny

    2002-01-01

    Organic electronic materials are of interest for future applications in solar cells. Although results for single layer organic materials have been disappointing, high photocurrent quantum efficiencies can be achieved in composite systems including both electron donating and electron accepting components. Efficiencies of over 2% have now been reported in four different types of organic solar cell. Performance is limited by the low red absorption of organic materials, poor charge transport, and...

  13. ENEA activities on photovoltaic energy

    International Nuclear Information System (INIS)

    Coiante, D.; Messana, C.

    1989-01-01

    Photovoltaic conversion appears to be a promising technology for producing electricity. Photovoltaic (PV) solar cells directly convert sun radiation into electricity, without needing moving parts or any kind of fuel. In a long term perspective, PV conversion is expected to become an integrative energy source; at present, high costs are the main limiting factor of the diffusion of PV technology. Costs can be reduced through the joint effect of technological innovation and mass production: therefore, the Italian strategy consists in promoting the gradual enlargement of production volumes and, at the same time, the introduction of less expensive technologies and processes, as soon as they become available. The main responsibility for PV strategies and activities is assigned to ENEA, the Italian National Commission for Nuclear and Alternative Energy Sources. The ENEA five year plan (1985-1989) had allocated about 100 M$ in the PV sector and, as a result, today ENEA is the main national organization promoting PV energy development. ENEA programs include both in house research and external activities. The latter are carried out by universities and industrial firms and concern the whole PV production process from raw materials to complete systems. In Italy there are three main industrial enterprises which produce PV modules an systems: Italsolar (formerly Pragma, ENI group), Ansaldo (IRI group) and Helios Technology, a private firm. Their total annual production capacity amounts to about 2 MW per shift, and is expected to increase in the near future. In 1986, the whole production has been about 0.7 MW: a substantial share of this production has been marketed abroad, mostly as complete systems. (author). 6 tabs

  14. Photovoltaic energy cost limit

    International Nuclear Information System (INIS)

    Coiante, D.

    1992-01-01

    Referring to a photovoltaic system for grid connected applications, a parametric expression of kWh cost is derived. The limit of kWh cost is carried out extrapolating the values of cost components to their lowest figure. The reliability of the forecast is checked by disaggregating kWh cost in direct and indirect costs and by discussing the possible cost reduction of each component

  15. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  16. Interactive Visual Analysis for Organic Photovoltaic Solar Cells

    KAUST Repository

    Abouelhassan, Amal A.

    2017-01-01

    Organic Photovoltaic (OPV) solar cells provide a promising alternative for harnessing solar energy. However, the efficient design of OPV materials that achieve better performance requires support by better-tailored visualization tools than

  17. Photovoltaic energy in power market

    NARCIS (Netherlands)

    Ho, D.T.; Frunt, J.; Myrzik, J.M.A.

    2009-01-01

    Photovoltaic (PV) penetration in the grid connected power system has been growing. Currently, PV electricity is usually directly sold back to the energy supplier at a fixed price and subsidy. However, subsidies should always be a temporary policy, and will eventually be terminated. A question is

  18. Highway renewable energy : photovoltaic noise barriers

    Science.gov (United States)

    2017-07-01

    Highway photovoltaic noise barriers (PVNBs) represent the combination of noise barrier systems and photovoltaic systems in order to mitigate traffic noise while simultaneously producing renewable energy. First deployed in Switzerland in 1989, PVNBs a...

  19. Photovoltaic solar energy; Photovoltaische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the 27th symposium of the Ostbayerische Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) from 29th February to 02th March, 2012, at Banz monastery near Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) EEG 12: State of the art and impacts (K. Freier); (2) Promising markets - PV market potentials Europe (M. Lohr); (3) Expansion requires restructuring - Research promotion for renewable energy and renewable energy supply systems (K. Deller); (4) Fields of application and potentials of photovoltaics in Germany without an enhanced EEG compensation (V. Quaschning); (5) ''Smart Solar Grid'' - Results of the analysis and solar roof potential of the first test area of the public utility Ulm (H. Ruf); (6) Power limitation at PV plants - Adjustment of modelling methods and comparison of different location (J. von Appen); (7) Exploitations to the power limitation till to 70 % of the module capacity (B. Giesler); (8) Actual procedural results of the clearing house EEG to photovoltaics and modifications at PV by means of the EEG 2012 (M. Winkler); (9) Grid integration of PV plants from a legal point of view (M. von Oppen); (10) EEG 2012 - Abetment or brake? PV and other renewable energies in comparison (M. Reichmuth); (11) On the precision of radiation and photovoltaics component models (J. Schumacher); (12) Impact of global radiation data with different properties on the performance ratio and prognosticated energy efficiency of photovoltaic power plants (M. Egler); (13) Quantification of superelevations of irradiation in high-resolution DWD datasets for different locations in Germany (M. Zehner); (14) Prognosis of the regional PV performance with measuring data of PV plant and satellite pictures (Y.-M. Saint-Drenan); (15) Photovoltaics and wind power: perfectly complementing power technologies using Central Germany as an example (C. Breyer); (16) Which and how much storages are necessary

  20. Photovoltaic solar energy: State of the art

    International Nuclear Information System (INIS)

    Van Sark, W.G.J.H.M.; Sinke, W.C.

    1993-03-01

    Attention is paid to developments in the Netherlands of all aspects of photovoltaic (PV) energy: solar cells, components, PV-systems and all kinds of applications. Efficiencies of the present solar cell types still increase, varying from more than 10% for organic/TiO 2 solar cells to 33% for GaAs/GaSb concentrator tandem solar cells. 3 figs., 2 ills., 1 tab

  1. Photovoltaic and photoelectrochemical conversion of solar energy.

    Science.gov (United States)

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.

  2. Photovoltaic energy systems: Program summary fiscal year 1983

    Science.gov (United States)

    1984-01-01

    An overview of government funded activities in photovoltaic energy conversion research is given. Introductory information, a list of directing organizations, a list of acronyms and abbreviations, and an index of current contractors are given.

  3. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  4. Photovoltaic energy in Germany: experience feedback

    International Nuclear Information System (INIS)

    Persem, Melanie

    2011-01-01

    This document presents some key information and figures about the development of photovoltaic energy in Germany: resource potential, 2000-2010 development, share in the energy mix, market, legal framework and incentives, market evolution and electricity feed-in tariffs, 2006-2011 evolution of photovoltaic power plant costs, households' contribution, R and D investments, industry development and employment, the German national energy plan after Fukushima, the expectations of the German photovoltaic industry

  5. Effects of concentrated sunlight on organic photovoltaics

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Katz, Eugene A.; Hirsch, Baruch

    2010-01-01

    We report the effects of concentrated sunlight on key photovoltaic parameters and stability of organic photovoltaics (OPV). Sunlight collected and concentrated outdoors was focused into an optical fiber and delivered onto a 1 cm2 bulk-heterojunction cell. Sunlight concentration C was varied gradu...

  6. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  7. Work-Function and Surface Energy Tunable Cyanoacrylic Acid Small-Molecule Derivative Interlayer on Planar ZnO Nanorods for Improved Organic Photovoltaic Performance.

    Science.gov (United States)

    Ambade, Swapnil B; Ambade, Rohan B; Bagde, Sushil S; Lee, Soo-Hyoung

    2016-12-28

    The issue of work-function and surface energy is fundamental to "decode" the critical inorganic/organic interface in hybrid organic photovoltaics, which influences important photovoltaic events like exciton dissociation, charge transfer, photocurrent (J sc ), open-circuit voltage (V oc ), etc. We demonstrate that by incorporating an interlayer of cyanoacrylic acid small molecular layer (SML) on solution-processed, spin-coated, planar ZnO nanorods (P-ZnO NRs), higher photovoltaic (PV) performances were achieved in both inverted organic photovoltaic (iOPV) and hybrid organic photovoltaic (HOPV) devices, where ZnO acts as an "electron-transporting layer" and as an "electron acceptor", respectively. For the tuned range of surface energy from 52.5 to 33 mN/m, the power conversion efficiency (PCE) in bulk heterojunction (BHJ) iOPVs based on poly(3-hexylthiophene) (P3HT) and phenyl-C 60 -butyric acid methyl ester (PC 60 BM) increases from 3.16% to 3.68%, and that based on poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl)] (PTB7:Th):[6,6]-phenyl C 71 butyric acid methyl ester (PC 71 BM) photoactive BHJ increases from 6.55% to 8.0%, respectively. The improved PV performance in iOPV devices is majorly attributed to enhanced photocurrents achieved as a result of reduced surface energy and greater electron affinity from the covalent attachment of the strong electron-withdrawing cyano moiety, while that in HOPV devices, where PCE increases from 0.21% to 0.79% for SML-modified devices, is ascribed to a large increase in V oc benefitted due to reduced work function effected from the presence of strong dipole moment in SML that points away from P-ZnO NRs.

  8. Electroactive and High Dielectric Folic Acid/PVDF Composite Film Rooted Simplistic Organic Photovoltaic Self-Charging Energy Storage Cell with Superior Energy Density and Storage Capability.

    Science.gov (United States)

    Roy, Swagata; Thakur, Pradip; Hoque, Nur Amin; Bagchi, Biswajoy; Sepay, Nayim; Khatun, Farha; Kool, Arpan; Das, Sukhen

    2017-07-19

    Herein we report a simplistic prototype approach to develop an organic photovoltaic self-charging energy storage cell (OPSESC) rooted with biopolymer folic acid (FA) modified high dielectric and electroactive β crystal enriched poly(vinylidene fluoride) (PVDF) composite (PFA) thin film. Comprehensive and exhaustive characterizations of the synthesized PFA composite films validate the proper formation of β-polymorphs in PVDF. Significant improvements of both β-phase crystallization (F(β) ≈ 71.4%) and dielectric constant (ε ≈ 218 at 20 Hz for PFA of 7.5 mass %) are the twosome realizations of our current study. Enhancement of β-phase nucleation in the composites can be thought as a contribution of the strong interaction of the FA particles with the PVDF chains. Maxwell-Wagner-Sillars (MWS) interfacial polarization approves the establishment of thermally stable high dielectric values measured over a wide temperature spectrum. The optimized high dielectric and electroactive films are further employed as an active energy storage material in designing our device named as OPSESC. Self-charging under visible light irradiation without an external biasing electrical field and simultaneous remarkable self-storage of photogenerated electrical energy are the two foremost aptitudes and the spotlight of our present investigation. Our as fabricated device delivers an impressively high energy density of 7.84 mWh/g and an excellent specific capacitance of 61 F/g which is superior relative to the other photon induced two electrode organic self-charging energy storage devices reported so far. Our device also proves the realistic utility with good recycling capability by facilitating commercially available light emitting diode.

  9. Acetylene-Based Materials in Organic Photovoltaics

    Directory of Open Access Journals (Sweden)

    Fabio Silvestri

    2010-04-01

    Full Text Available Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Organic photovoltaic systems hold the promise of a lightweight, flexible, cost-effective solar energy conversion platform, which could benefit from simple solution-processing of the active layer. The discovery of semiconductive polyacetylene by Heeger et al. in the late 1970s was a milestone towards the use of organic materials in electronics; the development of efficient protocols for the palladium catalyzed alkynylation reactions and the new conception of steric and conformational advantages of acetylenes have been recently focused the attention on conjugated triple-bond containing systems as a promising class of semiconductors for OPVs applications. We review here the most important and representative (polyarylacetylenes that have been used in the field. A general introduction to (polyarylacetylenes, and the most common synthetic approaches directed toward making these materials will be firstly given. After a brief discussion on working principles and critical parameters of OPVs, we will focus on molecular arylacetylenes, (copolymers containing triple bonds, and metallopolyyne polymers as p-type semiconductor materials. The last section will deal with hybrids in which oligomeric/polymeric structures incorporating acetylenic linkages such as phenylene ethynylenes have been attached onto C60, and their use as the active materials in photovoltaic devices.

  10. Electric properties of organic and mineral electronic components, design and modelling of a photovoltaic chain for a better exploitation of the solar energy

    International Nuclear Information System (INIS)

    Aziz, A.

    2006-11-01

    The research carried out in this thesis relates to the mineral, organic electronic components and the photovoltaic systems. Concerning the mineral semiconductors, we modelled the conduction properties of the structures metal/oxide/semiconductor (MOS) strongly integrated in absence and in the presence of charges. We proposed a methodology allowing characterizing the ageing of structures MOS under injection of the Fowler Nordheim (FN) current type. Then, we studied the Schottky diodes in polymers of type metal/polymer/metal. We concluded that: The mechanism of the charges transfer, through the interface metal/polymer, is allotted to the thermo-ionic effect and could be affected by the lowering of the potential barrier to the interface metal/polymer. In the area of photovoltaic energy, we conceived and modelled a photovoltaic system of average power (100 W). We showed that the adaptation of the generator to the load allows a better exploitation of solar energy. This is carried out by the means of the converters controlled by an of type MPPT control provided with a detection circuit of dysfunction and restarting of the system. (author)

  11. Press document. Photovoltaic energy: boosting the evolution

    International Nuclear Information System (INIS)

    2009-04-01

    The french potential in the photovoltaic energy is considerable but not very exploited. In this context the CEA, by its function of applied research institute in the domain of the low carbon energies can be a major actor of the sector development. This document presents the research programs in the photovoltaic domain, developed at the CEA, especially on the silicon performance, the photovoltaic solar cells and their integration in the buildings. (A.L.B.)

  12. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  13. Photovoltaic energy potential of Quebec

    International Nuclear Information System (INIS)

    Royer, J.; Thomas, R.

    1993-01-01

    Results are presented from a study concerning the potential of photovoltaic (PV) energy in Quebec to the year 2010. The different PV applications which are or will be economically viable in Quebec for the study period are identified and evaluated in comparison with the conventional energy sources used for these applications. Two penetration scenarios are proposed. One considers little change at the level of policies established for commercialization of PV sources, and the other considers certain measures which accelerate the implementation of PV technology in certain niches. While the off-grid market is already motivated to adopt PV technology for economic reasons, it is forecast that all encouragement from lowering costs would accelerate PV sales, offering a larger purchasing power to all interested parties. Above all, lowered PV costs would open up the network market. Photovoltaics would have access to a much larger market, which will accelerate changes in the very nature of the industry and bring with it new reductions in the costs of producing PV systems. 5 refs., 1 fig., 7 tabs

  14. Solar energy photovoltaic technology: proficiency and performance

    International Nuclear Information System (INIS)

    2006-01-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  15. Triplet exciton formation in organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xudong; Westenhoff, Sebastian; Howard, Ian; Ford, Thomas; Friend, Richard; Hodgkiss, Justin; Greenham, Neil [Cavendish Laboratory, University of Cambridge (United Kingdom)

    2009-07-01

    We have recently found that the formation of triplet excitons can be an important loss mechanism in organic photovoltaics, particularly in donor-acceptor blends designed to have high open-circuit voltages. This can occur when the intrachain triplet state lies lower in energy than the charge-transfer state formed at the heterojunction. We find that in a blend based on the polyfluorene derivatives F8BT and PFB, triplet excitons are formed after photoexcitation with much higher efficiency than in the component polymers. We use transient absorption spectroscopy to study the dynamics of charges and triplet excitons on timescales from picoseconds to microseconds. This allows us to determine a characteristic time of {proportional_to} 40 ns for intersystem crossing in the charge-separated state, and to estimate that as many as 75% of photoexcitations lead to the formation of triplet states. To avoid losses to triplet excitons in photovoltaic devices, it is necessary to separate charge pairs before intersystem crossing can occur. We also present photophysical measurements of saturation and relaxation of the triplet excited state absorption used to quantify triplet populations.

  16. Conference: photovoltaic energy - local authorities - Citizen

    International Nuclear Information System (INIS)

    Belon, Daniel; Witte, Sonja; Simonet, Luc; Waldmann, Lars; Fouquet, Doerte; Dupassieux, Henri; Longo, Fabio; Brunel, Arnaud; Kruppert, Andreas; Vachette, Philippe

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the role of photovoltaic energy, local authorities and Citizens as pillars of the energy transition. In the framework of this French-German exchange of experience, about 100 participants exchanged views on the role of local authorities and Citizens in the implementation of the energy transition. This document brings together the available presentations (slides) made during this event: 1 - Solar photovoltaics, local communities and citizens - Cornerstones of the energy revolution. Franco-German viewpoints (Daniel Belon); 2 - Structure and management of the distribution system operators in Germany. efficient, innovative and reliable: Local public enterprises in Germany (Sonja Witte); 3 - Photovoltaic energy: technical challenges for power grids - A distribution network operator's (DNO) point-of-view (Luc Simonet); 4 - The sun and the grid - challenges of the energy transition (Lars Waldmann); 5 - The role of local public authorities in the networks management: legal situation in France, Germany and in the EU (Doerte Fouquet); 6 - Towards energy transition: challenges for renewable energies - Urban solar planning tools (Henri Dupassieux); 7 - The local energy supply as a municipal task - solar land-use planning in practice in Germany (Fabio Longo); 8 - Supporting and facilitating the financing of photovoltaic projects at a community level (Arnaud Brunel); 9 - Photovoltaics in the municipality VG Arzfeld (Andreas Kruppert); 10 - For the energy revolution to be a success: Invest into renewable energy. Local, controllable and renewable 'shared energy' that is grassroots (Philippe Vachette)

  17. NASA-OAST photovoltaic energy conversion program

    Science.gov (United States)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  18. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  19. Information report from the Economic Affairs commission on photovoltaic energy

    International Nuclear Information System (INIS)

    2009-01-01

    Today and for several years to come, photovoltaic energy represents only a minimal part of the world's electric power production. Photovoltaic energy is only at its beginnings, however several countries have already taken opportunities in the business. This report gives a comprehensive information about photovoltaic energy (basic principles, conversion systems, photovoltaic power plants, incentive programs in other developed countries, regulations ...) and arguments for the development of a structured photovoltaic energy policy in France

  20. Factors limiting device efficiency in organic photovoltaics

    NARCIS (Netherlands)

    Janssen, R.A.J.; Nelson, J.

    2013-01-01

    The power conversion efficiency of the most efficient organic photovoltaic (OPV) cells has recently increased to over 10%. To enable further increases, the factors limiting the device efficiency in OPV must be identified. In this review, the operational mechanism of OPV cells is explained and the

  1. Technological status of organic photovoltaics (OPV)

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Krebs, Frederik C

    2013-01-01

    This paper gives a technological status of organic and polymer photovoltaics (OPV) for both single and tandem junctions. We list the current state-of-the-art at the laboratory level for very small rigid and mostly vacuum processed devices to larger area flexible and printed devices. In comparison...

  2. Low band gap polymers for organic photovoltaics

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2007-01-01

    Low band gap polymer materials and their application in organic photovoltaics (OPV) are reviewed. We detail the synthetic approaches to low band gap polymer materials starting from the early methodologies employing quinoid homopolymer structures to the current state of the art that relies...

  3. Optimized organic photovoltaics with surface plasmons

    Science.gov (United States)

    Omrane, B.; Landrock, C.; Aristizabal, J.; Patel, J. N.; Chuo, Y.; Kaminska, B.

    2010-06-01

    In this work, a new approach for optimizing organic photovoltaics using nanostructure arrays exhibiting surface plasmons is presented. Periodic nanohole arrays were fabricated on gold- and silver-coated flexible substrates, and were thereafter used as light transmitting anodes for solar cells. Transmission measurements on the plasmonic thin film made of gold and silver revealed enhanced transmission at specific wavelengths matching those of the photoactive polymer layer. Compared to the indium tin oxide-based photovoltaic cells, the plasmonic solar cells showed overall improvements in efficiency up to 4.8-fold for gold and 5.1-fold for the silver, respectively.

  4. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  5. Towards High Performance Organic Photovoltaic Cells: A Review of Recent Development in Organic Photovoltaics

    Directory of Open Access Journals (Sweden)

    Junsheng Yu

    2014-09-01

    Full Text Available Organic photovoltaic cells (OPVs have been a hot topic for research during the last decade due to their promising application in relieving energy pressure and environmental problems caused by the increasing combustion of fossil fuels. Much effort has been made toward understanding the photovoltaic mechanism, including evolving chemical structural motifs and designing device structures, leading to a remarkable enhancement of the power conversion efficiency of OPVs from 3% to over 15%. In this brief review, the advanced progress and the state-of-the-art performance of OPVs in very recent years are summarized. Based on several of the latest developed approaches to accurately detect the separation of electron-hole pairs in the femtosecond regime, the theoretical interpretation to exploit the comprehensive mechanistic picture of energy harvesting and charge carrier generation are discussed, especially for OPVs with bulk and multiple heterojunctions. Subsequently, the novel structural designs of the device architecture of OPVs embracing external geometry modification and intrinsic structure decoration are presented. Additionally, some approaches to further increase the efficiency of OPVs are described, including thermotics and dynamics modification methods. Finally, this review highlights the challenges and prospects with the aim of providing a better understanding towards highly efficient OPVs.

  6. Modeling and Simulation of Energy Recovery from a Photovoltaic ...

    African Journals Online (AJOL)

    Modeling and Simulation of Energy Recovery from a Photovoltaic Solar cell. ... Photovoltaic (PV) solar cell which converts solar energy directly into electrical energy is one of ... model of the solar panel which could represent the real systems.

  7. Reciprocal carrier collection in organic photovoltaics

    KAUST Repository

    Renshaw, C. Kyle

    2011-07-18

    Buffer layers between the acceptor and cathode can perform several functions in organic photovoltaic devices, such as providing exciton blocking, protection of active layers against damage from cathode deposition, and optical spacing to maximize the electric field in the active device region. Here, we study electron collection by replacing the common buffer layer, bathocuproine, with a series of six, substituted tris(β-diketonato)Ru(III) analogues in the structure: indium-tin-oxide/copper phthalocyanine/C60/buffer/Ag. These buffer layers enable collection of photogenerated electrons by transporting holes from the cathode to the C60/buffer interface, followed by recombination with photogenerated electrons in the acceptor. We use a model for free-polaron and polaron-pair dynamics to describe device operation and the observed inflection in the current-voltage characteristics. The device characteristics are understood in terms of hole transfer from the highest occupied molecular orbital energy levels of several Ru-complexes to the acceptor. © 2011 American Physical Society.

  8. Reciprocal carrier collection in organic photovoltaics

    KAUST Repository

    Renshaw, C. Kyle; Schlenker, Cody W.; Thompson, Mark E.; Forrest, Stephen R.

    2011-01-01

    Buffer layers between the acceptor and cathode can perform several functions in organic photovoltaic devices, such as providing exciton blocking, protection of active layers against damage from cathode deposition, and optical spacing to maximize the electric field in the active device region. Here, we study electron collection by replacing the common buffer layer, bathocuproine, with a series of six, substituted tris(β-diketonato)Ru(III) analogues in the structure: indium-tin-oxide/copper phthalocyanine/C60/buffer/Ag. These buffer layers enable collection of photogenerated electrons by transporting holes from the cathode to the C60/buffer interface, followed by recombination with photogenerated electrons in the acceptor. We use a model for free-polaron and polaron-pair dynamics to describe device operation and the observed inflection in the current-voltage characteristics. The device characteristics are understood in terms of hole transfer from the highest occupied molecular orbital energy levels of several Ru-complexes to the acceptor. © 2011 American Physical Society.

  9. Expected energy production evaluation for photovoltaic systems

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Peng, Wang

    2011-01-01

    A photovoltaic (PV) system consists of many solar panels, which are connected in series, parallel or a combination of both. Energy production for the PV system with various configurations is different. In this paper, a methodology is developed to evaluate and analyze the expected energy production...

  10. Photovoltaic Solar Energy : From Fundamentals to Applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, P.J.; van Sark, W.G.J.H.M.; Freundlich, A.

    2016-01-01

    Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date

  11. Organic bulk heterojunction photovoltaic structures: design, morphology and properties

    International Nuclear Information System (INIS)

    Bulavko, G V; Ishchenko, A A

    2014-01-01

    Main approaches to the design of organic bulk heterojunction photovoltaic structures are generalized and systematized. Novel photovoltaic materials based on fullerenes, organic dyes and related compounds, graphene, conjugated polymers and dendrimers are considered. The emphasis is placed on correlations between the chemical structure and properties of materials. The effect of morphology of the photoactive layer on the photovoltaic properties of devices is analyzed. Main methods of optimization of the photovoltaic properties are outlined. The bibliography includes 338 references

  12. Lifetime of Organic Photovoltaics: Status and Predictions

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Madsen, Morten Vesterager; Roth, Bérenger

    2016-01-01

    The results of a meta-analysis conducted on organic photovoltaics (OPV) lifetime data reported in the literature is presented through the compilation of an extensive OPV lifetime database based on a large number of articles, followed by analysis of the large body of data. We fully reveal the prog......The results of a meta-analysis conducted on organic photovoltaics (OPV) lifetime data reported in the literature is presented through the compilation of an extensive OPV lifetime database based on a large number of articles, followed by analysis of the large body of data. We fully reveal...... the progress of reported OPV lifetimes. Furthermore, a generic lifetime marker has been defi ned, which helps with gauging and comparing the performance of different architectures and materials from the perspective of device stability. Based on the analysis, conclusions are drawn on the bottlenecks...

  13. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  14. Photovoltaics as a worldwide energy source

    International Nuclear Information System (INIS)

    Jones, G.J.

    1991-01-01

    Photovoltaic energy systems have historically been treated as a bulk power generation source for the future. However, utilities and other agencies involved with electrification throughout the world are beginning to find photovoltaics a least-cost option to meet specific loads both for themselves and their customers, in both off-grid and grid-connected applications. These expanding markets offer the potential of hundreds of megawatts of sales in the coming decade, but a strategy addressing both industrial growth and user acceptance is necessary to capitalize on this opportunity. 11 refs

  15. The photovoltaic energy in Japan; Energie photovoltaique au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Georgel, O

    2005-07-15

    Today the Japan is the leader of the photovoltaic energy. The first reason of this success is an action of the government integrating subventions for the installation of photovoltaic systems and a support of the scientific research. To explain this success, the author presents the energy situation in Japan, details the national programs, the industrial sector (market, silicon needs, recycling, manufacturers, building industry) and presents the main actors. (A.L.B.)

  16. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  17. The design of cathode for organic photovoltaic devices

    Science.gov (United States)

    Song, De; Shi, Feng; Xia, Xuan; Li, Ye; Duanmu, Qingduo

    2016-11-01

    We have discussed the effect of the residual gas in the Al metal cathode deposition process and consequently influence the performance of organic photovoltaic devices (such as organic photoelectron detector or solar cell). We believe that the origin of degradation in Jsc and FF from the Al cathode device should be the formation of AlOx in the C60-Al interface, which contaminate the interface and plays a role like an energy barrier that block the charge collect process. To solve this problem the Ag and Alq3 layer had been inserted before the Al. Owing to the advantageous of Alq3 and Ag layer, the device which Al cathode prepared at a lower vacuum condition exhibits a comparable performance to that device which Al cathode deposited in regular situation. As an additional benefit, since the introducing of Alq3/Ag layer in the VOPc/C60 organic photovoltaic device performs a better near-infrared response, this phenomenon has been confirmed by means of both simulation and experimental data. So the design of our new cathode structure provides a degree of freedom to modulate the light absorption for organic photovoltaic devices in short-wave and long-wave.

  18. Photovoltaic Energy Program Contract Summary; Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Surek, T.

    1999-02-16

    This document provides individual summaries of some 200 photovoltaics research projects performed in house and by subcontractors to Department of Energy national laboratories and field offices, including the National Renewable Energy Laboratory, Sandia National Laboratories, Golden Field Office, Brookhaven National Laboratory, Albuquerque Field Office, and Boston Support Office. The document is divided into the following sections: research and development, technology development, and systems engineering and applications. Three indexes are included: performing organizations by name, performing organizations by state, and performing organizations by technology area.

  19. Photovoltaic conversion of the solar energy

    International Nuclear Information System (INIS)

    Gordillo G, Gerardo

    1998-01-01

    In this work, a short description of the basic aspect of the performance of homojunction solar cells and of the technological aspects of the fabrication of low cost thin film solar cells is made. Special emphasis on the historical aspects of the evolution of the conversion efficiency of photovoltaic devices based on crystalline silicon, amorphous silicon, Cd Te and CulnSe 2 is also made. The state of art of the technology of photovoltaic devices and modules is additionally presented. The contribution to the development of high efficiency solar cells and modules, carried out by research centers of universities such us: Stuttgart university (Germany), Stockholm university (Sweden), University of South Florida (USA), university of south gales (Australia), by the national renewable energy laboratory of USA and by research centers of companies such us: Matsushita (Japan), BP-solar (England), Boeing (USA), Arco solar (USA), Siemens (Germany) etc. are specially emphasized. Additionally, a section concerning economical aspect of the photovoltaic generation of electric energy is enclosed. In this section an overview of the evolution of price and world market of photovoltaic system is presented

  20. Conference on photovoltaic energy network parity

    International Nuclear Information System (INIS)

    Abadie, Pierre-Marie; Masson, Gaetan; Henzelmann, Orsten; Joly, Jean-Pierre; Guillemoles, Jean-Francois; Auffret, Jean-Marc; Berger, Arnaud; Binder, Jann; Martin, David; Beck, Bernhard; Mahuet, Audrey; Mueller, Thorsten; Contamin, Raphael

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the present day and future challenges of the development, support and market integration of photovoltaic energy. In the framework of this French-German exchange of experience, about 120 participants exchanged views on support models to renewable energy sources, research results on self-consumption and business models for the renewable energies sector. This document brings together the available presentations (slides) made during this event: 1 - Overview of France's PV support policies (Pierre-Marie Abadie); 2 - Grid parity: first step towards PV competitiveness (Gaetan Masson); 3 - How competitive is solar power? Requirements and impact on the European industry (Orsten Henzelmann); 4 - Key elements of the National Institute of Solar energy - INeS (Jean-Pierre Joly); 5 - Research priorities according to the Paris Institute of Photovoltaics (Jean-Francois Guillemoles); 6 - Bosch Solar energy (Jean-Marc Auffret); 7 - Financing and insuring photovoltaics - History and future prospects (Arnaud Berger); 8 - Decentralized Photovoltaics: Autonomy, Self-Consumption and Reduction of Grid Loading through electrical and Thermal Storage (Jann Binder); 9 - Off Grid systems, mini grid and grid parity, field feedback and perspectives. From the producer-consumer to the smart grid: experience feedback of PV management models (David Martin); 10 - Benefits for solar power plants in respect of grid stabilization (Bernhard Beck); 11 - Renewable energies integration to electricity market: impacts and challenges (Audrey Mahuet); 12 - Promotion of PV in Germany: Feed-in tariffs, self-consumption and direct selling - Review and forecast (Thorsten Mueller); 13 - How to support renewable electricity in France? (Raphael Contamin)

  1. Is organic photovoltaics promising for indoor applications?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Harrison K. H.; Li, Zhe; Tsoi, Wing C., E-mail: w.c.tsoi@swansea.ac.uk [SPECIFIC, College of Engineering, Bay Campus, Swansea University, SA1 8EN Swansea (United Kingdom); Durrant, James R. [SPECIFIC, College of Engineering, Bay Campus, Swansea University, SA1 8EN Swansea (United Kingdom); Department of Chemistry, Imperial College London, SW7 2AZ London (United Kingdom)

    2016-06-20

    This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′, 1′,3′-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  2. Is organic photovoltaics promising for indoor applications?

    Science.gov (United States)

    Lee, Harrison K. H.; Li, Zhe; Durrant, James R.; Tsoi, Wing C.

    2016-06-01

    This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  3. Is organic photovoltaics promising for indoor applications?

    International Nuclear Information System (INIS)

    Lee, Harrison K. H.; Li, Zhe; Tsoi, Wing C.; Durrant, James R.

    2016-01-01

    This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′, 1′,3′-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  4. Photovoltaic power - An important new energy option

    Science.gov (United States)

    Ferber, R. R.

    1983-01-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  5. Phosphorene quantum dot-fullerene nanocomposites for solar energy conversion: An unexplored inorganic-organic nanohybrid with novel photovoltaic properties

    Science.gov (United States)

    Rajbanshi, Biplab; Kar, Moumita; Sarkar, Pallavi; Sarkar, Pranab

    2017-10-01

    Using the self-consistent charge density-functional based tight-binding (SCC-DFTB) method, coupled with time-dependent density functional theory (TDDFT) calculations, for the first time we explore the possibility of use of phosphorene quantum dots in solar energy harvesting devices. The phosphorene quantum dots-fullerene (PQDs-PCBA) nanocomposites show type-II band alignment indicating spatial separation of charge carriers. The TDDFT calculations also show that the PQD-fullerene nanocomposites seem to be exciting material for future generation solar energy harvester, with extremely fast charge transfer and very poor recombination rate.

  6. Photovoltaics: US aims for zero-energy

    International Nuclear Information System (INIS)

    Barbose, G.; Wiser, R.; Bolinger, M.

    2006-01-01

    The strategies used in nine US states to support the use of photovoltaics (PV) in new market-rate homes are described. Standard buy-down programmes, the use of competitive bidding to support renewable energy technologies in larger projects, and general research and development funding for clean energy and green buildings are discussed. Targeted efforts to support PV in new houses, and market impacts are considered. Basic lessons learnt are outlined and include the need to track key information about PV installations in new dwellings, to ensure adequate funding, to consider higher incentive levels, coordinate PV and energy efficiency programmes, cultivate the installer infrastructure, educate key professionals, and engage the building community

  7. Thin metal electrodes for semitransparent organic photovoltaics

    KAUST Repository

    Lee, Kyusung

    2013-08-01

    We demonstrate semitransparent organic photovoltaics (OPVs) based on thin metal electrodes and polymer photoactive layers consisting of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester. The power conversion efficiency of a semitransparent OPV device comprising a 15-nm silver (Ag) rear electrode is 1.98% under AM 1.5-G illumination through the indium-tin-oxide side of the front anode at 100 mW/cm2 with 15.6% average transmittance of the entire cell in the visible wavelength range. As its thickness increases, a thin Ag electrode mainly influences the enhancement of the short circuit current density and fill factor. Its relatively low absorption intensity makes a Ag thin film a viable option for semitransparent electrodes compatible with organic layers. © 2013 ETRI.

  8. Photovoltaic solar energy: which realities for 2020? Summarized synthesis

    International Nuclear Information System (INIS)

    2011-01-01

    This report first describes the situation of the photovoltaic as situated at a crossroad with strong development possibilities for the French photovoltaic sector. It presents the photovoltaic energy as a competitive, regulatory and ecologic one, and therefore inescapable. It outlines stakes and obstacles of the French situation regarding the development of this sector. It highlights the economic and social benefit investing in this sector. Some propositions are stated for the promotion of the photovoltaic solar sector. Challenges are identified

  9. Molecular and polymeric organic semiconductors for applications in photovoltaic devices

    International Nuclear Information System (INIS)

    Meinhardt, G.

    2000-01-01

    Photovoltaic devices based on molecular as well as polymeric semiconductors were investigated and characterized. The organic materials presented here exhibit the advantages of low price, low processing costs and the possibility of tuning their optical properties. The photovoltaic properties were investigated by photocurrent action spectroscopy and I/V-characterization and the electric field distribution in each layer by electroabsorption spectroscopy. Single layer devices of molecular semiconductors and semiconducting polymers like methyl-substituted polyparaphenylene, CN-Ether-PPV, copper-phthalocyanine, the terryleneimide DOTer, the perylene derivatives BBP-perylene and polyBBP-perylene show low photocurrents as well as a small photovoltaic effect in their pristine form. One way to enhance the performance is to blend the active layer with molecular dopands like a soluble form of titaniumoxophthalocyanine or the aromatic macromolecule RS19 or to combine two organic semiconductors in heterostructure devices. The motivation for these experiments was the optimization of either charge transfer or energy transfer from one molecule to its neighbor molecule. A model based on the internal filter effect was used for fitting the photoresponse of single layer devices. For optimising heterostructure solar cells a more sophisticated theoretical model taking into account interference effects was used. (author)

  10. Advanced Energy Validated Photovoltaic Inverter Technology at NREL | Energy

    Science.gov (United States)

    Inverter Technology at NREL Advanced Energy Industries-NREL's first partner at the Energy Systems Integration Facility (ESIF)-validated its advanced photovoltaic (PV) inverter technology using the ESIF's computer screen in a laboratory, with power inverter hardware in the background Photo by Dennis Schroeder

  11. Japan, world leader of photovoltaic energy

    International Nuclear Information System (INIS)

    Strasser, F.

    2006-01-01

    Since the beginning of the 1970's, the potentialities of photovoltaic energy has been recognized by the Japanese government which has sustained this technology in two ways. First, by the financing of R and D programs, and second, by giving subsidies to citizens for the installation of solar panels. Today, Japan is the world leader of photovoltaic energy, both for the installed power and for the production of solar cells. In 2003, the International Energy Agency was reporting 1.809 GW of worldwide installed capacity among which 48% was in Japan (0.86 GW) with respect to 0.4 GW in Germany, 0.275 GW in the USA and only 20 MW in France. This capacity would have exceeded 1.1 GW at the end of 2004. Half of the solar modules are manufactured in Japan. The ministry of economy, trade and industry (METI) has fixed ambitious goals for 2010: the overall new energy sources much represent 3% of the primary energy (with respect to 1% today) and the installed capacity must reach 4.8 GW. The road-map of the New Energy and Industrial Technology Development Organisation (NEDO) foresees 100 GW by 2030. (J.S.)

  12. Silicon nanowires for photovoltaic solar energy conversion.

    Science.gov (United States)

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  13. Round robin performance testing of organic photovoltaic devices

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Zubillaga, Oihana; de Seoane, José María Vega

    2014-01-01

    This study addresses the issue of poor intercomparability of measurements of organic photovoltaic (OPV) devices among different laboratories. We present a round robin performance testing of novel OPV devices among 16 laboratories, organized within the framework of European Research Infrastructure...

  14. Photovoltaic solar energy. Proceedings; Photovoltaische Solarenergie. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 21st symposium 'Photovoltaic Solar Energy' of the Ostbayerisches Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) at Banz Monastery (Bad Staffelstein, Federal Republic of Germany) between 8th and 10th March, 2006, the following lessons were held: (1) Basic conditions for a market support programme in the European context (EEG) (Winfried Hoffmann); (2) Actual developments in the German market of photovoltaics (Gerhard Stryi-Hipp); (3) Become a part of the global economic survey of Task 2 ''PV cost over time'' (Thomas Nordmann); (4) The market of photovoltaic will be a European market in the future (Murray Cameron); (5) Development and state of the art of the photovoltaic industry in the Peoples Republic of China (Frank Haugwitz); (6) Silicon for the photovoltaic industry (Karl Hesse); (7) Cell technology: Impulses for a cost effective photovoltaic with valuable silicon (Rolf Brendel); (8) Thin-film solar modules for the photovoltaic - state of the art and industrial perspectives (Michael Powalla); (9) Modules - bottleneck and flood of orders: How to act an installer? (Helmut Godard); (10) Photovoltaic open-field systems - Actual experiences and conflict lines (Ole Langniss); (11) Comparison of actual and future trends of Balance-of-System costs for large scale ground based PV systems with crystalline and thin-film modules (Manfred Baechler); (12) Financing PX projects from a Bank perspective (Joachim Treder); (13) Criteria of quality for solar fonds - Criteria of evaluation for capital investors and self-commitment for emission houses (Ulla Meixner); (14) Analysis of the distribution pathways for photovoltaic plants from the manufacturer to the final customer considering the decreasing demand and increasing prices (Michael Forst); (15) Solar power 2005 - Evaluation of real operational data of 1,000 plants in Germany (Gerd Heilscher); (16) Improvement of PV-inverter efficiency - targets, pathways

  15. MODELING SIMULATION AND PERFORMANCE STUDY OF GRIDCONNECTED PHOTOVOLTAIC ENERGY SYSTEM

    OpenAIRE

    Nagendra K; Karthik J; Keerthi Rao C; Kumar Raja Pemmadi

    2017-01-01

    This paper presents Modeling Simulation of grid connected Photovoltaic Energy System and performance study using MATLAB/Simulink. The Photovoltaic energy system is considered in three main parts PV Model, Power conditioning System and Grid interface. The Photovoltaic Model is inter-connected with grid through full scale power electronic devices. The simulation is conducted on the PV energy system at normal temperature and at constant load by using MATLAB.

  16. Department of Energy: Photovoltaics program - FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The National Photovoltaic Program supports efforts to make PV an important part of the US economy through three main program elements: Research and Development, Technology Development, and Systems Engineering and Applications. (1) Research and Development activities generate new ideas, test the latest scientific theories, and push the limits of PV efficiencies in laboratory and prototype materials and devices. (2) Technology Development activities apply laboratory innovations to products to improve PV technology and the manufacturing techniques used to produce PV systems for the market. (3) Systems Engineering and Applications activities help improve PV systems and validate these improvements through tests, measurements, and deployment of prototypes. In addition, applications research validates, sales, maintenance, and financing mechanisms worldwide. (4) Environmental, Health, Safety and Resource Characterization activities help to define environmental, health and safety issues for those facilities engaged in the manufacture of PV products and organizations engaged in PV research and development. All PV Program activities are planned and executed in close collaboration and partnership with the U.S. PV industry. The overall PV Program is planned to be a balanced effort of research, manufacturing development, and market development. Critical to the success of this strategy is the National Photovoltaic Program`s effort to reduce the cost of electricity generated by photovoltaic. The program is doing this in three primary ways: by making devices more efficient, by making PV systems less expensive, and by validating the technology through measurements, tests, and prototypes.

  17. Progress in high-efficient solution process organic photovoltaic devices fundamentals, materials, devices and fabrication

    CERN Document Server

    Li, Gang

    2015-01-01

    This book presents an important technique to process organic photovoltaic devices. The basics, materials aspects and manufacturing of photovoltaic devices with solution processing are explained. Solution processable organic solar cells - polymer or solution processable small molecules - have the potential to significantly reduce the costs for solar electricity and energy payback time due to the low material costs for the cells, low cost and fast fabrication processes (ambient, roll-to-roll), high material utilization etc. In addition, organic photovoltaics (OPV) also provides attractive properties like flexibility, colorful displays and transparency which could open new market opportunities. The material and device innovations lead to improved efficiency by 8% for organic photovoltaic solar cells, compared to 4% in 2005. Both academic and industry research have significant interest in the development of this technology. This book gives an overview of the booming technology, focusing on the solution process fo...

  18. Parametric study of laser photovoltaic energy converters

    Science.gov (United States)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  19. Photovoltaics and renewable energies in Europe

    International Nuclear Information System (INIS)

    Jaeger-Waldau, Arnulf

    2007-01-01

    Photovoltaics and renewable energies are growing at a much faster pace than the rest of the economy in Europe and worldwide. This and the dramatic oil price increases in 2005 have led to a remarkable re-evaluation of the renewable energy sector by politics and financing institutions. Despite the fact that there are still discrepancies between the European Union and the USA, as to how to deal with climate change, renewable energies will play an important role for the implementation of the Kyoto Protocol and the worldwide introduction of tradable Green Certificates. Apart from the electricity sector, renewable energy sources for the generation of heat and the use of environment friendly biofuels for the transport sector will become more and more important in the future. (author)

  20. Thermal Change for Photovoltaic Panels and Energy Effects

    OpenAIRE

    İmal, Nazım; Hasar, Şahabettin; Çınar, Harun; Şener, Eralp

    2015-01-01

    Photovoltaic panels (solar cells), they receive photon energy from sunlight, convert them to electrical energy by the semiconductor structural features. Photovoltaic panels produce a voltage, depending on the change of functional sunlight exposure. Produced voltage and determining of provided electrical power, must be dealt with the physical parameters that uses the concepts of light and temperature. In this study, usage of monocrystalline and polycrystalline structured photovoltaic panels el...

  1. Photovoltaic Energy Harvester with Power Management System

    Directory of Open Access Journals (Sweden)

    M. Ferri

    2010-01-01

    Full Text Available We present a photovoltaic energy harvester, realized in 0.35-μm CMOS technology. The proposed system collects light energy from the environment, by means of 2-mm2 on-chip integrated microsolar cells, and accumulates it in an external capacitor. While the capacitor is charging, the load is disconnected. When the energy in the external capacitor is enough to operate the load for a predefined time slot, the load is connected to the capacitor by a power management circuit. The choice of the value of the capacitance determines the operating time slot for the load. The proposed solution is suitable for discrete-time-regime applications, such as sensor network nodes, or, in general, systems that require power supply periodically for short time slots. The power management circuit includes a charge pump, a comparator, a level shifter, and a linear voltage regulator. The whole system has been extensively simulated, integrated, and experimentally characterized.

  2. Miniature photovoltaic energy system for lighting

    International Nuclear Information System (INIS)

    Awais, M.

    1999-01-01

    In this project a miniature photovoltaic energy system has been designed and developed, that may be used in remote areas and villages for lighting purposes. System sizing is the important part of the project because it affects the cost of the system. Therefore, first of all system sizing has been done. For conversion of dc voltage of the battery into ac voltage, an inverter has been designed. To charge the battery when the sun is not shining, a standby system has been developed using a bicycle and dynamo. To indicate the battery's state of charge and discharge, a battery monitoring circuit has also been developed. Similarly, to protect the battery from over discharging, a battery protection circuit has been designed. In order to measure how much energy is going from standby system to the battery, an efficient dc electronic energy meter has been designed and developed. The working of the overall system has been tested and found to give good performance. (author)

  3. Understanding organic photovoltaic cells: Electrode, nanostructure, reliability, and performance

    Science.gov (United States)

    Kim, Myung-Su

    My Ph.D. research has focused on alternative renewable energy using organic semiconductors. During my study, first, I have established reliable characterization methods of organic photovoltaic devices. More specifically, less than 5% variation of power conversion efficiency of fabricated organic blend photovoltaic cells (OBPC) was achieved after optimization. The reproducibility of organic photovoltaic cell performance is one of the essential issues that must be clarified before beginning serious investigations of the application of creative and challenging ideas. Second, the relationships between fill factor (FF) and process variables have been demonstrated with series and shunt resistance, and this provided a chance to understand the electrical device behavior. In the blend layer, series resistance (Rs) and shunt resistance (Rsh) were varied by controlling the morphology of the blend layer, the regioregularity of the conjugated polymer, and the thickness of the blend layer. At the interface between the cathode including PEDOT:PSS and the blend layer, cathode conductivity was controlled by varying the structure of the cathode or adding an additive. Third, we thoroughly examined possible characterization mistakes in OPVC. One significant characterization mistake is observed when the crossbar electrode geometry of OPVC using PEDOT:PSS was fabricated and characterized with illumination which is larger than the actual device area. The hypothesis to explain this overestimation was excess photo-current generated from the cell region outside the overlapped electrode area, where PEDOT:PSS plays as anode and this was clearly supported with investigations. Finally, I incorporated a creative idea, which enhances the exciton dissociation efficiency by increasing the interface area between donor and acceptor to improve the power conversion efficiency of organic photovoltaic cells. To achieve this, nanoimprint lithography was applied for interface area increase. To clarify the

  4. Standard Terminology Relating to Photovoltaic Solar Energy Conversion

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This terminology pertains to photovoltaic (radiant-to-electrical energy conversion) device performance measurements and is not a comprehensive list of terminology for photovoltaics in general. 1.2 Additional terms used in this terminology and of interest to solar energy may be found in Terminology E 772.

  5. Morphology of polymer-based films for organic photovoltaics

    OpenAIRE

    Ruderer, Matthias A.

    2012-01-01

    In this thesis, polymer-based films are examined for applications in organic photovoltaics. Polymer-fullerene, polymer-polymer and diblock copolymer systems are characterized as active layer materials. The focus is on experimental parameters influencing the morphology formation of the active layer in organic solar cells. Scattering and imaging techniques provide a complete understanding of the internal structure on different length scales which is compared to spectroscopic and photovoltaic pr...

  6. Non-fullerene electron acceptors for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  7. Accelerated stability testing of organic photovoltaics using concentrated sunlight

    DEFF Research Database (Denmark)

    Katz, Eugene A.; Manor, Assaf; Mescheloff, Asaf

    2012-01-01

    We suggest to use concentrated sunlight for accelerated studies of light-induced mechanisms in the degradation of organic photovoltaics (OPV) based on the polymer (P3HT)/fullerene (PCBM) bulk heterojunctions. Two particular cases of the degradation are reported.......We suggest to use concentrated sunlight for accelerated studies of light-induced mechanisms in the degradation of organic photovoltaics (OPV) based on the polymer (P3HT)/fullerene (PCBM) bulk heterojunctions. Two particular cases of the degradation are reported....

  8. Magnetic field enhancement of organic photovoltaic cells performance.

    Science.gov (United States)

    Oviedo-Casado, S; Urbina, A; Prior, J

    2017-06-27

    Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that the population of triplet charge transfer states grows in the presence of a magnetic field, and discuss the impact on carrier population and hence photocurrent, highlighting its potential as a tool for research on charge transfer kinetics in this complex systems.

  9. Organic sensitizers from D-π-A to D-A-π-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances.

    Science.gov (United States)

    Wu, Yongzhen; Zhu, Weihong

    2013-03-07

    The high performance and low cost of dye-sensitized solar cells (DSSCs) have drawn great interest from both academic and industrial circles. The research on exploring novel efficient sensitizers, especially on inexpensive metal-free pure organic dyes, has never been suspended. The donor-π bridge-acceptor (D-π-A) configuration is mainstream in the design of organic sensitizers due to its convenient modulation of the intramolecular charge-transfer nature. Recently, it has been found that incorporation of additional electron-withdrawing units (such as benzothiadiazole, benzotriazole, quinoxaline, phthalimide, diketopyrrolopyrrole, thienopyrazine, thiazole, triazine, cyanovinyl, cyano- and fluoro-substituted phenyl) into the π bridge as internal acceptors, termed the D-A-π-A configuration, displays several advantages such as tuning of the molecular energy levels, red-shift of the charge-transfer absorption band, and distinct improvement of photovoltaic performance and stability. We apply the D-A-π-A concept broadly to the organic sensitizers containing additional electron-withdrawing units between electron donors and acceptors. This review is projected to summarize the category of pure organic sensitizers on the basis of the D-A-π-A feature. By comparing the structure-property relationship of typical photovoltaic D-A-π-A dyes, the important guidelines in the design of such materials are highlighted.

  10. Photovoltaics come to the rescue of energy savings

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    In light of continuously rising energy prices and the necessity to step up environmental and climate protection measures, photovoltaics and solar thermal applications are being viewed with increased interest as alternative sources of energy. (authors)

  11. Solar thermal power and photovoltaic energy are both developing

    International Nuclear Information System (INIS)

    Le Jannic, N.; Houot, G.

    2010-01-01

    Thermodynamic solar energy and photovoltaic energy are expected to reach together a quarter of the world electricity production by 2050. In France the development of thermodynamic solar plants is hampered by the high cost of land in the sunny regions. As for photovoltaic energy, France has the potentiality to become an important producer. Since 2006, the French government has supported photovoltaic energy by proposing incentive electricity purchase prices guaranteed for 20 years. In 2006, the Ines research institute was founded, one of its research fields is the development of high yield silicon cells. (A.C.)

  12. Organic photovoltaic effects depending on CuPc layer thickness

    International Nuclear Information System (INIS)

    Hur, Sung Woo; Kim, Tae Wan; Chung, Dong Hoe; Oh, Hyun Seok; Kim, Chung Hyeok; Lee, Joon Ung; Park, Jong Wook

    2004-01-01

    Organic photovoltaic effects were studied in device structures of ITO/CuPc/Al and ITO/CuPc/C 60 /BCP/Al by varying the CuPc layer thickness. Since the exciton diffusion length is relatively short in organic semiconductors, a study on the thickness-dependent photovoltaic effects is important. The thickness of the CuPc layer was varied from 10 nm to 50 nm. We found that the optimum CuPc layer thickness was around 40 nm from the analysis of the current density-voltage characteristics in an ITO/CuPc/Al photovoltaic cell. The efficiency of the device shows that the multi-layered heterojunction structure is more appropriate for photovoltaic cells.

  13. NASA-OAST program in photovoltaic energy conversion

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  14. The Role of Photovoltaics in Energy Requirements in Pakistan

    International Nuclear Information System (INIS)

    Shah, I.A.; Haq, N.U.; Nasir, H.

    2011-01-01

    In this review article global energy issue is discussed with specific reference to Pakistan. The energy consumption and supply from different sources like oil, gas, electricity, nuclear power, bio gas and especially from renewables is taken into account. Also discussed some suggestions for the energy requirements. Focus is given to the production of renewable energy sources like technology of photovoltaics in which solar power is converted into electricity. Solar cell is discussed including its two basic types inorganic solar cell and organic solar cell, its way of functioning, process of fabrication etc is also discussed. Organic or polymeric solar cell is discussed in detail. keeping in view the financial condition and requirement of energy for our country suggestions are given for low cost and simple processing of organic solar cells. It is also suggested that availability of all the materials required for the development of organic solar cells should be guaranteed. Interest should be developed at the university and other research organization level of Pakistan to do work on polymeric solar cells for increasing their efficiencies so that they can be practically utilized. (author)

  15. Which advances and place for photovoltaic energy?

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    While the European governments wish to raise to 20% the share of energy generated from clean sources, the solar energy appears as an excellent complement to the wind/hydraulic alternative. Today limited to 0.09% of the energy production capacity in Europe (with respect to 3.8% and 20% for the wind and hydro energies, respectively), the solar energy is a developing sector thanks to strong financial incentives. However, only important technological progresses would make solar energy a major energy source. Among the possible innovations, the development of efficient organic or plastic solar cells is one of the most promising way. Short paper. (J.S.)

  16. Photovoltaic. Solar electricity, a sustainable source of energy

    International Nuclear Information System (INIS)

    Stryi-Hipp, Gerhard; Loyen, Richard; Knaack, Jan; Chrometzka, Thomas

    2008-06-01

    This German publication outlines that solar energy is now essential to any sustainable energy mix, and describes the operation principle of solar photovoltaic energy production. It describes how it can be applied for the production of electricity in isolated areas, and for individual housing as well as commercial buildings, and presents the concept of ground-based solar plants. The next part discusses the development of the photovoltaic market (its huge potential, its world size) and indicates the different associated arrangements of financial support or subsidy. It also discusses how photovoltaic markets can be developed, and proposes an overview of the German model

  17. Strategies toward High Performance Organic Photovoltaic Cell: Material and Process

    Science.gov (United States)

    Kim, Bong Gi

    The power conversion efficiency of organic photovoltaic (OPV) cells has been rapidly improved during the last few years and currently reaches around 10 %. The performance is evenly governed by absorption, exciton diffusion, exciton dissociation, carrier transfer, and collection efficiencies. Establishing a better understanding of OPV device physics combined with the development of new materials for each executive step contributes to this dramatic improvement. This dissertation focuses mainly on material design and development to correlate the intrinsic properties of organic semiconductors and the OPV performance. The introductory Chapter 1 briefly reviews the motivation of OPV research, its working mechanism, and representative organic materials for OPV application. Chapter 2 discusses the modulation of conjugated polymer's (CP's) absorption behavior and an efficient semi-empirical approach to predict CP's energy levels from its constituent monomers' HOMO/LUMO values. A strong acceptor lowered both the HOMO and LUMO levels of the CP, but the LUMO dropped more rapidly which ultimately produced a narrowed band-gap in the electron donating/accepting alternating copolymer system. In addition, the energy level difference between the CP and the constituent monomers converged to a constant value, providing an energy level prediction tool. Chapter 3 illustrates the systematic investigation on the relationship between the molecular structure of an energy harvesting organic dye and the exciton dissociation efficiency. The study showed that the quantum yield decreased as the exciton binding energy increases, and dipole moment direction should be properly oriented in the dye framework in order to improve photo-current generation when used in a dye sensitized photovoltaic device. Chapter 4 demonstrates the ultrasonic-assisted self-assembly of CPs in solution, rapidly and efficiently. Ultrasonication combined with dipolar media accelerated CP's aggregation, and the effect of CP

  18. Photovoltaic solar energy;L'energie solaire photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Mouratoglou, P. [EDF Energies Nouvelles, 75 - Paris (France); Therond, P.G. [EDF Dir. Nouvelles Technologies, 75 - Paris (France)

    2009-11-15

    The most important assets of photovoltaic energy for sustainable development are its simplicity (no need for complicated thermodynamical cycles) and the universal availability of the sun which explains its great popularity. The main restraint to its full development is the high cost of the technologies used. The silicon technology is the historical technology, it has high conversion rates but is expensive because of high fabrication costs. This technology represents 80% of the market. On the other hand the thin film technology with CdTe, CIS or CIGS is promising in terms of costs but requires research works to increase its conversion rate. Japan and Germany are the leader countries in terms of photovoltaic for research, industrial fabrication or state support, they are followed by Spain, Usa, and China. (A.C.)

  19. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Varo, Pilar [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Bertoluzzi, Luca [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Bisquert, Juan, E-mail: bisquert@uji.es [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Alexe, Marin [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Coll, Mariona [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Catalonia (Spain); Huang, Jinsong [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States); Jimenez-Tejada, Juan Antonio [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Kirchartz, Thomas [IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Faculty of Engineering and CENIDE, University of Duisburg–Essen, Carl-Benz-Str. 199, 47057 Duisburg (Germany); Nechache, Riad; Rosei, Federico [INRS—Center Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2 (Canada); Yuan, Yongbo [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States)

    2016-10-07

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  20. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    International Nuclear Information System (INIS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-01-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  1. Tetrafullerene conjugates for all-organic photovoltaics

    NARCIS (Netherlands)

    Fernández, G.; Sánchez, L.; Veldman, D.; Wienk, M.M.; Atienza, C.M.; Guldi, D.M.; Janssen, R.A.J.; Martin, N.

    2008-01-01

    The synthesis of two new tetrafullerene nanoconjugates in which four C60 units are covalently connected through different -conjugated oligomers (oligo(p-phenylene ethynylene) and oligo(p-phenylene vinylene)) is described. The photovoltaic (PV) response of these C60-based conjugates was evaluated by

  2. Theoretical insights into multiscale electronic processes in organic photovoltaics

    Science.gov (United States)

    Tretiak, Sergei

    Present day electronic devices are enabled by design and implementation of precise interfaces that control the flow of charge carriers. This requires robust and predictive multiscale approaches for theoretical description of underlining complex phenomena. Combined with thorough experimental studies such approaches provide a reliable estimate of physical properties of nanostructured materials and enable a rational design of devices. From this perspective I will discuss first principle modeling of small-molecule bulk-heterojunction organic solar cells and push-pull chromophores for tunable-color organic light emitters. The emphasis is on electronic processes involving intra- and intermolecular energy or charge transfer driven by strong electron-phonon coupling inherent to pi-conjugated systems. Finally I will describe how precise manipulation and control of organic-organic interfaces in a photovoltaic device can increase its power conversion efficiency by 2-5 times in a model bilayer system. Applications of these design principles to practical architectures like bulk heterojunction devices lead to an enhancement in power conversion efficiency from 4.0% to 7.0%. These interface manipulation strategies are universally applicable to any donor-acceptor interface, making them both fundamentally interesting and technologically important for achieving high efficiency organic electronic devices.

  3. Enhanced Reliability of Photovoltaic Systems with Energy Storage and Controls

    Energy Technology Data Exchange (ETDEWEB)

    Manz, D.; Schelenz, O.; Chandra, R.; Bose, S.; de Rooij, M.; Bebic, J.

    2008-02-01

    This report summarizes efforts to reconfigure loads during outages to allow individual customers the opportunity to enhance the reliability of their electric service through the management of their loads, photovoltaics, and energy storage devices.

  4. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.

    Science.gov (United States)

    Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J

    2015-06-24

    Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Towards a more efficient energy use in photovoltaic powered products

    NARCIS (Netherlands)

    Kan, S.Y.; Strijk, R.

    2006-01-01

    This paper analyzes the energy saving and power management solutions necessary to improve the energy consumption efficiency in photovoltaic powered products. Important in the design of such products is not only the energy supply optimization required to deliver the actual energy to fulfil their

  6. Photovoltaics

    International Nuclear Information System (INIS)

    Prince, M.B.

    1994-01-01

    Photovoltaic energy systems have the long range potential for supplying a significant part of the world's need for electricity Even today, such systems offer many benefits compared to other energy systems such as fossil fuel, nuclear and other renewable systems. These include: stability, reliability, require no water, no moving parts, environmentally benign, moderate efficiency, modular, universally usable, easy maintenance, and low power distribution costs. This paper will present information on present costs of the key system components, realistic cost projections and the results of a comparative study of three renewable approaches for a large system. (author), (tabs. 2)

  7. Photovoltaics: Energy for the New Millenium

    Science.gov (United States)

    Surek, Thomas

    2000-04-01

    Photovoltaics (PV) is a semiconductor-based technology that directly converts sunlight to electricity. The stimulus for terrestrial PV started more than 25 years ago in response to the oil crises of the 1970s, which resulted in major government programs in the United States, Europe, Japan, and elsewhere. Ongoing concerns with the global environment, as well as the worldwide efforts to seek alternate, indigenous sources of energy, continue to drive the investment in PV research and deployment. Today, the manufacture, sale, and use of PV has become a billion-dollar industry worldwide, with nearly 200 megawatts (MW) of PV modules shipped in 1999. The twenty five years of research and development led to the discovery of new PV materials, devices, and fabrication approaches; continuing improvements in the efficiency and reliability of solar cells and modules; and lower PV module and system costs. This talk reviews the rapid progress that has occurred in PV technology from the laboratory to the marketplace, including reviews of the leading technology options, status and issues, and key industry players. New processes for fabricating PV materials and devices, and innovative PV approaches with low-cost potential are elements of an ongoing research program aimed at future advancements in PV cost and performance While major market opportunities continue to exist in the developing countries, where sizable populations are without any electricity, today's manufacturing expansions are fueled by market initiatives for grid-connected PV in residential and commercial buildings. The combinations of increased production capacities, with the attendant cost reductions as a result of economies of scale, are expected to lead to sustainable markets. A key to achieving the ultimate potential of PV is to continue to increase the sunlight-to-electricity conversion efficiencies and translate the laboratory successes to cost-competitive products. Building a robust technology base is essential

  8. Computational screening of organic materials towards improved photovoltaic properties

    Science.gov (United States)

    Dai, Shuo; Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan; Borunda, Mario

    2015-03-01

    The world today faces an energy crisis that is an obstruction to the development of the human civilization. One of the most promising solutions is solar energy harvested by economical solar cells. Being the third generation of solar cell materials, organic photovoltaic (OPV) materials is now under active development from both theoretical and experimental points of view. In this study, we constructed a parameter to select the desired molecules based on their optical spectra performance. We applied it to investigate a large collection of potential OPV materials, which were from the CEPDB database set up by the Harvard Clean Energy Project. Time dependent density functional theory (TD-DFT) modeling was used to calculate the absorption spectra of the molecules. Then based on the parameter, we screened out the top performing molecules for their potential OPV usage and suggested experimental efforts toward their synthesis. In addition, from those molecules, we summarized the functional groups that provided molecules certain spectrum capability. It is hoped that useful information could be mined out to provide hints to molecular design of OPV materials.

  9. In situ KPFM imaging of local photovoltaic characteristics of structured organic photovoltaic devices.

    Science.gov (United States)

    Watanabe, Satoshi; Fukuchi, Yasumasa; Fukasawa, Masako; Sassa, Takafumi; Kimoto, Atsushi; Tajima, Yusuke; Uchiyama, Masanobu; Yamashita, Takashi; Matsumoto, Mutsuyoshi; Aoyama, Tetsuya

    2014-02-12

    Here, we discuss the local photovoltaic characteristics of a structured bulk heterojunction, organic photovoltaic devices fabricated with a liquid carbazole, and a fullerene derivative based on analysis by scanning kelvin probe force microscopy (KPFM). Periodic photopolymerization induced by an interference pattern from two laser beams formed surface relief gratings (SRG) in the structured films. The surface potential distribution in the SRGs indicates the formation of donor and acceptor spatial distribution. Under illumination, the surface potential reversibly changed because of the generation of fullerene anions and hole transport from the films to substrates, which indicates that we successfully imaged the local photovoltaic characteristics of the structured photovoltaic devices. Using atomic force microscopy, we confirmed the formation of the SRG because of the material migration to the photopolymerized region of the films, which was induced by light exposure through photomasks. The structuring technique allows for the direct fabrication and the control of donor and acceptor spatial distribution in organic photonic and electronic devices with minimized material consumption. This in situ KPFM technique is indispensable to the fabrication of nanoscale electron donor and electron acceptor spatial distribution in the devices.

  10. Organic photovoltaic devices with a single layer geometry (Conference Presentation)

    Science.gov (United States)

    Kolesov, Vladimir A.; Fuentes-Hernandez, Canek; Aizawa, Naoya; Larrain, Felipe A.; Chou, Wen-Fang; Perrotta, Alberto; Graham, Samuel; Kippelen, Bernard

    2016-09-01

    Organic photovoltaics (OPV) can lead to a low cost and short energy payback time alternative to existing photovoltaic technologies. However, to fulfill this promise, power conversion efficiencies must be improved and simultaneously the architecture of the devices and their processing steps need to be further simplified. In the most efficient devices to date, the functions of photocurrent generation, and hole/electron collection are achieved in different layers adding complexity to the device fabrication. In this talk, we present a novel approach that yields devices in which all these functions are combined in a single layer. Specifically, we report on bulk heterojunction devices in which amine-containing polymers are first mixed in the solution together with the donor and acceptor materials that form the active layer. A single-layer coating yields a self-forming bottom electron-collection layer comprised of the amine-containing polymer (e.g. PEIE). Hole-collection is achieved by subsequent immersion of this single layer in a solution of a polyoxometalate (e.g. phosphomolybdic acid (PMA)) leading to an electrically p-doped region formed by the diffusion of the dopant molecules into the bulk. The depth of this doped region can be controlled with values up to tens of nm by varying the immersion time. Devices with a single 500 nm-thick active layer of P3HT:ICBA processed using this method yield power conversion efficiency (PCE) values of 4.8 ± 0.3% at 1 sun and demonstrate a performance level superior to that of benchmark three-layer devices with separate layers of PEIE/P3HT:ICBA/MoOx (4.1 ± 0.4%). Devices remain stable after shelf lifetime experiments carried-out at 60 °C over 280 h.

  11. Diamond-based electrodes for organic photovoltaic devices

    Czech Academy of Sciences Publication Activity Database

    Kovalenko, Alexander; Ashcheulov, Petr; Guerrero, A.; Heinrichová, P.; Fekete, Ladislav; Vala, M.; Weiter, M.; Kratochvílová, Irena; Garcia-Belmonte, G.

    2015-01-01

    Roč. 134, Mar (2015), s. 73-79 ISSN 0927-0248 R&D Projects: GA TA ČR TA04020156 Institutional support: RVO:68378271 Keywords : organic photovoltaic s * boron doped diamond * chemical vapor deposition Subject RIV: JI - Composite Materials Impact factor: 4.732, year: 2015

  12. Lifetimes of organic photovoltaics: photooxidative degradation of a model compound

    DEFF Research Database (Denmark)

    Norrman, K.; Alstrup, J.; Jørgensen, M.

    2006-01-01

    A poly phenylene vinylene (PPV-type) oligomer used in organic photovoltaics was designed to facilitate the interpretation of mass spectral data. A film of the oligomer was subjected to various degrees of illumination (1000 W m(-2), AM1.5) in air resulting in photooxidation of the material...

  13. Towards low cost, efficient and stable organic photovoltaic modules

    NARCIS (Netherlands)

    Andriessen, H.A.J.M.; Galagan, Y.O.; Rubingh, J.E.J.M.; Grossiord, N.; Blom, P.W.M.; Kroon, J.; Veenstra, S.; Verhees, W.; Slooff, L.; Pex, P.

    2010-01-01

    The presence of a transparent conductive electrode such as indium tin oxide (ITO) limits the reliability and cost price of organic photovoltaic devices as it is brittle and expensive. Moreover, the relative high sheet resistance of an ITO electrode on flexible substrates limits the maximum width of

  14. Modular assembly of a photovoltaic solar energy receiver

    Science.gov (United States)

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  15. Silicon-organic pigment material hybrids for photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, T.; Weiler, U.; Jaegermann, W. [Institute of Materials Science, Darmstadt University of Technology, Petersenstreet 23, D-64287 Darmstadt (Germany); Kelting, C.; Schlettwein, D. [Institute for Applied Physics, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Makarov, S.; Woehrle, D. [Institute of Organic and Macromolecular Chemistry, University Bremen, Leobener Street NW II, D-28359 Bremen (Germany); Abdallah, O.; Kunst, M. [Department Solar Energy, Hahn-Meitner-Institute, D-14109 Berlin (Germany)

    2007-12-14

    Hybrid materials of silicon and organic dyes have been investigated for possible application as photovoltaic material in thin film solar cells. High conversion efficiency is expected from the combination of the advantages of organic dyes for light absorption and those of silicon for charge carrier separation and transport. Low temperature remote hot wire chemical vapor deposition (HWCVD) was developed for microcrystalline silicon ({mu}c-Si) deposition using SiH{sub 4}/H{sub 2} mixtures. As model dyes zinc phthalocyanines have been evaporated from Knudsen type sources. Layers of dye on {mu}c-Si and {mu}c-Si on dye films, and composites of simultaneously and sequentially deposited Si and dye have been prepared and characterized. Raman, absorption, and photoemission spectroscopy prove the stability of the organic molecules against the rough HWCVD-Si process. Transient microwave conductivity (TRMC) indicates good electronic quality of the {mu}c-Si matrix. Energy transfer from dye to Si is indicated indirectly by luminescence and directly by photoconductivity measurements. F{sub x}ZnPc pigments with x=0,4,8,16 have been synthesized, purified and adsorbed onto H-terminated Si(1 1 1) for electronic state line up determination by photoelectron spectroscopy. For x=4 and 8 the dye frontier orbitals line up symmetrically versus the Si energy gap offering similar energetic driving forces for electron and hole injection, which is considered optimum for bulk sensitization and indicates a direction to improve the optoelectronic coupling of the organic dyes to silicon. (author)

  16. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions.

    Science.gov (United States)

    Fujisawa, Jun-ichi

    2015-05-14

    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  17. Conference on new consumption and commercialization models for photovoltaic energy

    International Nuclear Information System (INIS)

    Freier, Karin; Fontaine, Pierre; Mayer, Joerg; Jimenez, Julien; Richard, Pascal; Vogtmann, Michael; Schaefer, Felix; Martin, Nicolas; Buis, Sabine

    2014-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on new consumption and commercialization models for photovoltaic energy. In the framework of this French-German exchange of experience, about 120 participants exchanged views on the new economic models for solar energy producers while the photovoltaic industry has to face a progressive reduction of feed-in tariffs and of other incentive mechanisms. Beside the legal and economic aspects, technical questions around energy storage and integration of photovoltaic production to the grid were also addressed. This document brings together the available presentations (slides) made during this event: 1 - Stimulating self-consumption and direct selling within the EEG (Karin Freier); 2 - Development of PV self-consumption in France (Pierre Fontaine); 3 - experience from applying the new support program for solar energy storage systems (Joerg Mayer); 4 - Call for solar photovoltaic projects for own consumption in Aquitaine region (Julien Jimenez); 5 - SMA Flexible Storage System - New version of the Sunny Island inverter for smart photovoltaic energy storage (Pascal Richard); 6 - PV Own Consumption in industry and commerce - examples und Operating Concepts (Michael Vogtmann); 7 - Supplying tenants in multiple-family housing with solar power in the 'Neue Heimat' project (Felix Schaefer); 8 - How to manage PV-storage self-consumption from a grid point of view? (Nicolas Martin); 9 - Closing talk (Sabine Buis)

  18. Organic photovoltaic cells with pentacene nanocolumn arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuwen; Schaefer, Peter; Rabe, Juergen P.; Koch, Norbert [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Brook-Taylor-Str. 6, 12489 Berlin (Germany)

    2011-07-01

    Highly ordered pentacene nanocolumn arrays were fabricated by glancing angle deposition (GLAD) on indium tin oxide (ITO) substrates. The nanocolumn diameter was set to 100-150 nm as revealed by scanning electron microscopy and atomic force microscopy. Interdigitated bulk heterojunction photovoltaic cells (OPVCs) were formed by spin-coating [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) as the acceptor material onto the pentacene nanocolumn film. Bathocuproine (BCP) was deposited on top of PCBM as exciton blocking layer. The conversion efficiency of nanocolumn-based OPVCs was significantly higher compared to planar heterojunction OPVCs of the same materials. Further device performance improvement was achieved through employing a thin pentacene seed layer before GLAD, which promoted PCBM solution infiltration between pentacene nanocolumns.

  19. Virtual screening of electron acceptor materials for organic photovoltaic applications

    International Nuclear Information System (INIS)

    D Halls, Mathew; Giesen, David J; Goldberg, Alexander; Djurovich, Peter J; Sommer, Jonathan; McAnally, Eric; Thompson, Mark E

    2013-01-01

    Virtual screening involves the generation of structure libraries, automated analysis to predict properties related to application performance and subsequent screening to identify lead systems and estimate critical structure–property limits across a targeted chemical design space. This approach holds great promise for informing experimental discovery and development efforts for next-generation materials, such as organic semiconductors. In this work, the virtual screening approach is illustrated for nitrogen-substituted pentacene molecules to identify systems for development as electron acceptor materials for use in organic photovoltaic (OPV) devices. A structure library of tetra-azapentacenes (TAPs) was generated by substituting four nitrogens for CH at 12 sites on the pentacene molecular framework. Molecular properties (e.g. E LUMO , E g and μ) were computed for each candidate structure using hybrid DFT at the B3LYP/6-311G** level of theory. The resulting TAPs library was then analyzed with respect to intrinsic properties associated with OPV acceptor performance. Marcus reorganization energies for charge transport for the most favorable TAP candidates were then calculated to further determine suitability as OPV electron acceptors. The synthesis, characterization and OPV device testing of TAP materials is underway, guided by these results. (paper)

  20. Fabrication and Characterization of Organic Photovoltaic Cell using Keithley 2400 SMU for efficient solar cell

    Science.gov (United States)

    Hafeez, Hafeez Y.; Iro, Zaharaddeen S.; Adam, Bala I.; Mohammed, J.

    2018-04-01

    An organic solar cell device or organic photovoltaic cell (OPV) is a class of solar cell that uses conductive organic polymers or small organic molecules for light absorption and charge transport. In this study, we fabricate and characterize an organic photovoltaic cell device and estimated important parameters of the device such as Open Circuit Voltage Voc of 0.28V, Short-Circuit Current Isc of 4.0 × 10-5 A, Maximum Power Pmax of 2.4 × 10-6 W, Fill Factor of 0.214 and the energy conversion efficiency of η=0.00239% were tested using Keithley 2400,source meter under A.M 1.5 (1000/m2) illumination from a Newport Class A solar simulator. Also the I-V characteristics for OPV were drawn.

  1. Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics

    Science.gov (United States)

    Kimber, Robin G. E.; Wright, Edward N.; O'Kane, Simon E. J.; Walker, Alison B.; Blakesley, James C.

    2012-12-01

    Measured mobility and current-voltage characteristics of single layer and photovoltaic (PV) devices composed of poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N,N'-phenyl-1,4-phenylene)diamine} (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) have been reproduced by a mesoscopic model employing the kinetic Monte Carlo (KMC) approach. Our aim is to show how to avoid the uncertainties common in electrical transport models arising from the need to fit a large number of parameters when little information is available, for example, a single current-voltage curve. Here, simulation parameters are derived from a series of measurements using a self-consistent “building-blocks” approach, starting from data on the simplest systems. We found that site energies show disorder and that correlations in the site energies and a distribution of deep traps must be included in order to reproduce measured charge mobility-field curves at low charge densities in bulk PFB and F8BT. The parameter set from the mobility-field curves reproduces the unipolar current in single layers of PFB and F8BT and allows us to deduce charge injection barriers. Finally, by combining these disorder descriptions and injection barriers with an optical model, the external quantum efficiency and current densities of blend and bilayer organic PV devices can be successfully reproduced across a voltage range encompassing reverse and forward bias, with the recombination rate the only parameter to be fitted, found to be 1×107 s-1. These findings demonstrate an approach that removes some of the arbitrariness present in transport models of organic devices, which validates the KMC as an accurate description of organic optoelectronic systems, and provides information on the microscopic origins of the device behavior.

  2. Photovoltaic energy technologies: Health and environmental effects document

    Science.gov (United States)

    Moskowitz, P. D.; Hamilton, L. D.; Morris, S. C.; Rowe, M. D.

    1980-09-01

    The potential health and environmental consequences of producing electricity by photovoltaic energy systems was analyzed. Potential health and environmental risks are identified in representative fuel and material supply cycles including extraction, processing, refining, fabrication, installation, operation, and isposal for four photovoltaic energy systems (silicon N/P single crystal, silicon metal/insulator/semiconductor (MIS) cell, cadmium sulfide/copper sulfide backwall cell, and gallium arsenide heterojunction cell) delivering equal amounts of useful energy. Each step of the fuel and material supply cycles, materials demands, byproducts, public health, occupational health, and environmental hazards is identified.

  3. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Science.gov (United States)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  4. Does Your Domestic Photovoltaic Energy System Survive Grid Outages?

    NARCIS (Netherlands)

    Jongerden, M.R.; Hüls, Jannik; Remke, Anne Katharina Ingrid; Haverkort, Boudewijn R.H.M.

    2016-01-01

    Domestic renewable energy systems, including photovoltaic energy generation, as well as local storage, are becoming increasingly popular and economically feasible, but do come with a wide range of options. Hence, it can be difficult to match their specification to specific customer’s needs. Next to

  5. Interim performance criteria for photovoltaic energy systems. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  6. Effects of the charge-transfer reorganization energy on the open-circuit voltage in small-molecular bilayer organic photovoltaic devices: comparison of the influence of deposition rates of the donor.

    Science.gov (United States)

    Lee, Chih-Chien; Su, Wei-Cheng; Chang, Wen-Chang

    2016-05-14

    The theoretical maximum of open-circuit voltage (VOC) of organic photovoltaic (OPV) devices has yet to be determined, and its origin remains debated. Here, we demonstrate that VOC of small-molecule OPV devices can be improved by controlling the deposition rate of a donor without changing the interfacial energy gap at the donor/acceptor interface. The measurement of external quantum efficiency and electroluminescence spectra facilitates the observation of the existence of charge transfer (CT) states. A simplified approach by reusing the reciprocity relationship for obtaining the properties of the CT states is proposed without introducing complex techniques. We compare experimental and fitting results and propose that reorganization energy is the primary factor in determining VOC instead of either the CT energy or electronic coupling term in bilayer OPV devices. Atomic force microscopy images indicate a weak molecular aggregation when a higher deposition rate is used. The results of temperature-dependent measurements suggest the importance of molecular stacking for the CT properties.

  7. Strained quantum well photovoltaic energy converter

    Science.gov (United States)

    Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)

    1998-01-01

    An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.

  8. Photovoltaics as an operating energy system

    Science.gov (United States)

    Jones, G. J.; Post, H. N.; Thomas, M. G.

    In the short time since the discovery of the modern solar cell in 1954, terrestrial photovoltaic power system technology has matured in all areas, from collector reliability to system and subsystem design and operations. Today's PV systems are finding widespread use in powering loads where conventional sources are either unavailable, unreliable, or too costly. A broad range of applications is possible because of the modularity of the technology---it can be used to power loads ranging from less than a watt to several megawatts. This inherent modularity makes PV an excellent choice to play a major role in rural electrification in the developing world. The future for grid-connected photovoltaic systems is also very promising. Indications are that several of today's technologies, at higher production rates and in megawatt-sized installations, will generate electricity in the vicinity of $0.12/kWh in the near future.

  9. Characterization of organic photovoltaic devices using femtosecond laser induced breakdown spectroscopy

    Science.gov (United States)

    Banerjee, S. P.; Sarnet, Thierry; Siozos, Panayiotis; Loulakis, Michalis; Anglos, Demetrios; Sentis, Marc

    2017-10-01

    The potential of laser induced breakdown spectroscopy (LIBS) as a non-contact probe, for characterizing organic photovoltaic devices during selective laser scribing, was investigated. Samples from organic solar cells were studied, which consisted of several layers of materials including a top electrode (Al, Mg or Mo), organic layer, bottom electrode (indium tin oxide), silicon nitride barrier layer and substrate layer situated from the top consecutively. The thickness of individual layers varies from 115 to 250 nm. LIBS measurements were performed by use of a 40 femtosecond Ti:Sapphire laser operated at very low pulse energy (solar cell structure, demonstrating the potential of LIBS for fast, non-contact characterization of organic photovoltaic coatings.

  10. Review of photovoltaic energy development in Kenya for rural electrification

    International Nuclear Information System (INIS)

    Rabah, K.V.O.; Ndjeli, L.; Raturi, A.K.

    1995-10-01

    Energy demand is rapidly growing throughout much of the developing world, where an estimated two billion people, mostly from sparsely populated areas, currently live without electricity. As electrical energy systems are selected to help meet these people's electricity need, the environmental ramifications of the generating systems become increasingly important. Photovoltaic systems generate electricity without emitting greenhouse gases, and result in global, regional and local air quality advantages. In this work we intend to carry out research and development of photovoltaic solar cells for rural electrification - especially solar powered water pumping. (author). 56 refs, 11 figs

  11. Photovoltaic energy: an energy that wins. Solar systems, energy, environment

    International Nuclear Information System (INIS)

    Felines, P.; Martin, P.E.; Schmit, R.; Hammerbacher, M.; Bal, J.L.; Gaillard, M.; Mandil, O.; Duchemin, I.; Magnin, P.A.; Vandal, A.; Carella, R.

    1998-01-01

    Photovoltaic cell and module production has increased by 43% with respect to the previous year, to reach a record: 126.7 MW p. This strong growth in production was the result of the ''70000 roofs'' project in Japan, programs of the same type in Germany, Switzerland and the Netherlands, and to the autonomous installations market. The American production growth is explained by the increase in exports to Japan, with a 'total exports/production' ratio which is now established in the vicinity of 75%. The Japanese production was sold entirely on the domestic market, and this for the second straight year. For the most part, European production was sold in Germany, Switzerland and the Netherlands, as well as on the decentralized rural electrification market (particularly in India). (N.C.)

  12. Maple prepared organic heterostructures for photovoltaic applications

    Science.gov (United States)

    Stanculescu, A.; Socol, M.; Socol, G.; Mihailescu, I. N.; Girtan, M.; Stanculescu, F.

    2011-09-01

    In this study, we present the deposition of ZnPc, Alq3, and PTCDA thin films using Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. We also report the realisation of multilayer structures, made by the successive application of MAPLE. The films have been characterized by spectroscopic (UV-VIS and Photoluminescence) and microscopic (SEM and AFM) methods, and the effect of different deposition conditions such as fluence, number of pulses, and target concentration on the properties has been analysed. This paper also presents some investigations on the electrical conduction in sandwich type structures ITO or Si/organic layer/Au or Cu and ITO/double organic layer/Cu, emphasising the dominant effect of the height of the energetic barriers at the inorganic/organic and organic/organic interfaces.

  13. Maple prepared organic heterostructures for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, A.; Socol, M. [National Institute of Materials Physics, 105 bis Atomistilor Street, P.O. Box MG-7, Bucharest-Magurele (Romania); Socol, G.; Mihailescu, I.N. [Plasma and Radiation Physics, National Institute for Laser, P.O. Box MG-36, Bucharest-Magurele (Romania); Girtan, M. [Universite d' Angers, Laboratoire de Photonique d' Angers, Angers (France); Stanculescu, F. [University of Bucharest, Faculty of Physics, Str. Atomistilor nr. 405, P.O. Box MG-11, Bucharest-Magurele (Romania)

    2011-09-15

    In this study, we present the deposition of ZnPc, Alq3, and PTCDA thin films using Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. We also report the realisation of multilayer structures, made by the successive application of MAPLE. The films have been characterized by spectroscopic (UV-VIS and Photoluminescence) and microscopic (SEM and AFM) methods, and the effect of different deposition conditions such as fluence, number of pulses, and target concentration on the properties has been analysed. This paper also presents some investigations on the electrical conduction in sandwich type structures ITO or Si/organic layer/Au or Cu and ITO/double organic layer/Cu, emphasising the dominant effect of the height of the energetic barriers at the inorganic/organic and organic/organic interfaces. (orig.)

  14. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    Science.gov (United States)

    Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ

    2011-05-24

    A photosensitive device includes a series of organic photoactive layers disposed between two electrodes. Each layer in the series is in direct contact with a next layer in the series. The series is arranged to form at least one donor-acceptor heterojunction, and includes a first organic photoactive layer comprising a first host material serving as a donor, a thin second organic photoactive layer comprising a second host material disposed between the first and a third organic photoactive layer, and the third organic photoactive layer comprising a third host material serving as an acceptor. The first, second, and third host materials are different. The thin second layer serves as an acceptor relative to the first layer or as a donor relative to the third layer.

  15. Projected photovoltaic energy impacts on US CO2 emissions: an integrated energy environmental-economic analysis

    International Nuclear Information System (INIS)

    Lee, J.C.; Fthenakis, V.M.; Morris, S.C.; Goldstein, G.A.; Moskowitz, P.D.

    1997-01-01

    The potential role of photovoltaic technologies in reducing carbon dioxide (CO 2 ) emissions in the USA was evaluated using an energy-environment-economic systems model. With a range of assumptions about future scenarios up to 2030, the model results provide an objective quantitative assessment of the prospects for photovoltaics in a competitive market. With the projected improvements in cost and efficiency, photovoltaics will compete favourably as a general source of electricity supply to the grid by about 2010 in southwestern USA. This analysis indicates that photovoltaics has the potential to reach a total installed capacity of 140 GW by the year 2030, and to displace a cumulative 450 million metric tons of carbon emissions from 1995 to 2030. At the projected 2030 capacity, photovoltaics could displace over 64 million metric tons of carbon emissions a year. Under constraints on carbon emissions, photovoltaics becomes more cost effective and would further reduce carbon emissions from the US energy system. (author)

  16. Applied photovoltaics as a practical education in renewable energy technologies

    International Nuclear Information System (INIS)

    Stoev, Mitko

    2009-01-01

    The optional course „Applied Photovoltaic” for MEng students specializing in Electronics at the Faculty of Electronics and Automation, TU-Plovdiv is presented. The main topics of the advanced PV course as a modern sustainable energetic based on the photovoltaic effect and energy from Sun as a renewable energy source; materials and technologies in photovoltaic; design of solar cells and PV modules and PV generators up to 100 kWp; BIPV and CIPV systems; hybrid PV systems; PV mounting; monitoring of PV systems and EC regulations for PV systems connected to the utility grid are discussed. The advanced teaching method by online e-platform with virtual resources is presented. Key words: PV education, PV technologies, applied photovoltaic, e-platform

  17. CHAPTER 3. High-performance Organic Photovoltaic Donor Polymers

    KAUST Repository

    Wadsworth, Andrew

    2017-11-08

    The field of organic photovoltaics has advanced a great deal over the last decade, with device efficiencies now exceeding 11%. A large part of this success can be attributed to the development of donor polymer materials, from their humble beginnings as homopolymers to the highly tuned push-pull copolymer and terpolymer materials that are now being reported on a regular basis. Through the careful use of chemical modification, it has been possible to design and synthesize a wide variety of donor polymers, allowing optimization of both the optoelectronic and structural properties of the materials. In doing so, more favourable active layer blends have been achieved and therefore significant improvements in device performance have been observed. Herein we discuss how the chemical design of donor polymers for organic photovoltaics has led to the emergence of high-performance materials.

  18. CHAPTER 3. High-performance Organic Photovoltaic Donor Polymers

    KAUST Repository

    Wadsworth, Andrew; Baran, Derya; Gorman, Jeffrey; McCulloch, Iain

    2017-01-01

    The field of organic photovoltaics has advanced a great deal over the last decade, with device efficiencies now exceeding 11%. A large part of this success can be attributed to the development of donor polymer materials, from their humble beginnings as homopolymers to the highly tuned push-pull copolymer and terpolymer materials that are now being reported on a regular basis. Through the careful use of chemical modification, it has been possible to design and synthesize a wide variety of donor polymers, allowing optimization of both the optoelectronic and structural properties of the materials. In doing so, more favourable active layer blends have been achieved and therefore significant improvements in device performance have been observed. Herein we discuss how the chemical design of donor polymers for organic photovoltaics has led to the emergence of high-performance materials.

  19. EROI of crystalline silicon photovoltaics : Variations under different assumptions regarding manufacturing energy inputs and energy output

    OpenAIRE

    Lundin, Johan

    2013-01-01

    Installed photovoltaic nameplate power have been growing rapidly around the worldin the last few years. But how much energy is returned to society (i.e. net energy) by this technology, and which factors contribute the most to the amount of energy returned? The objective of this thesis was to examine the importance of certain inputs and outputs along the solar panel production chain and their effect on the energy return on (energy) investment (EROI) for crystalline wafer-based photovoltaics. A...

  20. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    Science.gov (United States)

    Forrest, Stephen R [Ann Arbor, MI; Yang, Fan [Piscataway, NJ; Rand, Barry P [Somers, NY

    2011-09-06

    A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.

  1. Determining the coating speed limitations for organic photovoltaic inks

    DEFF Research Database (Denmark)

    Jakubka, Florian; Heyder, Madeleine; Machui, Florian

    2013-01-01

    To determine the output capability of present organic photovoltaic (OPV) materials, it is important to know the theoretical maximum coating speeds of the used semiconductor formulations. Here, we present a comprehensive investigation of the coating stability window of several prototype organic...... semiconductor inks relevant for organic solar cells. The coating stability window was first determined experimentally by a sheet to sheet coater at velocities of up to 10 m/min. A numerical simulation model based on the Coating Window Suite 2010 software was established to give insight into the coating...

  2. The Italian programme in photovoltaic solar energy

    Science.gov (United States)

    Farinelli, U.

    Italian programs and goals for developing a photovoltaic (PV) industry and market are outlined. It is suggested that only a few megawatts of PVs will be produced for domestic consumption in the next few years, while the largest market is for developing nations where costly diesel-fueled generators are used. The installation of PV systems in developing areas will permit testing and scaling up of production capacities from several MW to several hundred MW and then to GW annual production. Approximately 55,000,000 was devoted to government research in PV in 1982 and a PV research laboratory is being built near Naples.

  3. Photovoltaic (PV) energy in the Netherlands and Switzerland. A comparison

    International Nuclear Information System (INIS)

    Van der Loo, F.; Spiessens, P.

    1995-01-01

    The development of photovoltaic (PV) energy in Switzerland and the Netherlands is compared for a number of aspects. The Swiss have realized more PV capacity. Also the economic conditions to develop PV are better in Switzerland than in the Netherlands. In Switzerland the public support is mobilized for solar energy while in the Netherlands a social basis is created for wind energy. 3 ills., 3 tabs

  4. Electric properties of organic and mineral electronic components, design and modelling of a photovoltaic chain for a better exploitation of the solar energy; Proprietes electriques des composants electroniques mineraux et organiques, conception et modelisation d'une chaine photovoltaique pour une meilleure exploitation de l'energie solaire

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, A

    2006-11-15

    The research carried out in this thesis relates to the mineral, organic electronic components and the photovoltaic systems. Concerning the mineral semiconductors, we modelled the conduction properties of the structures metal/oxide/semiconductor (MOS) strongly integrated in absence and in the presence of charges. We proposed a methodology allowing characterizing the ageing of structures MOS under injection of the Fowler Nordheim (FN) current type. Then, we studied the Schottky diodes in polymers of type metal/polymer/metal. We concluded that: The mechanism of the charges transfer, through the interface metal/polymer, is allotted to the thermo-ionic effect and could be affected by the lowering of the potential barrier to the interface metal/polymer. In the area of photovoltaic energy, we conceived and modelled a photovoltaic system of average power (100 W). We showed that the adaptation of the generator to the load allows a better exploitation of solar energy. This is carried out by the means of the converters controlled by an of type MPPT control provided with a detection circuit of dysfunction and restarting of the system. (author)

  5. Electric properties of organic and mineral electronic components, design and modelling of a photovoltaic chain for a better exploitation of the solar energy; Proprietes electriques des composants electroniques mineraux et organiques, conception et modelisation d'une chaine photovoltaique pour une meilleure exploitation de l'energie solaire

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, A

    2006-11-15

    The research carried out in this thesis relates to the mineral, organic electronic components and the photovoltaic systems. Concerning the mineral semiconductors, we modelled the conduction properties of the structures metal/oxide/semiconductor (MOS) strongly integrated in absence and in the presence of charges. We proposed a methodology allowing characterizing the ageing of structures MOS under injection of the Fowler Nordheim (FN) current type. Then, we studied the Schottky diodes in polymers of type metal/polymer/metal. We concluded that: The mechanism of the charges transfer, through the interface metal/polymer, is allotted to the thermo-ionic effect and could be affected by the lowering of the potential barrier to the interface metal/polymer. In the area of photovoltaic energy, we conceived and modelled a photovoltaic system of average power (100 W). We showed that the adaptation of the generator to the load allows a better exploitation of solar energy. This is carried out by the means of the converters controlled by an of type MPPT control provided with a detection circuit of dysfunction and restarting of the system. (author)

  6. Degradation mechanisms in organic photovoltaic devices

    NARCIS (Netherlands)

    Grossiord, Nadia; Kroon, Jan M.; Andriessen, Ronn; Blom, Paul W. M.

    In the present review, the main degradation mechanisms occurring in the different layer stacking (i.e. photoactive layer, electrode, encapsulation film, interconnection) of polymeric organic solar cells and modules are discussed. Bulk and interfacial, as well as chemical and physical degradation

  7. The role of Photovoltaics towards 100% Renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; David, Andrei; Petersen, Silas

    builds on a literature review of the global and Danish trends in capacity, costs and types of support schemes, but also develops a GIS and energy system analysis supported by a set of economic calculations to inquire on the recommended pathway for the future investments in photovoltaics in Denmark...

  8. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  9. Solar energy photovoltaic technology: proficiency and performance; L'energie solaire maitrise et performance photovoltaiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  10. Observatory of photovoltaic solar energy in France - 20. edition

    International Nuclear Information System (INIS)

    2016-12-01

    After an overview of important events in the World regarding the development of photovoltaic solar energy in 2016, and predictions regarding new connected installations in 2016, this document present graphs and figures which illustrate the evolution of the photovoltaic fleet in the World, the comparison of production costs of new electric power generation capacities, the evolution of the French photovoltaic power production since 2009, the evolution of the distribution of the French fleet in terms of installation power (from large projects to residential), of connections to the grid, of number of connections and purchase tariffs for the different types of installations (residential, medium roofs, large roofs, very large roofs, very large ground-based or roof-based projects) and for queuing projects, in terms of evolution of purchase tariffs since 2011, and of evolution of impact on the CSPE financing system

  11. Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries

    DEFF Research Database (Denmark)

    Beliatis, Michail

    2018-01-01

    Incorporating plasmonic nanoparticles in organic photovoltaic (OPV) devices can increase the optical thickness of the organic absorber layer while keeping its physical thickness small. However, trade-offs between various structure parameters have caused contradictions regarding the effectiveness...... of plasmonics in the literature, that have somewhat stunted the progressing of a unified theoretical understanding for practical applications. We examine the optical enhancement mechanisms of practical PCDTBT:PC70BM OPV cells incorporating metal nanoparticles. The plasmonic near- and far-field contributions...... show that an already optimized PCDTBT:PC70BM cell can be further optically enhanced by plasmonic effects by at least 20% with the incorporation of Ag nanoparticles....

  12. Optical modeling and optimization of multilayer organic photovoltaic cells

    International Nuclear Information System (INIS)

    Filippov, V.V.; Shulitskij, B.G.

    2010-01-01

    We show that the spectral position of the maxima in the exciton generation rate G in a photovoltaic cell, taking into account the spectral energy distribution in the AM1,5G solar spectrum, is determined by the absorption bands of its donor and acceptor materials. It varies slightly as the thicknesses of the layers in the cell change. Interference of light affects only the magnitude of these maxima. For a cell based on a CuPc (copper phthalocyanine)-C 60 (fullerene) heterojunction, the G maxima are located at 640 nm, 720 nm (absorption in CuPc) and close to 495 nm (absorption in C 60 ). The photovoltaic cell can be optimized using the ratio of the magnitudes of these maxima and their variations as layer thicknesses are varied and the exciton diffusion length is taken into account.(authors)

  13. Wide-Scale Adoption of Photovoltaic Energy

    DEFF Research Database (Denmark)

    Yang, Yongheng; Enjeti, Prasad; Blaabjerg, Frede

    2015-01-01

    Current grid standards largely require that low-power (e.g., several kilowatts) single-phase photovoltaic (PV) systems operate at unity power factor (PF) with maximum power point tracking (MPPT), and disconnect from the grid under grid faults by means of islanding detection. However, in the case...... of wide-scale penetration of single-phase PV systems in the distributed grid, disconnection under grid faults can contribute to 1) voltage flickers, 2) power outages, and 3) system instability. This article explores grid code modifications for a wide-scale adoption of PV systems in the distribution grid....... In addition, based on the fact that Italy and Japan have recently undertaken a major review of standards for PV power conversion systems connected to low-voltage networks, the importance of low voltage ride-through (LVRT) for single-phase PV power systems under grid faults is considered, along with three...

  14. Hybrid photovoltaic system control for enhancing sustainable energy. Economic aspects

    International Nuclear Information System (INIS)

    Leva, Sonia; Roscia, Mariacristina; Zaninelli, Dario

    2005-01-01

    The paper introduces hybrid photovoltaic/diesel generation systems for supplying remote power plant taking into account the enhancement of sustainable energy on the economic point of view. In particular, a new monitoring and control device is presented in order to carry out the optimum energy flows and a cost evaluation is performed on a real plant showing the effect and weight of the economical sustainability and economical saving. (authors)

  15. A Case Analysis of Energy Savings Performance Contract Projects and Photovoltaic Energy at Fort Bliss, El Paso, Texas

    Science.gov (United States)

    2006-06-01

    PHOTOVOLTAIC ENERGY AND FORT BLISS CASE BACKGROUND A. PHOTOVOLTAIC ENERGY The use of photovoltaic power systems is nothing new in the Department...against the Outback MPPT charge controller . This test will be done over a one month timeframe. The Arizona Power ISG test plan is contained in...cost-benefit analysis of conventional power versus emerging photovoltaic energy for the Army’s Fort Bliss in El Paso, TX. The project will also analyze

  16. Thermoelectric cooling in combination with photovoltaics and thermal energy storage

    Directory of Open Access Journals (Sweden)

    Skovajsa Jan

    2017-01-01

    Full Text Available The article deals with the use of modern technologies that can improve the thermal comfort in buildings. The article describes the usage of thermal energy storage device based on the phase change material (PCM. The technology improves the thermal capacity of the building and it is possible to use it for active heating and cooling. It is designed as a “green technology” so it is able to use renewable energy sources, e.g., photovoltaic panels, solar thermal collectors, and heat pump. Moreover, an interesting possibility is the ability to use thermal energy storage in combination with a photovoltaic system and thermoelectric coolers. In the research, there were made measurements of the different operating modes and the results are presented in the text.

  17. EU Directives, national regulations and incentives for photovoltaic solar energy

    International Nuclear Information System (INIS)

    Jager-Waldau, A.; Ossenbrink, H.; Scholz, H.; Bloem, H.; Werring, L.

    2004-01-01

    The European Union long-term strategy for security of energy supply and its commitment to curb climate change led to the adoption of a series of Strategy Papers and EU Directives. In all these, it is clearly stated that climate change is a long-term challenge for the international community and that the commitments made in the Kyoto Protocol can only be a first step. The promotion of renewable energies is a most important element of this process. It regards industry, jobs and foreign trade balance as well, generating benefit to social sustainability. Photovoltaic is a key technology with the potential not only to serve the needs in energy supply of tomorrow in a sustainable way, but already today, it can improve security and stability of electricity services at peak times, due to its decentralized nature. This paper gives an update on the EU and National legislation in place to promote the implementation of photovoltaic. (authors)

  18. Solar breeder: Energy payback time for silicon photovoltaic systems

    Science.gov (United States)

    Lindmayer, J.

    1977-01-01

    The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.

  19. Semitransparent organic photovoltaic modules with Ag nanowire top electrodes

    Science.gov (United States)

    Guo, Fei; Kubis, Peter; Przybilla, Thomas; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.

    2014-10-01

    Semitransparent organic photovoltaic (OPV) cells are promising for applications in transparent architectures where their opaque counterparts are not suitable. Manufacturing of large-area modules without performance losses compared to their lab-scale devices is a key step towards practical applications of this PV technology. In this paper, we report the use of solution-processed silver nanowires as top electrodes and fabricate semitransparent OPV modules based on ultra-fast laser scribing. Through a rational choice of device architecture in combination with high-precision laser patterning, we demonstrate efficient semitransparent modules with comparable performance as compared to the reference devices.

  20. An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells.

    Science.gov (United States)

    Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C

    2017-09-12

    This study reports on the design and synthesis of an unsymmetrical π-conjugated organic molecule composed of perylene diimide, thienyl diketopyrrolopyrrole, and indoloquinoxaline pieced together using direct heteroarylation. This material demonstrates unprecedented response in the thin-film upon post-deposition solvent vapor annealing, resulting in dramatic red-shifts in optical absorption. Such changes were utilized to enhance photocurrent generation in P3HT based organic solar cells.

  1. Hybrid photovoltaic-diesel-battery systems for remote energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G.; Gabler, H.; Kiefer, K.; Preiser, K.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    1997-12-31

    Photovoltaic solar generators combined with diesel engines and battery energy storage are powering isolated mountain lodges, information centres in nature parks, isolated farms or dwellings all over Europe. A total of 300000 buildings in Europe are estimated to be not connected to the public grid. This represents a major market potential for photovoltaics, as often photovoltaic power generation is less expensive than a connection to the electric utility. The Fraunhofer Institute for Solar Energy Systems ISE has planned, realized and monitored about 30 hybrid remote energy supply systems with PV generators typically around 5 kW for loads typically around 20 kWh per day. More than one hundred years of operational experience accumulated so far, are a sound foundation on which to draw an interim balance over problems solved and technical questions still under development. Room for further technical development is seen in the domain of system reliability and the reduction of operating costs as well as in the optimization of the utilisation of the electric energy produced by the PV generator. (orig.) 8 refs.

  2. U.S. Department of Energy Photovoltaic Energy Program Contract Summary: Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Surek, T.

    2001-02-21

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) and U.S. Department of Energy (DOE) National Photovoltaics Program from October 1, 1999, through September 30, 2000 (FY 2000). The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy-as an industry and an energy resource. The two primary goals of the national program are to (1) maintain the U.S. industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NCPV is part of the National PV Program and provides leadership and support to the national program toward achieving its mission and goals. This Contract Summary for fiscal year (FY) 2000 documents some 179 research projects supported by the PV Program, performed by 107 organizations in 32 states, including 69 projects performed by universities and 60 projects performed by our industry partners. Of the total FY 2000 PV Program budget of $65.9 million, the industry and university research efforts received $36.9 million, or nearly 56%. And, of this amount, more than 93% was for contractors selected on a competitive basis. Much of the funding to industry was matched by industry cost-sharing. Each individual effort described in this summary represents another step toward improving PV manufacturing, performance, cost, and applications, and another step toward accomplishing the DOE PV Program's overall mission.

  3. Improving, characterizing and predicting the lifetime of organic photovoltaics

    DEFF Research Database (Denmark)

    Gevorgyan, Suren A.; Heckler, Ilona Maria; Bundgaard, Eva

    2017-01-01

    This review summarizes the recent progress in the stability and lifetime of organic photovoltaics (OPVs). In particular, recently proposed solutions to failure mechanisms in different layers of the device stack are discussed comprising both structural and chemical modifications. Upscaling...... characterization reported recently. Lifetime testing and determination is another challenge in the field of organic solar cells and the final sections of this review discuss the testing protocols as well as the generic marker for device lifetime and the methodology for comparing all the lifetime landmarks in one...... common diagram. These tools were used to determine the baselines for OPV lifetime tested under different ageing conditions. Finally, the current status of lifetime for organic solar cells is presented and predictions are made for progress in the near future....

  4. Optimal construction parameters of electrosprayed trilayer organic photovoltaic devices

    International Nuclear Information System (INIS)

    Shah, S K; Ali, M; Gunnella, R; Abbas, M; Hirsch, L

    2014-01-01

    A detailed investigation of the optimal set of parameters employed in multilayer device fabrication obtained through successive electrospray deposited layers is reported. In this scheme, the donor/acceptor (D/A) bulk heterojunction layer is sandwiched between two thin stacked layers of individual donor and acceptor materials. The stacked layers geometry with optimal thicknesses plays a decisive role in improving operation characteristics. Among the parameters of the multilayer organic photovoltaics device, the D/A concentration ratio, blend thickness and stacking layers thicknesses are optimized. Other parameters, such as thermal annealing and the role of top metal contacts, are also discussed. Internal photon to current efficiency is found to attain a strong response in the 500 nm optical region for the most efficient device architectures. Such an observation indicates a clear interplay between photon harvesting of active layers and transport by ancillary stacking layers, opening up the possibility to engineer both the material fine structure and the device architecture to obtain the best photovoltaic response from a complex organic heterostructure. (paper)

  5. New Organic Semiconductor Materials Applied in Organic Photovoltaic and Optical Devices

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2015-04-01

    Full Text Available The development of flexible organic photovoltaic solar cells, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The flexible organic photovoltaic solar cells are the base Poly (3,4-ethylenedioxythiophene, PEDOT, Poly(3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by Electrical Measurements and Scanning Electron Microscopy (SEM. In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by electrical Measurements has demonstrated that the PET/ITO/PEDOT/P3HT:PCBM Blend/PANI-X1 layer presents the characteristic curve of standard solar cell after spin-coating and electrodeposition. The Thin film obtained by electrodeposition of PANI-X1 on P3HT/PCBM Blend was prepared in perchloric acid solution. These flexible organic photovoltaic solar cells presented power conversion efficiency of 12%. The inclusion of the PANI-X1 layer reduced the effects of degradation these organic photovoltaic panels induced for solar irradiation. In Scanning Electron Microscopy (SEM these studies reveal that the surface of PANI-X1 layers is strongly conditioned by the surface morphology of the dielectric.

  6. Energy analysis of solar photovoltaic module production in India

    International Nuclear Information System (INIS)

    Prakash, R.; Bansal, N.K.

    1995-01-01

    The objective of this article is to evaluate the energy consumption in solar photovoltaic (SPV) module production in India and examine its implications for large-scale introduction of SPV plants in the country. Data on energy used in SPV production were collected from existing manufacturing facilities in the country. The energy payback period turns out to be approximately 4 years. This is comparable to energy payback periods of similar modules produced internationally. However, if an ambitious program of introducing SPV power production is undertaken to contribute substantially to the power scenario in the country, an annual growth rate beyond 21% will render the program an energy sink rather than an energy source, as borne out by dynamic energy analysis. Policy implications are also discussed in light of this analysis

  7. ENERGY MANAGEMENT OF PHOTOVOLTAIC SYSTEMS USING FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Cristian MIRON

    2016-11-01

    Full Text Available Renewable energy generators show an accelerated growth both in terms of production wise, as well as in research fields. Focusing only on photovoltaic panels, the generated energy has the disadvantage of being strongly oscillatory in evolution. The classical solution is to create a network between photovoltaic farms spanning on large distances, in order to share the total energy before sending it to the clients. A solution that was recently proposed is going to use hydrogen in order to store the energy surplus. Fuel Cells (FCs represent energy generators whose energy vector is usually hydrogen. These have already started the transition from the laboratory context towards commercialization. Due to their high energy density, as well as their theoretical infinite storage capacity through hydrogen, configurations based on electrolyzers and FCs are seen as high potential storage systems, both for vehicle and for stationary applications. Therefore, a study on such distributed control systems is of high importance. This paper analyses the existing solutions, with emphasis on a particular case where a supervisory system is developed and tested in a specialised simulation software.

  8. Organic photovoltaic device with interfacial layer and method of fabricating same

    Science.gov (United States)

    Marks, Tobin J.; Hains, Alexander W.

    2013-03-19

    An organic photovoltaic device and method of forming same. In one embodiment, the organic photovoltaic device has an anode, a cathode, an active layer disposed between the anode and the cathode; and an interfacial layer disposed between the anode and the active layer, the interfacial layer comprising 5,5'-bis[(p-trichlorosilylpropylphenyl)phenylamino]-2,2'-bithiophene (PABTSi.sub.2).

  9. Interactive Visual Analysis for Organic Photovoltaic Solar Cells

    KAUST Repository

    Abouelhassan, Amal A.

    2017-12-05

    Organic Photovoltaic (OPV) solar cells provide a promising alternative for harnessing solar energy. However, the efficient design of OPV materials that achieve better performance requires support by better-tailored visualization tools than are currently available, which is the goal of this thesis. One promising approach in the OPV field is to control the effective material of the OPV device, which is known as the Bulk-Heterojunction (BHJ) morphology. The BHJ morphology has a complex composition. Current BHJ exploration techniques deal with the morphologies as black boxes with no perception of the photoelectric current in the BHJ morphology. Therefore, this method depends on a trial-and-error approach and does not efficiently characterize complex BHJ morphologies. On the other hand, current state-of-the-art methods for assessing the performance of BHJ morphologies are based on the global quantification of morphological features. Accordingly, scientists in OPV research are still lacking a sufficient understanding of the best material design. To remove these limitations, we propose a new approach for knowledge-assisted visual exploration and analysis in the OPV domain. We develop new techniques for enabling efficient OPV charge transport path analysis. We employ, adapt, and develop techniques from scientific visualization, geometric modeling, clustering, and visual interaction to obtain new designs of visualization tools that are specifically tailored for the needs of OPV scientists. At the molecular scale, the user can use semantic rules to define clusters of atoms with certain geometric properties. At the nanoscale, we propose a novel framework for visual characterization and exploration of local structure-performance correlations. We also propose a new approach for correlating structural features to performance bottlenecks. We employ a visual feedback strategy that allows scientists to make intuitive choices about fabrication parameters. We furthermore propose a

  10. Photovoltaic energy in France: 2015, a good year

    International Nuclear Information System (INIS)

    Courtel, J.; Tuille, F.

    2015-01-01

    The figures collected for the first semester of 2015 show that the 2014 growth of photovoltaic energy is keeping on. In june 2015 the cumulated installed power reached 6046 MWc. The next challenge is the implementation in january 2016 of a new financial support mechanism based on additional income instead of an EDF's obligation to purchase at fixed tariffs. The additional income is due to be paid with regular periodicity rather than as a whole at the beginning of the project. The amount of the additional income will be calculated as a difference between a maximum target price and the average market price of electricity. This new financial support mechanism shows that the photovoltaic sector is entering a maturity phase. (A.C.)

  11. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  12. Photovoltaic Energy Program Overview, Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Weis-Taylor, P.

    2001-03-02

    This ''annual report'' details the FY 2000 achievements of the U.S. Department of Energy PV Program in the categories of Research and Development, Technology Development, and Systems Engineering and Applications. Highlights include development of a record-breaking concentrator solar cell that is 32.4% efficient; fabrication of a record CIGS (copper indium gallium diselenide) cell at 18.8% efficiency; sharing an R and D 100 award with Siemens Solar Industries and the California Energy Commission for development and deployment of commercial CIS thin-film modules; and support for the efforts of the PV Industry Roadmap Workshop.

  13. Better chances for photovoltaic solar energy

    International Nuclear Information System (INIS)

    Sinke, W.C.

    1992-01-01

    There is a growing interest in the use of solar energy based on the policy to reduce the emission of carbon dioxide and acidifying pollutants, and the desire to save energy, in particular with regard to the increase of energy consumption, which can be expected to occur in the near future in developing countries. After a brief introduction on the efficiencies of monocrystalline silicon (m-Si), polycrystalline silicon (p-Si) and amorphous silicon (a-Si) solar cells realized sofar, attention is paid to two remarkable developments in solar cell research. One is at Texas Instruments where silicon balls in aluminium foil are fabricated, for which the average energy efficiency realized sofar is 10% for small surfaces (10 cm 2 ). The cell is called the spheral solar cell. A second development is at the Federal Institute for Technology in Lausanne, Switzerland, where the researchers O'Regan and Graetzel reported on the development of a photo-electrochemical solar cell with a high efficiency and good stability. Their cell is dye sensitized, which means that the light absorption function of the cell is separated from the load transport function. Finally brief attention is paid to the introduction and use of solar home systems in Indonesia. 5 figs

  14. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells.

    Science.gov (United States)

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-05

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined ~3.0nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as ~2.1eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0wt%, 0.1wt%, 0.5wt%, 1wt% and 2wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced ~20% by incorporating CdSe NCs with 0.1wt% with respect to those without CdSe NCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells

    Science.gov (United States)

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-01

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined 3.0 nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as 2.1 eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0 wt%, 0.1 wt%, 0.5 wt%, 1 wt% and 2 wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1 wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced 20% by incorporating CdSe NCs with 0.1 wt% with respect to those without CdSe NCs.

  16. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  17. Energy metrics analysis of hybrid - photovoltaic (PV) modules

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Arvind [Department of Electronics and Communication, Krishna Institute of Engineering and Technology, 13 k.m. stone, Ghaziabad - Meerut Road, Ghaziabad 201 206, UP (India); Barnwal, P.; Sandhu, G.S.; Sodha, M.S. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India)

    2009-12-15

    In this paper, energy metrics (energy pay back time, electricity production factor and life cycle conversion efficiency) of hybrid photovoltaic (PV) modules have been analyzed and presented for the composite climate of New Delhi, India. For this purpose, it is necessary to calculate (1) the energy consumption in making different components of the PV modules and (2) the annual energy (electrical and thermal) available from the hybrid-PV modules. A set of mathematical relations have been reformulated for computation of the energy metrics. The manufacturing energy, material production energy, energy use and distribution energy of the system have been taken into account, to determine the embodied energy for the hybrid-PV modules. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. For hybrid PV module, it has been observed that the EPBT gets significantly reduced by taking into account the increase in annual energy availability of the thermal energy in addition to the electrical energy. The values of EPF and LCCE of hybrid PV module become higher as expected. (author)

  18. Deep energetic trap states in organic photovoltaic devices

    KAUST Repository

    Shuttle, Christopher G.; Treat, Neil D.; Douglas, Jessica D.; Frechet, Jean; Chabinyc, Michael L.

    2011-01-01

    The nature of energetic disorder in organic semiconductors is poorly understood. In photovoltaics, energetic disorder leads to reductions in the open circuit voltage and contributes to other loss processes. In this work, three independent optoelectronic methods were used to determine the long-lived carrier populations in a high efficiency N-alkylthieno[3,4-c]pyrrole-4,6-dione (TPD) based polymer: fullerene solar cell. In the TPD co-polymer, all methods indicate the presence of a long-lived carrier population of ∼ 10 15 cm -3 on timescales ≤100 μs. Additionally, the behavior of these photovoltaic devices under optical bias is consistent with deep energetic lying trap states. Comparative measurements were also performed on high efficiency poly-3-hexylthiophene (P3HT): fullerene solar cells; however a similar long-lived carrier population was not observed. This observation is consistent with a higher acceptor concentration (doping) in P3HT than in the TPD-based copolymer. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Deep energetic trap states in organic photovoltaic devices

    KAUST Repository

    Shuttle, Christopher G.

    2011-11-23

    The nature of energetic disorder in organic semiconductors is poorly understood. In photovoltaics, energetic disorder leads to reductions in the open circuit voltage and contributes to other loss processes. In this work, three independent optoelectronic methods were used to determine the long-lived carrier populations in a high efficiency N-alkylthieno[3,4-c]pyrrole-4,6-dione (TPD) based polymer: fullerene solar cell. In the TPD co-polymer, all methods indicate the presence of a long-lived carrier population of ∼ 10 15 cm -3 on timescales ≤100 μs. Additionally, the behavior of these photovoltaic devices under optical bias is consistent with deep energetic lying trap states. Comparative measurements were also performed on high efficiency poly-3-hexylthiophene (P3HT): fullerene solar cells; however a similar long-lived carrier population was not observed. This observation is consistent with a higher acceptor concentration (doping) in P3HT than in the TPD-based copolymer. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cohesion and device reliability in organic bulk heterojunction photovoltaic cells

    KAUST Repository

    Brand, Vitali

    2012-04-01

    The fracture resistance of P3HT:PC 60BM-based photovoltaic devices are characterized using quantitative adhesion and cohesion metrologies that allow identification of the weakest layer or interface in the device structure. We demonstrate that the phase separated bulk heterojunction layer is the weakest layer and report quantitative cohesion values which ranged from ∼1 to 20 J m -2. The effects of layer thickness, composition, and annealing treatments on layer cohesion are investigated. Using depth profiling and X-ray photoelectron spectroscopy on the resulting fracture surfaces, we examine the gradient of molecular components through the thickness of the bulk heterojunction layer. Finally, using atomic force microscopy we show how the topography of the failure path is related to buckling of the metal electrode and how it develops with annealing. The research provides new insights on how the molecular design, structure and composition affect the cohesive properties of organic photovoltaics. © 2011 Elsevier B.V. All rights reserved.

  1. Intrinsic coincident full-Stokes polarimeter using stacked organic photovoltaics.

    Science.gov (United States)

    Yang, Ruonan; Sen, Pratik; O'Connor, B T; Kudenov, M W

    2017-02-20

    An intrinsic coincident full-Stokes polarimeter is demonstrated by using strain-aligned polymer-based organic photovoltaics (OPVs) that can preferentially absorb certain polarized states of incident light. The photovoltaic-based polarimeter is capable of measuring four Stokes parameters by cascading four semitransparent OPVs in series along the same optical axis. This in-line polarimeter concept potentially ensures high temporal and spatial resolution with higher radiometric efficiency as compared to the existing polarimeter architecture. Two wave plates were incorporated into the system to modulate the S3 Stokes parameter so as to reduce the condition number of the measurement matrix and maximize the measured signal-to-noise ratio. Radiometric calibration was carried out to determine the measurement matrix. The polarimeter presented in this paper demonstrated an average RMS error of 0.84% for reconstructed Stokes vectors after normalized to S0. A theoretical analysis of the minimum condition number of the four-cell OPV design showed that for individually optimized OPV cells, a condition number of 2.4 is possible.

  2. ANALYSIS OF THE ENERGY EFFICIENCY OF PHOTOVOLTAIC POLYCRYSTALLINE AND THIN-FILM PHOTOVOLTAIC FARM IN THE DOLINA ZIELAWY

    Directory of Open Access Journals (Sweden)

    Piotr Dragan

    2016-12-01

    Full Text Available Renewable energy is an opportunity not only to improve the energy efficiency of individual customers, but also to ensure energy security for local governments. In 2007, in Lublin province 5 municipalities have formed a partnership government called "Valley of Zielawa". The objectives of the partnership is the cooperation in the field of education, tasks in the field of culture, health protection, social welfare, fire protection and street lighting. One of the overarching goals of the partnership include ensure energy security and improving energy efficiency through the utilization of solar energy. Solar energy resources in the Lublin region are mainly characterized by a very high degree of sunlight compared to other regions of the country. The greatest potential for solar energy use is the eastern area of the province (including the area of partnership. In order to ensure the energy security of the community established a company Energy Valley of Zielawa, which in 2014 built a photovoltaic farm with a capacity of 1.4 MW in the Bordziłówka in Municipality Rossosz. This paper presents an analysis of photovoltaic farm work over the year and a half and the analysis of the energy efficiency of various types of photovoltaic panels which produce energy on a farm in photovoltaic Bordziłówce.

  3. Photovoltaic module energy rating methodology development

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Myers, D.; Emery, K.; Mrig, L. [National Renewable Energy Lab., Golden, CO (United States); Whitaker, C.; Newmiller, J. [Endecon Engineering, San Ramon, CA (United States)

    1996-05-01

    A consensus-based methodology to calculate the energy output of a PV module will be described in this paper. The methodology develops a simple measure of PV module performance that provides for a realistic estimate of how a module will perform in specific applications. The approach makes use of the weather data profiles that describe conditions throughout the United States and emphasizes performance differences between various module types. An industry-representative Technical Review Committee has been assembled to provide feedback and guidance on the strawman and final approach used in developing the methodology.

  4. Photovoltaics

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the photovoltaics. It presents the principles and the applications, the issues and the current technology, the challenges and the Group Total commitment in the domain. (A.L.B.)

  5. Novel simplified hourly energy flow models for photovoltaic power systems

    International Nuclear Information System (INIS)

    Khatib, Tamer; Elmenreich, Wilfried

    2014-01-01

    Highlights: • We developed an energy flow model for standalone PV system using MATLAB line code. • We developed an energy flow model for hybrid PV/wind system using MATLAB line code. • We developed an energy flow model for hybrid PV/diesel system using MATLAB line code. - Abstract: This paper presents simplified energy flow models for photovoltaic (PV) power systems using MATLAB. Three types of PV power system are taken into consideration namely standalone PV systems, hybrid PV/wind systems and hybrid PV/diesel systems. The logic of the energy flow for each PV power system is discussed first and then the MATLAB line codes for these models are provided and explained. The results prove the accuracy of the proposed models. Such models help modeling and sizing PV systems

  6. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  7. Promising Strategy To Improve Charge Separation in Organic Photovoltaics : Installing Permanent Dipoles in PCBM Analogues

    NARCIS (Netherlands)

    de Gier, Hilde D.; Jahani, Fatemeh; Broer, Ria; Hummelen, Jan C.; Havenith, Remco W. A.

    2016-01-01

    A multidisciplinary approach involving organic synthesis and theoretical chemistry was applied to investigate a promising strategy to improve charge separation in organic photovoltaics: installing permanent dipoles in fullerene derivatives. First, a PCBM analogue with a permanent dipole in the side

  8. Towards low cost, efficient and stable organic photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Andriessen, R. [Holst Centre - Solliance, PO Box 8550, 5605 KN Eindhoven (Netherlands); Kroon, J.M. [ECN - Solliance, Petten (Netherlands); Aernouts, T. [Imec, Solliance, Kapeldreef 75, B-3001 Leuven (Belgium); Janssen, R. [Eindhoven University of Technology, Solliance, Eindhoven (Netherlands)

    2012-09-15

    This article describes how the Solliance Organic PhotoVoltaics (OPV) shared research Program addresses efficiency, lifetime and production costs for (near) future OPV applications. The balance of these three parameters depends of the envisaged application, but at the end, OPV should be able to compete somehow with Si PV in the future. Efficiency improvements are realized by developing new materials, by exploring and optimizing new device structures and novel interconnection technologies. Lifetime improvements are realized by using stabilized device stacks and materials and by applying high end flexible barriers. Production cost control is done by using a home made Cost of Ownership tool which guides towards the use of low-cost materials and processes.

  9. Ecodesign of organic photovoltaic modules from Danish and Chinese perspectives

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Laurent, Alexis; Krebs, Frederik C

    2015-01-01

    The life cycle of a solar park made using organic photovoltaic (OPV) technology is assessed here. The modules have been fabricated in a pilot scale plant and they have been installed together with other components to evaluate the balance of system, in a solar park located in Denmark. Three possible...... pollution and metal depletion. The establishment of resource recovery systems for the end-of-life management of the OPV modules is therefore crucial to reduce overall environmental impacts. Liability on the manufacturers or on the operators should be implemented. The electricity produced from OPV solar...... waste management practices have been contemplated for the end of life of the solar park: recycling, incineration or the average local mix. The assessment of the environmental impacts of such a system reveals that silver used in the electrodes is overall the largest source of impacts, such as chemical...

  10. Organic photovoltaic cells: from performance improvement to manufacturing processes.

    Science.gov (United States)

    Youn, Hongseok; Park, Hui Joon; Guo, L Jay

    2015-05-20

    Organic photovoltaics (OPVs) have been pursued as a next generation power source due to their light weight, thin, flexible, and simple fabrication advantages. Improvements in OPV efficiency have attracted great attention in the past decade. Because the functional layers in OPVs can be dissolved in common solvents, they can be manufactured by eco-friendly and scalable printing or coating technologies. In this review article, the focus is on recent efforts to control nanomorphologies of photoactive layer and discussion of various solution-processed charge transport and extraction materials, to maximize the performance of OPV cells. Next, recent works on printing and coating technologies for OPVs to realize solution processing are reviewed. The review concludes with a discussion of recent advances in the development of non-traditional lamination and transfer method towards highly efficient and fully solution-processed OPV. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication of Hybrid Organic Photovoltaic Devices Using Electrostatic Spray Method

    Directory of Open Access Journals (Sweden)

    Zhe-Wei Chiu

    2014-01-01

    Full Text Available Hybrid organic photovoltaic devices (OPVDs are fabricated using the electrostatic spray (e-spray method and their optical and electrical properties are investigated. E-spray is used to deposit a hybrid film (P3HT: PCBM/nanodiamond with morphology and optical characteristics onto OPVDs. The root-mean-square roughness and optical absorption increase with increasing nanodiamond content. The performance of e-spray is comparable to that of the spin-coating method under uniform conditions. The device takes advantage of the high current density, power conversion efficiency, and low cost. Nanodiamond improves the short-circuit current density and power conversion efficiency. The best performance was obtained with 1.5 wt% nanodiamond content, with a current density of 7.28 mA/cm2 and a power conversion efficiency of 2.25%.

  12. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  13. Organic photovoltaic materials: squarylium and cyanine-TCNQ dyes

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, V.Y.

    1978-07-01

    The photovoltaic properties of Schottky barrier sandwich cells consisting of sublimed and solution-cast thin films of selected squarylium (bis-anilino derivatives of cyclobuta-1,3-diene-2,4-dione) and cyanine-tetracyanoquinodimethanide (TCNQ) dyes have been measured. For hydroxy squarylium (OHSq), maximum power conversion efficiencies (Eta) were 0.2% for 850-nm light (1 m W/cm/sup 2/); 0.05% for 633-nm light (94mW/cm/sup 2/); 0.06% for white light (21 mW/cm/sup 2/); 0.15% for low intensity (0.14 mW/cm) simulated AM0 light (sunlight under outer space conditions), and 0.02% for high intensity (140 mW/cm/sup 2/) AM0 light. Efficiencies of selected OHSq cells were observed to increase fivefold when the cells were doped with bromine or 1-phenyl-3-p-N, N-diethylaminostyryl-5-p-N, N-diethylaminophenyl-..delta../sup 2/-pyrazoline (DEASP), e.g., 0.05 to 0.23% (Br); 0.004 to 0.021% (DEASP). The efficiency of a solution-cast cell of amorphous 2,2'-dicarbocyanine-TCNQ was 0.02% when 933-nm light (approximately 1 mW/cm/sup 2/) was used. Amorphous solid solutions of 1,1'-diethyl-2,2'-dicarbocyanine-and oxa-2,2'-dicarbocyanine-TCNO salts were also tested. The effects of various material and device properties on the performance of organic photovoltaic cells are discussed, and it is proposed that organic solar cells having efficiencies of one percent or more can be made by using existing technologies.

  14. Fabrication of photovoltaic laser energy converterby MBE

    Science.gov (United States)

    Lu, Hamilton; Wang, Scott; Chan, W. S.

    1993-01-01

    A laser-energy converter, fabricated by molecular beam epitaxy (MBE), was developed. This converter is a stack of vertical p-n junctions connected in series by low-resistivity, lattice matched CoSi2 layers to achieve a high conversion efficiency. Special high-temperature electron-beam (e-beam) sources were developed especially for the MBE growth of the junctions and CoSi2 layers. Making use of the small (greater than 1.2 percent) lattice mismatch between CoSi2 and Si layers, high-quality and pinhole-free epilayers were achieved, providing a capability of fabricating all the junctions and connecting layers as a single growth process with one pumpdown. Well-defined multiple p-n junctions connected by CoSi2 layers were accomplished by employing a low growth temperature (greater than 700 C) and a low growth rate (less than 0.5 microns/hour). Producing negligible interdiffusion, the low growth temperature and rate also produced negligible pinholes in the CoSi2 layers. For the first time, a stack of three p-n junctions connected by two 10(exp -5) Ohm-cm CoSi2 layers was achieved, meeting the high conversion efficiency requirement. This process can now be optimized for high growth rate to form a practical converter with 10 p-n junctions in the stack.

  15. Subcutaneous Photovoltaic Infrared Energy Harvesting for Bio-Implantable Devices.

    Science.gov (United States)

    Moon, Eunseong; Blaauw, David; Phillips, Jamie D

    2017-05-01

    Wireless biomedical implantable devices on the mm-scale enable a wide range of applications for human health, safety, and identification, though energy harvesting and power generation are still looming challenges that impede their widespread application. Energy scavenging approaches to power biomedical implants have included thermal [1-3], kinetic [4-6], radio-frequency [7-11] and radiative sources [12-14]. However, the achievement of efficient energy scavenging for biomedical implants at the mm-scale has been elusive. Here we show that photovoltaic cells at the mm-scale can achieve a power conversion efficiency of more than 17 % for silicon and 31 % for GaAs under 1.06 μW/mm 2 infrared irradiation at 850 nm. Finally, these photovoltaic cells demonstrate highly efficient energy harvesting through biological tissue from ambient sunlight, or irradiation from infrared sources such as used in present-day surveillance systems, by utilizing the near infrared (NIR) transparency window between the 650 nm and 950 nm wavelength range [15-17].

  16. Press document. Photovoltaic energy: boosting the evolution; Dossier de presse. Photovoltaique: accelerer l'innovation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    The french potential in the photovoltaic energy is considerable but not very exploited. In this context the CEA, by its function of applied research institute in the domain of the low carbon energies can be a major actor of the sector development. This document presents the research programs in the photovoltaic domain, developed at the CEA, especially on the silicon performance, the photovoltaic solar cells and their integration in the buildings. (A.L.B.)

  17. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  18. Energy efficiency of a photovoltaic cell based thin films CZTS by ...

    African Journals Online (AJOL)

    Energy efficiency of a photovoltaic cell based thin films CZTS by SCAPS. ... use of natural resources, the use of renewable energy including solar photovoltaic ... η for typical structures of ZnO / i- ZnO / CdS / CZTS and ITO / ZnO / CdS / CZTS.

  19. U.S. Department of Energy photovoltaic energy program contract summary, fiscal year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Surek, T.; Hansen, A.

    2000-02-17

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) and US Department of Energy (DOE) National Photovoltaics Program from October 1, 1998, through September 30, 1999 (FY 1999). The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy as an industry and an energy resource. The two primary goals of the national program are to (1) maintain the US industry's world leadership in research and technology development and (2) help the US industry remain a major, profitable force in the world market. The NCPV is part of the National PV Program and provides leadership and support to the national program toward achieving its mission and goals.

  20. U.S. Department of Energy photovoltaic energy program contract summary, fiscal year 1999

    International Nuclear Information System (INIS)

    Surek, T.; Hansen, A.

    2000-01-01

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) and US Department of Energy (DOE) National Photovoltaics Program from October 1, 1998, through September 30, 1999 (FY 1999). The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy as an industry and an energy resource. The two primary goals of the national program are to (1) maintain the US industry's world leadership in research and technology development and (2) help the US industry remain a major, profitable force in the world market. The NCPV is part of the National PV Program and provides leadership and support to the national program toward achieving its mission and goals

  1. Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy.

    Science.gov (United States)

    Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia

    2015-04-24

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.

  2. Sub-nanometre resolution imaging of polymer–fullerene photovoltaic blends using energy-filtered scanning electron microscopy

    Science.gov (United States)

    Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia

    2015-01-01

    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738

  3. Nanoscale Morphology of Doctor Bladed versus Spin-Coated Organic Photovoltaic Films

    KAUST Repository

    Pokuri, Balaji Sesha Sarath; Sit, Joseph; Wodo, Olga; Baran, Derya; Ameri, Tayebeh; Brabec, Christoph J.; Moule, Adam J.; Ganapathysubramanian, Baskar

    2017-01-01

    Recent advances in efficiency of organic photovoltaics are driven by judicious selection of processing conditions that result in a “desired” morphology. An important theme of morphology research is quantifying the effect of processing conditions

  4. Tuning the Optoelectronic Properties of Vinylene-Linked Donor−Acceptor Copolymers for Organic Photovoltaics

    KAUST Repository

    Ko, Sangwon; Mondal, Rajib; Risko, Chad; Lee, Jung Kyu; Hong, Sanghyun; McGehee, Michael D.; Brédas, Jean-Luc; Bao, Zhenan

    2010-01-01

    -property relationships in organic photovoltaic devices. Both alternating (P) and random copolymers (P1-P4) were prepared via Suzuki and Stille polycondensations, respectively. The cyclopentadithiophene copolymers (P2 and P4) have smaller electrochemical band gaps (1

  5. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W.; Ryu, Koungmin; Thompson, Mark E.; Zhou, Chongwu

    2010-01-01

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD

  6. Analysis of the economics of photovoltaic-diesel-battery energy systems for remote applications

    Science.gov (United States)

    Brainard, W. A.

    1983-01-01

    Computer simulations were conducted to analyze the performance and operating cost of a photovoltaic energy source combined with a diesel generator system and battery storage. The simulations were based on the load demand profiles used for the design of an all photovoltaic energy system installed in the remote Papago Indian Village of Schuchuli, Arizona. Twenty year simulations were run using solar insolation data from Phoenix SOLMET tapes. Total energy produced, energy consumed, operation and maintenance costs were calculated. The life cycle and levelized energy costs were determined for a variety of system configurations (i.e., varying amounts of photovoltaic array and battery storage).

  7. Intrinsic coincident linear polarimetry using stacked organic photovoltaics.

    Science.gov (United States)

    Roy, S Gupta; Awartani, O M; Sen, P; O'Connor, B T; Kudenov, M W

    2016-06-27

    Polarimetry has widespread applications within atmospheric sensing, telecommunications, biomedical imaging, and target detection. Several existing methods of imaging polarimetry trade off the sensor's spatial resolution for polarimetric resolution, and often have some form of spatial registration error. To mitigate these issues, we have developed a system using oriented polymer-based organic photovoltaics (OPVs) that can preferentially absorb linearly polarized light. Additionally, the OPV cells can be made semitransparent, enabling multiple detectors to be cascaded along the same optical axis. Since each device performs a partial polarization measurement of the same incident beam, high temporal resolution is maintained with the potential for inherent spatial registration. In this paper, a Mueller matrix model of the stacked OPV design is provided. Based on this model, a calibration technique is developed and presented. This calibration technique and model are validated with experimental data, taken with a cascaded three cell OPV Stokes polarimeter, capable of measuring incident linear polarization states. Our results indicate polarization measurement error of 1.2% RMS and an average absolute radiometric accuracy of 2.2% for the demonstrated polarimeter.

  8. DC Magnetron Sputtered IZTO Thin Films for Organic Photovoltaic Application.

    Science.gov (United States)

    Lee, Hye Ji; Noviyana, Imas; Putri, Maryane; Koo, Chang Young; Lee, Jung-A; Kim, Jeong-Joo; Jeong, Youngjun; Lee, Youngu; Lee, Hee Young

    2018-02-01

    IZTO20 (In0.6Zn0.2Sn0.2O1.5) ceramic target was prepared from oxide mixture of In2O3, ZnO, and SnO2 powders. IZTO20 thin films were then deposited onto glass substrate at 400 °C by DC magnetron sputtering. The average optical transmittance determined by ultraviolet-visible spectroscopy was higher than 85% for all films. The minimum resistivity of the annealed IZTO20 thin film was approximately 6.1×10-4 Ω·cm, which tended to increase with decreasing indium content. Substrate heating and annealing were found to be important parameters affecting the electrical and optical properties. An organic photovoltaic (OPV) cell was fabricated using the IZTO20 film deposited under the optimized condition as an anode electrode and the efficiency of up to 80% compared to that of a similar OPV cell using ITO film was observed. Reduction of surface roughness and electrical resistivity through annealing treatment was found to contribute to the improved efficiency of the OPV cell.

  9. Development of Polymer Acceptors for Organic Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Yujeong Kim

    2014-02-01

    Full Text Available This review provides a current status report of the various n-type polymer acceptors for use as active materials in organic photovoltaic cells (OPVs. The polymer acceptors are divided into four categories. The first section of this review focuses on rylene diimide-based polymers, including perylene diimide, naphthalene diimide, and dithienocoronene diimide-based polymers. The high electron mobility and good stability of rylene diimides make them suitable for use as polymer acceptors in OPVs. The second section deals with fluorene and benzothiadiazole-based polymers such as poly(9,9’-dioctylfluorene-co-benzothiadiazole, and the ensuing section focuses on the cyano-substituted polymer acceptors. Cyano-poly(phenylenevinylene and poly(3-cyano-4-hexylthiophene have been used as acceptors in OPVs and exhibit high electron affinity arising from the electron-withdrawing cyano groups in the vinylene group of poly(phenylenevinylene or the thiophene ring of polythiophene. Lastly, a number of other electron-deficient groups such as thiazole, diketopyrrolopyrrole, and oxadiazole have also been introduced onto polymer backbones to induce n-type characteristics in the polymer. Since the first report on all-polymer solar cells in 1995, the best power conversion efficiency obtained with these devices to date has been 3.45%. The overall trend in the development of n-type polymer acceptors is presented in this review.

  10. Liquid crystalline composites toward organic photovoltaic application (Conference Presentation)

    Science.gov (United States)

    Shimizu, Yo; Sosa-Vargas, Lydia; Shin, Woong; Higuchi, Yumi; Itani, Hiromichi; Kawano, Koki; Dao, Quang Duy; Fujii, Akihiko; Ozaki, Masanori

    2017-02-01

    Liquid crystalline semiconductor is an interesting category of organic electronic materials and also has been extensively studied in terms of "Printed Electronics". For the wider diversity in research toward new applications, one can consider how to use a combination of miscibility and phase separation in liquid crystals. Here we report discotic liquid crystals in making a composite of which structural order is controlled in nano-scale toward photovoltaic applications. Discotic columnar LCs were studied on their resultant molecular order and carrier transport properties. Liquid crystals of phthalocyanine and its analogues which exhibit columnar mesomorphism with high carrier mobility (10-1 cm2/Vs) were examined with making binary phase diagrams and the correlation to carrier transport properties by TOF measurements was discussed. The shape-analogues in chemical structure shows a good miscibility even for the different lattice-type of columnar arrangement and the carrier mobility is mostly decrease except for a case of combination with a metal-free and the metal complex. For the mixtures with non-mesogenic C60 derivatives, one sees a phase-separated structure due to its immiscibility, though the columnar order is remained in a range of component ratio.Especially, in a range of the ratio, it was observed the phase separated C60 derivatives are fused into the matrix of columnar bundles, indicating C60 derivatives could be diffused in columnar arrays in molecular level.

  11. Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices

    KAUST Repository

    Bruner, Christopher; Miller, Nichole C.; McGehee, Michael D.; Dauskardt, Reinhold H.

    2013-01-01

    The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices

    KAUST Repository

    Bruner, Christopher

    2013-01-17

    The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Performance limits of plasmon-enhanced organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karatay, Durmus U.; Ginger, David S., E-mail: ginger@chem.washington.edu [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Salvador, Michael [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Yao, Kai [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States); Jen, Alex K.-Y. [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-07-21

    We use a combination of experiment and modeling to explore the promise and limitations of using plasmon-resonant metal nanoparticles to enhance the device performance of organic photovoltaics (OPVs). We focus on optical properties typical of the current generation of low-bandgap donor polymers blended with the fullerene (6,6)-phenyl C{sub 71}-butyric acid methyl ester (PC{sub 71}BM) and use the polymer poly(indacenodithiophene-co-phenanthro[9,10-b]quinoxaline) (PIDT-PhanQ) as our test case. We model the optical properties and performance of these devices both in the presence and absence of a variety of colloidal silver nanoparticles. We show that for these materials, device performance is sensitive to the relative z-position and the density of nanoparticles inside the active layer. Using conservative estimates of the internal quantum efficiency for the PIDT-PhanQ/PC{sub 71}BM blend, we calculate that optimally placed silver nanoparticles could yield an enhancement in short-circuit current density of over 31% when used with ∼ 80-nm-thick active layers, resulting in an absolute increase in power conversion efficiency of up to ∼2% for the device based on optical engineering.

  14. Photovoltaic

    International Nuclear Information System (INIS)

    Fechner, H.; Heidenreich, M.

    2001-01-01

    In 1993 a wide test for photovoltaic (PV) was carried out in Austria, 110 stations were built and precise measurements were done. At that time the demand of integrating direct current from solar cells into the 50 Hz alternating current network was a weak point. At present four european research projects dealing with security, reliability, network compatibility and its integration in buildings are being developed. The cost development of PVs in Germany from 1983 to 1998 is given. Because of the PV environmental quality, one million of new intallations are demanded (until 2010) by the European commission. In Austria exists ∼5,000 kWp installed capacity and the growth rate average in the last years was 30 %. (nevyjel)

  15. Effect of Aggregation on Squaraine Fullerene Bulk-Heterojunction Organic Photovoltaic Devices

    Science.gov (United States)

    Jalan, Ishita

    Organic photovoltaics (OPV) offer great promise as a low-cost renewable energy source, the relative low efficiency still challenges its commercialization potential. Small conjugated molecules like Squaraine (SQ) molecules show promising advancement in organic photovoltaics (OPV). Advantages of SQ over other materials is that it has a high extinction coefficient (>105), decent photo-stability, good synthetic reproducibility, and tunable molecular structure. With small chemical modifications, the squaraines can have substantial impact on photophysical properties and aggregation pattern, and thus on operational OPV efficiency. The squaraine molecule that will be studied in this work is a symmetric aniline-based squaraine with n-hexyl chain on the molecular arm with di hydroxyl substituents on the aniline, this will be referred to DHSQ(OH) 2. In this work, the assignment of the monomer and aggregate peak is discussed. It is known that crystallinity is important for efficient charge transport and exciton diffusion in the BHJ, this thesis focuses on thermal and solvent vapor annealing the as-cast films to reduce the amorphous regions. It is observed that crystallinity is improved but often at the expense of larger crystal size. Therefore, to achieve optimal OPV efficiency, this tradeoff is controlled to improve the crystallinity while maintaining a small, highly mixed BHJ morphology.

  16. The photovoltaic services network: A renewable energy partnership

    Energy Technology Data Exchange (ETDEWEB)

    Plate, Peggy [Western Area Power Administration, (United states); Stokes, Kirk [NEOS Corporation, (United states)

    1995-12-31

    The Photovoltaic Services Network (PSN) is an independent organization of electric utilities established to support utility members in the use of photovoltaic (PV) power for off-grid applications. The PSN is focused on ensuring that cost-competitive, utility-grade, packaged PV products are available for various off-grid applications, such as livestock water pumping, remote residences, lighting, and cathodic protection among others. The primary objectives of the PSN are: 1) To provide education, training, and installation support as required by member utilities. 2) To establish a forum for member utilities to exchange ideas on PV program implementation and marketing strategies. 3) To create standardized system specifications for a variety of PV applications. 4) To coordinate PV product purchases for appropriate applications. 5) To identify and acquire additional funding (both publics and private) for product development and testing. 6) To pursue alliances with other organizations interested in PV. [Espanol] La Red de Servicios Fotovoltaicos (PSN) es una organizacion independiente de empresas electricas establecida para apoyar a las empresas miembro en el uso de la energia fotovoltaica en aplicaciones fuera de la red. La PSN se enfoca en garantizar que la competitividad en costo, calidad de empresa electrica de los paquetes de productos fotovoltaicos esten disponibles para varias aplicaciones fuera de la red, tales como el bombeo de agua para el ganado, residencias remotas, iluminacion y proteccion catodica entre otras. Los principales objetivos del PSN son: 1. Proporcionar educacion, entrenamiento, y apoyo en la instalacion requerida por las empresas miembro. 2. Establecer un forum de empresas miembro para intercambiar ideas sobre la puesta en practica del programa fotovoltaico y sobre la estrategias de comercializacion. 3. Crear un sistema de especificaciones estandarizadas para una variedad de aplicaciones de la energia fotovoltaica. 4. Coordinar la compra de

  17. The photovoltaic services network: A renewable energy partnership

    Energy Technology Data Exchange (ETDEWEB)

    Plate, Peggy [Western Area Power Administration, (United states); Stokes, Kirk [NEOS Corporation, (United states)

    1996-12-31

    The Photovoltaic Services Network (PSN) is an independent organization of electric utilities established to support utility members in the use of photovoltaic (PV) power for off-grid applications. The PSN is focused on ensuring that cost-competitive, utility-grade, packaged PV products are available for various off-grid applications, such as livestock water pumping, remote residences, lighting, and cathodic protection among others. The primary objectives of the PSN are: 1) To provide education, training, and installation support as required by member utilities. 2) To establish a forum for member utilities to exchange ideas on PV program implementation and marketing strategies. 3) To create standardized system specifications for a variety of PV applications. 4) To coordinate PV product purchases for appropriate applications. 5) To identify and acquire additional funding (both publics and private) for product development and testing. 6) To pursue alliances with other organizations interested in PV. [Espanol] La Red de Servicios Fotovoltaicos (PSN) es una organizacion independiente de empresas electricas establecida para apoyar a las empresas miembro en el uso de la energia fotovoltaica en aplicaciones fuera de la red. La PSN se enfoca en garantizar que la competitividad en costo, calidad de empresa electrica de los paquetes de productos fotovoltaicos esten disponibles para varias aplicaciones fuera de la red, tales como el bombeo de agua para el ganado, residencias remotas, iluminacion y proteccion catodica entre otras. Los principales objetivos del PSN son: 1. Proporcionar educacion, entrenamiento, y apoyo en la instalacion requerida por las empresas miembro. 2. Establecer un forum de empresas miembro para intercambiar ideas sobre la puesta en practica del programa fotovoltaico y sobre la estrategias de comercializacion. 3. Crear un sistema de especificaciones estandarizadas para una variedad de aplicaciones de la energia fotovoltaica. 4. Coordinar la compra de

  18. Organic Photovoltaic Structures as Photo-active Electrodes

    International Nuclear Information System (INIS)

    Gustafson, Matthew P.; Clark, Noel; Winther-Jensen, Bjorn; MacFarlane, Douglas R.

    2014-01-01

    This study demonstrated the novel use of a bulk heterojunction (BHJ), as present in modern organic solar cells, as a light-assisted electrocatalyst for water electrolysis reactions. Two separate organic photo-voltaic electrode structures were designed for targeting both the reduction, (ITO-PET/PEDOT:PSS/P3HT:PCBM)* and oxidation, (ITO-PET/ZnO/P3HT:PCBM)* reactions of water, denoted as OPE-R and OPE-O respectively. The OPE-R electrode supported both the proton reduction reaction (PRR) and oxygen reduction reaction (ORR) achieving photocurrents of -0.04 mAcm −2 (ORR) and -0.03 mAcm −2 (PRR) and a photovoltage of 0.50 V (ORR) and onset photovoltage at -0.59 V (PRR). By comparison, the OPE-O electrode achieved photocurrents of 0.15 mAcm −2 and photovoltages of 0.35 V for the water oxidation reaction (WOR). Both BHJ designs confirmed evidence of photo-enhanced Bulk Heterojunction Electrode (BHE) activity. The stability and sources of electrode degradation were also studied, with the OPE-O electrode proving to be more stable than the OPE-R electrode, most likely due to the PEDOT:PSS layer and PSS migration in the presence of water. *Indium Tin Oxide (ITO), Polyethylene Terephthalate (PET), Poly(3,4-ethylenedioxythiophene) (PEDOT), Polystyrenesulfonate acid (PSS), Poly(3-hexylthiophene) (P3HT), Phenyl-C 61 -Butyric acid Methyl ester (PCBM), Zinc Oxide (ZnO)

  19. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  20. Optimization of photovoltaic energy production through an efficient switching matrix

    Directory of Open Access Journals (Sweden)

    Pietro Romano

    2013-09-01

    Full Text Available This work presents a preliminary study on the implementation of a new system for power output maximization of photovoltaic generators under non-homogeneous conditions. The study evaluates the performance of an efficient switching matrix and the relevant automatic reconfiguration control algorithms. The switching matrix is installed between the PV generator and the inverter, allowing a large number of possible module configurations. PV generator, switching matrix and the intelligent controller have been simulated in Simulink. The proposed reconfiguration system improved the energy extracted by the PV generator under non-uniform solar irradiation conditions. Short calculation times of the proposed control algorithms allow its use in real time applications even where a higher number of PV modules is required.

  1. Smart Cooling Controlled System Exploiting Photovoltaic Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Ahmad Atieh

    2018-03-01

    Full Text Available A smart cooling system to control the ambient temperature of a premise in Amman, Jordan, is investigated and implemented. The premise holds 650 people and has 14 air conditioners with the cooling capacity ranging from 3 to 5 ton refrigerant (TR each. The control of the cooling system includes implementing different electronics circuits that are used to sense the ambient temperature and humidity, count the number of people in the premise and then turn ON/OFF certain air conditioner(s. The data collected by different electronic circuits are fed wirelessly to a microcontroller, which decides which air conditioner will be turned ON/OFF, its location and its desired set cooling temperature. The cooling system is integrated with an on-grid solar photovoltaic energy system to minimize the operational cost of the overall cooling system.

  2. An update on the Department of Energy's photovoltaic program

    Science.gov (United States)

    Benner, John P.; Fitzgerald, Mark

    1994-01-01

    Funding for the terrestrial photovoltaic's program is $78 million in 1994. This is more than double the minimum level reached in 1989 and runs counter to the general trend of decreasing budgets for Department of Energy (DOE) programs. During the past five years, the program has expanded its mission from research and development to also address manufacturing technology and commercialization assistance. These new activities are directed toward revitalizing the market to reinstate the rapid rate of sales growth needed to attract investment. The program is approaching balance among efforts in each of the three areas. This translates to a reduction in some of the R & D activities of most relevance to the space power community. On the other hand, some of the advancements in manufacturing may finally bring thin-film technologies to reality for space arrays. This talk will describe the status and direction of DOE program with an eye toward highlighting its impact on technology of interest for space.

  3. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    Science.gov (United States)

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  4. Forecasted Changes in West Africa Photovoltaic Energy Output by 2045

    Directory of Open Access Journals (Sweden)

    Serge Dimitri Yikwe Buri Bazyomo

    2016-10-01

    Full Text Available The impacts of climate change on photovoltaic (PV output in the fifteen countries of the Economic Community of West African States (ECOWAS was analyzed in this paper. Using a set of eight climate models, the trends of solar radiation and temperature between 2006–2100 were examined. Assuming a lifetime of 40 years, the future changes of photovoltaic energy output for the tilted plane receptor compared to 2006–2015 were computed for the whole region. The results show that the trends of solar irradiation are negative except for the Irish Centre for High-End Computing model which predicts a positive trend with a maximum value of 0.17 W/m2/year for Cape Verde and the minimum of −0.06 W/m2/year for Liberia. The minimum of the negative trend is −0.18 W/m2/year predicted by the Model for Interdisciplinary Research on Climate (MIROC, developed at the University of Tokyo Center for Climate System Research for Cape Verde. Furthermore, temperature trends are positive with a maximum of 0.08 K/year predicted by MIROC for Niger and minimum of 0.03 K/year predicted by Nature Conservancy of Canada (NCC, Max Planck Institute (MPI for Climate Meteorology at Hamburg, French National Meteorological Research Center (CNRM and Canadian Centre for Climate Modelling and Analysis (CCCMA for Cape Verde. Photovolataic energy output changes show increasing trends in Sierra Leone with 0.013%/year as the maximum. Climate change will lead to a decreasing trend of PV output in the rest of the countries with a minimum of 0.032%/year in Niger.

  5. Photovoltaic energy: an efficient development tool for Sub-Saharan economies

    International Nuclear Information System (INIS)

    Megherbi, Karim

    2013-01-01

    In this report, the author aims at highlighting the main success factors for a photovoltaic program in sub-Saharan Africa, and the benefits of this technology for African electricity operators. He first presents the electricity sector of Sub-Saharan Africa, its current situation, its scenarios of evolution, and the limitations of scenarios based on conventional energies. In a second part, he discusses the role photovoltaic solar energy could have within the energy mix of Sub-Saharan countries. He discusses how to calculate the cost of photovoltaic electricity production, and the value of photovoltaic electricity, discusses the main influencing parameters, and tries to identify when it becomes worth to choose photovoltaic electricity. He describes the implementation of an adapted legal and economic framework, the 'feed-in-tariff'. An appendix contains a proposition for Western Africa and analyses the case of Benin

  6. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    Science.gov (United States)

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-10-01

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Profitability of Residential Battery Energy Storage Combined with Solar Photovoltaics

    Directory of Open Access Journals (Sweden)

    Christoph Goebel

    2017-07-01

    Full Text Available Lithium-ion (Li-Ion batteries are increasingly being considered as bulk energy storage in grid applications. One such application is residential energy storage combined with solar photovoltaic (PV panels to enable higher self-consumption rates, which has become financially more attractive recently due to decreasing feed-in subsidies. Although residential energy storage solutions are commercially mature, it remains unclear which system configurations and circumstances, including aggregator-based applications such as the provision of ancillary services, lead to profitable consumer investments. Therefore, we conduct an extensive simulation study that is able to jointly capture these aspects. Our results show that, at current battery module prices, even optimal system configurations still do not lead to profitable investments into Li-Ion batteries if they are merely used as a buffer for solar energy. The first settings in which they will become profitable, as prices are further declining, will be larger households at locations with higher average levels of solar irradiance. If the batteries can be remote-controlled by an aggregator to provide overnight negative reserve, their profitability increases significantly.

  8. A critical test of organic P-N photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Bird, G.R. [Rutgers Univ., Piscataway, NJ (United States)

    1996-09-01

    We present an urgent view of the field of organic solid state photovoltaic cells. This is a proper time to select the most promising materials from the Electrophotographic Industry, materials long tried in terms of stability, high quantum yield of charge carriers, but set apart by unusually high quantum yields at low applied fields. Our experience with the candidate dyes has covered new tests for identifiable impurities and removal of these impurities by verifiable methods. A new method of purification, reactive train sublimation, has been developed for DNT, one of the simplest of the outstanding perylene dyes, and the method seems applicable to some of the other promising perylene derivatives. It removes the offending impurity by converting it into the desired pure product. The role of water of hydration in the {open_quotes}wine cellar effect{close_quotes}, the slowly rising performance of newly made phthalocyanine containing cells has been analyzed. Under the concept of feasibility testing before a final refinement for practicality of materials and production methods, the hydration can be controlled for high level testing. At the same time, efforts go forward to eliminate the need. At least one of the best phthalocyanine components, X-H{sub 2}Pc, does not require water for peak performance. Finally, we have attacked BBIP (bis-benzimidazole perylene) one of the best and most enigmatic of the near infrared sensors. It has long been known and used as a mixture of synthetic isomers, and we hypothesize that either of these would be better than the uncontrolled mixture. A partial success in the form of isolating highly enriched crystals for an X-ray structure of the trans-molecule, is first presented here. A simple optical analysis method has been developed to follow enrichment procedures. For all of its difficult history, this material seems closest to a state of readiness for critical feasibility testing.

  9. Impact of Low Molecular Weight Poly(3-hexylthiophene)s as Additives in Organic Photovoltaic Devices.

    Science.gov (United States)

    Seibers, Zach D; Le, Thinh P; Lee, Youngmin; Gomez, Enrique D; Kilbey, S Michael

    2018-01-24

    Despite tremendous progress in using additives to enhance the power conversion efficiency of organic photovoltaic devices, significant challenges remain in controlling the microstructure of the active layer, such as at internal donor-acceptor interfaces. Here, we demonstrate that the addition of low molecular weight poly(3-hexylthiophene)s (low-MW P3HT) to the P3HT/fullerene active layer increases device performance up to 36% over an unmodified control device. Low MW P3HT chains ranging in size from 1.6 to 8.0 kg/mol are blended with 77.5 kg/mol P3HT chains and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) fullerenes while keeping P3HT/PCBM ratio constant. Optimal photovoltaic device performance increases are obtained for each additive when incorporated into the bulk heterojunction blend at loading levels that are dependent upon additive MW. Small-angle X-ray scattering and energy-filtered transmission electron microscopy imaging reveal that domain sizes are approximately invariant at low loading levels of the low-MW P3HT additive, and wide-angle X-ray scattering suggests that P3HT crystallinity is unaffected by these additives. These results suggest that oligomeric P3HTs compatibilize donor-acceptor interfaces at low loading levels but coarsen domain structures at higher loading levels and they are consistent with recent simulations results. Although results are specific to the P3HT/PCBM system, the notion that low molecular weight additives can enhance photovoltaic device performance generally provides a new opportunity for improving device performance and operating lifetimes.

  10. New energy storage systems for photovoltaic supplied consumer products

    International Nuclear Information System (INIS)

    Burges, K.; Blok, K.

    1993-12-01

    In a previous study attention was paid to the possibility of reducing battery wastes in the Netherlands by means of integration of photovoltaic (PV) cells in small, electric consumer products. The result of that study was that only two environment-friendly applications could be used: capacitors in calculators or watches. However, new types of energy storage systems have been developed and commercialized, so that the above-mentioned study is updated. First, the technical, economic and environmental parameters of several energy storage systems are compared. Next, a number of products, in which PV-cells can be integrated, has been selected and the economic and environmental effects are calculated and analyzed. The energy storage systems discussed are primary alkaline batteries, NiCd batteries, Ni-Metal-Hydride (NiMH) batteries, Li-Solid-State (LiSS) batteries, and capacitors. It is estimated that by means of the proposed integration of PV-cells in specific consumer products the amount of battery wastes can be reduced by 50%. 33 tabs., 1 appendix, 50 refs

  11. Energy saved neon sign lighting power supply for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tanitteerapan, T.; Dokpikul, S.; Arunrungrasmi, S. [King Mongkut Univ. of Technology Thonburi, Bangmod, Tungkru, Bangkok (Thailand). Dept. of Electrical Technology Education, Faculty of Industrial Education

    2007-07-01

    Petroleum oil, natural gas and fossil fuels are commonly used in power plants for electrical power generation. However, because of their negative environmental impacts, energy and environmental savings from renewable energy resources are necessary choices. Solar energy can be converted to the electrical voltage by using solar arrays. This process can be used in many electrical applications. This paper introduced a neon sign lighting power supply for a small photovoltaic powered stand-alone commercial advertising board for a remote area in Thailand. The circuit implementation was very simple, consisting of an active switch device, a resonant capacitor and high frequency transformer. The control also operated as a fixed frequency and fixed duty ratio controller. The paper discussed the principle of neon sign lighting, power circuit operation, and control circuit operation. To verify the proposed power supply, the circuit experiment of the proposed power supply for the neon sign lighting was applied to a 10 foot long, 10 millimeter diameter bulb. The neon sign was ignited smoothly with little power consumption. 2 refs., 1 tab., 10 figs.

  12. Solar energy scenarios in Brazil. Part two: Photovoltaics applications

    International Nuclear Information System (INIS)

    Martins, F.R.; Ruether, R.; Pereira, E.B.; Abreu, S.L.

    2008-01-01

    This paper discusses some energy scenarios for photovoltaic applications in Brazil engendered by using SWERA database in order to demonstrate its potential for feasibility analysis and application in the energy planning for electricity generation. It discusses two major different markets: hybrid PV-Diesel installations in mini-grids of the off-grid Brazilian electricity system in the Amazon region, and grid-connected PV in urban areas of the interconnected Brazilian electricity system. The potential for using PV is huge, and can be estimated in tens to hundreds of MWp in the Amazon region alone, even if only a fraction of the existing Diesel-fired plants with a total installed capacity of over 620 MVA would fit to run in an optimum Diesel/PV mix. Most of the major cities in Brazil present greater electricity demand in summertime with the demand peak happening in the daytime period. This energy profile match the actual solar resource assessment provided by SWERA Data Archive, enabling grid-connected PV systems to provide an important contribution to the utility's capacity

  13. Bulk heterojunction organic photovoltaic cell fabricated by the electrospray deposition method using mixed organic solvent

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Takeshi; Takagi, Kenji; Asano, Takashi [Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); RIKEN, 2-1 Hirosawa, Wakou-shi, Saitama 351-0198 (Japan); Honda, Zentaro; Kamata, Norihiko; Ueno, Keiji; Shirai, Hajime [Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Ju, Jungmyoung; Yamagata, Yutaka; Tajima, Yusuke [RIKEN, 2-1 Hirosawa, Wakou-shi, Saitama 351-0198 (Japan)

    2011-07-15

    A high-efficiency bulk heterojunction organic photovoltaic cell (OPV) was achieved by the electrospray deposition method. The surface roughness of the P3HT:PCBM thin film can be reduced using the mixed solvent consisting of o-dichlorobenzene (o-DCB) and acetone. The effect of acetone concentration is related to its dielectric constant. Under an optimized concentration of acetone in o-DCB (20 vol%), the P3HT/PCBM active layer with a smooth surface can be formed, and the power conversion efficiency of the OPV was 1.9%. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Presentations given at the Enerplan Conference: facilitating photovoltaic energy integration in the grid

    International Nuclear Information System (INIS)

    Mueth, Thierry; Thomas, Christophe; Loyen, Richard; Masson, Gaetan; Najdawi, Celine; Dubus, Jean-Michel; Carre, Olivier; Resseguier, Stephane de; Alazard, Raymond; Prest, Ignace de; Humez, Herve; Kaiser, Martin; Cassagne, Valerick; Dauphin, Francois; Merley, Jacques; Laffaille, Didier; Gossement, Arnaud; Belon, Daniel; Blanquet, Francois; Bonnet, Jean-Philippe; Sanchez, Louis; Vienot, Raphaelle; Lambert, Karine; Berly, Frederic

    2013-07-01

    Large-scale integration of photovoltaic energy in power grids are present day topics of strategical stakes for the development of the photovoltaic industry and for the success of the energy transition. This conference provided some answers to three main subjects which were the main themes of the 3 round-tables: 1 - Identifying the context elements leading to a large integration of solar energy in Europe and in France; 2 - Identifying the technical solutions facilitating the technical integration of photovoltaic energy in power grids; 3 - Analysing the expected regional schemes for connecting renewable energies to the network, in order to shift from an administrative planning to a dynamical and practical approach profitable to the photovoltaic industry. This document brings together the available presentations (slides) given at the colloquium

  15. 24 Energy production and financial analysis of photovoltaic energy ...

    African Journals Online (AJOL)

    Bernabé Marí Soucase

    A techno-economic analysis has been used for project cost control, ... First of all, we defined Cash Flow as movements of money in and out of any ... cost of electric energy in Côte d'Ivoire for the common use of families and small companies [9].

  16. EXAMINING A SERIES RESONANT INVERTER CIRCUIT TO USE IN THE PHOTOVOLTAIC ENERGY CONVERSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Engin ÇETİN

    2004-03-01

    Full Text Available As we know, solar energy is the energy source which is environment friendly, renewable, and can be found easily. Particularly, in the recent years, interest on producing electrical energy by alternative energy sources increased because of the fact that underground sources are not enough to produce energy in the future and also these sources cause enviromental pollution. The solar energy is one of the most popular one among the alternative energy sources. Photovoltaic systems produce the electrical energy from the sunlight. In this study, a series resonant inverter circuit which is used in the photovoltaic energy conversion systems has been examined.Effects of the series resonant inverter circuit on the photovoltaic energy conversion system have been investigated and examined

  17. Does Your Domestic Photovoltaic Energy System Survive Grid Outages?

    Directory of Open Access Journals (Sweden)

    Marijn R. Jongerden

    2016-09-01

    Full Text Available Domestic renewable energy systems, including photovoltaic energy generation, as well as local storage, are becoming increasingly popular and economically feasible, but do come with a wide range of options. Hence, it can be difficult to match their specification to specific customer’s needs. Next to the usage-specific demand profiles and location-specific production profiles, local energy storage through the use of batteries is becoming increasingly important, since it allows one to balance variations in production and demand, either locally or via the grid. Moreover, local storage can also help to ensure a continuous energy supply in the presence of grid outages, at least for a while. Hybrid Petri net (HPN models allow one to analyze the effect of different battery management strategies on the continuity of such energy systems in the case of grid outages. The current paper focuses on one of these strategies, the so-called smart strategy, that reserves a certain percentage of the battery capacity to be only used in case of grid outages. Additionally, we introduce a new strategy that makes better use of the reserved backup capacity, by reducing the demand in the presence of a grid outage through a prioritization mechanism. This new strategy, called power-save, only allows the essential (high-priority demand to draw from the battery during power outages. We show that this new strategy outperforms previously-proposed strategies through a careful analysis of a number of scenarios and for a selection of survivability measures, such as minimum survivability per day, number of survivable hours per day, minimum survivability per year and various survivability quantiles.

  18. Organic thin-film solar cells: next generation low-cost photovoltaic ...

    African Journals Online (AJOL)

    The growing concern about our environment and sustainable development focuses attention on renewable energy sources. One of these sources is the direct conversion of sunlight into electricity by means of photovoltaic cells. Solar energy has the potential to fulfil an important part of the sustainable energy demand for ...

  19. Design of a photovoltaic-hydrogen-fuel cell energy system

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, P A; Chamberlin, C E [Humboldt State Univ., Arcata, CA (US). Dept. of Environmental Resources Engineering

    1991-01-01

    The design of a stand-alone renewable energy system using hydrogen (H{sub 2}) as the energy storage medium and a fuel cell as the regeneration technology is reported. The system being installed at the Humboldt State University Telonicher Marine Laboratory consists of a 9.2 kW photovoltaic (PV) array coupled to a high pressure, bipolar alkaline electrolyser. The array powers the Laboratory's air compressor system whenever possible; excess power is shunted to the electrolyser for hydrogen and oxygen (O{sub 2}) production. When the array cannot provide sufficient power, stored hydrogen and oxygen are furnished to a proton exchange membrane fuel cell which, smoothly and without interruption, supplies the load. In reporting the design, details of component selection, sizing, and integration, control system logic and implementation, and safety considerations are discussed. Plans for a monitoring network to chronicle system performance are presented, questions that will be addressed through the monitoring program are included, and the present status of the project is reported. (Author).

  20. Battery effects in organic photovoltaics based on polybithiophene

    DEFF Research Database (Denmark)

    Biancardo, Matteo; Krebs, Frederik C

    2008-01-01

    Homopolymer photovoltaic devices based on thin films of polybithiophene, prepared by direct electrodeposition. onto transparent fluorine-doped tin oxide electrodes followed by evaporation of an aluminium electrode to complete the device, were reported by Leguenza et al. [J. Solid State Electrochem...

  1. Study of Photovoltaic Energy Storage by Supercapacitors through Both Experimental and Modelling Approaches

    Directory of Open Access Journals (Sweden)

    Pierre-Olivier Logerais

    2013-01-01

    Full Text Available The storage of photovoltaic energy by supercapacitors is studied by using two approaches. An overview on the integration of supercapacitors in solar energy conversion systems is previously provided. First, a realized experimental setup of charge/discharge of supercapacitors fed by a photovoltaic array has been operated with fine data acquisition. The second approach consists in simulating photovoltaic energy storage by supercapacitors with a faithful and accessible model composed of solar irradiance evaluation, equivalent electrical circuit for photovoltaic conversion, and a multibranch circuit for supercapacitor. Both the experimental and calculated results are confronted, and an error of 1% on the stored energy is found with a correction largely within ±10% of the transmission line capacitance according to temperature.

  2. Municipal programs of photovoltaic energy development; Les programmes municipaux de developpement du photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This study presents some remarkable actions carried out in several European municipalities for the promotion and development of photovoltaic applications: installation of solar cells on public buildings, integration of the photovoltaic energy in the urban plan, application in the transportation sector, programs of public information, of promotion, of incitation, of financing, solar electricity trade, promotion of the 'green current'. After a presentation of the general situation of photovoltaic energy in Europe, and of its development in France, nine case-forms present the experience of nine selected European cities in this domain (Amersfoort (NL), Barcelona (ES), Braedstrup (DK), Karlsruhe (DE), Lausanne (CH), Mataro (ES), Muenchen (ES), Palermo (IT), Zurich (CH)). (J.S.)

  3. Investigation of self-organized quantum dots in InGaN alloys for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jinshe; Wang, Mingyue [Chongqing Normal Univ. (China). Dept. of Physics

    2008-07-01

    The self-organized quantum dots in InGaN alloys grown by metal organic chemical vapor deposition for photovoltaic devices were investigated using photoluminescence spectra, x-ray diffraction and atomic force microscopy measurements. The AFM view of the alloy shows the island-like microstructure appearing to be composed of granular-crystalline in nanometer scale. By analysis of the PL, it has been found that the narrow 493nm emission peak with 490nm and 487nm shoulder peaks was originated from InGaN self-organized quantum dots, which provide a candidate for realizing high efficiencies photovoltaic devices. (orig.)

  4. Motivating California organic farmers to go solar: Economics may trump philosophy in deciding to adopt photovoltaics

    Science.gov (United States)

    Fata, Johnathon A.

    Organic farmers who have adopted solar photovoltaic (PV) systems to generate electricity are leaders in agricultural energy sustainability, yet research on their culture and motivations is largely incomplete. These farmers share economic and logistical constraints, but they may differ in their underlying worldviews. To better understand what motivates San Francisco Bay Area organic farmers to install solar PV systems, 14 in-depth interviews and short surveys were conducted and included a "frontier mentality" rubric. Additionally, nine online surveys were administered. In this study's sample, financial concerns turned out to provide the greatest motivation for farmers to adopt solar PV. Concern for the environment followed closely. Among farms that did not have solar, the overwhelming prohibiting factor was upfront cost. Climate change was not cited directly as a driving force for adoption of solar PV by any of the participants. A wide range of differences among organic farmers existed in environmental attitudes. This reflected the diversity of views held by organic farmers in California today. For example, certified organic farmers had less strongly held environmental values than did those that eschew third-party certification in favor of a trust-based connection to the consumer. Understanding this group of highly involved environmental players provides insight into environmental behavior of other farmers as well as broader categories of consumers and businesses.

  5. Relationship between the energy levels and the photovoltaic properties of oligothiophenes.

    Science.gov (United States)

    Lim, Eunhee

    2014-08-01

    A series of linear π-conjugated oligothiophenes, α,α'-dihexylquinquethiophene (DH5T), 2,5-bis(5'-hexyl-2,2'-bithiophene-5-yl)thieno[3,2-b]thiophene (DH5TT), and α,α'-dihexylheptathiophene (DH7T), has been synthesized using the Suzuki coupling reaction. The optical and electrochemical properties of oligothiophenes were easily tuned by controlling the thiophene number. The UV-vis absorption and photoluminescence (PL) spectra are gradually red-shifted on going from DH5T and DH5TT to DH7T due to the increase in α-conjugation length. The energy band gap decreased as the oligothiophene length increased. The optical band gaps of DH5T, DH5TT, and DH7T occur at 2.39, 2.25, and 2.01 eV, respectively. Bulk heterojunction organic photovoltaic cells (OPVs) fabricated from oligomers showed the power conversion efficiency of 0.45-0.8% under AM 1.5 (100 mW/cm2). Among them, DH5T showed the best OPV performance of an open circuit voltage (VOC) of 0.51 V, short-circuit current (JSC) of 4.25 mA/cm2, and fill factor (FF) of 0.37, resulting in the power conversion efficiency of 0.80%. Moreover, the relationship between conjugation length and photovoltaic properties was systematically investigated in terms of the energy band gap and open circuit voltage (VOC).

  6. Electronic structure and charge transfer excited states of endohedral fullerene containing electron donoracceptor complexes utilized in organic photovoltaics

    Science.gov (United States)

    Amerikheirabadi, Fatemeh

    Organic Donor-Acceptor complexes form the main component of the organic photovoltaic devices (OPVs). The open circuit voltage of OPVs is directly related to the charge transfer excited state energies of these complexes. Currently a large number of different molecular complexes are being tested for their efficiency in photovoltaic devices. In this work, density functional theory as implemented in the NRLMOL code is used to investigate the electronic structure and related properties of these donor-acceptor complexes. The charge transfer excitation energies are calculated using the perturbative delta self-consistent field method recently developed in our group as the standard time dependent density functional approaches fail to accurately provide them. The model photovoltaics systems analyzed are as follows: Sc3N C 80--ZnTPP, Y3 N C80-- ZnTPP and Sc3 N C80-- ZnPc. In addition, a thorough analysis of the isolated donor and acceptor molecules is also provided. The studied acceptors are chosen from a class of fullerenes named trimetallic nitride endohedral fullerenes. These molecules have shown to possess advantages as acceptors such as long lifetimes of the charge-separated states.

  7. Energy price, Environmental policy, and technological bias of photovoltaics

    International Nuclear Information System (INIS)

    Stambouli, A. Boudghene; Larbi, N.; Traversa, E.

    2006-01-01

    0.52 degree centigrade above the long-term 1880-2000 average (13.9 degree centigrade) and in June 2003 temperature anomalies was 2.3 degree centigrade higher with respect to 1961-1990 based period. Alternative sources of energy should be explored and their utilisation should be stepped up. Solar energy which is not only excellent resource of alternative energy but also clean and easy to access, make environmental sense for any nation. Compared to fossil-generated electricity, each kilowatt of solar photovoltaics (PV) could prevent substantial emissions that endanger our environment and personal health. Typically, on an annual 'per kilowatt' basis, PV offsets or saves up to 16 kgs of NOx, 9 kgs of SOx, and 6 kgs of other particulates. In addition, one kilowatt of PV typically, per year, offsets between 600 and 2300 kgs of CO2, a greenhouse gas that contributes to global warming, and prevents, each month, 75 kg of fossil fuel from being mined, and keeps 473 litre of water from being consumed. In this paper the main features of the proposal are presented, and important energy related environment problems are highlighted. Several issues relating to solar energy, environment and sustainable development are examined from both current and future perspectives.(Author)

  8. Metal-organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties.

    Science.gov (United States)

    Shen, Deli; Pang, Aiying; Li, Yafeng; Dou, Jie; Wei, Mingdeng

    2018-01-31

    In this study, metal-organic frameworks, as an interfacial layer, were introduced into perovskite solar cells (PSCs) for the first time. An interface modified with the metal-organic framework ZIF-8 efficiently enhanced perovskite crystallinity and grain sizes, and the photovoltaic performance of the PSCs was significantly improved, resulting in a maximum PCE of 16.99%.

  9. End-group-directed self-assembly of organic compounds useful for photovoltaic applications

    Science.gov (United States)

    Beaujuge, Pierre M.; Lee, Olivia P.; Yiu, Alan T.; Frechet, Jean M.J.

    2016-05-31

    The present invention provides for an organic compound comprising electron deficient unit covalently linked to two or more electron rich units. The present invention also provides for a device comprising the organic compound, such as a light-emitting diode, thin-film transistor, chemical biosensor, non-emissive electrochromic, memory device, photovoltaic cells, or the like.

  10. The learning potential of photovoltaics: implications for energy policy

    International Nuclear Information System (INIS)

    Zwaan, Bob van der; Rabl, Ari

    2004-01-01

    This article examines the prospects for cost reductions of flat panel photovoltaic (PV) electricity. Current PV production cost ranges are presented, in terms of cost per peak W and cost per kWh, for single crystalline and multi-crystalline silicon, as well as for thin-film technologies. Possible decreases of these costs are assessed, as expected based on learning curves. The cumulative production needed to reach 'breakeven' (at which PV is competitive with conventional alternatives) is estimated for a range of values of the learning curve parameter. The cost of this cumulative production is calculated, and the question is posed whether and how the 'cost cap' can be bridged, the latter being the difference between what this cumulative production will cost and what it would cost if it could be produced at a currently competitive level. We also estimate how much PV could gain if external costs (due to environmental and health damage) of energy were internalised, for example by an energy tax. The conclusions are: (1) mainly due its high costs, PV electricity is unlikely to play a major role in global energy supply and carbon emissions abatement before 2020, (2) extrapolating past learning curves, one can expect its costs to decrease significantly, so that a considerable PV electricity share world-wide could materialise after 2020, (3) niche-market applications, e.g. using stand-alone systems in remote areas, are crucial for continuing 'the ride along the learning curve', (4) damage costs of conventional (fossil) power sources are considerable, and they could provide an important part of the rationale behind major policy efforts to encourage increased use of PV. The costs involved with such policies would be elevated, but a considerable share of these costs could be justified by the fact that conventional power damage costs constitute a significant fraction of the cost gap, although probably not enough to close it

  11. Steric control of the donor/acceptor interface: Implications in organic photovoltaic charge generation

    KAUST Repository

    Holcombe, Thomas W.; Norton, Joseph E.; Rivnay, Jonathan; Woo, Claire; Goris, Ludwig J.; Piliego, Claudia; Griffini, Gianmarco; Sellinger, Alan; Bré das, Jean Luc; Salleo, Alberto; Frechet, Jean

    2011-01-01

    The performance of organic photovoltaic (OPV) devices is currently limited by modest short-circuit current densities. Approaches toward improving this output parameter may provide new avenues to advance OPV technologies and the basic science of charge transfer in organic semiconductors. This work highlights how steric control of the charge separation interface can be effectively tuned in OPV devices. By introducing an octylphenyl substituent onto the investigated polymer backbones, the thermally relaxed charge-transfer state, and potentially excited charge-transfer states, can be raised in energy. This decreases the barrier to charge separation and results in increased photocurrent generation. This finding is of particular significance for nonfullerene OPVs, which have many potential advantages such as tunable energy levels and spectral breadth, but are prone to poor exciton separation efficiencies. Computational, spectroscopic, and synthetic methods were combined to develop a structure-property relationship that correlates polymer substituents with charge-transfer state energies and, ultimately, device efficiencies. © 2011 American Chemical Society.

  12. Steric control of the donor/acceptor interface: Implications in organic photovoltaic charge generation

    KAUST Repository

    Holcombe, Thomas W.

    2011-08-10

    The performance of organic photovoltaic (OPV) devices is currently limited by modest short-circuit current densities. Approaches toward improving this output parameter may provide new avenues to advance OPV technologies and the basic science of charge transfer in organic semiconductors. This work highlights how steric control of the charge separation interface can be effectively tuned in OPV devices. By introducing an octylphenyl substituent onto the investigated polymer backbones, the thermally relaxed charge-transfer state, and potentially excited charge-transfer states, can be raised in energy. This decreases the barrier to charge separation and results in increased photocurrent generation. This finding is of particular significance for nonfullerene OPVs, which have many potential advantages such as tunable energy levels and spectral breadth, but are prone to poor exciton separation efficiencies. Computational, spectroscopic, and synthetic methods were combined to develop a structure-property relationship that correlates polymer substituents with charge-transfer state energies and, ultimately, device efficiencies. © 2011 American Chemical Society.

  13. Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2015-01-01

    A substantial growth of the installed photovoltaic systems capacity has occurred around the world during the last decade, thus enhancing the availability of electric energy in an environmentally friendly way. The maximum power point tracking technique enables maximization of the energy production...... of photovoltaic sources during stochastically varying solar irradiation and ambient temperature conditions. Thus, the overall efficiency of the photovoltaic energy production system is increased. Numerous techniques have been presented during the last decade for implementing the maximum power point tracking...... process in a photovoltaic system. This article provides an overview of the operating principles of these techniques, which are suited for either uniform or non-uniform solar irradiation conditions. The operational characteristics and implementation requirements of these maximum power point tracking...

  14. The characteristic analysis of the solar energy photovoltaic power generation system

    Science.gov (United States)

    Liu, B.; Li, K.; Niu, D. D.; Jin, Y. A.; Liu, Y.

    2017-01-01

    Solar energy is an inexhaustible, clean, renewable energy source. Photovoltaic cells are a key component in solar power generation, so thorough research on output characteristics is of far-reaching importance. In this paper, an illumination model and a photovoltaic power station output power model were established, and simulation analysis was conducted using Matlab and other software. The analysis evaluated the condition of solar energy resources in the Baicheng region in the western part of Jilin province, China. The characteristic curve of the power output from a photovoltaic power station was obtained by simulation calculation. It was shown that the monthly average output power of the photovoltaic power station is affected by seasonal changes; the output power is higher in summer and autumn, and lower in spring and winter.

  15. Trend chart: photovoltaic solar energy. Second quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-08-01

    This newsletter presents a quarterly review of the French photovoltaic park situation: evolution of the connected power, new connected facilities, production by power range, ongoing projects and regional statistics (number of facilities, power, distribution, evolution)

  16. Trend chart: photovoltaic solar energy. First quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-05-01

    This newsletter presents a quarterly review of the French photovoltaic park situation: evolution of the connected power, new connected facilities, production by power range, ongoing projects and regional statistics (number of facilities, power, distribution, evolution)

  17. Photovoltaic solar energy: which realities for 2020? Summarized synthesis; Solaire photovoltaique: quelles realites pour 2020?. Synthese resumee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report first describes the situation of the photovoltaic as situated at a crossroad with strong development possibilities for the French photovoltaic sector. It presents the photovoltaic energy as a competitive, regulatory and ecologic one, and therefore inescapable. It outlines stakes and obstacles of the French situation regarding the development of this sector. It highlights the economic and social benefit investing in this sector. Some propositions are stated for the promotion of the photovoltaic solar sector. Challenges are identified

  18. Competition - In front of China, the photovoltaic sector organizes itself

    International Nuclear Information System (INIS)

    Chandes, C.

    2012-01-01

    Urged by the French President, EDF has taken Photowatt over. Photowatt used to be a leader in the fabrication of photovoltaic arrays. In other countries like Germany or the United States, measures are also implemented to face the competition with China in this sector. In Germany, banks are investing to save companies like Q-Cell. In the United States, manufacturers are asking their government to build up trade barriers

  19. Diverting indirect subsidies from the nuclear industry to the photovoltaic industry: Energy and financial returns

    International Nuclear Information System (INIS)

    Zelenika-Zovko, I.; Pearce, J.M.

    2011-01-01

    Nuclear power and solar photovoltaic energy conversion often compete for policy support that governs economic viability. This paper compares current subsidization of the nuclear industry with providing equivalent support to manufacturing photovoltaic modules. Current U.S. indirect nuclear insurance subsidies are reviewed and the power, energy and financial outcomes of this indirect subsidy are compared to equivalent amounts for indirect subsidies (loan guarantees) for photovoltaic manufacturing using a model that holds economic values constant for clarity. The preliminary analysis indicates that if only this one relatively ignored indirect subsidy for nuclear power was diverted to photovoltaic manufacturing, it would result in more installed power and more energy produced by mid-century. By 2110 cumulative electricity output of solar would provide an additional 48,600 TWh over nuclear worth $5.3 trillion. The results clearly show that not only does the indirect insurance liability subsidy play a significant factor for nuclear industry, but also how the transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in more energy over the life cycle of the technologies. - Highlights: → The indirect insurance liability subsidy has been quantified over the life cycle of the U.S. nuclear fleet. → It was found to play a significant factor in the economics of the nuclear industry. → A transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in significantly more energy over the life cycle of the technologies.

  20. DFT theoretical investigations of π-conjugated molecules based on thienopyrazine and different acceptor moieties for organic photovoltaic cells

    Directory of Open Access Journals (Sweden)

    Mohammed Bourass

    2016-09-01

    Full Text Available In this work, theoretical study by using the DFT method on eleven conjugated compounds based on thienopyrazine is reported. Different electron side groups were introduced to investigate their effects on the electronic structure; The HOMO, LUMO and Gap energy of these compounds have been calculated and reported in this paper. A systematic theoretical study of such compound has not been reported as we know. Thus, our aim is first, to explore their electronic and spectroscopic properties on the basis of the DFT quantum chemical calculations. Second, we are interested to elucidate the parameters that influence the photovoltaic efficiency toward better understanding of the structure–property relationships. The study of structural, electronic and optical properties for these compounds could help to design more efficient functional photovoltaic organic materials.

  1. Design, synthesis and photophysical studies of dipyrromethene-based materials: insights into their applications in organic photovoltaic devices.

    Science.gov (United States)

    Bessette, André; Hanan, Garry S

    2014-05-21

    This review article presents the most recent developments in the use of materials based on dipyrromethene (DPM) and azadipyrromethenes (ADPM) for organic photovoltaic (OPV) applications. These chromophores and their corresponding BF2-chelated derivatives BODIPY and aza-BODIPY, respectively, are well known for fluorescence-based applications but are relatively new in the field of photovoltaic research. This review examines the variety of relevant designs, synthetic methodologies and photophysical studies related to materials that incorporate these porphyrinoid-related dyes in their architecture. The main idea is to inspire readers to explore new avenues in the design of next generation small-molecule and bulk-heterojunction solar cell (BHJSC) OPV materials based on DPM chromophores. The main concepts are briefly explained, along with the main challenges that are to be resolved in order to take full advantage of solar energy.

  2. Less CO2 by means of photovoltaic energy (PV)

    International Nuclear Information System (INIS)

    Alsema, E.A.; Van Brummelen, M.

    1992-11-01

    Regarding the title subject special attention is paid to the technical limitations of a fast introduction of the use of photovoltaic (PV) energy conversion. After a brief introduction on PV systems and the operation of a solar cell in chapter two, a state of the art is given of PV technology and possible price developments for PV modules and Balance-Of-System (BOS) components up to the year 2000 in chapters three and four. In chapter five the potential of installing grid-connected PV systems in the Netherlands is determined, taking into account the options of using existing buildings (PV systems on the roof), unexplored ground, in the verge of highways or railroads, industrial areas and airports. In chapter six non-economical bottlenecks for a large-scale introduction of grid-connected PV systems are discussed: the industrial production capacity for PV modules and other components, the fitting-in into the public electricity supply, and institutional aspects of installing PV systems on roofs. In chapter seven it is determined how much costs can be saved and CO 2 emission can be reduced when PV capacity is fitted-in into the Dutch electric power supply. The calculations are based on the Global Shift scenario. In chapter eight two scenarios (an optimistic scenario and a more realistic scenario) for the introduction of PV systems are outlined. For both scenarios the financial consequences and the contribution to the electric power supply are indicated. In chapter nine the net energy yield, being the result of the previously discussed introduction scenarios, is calculated, followed by a calculation of the avoided CO 2 emission, as well as the costs to avoid such emission. 25 figs., 15 tabs., 116 refs., 1 annex

  3. Photovoltaic effect on the performance enhancement of organic light-emitting diodes with planar heterojunction architecture

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan; Huang, Wei; Guo, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Wang, Hua, E-mail: wanghua001@tyut.edu.cn [Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology (TYUT), Taiyuan 030024 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2017-04-15

    Highlights: • The photovoltaic effect on the performance of OLEDs was studied. • The device performance with different planar heterojunctions was investigated. • The mechanism relies on the overlap of electroluminescence and absorption spectrum. - Abstract: Organic light-emitting diodes (OLEDs) with planar heterojunction (PHJ) architecture consisting of photovoltaic organic materials of fullerene carbon 60 (C{sub 60}) and copper (II) phthalocyanine (CuPc) inserted between emitting unit and cathode were constructed, and the photovoltaic effect on OLEDs performance was studied. The electroluminescent (EL) characteristics and mechanism of device performance variation without and with different PHJs (herein including C{sub 60}/CuPc, CuPc/C{sub 60} and CuPc) were systematically investigated in red, green and blue OLEDs. Of the three combinations, OLEDs with C{sub 60}/CuPc showed the highest efficiency. It is revealed that the photovoltaic C{sub 60}/CuPc PHJ can absorb part of photons, which are radiated from emission zone, then form excitons, and dissociated into free charges. Consequently, the high device efficiency of OLEDs performance improvement was acquired. This research demonstrates that PHJ consisting of two n- and p-type photovoltaic organic materials could be a promising methodology for high performance OLEDs.

  4. Photovoltaic effect on the performance enhancement of organic light-emitting diodes with planar heterojunction architecture

    International Nuclear Information System (INIS)

    Zhao, Dan; Huang, Wei; Guo, Hao; Wang, Hua; Yu, Junsheng

    2017-01-01

    Highlights: • The photovoltaic effect on the performance of OLEDs was studied. • The device performance with different planar heterojunctions was investigated. • The mechanism relies on the overlap of electroluminescence and absorption spectrum. - Abstract: Organic light-emitting diodes (OLEDs) with planar heterojunction (PHJ) architecture consisting of photovoltaic organic materials of fullerene carbon 60 (C_6_0) and copper (II) phthalocyanine (CuPc) inserted between emitting unit and cathode were constructed, and the photovoltaic effect on OLEDs performance was studied. The electroluminescent (EL) characteristics and mechanism of device performance variation without and with different PHJs (herein including C_6_0/CuPc, CuPc/C_6_0 and CuPc) were systematically investigated in red, green and blue OLEDs. Of the three combinations, OLEDs with C_6_0/CuPc showed the highest efficiency. It is revealed that the photovoltaic C_6_0/CuPc PHJ can absorb part of photons, which are radiated from emission zone, then form excitons, and dissociated into free charges. Consequently, the high device efficiency of OLEDs performance improvement was acquired. This research demonstrates that PHJ consisting of two n- and p-type photovoltaic organic materials could be a promising methodology for high performance OLEDs.

  5. 25th anniversary article: organic photovoltaic modules and biopolymer supercapacitors for supply of renewable electricity: a perspective from Africa.

    Science.gov (United States)

    Inganäs, Olle; Admassie, Shimelis

    2014-02-12

    The role of materials in civilization is well demonstrated over the centuries and millennia, as materials have come to serve as the classifier of stages of civilization. With the advent of materials science, this relation has become even more pronounced. The pivotal role of advanced materials in industrial economies has not yet been matched by the influence of advanced materials during the transition from agricultural to modern societies. The role of advanced materials in poverty eradication can be very large, in particular if new trajectories of social and economic development become possible. This is the topic of this essay, different in format from the traditional scientific review, as we try to encompass not only two infant technologies of solar energy conversion and storage by means of organic materials, but also the social conditions for introduction of the technologies. The development of organic-based photovoltaic energy conversion has been rapid, and promises to deliver new alternatives to well-established silicon photovoltaics. Our recent development of organic biopolymer composite electrodes opens avenues towards the use of renewable materials in the construction of wooden batteries or supercapacitors for charge storage. Combining these new elements may give different conditions for introduction of energy technology in areas now lacking electrical grids, but having sufficient solar energy inputs. These areas are found close to the equator, and include some of the poorest regions on earth. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Power electronics and control techniques for maximum energy harvesting in photovoltaic systems

    CERN Document Server

    Femia, Nicola

    2012-01-01

    Incentives provided by European governments have resulted in the rapid growth of the photovoltaic (PV) market. Many PV modules are now commercially available, and there are a number of power electronic systems for processing the electrical power produced by PV systems, especially for grid-connected applications. Filling a gap in the literature, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems brings together research on control circuits, systems, and techniques dedicated to the maximization of the electrical power produced by a photovoltaic (PV) so

  7. Long-term energy output estimation for photovoltaic energy systems using synthetic solar irradiation data

    International Nuclear Information System (INIS)

    Celik, A.N.

    2003-01-01

    A general methodology is presented to estimate the monthly average daily energy output from photovoltaic energy systems. Energy output is estimated from synthetically generated solar radiation data. The synthetic solar radiation data are generated based on the cumulative frequency distribution of the daily clearness index, given as a function of the monthly clearness index. Two sets of synthetic solar irradiation data are generated: 3- and 4-day months. In the 3-day month, each month is represented by 3 days and in the 4-day month, by 4 days. The 3- and 4-day solar irradiation data are synthetically generated for each month and the corresponding energy outputs are calculated. A total of 8-year long measured hourly solar irradiation data, from five different locations in the world, is used to validate the new model. The monthly energy output values calculated from the synthetic solar irradiation data are compared to those calculated from the measured hour-by-hour data. It is shown that when the measured solar radiation data do not exist for a particular location or reduced data set is advantageous, the energy output from photovoltaic converters could be correctly calculated

  8. Symmetry-Breaking Charge Transfer in a Zinc Chlorodipyrrin Acceptor for High Open Circuit Voltage Organic Photovoltaics

    KAUST Repository

    Bartynski, Andrew N.

    2015-04-29

    © 2015 American Chemical Society. Low open-circuit voltages significantly limit the power conversion efficiency of organic photovoltaic devices. Typical strategies to enhance the open-circuit voltage involve tuning the HOMO and LUMO positions of the donor (D) and acceptor (A), respectively, to increase the interfacial energy gap or to tailor the donor or acceptor structure at the D/A interface. Here, we present an alternative approach to improve the open-circuit voltage through the use of a zinc chlorodipyrrin, ZCl [bis(dodecachloro-5-mesityldipyrrinato)zinc], as an acceptor, which undergoes symmetry-breaking charge transfer (CT) at the donor/acceptor interface. DBP/ZCl cells exhibit open-circuit voltages of 1.33 V compared to 0.88 V for analogous tetraphenyldibenzoperyflanthrene (DBP)/C60-based devices. Charge transfer state energies measured by Fourier-transform photocurrent spectroscopy and electroluminescence show that C60 forms a CT state of 1.45 ± 0.05 eV in a DBP/C60-based organic photovoltaic device, while ZCl as acceptor gives a CT state energy of 1.70 ± 0.05 eV in the corresponding device structure. In the ZCl device this results in an energetic loss between ECT and qVOC of 0.37 eV, substantially less than the 0.6 eV typically observed for organic systems and equal to the recombination losses seen in high-efficiency Si and GaAs devices. The substantial increase in open-circuit voltage and reduction in recombination losses for devices utilizing ZCl demonstrate the great promise of symmetry-breaking charge transfer in organic photovoltaic devices.

  9. Hole-Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer: ITIC Photovoltaic Materials.

    Science.gov (United States)

    Eastham, Nicholas D; Logsdon, Jenna L; Manley, Eric F; Aldrich, Thomas J; Leonardi, Matthew J; Wang, Gang; Powers-Riggs, Natalia E; Young, Ryan M; Chen, Lin X; Wasielewski, Michael R; Melkonyan, Ferdinand S; Chang, Robert P H; Marks, Tobin J

    2018-01-01

    Bulk-heterojunction organic photovoltaic materials containing nonfullerene acceptors (NFAs) have seen remarkable advances in the past year, finally surpassing fullerenes in performance. Indeed, acceptors based on indacenodithiophene (IDT) have become synonymous with high power conversion efficiencies (PCEs). Nevertheless, NFAs have yet to achieve fill factors (FFs) comparable to those of the highest-performing fullerene-based materials. To address this seeming anomaly, this study examines a high efficiency IDT-based acceptor, ITIC, paired with three donor polymers known to achieve high FFs with fullerenes, PTPD3T, PBTI3T, and PBTSA3T. Excellent PCEs up to 8.43% are achieved from PTPD3T:ITIC blends, reflecting good charge transport, optimal morphology, and efficient ITIC to PTPD3T hole-transfer, as observed by femtosecond transient absorption spectroscopy. Hole-transfer is observed from ITIC to PBTI3T and PBTSA3T, but less efficiently, reflecting measurably inferior morphology and nonoptimal energy level alignment, resulting in PCEs of 5.34% and 4.65%, respectively. This work demonstrates the importance of proper morphology and kinetics of ITIC → donor polymer hole-transfer in boosting the performance of polymer:ITIC photovoltaic bulk heterojunction blends. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photovoltaic energy: global market perspectives; Energia fotovoltaica: perspectivas de mercado mundial

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Jose G.S.; Fabrizy, Marie P. [Sao Paulo Univ., SP (Brazil). Inst. de Eletrotecnica e Energia

    1996-12-31

    The global market of the solar photovoltaic energy has been mainly concentrated in the residential sector. However, there is a strong tendency to apply solar photovoltaic panels linked to the utilities power systems. Besides, that is the only case in which an increase in the cells production scale would be justified because it would reduce the production and new technologies research costs 3 figs., 1 tab.; e-mail: gui at iee.usp.br

  11. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment.

    Science.gov (United States)

    Wang, Wei; Tadé, Moses O; Shao, Zongping

    2015-08-07

    Meeting the growing global energy demand is one of the important challenges of the 21st century. Currently over 80% of the world's energy requirements are supplied by the combustion of fossil fuels, which promotes global warming and has deleterious effects on our environment. Moreover, fossil fuels are non-renewable energy and will eventually be exhausted due to the high consumption rate. A new type of alternative energy that is clean, renewable and inexpensive is urgently needed. Several candidates are currently available such as hydraulic power, wind force and nuclear power. Solar energy is particularly attractive because it is essentially clean and inexhaustible. A year's worth of sunlight would provide more than 100 times the energy of the world's entire known fossil fuel reserves. Photocatalysis and photovoltaics are two of the most important routes for the utilization of solar energy. However, environmental protection is also critical to realize a sustainable future, and water pollution is a serious problem of current society. Photocatalysis is also an essential route for the degradation of organic dyes in wastewater. A type of compound with the defined structure of perovskite (ABX3) was observed to play important roles in photocatalysis and photovoltaics. These materials can be used as photocatalysts for water splitting reaction for hydrogen production and photo-degradation of organic dyes in wastewater as well as for photoanodes in dye-sensitized solar cells and light absorbers in perovskite-based solar cells for electricity generation. In this review paper, the recent progress of perovskites for applications in these fields is comprehensively summarized. A description of the basic principles of the water splitting reaction, photo-degradation of organic dyes and solar cells as well as the requirements for efficient photocatalysts is first provided. Then, emphasis is placed on the designation and strategies for perovskite catalysts to improve their

  12. Plastic photovoltaic devices

    OpenAIRE

    Niyazi Serdar Sariciftci

    2004-01-01

    The development of organic, polymer-based photovoltaic elements has introduced the possibility of obtaining cheap and easy-to-produce energy from light. Photoinduced electron transfer from donor-type semiconducting polymers onto acceptor-type polymers or molecules, such as C60, is the basic phenomenon utilized in these photovoltaic devices. This process mimics the early photo-effects in natural photosynthesis. The polymeric semiconductors combine the photoelectrical properties of inorganic se...

  13. Photovoltaic Calibrations at the National Renewable Energy Laboratory and Uncertainty Analysis Following the ISO 17025 Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    The measurement of photovoltaic (PV) performance with respect to reference conditions requires measuring current versus voltage for a given tabular reference spectrum, junction temperature, and total irradiance. This report presents the procedures implemented by the PV Cell and Module Performance Characterization Group at the National Renewable Energy Laboratory (NREL) to achieve the lowest practical uncertainty. A rigorous uncertainty analysis of these procedures is presented, which follows the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement. This uncertainty analysis is required for the team’s laboratory accreditation under ISO standard 17025, “General Requirements for the Competence of Testing and Calibration Laboratories.” The report also discusses additional areas where the uncertainty can be reduced.

  14. Photoexcitation and Photochemical Stability of Organic Photovoltaic Materials from First Principles

    Science.gov (United States)

    Sai, Na; Leung, Kevin

    2013-03-01

    The development of high efficiency organic photovoltaics (OPV) has recently become enabled by the synthesis of new conjugated polymers with low band gap that allow light absorption over a broader range of the spectrum. Stability of these new polymers, a key requirement for commercialization, has not yet received sufficient attention. Here, we report first-principles theoretical modeling of photo-induced degradation of OPV polymers carried out using ab-initio density functional theory (DFT). We report photooxidation routes and reaction products for reactive species including superoxide oxygen anions and hydroxyl groups interacting with the standard workhorse OPV polymer, poly(3-hexyl-thiophene) (P3HT). We discuss theoretical issues and challenges affecting the modeling such reactions in OPV polymers. We also discuss the application of theoretical methods to low-band-gap polymers, and in particular, the effect of the chemical substitution on the photoexcitation properties of these new polymers. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work is supported by the Energy Frontier Research Center funded by the U.S. DOE Office of Basic Energy Sciences under Award number DE-SC0001091.

  15. Optimum energy management of a photovoltaic water pumping system

    International Nuclear Information System (INIS)

    Sallem, Souhir; Chaabene, Maher; Kamoun, M.B.A.

    2009-01-01

    This paper presents a new management approach which makes decision on the optimum connection times of the elements of a photovoltaic water pumping installation: battery, water pump and photovoltaic panel. The decision is made by fuzzy rules considering the battery safety on the first hand and the Photovoltaic Panel Generation (PVPG) forecast during a considered day and the load required power on the second hand. The optimization approach consists of the extension of the operation time of the water pump with respects to multi objective management criteria. Compared to the stand alone management method, the new approach effectiveness is confirmed by the extension of the pumping period for more than 5 h a day.

  16. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.

    Science.gov (United States)

    Wong, Wai-Yeung; Ho, Cheuk-Lam

    2010-09-21

    Energy remains one of the world's great challenges. Growing concerns about limited fossil fuel resources and the accumulation of CO(2) in the atmosphere from burning those fuels have stimulated tremendous academic and industrial interest. Researchers are focusing both on developing inexpensive renewable energy resources and on improving the technologies for energy conversion. Solar energy has the capacity to meet increasing global energy needs. Harvesting energy directly from sunlight using photovoltaic technology significantly reduces atmospheric emissions, avoiding the detrimental effects of these gases on the environment. Currently inorganic semiconductors dominate the solar cell production market, but these materials require high technology production and expensive materials, making electricity produced in this manner too costly to compete with conventional sources of electricity. Researchers have successfully fabricated efficient organic-based polymer solar cells (PSCs) as a lower cost alternative. Recently, metalated conjugated polymers have shown exceptional promise as donor materials in bulk-heterojunction solar cells and are emerging as viable alternatives to the all-organic congeners currently in use. Among these metalated conjugated polymers, soluble platinum(II)-containing poly(arylene ethynylene)s of variable bandgaps (∼1.4-3.0 eV) represent attractive candidates for a cost-effective, lightweight solar-energy conversion platform. This Account highlights and discusses the recent advances of this research frontier in organometallic photovoltaics. The emerging use of low-bandgap soluble platinum-acetylide polymers in PSCs offers a new and versatile strategy to capture sunlight for efficient solar power generation. Properties of these polyplatinynes--including their chemical structures, absorption coefficients, bandgaps, charge mobilities, accessibility of triplet excitons, molecular weights, and blend film morphologies--critically influence the device

  17. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation

    International Nuclear Information System (INIS)

    Ferroni, Ferruccio; Hopkirk, Robert J.

    2016-01-01

    Many people believe renewable energy sources to be capable of substituting fossil or nuclear energy. However there exist very few scientifically sound studies, which apply due diligence to substantiating this impression. In the present paper, the case of photovoltaic power sources in regions of moderate insolation is analysed critically by using the concept of Energy Return on Energy Invested (ERoEI, also called EROI). But the methodology for calculating the ERoEI differs greatly from author-to-author. The main differences between solar PV Systems are between the current ERoEI and what is called the extended ERoEI (ERoEI EXT ). The current methodology recommended by the International Energy Agency is not strictly applicable for comparing photovoltaic (PV) power generation with other systems. The main reasons are due to the fact that on one hand, solar electricity is very material-intensive, labour-intensive and capital-intensive and on the other hand the solar radiation exhibits a rather low power density. - Highlights: •Data are available from several years of photovoltaic energy experience in northern Europe. •These are used to show the way to calculate a full, extended ERoEI. •The viability and sustainability in these latitudes of photovoltaic energy is questioned. •Use of photovoltaic technology is shown to result in creation of an energy sink.

  18. Photovoltaic Energy-Assisted Electrocoagulation of a Synthetic Textile Effluent

    Directory of Open Access Journals (Sweden)

    Thelma Beatriz Pavón-Silva

    2018-01-01

    Full Text Available The feasibility of using photovoltaic modules to power a continuous 14 L electrochemical reactor applied to remove an azo dye with an efficiency of 70% is reported. The photovoltaic modules were directly connected, and the system efficiency was observed properly maintained when currents were applied in the range of 2.5 to 7.9 A. This value depends on solar radiation. Likewise, it was found that the efficiency depends mainly on the current density and the flow rate prevailing in the reactor.

  19. Photovoltaic Energy-Assisted Electrocoagulation of a Synthetic Textile Effluent

    OpenAIRE

    Thelma Beatriz Pavón-Silva; Hipólito Romero-Tehuitzil; Gonzálo Munguia del Río; Jorge Huacuz-Villamar

    2018-01-01

    The feasibility of using photovoltaic modules to power a continuous 14 L electrochemical reactor applied to remove an azo dye with an efficiency of 70% is reported. The photovoltaic modules were directly connected, and the system efficiency was observed properly maintained when currents were applied in the range of 2.5 to 7.9 A. This value depends on solar radiation. Likewise, it was found that the efficiency depends mainly on the current density and the flow rate prevailing in the reactor.

  20. Energy saving house utilizing photovoltaic system. 3; Taiyoko hatsuden wo donyushita sho energy jutaku. 3

    Energy Technology Data Exchange (ETDEWEB)

    Itsumi, J. [Kumamoto Institute of Technology, Kumamoto (Japan)

    1997-11-25

    Various measurements are conducted in an energy-efficient house equipped with a photovoltaic power generation system and actually lived in by people, and matching between the household load and photovoltaic power generation, and the consumption of power, are examined. As the result investigation of power consumption in the house, it is found that 13.31kWh is consumed in the daytime in winter, and 14.15kWh in summer. Thirty-two 153W modules are used, and they produce 12.74kWh in four hours on a fine summer day, which amount nearly satisfies the demand of the household. As for the records during a year beginning in May, 1996, it is found that an annual amount of 4326kWh was generated, with 68% being surplus and 32% consumed for the household. Details of the household consumption were that 49.2% was consumed for house heating and cooling and 34.1% for cooking, the two in total occupying more than 80% of the whole household consumption. Energy-saving behavior is evaluated by comparing the energy-efficient house with some ordinary residential houses in Kumamoto City, and it is found that there is a yearly difference of 104,310 yen in electricity bill or 47% in energy saving effect. 5 refs., 4 figs., 4 tabs.

  1. Reversible degradation in ITO-containing organic photovoltaics under concentrated sunlight

    NARCIS (Netherlands)

    Galagan, Y.O.; Mescheloff, A.; Veenstra, S.C.; Andriessen, H.A.J.M.; Katz, E.A.

    2015-01-01

    Stabilities of ITO-containing and ITO-free organic solar cells were investigated under simulated AM 1.5G illumination and under concentrated natural sunlight. In both cases ITO-free devices exhibit high stability, while devices containing ITO show degradation of their photovoltaic performance. The

  2. Technology development for roll-to-roll production of organic photovoltaics

    NARCIS (Netherlands)

    Galagan, Y.O.; Vries, I.G. de; Langen, A.P.; Andriessen, H.A.J.M.; Verhees, W.J.H.; Veenstra, S.C.; Kroon, J.M.

    2011-01-01

    In order to reach the objective of low-cost, large area organic photovoltaic systems, we build up a knowledge base concerning the influence of process conditions on the performance of polymer solar cells. A large area solar cell module, with roll-to-roll coated PEDOT:PSS and photoactive layers

  3. Size effect on organic optoelectronics devices: Example of photovoltaic cell efficiency

    International Nuclear Information System (INIS)

    Pandey, A.K.; Nunzi, J.M.; Ratier, B.; Moliton, A.

    2008-01-01

    Electromagnetic study of organic photovoltaic cells design shows that electrical parameters depend drastically on the active area geometry: we theoretically show that electrical parameters are altered when the cell length becomes greater than one centimeter. Experimental verification is provided with simple molecular heterojunction cells with areas from 0.03 to 0.78 cm 2

  4. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    DEFF Research Database (Denmark)

    Owens, Charles; Ferguson, Gretta Mae; Hermenau, Martin

    2015-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency, fill factor, and IV curves were collected at regular inter...

  5. Comparative indoor and outdoor degradation of organic photovoltaic cells via inter-laboratory collaboration

    NARCIS (Netherlands)

    Owens, C.; Ferguson, G.M.; Hermenau, M.; Voroshazi, E.; Galagan, Y.; Zimmermann, B.; Rösch, R.; Angmo, D.; Teran-Escobar, G.; Uhrich, C.; Andriessen, R.; Hoppe, H.; Würfel, U.; Lira-Cantu, M.; Krebs, F.C.; Tanenbaum, D.M.

    2015-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected at

  6. Comparative indoor and outdoor degradation of organic photovoltaic cells via inter-laboratory collaboration

    NARCIS (Netherlands)

    Owens, C.; Ferguson, G.M.; Hermenau, M.; Voroshazi, E.; Galagan, Y.; Zimmermann, B.; Rosch, R.; Angamo, D.; Teran, G.; Uhrich, C.; Andriessen, R.; Hoppe, H.; Wurfel, U.; Lira-Cantu, M.; Krebs, F.; Tanenbaum, D.

    2015-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency, fill factor, and IV curves were collected at regular

  7. The effect of mesomorphology upon the performance of nanoparticulate organic photovoltaic devices

    DEFF Research Database (Denmark)

    Dam, Henrik Friis; Holmes, Natalie P.; Andersen, Thomas Rieks

    2015-01-01

    :PCBM and PSBTBT:PCBM NP organic photovoltaic (OPV) devices have been fabricated and exhibit similar device efficiencies, despite the PSBTBT being a much higher performing low band gap material. By comparing the measured NP shell and core compositions with the optimized bulk hetero-junction (BHJ) compositions, we...

  8. Oligothiophene-S,S-dioxides as a class of electron-acceptor materials for organic photovoltaics

    International Nuclear Information System (INIS)

    Camaioni, N.; Ridolfi, G.; Fattori, V.; Favaretto, L.; Barbarella, G.

    2004-01-01

    Oligothiophene-S,S-dioxides are proposed as electron acceptors materials in organic blended photovoltaic devices. Photoinduced charge transfer is demonstrated in blends between a regioregular poly(3-hexylthiophene) and the oligomers, via photoluminescence spectroscopy. The enhanced photovoltaic performance exhibited by the blended cells, with respect to that of pristine devices in which the polymer is the active layer, represents further evidence for exciton dissociation. An increase of the power conversion efficiency up to sixty-fold is achieved by blending the polymer with the oligothiophene-S,S-dioxides

  9. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    Science.gov (United States)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  10. Energy management algorithm for an optimum control of a photovoltaic water pumping system

    International Nuclear Information System (INIS)

    Sallem, Souhir; Chaabene, Maher; Kamoun, M.B.A.

    2009-01-01

    The effectiveness of photovoltaic water pumping systems depends on the adequacy between the generated energy and the volume of pumped water. This paper presents an intelligent algorithm which makes decision on the interconnection modes and instants of photovoltaic installation components: battery, water pump and photovoltaic panel. The decision is made by fuzzy rules on the basis of the Photovoltaic Panel Generation (PVPG) forecast during a considered day, on the load required power, and by considering the battery safety. The algorithm aims to extend operation time of the water pump by controlling a switching unit which links the system components with respect to multi objective management criteria. The algorithm implementation demonstrates that the approach extends the pumping period for more than 5 h a day which gives a mean daily improvement of 97% of the water pumped volume.

  11. Cost-competitiveness of organic photovoltaics for electricity self-consumption at residential buildings: A comparative study of Denmark and Greece under real market conditions

    DEFF Research Database (Denmark)

    Chatzisideris, Marios Dimos; Laurent, Alexis; Christoforidis, Georgios C.

    2017-01-01

    To address sustainability challenges, photovoltaics (PV) are regarded as a promising renewable energy technology. Decreasing PV module costs and increasing residential electricity prices have made self-consumption of PV-generated electricity financially more attractive than exporting to the grid....... Organic photovoltaics (OPV) are an emerging thin-film PV technology that shows promise of greatly improving the environmental and economic performances of PV technologies. Previous studies have estimated the current and future costs of OPV technologies, but the attractiveness of investing in OPV systems...

  12. Trend chart: photovoltaic solar energy. Forth quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2017-02-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  13. Trend chart: photovoltaic solar energy. Third quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2016-11-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  14. Trend chart: photovoltaic solar energy. Forth quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-02-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  15. Trend chart: photovoltaic solar energy. First quarter 2017

    International Nuclear Information System (INIS)

    2017-05-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  16. Diversity in solar photovoltaic energy: Implications for innovation and policy

    NARCIS (Netherlands)

    Subtil Lacerda, J.; van den Bergh, J.C.J.M.

    2016-01-01

    We undertake a qualitative empirical study of the solar photovoltaic (PV) industry in order to investigate the role of diversity in stimulating innovation and diffusion. Based on evolutionary-economic concepts, we identify the main dimensions and components of diversity in the solar PV industry.

  17. Roof Photovoltaic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — In order to accurately predict the annual energy production of photovoltaic systems for any given geographical location, building orientation, and photovoltaic cell...

  18. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.

    Science.gov (United States)

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage ( V OC ) that is much larger than the bandgap of OIHPs. The persistent V OC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable V OC without being limited by the materials' bandgap.

  19. Solution processable organic/inorganic hybrid ultraviolet photovoltaic detector

    Directory of Open Access Journals (Sweden)

    Xiaopeng Guo

    2016-05-01

    Full Text Available Ultraviolet (UV photodetector is a kind of important optoelectronic device which can be widely used in scientific and engineering fields including astronomical research, environmental monitoring, forest-fire prevention, medical analysis, and missile approach warning etc. The development of UV detector is hindered by the acquirement of stable p-type materials, which makes it difficult to realize large array, low-power consumption UV focal plane array (FPA detector. Here, we provide a novel structure (Al/Poly(9,9-di-n-octylfuorenyl-2,7-diyl(PFO/ZnO/ITO to demonstrate the UV photovoltaic (PV response. A rather smooth surface (RMS roughness: 0.28 nm may be reached by solution process, which sheds light on the development of large-array, light-weight and low-cost UV FPA detectors.

  20. Energy conservation house by photovoltaic system. 2; Taiyoko hatsuden wo donyushita sho energy jutaku. 2

    Energy Technology Data Exchange (ETDEWEB)

    Itsumi, J. [Kumamoto Institute of Technology, Kumamoto (Japan)

    1996-10-27

    Photovoltaic power generation system was once placed in excessive expectation what with a growing tendency toward environmental issues and what with vulnerability in supply and demand of energy. However, its utilization was negative because of the low energy conversion efficiency and the high cost. Then, gradually the wind shifted round to the improvement in solar cell efficiency, reduced cost, implementation of subsidizing policy by MITI, purchase of excess power by electric power companies and the amendment of the Electricity Enterprises Act, encouraging the use of the system again. In addition, with a lesson from the Great Hanshin Earthquake, the merit of the system was appreciated as a life-support power source, motivating house-builders. Earlier, the authors had reported designs of energy-saving homes, system structures of photovoltaic power generation, etc. This paper presents the power generation record of a year old system and an example of the comfortable sealed residential room environment, etc., created with the use of the power thus obtained. The annual power generation was 4,088kWh, 30% of which was used in the house and 70% of which was sold as an excess power, resulting in the purchase of power for 6,642kWh. 5 refs., 4 figs, 2 tabs.

  1. The Fabrication of Bulk Heterojunction P3HT: PCBM Organic Photovoltaics

    Science.gov (United States)

    Darwis, D.; Sesa, E.; Farhamza, D.; Iqbal

    2018-05-01

    Bulk heterojunction Organic photovoltaic (OPV) devices are gaining a lot of interest due to their potential for ease of processing and lower manufacturing cost sustainable energy generation. In consequence, the number of studies into the properties and characteristics of organic solar cell devices has been increased to improving their power conversion. A further advancement over past decade has shown that improved efficiency could be obtained by mixed of poly(3 - hexylthiophene) (P3HT) and [1] – phenyl - C61-butyric acid methyl ester (PCBM) as an active layer. A series of optimizations of this P3HT: PCBM blends, such as the mixture ratio variation, the annealing treatments, and solvent treatment, have been emerged to improve the efficiency of the OPV. As a result, significant improvements were achieved. Here, we report the fabrication heterojunction devices of 2.9 % efficiency. This result has been achieved using the configuration of a typical heterojunction solar cell modules consists of layered glass/ITO/PEDOT: PSS/active layer/cathode interlayer

  2. Black phosphorus induced photo-doping for high-performance organic-silicon heterojunction photovoltaics

    Institute of Scientific and Technical Information of China (English)

    Zhouhui Xia; Pengfei Li; Yuqiang Liu; Tao Song; Qiaoliang Bao; Shuit-Tong Lee; Baoquan Sun

    2017-01-01

    In conventional crystalline silicon (Si) homojunction solar cells,a strategy of doping by transporting phosphorus or boron impurities into Si is commonly used to build Ohmic contacts at rear electrodes.However,this technique involves an energy intensive,high temperature (~ 800 ℃) process and toxic doping materials.Black phosphorus (BP) is a two-dimensional,narrow bandgap semiconductor with high carrier mobility that exhibits broad light harvesting properties.Here,we place BP:zinc oxide (ZnO) composite films between Si and aluminum (Al) to improve their contact.Once the BP harvests photons with energies below 1.1 eV from the crystalline Si,the ZnO carrier concentration increases dramatically due to charge injection.This photo-induced doping results in a high carrier concentration in the ZnO film,mimicking the modulated doping technique used in semiconductor heterojunctions.We show that photo-induced carriers dramatically increase the conductivities of the BP-modified ZnO films,thus reducing the contact resistance between Si and Al.A photovoltaic power conversion efficiency of 15.2% is achieved in organic-Si heterojunction solar cells that use a ZnO:BP layer.These findings demonstrate an effective way of improving Si/metal contact via a simple,low temperature process.

  3. Assessment of the energy performance, economics and environmental footprint of silicon heterojunction photovoltaic technology

    NARCIS (Netherlands)

    Louwen, A.

    2017-01-01

    To make the transition towards a more sustainable energy supply, it is necessary that we drastically increase the share of renewable electricity generation. Solar photovoltaic energy is regarded as one of the prime options to reduce the greenhouse gas intensity of our electricity supply, and many

  4. Hierarchical predictive control scheme for distributed energy storage integrated with residential demand and photovoltaic generation

    NARCIS (Netherlands)

    Lampropoulos, I.; Garoufalis, P.; van den Bosch, P.P.J.; Kling, W.L.

    2015-01-01

    A hierarchical control scheme is defined for the energy management of a battery energy storage system which is integrated in a low-voltage distribution grid with residential customers and photovoltaic installations. The scope is the economic optimisation of the integrated system by employing

  5. A software application for energy flow simulation of a grid connected photovoltaic system

    International Nuclear Information System (INIS)

    Hamad, Ayman A.; Alsaad, Mohammad A.

    2010-01-01

    A computer software application was developed to simulate hourly energy flow of a grid connected photovoltaic system. This software application enables conducting an operational evaluation of a studied photovoltaic system in terms of energy exchange with the electrical grid. The system model consists of a photovoltaic array, a converter and an optional generic energy storage component that supports scheduled charging/discharging. In addition to system design parameters, the software uses hourly solar data and hourly load data to determine the amount of energy exchanged with electrical grid for each hour of the simulated year. The resulting information is useful in assessing the impact of the system on demand for electrical energy of a building that uses it. The software also aggregates these hourly results in daily, monthly and full year sums. The software finds the financial benefit of the system as the difference in grid electrical energy cost between two simultaneously considered cases. One is with load supplied only by the electrical grid, while the other is with the photovoltaic system present and contributing energy. The software supports the energy pricing scheme used in Jordan for domestic consumers, which is based on slices of monthly consumption. By projecting the yearly financial results on the system lifetime, the application weighs the financial benefit resulting from using the system against its cost, thus facilitating an economical evaluation.

  6. Autonomous Active Power Control for Islanded AC Microgrids with Photovoltaic Generation and Energy Storage System

    DEFF Research Database (Denmark)

    Wu, Dan; Tang, Fen; Dragicevic, Tomislav

    2014-01-01

    In an islanded AC microgrid with distributed energy storage system (ESS), photovoltaic (PV) generation and loads, a coordinated active power regulation is required to ensure efficient utilization of renewable energy, while keeping the ESS from overcharge and over discharge conditions. In this paper...

  7. Rooftop photovoltaic (PV) systems for industrial halls: Achieving economic benefit via lowering energy demand

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2012-01-01

    Industrial halls are characterized with their relatively high roof-to-floor ratio, which facilitates ready deployment of renewable energy generation, such as photovoltaic (PV) systems, on the rooftop. To promote deployment of renewable energy generation, feed-in tariff (FIT) higher than the

  8. Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation

    Science.gov (United States)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm.

  9. Energy analysis of batteries in photovoltaic systems. Part II: Energy return factors and overall battery efficiencies

    International Nuclear Information System (INIS)

    Rydh, Carl Johan; Sanden, Bjoern A.

    2005-01-01

    Energy return factors and overall energy efficiencies are calculated for a stand-alone photovoltaic (PV)-battery system. Eight battery technologies are evaluated: lithium-ion (nickel), sodium-sulphur, nickel-cadmium, nickel-metal hydride, lead-acid, vanadium-redox, zinc-bromine and polysulphide-bromide. With a battery energy storage capacity three times higher than the daily energy output, the energy return factor for the PV-battery system ranges from 2.2 to 10 in our reference case. For a PV-battery system with a service life of 30 yr, this corresponds to energy payback times between 2.5 and 13 yr. The energy payback time is 1.8-3.3 yr for the PV array and 0.72-10 yr for the battery, showing the energy related significance of batteries and the large variation between different technologies. In extreme cases, energy return factors below one occur, implying no net energy output. The overall battery efficiency, including not only direct energy losses during operation but also energy requirements for production and transport of the charger, the battery and the inverter, is 0.41-0.80. For some batteries, the overall battery efficiency is significantly lower than the direct efficiency of the charger, the battery and the inverter (0.50-0.85). The ranking order of batteries in terms of energy efficiency, the relative importance of different battery parameters and the optimal system design and operation (e.g. the use of air conditioning) are, in many cases, dependent on the characterisation of the energy background system and on which type of energy efficiency measure is used (energy return factor or overall battery efficiency)

  10. Information report from the Economic Affairs commission on photovoltaic energy; Rapport d'information depose en application de l'article 145 du reglement par la commission des affaires economiques sur l'energie photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Today and for several years to come, photovoltaic energy represents only a minimal part of the world's electric power production. Photovoltaic energy is only at its beginnings, however several countries have already taken opportunities in the business. This report gives a comprehensive information about photovoltaic energy (basic principles, conversion systems, photovoltaic power plants, incentive programs in other developed countries, regulations ...) and arguments for the development of a structured photovoltaic energy policy in France.

  11. Integrated photovoltaic-thermal solar energy conversion systems

    Science.gov (United States)

    Samara, G. A.

    1975-01-01

    A combined photovoltaic/thermal collector has been built and is now being tested. Initial tests have concentrated on evaluating the thermal efficiency of the collector before and after the silicon cells are mounted. With likely improvements in bonding between cells and receiver and in the absorptivity of the cells, thermal efficiencies greater than 50% can be expected for the combined receiver operating at 100 C.

  12. In situ UV-visible absorption during spin-coating of organic semiconductors: A new probe for organic electronics and photovoltaics

    KAUST Repository

    Abdelsamie, Maged; Zhao, Kui; Niazi, Muhammad Rizwan; Chou, Kang Wei; Amassian, Aram

    2014-01-01

    Spin-coating is the most commonly used technique for the lab-scale production of solution processed organic electronic, optoelectronic and photovoltaic devices. Spin-coating produces the most efficient solution-processed organic solar cells and has

  13. The electrodeposition of multilayers on a polymeric substrate in flexible organic photovoltaic solar cells

    Science.gov (United States)

    Guedes, Andre F. S.; Guedes, Vilmar P.; Souza, Monica L.; Tartari, Simone; Cunha, Idaulo J.

    2015-09-01

    Flexible organic photovoltaic solar cells have drawn intense attention due to their advantages over competing solar cell technologies. The method utilized to deposit as well as to integrate solutions and processed materials, manufacturing organic solar cells by the Electrodeposition System, has been presented in this research. In addition, we have demonstrated a successful integration of a process for manufacturing the flexible organic solar cell prototype and we have discussed on the factors that make this process possible. The maximum process temperature was 120°C, which corresponds to the baking of the active polymeric layer. Moreover, the new process of the Electrodeposition of complementary active layer is based on the application of voltage versus time in order to obtain a homogeneous layer with thin film. This thin film was not only obtained by the electrodeposition of PANI-X1 on P3HT/PCBM Blend, but also prepared in perchloric acid solution. Furthermore, these flexible organic photovoltaic solar cells presented power conversion efficiency of 12% and the inclusion of the PANI-X1 layer reduced the effects of degradation on these organic photovoltaic panels induced by solar irradiation. Thus, in the Scanning Electron Microscopy (SEM), these studies have revealed that the surface of PANI-X1 layers is strongly conditioned by the dielectric surface morphology.

  14. Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market

    International Nuclear Information System (INIS)

    Gomes, I.L.R.; Pousinho, H.M.I.; Melício, R.; Mendes, V.M.F.

    2017-01-01

    This paper presents an optimal bid submission in a day-ahead electricity market for the problem of joint operation of wind with photovoltaic power systems having an energy storage device. Uncertainty not only due to the electricity market price, but also due to wind and photovoltaic powers is one of the main characteristics of this submission. The problem is formulated as a two-stage stochastic programming problem. The optimal bids and the energy flow in the batteries are the first-stage variables and the energy deviation is the second stage variable of the problem. Energy storage is a way to harness renewable energy conversion, allowing the store and discharge of energy at conveniently market prices. A case study with data from the Iberian day-ahead electricity market is presented and a comparison between joint and disjoint operations is discussed. - • Joint wind and PV systems with energy storage. • Electricity markets. • Stochastic optimization. • Day-ahead market.

  15. Energy production estimation for Kosh-Agach grid-tie photovoltaic power plant for different photovoltaic module types

    Science.gov (United States)

    Gabderakhmanova, T. S.; Kiseleva, S. V.; Frid, S. E.; Tarasenko, A. B.

    2016-11-01

    This paper is devoted to calculation of yearly energy production, demanded area and capital costs for first Russian 5 MW grid-tie photovoltaic (PV) plant in Altay Republic that is named Kosh-Agach. Simple linear calculation model, involving average solar radiation and temperature data, grid-tie inverter power-efficiency dependence and PV modules parameters is proposed. Monthly and yearly energy production, equipment costs and demanded area for PV plant are estimated for mono-, polycrystalline and amorphous modules. Calculation includes three types of initial radiation and temperature data—average day for every month from NASA SSE, average radiation and temperature for each day of the year from NASA POWER and typical meteorology year generated from average data for every month. The peculiarities for each type of initial data and their influence on results are discussed.

  16. Energy production estimation for Kosh-Agach grid-tie photovoltaic power plant for different photovoltaic module types

    International Nuclear Information System (INIS)

    Gabderakhmanova, T S; Frid, S E; Tarasenko, A B; Kiseleva, S V

    2016-01-01

    This paper is devoted to calculation of yearly energy production, demanded area and capital costs for first Russian 5 MW grid-tie photovoltaic (PV) plant in Altay Republic that is named Kosh-Agach. Simple linear calculation model, involving average solar radiation and temperature data, grid-tie inverter power-efficiency dependence and PV modules parameters is proposed. Monthly and yearly energy production, equipment costs and demanded area for PV plant are estimated for mono-, polycrystalline and amorphous modules. Calculation includes three types of initial radiation and temperature data—average day for every month from NASA SSE, average radiation and temperature for each day of the year from NASA POWER and typical meteorology year generated from average data for every month. The peculiarities for each type of initial data and their influence on results are discussed. (paper)

  17. Thermal and electrical energy yield analysis of a directly water cooled photovoltaic module

    Directory of Open Access Journals (Sweden)

    Mtunzi Busiso

    2016-01-01

    Full Text Available Electrical energy of photovoltaic modules drops by 0.5% for each degree increase in temperature. Direct water cooling of photovoltaic modules was found to give improved electrical and thermal yield. A prototype was put in place to analyse the field data for a period of a year. The results showed an initial high performance ratio and electrical power output. The monthly energy saving efficiency of the directly water cooled module was found to be approximately 61%. The solar utilisation of the naturally cooled photovoltaic module was found to be 8.79% and for the directly water cooled module its solar utilisation was 47.93%. Implementation of such systems on households may reduce the load from the utility company, bring about huge savings on electricity bills and help in reducing carbon emissions.

  18. Municipal programs of photovoltaic energy development; Les programmes municipaux de developpement du photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This study presents some remarkable actions carried out in several European municipalities for the promotion and development of photovoltaic applications: installation of solar cells on public buildings, integration of the photovoltaic energy in the urban plan, application in the transportation sector, programs of public information, of promotion, of incitation, of financing, solar electricity trade, promotion of the 'green current'. After a presentation of the general situation of photovoltaic energy in Europe, and of its development in France, nine case-forms present the experience of nine selected European cities in this domain (Amersfoort (NL), Barcelona (ES), Braedstrup (DK), Karlsruhe (DE), Lausanne (CH), Mataro (ES), Muenchen (ES), Palermo (IT), Zurich (CH)). (J.S.)

  19. A Systematic Approach to the Design Optimization of Light-Absorbing Indenofluorene Polymers for Organic Photovoltaics

    KAUST Repository

    Kirkpatrick, James

    2012-01-09

    The synthesis and optimization of new photovoltaic donor polymers is a time-consuming process. Computer-based molecular simulations can narrow the scope of materials choice to the most promising ones, by identifying materials with desirable energy levels and absorption energies. In this paper, such a retrospective analysis is presented of a series of fused aromatic push-pull copolymers. It is demonstrated that molecular calculations do indeed provide good estimates of the absorption energies measured by UV-vis spectroscopy and of the ionization potentials measured by photoelectron spectroscopy in air. Comparing measured photovoltaic performance of the polymer series to the trend in efficiencies predicted by computation confirms the validity of this approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells.

    Science.gov (United States)

    Li, Yongxi; Lin, Jiu-Dong; Che, Xiaozhou; Qu, Yue; Liu, Feng; Liao, Liang-Sheng; Forrest, Stephen R

    2017-11-29

    The absence of near-infrared (NIR) solar cells with high open circuit voltage (V oc ) and external quantum efficiency (EQE) has impeded progress toward achieving organic photovoltaic (OPV) power conversion efficiency PCE > 15%. Here we report a small energy gap (1.3 eV), chlorinated nonfullerene acceptor-based solar cell with PCE = 11.2 ± 0.4%, short circuit current of 22.5 ± 0.6 mA cm -2 , V oc = 0.70 ± 0.01 V and fill factor of 0.71 ± 0.02, which is the highest performance reported to date for NIR single junction OPVs. Importantly, the EQE of this NIR solar cell reaches 75%, between 650 and 850 nm while leaving a transparency window between 400 and 600 nm. The semitransparent OPV using an ultrathin (10 nm) Ag cathode shows PCE = 7.1 ± 0.1%, with an average visible transmittance of 43 ± 2%, Commission d'Eclairage chromaticity coordinates of (0.29, 0.32) and a color rendering index of 91 for simulated AM1.5 illumination transmitted through the cell.

  1. An innovation management approach for renewable energy deployment. The case of solar photovoltaic (PV) technology

    International Nuclear Information System (INIS)

    Shum, Kwok L.; Watanabe, Chihiro

    2009-01-01

    In the discussion of renewable energy deployment, one key concern is the various types of barriers that renewable energy needs to overcome before it can make its way into the mainstream. These barriers increasingly shift from the technical to the economic and institutional. The most general types of barriers are due to technological 'lock-out' or to carbon 'lock-in' [. Understanding carbon lock-in. Energy Policy 28(12), 817-830 (Elsevier)]. These barriers necessitate the development of a strategic approach to deploy or introduce renewable energy technology. Existing energy policy has mostly relied upon financial subsidies, market-based instruments such as renewable portfolio standards, and production tax credits to stimulate the installation and use of equipment to generate electricity from renewable sources. These strategies target mostly system-level decisions of end users. The purpose of this paper is to present an innovation perspective on the renewable energy deployment process by introducing the innovation value-added chain (IVC) framework. The analytical objective of IVC is to evaluate the impact of a new innovation on the various stakeholders and players in the development and deployment processes. A deployment or innovation strategy that causes minimal disruption, enhances existing competencies, or expedites new learning by the players has a higher chance to succeed. We draw upon two sets of system integration costs data for grid-connected distributed photovoltaic (PV) systems in Japan and the United States and demonstrate conspicuously different dynamic learning behaviors. These two deployment models can be understood in terms of how the IVCs are organized and how PV system integration projects are performed in the field. In addition, IVC-based findings can inform the targeted application of conventional financial subsidies for learning investment not only at the PV system level, but also at the (localized) system integration level. This would involve

  2. Renewable energy distributed power system with photovoltaic/ thermal and bio gas power generators

    International Nuclear Information System (INIS)

    Haider, M.U.; Rehman, S.U.

    2011-01-01

    The energy shortage and environmental pollution is becoming an important problem in these days. Hence it is very much important to use renewable power technologies to get rid of these problems. The important renewable energy sources are Bio-Energy, Wind Energy, Hydrogen Energy, Tide Energy, Terrestrial Heat Energy, Solar Energy, Thermal Energy and so on. Pakistan is rich in all these aspects particularly in Solar and Thermal Energies. In major areas of Pakistan like in South Punjab, Sind and Baluchistan the weather condition are very friendly for these types of Renewable Energies. In these areas Solar Energy can be utilized by solar panels in conjunction with thermal panels. The Photovoltaic cells are used to convert Solar Energy directly to Electrical Energy and thermal panels can be uses to convert solar energy into heat energy and this heat energy will be used to drive some turbine to get Electrical Energy. The Solar Energy can be absorbed more efficiently by any given area of Solar Panel if these two technologies can be combined in such a way that they can work together. The first part of this paper shows that how these technologies can be combined. Furthermore it is known to all that photovoltaic/thermal panels depend entirely on weather conditions. So in order to maintain constant power a biogas generator is used in conjunction with these. (author)

  3. Application of Circuit Model for Photovoltaic Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Natarajan Pandiarajan

    2012-01-01

    Full Text Available Circuit model of photovoltaic (PV module is presented in this paper that can be used as a common platform by material scientists and power electronic circuit designers to develop better PV power plant. Detailed modeling procedure for the circuit model with numerical dimensions is presented using power system blockset of MATLAB/Simulink. The developed model is integrated with DC-DC boost converter with closed-loop control of maximum power point tracking (MPPT algorithm. Simulation results are validated with the experimental setup.

  4. Photovoltaic test and demonstration project. [residential energy program

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The considered project consists of three subprojects related to applications, device performance and diagnostics, and endurance testing. The objectives of the applications subproject include the determination of the operating characteristics for a variety of photovoltaic conversion systems. A system test facility is being constructed in this connection and a prototype residence experiment is to be conducted. Market demand for solar cells is to be stimulated by demonstrating suitability of solar cells for specific near-term applications. Activities conducted in connection with device performance studies and diagnostics are also discussed along with developments in the area of endurance testing.

  5. Photovoltaic Cells

    OpenAIRE

    Karolis Kiela

    2012-01-01

    The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  6. Improved uniformity in high-performance organic photovoltaics enabled by (3-aminopropyl)triethoxysilane cathode functionalization.

    Science.gov (United States)

    Luck, Kyle A; Shastry, Tejas A; Loser, Stephen; Ogien, Gabriel; Marks, Tobin J; Hersam, Mark C

    2013-12-28

    Organic photovoltaics have the potential to serve as lightweight, low-cost, mechanically flexible solar cells. However, losses in efficiency as laboratory cells are scaled up to the module level have to date impeded large scale deployment. Here, we report that a 3-aminopropyltriethoxysilane (APTES) cathode interfacial treatment significantly enhances performance reproducibility in inverted high-efficiency PTB7:PC71BM organic photovoltaic cells, as demonstrated by the fabrication of 100 APTES-treated devices versus 100 untreated controls. The APTES-treated devices achieve a power conversion efficiency of 8.08 ± 0.12% with histogram skewness of -0.291, whereas the untreated controls achieve 7.80 ± 0.26% with histogram skewness of -1.86. By substantially suppressing the interfacial origins of underperforming cells, the APTES treatment offers a pathway for fabricating large-area modules with high spatial performance uniformity.

  7. Symmetry-Breaking Charge Transfer in a Zinc Chlorodipyrrin Acceptor for High Open Circuit Voltage Organic Photovoltaics

    KAUST Repository

    Bartynski, Andrew N.; Gruber, Mark; Das, Saptaparna; Rangan, Sylvie; Mollinger, Sonya; Trinh, Cong; Bradforth, Stephen E.; Vandewal, Koen; Salleo, Alberto; Bartynski, Robert A.; Bruetting, Wolfgang; Thompson, Mark E.

    2015-01-01

    © 2015 American Chemical Society. Low open-circuit voltages significantly limit the power conversion efficiency of organic photovoltaic devices. Typical strategies to enhance the open-circuit voltage involve tuning the HOMO and LUMO positions

  8. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    OpenAIRE

    Owens, Charles; Ferguson, Gretta; Hermenau, Martin; Voroshazi, Eszter; Galagan, Yulia; Zimmermann, Birger; Rösch, Roland; Angmo, Dechan; Teran-Escobar, Gerardo; Uhrich, Christian; Andriessen, Ronn; Hoppe, Harald; Würfel, Uli; Lira-Cantu, Monica; Krebs, Frederik

    2015-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected at regular intervals over six to eight months. Similarly prepared devices were measured indoors, outdoors, and after dark storage. Device architectures are compared. Cells kept indoors performed better ...

  9. Short-Term Forecasting of Electric Energy Generation for a Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Dinh V.T.

    2018-01-01

    Full Text Available This article presents a short-term forecast of electric energy output of a photovoltaic (PV system towards Tomsk city, Russia climate variations (module temperature and solar irradiance. The system is located at Institute of Non-destructive Testing, Tomsk Polytechnic University. The obtained results show good agreement between actual data and prediction values.

  10. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 2: Invited papers

    Science.gov (United States)

    1973-01-01

    A photovoltaic device development plan is reported that considers technological as well as economical aspects of single crystal silicon, polycrystal silicon, cadmium sulfide/copper sulfide thin films, as well as other materials and devices for solar cell energy conversion systems.

  11. A strategic research agenda for photovoltaic solar energy technology : report of the EU PV technology platform

    NARCIS (Netherlands)

    Sinke, W.C.; Zolingen, van R.J.C.; Ballif, C.; Bett, A.; Dimmler, B.; Dimova-Malinovska, D.; Fath, P.; Ferrazza, F.; Gabler, H.-J.; Hall, M.; Marti, A.; Mason, N.; Mellikov, E.; Milner, A.; Mogensen, P.; Panhuber, C.; Pearsall, N.; Poortmans, J.; Protogeropoulos, C.; Sarre, G.; Sarti, D.; Strauss, P.; Topic, M.; Zdanowicz, T.

    2007-01-01

    The EU PV Technology Platform [1] aims at joining forces on a European level to contribute to the further development of photovoltaic solar energy into a competitive technology that can be applied on a large scale and to the strengthening of the position of the European PV industry on the global

  12. Energy performance analysis for a photovoltaic, diesel, battery hybrid power supply system

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-03-01

    Full Text Available This paper looks at an energy performance analysis for a photovoltaic, diesel, and battery hybrid power supply system. The procedure starts by the identification of the hourly load requirements for a typical target consumer and the concept of load...

  13. Efficiency gains of photovoltaic system using latent heat thermal energy storage

    NARCIS (Netherlands)

    Tan, Lippong; Date, Abhijit; Fernandes, Gabriel; Singh, Baljit; Ganguly, Sayantan

    This paper presents experimental assessments of the thermal and electrical performance of photovoltaic (PV) system by comparing the latent heat-cooled PV panel with the naturally-cooled equivalent. It is commonly known that the energy conversion efficiency of the PV cells declines with the increment

  14. Classification of methods for annual energy harvesting calculations of photovoltaic generators

    International Nuclear Information System (INIS)

    Rus-Casas, C.; Aguilar, J.D.; Rodrigo, P.; Almonacid, F.; Pérez-Higueras, P.J.

    2014-01-01

    Highlights: • The paper presents a novel classification of methods for annual energy harvesting calculation of grid-connected PV systems. • The methods are classified in direct and indirect methods. • Direct methods directly calculate the energy. Indirect methods calculate the energy from the power. • The classification can help the PV professionals in order to choose the most suitable method for each application. - Abstract: Estimating the energy provided by the generators of grid-connected photovoltaic systems is important in order to analyze their economic viability and supervise their operation. The energy harvesting calculation of a photovoltaic generator is not trivial; there are a lot of methods for this calculation. The aim of this paper is to develop a novel classification of methods for annual energy harvesting calculation of a generator of a grid-connected photovoltaic system. The methods are classified in two groups: (1) those that indirectly calculate the energy, i.e. they first calculate the power and from this, they calculate the energy, and (2) those that directly calculate the energy. Furthermore, the indirect methods are grouped in two categories: those that first calculate the I–V curve of the generator and from this, they calculate the power, and those that directly calculate the power. The study has shown that the existing methods differ in simplicity and accuracy, so that the proposed classification is useful in order to choose the most suitable method for each specific application

  15. The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices

    OpenAIRE

    Terán-Escobar, Gerardo; Lira-Cantú, Mónica; Krebs, Frederik C.

    2012-01-01

    Seven distinct sets (n >= 12) of state of the art organic photovoltaic devices were prepared by leading research laboratories in a collaboration planned at the Third International Summit on Organic Photovoltaic Stability (ISOS-3). All devices were shipped to RISO DTU and characterized simultaneously up to 1830 h in accordance with established ISOS-3 protocols under three distinct illumination conditions: accelerated full sun simulation; low level indoor fluorescent lighting; and dark storage ...

  16. Exergy, Energy, and Dynamic Parameter Analysis of Indigenously Developed Low-Concentration Photovoltaic System

    OpenAIRE

    Pankaj Yadav; Brijesh Tripathi; Manoj Kumar

    2013-01-01

    Piecewise linear parabolic trough collector (PLPTC) is designed and developed to concentrate solar radiation on monocrystalline silicon based photovoltaic module. A theoretical model is used to perform electrical energy and exergy analysis of low-concentration photovoltaic (LCPV) system working under actual test conditions (ATC). The exergy efficiency of LCPV system is in the range from 5.1% to 4.82% with increasing rate of input exergy rate from 30.81 W to 96.12 W, when conce...

  17. Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM)

    Science.gov (United States)

    Pandey, Rina; Lim, Ju Won; Kim, Jung Hyuk; Angadi, Basavaraj; Choi, Ji Won; Choi, Won Kook

    2018-06-01

    In this study, Iridium (Ir) metallic layer as an ultra-thin surface modifier (USM) was deposited on ITO coated glass substrate using radio frequency magnetron sputtering for improving the photo-conversion efficiency of organic photovoltaic cells. Ultra-thin Ir acts as a surface modifier replacing the conventional hole transport layer (HTL) PEDOT:PSS in organic photovoltaic (OPV) cells with two different active layers P3HT:PC60BM and PTB7:PC70BM. The Ir USM (1.0 nm) coated on ITO glass substrate showed transmittance of 84.1% and work function of >5.0 eV, which is higher than that of ITO (4.5-4.7 eV). The OPV cells with Ir USM (1.0 nm) exhibits increased power conversion efficiency of 3.70% (for P3HT:PC60BM active layer) and 7.28% (for PTB7:PC70BM active layer) under 100 mW/cm2 illumination (AM 1.5G) which are higher than those of 3.26% and 6.95% for the same OPV cells but with PEDOT:PSS as HTL instead of Ir USM. The results reveal that the chemically stable Ir USM layer could be used as an alternative material for PEDOT:PSS in organic photovoltaic cells.

  18. Observatory of photovoltaic solar energy in France. Launching of the 19. edition - Quarterly publication, September 2016

    International Nuclear Information System (INIS)

    2016-09-01

    After a brief and synthetic overview of trends regarding solar photovoltaic energy in France and in the World (evolution of the numbers of connections and installations), this publication proposes graphs which illustrate the evolution of the distribution of new electricity production capacities in France, in Europe and in the USA, the evolution of connected photovoltaic power in the different World regions, a comparison of levelized cost of electricity between the different production sources, the evolution of the share of photovoltaic electricity in raw power consumption, the quarterly evolution of the number and power of connected photovoltaic installations between 2008 and 2016, the quarterly evolution of connections and purchase prices for different power ranges (less than 9 kW, 9-100 kW, 100-250 kW, 250 kW-1 MW, more than 1 MW), the evolution of the number and power of queuing projects, the quarterly evolution of solar photovoltaic electricity purchase prices in France, the evolution of the impact on the CSPE (contribution to the electricity public service)

  19. Assessment of the technology required to develop photovoltaic power system for large scale national energy applications

    Science.gov (United States)

    Lutwack, R.

    1974-01-01

    A technical assessment of a program to develop photovoltaic power system technology for large-scale national energy applications was made by analyzing and judging the alternative candidate photovoltaic systems and development tasks. A program plan was constructed based on achieving the 10 year objective of a program to establish the practicability of large-scale terrestrial power installations using photovoltaic conversion arrays costing less than $0.50/peak W. Guidelines for the tasks of a 5 year program were derived from a set of 5 year objectives deduced from the 10 year objective. This report indicates the need for an early emphasis on the development of the single-crystal Si photovoltaic system for commercial utilization; a production goal of 5 x 10 to the 8th power peak W/year of $0.50 cells was projected for the year 1985. The developments of other photovoltaic conversion systems were assigned to longer range development roles. The status of the technology developments and the applicability of solar arrays in particular power installations, ranging from houses to central power plants, was scheduled to be verified in a series of demonstration projects. The budget recommended for the first 5 year phase of the program is $268.5M.

  20. Optimum technoeconomic energy autonomous photovoltaic solution for remote consumers throughout Greece

    International Nuclear Information System (INIS)

    Kaldellis, J.K.

    2004-01-01

    Autonomous photovoltaic systems have turned into one of the most promising ways to handle the electrification requirements of numerous isolated consumers worldwide. Such an autonomous system comprises a number of photovoltaic panels, properly connected, and a battery storage device, along with the corresponding electronic equipment. Considering the high solar potential of most Greek territories, an integrated study is conducted based on long term solar potential experimental measurements in order to determine the optimum configuration of a stand alone photovoltaic system at representative locations all over Greece. The proposed solution 'guarantees' zero load rejections for all the areas and time periods examined. For this purpose, a fast and reliable numerical code 'PHOTOV-III' has been used. The algorithm provides analytical results concerning the energy autonomy and the operational status of the autonomous system components. Besides, the optimum panel tilt angle, minimizing the first installation cost of a small photovoltaic system, is predicted. Finally, by introducing available financial aspects, it is possible to determine the optimum system dimensions on a minimum first installation cost basis. According to the results obtained, an autonomous photovoltaic system can definitely contribute to solution of the urgent electrification problem of remote consumers spread throughout Greece, also improving their life quality level

  1. 17th European photovoltaic solar energy conference and exhibition, Munich 22.-26.10.2001

    International Nuclear Information System (INIS)

    Nowak, S.

    2002-01-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the photovoltaics (PV) conference and exhibition held in Munich in October 2001 from the Swiss point of view. The contributions made by representatives of Swiss institutions and companies are presented including papers on the progress being made in third generation crystalline and multi-crystalline silicon technology, amorphous and micro-crystalline silicon solar cells, thin film solar cells based on compound semiconductors and thermo-photovoltaics. Further papers deal with PV modules on the market, building-integrated solar power systems and new developments in PV systems technology. The exhibition that accompanied the conference, including the 12 Swiss exhibitors who were present, is reviewed as are international market developments. Contributions concerning the application of photovoltaics in developing countries are also reviewed

  2. Renewable Energy, Authenticity, and Tourism: Social Acceptance of Photovoltaic Installations in a Swiss Alpine Region

    Directory of Open Access Journals (Sweden)

    Annina Helena Michel

    2015-05-01

    Full Text Available With the increasing emergence of renewable energy sites in Switzerland, new impacts on the landscape can be observed. Above the Alpine village of Bellwald, a pilot project testing avalanche barriers as a possible site for photovoltaic installations was inaugurated in 2012. This study focused on social aspects of the project and asked questions about local residents' and tourists' perceptions of and attitudes toward the installations. Its findings reveal that the new elements are not perceived as a drastic intrusion into the landscape, because the view was already affected by the avalanche barriers, which are accepted because of their vital protective function. No significant difference was found between residents' and tourists' evaluation of the new photovoltaic installations. However, different factors influenced the perceptions of these 2 groups. In both groups, conceptions related to place played an important role in the evaluation of possible photovoltaic sites.

  3. Solar thermal power and photovoltaic energy are both developing; Solaire a concentration et solaire photovoltaique: la main dans la main

    Energy Technology Data Exchange (ETDEWEB)

    Le Jannic, N.; Houot, G.

    2010-11-15

    Thermodynamic solar energy and photovoltaic energy are expected to reach together a quarter of the world electricity production by 2050. In France the development of thermodynamic solar plants is hampered by the high cost of land in the sunny regions. As for photovoltaic energy, France has the potentiality to become an important producer. Since 2006, the French government has supported photovoltaic energy by proposing incentive electricity purchase prices guaranteed for 20 years. In 2006, the Ines research institute was founded, one of its research fields is the development of high yield silicon cells. (A.C.)

  4. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells

    Science.gov (United States)

    Liu, Ruchuan

    2014-01-01

    Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells. PMID:28788591

  5. Consensus stability testing protocols for organic photovoltaic materials and devices

    DEFF Research Database (Denmark)

    Reese, Matthew O.; Gevorgyan, Suren; Jørgensen, Mikkel

    2011-01-01

    Procedures for testing organic solar cell devices and modules with respect to stability and operational lifetime are described. The descriptions represent a consensus of the discussion and conclusions reached during the first 3 years of the international summit on OPV stability (ISOS). The proced......Procedures for testing organic solar cell devices and modules with respect to stability and operational lifetime are described. The descriptions represent a consensus of the discussion and conclusions reached during the first 3 years of the international summit on OPV stability (ISOS...

  6. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  7. A Nanoparticle Approach towards Morphology Controlled Organic Photovoltaics (OPV)

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Yan, Quanxiang; Larsen-Olsen, Thue Trofod

    2012-01-01

    Silicon nano-particles grafted with two different organic oligomers were prepared; the oligomers used were a phenylene-vinylene (PV) oligomer and a 3,3'''-didodecylquaterthiophene. The graftings were performed by the use of two different functional groups, the PV oligomer was grafted by a hydroxy...

  8. Origin of size effect on efficiency of organic photovoltaics

    DEFF Research Database (Denmark)

    Manor, Assaf; Katz, Eugene A.; Tromholt, Thomas

    2011-01-01

    It is widely accepted that efficiency of organic solar cells could be limited by their size. However, the published data on this effect are very limited and none of them includes analysis of light intensity dependence of the key cell parameters. We report such analysis for bulk heterojunction sol...

  9. Bidding Strategy of Virtual Power Plant with Energy Storage Power Station and Photovoltaic and Wind Power

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2018-01-01

    Full Text Available For the virtual power plants containing energy storage power stations and photovoltaic and wind power, the output of PV and wind power is uncertain and virtual power plants must consider this uncertainty when they participate in the auction in the electricity market. In this context, this paper studies the bidding strategy of the virtual power plant with photovoltaic and wind power. Assuming that the upper and lower limits of the combined output of photovoltaic and wind power are stochastically variable, the fluctuation range of the day-ahead energy market and capacity price is stochastically variable. If the capacity of the storage station is large enough to stabilize the fluctuation of the output of the wind and photovoltaic power, virtual power plants can participate in the electricity market bidding. This paper constructs a robust optimization model of virtual power plant bidding strategy in the electricity market, which considers the cost of charge and discharge of energy storage power station and transmission congestion. The model proposed in this paper is solved by CPLEX; the example results show that the model is reasonable and the method is valid.

  10. Potential of energy saving with photovoltaic systems; Potencialidad de ahorro de energia con sistemas fotovoltaicos

    Energy Technology Data Exchange (ETDEWEB)

    Guzman S, Eusebio; Bratu S, Neagu [Universidad Autonoma Metropolitana, Mexico, D. F. (Mexico)

    1998-12-31

    This paper presents an approach on the application of photovoltaic systems in energy saving. The problem of the electric energy demand in the coming years is analyzed and its consequences on the environment and on the energy reserves of conventional sources. A model of the electric circuit equivalent to a photovoltaic cell illustrates the behavior of the photovoltaic cell in function of the climatological conditions. The former in order to show some of the limiting factors in this type of generator. Also, the evolution of the applications of the photovoltaic systems and its forecasting in the installed capacity in the next 20 years, is described. [Espanol] En este trabajo se presenta un enfoque de la aplicacion de los sistemas fotovoltaicos en el ahorro de energia. Se plantea el problema del crecimiento de la demanda energetica en los proximos anos y sus consecuencias sobre el medio ambiente y las reservas de energia por fuentes convencionales. Un modelo del circuito electrico equivalente de una celda fotovoltaica ilustra el comportamiento del generador fotovoltaico en funcion de las condiciones climatologicas. Lo anterior con el fin de mostrar algunas limitantes de este tipo de generador. Tambien se describe la evolucion de las aplicaciones de los sistemas fotovoltaicos y el pronostico de la potencia instalada en los proximos 20 anos.

  11. Potential of energy saving with photovoltaic systems; Potencialidad de ahorro de energia con sistemas fotovoltaicos

    Energy Technology Data Exchange (ETDEWEB)

    Guzman S, Eusebio; Bratu S, Neagu [Universidad Autonoma Metropolitana, Mexico, D. F. (Mexico)

    1999-12-31

    This paper presents an approach on the application of photovoltaic systems in energy saving. The problem of the electric energy demand in the coming years is analyzed and its consequences on the environment and on the energy reserves of conventional sources. A model of the electric circuit equivalent to a photovoltaic cell illustrates the behavior of the photovoltaic cell in function of the climatological conditions. The former in order to show some of the limiting factors in this type of generator. Also, the evolution of the applications of the photovoltaic systems and its forecasting in the installed capacity in the next 20 years, is described. [Espanol] En este trabajo se presenta un enfoque de la aplicacion de los sistemas fotovoltaicos en el ahorro de energia. Se plantea el problema del crecimiento de la demanda energetica en los proximos anos y sus consecuencias sobre el medio ambiente y las reservas de energia por fuentes convencionales. Un modelo del circuito electrico equivalente de una celda fotovoltaica ilustra el comportamiento del generador fotovoltaico en funcion de las condiciones climatologicas. Lo anterior con el fin de mostrar algunas limitantes de este tipo de generador. Tambien se describe la evolucion de las aplicaciones de los sistemas fotovoltaicos y el pronostico de la potencia instalada en los proximos 20 anos.

  12. Study on High energy efficiency photovoltaic facility agricultural system in tropical area of China

    Directory of Open Access Journals (Sweden)

    Ge Zhiwu

    2018-01-01

    Full Text Available The photovoltaic facility agriculture is developing rapidly in recent years, but there are many problems brought out, even in some important demonstration projects, due to the lack of standards. In order to solve some of these problems, we set up a photovoltaic facilities agricultural system in Guilinyang University City, Haikou, China and make an in-depth study on the photovoltaic facility agricultural system and its related problems. In this paper we disclose some of the experimental results. We plant corianders under two kinds of solar cell panels and general double glass assembly already sold on the market. Experiments showed that the square format cell panels are much better than row type, and the next one is general double glass assembly sold on the market, the last is the case without any shelter. 30 days after planting, the height of coriander plants are 50mm, 30mm, 23mm and 20mm correspondingly. The two typical solar cell panels have gaps between cells, and can save much more energy and improve power generation efficiency, we arrange the panels at optimum tilted angle, and design the system as open structure to save more energy. The photovoltaic facilities agricultural system we set up in Guilinyang University City can achieve much high solar energy efficiency than others and has broad application prospects.

  13. Electric field dependent photocurrent generation in a thin-film organic photovoltaic device with a [70]fullerene-benzodifuranone dyad.

    Science.gov (United States)

    Ulmann, Pirmin A; Tanaka, Hideyuki; Matsuo, Yutaka; Xiao, Zuo; Soga, Iwao; Nakamura, Eiichi

    2011-12-21

    A [70]fullerene-benzodifuranone acceptor dyad synthesized by a Ag⁺-mediated coupling reaction was used to construct a thin-film organic solar cell. The fullerene and the benzodifuranone dye in the dyad have close-lying LUMO levels in the range of 3.7-3.9 eV, so that energy transfer from the dye to the fullerene can take place. A p-n heterojunction photovoltaic device consisting of a tetrabenzoporphyrin and a [70]fullerene-benzodifuranone dyad showed a weak but discernible contribution from light absorption of the dyad to the photocurrent under both a positive and a negative effective bias. These results indicate that the benzodifuranone moiety attached to the acceptor contributes to light-harvesting by energy transfer.

  14. Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-09-01

    Full Text Available Photovoltaic (PV panels convert a certain amount of incident solar radiation into electricity, while the rest is converted to heat, leading to a temperature rise in the PV. This elevated temperature deteriorates the power output and induces structural degradation, resulting in reduced PV lifespan. One potential solution entails PV thermal management employing active and passive means. The traditional passive means are found to be largely ineffective, while active means are considered to be energy intensive. A passive thermal management system using phase change materials (PCMs can effectively limit PV temperature rises. The PCM-based approach however is cost inefficient unless the stored thermal energy is recovered effectively. The current article investigates a way to utilize the thermal energy stored in the PCM behind the PV for domestic water heating applications. The system is evaluated in the winter conditions of UAE to deliver heat during water heating demand periods. The proposed system achieved a ~1.3% increase in PV electrical conversion efficiency, along with the recovery of ~41% of the thermal energy compared to the incident solar radiation.

  15. Renewable energies: development of photovoltaic for direct generation of electricity. Energias renovables: desarrollo tecnologia fotovoltaica de generacion directa de electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Pantoja Lopez, A

    1994-01-01

    This article presents a study of photovoltaic to directly production electricity. Likewise the article presents the activities and projects of IBERDROLA. In the future the photovoltaic energy will grow after analyzing the efficiency, the operation of installations, market, R+D and technology. Economic and environmental aspects are analyzed as well.

  16. Re-assessment of net energy production and greenhouse gas emissions avoidance after 40 years of photovoltaics development

    NARCIS (Netherlands)

    Louwen, Atse|info:eu-repo/dai/nl/375268456; Van Sark, Wilfried G J H M|info:eu-repo/dai/nl/074628526; Faaij, André P C; Schropp, Ruud E I|info:eu-repo/dai/nl/072502584

    2016-01-01

    Since the 1970s, installed solar photovoltaic capacity has grown tremendously to 230 gigawatt worldwide in 2015, with a growth rate between 1975 and 2015 of 45%. This rapid growth has led to concerns regarding the energy consumption and greenhouse gas emissions of photovoltaics production. We

  17. Rapid and Checkable Electrical Post-Treatment Method for Organic Photovoltaic Devices

    Science.gov (United States)

    Park, Sangheon; Seo, Yu-Seong; Shin, Won Suk; Moon, Sang-Jin; Hwang, Jungseek

    2016-01-01

    Post-treatment processes improve the performance of organic photovoltaic devices by changing the microscopic morphology and configuration of the vertical phase separation in the active layer. Thermal annealing and solvent vapor (or chemical) treatment processes have been extensively used to improve the performance of bulk-heterojunction (BHJ) organic photovoltaic (OPV) devices. In this work we introduce a new post-treatment process which we apply only electrical voltage to the BHJ-OPV devices. We used the commercially available P3HT [Poly(3-hexylthiophene)] and PC61BM (Phenyl-C61-Butyric acid Methyl ester) photovoltaic materials as donor and acceptor, respectively. We monitored the voltage and current applied to the device to check for when the post-treatment process had been completed. This electrical treatment process is simpler and faster than other post-treatment methods, and the performance of the electrically treated solar cell is comparable to that of a reference (thermally annealed) device. Our results indicate that the proposed treatment process can be used efficiently to fabricate high-performance BHJ-OPV devices. PMID:26932767

  18. Joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids

    International Nuclear Information System (INIS)

    Baldi, Simone; Karagevrekis, Athanasios; Michailidis, Iakovos T.; Kosmatopoulos, Elias B.

    2015-01-01

    Highlights: • Energy efficient operation of photovoltaic-equipped interconnected microgrids. • Optimized energy demand for a block of heterogeneous buildings with different sizes. • Multiobjective optimization: matching demand and supply taking into account thermal comfort. • Intelligent control mechanism for heating, ventilating, and air conditioning units. • Optimization of energy consumption and thermal comfort at the aggregate microgrid level. - Abstract: Electrical smart microgrids equipped with small-scale renewable-energy generation systems are emerging progressively as an alternative or an enhancement to the central electrical grid: due to the intermittent nature of the renewable energy sources, appropriate algorithms are required to integrate these two typologies of grids and, in particular, to perform efficiently dynamic energy demand and distributed generation management, while guaranteeing satisfactory thermal comfort for the occupants. This paper presents a novel control algorithm for joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids. Energy demand shaping is achieved via an intelligent control mechanism for heating, ventilating, and air conditioning units. The intelligent control mechanism takes into account the available solar energy, the building dynamics and the thermal comfort of the buildings’ occupants. The control design is accomplished in a simulation-based fashion using an energy simulation model, developed in EnergyPlus, of an interconnected microgrid. Rather than focusing only on how each building behaves individually, the optimization algorithm employs a central controller that allows interaction among the buildings of the microgrid. The control objective is to optimize the aggregate microgrid performance. Simulation results demonstrate that the optimization algorithm efficiently integrates the microgrid with the photovoltaic system that provides free electric energy: in

  19. Role of Stress Factors on the Adhesion of Interfaces in R2R Fabricated Organic Photovoltaics

    DEFF Research Database (Denmark)

    Corazza, Michael; Rolston, Nicholas; Dauskardt, Reinhold H.

    2016-01-01

    adhesion properties. Depth profiling analysis on the fractured samples reveals interdiffusion of layers in the structure, which results in the increase of adhesion and change of the debond path. It is shown that through diffusion and intermixing of internal interfaces coupled stresses can increase......The role of the common stress factors such as high temperature, humidity,and UV irradiation on interface adhesion of roll-to-roll fabricated organic photovoltaic (OPV) devices is investigated. The samples range from bare front electrodes to complete devices. It is shown that applying single stress...... or combinations of stresses onto the samples variably affect the adhesion properties of the different interfaces in the OPV device. It is revealed that while the exposure of the complete devices to the stresses results in the loss of photovoltaic performance, some interfaces in the devices present improved...

  20. A brief history of the development of organic and polymeric photovoltaics

    DEFF Research Database (Denmark)

    Spanggaard, H.; Krebs, Frederik C

    2004-01-01

    In this paper an overview of the development of organic photovoltaics is given, with emphasis on polymer-based solar cells. The observation of photoconductivity in solid anthracene in the beginning of the 19th century marked the start of this field. The first real investigations of photovoltaic (PV......-acceptor cells, including dye/dye, polymer/dye, polymer/polymer and polymer/fullerene blends. Due to the high electron affinity of fullerene, polymer/fullerene blends have been subject to particular investigation during the past decade. Earlier problems in obtaining efficient charge carrier separation have been...... overcome and PCE of more than 3% have been reported. Different strategies have been used to gain better control over the morphology and further improve efficiency. Among these, covalent attachment of fullerenes to the polymer backbone, creating so-called double-cable polymers, is the latest. The improved...

  1. Effect of substrate temperature on orientation of subphthalocyanine molecule in organic photovoltaic cells

    International Nuclear Information System (INIS)

    Chou, Chi-Ta; Tang, Wei-Li; Tai, Yian; Lin, Chien-Hung; Liu, Chin-Hsin J.; Chen, Li-Chyong; Chen, Kuei-Hsien

    2012-01-01

    This study investigates the effect of substrate temperature (T s ) on the boron subphthalocyanine chloride (SubPc) thin film and its power conversion efficiency in SubPc/C 60 heterojunction photovoltaic cells. The orientations of SubPc molecules in thin films determined by X-ray diffraction is strongly correlated with the electronic properties of the organic thin films, and can be controlled by the substrate temperature during the vapor deposition. An optimal substrate temperature of 120 °C has been concluded to induced (221) molecular orientation over the (122) orientation and significantly improve the carrier transport of the SubPc thin film. A SubPc/C 60 heterojunction photovoltaic cells thus fabricated shows higher open-circuit voltage and up to 1.55% conversion efficiency has been achieved, which is attributed to preferential (221) orientation of the SubPc deposited at the elevated temperature.

  2. Alternating Copolymers and Alternative Device Geometries for Organic Photovoltaics

    OpenAIRE

    Inganäs, Olle; Zhang, Fengling; Andersson, Mats R.

    2012-01-01

    The efficiency of conversion of light to electrical energy with the help of conjugated polymers and molecules is rapidly improving. The optical absorption properties of these materials can be designed, and implemented via molecular engineering. Full coverage of the solar spectrum is thus feasible. Narrow absorption spectra allow construction of tandem solar cells. The poor transport properties of these materials require thin devices, which limits optical absorption. Alternative device geometr...

  3. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    Science.gov (United States)

    Wanlass, Mark W [Golden, CO

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  4. Suppressing recombination in polymer photovoltaic devices via energy-level cascades.

    Science.gov (United States)

    Tan, Zhi-Kuang; Johnson, Kerr; Vaynzof, Yana; Bakulin, Artem A; Chua, Lay-Lay; Ho, Peter K H; Friend, Richard H

    2013-08-14

    An energy cascading structure is designed in a polymer photovoltaic device to suppress recombination and improve quantum yields. By the insertion of a thin polymer interlayer with intermediate energy levels, electrons and holes can effectively shuttle away from each other while being spatially separated from recombination. An increase in open-circuit voltage and short-circuit current are observed in modified devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An automotive thermoelectric-photovoltaic hybrid energy system using maximum power point tracking

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Chau, K.T.

    2011-01-01

    In recent years, there has been active research on exhaust gas waste heat energy recovery for automobiles. Meanwhile, the use of solar energy is also proposed to promote on-board renewable energy and hence to improve their fuel economy. In this paper, a new thermoelectric-photovoltaic (TE-PV) hybrid energy system is proposed and implemented for automobiles. The key is to newly develop the power conditioning circuit using maximum power point tracking so that the output power of the proposed TE-PV hybrid energy system can be maximized. An experimental system is prototyped and tested to verify the validity of the proposed system.

  6. Hybrid organic-inorganic heterojunctions for photovoltaic applications

    OpenAIRE

    Dietmüller, Roland

    2012-01-01

    Hybrid organic-inorganic bulk heterojunction solar cells based on silicon nanocrystals (Si-nc) have been realized and investigated. A photo-induced charge transfer could be demonstrated in composites made of silicon nanocrystals and poly(3-hexylthiophene) (P3HT) or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) via light-induced electron spin resonance measurements. With bulk heterojunction solar cells made of P3HT/Si-nc composites in a sandwich structure, open-circuit voltages of up to 0....

  7. Controlling the Solidification of Organic Photovoltaic Blends with Nucleating Agents

    KAUST Repository

    Nekuda Malik, Jennifer A.

    2014-11-20

    Blending fullerenes with a donor polymer for the fabrication of organic solar cells often leads to at least partial vitrification of one, if not both, components. For prototypical poly(3-hexylthiophene):fullerene blend, we show that the addition of a commercial nucleating agent, di(3,4-dimethyl benzylidene)sorbitol, to such binary blends accelerates the crystallization of the donor, resulting in an increase in its degree of crystallinity in as-cast structures. This allows manipulation of the extent of intermixing/ phase separation of the donor and acceptor directly from solution, offering a tool to improve device characteristics such as power conversion efficiency.

  8. Controlling the Solidification of Organic Photovoltaic Blends with Nucleating Agents

    KAUST Repository

    Nekuda Malik, Jennifer A.; Treat, Neil D.; Abdelsamie, Maged; Yu, Liyang; Li, Ruipeng; Smilgies, Detlef-M.; Amassian, Aram; Hawker, Craig J.; Chabinyc, Michael L.; Stingelin, Natalie

    2014-01-01

    Blending fullerenes with a donor polymer for the fabrication of organic solar cells often leads to at least partial vitrification of one, if not both, components. For prototypical poly(3-hexylthiophene):fullerene blend, we show that the addition of a commercial nucleating agent, di(3,4-dimethyl benzylidene)sorbitol, to such binary blends accelerates the crystallization of the donor, resulting in an increase in its degree of crystallinity in as-cast structures. This allows manipulation of the extent of intermixing/ phase separation of the donor and acceptor directly from solution, offering a tool to improve device characteristics such as power conversion efficiency.

  9. High-Efficiency BODIPY-Based Organic Photovoltaics

    KAUST Repository

    Chen, John J.; Conron, Sarah M.; Erwin, Patrick; Dimitriou, Michael; McAlahney, Kyle; Thompson, Mark E.

    2015-01-01

    © 2014 American Chemical Society. A benzannulated boron dipyrromethene (BODIPY, bDIP) molecule exhibiting strong absorption at 640 nm was synthesized. The organic dye was used in an organic solar cell as the electron donor with C60 as the acceptor. The BODIPY dye demonstrated the best performance in lamellar architecture (indium tin oxide (ITO)/bDIP/C60/bathocuproine/Al), giving power conversion efficiency up to 4.5% with short-circuit current (JSC) of 8.7 mA/cm2 and an open-circuit voltage (VOC) of 0.81 V. Neutron reflectivity experiments were performed on the bilayer film to investigate the thickness dependence of JSC. A 13 nm mixed layer was found to be present at the donor/acceptor interface in the bilayer device, formed when the C60 was deposited onto a room temperature bDIP film. Planar-mixed heterojunction devices were fabricated to understand the extent of spontaneous mixing between the donor and acceptor materials. The native mixed region in the bilayer device was shown to most resemble 1:3 bDIP:C60 layer in the structure: (ITO/bDIP/bDIP:C60 blend/C60/bathocuproine/Al).

  10. High-Efficiency BODIPY-Based Organic Photovoltaics

    KAUST Repository

    Chen, John J.

    2015-01-14

    © 2014 American Chemical Society. A benzannulated boron dipyrromethene (BODIPY, bDIP) molecule exhibiting strong absorption at 640 nm was synthesized. The organic dye was used in an organic solar cell as the electron donor with C60 as the acceptor. The BODIPY dye demonstrated the best performance in lamellar architecture (indium tin oxide (ITO)/bDIP/C60/bathocuproine/Al), giving power conversion efficiency up to 4.5% with short-circuit current (JSC) of 8.7 mA/cm2 and an open-circuit voltage (VOC) of 0.81 V. Neutron reflectivity experiments were performed on the bilayer film to investigate the thickness dependence of JSC. A 13 nm mixed layer was found to be present at the donor/acceptor interface in the bilayer device, formed when the C60 was deposited onto a room temperature bDIP film. Planar-mixed heterojunction devices were fabricated to understand the extent of spontaneous mixing between the donor and acceptor materials. The native mixed region in the bilayer device was shown to most resemble 1:3 bDIP:C60 layer in the structure: (ITO/bDIP/bDIP:C60 blend/C60/bathocuproine/Al).

  11. Alternating copolymers and alternative device geometries for organic photovoltaics.

    Science.gov (United States)

    Inganäs, Olle; Zhang, Fengling; Andersson, Mats R

    2012-01-01

    The efficiency of conversion of light to electrical energy with the help of conjugated polymers and molecules is rapidly improving. The optical absorption properties of these materials can be designed, and implemented via molecular engineering. Full coverage of the solar spectrum is thus feasible. Narrow absorption spectra allow construction of tandem solar cells. The poor transport properties of these materials require thin devices, which limits optical absorption. Alternative device geometries for these flexible materials compensate for the optical absorption by light trapping, and allow tandem cells.

  12. Optical enhancement effects of plasmonic nanostructures on organic photovoltaic cells

    KAUST Repository

    Park, Hui Joon

    2015-04-01

    © 2015 Hui Joon Park and L. Jay Guo. Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. All rights reserved. In this article, the optical enhancement effects of plasmonic nanostructures on OPV cells were reviewed as an effective way to resolve the mismatch problems between the short exciton diffusion length in organic semiconductors (around 10 nm) and the large thickness required to fully absorb sunlight (e.g. hundreds of nanometers). Especially, the performances of OPVs with plasmonic nanoparticles in photoactive and buffer layers and with periodic nanostructures were investigated. Furthermore, nanoimprint lithography-based nanofabrication processes that can easily control the dimension and uniformity of structures for large-area and uniform plasmonic nanostructures were demonstrated.

  13. Dicyanovinyl sexithiophenes: self-organization and photovoltaic properties

    Energy Technology Data Exchange (ETDEWEB)

    Levichkova, Marieta; Wynands, David; Levin, Alexandr; Leo, Karl; Riede, Moritz [Institut fuer Angewandte Photophysik, TU Dresden (Germany); Walzer, Karsten; Hildebrandt, Dirk [Heliatek GmbH, Dresden (Germany); Baeuerle, Peter [Institut fuer Organische Chemie II und Neue Materialien, Universitaet Ulm (Germany); Rentenberger, Rosina [Institut fuer Physik, TU Ilmenau (Germany)

    2010-07-01

    Recently, vacuum deposited films consisting of conjugated dicyanovinyl-capped (DCV) oligothiophenes have shown significant potential as photoactive layers in small molecule solar cells. Here, we study the structural and optical properties of films of two DCV-derivatives both comprising six thiophene rings (DCV6Ts) but having different side groups. For both derivatives, neat DCV6T and mixed DCV6T:C{sub 60} films are compared using UV-VIS absorption and photoluminescence spectroscopy, X-ray diffraction (XRD), and atomic force microscopy. It is shown that the modification of the molecular structure results in a structured and red shifted absorption band, which indicates better molecular arrangement in the solid state. The improved self-organization at room temperature deposition is confirmed by XRD. Furthermore, the nanomorphology of the mixed DCV6T:C{sub 60} films is optimized using substrate heating. Bulk heterojunction solar cells with power conversion efficiencies exceeding 4% are presented.

  14. Organic photovoltaics: Crosslinking for optimal morphology and stability

    KAUST Repository

    Rumer, Joseph W.

    2015-04-25

    Organic solar cells now exceed 10% efficiency igniting interest not only in the fundamental molecular design of the photoactive semiconducting materials, but also in overlapping fields such as green chemistry, large-scale processing and thin film stability. For these devices to be commercially useful, they must have lifetimes in excess of 10 years. One source of potential instability, is that the two bicontinuous phases of electron donor and acceptor materials in the photoactive thin film bulk heterojunction, change in dimensions over time. Photocrosslinking of the π-conjugated semiconducting donor polymers allows the thin film morphology to be ‘locked’ affording patterned and stable blends with suppressed fullerene acceptor crystallization. This article reviews the performance of crosslinkable polymers, fullerenes and additives used to-date, identifying the most promising.

  15. Organic photovoltaics: Crosslinking for optimal morphology and stability

    KAUST Repository

    Rumer, Joseph W.; McCulloch, Iain

    2015-01-01

    Organic solar cells now exceed 10% efficiency igniting interest not only in the fundamental molecular design of the photoactive semiconducting materials, but also in overlapping fields such as green chemistry, large-scale processing and thin film stability. For these devices to be commercially useful, they must have lifetimes in excess of 10 years. One source of potential instability, is that the two bicontinuous phases of electron donor and acceptor materials in the photoactive thin film bulk heterojunction, change in dimensions over time. Photocrosslinking of the π-conjugated semiconducting donor polymers allows the thin film morphology to be ‘locked’ affording patterned and stable blends with suppressed fullerene acceptor crystallization. This article reviews the performance of crosslinkable polymers, fullerenes and additives used to-date, identifying the most promising.

  16. Materials Science of Electrodes and Interfaces for High-Performance Organic Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin [Northwestern Univ., Evanston, IL (United States)

    2016-11-18

    The science of organic photovoltaic (OPV) cells has made dramatic advances over the past three years with power conversion efficiencies (PCEs) now reaching ~12%. The upper PCE limit of light-to-electrical power conversion for single-junction OPVs as predicted by theory is ~23%. With further basic research, the vision of such devices, composed of non-toxic, earth-abundant, readily easily processed materials replacing/supplementing current-generation inorganic solar cells may become a reality. Organic cells offer potentially low-cost, roll-to-roll manufacturable, and durable solar power for diverse in-door and out-door applications. Importantly, further gains in efficiency and durability, to that competitive with inorganic PVs, will require fundamental, understanding-based advances in transparent electrode and interfacial materials science and engineering. This team-science research effort brought together an experienced and highly collaborative interdisciplinary group with expertise in hard and soft matter materials chemistry, materials electronic structure theory, solar cell fabrication and characterization, microstructure characterization, and low temperature materials processing. We addressed in unconventional ways critical electrode-interfacial issues underlying OPV performance -- controlling band offsets between transparent electrodes and organic active-materials, addressing current loss/leakage phenomena at interfaces, and new techniques in cost-effective low temperature and large area cell fabrication. The research foci were: 1) Theory-guided design and synthesis of advanced crystalline and amorphous transparent conducting oxide (TCO) layers which test our basic understanding of TCO structure-transport property relationships, and have high conductivity, transparency, and tunable work functions but without (or minimizing) the dependence on indium. 2) Development of theory-based understanding of optimum configurations for the interfaces between oxide electrodes

  17. Capacity analysis of amortization of energy and environmental liabilities photovoltaic panels

    International Nuclear Information System (INIS)

    Tiago Filho, Geraldo Lucio; Adriano Rosa, Carlos

    2011-01-01

    The claim that the use of solar energy through photovoltaic (PV) panels is a clean energy source is based, in most cases, considering only the generation of electricity by the group after manufacture and installation. Without considering the process of manufacture, neither more nor less CO2 emissions are produced, and other degradation environment, which vary according to the country's energy matrix in which these activities develop. This article uses analysis tools to study the impacts of life cycle environment that have passed since the exploitation of mineral deposits used in the manufacture of major components for the manufacture of the panel. In this study adds to quantify the emissions of various gases, emitted in the manufacturing process of photovoltaic modules, expressed in equivalent tons of CO2, resulting from the process and depending on the country in which the panel is manufactured and the depreciation of environmental liabilities, to allow life determination (author)

  18. Ancillary services and optimal household energy management with photovoltaic production

    International Nuclear Information System (INIS)

    Clastres, C.; Ha Pham, T.T.; Wurtz, F.; Bacha, S.

    2010-01-01

    This article presents a project designed to increase the monetary value of photovoltaic (PV) solar production for residential applications. To contribute to developing new functionalities for this type of PV system and an efficient control system for optimising its operation, this article explains how the proposed system could contract to provide ancillary services, particularly the supply of active power services. This provision of service by a PV-based system for domestic applications, not currently available, has prompted a market design proposal related to the distribution system. The mathematical model for calculating the system's optimal operation (sources, load and exchanges of power with the grid) results in a linear mix integer optimisation problem in which the objective is to maximise the profits achieved by taking part in the electricity market. Our approach is illustrated in a case study. PV producers could gain by taking part in the markets for balancing power or ancillary services despite the negative impact on profit of several types of uncertainty, notably the intermittent nature of the PV source.

  19. Spin coated graphene films as the transparent electrode in organic photovoltaic devices

    International Nuclear Information System (INIS)

    Kymakis, E.; Stratakis, E.; Stylianakis, M.M.; Koudoumas, E.; Fotakis, C.

    2011-01-01

    Many research efforts have been devoted to the replacement of the traditional indium–tin-oxide (ITO) electrode in organic photovoltaics. Solution-based graphene has been identified as a potential replacement, since it has less than two percent absorption per layer, relative high carrier mobility, and it offers the possibility of deposition on large area and flexible substrates, compatible with roll to roll manufacturing methods. In this work, soluble reduced graphene films with high electrical conductivity and transparency were fabricated and incorporated in poly(3-hexylthiophene) [6,6]-phenyl-C 61 -butyric acid methyl ester photovoltaic devices, as the transparent electrode. The graphene films were spin coated on glass from an aqueous dispersion of functionalized graphene, followed by a reduction process combining hydrazine vapor and annealing under argon, in order to reduce the sheet resistance. The photovoltaic devices obtained from the graphene films showed lower performance than the reference devices with ITO, due to the higher sheet resistance (2 kΩ/sq) and the poor hydrophilicity of the spin coated graphene films.

  20. Fabrication of ordered bulk heterojunction organic photovoltaic cells using nanopatterning and electrohydrodynamic spray deposition methods.

    Science.gov (United States)

    Park, Sung-Eun; Kim, Sehwan; Kim, Kangmin; Joe, Hang-Eun; Jung, Buyoung; Kim, Eunkyoung; Kim, Woochul; Min, Byung-Kwon; Hwang, Jungho

    2012-12-21

    Organic photovoltaic cells with an ordered heterojunction (OHJ) active layer are expected to show increased performance. In the study described here, OHJ cells were fabricated using a combination of nanoimprinting and electrohydrodynamic (EHD) spray deposition methods. After an electron donor material was nanoimprinted with a PDMS stamp (valley width: 230 nm, period: 590 nm) duplicated from a Si nanomold, an electron acceptor material was deposited onto the nanoimprinted donor layer using an EHD spray deposition method. The donor-acceptor interface layer was observed by obtaining cross-sectional images with a focused ion beam (FIB) microscope. The photocurrent generation performance of the OHJ cells was evaluated with the current density-voltage curve under air mass (AM) 1.5 conditions. It was found that the surface morphology of the electron acceptor layer affected the current and voltage outputs of the photovoltaic cells. When an electron acceptor layer with a smooth thin (250 nm above the valley of the electron donor layer) surface morphology was obtained, power conversion efficiency was as high as 0.55%. The electrohydrodynamic spray deposition method used to produce OHJ photovoltaic cells provides a means for the adoption of large area, high throughput processes.

  1. Morphological analysis of co-evaporated blend films based on initial growth for organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Yosei, E-mail: yosei.shibata@aist.go.jp [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Taima, Tetsuya [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Zhou, Ying; Ohashi, Noboru; Kono, Takahiro [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Yoshida, Yuji, E-mail: yuji.yoshida@aist.go.jp [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • Initial growth mode of co-evaporated films was observed. • Balanced crystal growth leads to improvement of photovoltaic performance. • Crystal growth of fullerene during co-evaporation process was restricted. • The power conversion efficiency of 3% was obtained without electron blocking layer. - Abstract: Bulk heterojunction structures composed of electron donor and acceptor molecules for application in high-performance organic photovoltaics studied. To fabricate these structures, the co-evaporation method in vacuum is commonly applied; however, the details of the crystal growth process during co-evaporation have not yet been established. Here, we focused on structural analysis of blend films composed of phthalocyanine and fullerene based on initial growth stage. Similar crystal growth behavior to that typically observed in single-component molecules is obtained for the films. These results suggest that the competitive crystal growth between donors and acceptors occurs during co-evaporation process. The balance of thin film growth among donor and acceptor molecules can be related to improved photovoltaic performance. The homogeneous blend structure leads to improvement of the power conversion efficiency from 1.2% to 3.0%.

  2. Use of alternative sources of energy: design study of photovoltaic based parking area lighting system

    International Nuclear Information System (INIS)

    Perraki, V.; Loucas, G.

    2000-01-01

    This study proposes the lighting of the parking area and the surrounding streets of the north west part of the University Campus of Patras, using an alternative source of energy, the photovoltaic energy. The sizing of the proposed system results to a reliable, autonomous system which covers the total of the energy needs without any maintenance. Although the energy produced is more expensive compared to the grid electricity nowadays, such solutions seem necessary and well promising for the future as the fuel reserves are limited. (authors)

  3. Investigation of energy management strategies for photovoltaic systems - A predictive control algorithm

    Science.gov (United States)

    Cull, R. C.; Eltimsahy, A. H.

    1983-01-01

    The present investigation is concerned with the formulation of energy management strategies for stand-alone photovoltaic (PV) systems, taking into account a basic control algorithm for a possible predictive, (and adaptive) controller. The control system controls the flow of energy in the system according to the amount of energy available, and predicts the appropriate control set-points based on the energy (insolation) available by using an appropriate system model. Aspects of adaptation to the conditions of the system are also considered. Attention is given to a statistical analysis technique, the analysis inputs, the analysis procedure, and details regarding the basic control algorithm.

  4. Influence of the replacement of alkoxyl with alkylthienyl on photovoltaic properties of two small molecule donors for organic solar cells

    Institute of Scientific and Technical Information of China (English)

    Shaoqing Zhang; Liyan Yang; Delong Liu; Chang He; Jianqi Zhang; Yun Zhang; Jianhui Hou

    2017-01-01

    Two benzo[1,2-b:4,5-b']dithiophene (BDT)-based small molecule (SM) donor materials with identical conjugated backbones but different substitution groups,named as DRTB-O and DRTB-T,were well explored to demonstrate the influence of the replacement of alkoxy with alkylthienyl on their photovoltaic properties in fullerene-based and fullerene-free organic solar cells (OSCs).The study shows that the two SM donors possess similar absorption spectra and energy levels but different crystalline structures in solid films.The carrier transport property and phase separation morphologies of the blend films have also been fully investigated.By employing PC71BM as the acceptor,the power conversion efficiency (PCE) of DRTB-O:PC71BM and DRTB-T:PC71BM based devices were 4.91% and 7.08%,respectively.However,by blending with IDIC,the two SM donors exhibited distinctly different photovoltaic properties in fullerene-free OSCs,and the PCE of DRTB-O:IDIC and DRTB-T:IDIC based devices were 0.15% and 9.06%,respectively.These results indicate that the replacement of alkoxyl with alkylthienyl in designing SM donor materials plays an important role in the application of fullerene-free OSCs.

  5. Organic Photovoltaic Cells Based on PbPc Nanocolumns Prepared by Glancing Angle Deposition

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2013-01-01

    Full Text Available Organic small material lead phthalocyanine (PbPc nanocolumns were prepared via glancing angle deposition (GLAD on indium tin oxide (ITO coated glass substrates. Organic electron acceptor materials fullerene (C60 was evaporated onto the nanocolumn PbPc thin films to prepare heterojunction structure ITO/PbPc/C60/Bphen/Al organic photovoltaic cells (OPVs. It is worthwhile to mention that C60 molecules firstly fill the voids between PbPc nanocolumns and then form impact C60 layer. The interpenetrating electron donor/acceptor structure effectively enhances interface between electron donor and electron acceptor, which is beneficial to exciton dissociation. The short circuit current density (Jsc of organic photovoltaic devices (OPVs based on PbPc nanocolumn was increased from 1.19 mA/cm2 to 1.74 mA/cm2, which should be attributed to the increase of interface between donor and acceptor. The effect of illumination intensity on the performance of OPVs was investigated by controlling the distance between light source and sample, and the Jsc of two kind of OPVs was increased along with the increase of illumination intensity.

  6. DC-sputtered MoO{sub x} thin-films as hole transport layer in organic photovoltaic

    Energy Technology Data Exchange (ETDEWEB)

    Cauduro, Andre L.F.; Ahmadpour, Mehrad; Rubahn, Horst-Guenter; Madsen, Morten, E-mail: cauduro@mci.sdu.dk [NanoSYD, University of Southern Denmark (Denmark); Reis, Roberto dos; Chen, Gong; Schmid, Andreas [National Center for Electron Microscopy, The Molecular Foundry, LBNL, Berkeley, CA (United States); Methivier, Christophe [Sorbonne Universites, UPMC Univ Paris 06, CNRS UMR, Laboratoire de Reactivite de Surface (LRS) (France); Witkowski, Nadine [Sorbonne Universites, UPMC Univ Paris 06, UMR CNRS, Institut des Nanosciences de Paris (INSP) (France); Fichtner, Paulo F.P. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)

    2016-07-01

    Full text: Molybdenum-oxide (MoO{sub x}) thin-films have attracted a lot of attention in the past years due to their unique ability to act as interfacial layers in novel electronics and energy applications. In the work presented here, large tuning possibilities in the electronic and optoelectronic properties of MoO{sub x} thin-films deposited by reactive sputtering using different oxygen partial pressures and annealing conditions are demonstrated along with the implementation of the films in organic photovoltaic. MoO{sub x} thin-films deposited under low oxygen partial pressure present a high conductivity of around 3.22 S.cm{sup -1}, however, as the oxygen partial pressure increases, the conductivity of the resulting films drops by up to around 10 orders of magnitude as the [O]/[Mo] ratio changes from 2.57 to beyond 3.00. Optical absorption measurements also show drastic changes mostly within the 0.60 eV - 2.50 eV spectral region for the same increase in oxygen concentration in [1]. UPS and XPS studies are conducted for accessing information about the work function and surface composition of the thin-films. The XPS spectra registered on the Mo 3d core level reveal how the oxidation state of Mo is affected by the partial pressure of oxygen during film growth. The work function of the films increase with annealing temperature and oxygen content, and span a tuning range of about 2 eV. To extract the spatially resolved work function values from the sputtered films, we use in addition Low Energy Electron Microscopy (LEEM). Finally, the application of the MoO{sub x} thin-films in organic optoelectronic devices is investigated by employing them as hole transport layers in small molecule photovoltaic, here based on DBP and C70. The work thus demonstrates a viable method for tuning the electronic and optoelectronic properties of MoO{sub x} thin-films, which can be applied in combination with a wide range of materials in e.g. organic photovoltaic. [1] A.L. Fernandes Cauduro

  7. Optoelectronic insights into the photovoltaic losses from photocurrent, voltage, and energy perspectives

    Science.gov (United States)

    Shang, Aixue; An, Yidan; Ma, Dong; Li, Xiaofeng

    2017-08-01

    Photocurrent and voltage losses are the fundamental limitations for improving the efficiency of photovoltaic devices. It is indeed that a comprehensive and quantitative differentiation of the performance degradation in solar cells will promote the understanding of photovoltaic physics as well as provide a useful guidance to design highly-efficient and cost-effective solar cells. Based on optoelectronic simulation that addresses electromagnetic and carrier-transport responses in a coupled finite-element method, we report a detailed quantitative analysis of photocurrent and voltage losses in solar cells. We not only concentrate on the wavelength-dependent photocurrent loss, but also quantify the variations of photocurrent and operating voltage under different forward electrical biases. Further, the device output power and power losses due to carrier recombination, thermalization, Joule heat, and Peltier heat are studied through the optoelectronic simulation. The deep insight into the gains and losses of the photocurrent, voltage, and energy will contribute to the accurate clarifications of the performance degradation of photovoltaic devices, enabling a better control of the photovoltaic behaviors for high performance.

  8. Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, J.; Jadraque, E.; Alegre, J.; Martinez, G. [Department of Civil Engineering, University of Granada (Spain)

    2010-09-15

    Fossil fuel energy resources are becoming increasingly scarce. Given the negative environmental impacts (e.g. greenhouse gas emissions) that accompany their use, it is hardly surprising that the development of renewable energies has become a major priority in the world today. Andalusia, with a mean solar radiation of 4.75 kWh/m{sup 2} per day and a surface area of 87,597 km{sup 2}, is the region in Europe with the highest solar energy potential. This research study determined the solar energy potential in Andalusia for grid-connected photovoltaic systems installed on residential rooftops. A methodology was developed for this purpose, which first involved a description of building characteristics, followed by the calculation of the useful roof surface area where photovoltaic arrays could be installed. In the next phase of the study, the mean solar irradiation characteristics were defined as well as the technical parameters of the photovoltaic systems. All of these factors allowed us to estimate the amount of electricity that could be potentially generated per year by solar panels. (author)

  9. Modelling of storage of the photovoltaic energy by super-capacitors

    International Nuclear Information System (INIS)

    Camara, Mohamed Ansoumane

    2011-01-01

    The storage by ultra-capacitors of photovoltaic energy is modeled in order to have an accurate and accessible model to integrate ultra-capacitors into solar energy conversion systems. Ultra-capacitors are modeled by a multi-branch circuit representation composed of resistors and capacitors with variable voltage whose values are determined by an accurate characterization experiment. Moreover, all the elements of a typical photovoltaic energy conversion system are modeled by using the Matlab/Simulink software (solar radiation, photovoltaic arrays, regulator, batteries and charges). The energy storage model by ultra-capacitors is then validated by the good agreement of measured values taken in real conditions with the results provided by simulations. Finally, two examples are proposed and discussed: the determination of the storage duration of ultra-capacitors versus solar irradiance and ambient temperature, and the integration of ultra-capacitors in the electrical feeding system of a DC motor to reduce the electrical current peak of the battery at the start of the motor. (author) [fr

  10. Optimal Sizing of Decentralized Photovoltaic Generation and Energy Storage Units for Malaysia Residential Household Using Iterative Method

    Directory of Open Access Journals (Sweden)

    Rahman Hasimah Abdul

    2016-01-01

    Full Text Available World’s fuel sources are decreasing, and global warming phenomena cause the necessity of urgent search for alternative energy sources. Photovoltaic generating system has a high potential, since it is clean, environmental friendly and secure energy sources. This paper presents an optimal sizing of decentralized photovoltaic system and electrical energy storage for a residential household using iterative method. The cost of energy, payback period, degree of autonomy and degree of own-consumption are defined as optimization parameters. A case study is conducted by employing Kuala Lumpur meteorological data, typical load profile from rural area in Malaysia, decentralized photovoltaic generation unit and electrical storage and it is analyzed in hourly basis. An iterative method is used with photovoltaic array variable from 0.1kW to 4.0kW and storage system variable from 50Ah to 400Ah was performed to determine the optimal design for the proposed system.

  11. Composition Modeling and Equivalence of an Integrated Power Generation System of Wind, Photovoltaic and Energy Storage Unit

    Institute of Scientific and Technical Information of China (English)

    WANG Haohuai; TANG Yong; HOU Junxian; ZOU Jiangfeng; LIANGShuang; SU Feng

    2011-01-01

    The characteristic of wind and solar generation is random and fluctuant. In order to improve their generation performance, the integrated power generation of wind, photovoltaic (PV) and energy storage is a focus in the study. In this paper,

  12. Photovoltaic generator. Estimate of the energy produced by neural networks; Generador fotovoltaico. Estimacion de la energia producida mediante redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Almonacid, F.; Rus, C.; Perez-Higueras, P.; Hontoria, L.

    2010-07-01

    Despite the great technological advances in photovoltaic and in particular in network-connected systems, efforts are still required in research, technological development and innovation (i + d + i) must be aimed primarily at addressing the different system parts. one aspect that can help achieve this goal is majorette estimation methods of energy produced by photovoltaic generators. There are a number of cases resulting in a decrease of the expected energy. In this paper we will compare a standard method widely used in the estimation of the power of the photovoltaic generator with another novel method, developed at the University of Jaen, based on artificial neural networks (ANN). (Author) 9 refs.

  13. Design and development of hybrid energy generator (photovoltaics) with solar tracker

    Science.gov (United States)

    Mohiuddin, A. K. M.; Sabarudin, Mohamad Syabil Bin; Khan, Ahsan Ali; Izan Ihsan, Sany

    2017-03-01

    This paper is the outcome of a small scale hybrid energy generator (hydro and photovoltaic) project. It contains the photovoltaics part of the project. The demand of energy resources is increasing day by day. That is why people nowadays tend to move on and changes their energy usage from using fossil fuels to a cleaner and green energy like hydro energy, solar energy etc. Nevertheless, energy is hard to come by for people who live in remote areas and also campsites in the remote areas which need continuous energy sources to power the facilities. Thus, the purpose of this project is to design and develop a small scale hybrid energy generator to help people that are in need of power. This main objective of this project is to develop and analyze the effectiveness of solar trackers in order to increase the electricity generation from solar energy. Software like Solidworks and Arduino is used to sketch and construct the design and also to program the microcontroller respectively. Experimental results show the effectiveness of the designed solar tracker sytem.

  14. Architectures and criteria for the design of high efficiency organic photovoltaic cells

    Science.gov (United States)

    Rand, Barry; Forrest, Stephen R; Pendergrast Burk, Diane

    2015-03-31

    A method for fabricating an organic photovoltaic cell includes providing a first electrode; depositing a series of at least seven layers onto the first electrode, each layer consisting essentially of a different organic semiconductor material, the organic semiconductor material of at least an intermediate layer of the sequence being a photoconductive material; and depositing a second electrode onto the sequence of at least seven layers. One of the first electrode and the second electrode is an anode and the other is a cathode. The organic semiconductor materials of the series of at least seven layers are arranged to provide a sequence of decreasing lowest unoccupied molecular orbitals (LUMOs) and a sequence of decreasing highest occupied molecular orbitals (HOMOs) across the series from the anode to the cathode.

  15. PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings

    International Nuclear Information System (INIS)

    Saber, Esmail M.; Lee, Siew Eang; Manthapuri, Sumanth; Yi, Wang; Deb, Chirag

    2014-01-01

    Air pollution and climate change increased the importance of renewable energy resources like solar energy in the last decades. Rack-mounted PhotoVoltaics (PV) and Building Integrated PhotoVoltaics (BIPV) are the most common photovoltaic systems which convert incident solar radiation on façade or surrounding area to electricity. In this paper the performance of different solar cell types is evaluated for the tropical weather of Singapore. As a case study, on-site measured data of PV systems implemented in a zero energy building in Singapore, is analyzed. Different types of PV systems (silicon wafer and thin film) have been installed on rooftop, façade, car park shelter, railing and etc. The impact of different solar cell generations, arrays environmental conditions (no shading, dappled shading, full shading), orientation (South, North, East or West facing) and inclination (between PV module and horizontal direction) is investigated on performance of modules. In the second stage of research, the whole PV systems in the case study are simulated in EnergyPlus energy simulation software with several PV performance models including Simple, Equivalent one-diode and Sandia. The predicted results by different models are compared with measured data and the validated model is used to provide simulation-based energy yield predictions for wide ranges of scenarios. It has been concluded that orientation of low-slope rooftop PV has negligible impact on annual energy yield but in case of PV external sunshade, east façade and panel slope of 30–40° are the most suitable location and inclination. - Highlights: • Characteristics of PV systems in tropics are analyzed in depth. • The ambiguity toward amorphous panel energy yield in tropics is discussed. • Equivalent-one diode and Sandia models can fairly predict the energy yield. • A general guideline is provided to estimate the energy yield of PV systems in tropics

  16. Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system

    International Nuclear Information System (INIS)

    Gazda, Wiesław; Stanek, Wojciech

    2016-01-01

    Highlights: • Biogas cooling, heating and power and photovoltaic systems were studied. • Biogas and solar energy for production of energy carriers were used. • Primary energy savings for trigeneration and photovoltaic plants were examined. • Reduction of CO_2 emission were estimated. - Abstract: The biogas fired tri-generation system for cooling, heating and electricity generation (BCCHP + PV) supported by a photovoltaic system (PV) is discussed and analyzed from energetic and ecological effectiveness point of view. Analyzed system is based on the internal combustion engine and the adsorption machine. For the evaluation of primary energy savings in the BCCHP aided by PV system, the indicators of the total primary energy savings (TPES) and relative primary energy savings ΔPES were defined. Also an analysis is carried out of the reduction of greenhouse gases emission. In the ecological potential evaluation, the environmental impact as an indicator of the total greenhouse gasses reduction (TGHGR) is taken into account. The presented detailed algorithm for the evaluation of the multigeneration system in the global balance boundary can be applied for the analysis of energy effects (consumption of primary energy) as well as ecological effect (emission of greenhouse gasses) for real data (e.g. hour by hour through the year of operation) taking into account random availability of renewable energy. It allows to take into account a very important factor characterized for renewable energy systems (RES) which is the variability or random availability (e.g. in the case of photovoltaic – PV) of primary energy. Particularly in the presented work the effects of the analysis and the application of the discusses algorithms have been demonstrated for the hour-by-hour availability of solar radiation and for the daily changing availability of chemical energy of biogas. Additionally, the energy and ecological evaluation algorithms have been integrated with the methods offered

  17. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage.

    Science.gov (United States)

    Miñambres-Marcos, Víctor Manuel; Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín; Milanés-Montero, María Isabel

    2017-08-11

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don't address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests.

  18. Cost of photovoltaic energy systems as determined by balance-of-system costs

    Science.gov (United States)

    Rosenblum, L.

    1978-01-01

    The effect of the balance-of-system (BOS), i.e., the total system less the modules, on photo-voltaic energy system costs is discussed for multikilowatt, flat-plate systems. Present BOS costs are in the range of 10 to 16 dollars per peak watt (1978 dollars). BOS costs represent approximately 50% of total system cost. The possibility of future BOS cost reduction is examined. It is concluded that, given the nature of BOS costs and the lack of comprehensive national effort focussed on cost reduction, it is unlikely that BOS costs will decline greatly in the next several years. This prognosis is contrasted with the expectations of the Department of Energy National Photovoltaic Program goals and pending legislation in the Congress which require a BOS cost reduction of an order of magnitude or more by the mid-1980s.

  19. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    Science.gov (United States)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  20. Photovoltaic Solar Energy as a Chance and a Need for the Development of the Cuban Economy

    International Nuclear Information System (INIS)

    Casal Rivera, Yanet; Parúas Cuza, Rafael

    2017-01-01

    The photovoltaic systems connected to the electric network as a great opportunity and a need for the Cuban economy. This works intends to present an analysis of a lot of aspects related to the economic feasibility of using solar energy generated by roof-mounted small photovoltaic systems such as some aspects related to the economic and environmental analysis and their contribution to the National and Township development as well as a study of the costs behaviors and its comparison concerning prices in reference to the normal electric power and the new investments for the minor sells of these systems to common people. Finally there is a proposition of actions to encourage the use of this kind of energy in the different sectors of the Cuban economy. (author)

  1. General Committee for solar photovoltaic energy: results and proposals. General committee for solar photovoltaic energy Solar photovoltaic: which realities by 2020? Summarized synthesis + Extended synthesis + Analyses and proposals + Press conference October 27, 2011

    International Nuclear Information System (INIS)

    2011-10-01

    Published by a French professional body which gathers several actors of the solar photovoltaic sector, this document proposes a rather detailed overview of the sector and of its perspectives. It notably outlines that this energy production mode is clean, competitive, creating jobs, and is to become mandatory, that it represents a strategic opportunity to boost the French economy, and that France already possesses actual assets with research and development laboratories, an existing industrial fabric, energy majors, and a committed building sector. It also states some proposals for a stronger development. Theses proposals address power objectives, introduction of adapted purchase tariffs, a support to French and European offers, and so on

  2. Energy Storage Management in Grid Connected Solar Photovoltaic System

    OpenAIRE

    Vidhya M.E

    2015-01-01

    The penetration of renewable sources in the power system network in the power system has been increasing in the recent years. One of the solutions being proposed to improve the reliability and performance of these systems is to integrate energy storage device into the power system network. This paper discusses the modeling of photo voltaic and status of the storage device such as lead acid battery for better energy management in the system. The energy management for the grid conne...

  3. CuS nanoplates from ionic liquid precursors—Application in organic photovoltaic cells

    Science.gov (United States)

    Kim, Yohan; Heyne, Benjamin; Abouserie, Ahed; Pries, Christopher; Ippen, Christian; Günter, Christina; Taubert, Andreas; Wedel, Armin

    2018-05-01

    Hexagonal p-type semiconductor CuS nanoplates were synthesized via a hot injection method from bis(trimethylsilyl)sulfide and the ionic liquid precursor bis(N-dodecylpyridinium) tetrachloridocuprate(ii). The particles have a broad size distribution with diameters between 30 and 680 nm and well-developed crystal habits. The nanoplates were successfully incorporated into organic photovoltaic (OPV) cells as hole conduction materials. The power conversion efficiency of OPV cells fabricated with the nanoplates is 16% higher than that of a control device fabricated without the nanoplates.

  4. Worldwide outdoor round robin study of organic photovoltaic devices and modules

    DEFF Research Database (Denmark)

    Madsen, Morten Vesterager; Gevorgyan, Suren; Pacios, R.

    2014-01-01

    Accurate characterization and reporting of organic photovoltaic (OPV) device performance remains one of the important challenges in the field. The large spread among the efficiencies of devices with the same structure reported by different groups is significantly caused by different procedures......-to-roll coated OPV cells and modules conducted among 46 laboratories worldwide is presented, where the samples and the testing equipment were integrated in a compact suitcase that served both as a sample transportation tool and as a holder and test equipment during testing. In addition, an internet based...

  5. Comparative Indoor and Outdoor Degradation of Organic Photovoltaic Cells via Inter-laboratory Collaboration

    DEFF Research Database (Denmark)

    Owens, Charles; Ferguson, Gretta Mae; Hermenau, Martin

    2016-01-01

    We report on the degradation of organic photovoltaic (OPV) cells in both indoor and outdoor environments. Eight different research groups contributed state of the art OPV cells to be studied at Pomona College. Power conversion efficiency and fill factor were determined from IV curves collected...... at regular intervals over six to eight months. Similarly prepared devices were measured indoors, outdoors, and after dark storage. Device architectures are compared. Cells kept indoors performed better than outdoors due to the lack of temperature and humidity extremes. Encapsulated cells performed better due...

  6. Poly(sodium 4-styrenseulfonate)-modified monolayer graphene for anode applications of organic photovoltaic cells

    Science.gov (United States)

    Zhou, Yongfang; Wang, Min; Wang, Liang; Liu, Shuli; Chen, Shufen; Cao, Kun; Shang, Wenjuan; Mai, Jiangquan; Zhao, Baomin; Feng, Jing; Lu, Xinhui; Huang, Wei

    2017-09-01

    An insulated poly(sodium 4-styrenseulfonate) (PSS) was used to modify monolayer graphene for anode applications of organic photovoltaics (OPVs). With this PSS interfacial modification layer, the OPVs showed a significant increase of 56.4% in efficiency due to an improved work function and hydrophilic feature of graphene and an enlarged recombination resistance of carriers/excitons. Doping a highly contorted 1,2,5-thiadiazole-fused 12-ring polyaromatic hydrocarbon into the active layer to form ternary blended OPVs further enlarged the recombination resistance of carriers/excitons and improved light absorption of the active layer, with which a high power conversion efficiency of 6.29% was acquired.

  7. Photosensitive self-assembling materials as functional dopants for organic photovoltaic cells

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Iwan, A.; Cigl, Martin; Boharewicz, B.; Tazbir, I.; Wójcik, K.; Sikora, A.; Hamplová, Věra

    2016-01-01

    Roč. 6, č. 14 (2016), s. 11577-11590 ISSN 2046-2069 R&D Projects: GA MŠk 7AMB13PL041; GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : self-assembling materials * functional dopants * organic photovoltaic cells * azo group * liquid crystal Subject RIV: JI - Composite Materials Impact factor: 3.108, year: 2016

  8. Probing the Energy Level Alignment and the Correlation with Open-Circuit Voltage in Solution-Processed Polymeric Bulk Heterojunction Photovoltaic Devices.

    Science.gov (United States)

    Yang, Qing-Dan; Li, Ho-Wa; Cheng, Yuanhang; Guan, Zhiqiang; Liu, Taili; Ng, Tsz-Wai; Lee, Chun-Sing; Tsang, Sai-Wing

    2016-03-23

    Energy level alignment at the organic donor and acceptor interface is a key to determine the photovoltaic performance in organic solar cells, but direct probing of such energy alignment is still challenging especially for solution-processed bulk heterojunction (BHJ) thin films. Here we report a systematic investigation on probing the energy level alignment with different approaches in five commonly used polymer:[6,6]-phenyl-C71-butyric acid methyl ester (PCBM) BHJ systems. We find that by tuning the weight ratio of polymer to PCBM the electronic features from both polymer and PCBM can be obtained by photoemission spectroscopy. Using this approach, we find that some of the BHJ blends simply follow vacuum level alignment, but others show strong energy level shifting as a result of Fermi level pinning. Independently, by measuring the temperature-dependent open-circuit voltage (VOC), we find that the effective energy gap (Eeff), the energy difference between the highest occupied molecular orbital of the polymer donor (EHOMO-D) and lowest unoccupied molecular orbital of the PCBM acceptor (ELUMO-A), obtained by photoemission spectroscopy in all polymer:PCBM blends has an excellent agreement with the extrapolated VOC at 0 K. Consequently, the photovoltage loss of various organic BHJ photovoltaic devices at room temperature is in a range of 0.3-0.6 V. It is believed that the demonstrated direct measurement approach of the energy level alignment in solution-processed organic BHJ will bring deeper insight into the origin of the VOC and the corresponding photovoltage loss mechanism in organic photovoltaic cells.

  9. Ideal Operation of a Photovoltaic Power Plant Equipped with an Energy Storage System on Electricity Market

    OpenAIRE

    Markku Järvelä; Seppo Valkealahti

    2017-01-01

    There is no natural inertia in a photovoltaic (PV) generator and changes in irradiation can be seen immediately at the output power. Moving cloud shadows are the dominant reason for fast PV power fluctuations taking place typically within a minute between 20 to 100% of the clear sky value roughly 100 times a day, on average. Therefore, operating a utility scale grid connected PV power plant is challenging. Currently, in many regions, renewable energy sources such as solar and wind receive fee...

  10. Project for the establishment of photovoltaic and aeolian renewable energy station in the TLC field

    International Nuclear Information System (INIS)

    Coccia, S.

    2000-01-01

    The rising problems connected with atmospheric (environmental) pollution, the difficulties reaching telecommunication sites placed in inaccessible areas with electric lines, can induce everyone to look for new solutions for the power supplying of TLC devices. The renewable energy systems, even if more expensive in proportion, have the required specifications. This study was made to assess, from a technical and economical point of view, the possibility to build photovoltaic and aeolian equipments [it

  11. Acceleration of the solar-thermal energy development but still some brakes upon photovoltaic conversion

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    France shows today the highest growth rate for solar thermal energy with respect to other European countries. This market is structuring and tries to favour quality. A label for systems certification has been presented in January 2007. Photovoltaic conversion has been tied up for a long time by poorly attractive power repurchase tariffs. It benefits now from a propitious framework for its development even if some financial incentive questions relative to the integration of solar panels to buildings remain unanswered. (J.S.)

  12. A low-power photovoltaic system with energy storage for radio communications: Description and design methodology

    Science.gov (United States)

    Chapman, C. P.; Chapman, P. D.; Lewison, A. H.

    1982-01-01

    A low power photovoltaic system was constructed with approximately 500 amp hours of battery energy storage to provide power to an emergency amateur radio communications center. The system can power the communications center for about 72 hours of continuous nonsun operation. Complete construction details and a design methodology algorithm are given with abundant engineering data and adequate theory to allow similar systems to be constructed, scaled up or down, with minimum design effort.

  13. A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting

    OpenAIRE

    Zhaoxuan Li; SM Mahbobur Rahman; Rolando Vega; Bing Dong

    2016-01-01

    We evaluate and compare two common methods, artificial neural networks (ANN) and support vector regression (SVR), for predicting energy productions from a solar photovoltaic (PV) system in Florida 15 min, 1 h and 24 h ahead of time. A hierarchical approach is proposed based on the machine learning algorithms tested. The production data used in this work corresponds to 15 min averaged power measurements collected from 2014. The accuracy of the model is determined using computing error statisti...

  14. The use of photovoltaic energy in pig husbandry farms

    International Nuclear Information System (INIS)

    Maraziti, F.

    2002-01-01

    This paper investigates the possible use of solar energy in substitution of traditional fossil energy in a livestock farm. The energy consumption of a pigsty is determined, taking into account its thermal balance, the present energy expenses and the economical and environmental advantages derived from the adoption of the proposed alternative technology. At the moment the cost of technology is too high to promote it to a large extent and only with a 75% investment help, deriving from a national law called '10,000 solar roofs', one can lower the calculated cost of the electricity produced by solar modules compared to the one of fossil origin [it

  15. Kepler-Chevreux: 100 billions invested in solar photovoltaic and wind energy produce more energy than with oil

    International Nuclear Information System (INIS)

    Danielo, Olivier

    2014-01-01

    This article discusses the calculation of a new index created by Kepler-Chevreux experts: the energy return on invested capital, EROCI. This index reveals the benefit of solar-energy and wind-energy based electro-mobility compared to the oil-based thermo-mobility. This index only takes economic issues into account, but not the benefits in terms of public health, environment, climate or geopolitics. It also outlines that whenever oil prices increase or decrease, the oil sector has reached a dead end, and that photovoltaic and wind energy present a growing interest among not only ecologists but also finance experts

  16. Seawater pumping as an electricity storage solution for photovoltaic energy systems

    International Nuclear Information System (INIS)

    Manfrida, Giampaolo; Secchi, Riccardo

    2014-01-01

    The stochastic nature of several renewable energy sources has raised the problem of designing and building storage facilities, which can help the electricity grid to sustain larger and larger contribution of renewable energy. Seawater pumped electricity storage is proposed as a good option for PV (Photovoltaic) or solar thermal power plants, located in suitable places close to the coast line. Solar radiation has a natural daily cycle, and storage reservoirs of limited capacity can substantially reduce the load to the electricity grid. Different modes of pump operation (fixed or variable speed) are considered, the preliminary sizing of the PV field and seawater reservoir is performed, and the results are comparatively assessed over a year-long simulated operation. The results show that PV pumped storage, even if not profitable in the present situation of the renewable energy Italian electricity market, is effective in decreasing the load on the transmission grid, and would possibly be attractive in the future, also in the light of developing off-grid applications. - Highlights: • A grid-connected seawater pumping system using photovoltaic power is proposed and its performance analyzed. • Year-round simulations are run with different sizes of photovoltaic field and reservoir. • An analysis is run about the profitability of the storage system, examining performance indexes and the cost of plant. • The system proposed appears near to attract the interest of the market

  17. Statistical Modeling of Energy Production by Photovoltaic Farms

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Pelikán, Emil; Krč, Pavel; Eben, Kryštof; Musílek, P.

    2011-01-01

    Roč. 5, č. 9 (2011), s. 785-793 ISSN 1934-8975 Grant - others:GA AV ČR(CZ) M100300904 Institutional research plan: CEZ:AV0Z10300504 Keywords : electrical energy * solar energy * numerical weather prediction model * nonparametric regression * beta regression Subject RIV: BB - Applied Statistics, Operational Research

  18. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  19. Photovoltaic Plants Generation Improvement Using Li-Ion Batteries as Energy Buffer

    DEFF Research Database (Denmark)

    Beltran, H.; Swierczynski, Maciej Jozef; Luna, A.

    2011-01-01

    This paper analyzes the PV power plants operability improvement obtained when introducing energy storage (ES) systems which allow decoupling the power received from the sun on the photovoltaic (PV) panels from the power injected by the power plant into the grid. Two energy management strategies a...... are presented and analyzed, using Li-ion batteries as the energy storage buffer. The generated power redistribution and its variability reduction are All the results obtained in this paper are based on one year long simulations which used real irradiance data sampled every two minutes....

  20. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  1. Solar energy and job creation benefits of photovoltaics in times of high unemployment

    International Nuclear Information System (INIS)

    Hohmeyer, O.H.

    1994-01-01

    Solar energy is normally discussed under the aspects of its medium to long term contribution to the global energy supply and its present cost. The situation is characterized by the benefits of an abundant renewable energy supply option o the one side and comparatively high internal energy production costs of solar energy on the other. Besides the environmental and health benefits of renewables not taken into account in cost comparisons, solar energy has a significantly higher job creation potential as conventional energy supply options. The paper gives an introduction into the basic methodological aspects of comparing job creation effects of different energy technologies and reports on the latest results of ongoing research on the specific effects of photovoltaics as compared to conventional electricity generation

  2. Tuning the Optoelectronic Properties of Vinylene-Linked Donor−Acceptor Copolymers for Organic Photovoltaics

    KAUST Repository

    Ko, Sangwon

    2010-08-24

    Five new donor-acceptor copolymers containing the electron acceptor benzothiadiazole (BTZ) linked to the electron donors fluorene (FL) or cyclopentadithiophene (CPDT) via vinylene units were synthesized to study polymer structure-property relationships in organic photovoltaic devices. Both alternating (P) and random copolymers (P1-P4) were prepared via Suzuki and Stille polycondensations, respectively. The cyclopentadithiophene copolymers (P2 and P4) have smaller electrochemical band gaps (1.79 and 1.64 eV) compared to the fluorene-containing copolymers (2.08 and 1.95 eV for P1 and P3). However, the presence of CPDT raises the electrochemical HOMO energy levels (-4.83 and-4.91 eV for P2 and P4) compared to the FL copolymers (-5.06 and-5.15 eV for P1 and P3) leading to small open circuit voltages (Voc) in solar cells. The primary solution and thin-film UV-vis absorption peaks of P3 and P4, which do not contain alkylated thiophenes appended to the BTZ unit, are at lower energy and have larger absorption coefficients than their P1 and P2 counterparts. Detailed theoretical analyses of the geometric structure, electronic structure, and excited-state vertical transitions using density functional theory provide direct insight into the interplay between the structural modifications and resulting electronic and optical changes. A high molecular weight (Mn = 25 kg/mol) polymer with a large degree of polymerization (DPn = 21) was easily achieved for the random copolymer P1, leading to thin films with both a larger absorption coefficient and a larger hole mobility compared to the analogous alternating polymer P (Mn = 22 kg/mol, DPn = 18). An improved short circuit current and a power conversion efficiency up to 1.42% (Jsc = 5.82 mA/cm2, Voc = 0.765 V, and FF = 0.32) were achieved in bulk heterojunction solar cells based on P1. © 2010 American Chemical Society.

  3. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    Science.gov (United States)

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  4. Intelligent Photovoltaic Maximum Power Point Tracking Controller for Energy Enhancement in Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Subiyanto

    2013-01-01

    Full Text Available Photovoltaic (PV system is one of the promising renewable energy technologies. Although the energy conversion efficiency of the system is still low, but it has the advantage that the operating cost is free, very low maintenance and pollution-free. Maximum power point tracking (MPPT is a significant part of PV systems. This paper presents a novel intelligent MPPT controller for PV systems. For the MPPT algorithm, an optimized fuzzy logic controller (FLC using the Hopfield neural network is proposed. It utilizes an automatically tuned FLC membership function instead of the trial-and-error approach. The MPPT algorithm is implemented in a new variant of coupled inductor soft switching boost converter with high voltage gain to increase the converter output from the PV panel. The applied switching technique, which includes passive and active regenerative snubber circuits, reduces the insulated gate bipolar transistor switching losses. The proposed MPPT algorithm is implemented using the dSPACE DS1104 platform software on a DS1104 board controller. The prototype MPPT controller is tested using an agilent solar array simulator together with a 3 kW real PV panel. Experimental test results show that the proposed boost converter produces higher output voltages and gives better efficiency (90% than the conventional boost converter with an RCD snubber, which gives 81% efficiency. The prototype MPPT controller is also found to be capable of tracking power from the 3 kW PV array about 2.4 times more than that without using the MPPT controller.

  5. International Photovoltaic Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    The International Photovoltaics Program Plan is in direct response to the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (PL 95-590). As stated in the Act, the primary objective of the plan is to accelerate the widespread use of photovoltaic systems in international markets. Benefits which could result from increased international sales by US companies include: stabilization and expansion of the US photovoltaic industry, preparing the industry for supplying future domestic needs; contribution to the economic and social advancement of developing countries; reduced world demand for oil; and improvements in the US balance of trade. The plan outlines programs for photovoltaic demonstrations, systems developments, supplier assistance, information dissemination/purchaser assistance, and an informaion clearinghouse. Each program element includes tactical objectives and summaries of approaches. A program management office will be established to coordinate and manage the program plan. Although the US Department of Energy (DOE) had the lead responsibility for preparing and implementing the plan, numerous federal organizations and agencies (US Departments of Commerce, Justice, State, Treasury; Agency for International Development; ACTION; Export/Import Bank; Federal Trade Commission; Small Business Administration) were involved in the plan's preparation and implementation.

  6. Characteristics Study of Photovoltaic Thermal System with Emphasis on Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Yong Chuah Yee

    2018-01-01

    Full Text Available Solar energy is typically collected through photovoltaic (PV to generate electricity or through thermal collectors as heat energy, they are generally utilised separately. This project is done with the purpose of integrating the two systems to improve the energy efficiency. The idea of this photovoltaic-thermal (PVT setup design is to simultaneously cool the PV panel so it can operate at a lower temperature thus higher electrical efficiency and also store the thermal energy. The experimental data shows that the PVT setup increased the electrical efficiency of the standard PV setup from 1.64% to 2.15%. The integration of the thermal collector also allowed 37.25% of solar energy to be stored as thermal energy. The standard PV setup harnessed only 1.64% of the solar energy, whereas the PVT setup achieved 39.4%. Different flowrates were tested to determine its effects on the PVT setup’s electrical and thermal efficiency. The various flowrate does not significantly impact the electrical efficiency since it did not significantly impact the cooling of the panel. The various flowrates resulted in fluctuating thermal efficiencies, the relation between the two is inconclusive in this project.

  7. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system

    OpenAIRE

    Richards, B.S.; Capão, D.P.S.; Schäfer, Andrea

    2008-01-01

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration-nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized u...

  8. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    Science.gov (United States)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  9. Proceedings of the international photovoltaic solar energy conference held in Glasgow 1-5 May 2000

    International Nuclear Information System (INIS)

    Anon.

    2001-02-01

    The European Photovoltaic Solar Energy Conferences are dedicated to accelerating the impetus towards sustainable development of global PV markets. The 16th in the series, held in Glasgow UK, brought together more than 1500 delegates from 72 countries, and provided an important and vital forum for information exchange in the field. The Conference Proceedings place on record a new phase of market development and scientific endeavour in the PV industry, representing current and innovative thinking in all aspects of the science, technology, markets and business of photovoltaics. In three volumes, the Proceedings present some 790 papers selected for presentation by the scientific review committee of the 16th European Photovoltaic Solar Energy Conference. The Comprehensive range of topics covered comprises: Fundamentals, Novel Devices and New Materials. Thin Film Cells and Technologies. Space Cells and Systems. Crystalline Silicon Solar Cells and Technologies. PV Integration in Buildings. PV Modules and Components of PV Systems. Implementation, Strategies, National Programs and Financing Schemes. Market Deployment in Developing Countries. (author)

  10. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics.

    Science.gov (United States)

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W; Ryu, Koungmin; Thompson, Mark E; Zhou, Chongwu

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness ( approximately 0.9 nm) and offered sheet resistance down to 230 Omega/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (eta) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138 degrees , whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60 degrees . Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications.

  11. Fullerene C70 as a p-type donor in organic photovoltaic cells

    International Nuclear Information System (INIS)

    Zhuang, Taojun; Wang, Xiao-Feng; Sano, Takeshi; Kido, Junji; Hong, Ziruo; Li, Gang; Yang, Yang

    2014-01-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C 70 , known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C 70 layer even up to 100 nm thick in PHJ cells, suggesting the superior potential of fullerene C 70 as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm 2 , an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  12. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4- ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness (∼ 0.9 nm) and offered sheet resistance down to 230 Ω/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (η) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138°, whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60°. Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications. © 2010 American Chemical Society.

  13. Impact of Interfacial Molecular Conformation and Aggregation State on the Energetic Landscape and Performance in Organic Photovoltaics

    KAUST Repository

    Ngongang Ndjawa, Guy Olivier

    2016-11-25

    In organic photovoltaics (OPVs) the key processes relevant to device operation such as exciton dissociation and free carriers recombination occur at the donor-acceptor (D-A) interface. OPV devices require the bulk heterojunction (BHJ) architecture to function efficiently. In these BHJs, D-A interfaces are arranged in three dimensions, which makes molecular arrangements at these interfaces ill defined and hard to characterize. In addition, molecular materials used in OPVs are inherently disordered and may exhibit variable degrees of structural order in the same BHJ. Yet, D-A molecular arrangements and structure are crucial because they shape the energy landscape and photovoltaic (PV) performance in OPVs. Studies that use well-defined model systems to look in details at the interfacial molecular structure in OPVs and link it to interfacial energy landscape and device operation are critically lacking. We have used in situ photoelectron spectroscopy and ex situ x-ray scattering to study D-A interfaces in tailored bilayers and BHJs based on small molecule donors. We show preferential miscibility at the D-A interface depending on molecular conformation in zinc phthalocyanine (ZnPc)/ C60 bilayers and we derive implications for exciton dissociation. Using sexithiophene (6T), a crystalline donor, we show that the energy landscape at the D-A interface varies markedly depending on the molecular composition of the BHJ. Both the ionization energies of sexithiophene and C60 shift by over ~0.4 eV while the energy of the charge transfer state shifts by ~0.5 eV depending on composition. Such shifts create a downward energy landscape that helps interfacial excitons to overcome their binding energies. Finally, we demonstrate that when both disordered and ordered phases of D coexist at the interface, low-lying energy states form in ordered phases and significantly limit the Voc in devices. Overall our work underlines the importance of the aggregation and conformation states of

  14. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Mohammadnezami

    2015-03-01

    Full Text Available A complete hybrid system including a photovoltaic cell, a wind turbine, and battery is modeled to determine the best approach for sizing the system to meet the electrical energy needs of a residential building. In evaluating system performance, the city of Tehran is used as a case study. Matlab software is used for analyzing the data and optimizing the system for the given application. Further, the cost of the system design is investigated, and shows that the electrical cost of the hybrid system in Tehran is 0.62 US$/kWh, which is 78% less expensive than a wind turbine system and 34% less expensive than a photovoltaic system.

  15. Utilization of photovoltaic solar energy technology for rural electricity supply at Sabah

    International Nuclear Information System (INIS)

    Mohd Noh Dalimin

    1996-01-01

    The conversion of sunlight to electrical energy using photovoltaic systems for lighting, water pumping, telecommunications and vaccine refrigeration are already proven, commercially available and in many, are economically viable. More and more houses in rural areas of Sabah are connected to solar powered infra structural development needs such as street lights, radio repeater station, telecommunication and high-voltage beacons. To meet the infra structural and environmental challenges, especially in remote locations and with prospects of greater economic competitiveness, central and distributed grid connected photovoltaic systems are now being evaluated in Mandahan, Papar and in Marak Parak, Kota Marudu. This paper reports on the progress with the application of the technology and the prospects for wider dissemination

  16. Life-cycle assessment of photovoltaic systems: results of Swiss studies on energy chains

    Energy Technology Data Exchange (ETDEWEB)

    Dones, Roberto [Paul Scherrer Inst., Villigen (Switzerland); Frischknecht, Rolf [Federal Institute of Technology, Zurich (Switzerland)

    1998-04-01

    The methodology used and results obtained for grid-connected photovoltaic (PV) plants in recent Swiss life-cycle assessment (LCA) studies on current and future energy systems are discussed. Mono- and polycrystalline silicon cell technologies utilised in current panels as well as monocrystalline and amorphous cells for future applications were analysed from Swiss conditions. The environmental inventories of slanted-roof solar panels and large plants are presented. Greenhouse gas emissions from present and future electricity systems are compared. The high electricity requirements for manufacturing determine most of the environmental burdens associated with current photovoltaics. However, due to increasing efficiency of production processes and cells, the environmental performance of PV systems is likely to improve substantially in the future. (Author)

  17. Life-cycle assessment of photovoltaic systems: results of Swiss studies on energy chains

    International Nuclear Information System (INIS)

    Dones, Roberto; Frischknecht, Rolf

    1998-01-01

    The methodology used and results obtained for grid-connected photovoltaic (PV) plants in recent Swiss life-cycle assessment (LCA) studies on current and future energy systems are discussed. Mono- and polycrystalline silicon cell technologies utilised in current panels as well as monocrystalline and amorphous cells for future applications were analysed from Swiss conditions. The environmental inventories of slanted-roof solar panels and large plants are presented. Greenhouse gas emissions from present and future electricity systems are compared. The high electricity requirements for manufacturing determine most of the environmental burdens associated with current photovoltaics. However, due to increasing efficiency of production processes and cells, the environmental performance of PV systems is likely to improve substantially in the future. (Author)

  18. International and national organizations within nuclear energy

    International Nuclear Information System (INIS)

    Sandstroem, S.

    1975-03-01

    A survey is given of the organization, objective and action of international and national organizations working with nuclear energy. Five types of organizations are treated: international governmental organizations, international non-governmental organizations, international organizations dealing with ionizing radiation, nordic organizations, and Swedish organizations. Special attention is payed to the Swedish participation in the different organizations. (K.K)

  19. New Quebec renewable energy organization

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, D.; Salaff, S.

    1998-04-01

    The recent formation of the Quebec Association for the Production of Renewable Energy (l`Association quebecoise de la production d`energie renouvelable - AQPER) was announced. The Association is becoming the centre of the Quebec private electricity generation industry. By communicating the industry`s message to the public the organization gives much needed visibility to renewable resources, new forms of energy and sustainable development. The new group is an outgrowth of the former Quebec Association of Private Hydroelectricity Producers. In its new reincarnation, the organization represents all forms of renewables, small and medium hydro, wind, solar, forest and agricultural biomass and urban waste. With deregulation of the electricity market, specifically the creation of the Regie de l`energie` in Quebec, the wider role is a welcome boost for renewable energy development in the province. In one of its first actions the AQPER recommended that all hydroelectric sites up to 50 MW be reserved for development exclusively by the private sector, in conformity with the Quebec energy policy announced in 1996.

  20. Silicon Schottky photovoltaic diodes for solar energy conversion

    Science.gov (United States)

    Anderson, W. A.

    1975-01-01

    Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.

  1. Forecasting of Hourly Photovoltaic Energy in Canarian Electrical System

    Science.gov (United States)

    Henriquez, D.; Castaño, C.; Nebot, R.; Piernavieja, G.; Rodriguez, A.

    2010-09-01

    The Canarian Archipelago face similar problems as most insular region lacking of endogenous conventional energy resources and not connected to continental electrical grids. A consequence of the "insular fact" is the existence of isolated electrical systems that are very difficult to interconnect due to the considerable sea depths between the islands. Currently, the Canary Islands have six isolated electrical systems, only one utility generating most of the electricity (burning fuel), a recently arrived TSO (REE) and still a low implementation of Renewable Energy Resources (RES). The low level of RES deployment is a consequence of two main facts: the weakness of the stand-alone grids (from 12 MW in El Hierro up to only 1 GW in Gran Canaria) and the lack of space to install RES systems (more than 50% of the land protected due to environmental reasons). To increase the penetration of renewable energy generation, like solar or wind energy, is necessary to develop tools to manage them. The penetration of non manageable sources into weak grids like the Canarian ones causes a big problem to the grid operator. There are currently 104 MW of PV connected to the islands grids (Dec. 2009) and additional 150 MW under licensing. This power presents a serious challenge for the operation and stability of the electrical system. ITC, together with the local TSO (Red Eléctrica de España, REE) started in 2008 and R&D project to develop a PV energy prediction tool for the six Canarian Insular electrical systems. The objective is to supply reliable information for hourly forecast of the generation dispatch programme and to predict daily solar radiation patterns, in order to help program spinning reserves. ITC has approached the task of weather forecasting using different numerical model (MM5 and WRF) in combination with MSG (Meteosat Second Generation) images. From the online data recorded at several monitored PV plants and meteorological stations, PV nominal power and energy produced

  2. Nuclear energy and international organizations

    International Nuclear Information System (INIS)

    Lindemann, B.

    1975-01-01

    The historical perspectives of the international organizations' role concerning the development and spreading of the peaceful uses of nuclear energy, taking into account the national interests within and towards these organizations, are portrayed. The difference in political status between the so-called nuclear and non-nuclear States, lodged in Articles I and II of the Non-Proliferation Treaty is an important factor. The effects so far of these differences in status on the interest of nuclear States to participate in organizations and on factors which might possibly lead to conflict between these two groups are presented. The author skirts the cooperation between organizations (international bureaucracies, group-formation of states). (HP/LN) [de

  3. The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices

    DEFF Research Database (Denmark)

    Tanenbaum, David M.; Hermenau, Martin; Voroshazi, Eszter

    2012-01-01

    Seven distinct sets (n ¢ 12) of state of the art organic photovoltaic devices were prepared by leading research laboratories in a collaboration planned at the Third International Summit on Organic Photovoltaic Stability (ISOS-3). All devices were shipped to RISØ DTU and characterized simultaneously...... in the study. We present here design and fabrication details for the seven device sets, benefits and challenges associated with the unprecedented size of the collaboration, characterization protocols, and results both on individual device stability and uniformity of device sets, in the three illumination...

  4. Solar photovoltaic system design optimization by shading analysis to maximize energy generation from limited urban area

    International Nuclear Information System (INIS)

    Rachchh, Ravi; Kumar, Manoj; Tripathi, Brijesh

    2016-01-01

    Highlights: • Scheme to maximize total number of solar panels in a given area. • Enhanced energy output from a fixed area without compromising the efficiency. • Capacity and generated energy are enhanced by more than 25%. - Abstract: In the urban areas the demand of solar power is increasing due to better awareness about the emission of green house gases from conventional thermal power plants and significant decrease in the installation cost of residential solar power plants. But the land cost and the under utilization of available space is hindering its further growth. Under these circumstances, solar photovoltaic system installation needs to accommodate the maximum number of solar panels in either roof-top or land-mounted category. In this article a new approach is suggested to maximize the total number of solar panels in a given area with enhanced energy output without compromising the overall efficiency of the system. The number of solar panels can be maximized in a solar photovoltaic energy generation system by optimizing installation parameters such as tilt angle, pitch, gain factor, altitude angle and shading to improve the energy yield. In this paper mathematical analysis is done to show that the capacity and generated energy can be enhanced by more than 25% for a given land area by optimization various parameters.

  5. Photovoltaics as a worldwide energy option: A case study in development strategy

    International Nuclear Information System (INIS)

    Jones, G.; Pate, R.; Hill, R.

    1991-01-01

    Renewable energy technologies, such as solar thermal electric, photovoltaics (PV), and wind energy have made significant gains in cost and performance in the past decades. As a result, there have been high expectations on the part of the public for these sources to play a major role in future energy supply, especially as environmental concerns about conventional sources increase. Despite these past gains and high expectations, the global potential of renewable energy technologies still remains largely untapped, principally because of issues of industrialization and user acceptance. There is increasing recognition that government energy programs must incorporate a broader strategy than the traditional basic research role if they are to address these issues. Essential elements of this strategy are affordable technology, a healthy industry, sustained market growth, user acceptance, and equitable policy and financial environments. The US Department of Energy (DOE) programs in solar electric conversion have already started the development of the required broader-based effort. This paper presents the status of that work, utilizing the US National Photovoltaic Program as a case study

  6. Optimization of stand-alone photovoltaic systems with hydrogen storage for total energy self-sufficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1991-01-01

    A new method for optimization of stand-alone photovoltaic-hydrogen energy systems is presented. The methodology gives the optimum values for the solar array and hydrogen storage size for any given system configuration and geographical site. Sensitivity analyses have been performed to study the effect of subsystem efficiencies on the total system performance and sizing, and also to identify possibilities for further improvements. Optimum system configurations have also been derived. The results indicate that a solar-hydrogen energy system is a very promising potential alternative for low power applications requiring a total electricity self-sufficiency. (Author).

  7. Optimal Sizing of a Lithium Battery Energy Storage System for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Dulout, Jeremy; Jammes, Bruno; Alonso, Corinne

    2017-01-01

    This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC...... microgrid. Thus, main stress factors influencing both battery lifetime (calendar and cycling) and performances are described and modelled. Power and energy requirements are also discussed through a probabilistic analysis on some years of real data from the ADREAM photovoltaic building of the LAAS...

  8. Sustainable Heating, Cooling and Ventilation of a Plus-Energy House via Photovoltaic/Thermal Panels

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Skrupskelis, Martynas; Sevela, Pavel

    2014-01-01

    Present work addresses the HVAC and energy concerns of the Technical University of Denmark's house, Fold, for the competition Solar Decathlon Europe 2012. Various innovative solutions are investigated; photovoltaic/thermal (PV/T) panels, utilization of ground as a heat source/sink and phase change...... two separate systems. PV/T panels enable the house to perform as a plus-energy house. PV/T also yields to a solar fraction of 63% and 31% for Madrid and Copenhagen, respectively. The ground heat exchanger acts as the heat sink/source of the house. Free cooling enables the same cooling effect...

  9. Evolutionary analysis of technological innovations: the example of solar photovoltaic and wind energy

    International Nuclear Information System (INIS)

    Taillant, Pierre

    2005-01-01

    The objective of this research thesis is to study the building up and the development of technologies for renewable energies considered as environmental radical innovations. In a first part, the author discusses the systemic aspects of innovation and the environmental challenges associated with energy technologies. He examines the main evolutions of energy systems over a long period. In a second part, he addresses innovation incentives in the case of environmental technologies and within the frame of the neo-classical economic theory. The next parts aim at presenting the theoretical framework of the evolutionary analysis of innovation and technical change, and at applying it to the case of technological innovations for renewable energies (photovoltaic and wind energy). World PV market trends are discussed and the technological competition context of this sector is analysed. The evolution of the solar PV technological system in Germany is discussed, as well as the specific case of development of the wind energy technological system in Denmark

  10. On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics.

    Science.gov (United States)

    Yoshikawa, Saya; Saeki, Akinori; Saito, Masahiko; Osaka, Itaru; Seki, Shu

    2015-07-21

    Although the charge separation (CS) and transport processes that compete with geminate and non-geminate recombination are commonly regarded as the governing factors of organic photovoltaic (OPV) efficiency, the details of the CS mechanism remain largely unexplored. Here we provide a systematic investigation on the role of local charge carrier mobility in bulk heterojunction films of ten different low-bandgap polymers and polythiophene analogues blended with methanofullerene (PCBM). By correlating with the OPV performances, we demonstrated that the local mobility of the blend measured by time-resolved microwave conductivity is more important for the OPV output than those of the pure polymers. Furthermore, the results revealed two separate trends for crystalline and semi-crystalline polymers. This work offers guidance in the design of high-performance organic solar cells.

  11. Survey for making a data book related to the development of new energy technology (the photovoltaic power generation); Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (taiyoko hatsuden)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    A data book related to the photovoltaic power generation was made as a part of the systematical preparation of new energy related data. The paper arranged the importance of introducing the photovoltaic power system and the CO2 reduction effect at levels such as the government, local government, industries and individuals which are users. Described were the production quantity by region/type/company, shipment by usage, production amount and prices of solar cells. Arranged was the situation of policies on the photovoltaic power generation in Japan and developed countries. Examples of the introduction in countries including Japan were examined to know the introduction quantity and target. The paper introduced the subsidy system, preferential tax system and loan system for the introduction of the photovoltaic power system in Japan. The flow was summed up from the planning of the system introduction to the installation. The status of handling with the system introduction of government related organs and local governments was stated. The paper showed a list of the companies related to the photovoltaic power system and the references of solar cell makers and solar system installation makers. The development is so quickly made that the renewal every year of the system and the quality enhancement are required. 32 figs., 112 tabs.

  12. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45 % energy conversion efficiency.

    Science.gov (United States)

    Yang, Zhibin; Sun, Hao; Chen, Tao; Qiu, Longbin; Luo, Yongfeng; Peng, Huisheng

    2013-07-15

    Wired for light: Novel wire-shaped photovoltaic devices have been developed from graphene/Pt composite fibers. The high flexibility, mechanical strength, and electrical conductivity of graphene composite fibers resulted in a maximum energy conversion efficiency of 8.45 %, which is much higher than that of other wire-shaped photovoltaic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The photovoltaic sector is continuing on track, just as the extent of solar energy's electricity-generating potential is dawning on the public mind. The annual global installation figure was up more than twofold in 2010 (rising from just short of 7000 MWp in 2009). It leapt to over 16000 MWp, bringing worldwide installed photovoltaic capacity close to 38000 MWp. The photovoltaic power generated in the European Union at the end of 2010 reached 22.5 TWh which means an additional capacity of 13023 MWp during 2010. Concerning the cumulated installed capacity, Germany and Spain rank first and second in the European Union with respectively 17370 MWp and 3808 MWp

  14. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The european Union photovoltaic market reached the limits of the sector supply capacity for the first time. Meanwhile the prospects of growth in the photovoltaic market are still just as good as before. Silicon producers have finally responded to the expectations of the photovoltaic industry by announcing new production capacities. These extensions led to massively investing in new production capacities, in phase with ever greater demand. This increase in demand remains, however dependent upon the energy policy. (A.L.B.)

  15. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    Science.gov (United States)

    Manser, Joseph S.

    The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion. Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation. Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to

  16. Solar energy characteristics and some photovoltaic testing results in Jeddah

    Energy Technology Data Exchange (ETDEWEB)

    Mosalam Shaltout, M A

    1986-01-01

    The data for global radiation were analysed to investigate the correlation with climatological factors. Solar cell module testing under Jeddah climatic conditions was initiated in 1984-1985. The goal of this work was to study the performance and reliability of a commercially-available module in outdoor conditions in order to obtain information on solar cell system design, and to observe the influence of our specific climate conditions on module energy output. The use of results obtained for precise system sizing is discussed.

  17. Department of Energy Photovoltaics Technology Plan (2003-2007)

    Energy Technology Data Exchange (ETDEWEB)

    2003-09-01

    This 10-page brochure provides the R&D targets in 10 technical areas within the DOE Solar Energy Technologies Program's PV Subprogram for 2003 to 2007. This R&D work is set in the context of the progress made in PV during the last 50 years, as shown in a timeline. The brochure briefly describes the basic focus within each of the technical areas. The last section explains aspects of managing the DOE work, including the use of partnerships with industry, universities, and national labs, as well as the development of a systems-driven approach for directing various activities.

  18. Lifetimes of organic photovoltaics: Design and synthesis of single oligomer molecules in order to study chemical degradation mechanisms

    DEFF Research Database (Denmark)

    Alstrup, J.; Norrman, K.; Jørgensen, M.

    2006-01-01

    Degradation mechanisms in organic and polymer photovoltaics are addressed through the study of an organic photovoltaic molecule based on a single phenylene-vinylene-type oligomer molecule. The synthesis of such a model compound with different end-groups is presented that allows for assignment...... of degradation products from different parts of the molecule. Photovoltaic devices with and without C(60) have been prepared and their characteristics under AM1.5 conditions are reported. The degradation of the active phenylene-vinylene compound in darkness and after 20h of illumination were investigated using...... a mass spectrometric technique (time-of-flight secondary ion mass spectrometry) allowing elucidation of the oxidative degradation pathways. (c) 2006 Elsevier B.V. All rights reserved....

  19. Statistical analysis of the electric energy production from photovoltaic conversion using mobile and fixed constructions

    Science.gov (United States)

    Bugała, Artur; Bednarek, Karol; Kasprzyk, Leszek; Tomczewski, Andrzej

    2017-10-01

    The paper presents the most representative - from the three-year measurement time period - characteristics of daily and monthly electricity production from a photovoltaic conversion using modules installed in a fixed and 2-axis tracking construction. Results are presented for selected summer, autumn, spring and winter days. Analyzed measuring stand is located on the roof of the Faculty of Electrical Engineering Poznan University of Technology building. The basic parameters of the statistical analysis like mean value, standard deviation, skewness, kurtosis, median, range, or coefficient of variation were used. It was found that the asymmetry factor can be useful in the analysis of the daily electricity production from a photovoltaic conversion. In order to determine the repeatability of monthly electricity production, occurring between the summer, and summer and winter months, a non-parametric Mann-Whitney U test was used as a statistical solution. In order to analyze the repeatability of daily peak hours, describing the largest value of the hourly electricity production, a non-parametric Kruskal-Wallis test was applied as an extension of the Mann-Whitney U test. Based on the analysis of the electric energy distribution from a prepared monitoring system it was found that traditional forecasting methods of the electricity production from a photovoltaic conversion, like multiple regression models, should not be the preferred methods of the analysis.

  20. Organic MEMS/NEMS-based high-efficiency 3D ITO-less flexible photovoltaic cells

    International Nuclear Information System (INIS)

    Kassegne, Sam; Moon, Kee; Martín-Ramos, Pablo; Majzoub, Mohammad; Őzturk, Gunay; Desai, Krishna; Parikh, Mihir; Nguyen, Bao; Khosla, Ajit; Chamorro-Posada, Pedro

    2012-01-01

    A novel approach based on three-dimensional (3D) architecture for polymeric photovoltaic cells made up of an array of sub-micron and nano-pillars which not only increase the area of the light absorbing surface, but also improve the carrier collection efficiency of bulk-heterojunction organic solar cells is presented. The approach also introduces coating of 3D anodes with a new solution-processable highly conductive transparent polymer (Orgacon™) that replaces expensive vacuum-deposited ITO (indium tin oxide) as well as the additional hole-collecting layer of conventional PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)). In addition, the described procedure is well suited to roll-to-roll high-throughput manufacturing. The high aspect-ratio 3D pillars which form the basis for this new architecture are patterned through micro-electromechanical-system- and nano-electromechanical-system-based processes. For the particular case of P3HT (poly(3-hexylthiophene)) and PCBM (phenyl-C61-butyric acid methyl ester) active material, efficiencies in excess of 6% have been achieved for these photovoltaic cells of 3D architecture using ITO-less flexible PET (polyethylene terephthalate) substrates. This increase in efficiency turns out to be more than twice higher than those achieved for their 2D counterparts. (paper)