WorldWideScience

Sample records for optimization code brmaps

  1. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    Science.gov (United States)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is expected within the next 30 to 50 years, as predicted by the Hubbert model and confirmed by other global energy consumption prognoses. Having invested national resources into the development of NGNP, the technology and experience accumulated during the project needs to be documented clearly and in sufficient detail for young engineers coming on-board at both DOE and NASA to acquire it. Hands on training on reactor operation, test rigs of turbomachinery, and heat exchanger components, as well as computational tools will be needed. Senior scientist/engineers involved with the development of NGNP should also be encouraged to participate as lecturers, instructors, or adjunct professors at local universities having engineering (mechanical, electrical, nuclear/chemical, and/or materials) as one of their fields of study.

  2. Optimal codes as Tanner codes with cyclic component codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Pinero, Fernando; Zeng, Peng

    2014-01-01

    In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe ...

  3. Induction technology optimization code

    International Nuclear Information System (INIS)

    Caporaso, G.J.; Brooks, A.L.; Kirbie, H.C.

    1992-01-01

    A code has been developed to evaluate relative costs of induction accelerator driver systems for relativistic klystrons. The code incorporates beam generation, transport and pulsed power system constraints to provide an integrated design tool. The code generates an injector/accelerator combination which satisfies the top level requirements and all system constraints once a small number of design choices have been specified (rise time of the injector voltage and aspect ratio of the ferrite induction cores, for example). The code calculates dimensions of accelerator mechanical assemblies and values of all electrical components. Cost factors for machined parts, raw materials and components are applied to yield a total system cost. These costs are then plotted as a function of the two design choices to enable selection of an optimum design based on various criteria. (Author) 11 refs., 3 figs

  4. An Optimal Linear Coding for Index Coding Problem

    OpenAIRE

    Pezeshkpour, Pouya

    2015-01-01

    An optimal linear coding solution for index coding problem is established. Instead of network coding approach by focus on graph theoric and algebraic methods a linear coding program for solving both unicast and groupcast index coding problem is presented. The coding is proved to be the optimal solution from the linear perspective and can be easily utilize for any number of messages. The importance of this work is lying mostly on the usage of the presented coding in the groupcast index coding ...

  5. Progress on DART code optimization

    International Nuclear Information System (INIS)

    Taboada, Horacio; Solis, Diego; Rest, Jeffrey

    1999-01-01

    This work consists about the progress made on the design and development of a new optimized version of DART code (DART-P), a mechanistic computer model for the performance calculation and assessment of aluminum dispersion fuel. It is part of a collaboration agreement between CNEA and ANL in the area of Low Enriched Uranium Advanced Fuels. It is held by the Implementation Arrangement for Technical Exchange and Cooperation in the Area of Peaceful Uses of Nuclear Energy, signed on October 16, 1997 between US DOE and the National Atomic Energy Commission of the Argentine Republic. DART optimization is a biannual program; it is operative since February 8, 1999 and has the following goals: 1. Design and develop a new DART calculation kernel for implementation within a parallel processing architecture. 2. Design and develop new user-friendly I/O routines to be resident on Personal Computer (PC)/WorkStation (WS) platform. 2.1. The new input interface will be designed and developed by means of a Visual interface, able to guide the user in the construction of the problem to be analyzed with the aid of a new database (described in item 3, below). The new I/O interface will include input data check controls in order to avoid corrupted input data. 2.2. The new output interface will be designed and developed by means of graphical tools, able to translate numeric data output into 'on line' graphic information. 3. Design and develop a new irradiated materials database, to be resident on PC/WS platform, so as to facilitate the analysis of the behavior of different fuel and meat compositions with DART-P. Currently, a different version of DART is used for oxide, silicide, and advanced alloy fuels. 4. Develop rigorous general inspection algorithms in order to provide valuable DART-P benchmarks. 5. Design and develop new models, such as superplasticity, elastoplastic feedback, improved models for the calculation of fuel deformation and the evolution of the fuel microstructure for

  6. Some optimizations of the animal code

    International Nuclear Information System (INIS)

    Fletcher, W.T.

    1975-01-01

    Optimizing techniques were performed on a version of the ANIMAL code (MALAD1B) at the source-code (FORTRAN) level. Sample optimizing techniques and operations used in MALADOP--the optimized version of the code--are presented, along with a critique of some standard CDC 7600 optimizing techniques. The statistical analysis of total CPU time required for MALADOP and MALAD1B shows a run-time saving of 174 msec (almost 3 percent) in the code MALADOP during one time step

  7. Iterative optimization of quantum error correcting codes

    International Nuclear Information System (INIS)

    Reimpell, M.; Werner, R.F.

    2005-01-01

    We introduce a convergent iterative algorithm for finding the optimal coding and decoding operations for an arbitrary noisy quantum channel. This algorithm does not require any error syndrome to be corrected completely, and hence also finds codes outside the usual Knill-Laflamme definition of error correcting codes. The iteration is shown to improve the figure of merit 'channel fidelity' in every step

  8. Optimal Codes for the Burst Erasure Channel

    Science.gov (United States)

    Hamkins, Jon

    2010-01-01

    Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure

  9. Optimal interference code based on machine learning

    Science.gov (United States)

    Qian, Ye; Chen, Qian; Hu, Xiaobo; Cao, Ercong; Qian, Weixian; Gu, Guohua

    2016-10-01

    In this paper, we analyze the characteristics of pseudo-random code, by the case of m sequence. Depending on the description of coding theory, we introduce the jamming methods. We simulate the interference effect or probability model by the means of MATLAB to consolidate. In accordance with the length of decoding time the adversary spends, we find out the optimal formula and optimal coefficients based on machine learning, then we get the new optimal interference code. First, when it comes to the phase of recognition, this study judges the effect of interference by the way of simulating the length of time over the decoding period of laser seeker. Then, we use laser active deception jamming simulate interference process in the tracking phase in the next block. In this study we choose the method of laser active deception jamming. In order to improve the performance of the interference, this paper simulates the model by MATLAB software. We find out the least number of pulse intervals which must be received, then we can make the conclusion that the precise interval number of the laser pointer for m sequence encoding. In order to find the shortest space, we make the choice of the greatest common divisor method. Then, combining with the coding regularity that has been found before, we restore pulse interval of pseudo-random code, which has been already received. Finally, we can control the time period of laser interference, get the optimal interference code, and also increase the probability of interference as well.

  10. Optimal patch code design via device characterization

    Science.gov (United States)

    Wu, Wencheng; Dalal, Edul N.

    2012-01-01

    In many color measurement applications, such as those for color calibration and profiling, "patch code" has been used successfully for job identification and automation to reduce operator errors. A patch code is similar to a barcode, but is intended primarily for use in measurement devices that cannot read barcodes due to limited spatial resolution, such as spectrophotometers. There is an inherent tradeoff between decoding robustness and the number of code levels available for encoding. Previous methods have attempted to address this tradeoff, but those solutions have been sub-optimal. In this paper, we propose a method to design optimal patch codes via device characterization. The tradeoff between decoding robustness and the number of available code levels is optimized in terms of printing and measurement efforts, and decoding robustness against noises from the printing and measurement devices. Effort is drastically reduced relative to previous methods because print-and-measure is minimized through modeling and the use of existing printer profiles. Decoding robustness is improved by distributing the code levels in CIE Lab space rather than in CMYK space.

  11. Optimized reversible binary-coded decimal adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Glück, Robert

    2008-01-01

    Abstract Babu and Chowdhury [H.M.H. Babu, A.R. Chowdhury, Design of a compact reversible binary coded decimal adder circuit, Journal of Systems Architecture 52 (5) (2006) 272-282] recently proposed, in this journal, a reversible adder for binary-coded decimals. This paper corrects and optimizes...... their design. The optimized 1-decimal BCD full-adder, a 13 × 13 reversible logic circuit, is faster, and has lower circuit cost and less garbage bits. It can be used to build a fast reversible m-decimal BCD full-adder that has a delay of only m + 17 low-power reversible CMOS gates. For a 32-decimal (128-bit....... Keywords: Reversible logic circuit; Full-adder; Half-adder; Parallel adder; Binary-coded decimal; Application of reversible logic synthesis...

  12. Optimizing Extender Code for NCSX Analyses

    International Nuclear Information System (INIS)

    Richman, M.; Ethier, S.; Pomphrey, N.

    2008-01-01

    Extender is a parallel C++ code for calculating the magnetic field in the vacuum region of a stellarator. The code was optimized for speed and augmented with tools to maintain a specialized NetCDF database. Two parallel algorithms were examined. An even-block work-distribution scheme was comparable in performance to a master-slave scheme. Large speedup factors were achieved by representing the plasma surface with a spline rather than Fourier series. The accuracy of this representation and the resulting calculations relied on the density of the spline mesh. The Fortran 90 module db access was written to make it easy to store Extender output in a manageable database. New or updated data can be added to existing databases. A generalized PBS job script handles the generation of a database from scratch

  13. Scaling Optimization of the SIESTA MHD Code

    Science.gov (United States)

    Seal, Sudip; Hirshman, Steven; Perumalla, Kalyan

    2013-10-01

    SIESTA is a parallel three-dimensional plasma equilibrium code capable of resolving magnetic islands at high spatial resolutions for toroidal plasmas. Originally designed to exploit small-scale parallelism, SIESTA has now been scaled to execute efficiently over several thousands of processors P. This scaling improvement was accomplished with minimal intrusion to the execution flow of the original version. First, the efficiency of the iterative solutions was improved by integrating the parallel tridiagonal block solver code BCYCLIC. Krylov-space generation in GMRES was then accelerated using a customized parallel matrix-vector multiplication algorithm. Novel parallel Hessian generation algorithms were integrated and memory access latencies were dramatically reduced through loop nest optimizations and data layout rearrangement. These optimizations sped up equilibria calculations by factors of 30-50. It is possible to compute solutions with granularity N/P near unity on extremely fine radial meshes (N > 1024 points). Grid separation in SIESTA, which manifests itself primarily in the resonant components of the pressure far from rational surfaces, is strongly suppressed by finer meshes. Large problem sizes of up to 300 K simultaneous non-linear coupled equations have been solved on the NERSC supercomputers. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  14. Code Differentiation for Hydrodynamic Model Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Henninger, R.J.; Maudlin, P.J.

    1999-06-27

    Use of a hydrodynamics code for experimental data fitting purposes (an optimization problem) requires information about how a computed result changes when the model parameters change. These so-called sensitivities provide the gradient that determines the search direction for modifying the parameters to find an optimal result. Here, the authors apply code-based automatic differentiation (AD) techniques applied in the forward and adjoint modes to two problems with 12 parameters to obtain these gradients and compare the computational efficiency and accuracy of the various methods. They fit the pressure trace from a one-dimensional flyer-plate experiment and examine the accuracy for a two-dimensional jet-formation problem. For the flyer-plate experiment, the adjoint mode requires similar or less computer time than the forward methods. Additional parameters will not change the adjoint mode run time appreciably, which is a distinct advantage for this method. Obtaining ''accurate'' sensitivities for the j et problem parameters remains problematic.

  15. Optimal, Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2002-01-01

    Reliability based code calibration is considered in this paper. It is described how the results of FORM based reliability analysis may be related to the partial safety factors and characteristic values. The code calibration problem is presented in a decision theoretical form and it is discussed how...... of reliability based code calibration of LRFD based design codes....

  16. Non-binary Hybrid LDPC Codes: Structure, Decoding and Optimization

    OpenAIRE

    Sassatelli, Lucile; Declercq, David

    2007-01-01

    In this paper, we propose to study and optimize a very general class of LDPC codes whose variable nodes belong to finite sets with different orders. We named this class of codes Hybrid LDPC codes. Although efficient optimization techniques exist for binary LDPC codes and more recently for non-binary LDPC codes, they both exhibit drawbacks due to different reasons. Our goal is to capitalize on the advantages of both families by building codes with binary (or small finite set order) and non-bin...

  17. Optimal Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kroon, I. B.; Faber, Michael Havbro

    1994-01-01

    Calibration of partial safety factors is considered in general, including classes of structures where no code exists beforehand. The partial safety factors are determined such that the difference between the reliability for the different structures in the class considered and a target reliability...... level is minimized. Code calibration on a decision theoretical basis is also considered and it is shown how target reliability indices can be calibrated. Results from code calibration for rubble mound breakwater designs are shown....

  18. Optimal super dense coding over memory channels

    OpenAIRE

    Shadman, Zahra; Kampermann, Hermann; Macchiavello, Chiara; Bruß, Dagmar

    2011-01-01

    We study the super dense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and non-unitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The super dense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where non-unitary encoding leads to an improvement in the super dense coding capacity.

  19. Efficient topology optimization in MATLAB using 88 lines of code

    DEFF Research Database (Denmark)

    Andreassen, Erik; Clausen, Anders; Schevenels, Mattias

    2011-01-01

    The paper presents an efficient 88 line MATLAB code for topology optimization. It has been developed using the 99 line code presented by Sigmund (Struct Multidisc Optim 21(2):120–127, 2001) as a starting point. The original code has been extended by a density filter, and a considerable improvemen...... of the basic code to include recent PDE-based and black-and-white projection filtering methods. The complete 88 line code is included as an appendix and can be downloaded from the web site www.topopt.dtu.dk....

  20. Using Peephole Optimization on Intermediate Code

    NARCIS (Netherlands)

    Tanenbaum, A.S.; van Staveren, H.; Stevenson, J.W.

    1982-01-01

    Many portable compilers generate an intermediate code that is subsequently translated into the target machine's assembly language. In this paper a stack-machine-based intermediate code suitable for algebraic languages (e.g., PASCAL, C, FORTRAN) and most byte-addressed mini- and microcomputers is

  1. Coded aperture optimization using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Martineau, A.; Rocchisani, J.M.; Moretti, J.L.

    2010-01-01

    Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.

  2. Optimization Specifications for CUDA Code Restructuring Tool

    KAUST Repository

    Khan, Ayaz

    2017-01-01

    and convert it into an optimized CUDA kernel with user directives in a configuration file for guiding the compiler. RTCUDA also allows transparent invocation of the most optimized external math libraries like cuSparse and cuBLAS enabling efficient design

  3. Optimization Specifications for CUDA Code Restructuring Tool

    KAUST Repository

    Khan, Ayaz

    2017-03-13

    In this work we have developed a restructuring software tool (RT-CUDA) following the proposed optimization specifications to bridge the gap between high-level languages and the machine dependent CUDA environment. RT-CUDA takes a C program and convert it into an optimized CUDA kernel with user directives in a configuration file for guiding the compiler. RTCUDA also allows transparent invocation of the most optimized external math libraries like cuSparse and cuBLAS enabling efficient design of linear algebra solvers. We expect RT-CUDA to be needed by many KSA industries dealing with science and engineering simulation on massively parallel computers like NVIDIA GPUs.

  4. ARC Code TI: Optimal Alarm System Design and Implementation

    Data.gov (United States)

    National Aeronautics and Space Administration — An optimal alarm system can robustly predict a level-crossing event that is specified over a fixed prediction horizon. The code contained in this packages provides...

  5. VVER-440 loading patterns optimization using ATHENA code

    International Nuclear Information System (INIS)

    Katovsky, K.; Sustek, J.; Bajgl, J.; Cada, R.

    2009-01-01

    In this paper the Czech optimization state-of-the-art, new code system development goals and OPAL optimization system are briefly mentioned. The algorithms, maths, present status and future developments of the ATHENA code are described. A calculation exercise of the Dukovany NPP cycles, on increased power using ATHENA, starting with on-coming 24th cycle (303 FPD) continuing with 25th (322 FPD), and 26th (336 FPD); for all cycles K R ≤1.54 is presented

  6. Optimizing the ATLAS code with different profilers

    CERN Document Server

    Kama, S; The ATLAS collaboration

    2013-01-01

    After the current maintenance period, the LHC will provide higher energy collisions with increased luminosity. In order to keep up with these higher rates, ATLAS software needs to speed up substantially. However, ATLAS code is composed of approximately 4M lines, written by many different programmers with different backgrounds, which makes code optimisation a challenge. To help with this effort different profiling tools and techniques are being used. These include well known tools, such as the Valgrind suite and Intel Amplifier; less common tools like PIN, PAPI, and GOODA; as well as techniques such as library interposing. In this talk we will mainly focus on PIN tools and GOODA. PIN is a dynamic binary instrumentation tool which can obtain statistics such as call counts, instruction counts and interrogate functions' arguments. It has been used to obtain CLHEP Matrix profiles, operations and vector sizes for linear algebra calculations which has provided the insight necessary to achieve significant performance...

  7. Optimization of Particle-in-Cell Codes on RISC Processors

    Science.gov (United States)

    Decyk, Viktor K.; Karmesin, Steve Roy; Boer, Aeint de; Liewer, Paulette C.

    1996-01-01

    General strategies are developed to optimize particle-cell-codes written in Fortran for RISC processors which are commonly used on massively parallel computers. These strategies include data reorganization to improve cache utilization and code reorganization to improve efficiency of arithmetic pipelines.

  8. Adaptive RD Optimized Hybrid Sound Coding

    NARCIS (Netherlands)

    Schijndel, N.H. van; Bensa, J.; Christensen, M.G.; Colomes, C.; Edler, B.; Heusdens, R.; Jensen, J.; Jensen, S.H.; Kleijn, W.B.; Kot, V.; Kövesi, B.; Lindblom, J.; Massaloux, D.; Niamut, O.A.; Nordén, F.; Plasberg, J.H.; Vafin, R.; Virette, D.; Wübbolt, O.

    2008-01-01

    Traditionally, sound codecs have been developed with a particular application in mind, their performance being optimized for specific types of input signals, such as speech or audio (music), and application constraints, such as low bit rate, high quality, or low delay. There is, however, an

  9. Italian electricity supply contracts optimization: ECO computer code

    International Nuclear Information System (INIS)

    Napoli, G.; Savelli, D.

    1993-01-01

    The ECO (Electrical Contract Optimization) code written in the Microsoft WINDOWS 3.1 language can be handled with a 286 PC and a minimum of RAM. It consists of four modules, one for the calculation of ENEL (Italian National Electricity Board) tariffs, one for contractual time-of-use tariffs optimization, a table of tariff coefficients, and a module for monthly power consumption calculations based on annual load diagrams. The optimization code was developed by ENEA (Italian Agency for New Technology, Energy and the Environment) to help Italian industrial firms comply with new and complex national electricity supply contractual regulations and tariffs. In addition to helping industrial firms determine optimum contractual arrangements, the code also assists them in optimizing their choice of equipment and production cycles

  10. Recent developments in KTF. Code optimization and improved numerics

    International Nuclear Information System (INIS)

    Jimenez, Javier; Avramova, Maria; Sanchez, Victor Hugo; Ivanov, Kostadin

    2012-01-01

    The rapid increase of computer power in the last decade facilitated the development of high fidelity simulations in nuclear engineering allowing a more realistic and accurate optimization as well as safety assessment of reactor cores and power plants compared to the legacy codes. Thermal hydraulic subchannel codes together with time dependent neutron transport codes are the options of choice for an accurate prediction of local safety parameters. Moreover, fast running codes with the best physical models are needed for high fidelity coupled thermal hydraulic / neutron kinetic solutions. Hence at KIT, different subchannel codes such as SUBCHANFLOW and KTF are being improved, validated and coupled with different neutron kinetics solutions. KTF is a subchannel code developed for best-estimate analysis of both Pressurized Water Reactor (PWR) and BWR. It is based on the Pennsylvania State University (PSU) version of COBRA-TF (Coolant Boling in Rod Arrays Two Fluids) named CTF. In this paper, the investigations devoted to the enhancement of the code numeric and informatics structure are presented and discussed. By some examples the gain on code speed-up will be demonstrated and finally an outlook of further activities concentrated on the code improvements will be given. (orig.)

  11. Recent developments in KTF. Code optimization and improved numerics

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Javier; Avramova, Maria; Sanchez, Victor Hugo; Ivanov, Kostadin [Karlsruhe Institute of Technology (KIT) (Germany). Inst. for Neutron Physics and Reactor Technology (INR)

    2012-11-01

    The rapid increase of computer power in the last decade facilitated the development of high fidelity simulations in nuclear engineering allowing a more realistic and accurate optimization as well as safety assessment of reactor cores and power plants compared to the legacy codes. Thermal hydraulic subchannel codes together with time dependent neutron transport codes are the options of choice for an accurate prediction of local safety parameters. Moreover, fast running codes with the best physical models are needed for high fidelity coupled thermal hydraulic / neutron kinetic solutions. Hence at KIT, different subchannel codes such as SUBCHANFLOW and KTF are being improved, validated and coupled with different neutron kinetics solutions. KTF is a subchannel code developed for best-estimate analysis of both Pressurized Water Reactor (PWR) and BWR. It is based on the Pennsylvania State University (PSU) version of COBRA-TF (Coolant Boling in Rod Arrays Two Fluids) named CTF. In this paper, the investigations devoted to the enhancement of the code numeric and informatics structure are presented and discussed. By some examples the gain on code speed-up will be demonstrated and finally an outlook of further activities concentrated on the code improvements will be given. (orig.)

  12. Optimized iterative decoding method for TPC coded CPM

    Science.gov (United States)

    Ma, Yanmin; Lai, Penghui; Wang, Shilian; Xie, Shunqin; Zhang, Wei

    2018-05-01

    Turbo Product Code (TPC) coded Continuous Phase Modulation (CPM) system (TPC-CPM) has been widely used in aeronautical telemetry and satellite communication. This paper mainly investigates the improvement and optimization on the TPC-CPM system. We first add the interleaver and deinterleaver to the TPC-CPM system, and then establish an iterative system to iteratively decode. However, the improved system has a poor convergence ability. To overcome this issue, we use the Extrinsic Information Transfer (EXIT) analysis to find the optimal factors for the system. The experiments show our method is efficient to improve the convergence performance.

  13. Software exorcism a handbook for debugging and optimizing legacy code

    CERN Document Server

    Blunden, Bill

    2013-01-01

    Software Exorcism: A Handbook for Debugging and Optimizing Legacy Code takes an unflinching, no bulls and look at behavioral problems in the software engineering industry, shedding much-needed light on the social forces that make it difficult for programmers to do their job. Do you have a co-worker who perpetually writes bad code that you are forced to clean up? This is your book. While there are plenty of books on the market that cover debugging and short-term workarounds for bad code, Reverend Bill Blunden takes a revolutionary step beyond them by bringing our atten

  14. A Fast Optimization Method for General Binary Code Learning.

    Science.gov (United States)

    Shen, Fumin; Zhou, Xiang; Yang, Yang; Song, Jingkuan; Shen, Heng; Tao, Dacheng

    2016-09-22

    Hashing or binary code learning has been recognized to accomplish efficient near neighbor search, and has thus attracted broad interests in recent retrieval, vision and learning studies. One main challenge of learning to hash arises from the involvement of discrete variables in binary code optimization. While the widely-used continuous relaxation may achieve high learning efficiency, the pursued codes are typically less effective due to accumulated quantization error. In this work, we propose a novel binary code optimization method, dubbed Discrete Proximal Linearized Minimization (DPLM), which directly handles the discrete constraints during the learning process. Specifically, the discrete (thus nonsmooth nonconvex) problem is reformulated as minimizing the sum of a smooth loss term with a nonsmooth indicator function. The obtained problem is then efficiently solved by an iterative procedure with each iteration admitting an analytical discrete solution, which is thus shown to converge very fast. In addition, the proposed method supports a large family of empirical loss functions, which is particularly instantiated in this work by both a supervised and an unsupervised hashing losses, together with the bits uncorrelation and balance constraints. In particular, the proposed DPLM with a supervised `2 loss encodes the whole NUS-WIDE database into 64-bit binary codes within 10 seconds on a standard desktop computer. The proposed approach is extensively evaluated on several large-scale datasets and the generated binary codes are shown to achieve very promising results on both retrieval and classification tasks.

  15. Optimal and efficient decoding of concatenated quantum block codes

    International Nuclear Information System (INIS)

    Poulin, David

    2006-01-01

    We consider the problem of optimally decoding a quantum error correction code--that is, to find the optimal recovery procedure given the outcomes of partial ''check'' measurements on the system. In general, this problem is NP hard. However, we demonstrate that for concatenated block codes, the optimal decoding can be efficiently computed using a message-passing algorithm. We compare the performance of the message-passing algorithm to that of the widespread blockwise hard decoding technique. Our Monte Carlo results using the five-qubit and Steane's code on a depolarizing channel demonstrate significant advantages of the message-passing algorithms in two respects: (i) Optimal decoding increases by as much as 94% the error threshold below which the error correction procedure can be used to reliably send information over a noisy channel; and (ii) for noise levels below these thresholds, the probability of error after optimal decoding is suppressed at a significantly higher rate, leading to a substantial reduction of the error correction overhead

  16. Optimized Method for Generating and Acquiring GPS Gold Codes

    Directory of Open Access Journals (Sweden)

    Khaled Rouabah

    2015-01-01

    Full Text Available We propose a simpler and faster Gold codes generator, which can be efficiently initialized to any desired code, with a minimum delay. Its principle consists of generating only one sequence (code number 1 from which we can produce all the other different signal codes. This is realized by simply shifting this sequence by different delays that are judiciously determined by using the bicorrelation function characteristics. This is in contrast to the classical Linear Feedback Shift Register (LFSR based Gold codes generator that requires, in addition to the shift process, a significant number of logic XOR gates and a phase selector to change the code. The presence of all these logic XOR gates in classical LFSR based Gold codes generator provokes the consumption of an additional time in the generation and acquisition processes. In addition to its simplicity and its rapidity, the proposed architecture, due to the total absence of XOR gates, has fewer resources than the conventional Gold generator and can thus be produced at lower cost. The Digital Signal Processing (DSP implementations have shown that the proposed architecture presents a solution for acquiring Global Positioning System (GPS satellites signals optimally and in a parallel way.

  17. Optimization of the particle pusher in a diode simulation code

    International Nuclear Information System (INIS)

    Theimer, M.M.; Quintenz, J.P.

    1979-09-01

    The particle pusher in Sandia's particle-in-cell diode simulation code has been rewritten to reduce the required run time of a typical simulation. The resulting new version of the code has been found to run up to three times as fast as the original with comparable accuracy. The cost of this optimization was an increase in storage requirements of about 15%. The new version has also been written to run efficiently on a CRAY-1 computing system. Steps taken to affect this reduced run time are described. Various test cases are detailed

  18. Numerical computation of molecular integrals via optimized (vectorized) FORTRAN code

    International Nuclear Information System (INIS)

    Scott, T.C.; Grant, I.P.; Saunders, V.R.

    1997-01-01

    The calculation of molecular properties based on quantum mechanics is an area of fundamental research whose horizons have always been determined by the power of state-of-the-art computers. A computational bottleneck is the numerical calculation of the required molecular integrals to sufficient precision. Herein, we present a method for the rapid numerical evaluation of molecular integrals using optimized FORTRAN code generated by Maple. The method is based on the exploitation of common intermediates and the optimization can be adjusted to both serial and vectorized computations. (orig.)

  19. Cooperative optimization and their application in LDPC codes

    Science.gov (United States)

    Chen, Ke; Rong, Jian; Zhong, Xiaochun

    2008-10-01

    Cooperative optimization is a new way for finding global optima of complicated functions of many variables. The proposed algorithm is a class of message passing algorithms and has solid theory foundations. It can achieve good coding gains over the sum-product algorithm for LDPC codes. For (6561, 4096) LDPC codes, the proposed algorithm can achieve 2.0 dB gains over the sum-product algorithm at BER of 4×10-7. The decoding complexity of the proposed algorithm is lower than the sum-product algorithm can do; furthermore, the former can achieve much lower error floor than the latter can do after the Eb / No is higher than 1.8 dB.

  20. Fundamentals of an Optimal Multirate Subband Coding of Cyclostationary Signals

    Directory of Open Access Journals (Sweden)

    D. Kula

    2000-06-01

    Full Text Available A consistent theory of optimal subband coding of zero mean wide-sense cyclostationary signals, with N-periodic statistics, is presented in this article. An M-channel orthonormal uniform filter bank, employing N-periodic analysis and synthesis filters, is used while an average variance condition is applied to evaluate the output distortion. In three lemmas and final theorem, the necessity of decorrelation of blocked subband signals and requirement of specific ordering of power spectral densities are proven.

  1. Iterative optimization of performance libraries by hierarchical division of codes

    International Nuclear Information System (INIS)

    Donadio, S.

    2007-09-01

    The increasing complexity of hardware features incorporated in modern processors makes high performance code generation very challenging. Library generators such as ATLAS, FFTW and SPIRAL overcome this issue by empirically searching in the space of possible program versions for the one that performs the best. This thesis explores fully automatic solution to adapt a compute-intensive application to the target architecture. By mimicking complex sequences of transformations useful to optimize real codes, we show that generative programming is a practical tool to implement a new hierarchical compilation approach for the generation of high performance code relying on the use of state-of-the-art compilers. As opposed to ATLAS, this approach is not application-dependant but can be applied to fairly generic loop structures. Our approach relies on the decomposition of the original loop nest into simpler kernels. These kernels are much simpler to optimize and furthermore, using such codes makes the performance trade off problem much simpler to express and to solve. Finally, we propose a new approach for the generation of performance libraries based on this decomposition method. We show that our method generates high-performance libraries, in particular for BLAS. (author)

  2. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code

    Science.gov (United States)

    Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf

    2016-11-01

    This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.

  3. Constellation labeling optimization for bit-interleaved coded APSK

    Science.gov (United States)

    Xiang, Xingyu; Mo, Zijian; Wang, Zhonghai; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2016-05-01

    This paper investigates the constellation and mapping optimization for amplitude phase shift keying (APSK) modulation, which is deployed in Digital Video Broadcasting Satellite - Second Generation (DVB-S2) and Digital Video Broadcasting - Satellite services to Handhelds (DVB-SH) broadcasting standards due to its merits of power and spectral efficiency together with the robustness against nonlinear distortion. The mapping optimization is performed for 32-APSK according to combined cost functions related to Euclidean distance and mutual information. A Binary switching algorithm and its modified version are used to minimize the cost function and the estimated error between the original and received data. The optimized constellation mapping is tested by combining DVB-S2 standard Low-Density Parity-Check (LDPC) codes in both Bit-Interleaved Coded Modulation (BICM) and BICM with iterative decoding (BICM-ID) systems. The simulated results validate the proposed constellation labeling optimization scheme which yields better performance against conventional 32-APSK constellation defined in DVB-S2 standard.

  4. On Optimal Policies for Network-Coded Cooperation

    DEFF Research Database (Denmark)

    Khamfroush, Hana; Roetter, Daniel Enrique Lucani; Pahlevani, Peyman

    2015-01-01

    Network-coded cooperative communication (NC-CC) has been proposed and evaluated as a powerful technology that can provide a better quality of service in the next-generation wireless systems, e.g., D2D communications. Previous contributions have focused on performance evaluation of NC-CC scenarios...... rather than searching for optimal policies that can minimize the total cost of reliable packet transmission. We break from this trend by initially analyzing the optimal design of NC-CC for a wireless network with one source, two receivers, and half-duplex erasure channels. The problem is modeled...... as a special case of Markov decision process (MDP), which is called stochastic shortest path (SSP), and is solved for any field size, arbitrary number of packets, and arbitrary erasure probabilities of the channels. The proposed MDP solution results in an optimal transmission policy per time slot, and we use...

  5. Random mask optimization for fast neutron coded aperture imaging

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Kyle [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Univ. of California, Los Angeles, CA (United States); Marleau, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brubaker, Erik [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-05-01

    In coded aperture imaging, one of the most important factors determining the quality of reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal conditions, thin and highly opaque masks, URA patterns are mathematically constructed to provide artifact-free reconstruction however, the number of URAs for a chosen number of mask elements is limited and when highly penetrating particles such as fast neutrons and high-energy gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask patterns that provide better reconstructed image quality may exist. Through the use of heuristic optimization methods and maximum likelihood expectation maximization (MLEM) image reconstruction, we show that for both point and extended neutron sources a random mask pattern can be optimized to provide better image quality than that of a URA.

  6. Comparative evaluation of various optimization methods and the development of an optimization code system SCOOP

    International Nuclear Information System (INIS)

    Suzuki, Tadakazu

    1979-11-01

    Thirty two programs for linear and nonlinear optimization problems with or without constraints have been developed or incorporated, and their stability, convergence and efficiency have been examined. On the basis of these evaluations, the first version of the optimization code system SCOOP-I has been completed. The SCOOP-I is designed to be an efficient, reliable, useful and also flexible system for general applications. The system enables one to find global optimization point for a wide class of problems by selecting the most appropriate optimization method built in it. (author)

  7. BWROPT: A multi-cycle BWR fuel cycle optimization code

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, Keith E.; Maldonado, G. Ivan, E-mail: Ivan.Maldonado@utk.edu

    2015-09-15

    Highlights: • A multi-cycle BWR fuel cycle optimization algorithm is presented. • New fuel inventory and core loading pattern determination. • The parallel simulated annealing algorithm was used for the optimization. • Variable sampling probabilities were compared to constant sampling probabilities. - Abstract: A new computer code for performing BWR in-core and out-of-core fuel cycle optimization for multiple cycles simultaneously has been developed. Parallel simulated annealing (PSA) is used to optimize the new fuel inventory and placement of new and reload fuel for each cycle considered. Several algorithm improvements were implemented and evaluated. The most significant of these are variable sampling probabilities and sampling new fuel types from an ordered array. A heuristic control rod pattern (CRP) search algorithm was also implemented, which is useful for single CRP determinations, however, this feature requires significant computational resources and is currently not practical for use in a full multi-cycle optimization. The PSA algorithm was demonstrated to be capable of significant objective function reduction and finding candidate loading patterns without constraint violations. The use of variable sampling probabilities was shown to reduce runtime while producing better results compared to using constant sampling probabilities. Sampling new fuel types from an ordered array was shown to have a mixed effect compared to random new fuel type sampling, whereby using both random and ordered sampling produced better results but required longer runtimes.

  8. Compiler design handbook optimizations and machine code generation

    CERN Document Server

    Srikant, YN

    2003-01-01

    The widespread use of object-oriented languages and Internet security concerns are just the beginning. Add embedded systems, multiple memory banks, highly pipelined units operating in parallel, and a host of other advances and it becomes clear that current and future computer architectures pose immense challenges to compiler designers-challenges that already exceed the capabilities of traditional compilation techniques. The Compiler Design Handbook: Optimizations and Machine Code Generation is designed to help you meet those challenges. Written by top researchers and designers from around the

  9. Investigation of Navier-Stokes Code Verification and Design Optimization

    Science.gov (United States)

    Vaidyanathan, Rajkumar

    2004-01-01

    With rapid progress made in employing computational techniques for various complex Navier-Stokes fluid flow problems, design optimization problems traditionally based on empirical formulations and experiments are now being addressed with the aid of computational fluid dynamics (CFD). To be able to carry out an effective CFD-based optimization study, it is essential that the uncertainty and appropriate confidence limits of the CFD solutions be quantified over the chosen design space. The present dissertation investigates the issues related to code verification, surrogate model-based optimization and sensitivity evaluation. For Navier-Stokes (NS) CFD code verification a least square extrapolation (LSE) method is assessed. This method projects numerically computed NS solutions from multiple, coarser base grids onto a freer grid and improves solution accuracy by minimizing the residual of the discretized NS equations over the projected grid. In this dissertation, the finite volume (FV) formulation is focused on. The interplay between the xi concepts and the outcome of LSE, and the effects of solution gradients and singularities, nonlinear physics, and coupling of flow variables on the effectiveness of LSE are investigated. A CFD-based design optimization of a single element liquid rocket injector is conducted with surrogate models developed using response surface methodology (RSM) based on CFD solutions. The computational model consists of the NS equations, finite rate chemistry, and the k-6 turbulence closure. With the aid of these surrogate models, sensitivity and trade-off analyses are carried out for the injector design whose geometry (hydrogen flow angle, hydrogen and oxygen flow areas and oxygen post tip thickness) is optimized to attain desirable goals in performance (combustion length) and life/survivability (the maximum temperatures on the oxidizer post tip and injector face and a combustion chamber wall temperature). A preliminary multi-objective optimization

  10. Optimization and Validation of the Developed Uranium Isotopic Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. H.; Kang, M. Y.; Kim, Jinhyeong; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    γ-ray spectroscopy is a representative non-destructive assay for nuclear material, and less time-consuming and less expensive than the destructive analysis method. The destructive technique is more precise than NDA technique, however, there is some correction algorithm which can improve the performance of γ-spectroscopy. For this reason, an analysis code for uranium isotopic analysis is developed by Applied Nuclear Physics Group in Seoul National University. Overlapped γ- and x-ray peaks in the 89-101 keV X{sub α}-region are fitted with Gaussian and Lorentzian distribution peak functions, tail and background functions. In this study, optimizations for the full-energy peak efficiency calibration and fitting parameters of peak tail and background are performed, and validated with 24 hour acquisition of CRM uranium samples. The optimization of peak tail and background parameters are performed with the validation by using CRM uranium samples. The analysis performance is improved in HEU samples, but more optimization of fitting parameters is required in LEU sample analysis. In the future, the optimization research about the fitting parameters with various type of uranium samples will be performed. {sup 234}U isotopic analysis algorithms and correction algorithms (coincidence effect, self-attenuation effect) will be developed.

  11. Turbine Airfoil Optimization Using Quasi-3D Analysis Codes

    Directory of Open Access Journals (Sweden)

    Sanjay Goel

    2009-01-01

    Full Text Available A new approach to optimize the geometry of a turbine airfoil by simultaneously designing multiple 2D sections of the airfoil is presented in this paper. The complexity of 3D geometry modeling is circumvented by generating multiple 2D airfoil sections and constraining their geometry in the radial direction using first- and second-order polynomials that ensure smoothness in the radial direction. The flow fields of candidate geometries obtained during optimization are evaluated using a quasi-3D, inviscid, CFD analysis code. An inviscid flow solver is used to reduce the execution time of the analysis. Multiple evaluation criteria based on the Mach number profile obtained from the analysis of each airfoil cross-section are used for computing a quality metric. A key contribution of the paper is the development of metrics that emulate the perception of the human designer in visually evaluating the Mach Number distribution. A mathematical representation of the evaluation criteria coupled with a parametric geometry generator enables the use of formal optimization techniques in the design. The proposed approach is implemented in the optimal design of a low-pressure turbine nozzle.

  12. Rotorcraft Optimization Tools: Incorporating Rotorcraft Design Codes into Multi-Disciplinary Design, Analysis, and Optimization

    Science.gov (United States)

    Meyn, Larry A.

    2018-01-01

    One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use

  13. An Improved Real-Coded Population-Based Extremal Optimization Method for Continuous Unconstrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Zeng

    2014-01-01

    Full Text Available As a novel evolutionary optimization method, extremal optimization (EO has been successfully applied to a variety of combinatorial optimization problems. However, the applications of EO in continuous optimization problems are relatively rare. This paper proposes an improved real-coded population-based EO method (IRPEO for continuous unconstrained optimization problems. The key operations of IRPEO include generation of real-coded random initial population, evaluation of individual and population fitness, selection of bad elements according to power-law probability distribution, generation of new population based on uniform random mutation, and updating the population by accepting the new population unconditionally. The experimental results on 10 benchmark test functions with the dimension N=30 have shown that IRPEO is competitive or even better than the recently reported various genetic algorithm (GA versions with different mutation operations in terms of simplicity, effectiveness, and efficiency. Furthermore, the superiority of IRPEO to other evolutionary algorithms such as original population-based EO, particle swarm optimization (PSO, and the hybrid PSO-EO is also demonstrated by the experimental results on some benchmark functions.

  14. A novel neutron energy spectrum unfolding code using particle swarm optimization

    International Nuclear Information System (INIS)

    Shahabinejad, H.; Sohrabpour, M.

    2017-01-01

    A novel neutron Spectrum Deconvolution using Particle Swarm Optimization (SDPSO) code has been developed to unfold the neutron spectrum from a pulse height distribution and a response matrix. The Particle Swarm Optimization (PSO) imitates the bird flocks social behavior to solve complex optimization problems. The results of the SDPSO code have been compared with those of the standard spectra and recently published Two-steps Genetic Algorithm Spectrum Unfolding (TGASU) code. The TGASU code have been previously compared with the other codes such as MAXED, GRAVEL, FERDOR and GAMCD and shown to be more accurate than the previous codes. The results of the SDPSO code have been demonstrated to match well with those of the TGASU code for both under determined and over-determined problems. In addition the SDPSO has been shown to be nearly two times faster than the TGASU code. - Highlights: • Introducing a novel method for neutron spectrum unfolding. • Implementation of a particle swarm optimization code for neutron unfolding. • Comparing results of the PSO code with those of recently published TGASU code. • Match results of the PSO code with those of TGASU code. • Greater convergence rate of implemented PSO code than TGASU code.

  15. Optimization of the FAST ICRF antenna using TOPICA code

    International Nuclear Information System (INIS)

    Sorba, M.; Milanesio, D.; Maggiora, R.; Tuccillo, A.

    2010-01-01

    Ion Cyclotron Resonance Heating is one of the most important auxiliary heating systems in most plasma confinement experiments. Because of this, the need for very accurate design of ion cyclotron (IC) launchers has dramatically grown in recent years. Furthermore, a reliable simulation tool is a crucial request in the successful design of these antennas, since full testing is impossible outside experiments. One of the most advanced and validated simulation codes is TOPICA, which offers the possibility to handle the geometrical level of detail of a real antenna in front of an accurately described plasma scenario. Adopting this essential tool made possible to reach a refined design of ion cyclotron radio frequency antenna for the FAST (Fusion Advanced Studies Torus) experiment . Starting from a streamlined antenna model and then following well-defined refinement procedures, an optimized launcher design in terms of power delivered to plasma has been finally achieved. The computer-assisted geometry refinements allowed an increase in the performances of the antenna and notably in power handling: the extent of the gained improvements were not experienced in the past, essentially due to the absence of predictive tools capable of analyzing the detailed effects of antenna geometry in plasma facing conditions. Thus, with the help of TOPICA code, it has been possible to comply with the FAST experiment requirements in terms of vacuum chamber constraints and power delivered to plasma. Once an antenna geometry was optimized with a reference plasma profile, the analysis of the performances of the launcher has been extended with respect to two plasma scenarios. Exploiting all TOPICA features, it has been possible to predict the behavior of the launcher in real operating conditions, for instance varying the position of the separatrix surface. In order to fulfil the analysis of the FAST IC antenna, the study of the RF potentials, which depend on the parallel electric field computation

  16. Optimized Min-Sum Decoding Algorithm for Low Density Parity Check Codes

    OpenAIRE

    Mohammad Rakibul Islam; Dewan Siam Shafiullah; Muhammad Mostafa Amir Faisal; Imran Rahman

    2011-01-01

    Low Density Parity Check (LDPC) code approaches Shannon–limit performance for binary field and long code lengths. However, performance of binary LDPC code is degraded when the code word length is small. An optimized min-sum algorithm for LDPC code is proposed in this paper. In this algorithm unlike other decoding methods, an optimization factor has been introduced in both check node and bit node of the Min-sum algorithm. The optimization factor is obtained before decoding program, and the sam...

  17. Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal

    Science.gov (United States)

    Zamudio, Gabriel S.; José, Marco V.

    2018-03-01

    In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.

  18. A Realistic Model under which the Genetic Code is Optimal

    NARCIS (Netherlands)

    Buhrman, H.; van der Gulik, P.T.S.; Klau, G.W.; Schaffner, C.; Speijer, D.; Stougie, L.

    2013-01-01

    The genetic code has a high level of error robustness. Using values of hydrophobicity scales as a proxy for amino acid character, and the mean square measure as a function quantifying error robustness, a value can be obtained for a genetic code which reflects the error robustness of that code. By

  19. Engineering application of in-core fuel management optimization code with CSA algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhihong; Hu, Yongming [INET, Tsinghua university, Beijing 100084 (China)

    2009-06-15

    PWR in-core loading (reloading) pattern optimization is a complex combined problem. An excellent fuel management optimization code can greatly improve the efficiency of core reloading design, and bring economic and safety benefits. Today many optimization codes with experiences or searching algorithms (such as SA, GA, ANN, ACO) have been developed, while how to improve their searching efficiency and engineering usability still needs further research. CSA (Characteristic Statistic Algorithm) is a global optimization algorithm with high efficiency developed by our team. The performance of CSA has been proved on many problems (such as Traveling Salesman Problems). The idea of CSA is to induce searching direction by the statistic distribution of characteristic values. This algorithm is quite suitable for fuel management optimization. Optimization code with CSA has been developed and was used on many core models. The research in this paper is to improve the engineering usability of CSA code according to all the actual engineering requirements. Many new improvements have been completed in this code, such as: 1. Considering the asymmetry of burn-up in one assembly, the rotation of each assembly is considered as new optimization variables in this code. 2. Worth of control rods must satisfy the given constraint, so some relative modifications are added into optimization code. 3. To deal with the combination of alternate cycles, multi-cycle optimization is considered in this code. 4. To confirm the accuracy of optimization results, many identifications of the physics calculation module in this code have been done, and the parameters of optimization schemes are checked by SCIENCE code. The improved optimization code with CSA has been used on Qinshan nuclear plant of China. The reloading of cycle 7, 8, 9 (12 months, no burnable poisons) and the 18 months equilibrium cycle (with burnable poisons) reloading are optimized. At last, many optimized schemes are found by CSA code

  20. Greedy vs. L1 convex optimization in sparse coding

    DEFF Research Database (Denmark)

    Ren, Huamin; Pan, Hong; Olsen, Søren Ingvor

    2015-01-01

    Sparse representation has been applied successfully in many image analysis applications, including abnormal event detection, in which a baseline is to learn a dictionary from the training data and detect anomalies from its sparse codes. During this procedure, sparse codes which can be achieved...... solutions. Considering the property of abnormal event detection, i.e., only normal videos are used as training data due to practical reasons, effective codes in classification application may not perform well in abnormality detection. Therefore, we compare the sparse codes and comprehensively evaluate...... their performance from various aspects to better understand their applicability, including computation time, reconstruction error, sparsity, detection...

  1. Novel Area Optimization in FPGA Implementation Using Efficient VHDL Code

    Directory of Open Access Journals (Sweden)

    . Zulfikar

    2012-10-01

    Full Text Available A new novel method for area efficiency in FPGA implementation is presented. The method is realized through flexibility and wide capability of VHDL coding. This method exposes the arithmetic operations such as addition, subtraction and others. The design technique aim to reduce occupies area for multi stages circuits by selecting suitable range of all value involved in every step of calculations. Conventional and efficient VHDL coding methods are presented and the synthesis result is compared. The VHDL code which limits range of integer values is occupies less area than the one which is not. This VHDL coding method is suitable for multi stage circuits.

  2. Novel Area Optimization in FPGA Implementation Using Efficient VHDL Code

    Directory of Open Access Journals (Sweden)

    Zulfikar .

    2015-05-01

    Full Text Available A new novel method for area efficiency in FPGA implementation is presented. The method is realized through flexibility and wide capability of VHDL coding. This method exposes the arithmetic operations such as addition, subtraction and others. The design technique aim to reduce occupies area for multi stages circuits by selecting suitable range of all value involved in every step of calculations. Conventional and efficient VHDL coding methods are presented and the synthesis result is compared. The VHDL code which limits range of integer values is occupies less area than the one which is not. This VHDL coding method is suitable for multi stage circuits.

  3. Generalized rank weights of reducible codes, optimal cases and related properties

    DEFF Research Database (Denmark)

    Martinez Peñas, Umberto

    2018-01-01

    in network coding. In this paper, we study their security behavior against information leakage on networks when applied as coset coding schemes, giving the following main results: 1) we give lower and upper bounds on their generalized rank weights (GRWs), which measure worst case information leakage...... to the wire tapper; 2) we find new parameters for which these codes are MRD (meaning that their first GRW is optimal) and use the previous bounds to estimate their higher GRWs; 3) we show that all linear (over the extension field) codes, whose GRWs are all optimal for fixed packet and code sizes but varying...... length are reducible codes up to rank equivalence; and 4) we show that the information leaked to a wire tapper when using reducible codes is often much less than the worst case given by their (optimal in some cases) GRWs. We conclude with some secondary related properties: conditions to be rank...

  4. Optimal Near-Hitless Network Failure Recovery Using Diversity Coding

    Science.gov (United States)

    Avci, Serhat Nazim

    2013-01-01

    Link failures in wide area networks are common and cause significant data losses. Mesh-based protection schemes offer high capacity efficiency but they are slow, require complex signaling, and instable. Diversity coding is a proactive coding-based recovery technique which offers near-hitless (sub-ms) restoration with a competitive spare capacity…

  5. Differentially Encoded LDPC Codes—Part II: General Case and Code Optimization

    Directory of Open Access Journals (Sweden)

    Jing Li (Tiffany

    2008-04-01

    Full Text Available This two-part series of papers studies the theory and practice of differentially encoded low-density parity-check (DE-LDPC codes, especially in the context of noncoherent detection. Part I showed that a special class of DE-LDPC codes, product accumulate codes, perform very well with both coherent and noncoherent detections. The analysis here reveals that a conventional LDPC code, however, is not fitful for differential coding and does not, in general, deliver a desirable performance when detected noncoherently. Through extrinsic information transfer (EXIT analysis and a modified “convergence-constraint” density evolution (DE method developed here, we provide a characterization of the type of LDPC degree profiles that work in harmony with differential detection (or a recursive inner code in general, and demonstrate how to optimize these LDPC codes. The convergence-constraint method provides a useful extension to the conventional “threshold-constraint” method, and can match an outer LDPC code to any given inner code with the imperfectness of the inner decoder taken into consideration.

  6. Efficacy of Code Optimization on Cache-based Processors

    Science.gov (United States)

    VanderWijngaart, Rob F.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    The current common wisdom in the U.S. is that the powerful, cost-effective supercomputers of tomorrow will be based on commodity (RISC) micro-processors with cache memories. Already, most distributed systems in the world use such hardware as building blocks. This shift away from vector supercomputers and towards cache-based systems has brought about a change in programming paradigm, even when ignoring issues of parallelism. Vector machines require inner-loop independence and regular, non-pathological memory strides (usually this means: non-power-of-two strides) to allow efficient vectorization of array operations. Cache-based systems require spatial and temporal locality of data, so that data once read from main memory and stored in high-speed cache memory is used optimally before being written back to main memory. This means that the most cache-friendly array operations are those that feature zero or unit stride, so that each unit of data read from main memory (a cache line) contains information for the next iteration in the loop. Moreover, loops ought to be 'fat', meaning that as many operations as possible are performed on cache data-provided instruction caches do not overflow and enough registers are available. If unit stride is not possible, for example because of some data dependency, then care must be taken to avoid pathological strides, just ads on vector computers. For cache-based systems the issues are more complex, due to the effects of associativity and of non-unit block (cache line) size. But there is more to the story. Most modern micro-processors are superscalar, which means that they can issue several (arithmetic) instructions per clock cycle, provided that there are enough independent instructions in the loop body. This is another argument for providing fat loop bodies. With these restrictions, it appears fairly straightforward to produce code that will run efficiently on any cache-based system. It can be argued that although some of the important

  7. Novel Area Optimization in FPGA Implementation Using Efficient VHDL Code

    OpenAIRE

    Zulfikar, Z

    2012-01-01

    A new novel method for area efficiency in FPGA implementation is presented. The method is realized through flexibility and wide capability of VHDL coding. This method exposes the arithmetic operations such as addition, subtraction and others. The design technique aim to reduce occupies area for multi stages circuits by selecting suitable range of all value involved in every step of calculations. Conventional and efficient VHDL coding methods are presented and the synthesis result is compared....

  8. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments.

    Science.gov (United States)

    Santos, José; Monteagudo, Angel

    2011-02-21

    As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the fact that the best possible codes show the patterns of the

  9. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments

    Directory of Open Access Journals (Sweden)

    Monteagudo Ángel

    2011-02-01

    Full Text Available Abstract Background As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Results Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Conclusions Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the

  10. RAID-6 reed-solomon codes with asymptotically optimal arithmetic complexities

    KAUST Repository

    Lin, Sian-Jheng; Alloum, Amira; Al-Naffouri, Tareq Y.

    2016-01-01

    present a configuration of the factors of the second-parity formula, such that the arithmetic complexity can reach the optimal complexity bound when the code length approaches infinity. In the proposed approach, the intermediate data used for the first

  11. Optimization of multi-phase compressible lattice Boltzmann codes on massively parallel multi-core systems

    NARCIS (Netherlands)

    Biferale, L.; Mantovani, F.; Pivanti, M.; Pozzati, F.; Sbragaglia, M.; Schifano, S.F.; Toschi, F.; Tripiccione, R.

    2011-01-01

    We develop a Lattice Boltzmann code for computational fluid-dynamics and optimize it for massively parallel systems based on multi-core processors. Our code describes 2D multi-phase compressible flows. We analyze the performance bottlenecks that we find as we gradually expose a larger fraction of

  12. PlayNCool: Opportunistic Network Coding for Local Optimization of Routing in Wireless Mesh Networks

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Pedersen, Morten Videbæk

    2013-01-01

    This paper introduces PlayNCool, an opportunistic protocol with local optimization based on network coding to increase the throughput of a wireless mesh network (WMN). PlayNCool aims to enhance current routing protocols by (i) allowing random linear network coding transmissions end-to-end, (ii) r...

  13. Optimal quantum error correcting codes from absolutely maximally entangled states

    Science.gov (United States)

    Raissi, Zahra; Gogolin, Christian; Riera, Arnau; Acín, Antonio

    2018-02-01

    Absolutely maximally entangled (AME) states are pure multi-partite generalizations of the bipartite maximally entangled states with the property that all reduced states of at most half the system size are in the maximally mixed state. AME states are of interest for multipartite teleportation and quantum secret sharing and have recently found new applications in the context of high-energy physics in toy models realizing the AdS/CFT-correspondence. We work out in detail the connection between AME states of minimal support and classical maximum distance separable (MDS) error correcting codes and, in particular, provide explicit closed form expressions for AME states of n parties with local dimension \

  14. Transoptr-a second order beam transport design code with automatic internal optimization and general constraints

    International Nuclear Information System (INIS)

    Heighway, E.A.

    1980-07-01

    A second order beam transport design code with parametric optimization is described. The code analyzes the transport of charged particle beams through a user defined magnet system. The magnet system parameters are varied (within user defined limits) until the properties of the transported beam and/or the system transport matrix match those properties requested by the user. The code uses matrix formalism to represent the transport elements and optimization is achieved using the variable metric method. Any constraints that can be expressed algebraically may be included by the user as part of his design. Instruction in the use of the program is given. (auth)

  15. Characterization and Optimization of LDPC Codes for the 2-User Gaussian Multiple Access Channel

    Directory of Open Access Journals (Sweden)

    Declercq David

    2007-01-01

    Full Text Available We address the problem of designing good LDPC codes for the Gaussian multiple access channel (MAC. The framework we choose is to design multiuser LDPC codes with joint belief propagation decoding on the joint graph of the 2-user case. Our main result compared to existing work is to express analytically EXIT functions of the multiuser decoder with two different approximations of the density evolution. This allows us to propose a very simple linear programming optimization for the complicated problem of LDPC code design with joint multiuser decoding. The stability condition for our case is derived and used in the optimization constraints. The codes that we obtain for the 2-user case are quite good for various rates, especially if we consider the very simple optimization procedure.

  16. Optimizing fusion PIC code performance at scale on Cori Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, T. S.; Deslippe, J.

    2017-07-23

    In this paper we present the results of optimizing the performance of the gyrokinetic full-f fusion PIC code XGC1 on the Cori Phase Two Knights Landing system. The code has undergone substantial development to enable the use of vector instructions in its most expensive kernels within the NERSC Exascale Science Applications Program. We study the single-node performance of the code on an absolute scale using the roofline methodology to guide optimization efforts. We have obtained 2x speedups in single node performance due to enabling vectorization and performing memory layout optimizations. On multiple nodes, the code is shown to scale well up to 4000 nodes, near half the size of the machine. We discuss some communication bottlenecks that were identified and resolved during the work.

  17. Development of a graphical interface computer code for reactor fuel reloading optimization

    International Nuclear Information System (INIS)

    Do Quang Binh; Nguyen Phuoc Lan; Bui Xuan Huy

    2007-01-01

    This report represents the results of the project performed in 2007. The aim of this project is to develop a graphical interface computer code that allows refueling engineers to design fuel reloading patterns for research reactor using simulated graphical model of reactor core. Besides, this code can perform refueling optimization calculations based on genetic algorithms as well as simulated annealing. The computer code was verified based on a sample problem, which relies on operational and experimental data of Dalat research reactor. This code can play a significant role in in-core fuel management practice at nuclear research reactor centers and in training. (author)

  18. Product code optimization for determinate state LDPC decoding in robust image transmission.

    Science.gov (United States)

    Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G

    2006-08-01

    We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.

  19. Quo vadis code optimization in high energy physics

    International Nuclear Information System (INIS)

    Jarp, S.

    1994-01-01

    Although performance tuning and optimization can be considered less critical than in the past, there are still many High Energy Physics (HEP) applications and application domains that can profit from such an undertaking. In CERN's CORE (Centrally Operated RISC Environment) where all major RISC vendors are present, this implies an understanding of the various computer architectures, instruction sets and performance analysis tools from each of these vendors. This paper discusses some initial observations after having evaluated the situation and makes some recommendations for further progress

  20. Selecting Optimal Parameters of Random Linear Network Coding for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Heide, J; Zhang, Qi; Fitzek, F H P

    2013-01-01

    This work studies how to select optimal code parameters of Random Linear Network Coding (RLNC) in Wireless Sensor Networks (WSNs). With Rateless Deluge [1] the authors proposed to apply Network Coding (NC) for Over-the-Air Programming (OAP) in WSNs, and demonstrated that with NC a significant...... reduction in the number of transmitted packets can be achieved. However, NC introduces additional computations and potentially a non-negligible transmission overhead, both of which depend on the chosen coding parameters. Therefore it is necessary to consider the trade-off that these coding parameters...... present in order to obtain the lowest energy consumption per transmitted bit. This problem is analyzed and suitable coding parameters are determined for the popular Tmote Sky platform. Compared to the use of traditional RLNC, these parameters enable a reduction in the energy spent per bit which grows...

  1. Demonstration of Automatically-Generated Adjoint Code for Use in Aerodynamic Shape Optimization

    Science.gov (United States)

    Green, Lawrence; Carle, Alan; Fagan, Mike

    1999-01-01

    Gradient-based optimization requires accurate derivatives of the objective function and constraints. These gradients may have previously been obtained by manual differentiation of analysis codes, symbolic manipulators, finite-difference approximations, or existing automatic differentiation (AD) tools such as ADIFOR (Automatic Differentiation in FORTRAN). Each of these methods has certain deficiencies, particularly when applied to complex, coupled analyses with many design variables. Recently, a new AD tool called ADJIFOR (Automatic Adjoint Generation in FORTRAN), based upon ADIFOR, was developed and demonstrated. Whereas ADIFOR implements forward-mode (direct) differentiation throughout an analysis program to obtain exact derivatives via the chain rule of calculus, ADJIFOR implements the reverse-mode counterpart of the chain rule to obtain exact adjoint form derivatives from FORTRAN code. Automatically-generated adjoint versions of the widely-used CFL3D computational fluid dynamics (CFD) code and an algebraic wing grid generation code were obtained with just a few hours processing time using the ADJIFOR tool. The codes were verified for accuracy and were shown to compute the exact gradient of the wing lift-to-drag ratio, with respect to any number of shape parameters, in about the time required for 7 to 20 function evaluations. The codes have now been executed on various computers with typical memory and disk space for problems with up to 129 x 65 x 33 grid points, and for hundreds to thousands of independent variables. These adjoint codes are now used in a gradient-based aerodynamic shape optimization problem for a swept, tapered wing. For each design iteration, the optimization package constructs an approximate, linear optimization problem, based upon the current objective function, constraints, and gradient values. The optimizer subroutines are called within a design loop employing the approximate linear problem until an optimum shape is found, the design loop

  2. Efficacy of Code Optimization on Cache-Based Processors

    Science.gov (United States)

    VanderWijngaart, Rob F.; Saphir, William C.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    In this paper a number of techniques for improving the cache performance of a representative piece of numerical software is presented. Target machines are popular processors from several vendors: MIPS R5000 (SGI Indy), MIPS R8000 (SGI PowerChallenge), MIPS R10000 (SGI Origin), DEC Alpha EV4 + EV5 (Cray T3D & T3E), IBM RS6000 (SP Wide-node), Intel PentiumPro (Ames' Whitney), Sun UltraSparc (NERSC's NOW). The optimizations all attempt to increase the locality of memory accesses. But they meet with rather varied and often counterintuitive success on the different computing platforms. We conclude that it may be genuinely impossible to obtain portable performance on the current generation of cache-based machines. At the least, it appears that the performance of modern commodity processors cannot be described with parameters defining the cache alone.

  3. Model-Based Speech Signal Coding Using Optimized Temporal Decomposition for Storage and Broadcasting Applications

    Science.gov (United States)

    Athaudage, Chandranath R. N.; Bradley, Alan B.; Lech, Margaret

    2003-12-01

    A dynamic programming-based optimization strategy for a temporal decomposition (TD) model of speech and its application to low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing (SBEL) TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results revealed that the proposed speech coding scheme achieves 50%-60% compression of speech spectral information with negligible degradation in the decoded speech quality.

  4. Game-Theoretic Rate-Distortion-Complexity Optimization of High Efficiency Video Coding

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Milani, Simone; Forchhammer, Søren

    2013-01-01

    profiles in order to tailor the computational load to the different hardware and power-supply resources of devices. In this work, we focus on optimizing the quantization parameter and partition depth in HEVC via a game-theoretic approach. The proposed rate control strategy alone provides 0.2 dB improvement......This paper presents an algorithm for rate-distortioncomplexity optimization for the emerging High Efficiency Video Coding (HEVC) standard, whose high computational requirements urge the need for low-complexity optimization algorithms. Optimization approaches need to specify different complexity...

  5. THE OPTIMAL CONTROL IN THE MODELOF NETWORK SECURITY FROM MALICIOUS CODE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The paper deals with a mathematical model of network security. The model is described in terms of the nonlinear optimal control. As a criterion of the control problem quality the price of the summary damage inflicted by the harmful codes is chosen, under additional restriction: the number of recovered nodes is maximized. The Pontryagin maximum principle for construction of the optimal decisions is formulated. The number of switching points of the optimal control is found. The explicit form of optimal control is given using the Lagrange multipliers method.

  6. Power Optimization of Wireless Media Systems With Space-Time Block Codes

    OpenAIRE

    Yousefi'zadeh, Homayoun; Jafarkhani, Hamid; Moshfeghi, Mehran

    2004-01-01

    We present analytical and numerical solutions to the problem of power control in wireless media systems with multiple antennas. We formulate a set of optimization problems aimed at minimizing total power consumption of wireless media systems subject to a given level of QoS and an available bit rate. Our formulation takes in to consideration the power consumption related to source coding, channel coding, and transmission of multiple-transmit antennas. In our study, we consider Gauss-Markov and...

  7. Differentially Encoded LDPC Codes—Part II: General Case and Code Optimization

    Directory of Open Access Journals (Sweden)

    Li (Tiffany Jing

    2008-01-01

    Full Text Available This two-part series of papers studies the theory and practice of differentially encoded low-density parity-check (DE-LDPC codes, especially in the context of noncoherent detection. Part I showed that a special class of DE-LDPC codes, product accumulate codes, perform very well with both coherent and noncoherent detections. The analysis here reveals that a conventional LDPC code, however, is not fitful for differential coding and does not, in general, deliver a desirable performance when detected noncoherently. Through extrinsic information transfer (EXIT analysis and a modified "convergence-constraint" density evolution (DE method developed here, we provide a characterization of the type of LDPC degree profiles that work in harmony with differential detection (or a recursive inner code in general, and demonstrate how to optimize these LDPC codes. The convergence-constraint method provides a useful extension to the conventional "threshold-constraint" method, and can match an outer LDPC code to any given inner code with the imperfectness of the inner decoder taken into consideration.

  8. Spectral-Amplitude-Coded OCDMA Optimized for a Realistic FBG Frequency Response

    Science.gov (United States)

    Penon, Julien; El-Sahn, Ziad A.; Rusch, Leslie A.; Larochelle, Sophie

    2007-05-01

    We develop a methodology for numerical optimization of fiber Bragg grating frequency response to maximize the achievable capacity of a spectral-amplitude-coded optical code-division multiple-access (SAC-OCDMA) system. The optimal encoders are realized, and we experimentally demonstrate an incoherent SAC-OCDMA system with seven simultaneous users. We report a bit error rate (BER) of 2.7 x 10-8 at 622 Mb/s for a fully loaded network (seven users) using a 9.6-nm optical band. We achieve error-free transmission (BER < 1 x 10-9) for up to five simultaneous users.

  9. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    International Nuclear Information System (INIS)

    Li, Jia; Jiang, Kecheng; Zhang, Xiaokang; Nie, Xingchen; Zhu, Qinjun; Liu, Songlin

    2016-01-01

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  10. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: lijia@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Nie, Xingchen [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Zhu, Qinjun; Liu, Songlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2016-12-15

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  11. The Effect of Slot-Code Optimization in Warehouse Order Picking

    Directory of Open Access Journals (Sweden)

    Andrea Fumi

    2013-07-01

    most appropriate material handling resource configuration. Building on previous work on the effect of slot-code optimization on travel times in single/dual command cycles, the authors broaden the scope to include the most general picking case, thus widening the range of applicability and realising former suggestions for future research.

  12. RAID-6 reed-solomon codes with asymptotically optimal arithmetic complexities

    KAUST Repository

    Lin, Sian-Jheng

    2016-12-24

    In computer storage, RAID 6 is a level of RAID that can tolerate two failed drives. When RAID-6 is implemented by Reed-Solomon (RS) codes, the penalty of the writing performance is on the field multiplications in the second parity. In this paper, we present a configuration of the factors of the second-parity formula, such that the arithmetic complexity can reach the optimal complexity bound when the code length approaches infinity. In the proposed approach, the intermediate data used for the first parity is also utilized to calculate the second parity. To the best of our knowledge, this is the first approach supporting the RAID-6 RS codes to approach the optimal arithmetic complexity.

  13. Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks

    Science.gov (United States)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2011-01-01

    In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.

  14. Final Report A Multi-Language Environment For Programmable Code Optimization and Empirical Tuning

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Qing [Univ. of Colorado, Colorado Springs, CO (United States); Whaley, Richard Clint [Univ. of Texas, San Antonio, TX (United States); Qasem, Apan [Texas State Univ., San Marcos, TX (United States); Quinlan, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-11-23

    This report summarizes our effort and results of building an integrated optimization environment to effectively combine the programmable control and the empirical tuning of source-to-source compiler optimizations within the framework of multiple existing languages, specifically C, C++, and Fortran. The environment contains two main components: the ROSE analysis engine, which is based on the ROSE C/C++/Fortran2003 source-to-source compiler developed by Co-PI Dr.Quinlan et. al at DOE/LLNL, and the POET transformation engine, which is based on an interpreted program transformation language developed by Dr. Yi at University of Texas at San Antonio (UTSA). The ROSE analysis engine performs advanced compiler analysis, identifies profitable code transformations, and then produces output in POET, a language designed to provide programmable control of compiler optimizations to application developers and to support the parameterization of architecture-sensitive optimizations so that their configurations can be empirically tuned later. This POET output can then be ported to different machines together with the user application, where a POET-based search engine empirically reconfigures the parameterized optimizations until satisfactory performance is found. Computational specialists can write POET scripts to directly control the optimization of their code. Application developers can interact with ROSE to obtain optimization feedback as well as provide domain-specific knowledge and high-level optimization strategies. The optimization environment is expected to support different levels of automation and programmer intervention, from fully-automated tuning to semi-automated development and to manual programmable control.

  15. Authorship attribution of source code by using back propagation neural network based on particle swarm optimization.

    Science.gov (United States)

    Yang, Xinyu; Xu, Guoai; Li, Qi; Guo, Yanhui; Zhang, Miao

    2017-01-01

    Authorship attribution is to identify the most likely author of a given sample among a set of candidate known authors. It can be not only applied to discover the original author of plain text, such as novels, blogs, emails, posts etc., but also used to identify source code programmers. Authorship attribution of source code is required in diverse applications, ranging from malicious code tracking to solving authorship dispute or software plagiarism detection. This paper aims to propose a new method to identify the programmer of Java source code samples with a higher accuracy. To this end, it first introduces back propagation (BP) neural network based on particle swarm optimization (PSO) into authorship attribution of source code. It begins by computing a set of defined feature metrics, including lexical and layout metrics, structure and syntax metrics, totally 19 dimensions. Then these metrics are input to neural network for supervised learning, the weights of which are output by PSO and BP hybrid algorithm. The effectiveness of the proposed method is evaluated on a collected dataset with 3,022 Java files belong to 40 authors. Experiment results show that the proposed method achieves 91.060% accuracy. And a comparison with previous work on authorship attribution of source code for Java language illustrates that this proposed method outperforms others overall, also with an acceptable overhead.

  16. The SWAN/NPSOL code system for multivariable multiconstraint shield optimization

    International Nuclear Information System (INIS)

    Watkins, E.F.; Greenspan, E.

    1995-01-01

    SWAN is a useful code for optimization of source-driven systems, i.e., systems for which the neutron and photon distribution is the solution of the inhomogeneous transport equation. Over the years, SWAN has been applied to the optimization of a variety of nuclear systems, such as minimizing the thickness of fusion reactor blankets and shields, the weight of space reactor shields, the cost for an ICF target chamber shield, and the background radiation for explosive detection systems and maximizing the beam quality for boron neutron capture therapy applications. However, SWAN's optimization module can handle up to a single constraint and was inefficient in handling problems with many variables. The purpose of this work is to upgrade SWAN's optimization capability

  17. Tunable wavefront coded imaging system based on detachable phase mask: Mathematical analysis, optimization and underlying applications

    Science.gov (United States)

    Zhao, Hui; Wei, Jingxuan

    2014-09-01

    The key to the concept of tunable wavefront coding lies in detachable phase masks. Ojeda-Castaneda et al. (Progress in Electronics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010) described a typical design in which two components with cosinusoidal phase variation operate together to make defocus sensitivity tunable. The present study proposes an improved design and makes three contributions: (1) A mathematical derivation based on the stationary phase method explains why the detachable phase mask of Ojeda-Castaneda et al. tunes the defocus sensitivity. (2) The mathematical derivations show that the effective bandwidth wavefront coded imaging system is also tunable by making each component of the detachable phase mask move asymmetrically. An improved Fisher information-based optimization procedure was also designed to ascertain the optimal mask parameters corresponding to specific bandwidth. (3) Possible applications of the tunable bandwidth are demonstrated by simulated imaging.

  18. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    International Nuclear Information System (INIS)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.; Faletti, D.W.; Wiles, L.E.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code is a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant

  19. [Symbol: see text]2 Optimized predictive image coding with [Symbol: see text]∞ bound.

    Science.gov (United States)

    Chuah, Sceuchin; Dumitrescu, Sorina; Wu, Xiaolin

    2013-12-01

    In many scientific, medical, and defense applications of image/video compression, an [Symbol: see text]∞ error bound is required. However, pure[Symbol: see text]∞-optimized image coding, colloquially known as near-lossless image coding, is prone to structured errors such as contours and speckles if the bit rate is not sufficiently high; moreover, most of the previous [Symbol: see text]∞-based image coding methods suffer from poor rate control. In contrast, the [Symbol: see text]2 error metric aims for average fidelity and hence preserves the subtlety of smooth waveforms better than the ∞ error metric and it offers fine granularity in rate control, but pure [Symbol: see text]2-based image coding methods (e.g., JPEG 2000) cannot bound individual errors as the [Symbol: see text]∞-based methods can. This paper presents a new compression approach to retain the benefits and circumvent the pitfalls of the two error metrics. A common approach of near-lossless image coding is to embed into a DPCM prediction loop a uniform scalar quantizer of residual errors. The said uniform scalar quantizer is replaced, in the proposed new approach, by a set of context-based [Symbol: see text]2-optimized quantizers. The optimization criterion is to minimize a weighted sum of the [Symbol: see text]2 distortion and the entropy while maintaining a strict [Symbol: see text]∞ error bound. The resulting method obtains good rate-distortion performance in both [Symbol: see text]2 and [Symbol: see text]∞ metrics and also increases the rate granularity. Compared with JPEG 2000, the new method not only guarantees lower [Symbol: see text]∞ error for all bit rates, but also it achieves higher PSNR for relatively high bit rates.

  20. Development of free-piston Stirling engine performance and optimization codes based on Martini simulation technique

    Science.gov (United States)

    Martini, William R.

    1989-01-01

    A FORTRAN computer code is described that could be used to design and optimize a free-displacer, free-piston Stirling engine similar to the RE-1000 engine made by Sunpower. The code contains options for specifying displacer and power piston motion or for allowing these motions to be calculated by a force balance. The engine load may be a dashpot, inertial compressor, hydraulic pump or linear alternator. Cycle analysis may be done by isothermal analysis or adiabatic analysis. Adiabatic analysis may be done using the Martini moving gas node analysis or the Rios second-order Runge-Kutta analysis. Flow loss and heat loss equations are included. Graphical display of engine motions and pressures and temperatures are included. Programming for optimizing up to 15 independent dimensions is included. Sample performance results are shown for both specified and unconstrained piston motions; these results are shown as generated by each of the two Martini analyses. Two sample optimization searches are shown using specified piston motion isothermal analysis. One is for three adjustable input and one is for four. Also, two optimization searches for calculated piston motion are presented for three and for four adjustable inputs. The effect of leakage is evaluated. Suggestions for further work are given.

  1. GEMSFITS: Code package for optimization of geochemical model parameters and inverse modeling

    International Nuclear Information System (INIS)

    Miron, George D.; Kulik, Dmitrii A.; Dmytrieva, Svitlana V.; Wagner, Thomas

    2015-01-01

    Highlights: • Tool for generating consistent parameters against various types of experiments. • Handles a large number of experimental data and parameters (is parallelized). • Has a graphical interface and can perform statistical analysis on the parameters. • Tested on fitting the standard state Gibbs free energies of aqueous Al species. • Example on fitting interaction parameters of mixing models and thermobarometry. - Abstract: GEMSFITS is a new code package for fitting internally consistent input parameters of GEM (Gibbs Energy Minimization) geochemical–thermodynamic models against various types of experimental or geochemical data, and for performing inverse modeling tasks. It consists of the gemsfit2 (parameter optimizer) and gfshell2 (graphical user interface) programs both accessing a NoSQL database, all developed with flexibility, generality, efficiency, and user friendliness in mind. The parameter optimizer gemsfit2 includes the GEMS3K chemical speciation solver ( (http://gems.web.psi.ch/GEMS3K)), which features a comprehensive suite of non-ideal activity- and equation-of-state models of solution phases (aqueous electrolyte, gas and fluid mixtures, solid solutions, (ad)sorption. The gemsfit2 code uses the robust open-source NLopt library for parameter fitting, which provides a selection between several nonlinear optimization algorithms (global, local, gradient-based), and supports large-scale parallelization. The gemsfit2 code can also perform comprehensive statistical analysis of the fitted parameters (basic statistics, sensitivity, Monte Carlo confidence intervals), thus supporting the user with powerful tools for evaluating the quality of the fits and the physical significance of the model parameters. The gfshell2 code provides menu-driven setup of optimization options (data selection, properties to fit and their constraints, measured properties to compare with computed counterparts, and statistics). The practical utility, efficiency, and

  2. A nuclear reload optimization approach using a real coded genetic algorithm with random keys

    International Nuclear Information System (INIS)

    Lima, Alan M.M. de; Schirru, Roberto; Medeiros, Jose A.C.C.

    2009-01-01

    The fuel reload of a Pressurized Water Reactor is made whenever the burn up of the fuel assemblies in the nucleus of the reactor reaches a certain value such that it is not more possible to maintain a critical reactor producing energy at nominal power. The problem of fuel reload optimization consists on determining the positioning of the fuel assemblies within the nucleus of the reactor in an optimized way to minimize the cost benefit relationship of fuel assemblies cost per maximum burn up, and also satisfying symmetry and safety restrictions. The fuel reload optimization problem difficulty grows exponentially with the number of fuel assemblies in the nucleus of the reactor. During decades the fuel reload optimization problem was solved manually by experts that used their knowledge and experience to build configurations of the reactor nucleus, and testing them to verify if safety restrictions of the plant are satisfied. To reduce this burden, several optimization techniques have been used, included the binary code genetic algorithm. In this work we show the use of a real valued coded approach of the genetic algorithm, with different recombination methods, together with a transformation mechanism called random keys, to transform the real values of the genes of each chromosome in a combination of discrete fuel assemblies for evaluation of the reload optimization. Four different recombination methods were tested: discrete recombination, intermediate recombination, linear recombination and extended linear recombination. For each of the 4 recombination methods 10 different tests using different seeds for the random number generator were conducted 10 generating, totaling 40 tests. The results of the application of the genetic algorithm are shown with formulation of real numbers for the problem of the nuclear reload of the plant Angra 1 type PWR. Since the best results in the literature for this problem were found by the parallel PSO we will it use for comparison

  3. Optimized Irregular Low-Density Parity-Check Codes for Multicarrier Modulations over Frequency-Selective Channels

    Directory of Open Access Journals (Sweden)

    Valérian Mannoni

    2004-09-01

    Full Text Available This paper deals with optimized channel coding for OFDM transmissions (COFDM over frequency-selective channels using irregular low-density parity-check (LDPC codes. Firstly, we introduce a new characterization of the LDPC code irregularity called “irregularity profile.” Then, using this parameterization, we derive a new criterion based on the minimization of the transmission bit error probability to design an irregular LDPC code suited to the frequency selectivity of the channel. The optimization of this criterion is done using the Gaussian approximation technique. Simulations illustrate the good performance of our approach for different transmission channels.

  4. Multiple Description Coding Based on Optimized Redundancy Removal for 3D Depth Map

    Directory of Open Access Journals (Sweden)

    Sen Han

    2016-06-01

    Full Text Available Multiple description (MD coding is a promising alternative for the robust transmission of information over error-prone channels. In 3D image technology, the depth map represents the distance between the camera and objects in the scene. Using the depth map combined with the existing multiview image, it can be efficient to synthesize images of any virtual viewpoint position, which can display more realistic 3D scenes. Differently from the conventional 2D texture image, the depth map contains a lot of spatial redundancy information, which is not necessary for view synthesis, but may result in the waste of compressed bits, especially when using MD coding for robust transmission. In this paper, we focus on the redundancy removal of MD coding based on the DCT (discrete cosine transform domain. In view of the characteristics of DCT coefficients, at the encoder, a Lagrange optimization approach is designed to determine the amounts of high frequency coefficients in the DCT domain to be removed. It is noted considering the low computing complexity that the entropy is adopted to estimate the bit rate in the optimization. Furthermore, at the decoder, adaptive zero-padding is applied to reconstruct the depth map when some information is lost. The experimental results have shown that compared to the corresponding scheme, the proposed method demonstrates better rate central and side distortion performance.

  5. The SWAN-SCALE code for the optimization of critical systems

    International Nuclear Information System (INIS)

    Greenspan, E.; Karni, Y.; Regev, D.; Petrie, L.M.

    1999-01-01

    The SWAN optimization code was recently developed to identify the maximum value of k eff for a given mass of fissile material when in combination with other specified materials. The optimization process is iterative; in each iteration SWAN varies the zone-dependent concentration of the system constituents. This change is guided by the equal volume replacement effectiveness functions (EVREF) that SWAN generates using first-order perturbation theory. Previously, SWAN did not have provisions to account for the effect of the composition changes on neutron cross-section resonance self-shielding; it used the cross sections corresponding to the initial system composition. In support of the US Department of Energy Nuclear Criticality Safety Program, the authors recently removed the limitation on resonance self-shielding by coupling SWAN with the SCALE code package. The purpose of this paper is to briefly describe the resulting SWAN-SCALE code and to illustrate the effect that neutron cross-section self-shielding could have on the maximum k eff and on the corresponding system composition

  6. Three-dimensional polarization marked multiple-QR code encryption by optimizing a single vectorial beam

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Hua, Binbin; Wang, Zhisong

    2015-10-01

    We demonstrate the feasibility of three dimensional (3D) polarization multiplexing by optimizing a single vectorial beam using a multiple-signal window multiple-plane (MSW-MP) phase retrieval algorithm. Original messages represented with multiple quick response (QR) codes are first partitioned into a series of subblocks. Then, each subblock is marked with a specific polarization state and randomly distributed in 3D space with both longitudinal and transversal adjustable freedoms. A generalized 3D polarization mapping protocol is established to generate a 3D polarization key. Finally, multiple-QR code is encrypted into one phase only mask and one polarization only mask based on the modified Gerchberg-Saxton (GS) algorithm. We take the polarization mask as the cyphertext and the phase only mask as additional dimension of key. Only when both the phase key and 3D polarization key are correct, original messages can be recovered. We verify our proposal with both simulation and experiment evidences.

  7. Two-dimensional core calculation research for fuel management optimization based on CPACT code

    International Nuclear Information System (INIS)

    Chen Xiaosong; Peng Lianghui; Gang Zhi

    2013-01-01

    Fuel management optimization process requires rapid assessment for the core layout program, and the commonly used methods include two-dimensional diffusion nodal method, perturbation method, neural network method and etc. A two-dimensional loading patterns evaluation code was developed based on the three-dimensional LWR diffusion calculation program CPACT. Axial buckling introduced to simulate the axial leakage was searched in sub-burnup sections to correct the two-dimensional core diffusion calculation results. Meanwhile, in order to get better accuracy, the weight equivalent volume method of the control rod assembly cross-section was improved. (authors)

  8. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.; Faletti, D.W.; Wiles, L.E.

    1978-05-01

    This volume provides a listing of the BNW-II dry/wet ammonia heat rejection optimization code and is an appendix to Volume I which gives a narrative description of the code's algorithms as well as logic, input and output information.

  9. An effective coded excitation scheme based on a predistorted FM signal and an optimized digital filter

    DEFF Research Database (Denmark)

    Misaridis, Thanasis; Jensen, Jørgen Arendt

    1999-01-01

    This paper presents a coded excitation imaging system based on a predistorted FM excitation and a digital compression filter designed for medical ultrasonic applications, in order to preserve both axial resolution and contrast. In radars, optimal Chebyshev windows efficiently weight a nearly...... as with pulse excitation (about 1.5 lambda), depending on the filter design criteria. The axial sidelobes are below -40 dB, which is the noise level of the measuring imaging system. The proposed excitation/compression scheme shows good overall performance and stability to the frequency shift due to attenuation...... be removed by weighting. We show that by using a predistorted chirp with amplitude or phase shaping for amplitude ripple reduction and a correlation filter that accounts for the transducer's natural frequency weighting, output sidelobe levels of -35 to -40 dB are directly obtained. When an optimized filter...

  10. An Order Coding Genetic Algorithm to Optimize Fuel Reloads in a Nuclear Boiling Water Reactor

    International Nuclear Information System (INIS)

    Ortiz, Juan Jose; Requena, Ignacio

    2004-01-01

    A genetic algorithm is used to optimize the nuclear fuel reload for a boiling water reactor, and an order coding is proposed for the chromosomes and appropriate crossover and mutation operators. The fitness function was designed so that the genetic algorithm creates fuel reloads that, on one hand, satisfy the constrictions for the radial power peaking factor, the minimum critical power ratio, and the maximum linear heat generation rate while optimizing the effective multiplication factor at the beginning and end of the cycle. To find the values of these variables, a neural network trained with the behavior of a reactor simulator was used to predict them. The computation time is therefore greatly decreased in the search process. We validated this method with data from five cycles of the Laguna Verde Nuclear Power Plant in Mexico

  11. Outage Analysis and Optimization of SWIPT in Network-Coded Two-Way Relay Networks

    Directory of Open Access Journals (Sweden)

    Ruihong Jiang

    2017-01-01

    Full Text Available This paper investigates the outage performance of simultaneous wireless information and power transfer (SWIPT in network-coded two-way relay systems, where a relay first harvests energy from the signals transmitted by two sources and then uses the harvested energy to forward the received information to the two sources. We consider two transmission protocols, power splitting two-way relay (PS-TWR and time switching two-way relay (TS-TWR protocols. We present two explicit expressions for the system outage probability of the two protocols and further derive approximate expressions for them in high and low SNR cases. To explore the system performance limits, two optimization problems are formulated to minimize the system outage probability. Since the problems are nonconvex and have no known solution methods, a genetic algorithm- (GA- based algorithm is designed. Numerical and simulation results validate our theoretical analysis. It is shown that, by jointly optimizing the time assignment and SWIPT receiver parameters, a great performance gain can be achieved for both PS-TWR and TS-TWR. Moreover, the optimized PS-TWR always outperforms the optimized TS-TWR in terms of outage performance. Additionally, the effects of parameters including relay location and transmit powers are also discussed, which provide some insights for the SWIPT-enabled two-way relay networks.

  12. Numerical optimization of the ramp-down phase with the RAPTOR code

    Science.gov (United States)

    Teplukhina, Anna; Sauter, Olivier; Felici, Federico; The Tcv Team; The ASDEX-Upgrade Team; The Eurofusion Mst1 Team

    2017-10-01

    The ramp-down optimization goal in this work is defined as the fastest possible decrease of a plasma current while avoiding any disruptions caused by reaching physical or technical limits. Numerical simulations and preliminary experiments on TCV and AUG have shown that a fast decrease of plasma elongation and an adequate timing of the H-L transition during current ramp-down can help to avoid reaching high values of the plasma internal inductance. The RAPTOR code (F. Felici et al., 2012 PPCF 54; F. Felici, 2011 EPFL PhD thesis), developed for real-time plasma control, has been used for an optimization problem solving. Recently the transport model has been extended to include the ion temperature and electron density transport equations in addition to the electron temperature and current density transport equations, increasing the physical applications of the code. The gradient-based models for the transport coefficients (O. Sauter et al., 2014 PPCF 21; D. Kim et al., 2016 PPCF 58) have been implemented to RAPTOR and tested during this work. Simulations of the AUG and TCV entire plasma discharges will be presented. See the author list of S. Coda et al., Nucl. Fusion 57 2017 102011.

  13. SPEXTRA: Optimal extraction code for long-slit spectra in crowded fields

    Science.gov (United States)

    Sarkisyan, A. N.; Vinokurov, A. S.; Solovieva, Yu. N.; Sholukhova, O. N.; Kostenkov, A. E.; Fabrika, S. N.

    2017-10-01

    We present a code for the optimal extraction of long-slit 2D spectra in crowded stellar fields. Its main advantage and difference from the existing spectrum extraction codes is the presence of a graphical user interface (GUI) and a convenient visualization system of data and extraction parameters. On the whole, the package is designed to study stars in crowded fields of nearby galaxies and star clusters in galaxies. Apart from the spectrum extraction for several stars which are closely located or superimposed, it allows the spectra of objects to be extracted with subtraction of superimposed nebulae of different shapes and different degrees of ionization. The package can also be used to study single stars in the case of a strong background. In the current version, the optimal extraction of 2D spectra with an aperture and the Gaussian function as PSF (point spread function) is proposed. In the future, the package will be supplemented with the possibility to build a PSF based on a Moffat function. We present the details of GUI, illustrate main features of the package, and show results of extraction of the several interesting spectra of objects from different telescopes.

  14. Optimization and Openmp Parallelization of a Discrete Element Code for Convex Polyhedra on Multi-Core Machines

    Science.gov (United States)

    Chen, Jian; Matuttis, Hans-Georg

    2013-02-01

    We report our experiences with the optimization and parallelization of a discrete element code for convex polyhedra on multi-core machines and introduce a novel variant of the sort-and-sweep neighborhood algorithm. While in theory the whole code in itself parallelizes ideally, in practice the results on different architectures with different compilers and performance measurement tools depend very much on the particle number and optimization of the code. After difficulties with the interpretation of the data for speedup and efficiency are overcome, respectable parallelization speedups could be obtained.

  15. Optimization of reload of nuclear power plants using ACO together with the GENES reactor physics code

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alan M.M. de; Freire, Fernando S.; Nicolau, Andressa S.; Schirru, Roberto, E-mail: alan@lmp.ufrj.br, E-mail: andressa@lmp.ufrj.br, E-mail: schirru@lmp.ufrj.br, E-mail: ffreire@eletronuclear.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    The Nuclear reload of a Pressurized Water Reactor (PWR) occurs whenever the burning of the fuel elements can no longer maintain the criticality of the reactor, that is, it cannot maintain the Nuclear power plant operates within its nominal power. Nuclear reactor reload optimization problem consists of finding a loading pattern of fuel assemblies in the reactor core in order to minimize the cost/benefit ratio, trying to obtain maximum power generation with a minimum of cost, since in all reloads an average of one third of the new fuel elements are purchased. This loading pattern must also satisfy constraints of symmetry and security. In practice, it consists of the placing 121 fuel elements in 121 core positions, in the case of the Angra 1 Brazilian Nuclear Power Plant (NPP), making this new arrangement provide the best cost/benefit ratio. It is an extremely complex problem, since it has around 1% of great places. A core of 121 fuel elements has approximately 10{sup 13} combinations and 10{sup 11} great locations. With this number of possible combinations it is impossible to test all, in order to choose the best. In this work a system called ACO-GENES is proposed in order to optimization the Nuclear Reactor Reload Problem. ACO is successfully used in combination problems, and it is expected that ACO-GENES will show a robust optimization system, since in addition to optimizing ACO, it allows important prior knowledge such as K infinite, burn, etc. After optimization by ACO-GENES, the best results will be validated by a licensed reactor physics code and will be compared with the actual results of the cycle. (author)

  16. Optimization of reload of nuclear power plants using ACO together with the GENES reactor physics code

    International Nuclear Information System (INIS)

    Lima, Alan M.M. de; Freire, Fernando S.; Nicolau, Andressa S.; Schirru, Roberto

    2017-01-01

    The Nuclear reload of a Pressurized Water Reactor (PWR) occurs whenever the burning of the fuel elements can no longer maintain the criticality of the reactor, that is, it cannot maintain the Nuclear power plant operates within its nominal power. Nuclear reactor reload optimization problem consists of finding a loading pattern of fuel assemblies in the reactor core in order to minimize the cost/benefit ratio, trying to obtain maximum power generation with a minimum of cost, since in all reloads an average of one third of the new fuel elements are purchased. This loading pattern must also satisfy constraints of symmetry and security. In practice, it consists of the placing 121 fuel elements in 121 core positions, in the case of the Angra 1 Brazilian Nuclear Power Plant (NPP), making this new arrangement provide the best cost/benefit ratio. It is an extremely complex problem, since it has around 1% of great places. A core of 121 fuel elements has approximately 10"1"3 combinations and 10"1"1 great locations. With this number of possible combinations it is impossible to test all, in order to choose the best. In this work a system called ACO-GENES is proposed in order to optimization the Nuclear Reactor Reload Problem. ACO is successfully used in combination problems, and it is expected that ACO-GENES will show a robust optimization system, since in addition to optimizing ACO, it allows important prior knowledge such as K infinite, burn, etc. After optimization by ACO-GENES, the best results will be validated by a licensed reactor physics code and will be compared with the actual results of the cycle. (author)

  17. OPT13B and OPTIM4 - computer codes for optical model calculations

    International Nuclear Information System (INIS)

    Pal, S.; Srivastava, D.K.; Mukhopadhyay, S.; Ganguly, N.K.

    1975-01-01

    OPT13B is a computer code in FORTRAN for optical model calculations with automatic search. A summary of different formulae used for computation is given. Numerical methods are discussed. The 'search' technique followed to obtain the set of optical model parameters which produce best fit to experimental data in a least-square sense is also discussed. Different subroutines of the program are briefly described. Input-output specifications are given in detail. A modified version of OPT13B specifications are given in detail. A modified version of OPT13B is OPTIM4. It can be used for optical model calculations where the form factors of different parts of the optical potential are known point by point. A brief description of the modifications is given. (author)

  18. Solution of optimization problems by means of the CASTEM 2000 computer code

    International Nuclear Information System (INIS)

    Charras, Th.; Millard, A.; Verpeaux, P.

    1991-01-01

    In the nuclear industry, it can be necessary to use robots for operation in contaminated environment. Most of the time, positioning of some parts of the robot must be very accurate, which highly depends on the structural (mass and stiffness) properties of its various components. Therefore, there is a need for a 'best' design, which is a compromise between technical (mechanical properties) and economical (material quantities, design and manufacturing cost) matters. This is precisely the aim of optimization techniques, in the frame of structural analysis. A general statement of this problem could be as follows: find the set of parameters which leads to the minimum of a given function, and satisfies some constraints. For example, in the case of a robot component, the parameters can be some geometrical data (plate thickness, ...), the function can be the weight and the constraints can consist in design criteria like a given stiffness and in some manufacturing technological constraints (minimum available thickness, etc). For nuclear industry purposes, a robust method was chosen and implemented in the new generation computer code CASTEM 2000. The solution of the optimum design problem is obtained by solving a sequence of convex subproblems, in which the various functions (the function to minimize and the constraints) are transformed by convex linearization. The method has been programmed in the case of continuous as well as discrete variables. According to the highly modular architecture of the CASTEM 2000 code, only one new operation had to be introduced: the solution of a sub problem with convex linearized functions, which is achieved by means of a conjugate gradient technique. All other operations were already available in the code, and the overall optimum design is realized by means of the Gibiane language. An example of application will be presented to illustrate the possibilities of the method. (author)

  19. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J. [Delft University of Technology, NL-2629 JB Delft (Netherlands)

    1998-07-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  20. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    International Nuclear Information System (INIS)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J.

    1998-01-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  1. Development of hydraulic analysis code for optimizing thermo-chemical is process reactors

    International Nuclear Information System (INIS)

    Terada, Atsuhiko; Hino, Ryutaro; Hirayama, Toshio; Nakajima, Norihiro; Sugiyama, Hitoshi

    2007-01-01

    The Japan Atomic Energy Agency has been conducting study on thermochemical IS process for water splitting hydrogen production. Based on the test results and know-how obtained through the bench-scale test, a pilot test plant, which has a hydrogen production performance of 30 Nm 3 /h, is being designed conceptually as the next step of the IS process development. In design of the IS pilot plant, it is important to make chemical reactors compact with high performance from the viewpoint of plant cost reduction. A new hydraulic analytical code has been developed for optimizing mixing performance of multi-phase flow involving chemical reactions especially in the Bunsen reactor. Complex flow pattern with gas-liquid chemical interaction involving flow instability will be characterized in the Bunsen reactor. Preliminary analytical results obtained with above mentioned code, especially flow patterns induced by swirling flow agreed well with that measured by water experiments, which showed vortex breakdown pattern in a simplified Bunsen reactor. (author)

  2. The role of stochasticity in an information-optimal neural population code

    International Nuclear Information System (INIS)

    Stocks, N G; Nikitin, A P; McDonnell, M D; Morse, R P

    2009-01-01

    In this paper we consider the optimisation of Shannon mutual information (MI) in the context of two model neural systems. The first is a stochastic pooling network (population) of McCulloch-Pitts (MP) type neurons (logical threshold units) subject to stochastic forcing; the second is (in a rate coding paradigm) a population of neurons that each displays Poisson statistics (the so called 'Poisson neuron'). The mutual information is optimised as a function of a parameter that characterises the 'noise level'-in the MP array this parameter is the standard deviation of the noise; in the population of Poisson neurons it is the window length used to determine the spike count. In both systems we find that the emergent neural architecture and, hence, code that maximises the MI is strongly influenced by the noise level. Low noise levels leads to a heterogeneous distribution of neural parameters (diversity), whereas, medium to high noise levels result in the clustering of neural parameters into distinct groups that can be interpreted as subpopulations. In both cases the number of subpopulations increases with a decrease in noise level. Our results suggest that subpopulations are a generic feature of an information optimal neural population.

  3. The role of stochasticity in an information-optimal neural population code

    Energy Technology Data Exchange (ETDEWEB)

    Stocks, N G; Nikitin, A P [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); McDonnell, M D [Institute for Telecommunications Research, University of South Australia, SA 5095 (Australia); Morse, R P, E-mail: n.g.stocks@warwick.ac.u [School of Life and Health Sciences, Aston University, Birmingham B4 7ET (United Kingdom)

    2009-12-01

    In this paper we consider the optimisation of Shannon mutual information (MI) in the context of two model neural systems. The first is a stochastic pooling network (population) of McCulloch-Pitts (MP) type neurons (logical threshold units) subject to stochastic forcing; the second is (in a rate coding paradigm) a population of neurons that each displays Poisson statistics (the so called 'Poisson neuron'). The mutual information is optimised as a function of a parameter that characterises the 'noise level'-in the MP array this parameter is the standard deviation of the noise; in the population of Poisson neurons it is the window length used to determine the spike count. In both systems we find that the emergent neural architecture and, hence, code that maximises the MI is strongly influenced by the noise level. Low noise levels leads to a heterogeneous distribution of neural parameters (diversity), whereas, medium to high noise levels result in the clustering of neural parameters into distinct groups that can be interpreted as subpopulations. In both cases the number of subpopulations increases with a decrease in noise level. Our results suggest that subpopulations are a generic feature of an information optimal neural population.

  4. An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal

    Directory of Open Access Journals (Sweden)

    A. Kumar

    2015-07-01

    Full Text Available A simple iterative technique for the design of nonuniform cosine modulated filter banks (CMFBS is presented in this paper. The proposed technique employs a single parameter for optimization. The nonuniform cosine modulated filter banks are derived by merging the adjacent filters of uniform cosine modulated filter banks. The prototype filter is designed with the aid of different adjustable window functions such as Kaiser, Cosh and Exponential, and by using the constrained equiripple finite impulse response (FIR digital filter design technique. In this method, either cut off frequency or passband edge frequency is varied in order to adjust the filter coefficients so that reconstruction error could be optimized/minimized to zero. Performance and effectiveness of the proposed method in terms of peak reconstruction error (PRE, aliasing distortion (AD, computational (CPU time, and number of iteration (NOI have been shown through the numerical examples and comparative studies. Finally, the technique is exploited for the subband coding of electrocardiogram (ECG and speech signals.

  5. Stereoscopic Visual Attention-Based Regional Bit Allocation Optimization for Multiview Video Coding

    Directory of Open Access Journals (Sweden)

    Dai Qionghai

    2010-01-01

    Full Text Available We propose a Stereoscopic Visual Attention- (SVA- based regional bit allocation optimization for Multiview Video Coding (MVC by the exploiting visual redundancies from human perceptions. We propose a novel SVA model, where multiple perceptual stimuli including depth, motion, intensity, color, and orientation contrast are utilized, to simulate the visual attention mechanisms of human visual system with stereoscopic perception. Then, a semantic region-of-interest (ROI is extracted based on the saliency maps of SVA. Both objective and subjective evaluations of extracted ROIs indicated that the proposed SVA model based on ROI extraction scheme outperforms the schemes only using spatial or/and temporal visual attention clues. Finally, by using the extracted SVA-based ROIs, a regional bit allocation optimization scheme is presented to allocate more bits on SVA-based ROIs for high image quality and fewer bits on background regions for efficient compression purpose. Experimental results on MVC show that the proposed regional bit allocation algorithm can achieve over % bit-rate saving while maintaining the subjective image quality. Meanwhile, the image quality of ROIs is improved by  dB at the cost of insensitive image quality degradation of the background image.

  6. Efficient Coding and Statistically Optimal Weighting of Covariance among Acoustic Attributes in Novel Sounds

    Science.gov (United States)

    Stilp, Christian E.; Kluender, Keith R.

    2012-01-01

    To the extent that sensorineural systems are efficient, redundancy should be extracted to optimize transmission of information, but perceptual evidence for this has been limited. Stilp and colleagues recently reported efficient coding of robust correlation (r = .97) among complex acoustic attributes (attack/decay, spectral shape) in novel sounds. Discrimination of sounds orthogonal to the correlation was initially inferior but later comparable to that of sounds obeying the correlation. These effects were attenuated for less-correlated stimuli (r = .54) for reasons that are unclear. Here, statistical properties of correlation among acoustic attributes essential for perceptual organization are investigated. Overall, simple strength of the principal correlation is inadequate to predict listener performance. Initial superiority of discrimination for statistically consistent sound pairs was relatively insensitive to decreased physical acoustic/psychoacoustic range of evidence supporting the correlation, and to more frequent presentations of the same orthogonal test pairs. However, increased range supporting an orthogonal dimension has substantial effects upon perceptual organization. Connectionist simulations and Eigenvalues from closed-form calculations of principal components analysis (PCA) reveal that perceptual organization is near-optimally weighted to shared versus unshared covariance in experienced sound distributions. Implications of reduced perceptual dimensionality for speech perception and plausible neural substrates are discussed. PMID:22292057

  7. FREQUENCY ANALYSIS OF RLE-BLOCKS REPETITIONS IN THE SERIES OF BINARY CODES WITH OPTIMAL MINIMAX CRITERION OF AUTOCORRELATION FUNCTION

    Directory of Open Access Journals (Sweden)

    A. A. Kovylin

    2013-01-01

    Full Text Available The article describes the problem of searching for binary pseudo-random sequences with quasi-ideal autocorrelation function, which are to be used in contemporary communication systems, including mobile and wireless data transfer interfaces. In the synthesis of binary sequences sets, the target set is manning them based on the minimax criterion by which a sequence is considered to be optimal according to the intended application. In the course of the research the optimal sequences with order of up to 52 were obtained; the analysis of Run Length Encoding was carried out. The analysis showed regularities in the distribution of series number of different lengths in the codes that are optimal on the chosen criteria, which would make it possible to optimize the searching process for such codes in the future.

  8. Enhanced Protein Production in Escherichia coli by Optimization of Cloning Scars at the Vector-Coding Sequence Junction

    DEFF Research Database (Denmark)

    Mirzadeh, Kiavash; Martinez, Virginia; Toddo, Stephen

    2015-01-01

    are poorly expressed even when they are codon-optimized and expressed from vectors with powerful genetic elements. In this study, we show that poor expression can be caused by certain nucleotide sequences (e.g., cloning scars) at the junction between the vector and the coding sequence. Since these sequences...

  9. The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization.

    Science.gov (United States)

    Błażej, Paweł; Wnȩtrzak, Małgorzata; Mackiewicz, Paweł

    2016-12-01

    One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure

  10. Performance Modeling and Optimization of a High Energy CollidingBeam Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Hongzhang; Strohmaier, Erich; Qiang, Ji; Bailey, David H.; Yelick, Kathy

    2006-06-01

    An accurate modeling of the beam-beam interaction is essential to maximizing the luminosity in existing and future colliders. BeamBeam3D was the first parallel code that can be used to study this interaction fully self-consistently on high-performance computing platforms. Various all-to-all personalized communication (AAPC) algorithms dominate its communication patterns, for which we developed a sequence of performance models using a series of micro-benchmarks. We find that for SMP based systems the most important performance constraint is node-adapter contention, while for 3D-Torus topologies good performance models are not possible without considering link contention. The best average model prediction error is very low on SMP based systems with of 3% to 7%. On torus based systems errors of 29% are higher but optimized performance can again be predicted within 8% in some cases. These excellent results across five different systems indicate that this methodology for performance modeling can be applied to a large class of algorithms.

  11. Performance Modeling and Optimization of a High Energy Colliding Beam Simulation Code

    International Nuclear Information System (INIS)

    Shan, Hongzhang; Strohmaier, Erich; Qiang, Ji; Bailey, David H.; Yelick, Kathy

    2006-01-01

    An accurate modeling of the beam-beam interaction is essential to maximizing the luminosity in existing and future colliders. BeamBeam3D was the first parallel code that can be used to study this interaction fully self-consistently on high-performance computing platforms. Various all-to-all personalized communication (AAPC) algorithms dominate its communication patterns, for which we developed a sequence of performance models using a series of micro-benchmarks. We find that for SMP based systems the most important performance constraint is node-adapter contention, while for 3D-Torus topologies good performance models are not possible without considering link contention. The best average model prediction error is very low on SMP based systems with of 3% to 7%. On torus based systems errors of 29% are higher but optimized performance can again be predicted within 8% in some cases. These excellent results across five different systems indicate that this methodology for performance modeling can be applied to a large class of algorithms

  12. Optimization of the Monte Carlo code for modeling of photon migration in tissue.

    Science.gov (United States)

    Zołek, Norbert S; Liebert, Adam; Maniewski, Roman

    2006-10-01

    The Monte Carlo method is frequently used to simulate light transport in turbid media because of its simplicity and flexibility, allowing to analyze complicated geometrical structures. Monte Carlo simulations are, however, time consuming because of the necessity to track the paths of individual photons. The time consuming computation is mainly associated with the calculation of the logarithmic and trigonometric functions as well as the generation of pseudo-random numbers. In this paper, the Monte Carlo algorithm was developed and optimized, by approximation of the logarithmic and trigonometric functions. The approximations were based on polynomial and rational functions, and the errors of these approximations are less than 1% of the values of the original functions. The proposed algorithm was verified by simulations of the time-resolved reflectance at several source-detector separations. The results of the calculation using the approximated algorithm were compared with those of the Monte Carlo simulations obtained with an exact computation of the logarithm and trigonometric functions as well as with the solution of the diffusion equation. The errors of the moments of the simulated distributions of times of flight of photons (total number of photons, mean time of flight and variance) are less than 2% for a range of optical properties, typical of living tissues. The proposed approximated algorithm allows to speed up the Monte Carlo simulations by a factor of 4. The developed code can be used on parallel machines, allowing for further acceleration.

  13. SU-E-T-254: Optimization of GATE and PHITS Monte Carlo Code Parameters for Uniform Scanning Proton Beam Based On Simulation with FLUKA General-Purpose Code

    Energy Technology Data Exchange (ETDEWEB)

    Kurosu, K [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Department of Medical Physics ' Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Takashina, M; Koizumi, M [Department of Medical Physics ' Engineering, Osaka University Graduate School of Medicine, Osaka (Japan); Das, I; Moskvin, V [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2014-06-01

    Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximum step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of Health

  14. Optimization of Coding of AR Sources for Transmission Across Channels with Loss

    DEFF Research Database (Denmark)

    Arildsen, Thomas

    Source coding concerns the representation of information in a source signal using as few bits as possible. In the case of lossy source coding, it is the encoding of a source signal using the fewest possible bits at a given distortion or, at the lowest possible distortion given a specified bit rate....... Channel coding is usually applied in combination with source coding to ensure reliable transmission of the (source coded) information at the maximal rate across a channel given the properties of this channel. In this thesis, we consider the coding of auto-regressive (AR) sources which are sources that can...... compared to the case where the encoder is unaware of channel loss. We finally provide an extensive overview of cross-layer communication issues which are important to consider due to the fact that the proposed algorithm interacts with the source coding and exploits channel-related information typically...

  15. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms.

    Science.gov (United States)

    Cerveau, Nicolas; Jackson, Daniel J

    2016-12-09

    Next-generation sequencing (NGS) technologies are arguably the most revolutionary technical development to join the list of tools available to molecular biologists since PCR. For researchers working with nonconventional model organisms one major problem with the currently dominant NGS platform (Illumina) stems from the obligatory fragmentation of nucleic acid material that occurs prior to sequencing during library preparation. This step creates a significant bioinformatic challenge for accurate de novo assembly of novel transcriptome data. This challenge becomes apparent when a variety of modern assembly tools (of which there is no shortage) are applied to the same raw NGS dataset. With the same assembly parameters these tools can generate markedly different assembly outputs. In this study we present an approach that generates an optimized consensus de novo assembly of eukaryotic coding transcriptomes. This approach does not represent a new assembler, rather it combines the outputs of a variety of established assembly packages, and removes redundancy via a series of clustering steps. We test and validate our approach using Illumina datasets from six phylogenetically diverse eukaryotes (three metazoans, two plants and a yeast) and two simulated datasets derived from metazoan reference genome annotations. All of these datasets were assembled using three currently popular assembly packages (CLC, Trinity and IDBA-tran). In addition, we experimentally demonstrate that transcripts unique to one particular assembly package are likely to be bioinformatic artefacts. For all eight datasets our pipeline generates more concise transcriptomes that in fact possess more unique annotatable protein domains than any of the three individual assemblers we employed. Another measure of assembly completeness (using the purpose built BUSCO databases) also confirmed that our approach yields more information. Our approach yields coding transcriptome assemblies that are more likely to be

  16. Code Optimization, Frozen Glassy Phase and Improved Decoding Algorithms for Low-Density Parity-Check Codes

    International Nuclear Information System (INIS)

    Huang Hai-Ping

    2015-01-01

    The statistical physics properties of low-density parity-check codes for the binary symmetric channel are investigated as a spin glass problem with multi-spin interactions and quenched random fields by the cavity method. By evaluating the entropy function at the Nishimori temperature, we find that irregular constructions with heterogeneous degree distribution of check (bit) nodes have higher decoding thresholds compared to regular counterparts with homogeneous degree distribution. We also show that the instability of the mean-field calculation takes place only after the entropy crisis, suggesting the presence of a frozen glassy phase at low temperatures. When no prior knowledge of channel noise is assumed (searching for the ground state), we find that a reinforced strategy on normal belief propagation will boost the decoding threshold to a higher value than the normal belief propagation. This value is close to the dynamical transition where all local search heuristics fail to identify the true message (codeword or the ferromagnetic state). After the dynamical transition, the number of metastable states with larger energy density (than the ferromagnetic state) becomes exponentially numerous. When the noise level of the transmission channel approaches the static transition point, there starts to exist exponentially numerous codewords sharing the identical ferromagnetic energy. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Content Adaptive Lagrange Multiplier Selection for Rate-Distortion Optimization in 3-D Wavelet-Based Scalable Video Coding

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2018-03-01

    Full Text Available Rate-distortion optimization (RDO plays an essential role in substantially enhancing the coding efficiency. Currently, rate-distortion optimized mode decision is widely used in scalable video coding (SVC. Among all the possible coding modes, it aims to select the one which has the best trade-off between bitrate and compression distortion. Specifically, this tradeoff is tuned through the choice of the Lagrange multiplier. Despite the prevalence of conventional method for Lagrange multiplier selection in hybrid video coding, the underlying formulation is not applicable to 3-D wavelet-based SVC where the explicit values of the quantization step are not available, with on consideration of the content features of input signal. In this paper, an efficient content adaptive Lagrange multiplier selection algorithm is proposed in the context of RDO for 3-D wavelet-based SVC targeting quality scalability. Our contributions are two-fold. First, we introduce a novel weighting method, which takes account of the mutual information, gradient per pixel, and texture homogeneity to measure the temporal subband characteristics after applying the motion-compensated temporal filtering (MCTF technique. Second, based on the proposed subband weighting factor model, we derive the optimal Lagrange multiplier. Experimental results demonstrate that the proposed algorithm enables more satisfactory video quality with negligible additional computational complexity.

  18. Development of Geometry Optimization Methodology with In-house CFD code, and Challenge in Applying to Fuel Assembly

    International Nuclear Information System (INIS)

    Jeong, J. H.; Lee, K. L.

    2016-01-01

    The wire spacer has important roles to avoid collisions between adjacent rods, to mitigate a vortex induced vibration, and to enhance convective heat transfer by wire spacer induced secondary flow. Many experimental and numerical works has been conducted to understand the thermal-hydraulics of the wire-wrapped fuel bundles. There has been enormous growth in computing capability. Recently, a huge increase of computer power allows to three-dimensional simulation of thermal-hydraulics of wire-wrapped fuel bundles. In this study, the geometry optimization methodology with RANS based in-house CFD (Computational Fluid Dynamics) code has been successfully developed in air condition. In order to apply the developed methodology to fuel assembly, GGI (General Grid Interface) function is developed for in-house CFD code. Furthermore, three-dimensional flow fields calculated with in-house CFD code are compared with those calculated with general purpose commercial CFD solver, CFX. The geometry optimization methodology with RANS based in-house CFD code has been successfully developed in air condition. In order to apply the developed methodology to fuel assembly, GGI function is developed for in-house CFD code as same as CFX. Even though both analyses are conducted with same computational meshes, numerical error due to GGI function locally occurred in only CFX solver around rod surface and boundary region between inner fluid region and outer fluid region.

  19. A Distributed Flow Rate Control Algorithm for Networked Agent System with Multiple Coding Rates to Optimize Multimedia Data Transmission

    Directory of Open Access Journals (Sweden)

    Shuai Zeng

    2013-01-01

    Full Text Available With the development of wireless technologies, mobile communication applies more and more extensively in the various walks of life. The social network of both fixed and mobile users can be seen as networked agent system. At present, kinds of devices and access network technology are widely used. Different users in this networked agent system may need different coding rates multimedia data due to their heterogeneous demand. This paper proposes a distributed flow rate control algorithm to optimize multimedia data transmission of the networked agent system with the coexisting various coding rates. In this proposed algorithm, transmission path and upload bandwidth of different coding rate data between source node, fixed and mobile nodes are appropriately arranged and controlled. On the one hand, this algorithm can provide user nodes with differentiated coding rate data and corresponding flow rate. On the other hand, it makes the different coding rate data and user nodes networked, which realizes the sharing of upload bandwidth of user nodes which require different coding rate data. The study conducts mathematical modeling on the proposed algorithm and compares the system that adopts the proposed algorithm with the existing system based on the simulation experiment and mathematical analysis. The results show that the system that adopts the proposed algorithm achieves higher upload bandwidth utilization of user nodes and lower upload bandwidth consumption of source node.

  20. Optimization of an Electromagnetics Code with Multicore Wavefront Diamond Blocking and Multi-dimensional Intra-Tile Parallelization

    KAUST Repository

    Malas, Tareq M.

    2016-07-21

    Understanding and optimizing the properties of solar cells is becoming a key issue in the search for alternatives to nuclear and fossil energy sources. A theoretical analysis via numerical simulations involves solving Maxwell\\'s Equations in discretized form and typically requires substantial computing effort. We start from a hybrid-parallel (MPI+OpenMP) production code that implements the Time Harmonic Inverse Iteration Method (THIIM) with Finite-Difference Frequency Domain (FDFD) discretization. Although this algorithm has the characteristics of a strongly bandwidth-bound stencil update scheme, it is significantly different from the popular stencil types that have been exhaustively studied in the high performance computing literature to date. We apply a recently developed stencil optimization technique, multicore wavefront diamond tiling with multi-dimensional cache block sharing, and describe in detail the peculiarities that need to be considered due to the special stencil structure. Concurrency in updating the components of the electric and magnetic fields provides an additional level of parallelism. The dependence of the cache size requirement of the optimized code on the blocking parameters is modeled accurately, and an auto-tuner searches for optimal configurations in the remaining parameter space. We were able to completely decouple the execution from the memory bandwidth bottleneck, accelerating the implementation by a factor of three to four compared to an optimal implementation with pure spatial blocking on an 18-core Intel Haswell CPU.

  1. User's manual for the BNW-II optimization code for dry/wet-cooled power plants

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D.J.; Bamberger, J.A.; Braun, D.J.; Faletti, D.W.; Wiles, L.E.

    1978-05-01

    The User's Manual describes how to operate BNW-II, a computer code developed by the Pacific Northwest Laboratory (PNL) as a part of its activities under the Department of Energy (DOE) Dry Cooling Enhancement Program. The computer program offers a comprehensive method of evaluating the cost savings potential of dry/wet-cooled heat rejection systems. Going beyond simple ''figure-of-merit'' cooling tower optimization, this method includes such items as the cost of annual replacement capacity, and the optimum split between plant scale-up and replacement capacity, as well as the purchase and operating costs of all major heat rejection components. Hence the BNW-II code is a useful tool for determining potential cost savings of new dry/wet surfaces, new piping, or other components as part of an optimized system for a dry/wet-cooled plant.

  2. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-02-03

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.

  3. Accuracy improvement of SPACE code using the optimization for CHF subroutine

    International Nuclear Information System (INIS)

    Yang, Chang Keun; Kim, Yo Han; Park, Jong Eun; Ha, Sang Jun

    2010-01-01

    Typically, a subroutine to calculate the CHF (Critical Heat Flux) is loaded in code for safety analysis of nuclear power plant. CHF subroutine calculates CHF phenomenon using arbitrary condition (Temperature, pressure, flow rate, power, etc). When safety analysis for nuclear power plant is performed using major factor, CHF parameter is one of the most important factor. But the subroutines used in most codes, such as Biasi method, etc., estimate some different values from experimental data. Most CHF subroutines in the codes could predict only in their specification area, such as pressure, mass flow, void fraction, etc. Even though the most accurate CHF subroutine is used in the high quality nuclear safety analysis code, it is not assured that the valued predicted values by the subroutine are acceptable out of their application area. To overcome this hardship, various approaches to estimate the CHF have been examined during the code developing stage of SPACE. And the six sigma technique was adopted for the examination as mentioned this study. The objective of this study is to improvement of CHF prediction accuracy for nuclear power plant safety analysis code using the CHF database and Six Sigma technique. Through the study, it was concluded that the six sigma technique was useful to quantify the deviation of prediction values to experimental data and the implemented CHF prediction method in SPACE code had well-predict capabilities compared with those from other methods

  4. Approaches in highly parameterized inversion - PEST++, a Parameter ESTimation code optimized for large environmental models

    Science.gov (United States)

    Welter, David E.; Doherty, John E.; Hunt, Randall J.; Muffels, Christopher T.; Tonkin, Matthew J.; Schreuder, Willem A.

    2012-01-01

    An object-oriented parameter estimation code was developed to incorporate benefits of object-oriented programming techniques for solving large parameter estimation modeling problems. The code is written in C++ and is a formulation and expansion of the algorithms included in PEST, a widely used parameter estimation code written in Fortran. The new code is called PEST++ and is designed to lower the barriers of entry for users and developers while providing efficient algorithms that can accommodate large, highly parameterized problems. This effort has focused on (1) implementing the most popular features of PEST in a fashion that is easy for novice or experienced modelers to use and (2) creating a software design that is easy to extend; that is, this effort provides a documented object-oriented framework designed from the ground up to be modular and extensible. In addition, all PEST++ source code and its associated libraries, as well as the general run manager source code, have been integrated in the Microsoft Visual Studio® 2010 integrated development environment. The PEST++ code is designed to provide a foundation for an open-source development environment capable of producing robust and efficient parameter estimation tools for the environmental modeling community into the future.

  5. The Impact of Diagnostic Code Misclassification on Optimizing the Experimental Design of Genetic Association Studies

    Directory of Open Access Journals (Sweden)

    Steven J. Schrodi

    2017-01-01

    Full Text Available Diagnostic codes within electronic health record systems can vary widely in accuracy. It has been noted that the number of instances of a particular diagnostic code monotonically increases with the accuracy of disease phenotype classification. As a growing number of health system databases become linked with genomic data, it is critically important to understand the effect of this misclassification on the power of genetic association studies. Here, I investigate the impact of this diagnostic code misclassification on the power of genetic association studies with the aim to better inform experimental designs using health informatics data. The trade-off between (i reduced misclassification rates from utilizing additional instances of a diagnostic code per individual and (ii the resulting smaller sample size is explored, and general rules are presented to improve experimental designs.

  6. Iterative Phase Optimization of Elementary Quantum Error Correcting Codes (Open Access, Publisher’s Version)

    Science.gov (United States)

    2016-08-24

    to the seven-qubit Steane code [29] and also represents the smallest instance of a 2D topological color code [30]. Since the realized quantum error...Quantum Computations on a Topologically Encoded Qubit, Science 345, 302 (2014). [17] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D. Gross, S. D...Memory, J. Math . Phys. (N.Y.) 43, 4452 (2002). [20] B. M. Terhal, Quantum Error Correction for Quantum Memories, Rev. Mod. Phys. 87, 307 (2015). [21] D

  7. Performance Evaluation of a Novel Optimization Sequential Algorithm (SeQ Code for FTTH Network

    Directory of Open Access Journals (Sweden)

    Fazlina C.A.S.

    2017-01-01

    Full Text Available The SeQ codes has advantages, such as variable cross-correlation property at any given number of users and weights, as well as effectively suppressed the impacts of phase induced intensity noise (PIIN and multiple access interference (MAI cancellation property. The result revealed, at system performance analysis of BER = 10-09, the SeQ code capable to achieved 1 Gbps up to 60 km.

  8. Optimization of GATE and PHITS Monte Carlo code parameters for spot scanning proton beam based on simulation with FLUKA general-purpose code

    Energy Technology Data Exchange (ETDEWEB)

    Kurosu, Keita [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Department of Radiology, Osaka University Hospital, Suita, Osaka 565-0871 (Japan); Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Moskvin, Vadim P. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105 (United States)

    2016-01-15

    Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm{sup 3}, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm{sup 3} voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation

  9. Optimization of GATE and PHITS Monte Carlo code parameters for spot scanning proton beam based on simulation with FLUKA general-purpose code

    International Nuclear Information System (INIS)

    Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.

    2016-01-01

    Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm 3 , which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm 3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique

  10. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    International Nuclear Information System (INIS)

    Binh, Do Quang; Huy, Ngo Quang; Hai, Nguyen Hoang

    2014-01-01

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  11. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    Energy Technology Data Exchange (ETDEWEB)

    Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)

    2014-12-15

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  12. General productivity code: productivity optimization of gaseous diffusion cascades. The programmer's guide

    International Nuclear Information System (INIS)

    Tunstall, J.N.

    1975-05-01

    The General Productivity Code is a FORTRAN IV computer program for the IBM System 360. With its model of the productivity of gaseous diffusion cascades, the program is used to determine optimum cascade performance based on specified operating conditions and to aid in the calculation of optimum operating conditions for a complex of diffusion cascades. This documentation of the program is directed primarily to programmers who will be responsible for updating the code as requested by the users. It is also intended to be an aid in training new Productivity Code users and to serve as a general reference manual. Elements of the mathematical model, the input data requirements, the definitions of the various tasks (Instructions) that can be performed, and a detailed description of most FORTRAN variables and program subroutines are presented. A sample problem is also included. (auth)

  13. Lifting scheme-based method for joint coding 3D stereo digital cinema with luminace correction and optimized prediction

    Science.gov (United States)

    Darazi, R.; Gouze, A.; Macq, B.

    2009-01-01

    Reproducing a natural and real scene as we see in the real world everyday is becoming more and more popular. Stereoscopic and multi-view techniques are used for this end. However due to the fact that more information are displayed requires supporting technologies such as digital compression to ensure the storage and transmission of the sequences. In this paper, a new scheme for stereo image coding is proposed. The original left and right images are jointly coded. The main idea is to optimally exploit the existing correlation between the two images. This is done by the design of an efficient transform that reduces the existing redundancy in the stereo image pair. This approach was inspired by Lifting Scheme (LS). The novelty in our work is that the prediction step is been replaced by an hybrid step that consists in disparity compensation followed by luminance correction and an optimized prediction step. The proposed scheme can be used for lossless and for lossy coding. Experimental results show improvement in terms of performance and complexity compared to recently proposed methods.

  14. Optimized Reactive Power Flow of DFIG Power Converters for Better Reliability Performance Considering Grid Codes

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2015-01-01

    . In order to fulfill the modern grid codes, over-excited reactive power injection will further reduce the lifetime of the rotor-side converter. In this paper, the additional stress of the power semiconductor due to the reactive power injection is firstly evaluated in terms of modulation index...

  15. Power Allocation Optimization: Linear Precoding Adapted to NB-LDPC Coded MIMO Transmission

    Directory of Open Access Journals (Sweden)

    Tarek Chehade

    2015-01-01

    Full Text Available In multiple-input multiple-output (MIMO transmission systems, the channel state information (CSI at the transmitter can be used to add linear precoding to the transmitted signals in order to improve the performance and the reliability of the transmission system. This paper investigates how to properly join precoded closed-loop MIMO systems and nonbinary low density parity check (NB-LDPC. The q elements in the Galois field, GF(q, are directly mapped to q transmit symbol vectors. This allows NB-LDPC codes to perfectly fit with a MIMO precoding scheme, unlike binary LDPC codes. The new transmission model is detailed and studied for several linear precoders and various designed LDPC codes. We show that NB-LDPC codes are particularly well suited to be jointly used with precoding schemes based on the maximization of the minimum Euclidean distance (max-dmin criterion. These results are theoretically supported by extrinsic information transfer (EXIT analysis and are confirmed by numerical simulations.

  16. Application of Flow and Transport Optimization Codes to Groundwater Pump and Treat Systems- VOLUME 2

    National Research Council Canada - National Science Library

    Minsker, Barbara

    2004-01-01

    .... Recent studies completed by the EPA and the Navy indicate that the majority of pump and treat systems are not operating as designed, have unachievable or undefined goals, and have not been optimized since installation...

  17. Analysis and Optimization of Sparse Random Linear Network Coding for Reliable Multicast Services

    DEFF Research Database (Denmark)

    Tassi, Andrea; Chatzigeorgiou, Ioannis; Roetter, Daniel Enrique Lucani

    2016-01-01

    Point-to-multipoint communications are expected to play a pivotal role in next-generation networks. This paper refers to a cellular system transmitting layered multicast services to a multicast group of users. Reliability of communications is ensured via different random linear network coding (RLNC......) techniques. We deal with a fundamental problem: the computational complexity of the RLNC decoder. The higher the number of decoding operations is, the more the user's computational overhead grows and, consequently, the faster the battery of mobile devices drains. By referring to several sparse RLNC...... techniques, and without any assumption on the implementation of the RLNC decoder in use, we provide an efficient way to characterize the performance of users targeted by ultra-reliable layered multicast services. The proposed modeling allows to efficiently derive the average number of coded packet...

  18. Stochastic optimization of GeantV code by use of genetic algorithms

    Science.gov (United States)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Behera, S. P.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Hariri, F.; Jun, S. Y.; Konstantinov, D.; Kumawat, H.; Ivantchenko, V.; Lima, G.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.

    2017-10-01

    GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) and handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. The goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.

  19. Equilibrium optimization code OPEQ and results of applying it to HT-7U

    International Nuclear Information System (INIS)

    Zha Xuejun; Zhu Sizheng; Yu Qingquan

    2003-01-01

    The plasma equilibrium configuration has a strong impact on the confinement and MHD stability in tokamaks. For designing a tokamak device, it is an important issue to determine the sites and currents of poloidal coils which have some constraint conditions from physics and engineering with a prescribed equilibrium shape of the plasma. In this paper, an effective method based on multi-variables equilibrium optimization is given. The method can optimize poloidal coils when the previously prescribed plasma parameters are treated as an object function. We apply it to HT-7U equilibrium calculation, and obtain good results

  20. Innovation of genetic algorithm code GenA for WWER fuel loading optimization

    International Nuclear Information System (INIS)

    Sustek, J.

    2005-01-01

    One of the stochastic search techniques - genetic algorithms - was recently used for optimization of arrangement of fuel assemblies (FA) in core of reactors WWER-440 and WWER-1000. Basic algorithm was modified by incorporation of SPEA scheme. Both were enhanced and some results are presented (Authors)

  1. On the Optimality of Repetition Coding among Rate-1 DC-offset STBCs for MIMO Optical Wireless Communications

    KAUST Repository

    Sapenov, Yerzhan

    2017-07-06

    In this paper, an optical wireless multiple-input multiple-output communication system employing intensity-modulation direct-detection is considered. The performance of direct current offset space-time block codes (DC-STBC) is studied in terms of pairwise error probability (PEP). It is shown that among the class of DC-STBCs, the worst case PEP corresponding to the minimum distance between two codewords is minimized by repetition coding (RC), under both electrical and optical individual power constraints. It follows that among all DC-STBCs, RC is optimal in terms of worst-case PEP for static channels and also for varying channels under any turbulence statistics. This result agrees with previously published numerical results showing the superiority of RC in such systems. It also agrees with previously published analytic results on this topic under log-normal turbulence and further extends it to arbitrary turbulence statistics. This shows the redundancy of the time-dimension of the DC-STBC in this system. This result is further extended to sum power constraints with static and turbulent channels, where it is also shown that the time dimension is redundant, and the optimal DC-STBC has a spatial beamforming structure. Numerical results are provided to demonstrate the difference in performance for systems with different numbers of receiving apertures and different throughput.

  2. Optimization of the Penelope code in F language for the simulation of the X-ray spectrum in radiodiagnosis

    International Nuclear Information System (INIS)

    Ballon P, C. I.; Quispe V, N. Y.; Vega R, J. L. J.

    2017-10-01

    The computational simulation to obtain the X-ray spectrum in the range of radio-diagnosis, allows a study and advance knowledge of the transport process of X-rays in the interaction with matter using the Monte Carlo method. With the obtaining of the X-ray spectra we can know the dose that the patient receives when he undergoes a radiographic study or CT, improving the quality of the obtained image. The objective of the present work was to implement and optimize the open source Penelope (Monte Carlo code for the simulation of the transport of electrons and photons in the matter) 2008 version programming extra code in functional language F, managing to double the processing speed, thus reducing the simulation time spent and errors when optimizing the software initially programmed in Fortran 77. The results were compared with those of Penelope, obtaining a good concordance. We also simulated the obtaining of a Pdd curve (depth dose profile) for a Theratron Equinox cobalt-60 teletherapy device, also validating the software implemented for high energies. (Author)

  3. Integer-linear-programing optimization in scalable video multicast with adaptive modulation and coding in wireless networks.

    Science.gov (United States)

    Lee, Dongyul; Lee, Chaewoo

    2014-01-01

    The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm.

  4. Integer-Linear-Programing Optimization in Scalable Video Multicast with Adaptive Modulation and Coding in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Dongyul Lee

    2014-01-01

    Full Text Available The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC with adaptive modulation and coding (AMC provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm.

  5. Low-complexity BCH codes with optimized interleavers for DQPSK systems with laser phase noise

    DEFF Research Database (Denmark)

    Leong, Miu Yoong; Larsen, Knud J.; Jacobsen, Gunnar

    2017-01-01

    The presence of high phase noise in addition to additive white Gaussian noise in coherent optical systems affects the performance of forward error correction (FEC) schemes. In this paper, we propose a simple scheme for such systems, using block interleavers and binary Bose...... simulations. For a target post-FEC BER of 10−6, codes selected using our method result in BERs around 3× target and achieve the target with around 0.2 dB extra signal-to-noise ratio....

  6. SEJITS: embedded specializers to turn patterns-based designs into optimized parallel code

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    All software should be parallel software. This is natural result of the transition to a many core world. For a small fraction of the world's programmers (efficiency programmers), this is not a problem. They enjoy mapping algorithms onto the details of a particular system and are well served by low level languages and OpenMP, MPI, or OpenCL. Most programmers, however, are "domain specialists" who write code. They are too busy working in their domain of choice (such as physics) to master the intricacies of each computer they use. How do we make these programmers productive without giving up performance? We have been working with a team at UC Berkeley's ParLab to address this problem. The key is a clear software architecture expressed in terms of design patterns that exposes the concurrency in a problem. The resulting code is written using a patterns-based framework within a high level, productivity language (such as Python). Then a separate system is used by a small group o...

  7. Performance of an improved logarithmic phase mask with optimized parameters in a wavefront-coding system.

    Science.gov (United States)

    Zhao, Hui; Li, Yingcai

    2010-01-10

    In two papers [Proc. SPIE 4471, 272-280 (2001) and Appl. Opt. 43, 2709-2721 (2004)], a logarithmic phase mask was proposed and proved to be effective in extending the depth of field; however, according to our research, this mask is not that perfect because the corresponding defocused modulation transfer function has large oscillations in the low-frequency region, even when the mask is optimized. So, in a previously published paper [Opt. Lett. 33, 1171-1173 (2008)], we proposed an improved logarithmic phase mask by making a small modification. The new mask can not only eliminate the drawbacks to a certain extent but can also be even less sensitive to focus errors according to Fisher information criteria. However, the performance comparison was carried out with the modified mask not being optimized, which was not reasonable. In this manuscript, we optimize the modified logarithmic phase mask first before analyzing its performance and more convincing results have been obtained based on the analysis of several frequently used metrics.

  8. SU-F-T-193: Evaluation of a GPU-Based Fast Monte Carlo Code for Proton Therapy Biological Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Taleei, R; Qin, N; Jiang, S [UT Southwestern Medical Center, Dallas, TX (United States); Peeler, C [UT MD Anderson Cancer Center, Houston, TX (United States); Jia, X [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2016-06-15

    Purpose: Biological treatment plan optimization is of great interest for proton therapy. It requires extensive Monte Carlo (MC) simulations to compute physical dose and biological quantities. Recently, a gPMC package was developed for rapid MC dose calculations on a GPU platform. This work investigated its suitability for proton therapy biological optimization in terms of accuracy and efficiency. Methods: We performed simulations of a proton pencil beam with energies of 75, 150 and 225 MeV in a homogeneous water phantom using gPMC and FLUKA. Physical dose and energy spectra for each ion type on the central beam axis were scored. Relative Biological Effectiveness (RBE) was calculated using repair-misrepair-fixation model. Microdosimetry calculations were performed using Monte Carlo Damage Simulation (MCDS). Results: Ranges computed by the two codes agreed within 1 mm. Physical dose difference was less than 2.5 % at the Bragg peak. RBE-weighted dose agreed within 5 % at the Bragg peak. Differences in microdosimetric quantities such as dose average lineal energy transfer and specific energy were < 10%. The simulation time per source particle with FLUKA was 0.0018 sec, while gPMC was ∼ 600 times faster. Conclusion: Physical dose computed by FLUKA and gPMC were in a good agreement. The RBE differences along the central axis were small, and RBE-weighted dose difference was found to be acceptable. The combined accuracy and efficiency makes gPMC suitable for proton therapy biological optimization.

  9. MagRad: A code to optimize the operation of superconducting magnets in a radiation environment

    International Nuclear Information System (INIS)

    Yeaw, C.T.

    1995-01-01

    A powerful computational tool, called MagRad, has been developed which optimizes magnet design for operation in radiation fields. Specifically, MagRad has been used for the analysis and design modification of the cable-in-conduit conductors of the TF magnet systems in fusion reactor designs. Since the TF magnets must operate in a radiation environment which damages the material components of the conductor and degrades their performance, the optimization of conductor design must account not only for start-up magnet performance, but also shut-down performance. The degradation in performance consists primarily of three effects: reduced stability margin of the conductor; a transition out of the well-cooled operating regime; and an increased maximum quench temperature attained in the conductor. Full analysis of the magnet performance over the lifetime of the reactor includes: radiation damage to the conductor, stability, protection, steady state heat removal, shielding effectiveness, optimal annealing schedules, and finally costing of the magnet and reactor. Free variables include primary and secondary conductor geometric and compositional parameters, as well as fusion reactor parameters. A means of dealing with the radiation damage to the conductor, namely high temperature superconductor anneals, is proposed, examined, and demonstrated to be both technically feasible and cost effective. Additionally, two relevant reactor designs (ITER CDA and ARIES-II/IV) have been analyzed. Upon addition of pure copper strands to the cable, the ITER CDA TF magnet design was found to be marginally acceptable, although much room for both performance improvement and cost reduction exists. A cost reduction of 10-15% of the capital cost of the reactor can be achieved by adopting a suitable superconductor annealing schedule. In both of these reactor analyses, the performance predictive capability of MagRad and its associated costing techniques have been demonstrated

  10. Optimization and parallelization of the thermal–hydraulic subchannel code CTF for high-fidelity multi-physics applications

    International Nuclear Information System (INIS)

    Salko, Robert K.; Schmidt, Rodney C.; Avramova, Maria N.

    2015-01-01

    Highlights: • COBRA-TF was adopted by the Consortium for Advanced Simulation of LWRs. • We have improved code performance to support running large-scale LWR simulations. • Code optimization has led to reductions in execution time and memory usage. • An MPI parallelization has reduced full-core simulation time from days to minutes. - Abstract: This paper describes major improvements to the computational infrastructure of the CTF subchannel code so that full-core, pincell-resolved (i.e., one computational subchannel per real bundle flow channel) simulations can now be performed in much shorter run-times, either in stand-alone mode or as part of coupled-code multi-physics calculations. These improvements support the goals of the Department Of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL) Energy Innovation Hub to develop high fidelity multi-physics simulation tools for nuclear energy design and analysis. A set of serial code optimizations—including fixing computational inefficiencies, optimizing the numerical approach, and making smarter data storage choices—are first described and shown to reduce both execution time and memory usage by about a factor of ten. Next, a “single program multiple data” parallelization strategy targeting distributed memory “multiple instruction multiple data” platforms utilizing domain decomposition is presented. In this approach, data communication between processors is accomplished by inserting standard Message-Passing Interface (MPI) calls at strategic points in the code. The domain decomposition approach implemented assigns one MPI process to each fuel assembly, with each domain being represented by its own CTF input file. The creation of CTF input files, both for serial and parallel runs, is also fully automated through use of a pressurized water reactor (PWR) pre-processor utility that uses a greatly simplified set of user input compared with the traditional CTF input. To run CTF in

  11. Flow analysis and port optimization of geRotor pump using commercial CFD code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Jo; Seong, Seung Hak; Yoon, Soon Hyun [Pusan National Univ., Pusan (Korea, Republic of)

    2005-07-01

    GeRotor pump is widely used in the automotive industry for fuel lift, injection, engine oil lubrication, and also in transmission systems. The CFD study of the pump, which is characterized by transient flow with moving rotor boundaries, has been performed to obtain the most optimum shape of the inlet/outlet port of the pump. Various shapes of the port have been tested to investigate how they affect flow rates and fluctuations. Based on the parametric study, an optimum shape has been determined for the maximum flow rate and minimum fluctuations. The result has been confirmed by experiments. For the optimization, Taguchi method has been adapted. The groove shape has been found to be the most important factor among the selected several parameters related to flow rate and fluctuations.

  12. Optimal coding-decoding for systems controlled via a communication channel

    Science.gov (United States)

    Yi-wei, Feng; Guo, Ge

    2013-12-01

    In this article, we study the problem of controlling plants over a signal-to-noise ratio (SNR) constrained communication channel. Different from previous research, this article emphasises the importance of the actual channel model and coder/decoder in the study of network performance. Our major objectives include coder/decoder design for an additive white Gaussian noise (AWGN) channel with both standard network configuration and Youla parameter network architecture. We find that the optimal coder and decoder can be realised for different network configuration. The results are useful in determining the minimum channel capacity needed in order to stabilise plants over communication channels. The coder/decoder obtained can be used to analyse the effect of uncertainty on the channel capacity. An illustrative example is provided to show the effectiveness of the results.

  13. Optimized logarithmic phase masks used to generate defocus invariant modulation transfer function for wavefront coding system.

    Science.gov (United States)

    Zhao, Hui; Li, Yingcai

    2010-08-01

    In a previous Letter [Opt. Lett. 33, 1171 (2008)], we proposed an improved logarithmic phase mask by making modifications to the original one designed by Sherif. However, further studies in another paper [Appl. Opt. 49, 229 (2010)] show that even when the Sherif mask and the improved one are optimized, their corresponding defocused modulation transfer functions (MTFs) are still not stable with respect to focus errors. So, by further modifying their phase profiles, we design another two logarithmic phase masks that exhibit more stable defocused MTF. However, with the defocus-induced phase effect considered, we find that the performance of the two masks proposed in this Letter is better than the Sherif mask, but worse than our previously proposed phase mask, according to the Hilbert space angle.

  14. ActiWiz – optimizing your nuclide inventory at proton accelerators with a computer code

    CERN Document Server

    Vincke, Helmut

    2014-01-01

    When operating an accelerator one always faces unwanted, but inevitable beam losses. These result in activation of adjacent material, which in turn has an obvious impact on safety and handling constraints. One of the key parameters responsible for activation is the chemical composition of the material which often can be optimized in that respect. In order to facilitate this task also for non-expert users the ActiWiz software has been developed at CERN. Based on a large amount of generic FLUKA Monte Carlo simulations the software applies a specifically developed risk assessment model to provide support to decision makers especially during the design phase as well as common operational work in the domain of radiation protection.

  15. An enhancement of selection and crossover operations in real-coded genetic algorithm for large-dimensionality optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Noh Sung; Lee, Jongsoo [Yonsei University, Seoul (Korea, Republic of)

    2016-01-15

    The present study aims to implement a new selection method and a novel crossover operation in a real-coded genetic algorithm. The proposed selection method facilitates the establishment of a successively evolved population by combining several subpopulations: an elitist subpopulation, an off-spring subpopulation and a mutated subpopulation. A probabilistic crossover is performed based on the measure of probabilistic distance between the individuals. The concept of ‘allowance’ is suggested to describe the level of variance in the crossover operation. A number of nonlinear/non-convex functions and engineering optimization problems are explored to verify the capacities of the proposed strategies. The results are compared with those obtained from other genetic and nature-inspired algorithms.

  16. A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model

    International Nuclear Information System (INIS)

    Sekiguchi, Miho; Nakajima, Teruyuki

    2008-01-01

    The gas absorption process scheme in the broadband radiative transfer code 'mstrn8', which is used to calculate atmospheric radiative transfer efficiently in a general circulation model, is improved. Three major improvements are made. The first is an update of the database of line absorption parameters and the continuum absorption model. The second is a change to the definition of the selection rule for gas absorption used to choose which absorption bands to include. The last is an upgrade of the optimization method used to decrease the number of quadrature points used for numerical integration in the correlated k-distribution approach, thereby realizing higher computational efficiency without losing accuracy. The new radiation package termed 'mstrnX' computes radiation fluxes and heating rates with errors less than 0.6 W/m 2 and 0.3 K/day, respectively, through the troposphere and the lower stratosphere for any standard AFGL atmospheres. A serious cold bias problem of an atmospheric general circulation model using the ancestor code 'mstrn8' is almost solved by the upgrade to 'mstrnX'

  17. Stochastic algorithm for channel optimized vector quantization: application to robust narrow-band speech coding

    International Nuclear Information System (INIS)

    Bouzid, M.; Benkherouf, H.; Benzadi, K.

    2011-01-01

    In this paper, we propose a stochastic joint source-channel scheme developed for efficient and robust encoding of spectral speech LSF parameters. The encoding system, named LSF-SSCOVQ-RC, is an LSF encoding scheme based on a reduced complexity stochastic split vector quantizer optimized for noisy channel. For transmissions over noisy channel, we will show first that our LSF-SSCOVQ-RC encoder outperforms the conventional LSF encoder designed by the split vector quantizer. After that, we applied the LSF-SSCOVQ-RC encoder (with weighted distance) for the robust encoding of LSF parameters of the 2.4 Kbits/s MELP speech coder operating over a noisy/noiseless channel. The simulation results will show that the proposed LSF encoder, incorporated in the MELP, ensure better performances than the original MELP MSVQ of 25 bits/frame; especially when the transmission channel is highly disturbed. Indeed, we will show that the LSF-SSCOVQ-RC yields significant improvement to the LSFs encoding performances by ensuring reliable transmissions over noisy channel.

  18. Developing Optimal Procedure of Emergency Outside Cooling Water Injection for APR1400 Extended SBO Scenario Using MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jong Rok; Oh, Seung Jong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    In this study, we examined optimum operator actions to mitigate extended SBO using MARS code. Particularly, this paper focuses on analyzing outside core cooling water injection scenario, and aimed to develop optimal extended SBO procedure. Supplying outside emergency cooling water is the key feature of flexible strategy in extended SBO situation. An optimum strategy to maintain core cooling is developed for typical extended SBO. MARS APR1400 best estimate model was used to find optimal procedure. Also RCP seal leakage effect was considered importantly. Recent Fukushima accident shows the importance of mitigation capability against extended SBO scenarios. In Korea, all nuclear power plants incorporated various measures against Fukushima-like events. For APR1400 NPP, outside connectors are installed to inject cooling water using fire trucks or portable pumps. Using these connectors, outside cooling water can be provided to reactor, steam generators (SG), containment spray system, and spent fuel pool. In U. S., similar approach is chosen to provide a diverse and flexible means to prevent fuel damage (core and SFP) in external event conditions resulting in extended loss of AC power and loss of ultimate heat sink. Hence, hardware necessary to cope with extended SBO is already available for APR1400. However, considering the complex and stressful condition encountered by operators during extended SBO, it is important to develop guidelines/procedures to best cope with the event.

  19. The optimally sampled galaxy-wide stellar initial mass function. Observational tests and the publicly available GalIMF code

    Science.gov (United States)

    Yan, Zhiqiang; Jerabkova, Tereza; Kroupa, Pavel

    2017-11-01

    Here we present a full description of the integrated galaxy-wide initial mass function (IGIMF) theory in terms of the optimal sampling and compare it with available observations. Optimal sampling is the method we use to discretize the IMF deterministically into stellar masses. Evidence indicates that nature may be closer to deterministic sampling as observations suggest a smaller scatter of various relevant observables than random sampling would give, which may result from a high level of self-regulation during the star formation process. We document the variation of IGIMFs under various assumptions. The results of the IGIMF theory are consistent with the empirical relation between the total mass of a star cluster and the mass of its most massive star, and the empirical relation between the star formation rate (SFR) of a galaxy and the mass of its most massive cluster. Particularly, we note a natural agreement with the empirical relation between the IMF power-law index and the SFR of a galaxy. The IGIMF also results in a relation between the SFR of a galaxy and the mass of its most massive star such that, if there were no binaries, galaxies with SFR first time, we show optimally sampled galaxy-wide IMFs (OSGIMF) that mimic the IGIMF with an additional serrated feature. Finally, a Python module, GalIMF, is provided allowing the calculation of the IGIMF and OSGIMF dependent on the galaxy-wide SFR and metallicity. A copy of the python code model is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A126

  20. Optimal source coding, removable noise elimination, and natural coordinate system construction for general vector sources using replicator neural networks

    Science.gov (United States)

    Hecht-Nielsen, Robert

    1997-04-01

    A new universal one-chart smooth manifold model for vector information sources is introduced. Natural coordinates (a particular type of chart) for such data manifolds are then defined. Uniformly quantized natural coordinates form an optimal vector quantization code for a general vector source. Replicator neural networks (a specialized type of multilayer perceptron with three hidden layers) are the introduced. As properly configured examples of replicator networks approach minimum mean squared error (e.g., via training and architecture adjustment using randomly chosen vectors from the source), these networks automatically develop a mapping which, in the limit, produces natural coordinates for arbitrary source vectors. The new concept of removable noise (a noise model applicable to a wide variety of real-world noise processes) is then discussed. Replicator neural networks, when configured to approach minimum mean squared reconstruction error (e.g., via training and architecture adjustment on randomly chosen examples from a vector source, each with randomly chosen additive removable noise contamination), in the limit eliminate removable noise and produce natural coordinates for the data vector portions of the noise-corrupted source vectors. Consideration regarding selection of the dimension of a data manifold source model and the training/configuration of replicator neural networks are discussed.

  1. DART code optimization works

    International Nuclear Information System (INIS)

    Taboada, Horacio; Solis, Diego

    1999-01-01

    DART (Dispersion Analysis Research Tool) calculation and assessment program is a thermomechanical computer model developed by Dr. J. Rest of Argonne National Laboratory, USA. This program is the only mechanistic model available to assure the performance of low-enriched oxided-based dispersion fuels, dispersion of siliciures and uranium intermetallics in aluminum matrix for research reactors. The program predicts fission-products induced swelling (especially gases), fuel behavior during fabrication porosity closing, macroscopical changes in diameter of rods or width of plates and tubes produced by fuel deformation, degradation of thermal conductivity of fuel dispersion owing to irradiation and fuel restructuring because of Al-fuel reaction, amorphization and recrystallization. (author)

  2. Optimizing Excited-State Electronic-Structure Codes for Intel Knights Landing: A Case Study on the BerkeleyGW Software

    Energy Technology Data Exchange (ETDEWEB)

    Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek; Barnes, Taylor; Wichmann, Nathan; Raman, Karthik; Sasanka, Ruchira; Louie, Steven G.

    2016-10-06

    We profile and optimize calculations performed with the BerkeleyGW code on the Xeon-Phi architecture. BerkeleyGW depends both on hand-tuned critical kernels as well as on BLAS and FFT libraries. We describe the optimization process and performance improvements achieved. We discuss a layered parallelization strategy to take advantage of vector, thread and node-level parallelism. We discuss locality changes (including the consequence of the lack of L3 cache) and effective use of the on-package high-bandwidth memory. We show preliminary results on Knights-Landing including a roofline study of code performance before and after a number of optimizations. We find that the GW method is particularly well-suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-wave components, band-pairs, and frequencies.

  3. A method to optimize the shield compact and lightweight combining the structure with components together by genetic algorithm and MCNP code.

    Science.gov (United States)

    Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao

    2018-05-17

    To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Optimization of GATE and PHITS Monte Carlo code parameters for uniform scanning proton beam based on simulation with FLUKA general-purpose code

    Energy Technology Data Exchange (ETDEWEB)

    Kurosu, Keita [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Takashina, Masaaki; Koizumi, Masahiko [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Moskvin, Vadim P., E-mail: vadim.p.moskvin@gmail.com [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)

    2014-10-01

    Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.

  5. Optimization of GATE and PHITS Monte Carlo code parameters for uniform scanning proton beam based on simulation with FLUKA general-purpose code

    International Nuclear Information System (INIS)

    Kurosu, Keita; Takashina, Masaaki; Koizumi, Masahiko; Das, Indra J.; Moskvin, Vadim P.

    2014-01-01

    Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation

  6. Vector Network Coding Algorithms

    OpenAIRE

    Ebrahimi, Javad; Fragouli, Christina

    2010-01-01

    We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algori...

  7. Monte Carlo simulation for treatment planning optimization of the COMS and USC eye plaques using the MCNP4C code

    International Nuclear Information System (INIS)

    Jannati Isfahani, A.; Shokrani, P.; Raisali, Gh.

    2010-01-01

    Ophthalmic plaque radiotherapy using I-125 radioactive seeds in removable episcleral plaques is often used in management of ophthalmic tumors. Radioactive seeds are fixed in a gold bowl-shaped plaque and the plaque is sutured to the scleral surface corresponding to the base of the intraocular tumor. This treatment allows for a localized radiation dose delivery to the tumor with a minimum target dose of 85 Gy. The goal of this study was to develop a Monte Carlo simulation method for treatment planning optimization of the COMS and USC eye plaques. Material and Methods: The MCNP4C code was used to simulate three plaques: COMS-12mm, COMS-20mm, and USC ≠9 with I-125 seeds. Calculation of dose was performed in a spherical water phantom (radius 12 mm) using a 3D matrix with a size of 12 voxels in each dimension. Each voxel contained a sphere of radius 1 mm. Results: Dose profiles were calculated for each plaque. Isodose lines were created in 2 planes normal to the axes of the plaque, at the base of the tumor and at the level of the 85 Gy isodose in a 7 day treatment. Discussion and Conclusion: This study shows that it is necessary to consider the following tumor properties in design or selection of an eye plaque: the diameter of tumor base, its thickness and geometric shape, and the tumor location with respect to normal critical structures. The plaque diameter is selected by considering the tumor diameter. Tumor thickness is considered when selecting the seed parameters such as their number, activity and distribution. Finally, tumor shape and its location control the design of following parameters: the shape and material of the plaque and the need for collimation.

  8. Development of a computer code system for selecting off-site protective action in radiological accidents based on the multiobjective optimization method

    International Nuclear Information System (INIS)

    Ishigami, Tsutomu; Oyama, Kazuo

    1989-09-01

    This report presents a new method to support selection of off-site protective action in nuclear reactor accidents, and provides a user's manual of a computer code system, PRASMA, developed using the method. The PRASMA code system gives several candidates of protective action zones of evacuation, sheltering and no action based on the multiobjective optimization method, which requires objective functions and decision variables. We have assigned population risks of fatality, injury and cost as the objective functions, and distance from a nuclear power plant characterizing the above three protective action zones as the decision variables. (author)

  9. Performance optimization of PM-16QAM transmission system enabled by real-time self-adaptive coding.

    Science.gov (United States)

    Qu, Zhen; Li, Yao; Mo, Weiyang; Yang, Mingwei; Zhu, Shengxiang; Kilper, Daniel C; Djordjevic, Ivan B

    2017-10-15

    We experimentally demonstrate self-adaptive coded 5×100  Gb/s WDM polarization multiplexed 16 quadrature amplitude modulation transmission over a 100 km fiber link, which is enabled by a real-time control plane. The real-time optical signal-to-noise ratio (OSNR) is measured using an optical performance monitoring device. The OSNR measurement is processed and fed back using control plane logic and messaging to the transmitter side for code adaptation, where the binary data are adaptively encoded with three types of low-density parity-check (LDPC) codes with code rates of 0.8, 0.75, and 0.7 of large girth. The total code-adaptation latency is measured to be 2273 ms. Compared with transmission without adaptation, average net capacity improvements of 102%, 36%, and 7.5% are obtained, respectively, by adaptive LDPC coding.

  10. Optimized and secure technique for multiplexing QR code images of single characters: application to noiseless messages retrieval

    International Nuclear Information System (INIS)

    Trejos, Sorayda; Barrera, John Fredy; Torroba, Roberto

    2015-01-01

    We present for the first time an optical encrypting–decrypting protocol for recovering messages without speckle noise. This is a digital holographic technique using a 2f scheme to process QR codes entries. In the procedure, letters used to compose eventual messages are individually converted into a QR code, and then each QR code is divided into portions. Through a holographic technique, we store each processed portion. After filtering and repositioning, we add all processed data to create a single pack, thus simplifying the handling and recovery of multiple QR code images, representing the first multiplexing procedure applied to processed QR codes. All QR codes are recovered in a single step and in the same plane, showing neither cross-talk nor noise problems as in other methods. Experiments have been conducted using an interferometric configuration and comparisons between unprocessed and recovered QR codes have been performed, showing differences between them due to the involved processing. Recovered QR codes can be successfully scanned, thanks to their noise tolerance. Finally, the appropriate sequence in the scanning of the recovered QR codes brings a noiseless retrieved message. Additionally, to procure maximum security, the multiplexed pack could be multiplied by a digital diffuser as to encrypt it. The encrypted pack is easily decoded by multiplying the multiplexing with the complex conjugate of the diffuser. As it is a digital operation, no noise is added. Therefore, this technique is threefold robust, involving multiplexing, encryption, and the need of a sequence to retrieve the outcome. (paper)

  11. Optimized and secure technique for multiplexing QR code images of single characters: application to noiseless messages retrieval

    Science.gov (United States)

    Trejos, Sorayda; Fredy Barrera, John; Torroba, Roberto

    2015-08-01

    We present for the first time an optical encrypting-decrypting protocol for recovering messages without speckle noise. This is a digital holographic technique using a 2f scheme to process QR codes entries. In the procedure, letters used to compose eventual messages are individually converted into a QR code, and then each QR code is divided into portions. Through a holographic technique, we store each processed portion. After filtering and repositioning, we add all processed data to create a single pack, thus simplifying the handling and recovery of multiple QR code images, representing the first multiplexing procedure applied to processed QR codes. All QR codes are recovered in a single step and in the same plane, showing neither cross-talk nor noise problems as in other methods. Experiments have been conducted using an interferometric configuration and comparisons between unprocessed and recovered QR codes have been performed, showing differences between them due to the involved processing. Recovered QR codes can be successfully scanned, thanks to their noise tolerance. Finally, the appropriate sequence in the scanning of the recovered QR codes brings a noiseless retrieved message. Additionally, to procure maximum security, the multiplexed pack could be multiplied by a digital diffuser as to encrypt it. The encrypted pack is easily decoded by multiplying the multiplexing with the complex conjugate of the diffuser. As it is a digital operation, no noise is added. Therefore, this technique is threefold robust, involving multiplexing, encryption, and the need of a sequence to retrieve the outcome.

  12. User's manual for DELSOL2: a computer code for calculating the optical performance and optimal system design for solar-thermal central-receiver plants

    Energy Technology Data Exchange (ETDEWEB)

    Dellin, T.A.; Fish, M.J.; Yang, C.L.

    1981-08-01

    DELSOL2 is a revised and substantially extended version of the DELSOL computer program for calculating collector field performance and layout, and optimal system design for solar thermal central receiver plants. The code consists of a detailed model of the optical performance, a simpler model of the non-optical performance, an algorithm for field layout, and a searching algorithm to find the best system design. The latter two features are coupled to a cost model of central receiver components and an economic model for calculating energy costs. The code can handle flat, focused and/or canted heliostats, and external cylindrical, multi-aperture cavity, and flat plate receivers. The program optimizes the tower height, receiver size, field layout, heliostat spacings, and tower position at user specified power levels subject to flux limits on the receiver and land constraints for field layout. The advantages of speed and accuracy characteristic of Version I are maintained in DELSOL2.

  13. CANAL code

    International Nuclear Information System (INIS)

    Gara, P.; Martin, E.

    1983-01-01

    The CANAL code presented here optimizes a realistic iron free extraction channel which has to provide a given transversal magnetic field law in the median plane: the current bars may be curved, have finite lengths and cooling ducts and move in a restricted transversal area; terminal connectors may be added, images of the bars in pole pieces may be included. A special option optimizes a real set of circular coils [fr

  14. Short-term hydro generation scheduling of Xiluodu and Xiangjiaba cascade hydropower stations using improved binary-real coded bee colony optimization algorithm

    International Nuclear Information System (INIS)

    Lu, Peng; Zhou, Jianzhong; Wang, Chao; Qiao, Qi; Mo, Li

    2015-01-01

    Highlights: • STHGS problem is decomposed into two parallel sub-problems of UC and ELD. • Binary coded BCO is used to solve UC sub-problem with 0–1 discrete variables. • Real coded BCO is used to solve ELD sub-problem with continuous variables. • Some heuristic repairing strategies are designed to handle various constraints. • The STHGS of Xiluodu and Xiangjiaba cascade stations is solved by IB-RBCO. - Abstract: Short-term hydro generation scheduling (STHGS) of cascade hydropower stations is a typical nonlinear mixed integer optimization problem to minimize the total water consumption while simultaneously meeting the grid requirements and other hydraulic and electrical constraints. In this paper, STHGS problem is decomposed into two parallel sub-problems of unit commitment (UC) and economic load dispatch (ELD), and the methodology of improved binary-real coded bee colony optimization (IB-RBCO) algorithm is proposed to solve them. Firstly, the improved binary coded BCO is used to solve the UC sub-problem with 0–1 discrete variables, and the heuristic repairing strategy for unit state constrains is applied to generate the feasible unit commitment schedule. Then, the improved real coded BCO is used to solve the ELD sub-problem with continuous variables, and an effective method is introduced to handle various unit operation constraints. Especially, the new updating strategy of DE/best/2/bin method with dynamic parameter control mechanism is applied to real coded BCO to improve the search ability of IB-RBCO. Finally, to verify the feasibility and effectiveness of the proposed IB-RBCO method, it is applied to solve the STHGS problem of Xiluodu and Xiangjiaba cascaded hydropower stations, and the simulating results are compared with other intelligence algorithms. The simulation results demonstrate that the proposed IB-RBCO method can get higher-quality solutions with less water consumption and shorter calculating time when facing the complex STHGS problem

  15. Vector Network Coding

    OpenAIRE

    Ebrahimi, Javad; Fragouli, Christina

    2010-01-01

    We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L X L coding matrices that play a similar role as coding coefficients in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector co...

  16. Optimal Bipartitet Ramanujan Graphs from Balanced Incomplete Block Designs: Their Characterization and Applications to Expander/LDPC Codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Janwa, Heeralal

    2009-01-01

    We characterize optimaal bipartitet expander graphs and give nessecary and sufficient conditions for optimality. We determine the expansion parameters of the BIBD graphs and show that they yield optimal expander graphs and also bipartitet Ramanujan graphs. in particular, we show that the bipartit...

  17. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Jingjing Xu

    2015-08-01

    Full Text Available In this paper, a wireless sensor network (WSN technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD algorithm with particle swarm optimization (PSO, namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  18. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines.

    Science.gov (United States)

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-08-27

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  19. Homological stabilizer codes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  20. Optimization of $^{178m2}$/Hf isomer production in spallation reactions at projectile energies up to 100 MeV using STAPRE and ALICE code simulations

    CERN Document Server

    Kirischuk, V I; Khomenkov, V P; Strilchuk, N V; Zheltonozhskij, V A

    2004-01-01

    /sup 178m2/Hf isomer production in different spallation reactions with protons, alpha particles and neutrons at projectile energies up to 100 MeV has been analyzed using both STAPRE and ALICE code simulations. The STAPRE code was used to calculate the isomeric ratios, while the ALICE code was used to simulate the excitation functions of the respective ground states. A number of spallation reactions have been compared taking into account not only /sup 178m2 /Hf isomer productivity but also, first, the isomeric ratios calculated by the STAPRE code; second, the accumulation of the most undesirable Hf isotopes and isomers, such as /sup 172/Hf, /sup 175 /Hf, and /sup 179m/Hf; and, third, the production of other admixtures and by-products that could degrade the quality of the produced /sup 178m2/Hf isomer sources, including all stable Hf isotopes as well. Possibilities and ways of optimizing /sup 178m2/Hf isomer production in spallation reactions at projectile energies up to 100 MeV are discussed. This can be consi...

  1. Optimization of an Electromagnetics Code with Multicore Wavefront Diamond Blocking and Multi-dimensional Intra-Tile Parallelization

    KAUST Repository

    Malas, Tareq M.; Hornich, Julian; Hager, Georg; Ltaief, Hatem; Pflaum, Christoph; Keyes, David E.

    2016-01-01

    Understanding and optimizing the properties of solar cells is becoming a key issue in the search for alternatives to nuclear and fossil energy sources. A theoretical analysis via numerical simulations involves solving Maxwell's Equations

  2. Solve: a non linear least-squares code and its application to the optimal placement of torsatron vertical field coils

    International Nuclear Information System (INIS)

    Aspinall, J.

    1982-01-01

    A computational method was developed which alleviates the need for lengthy parametric scans as part of a design process. The method makes use of a least squares algorithm to find the optimal value of a parameter vector. Optimal is defined in terms of a utility function prescribed by the user. The placement of the vertical field coils of a torsatron is such a non linear problem

  3. A New Wavelength Optimization and Energy-Saving Scheme Based on Network Coding in Software-Defined WDM-PON Networks

    Science.gov (United States)

    Ren, Danping; Wu, Shanshan; Zhang, Lijing

    2016-09-01

    In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.

  4. Some new ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov

    2017-07-01

    Full Text Available Let an $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$ and minimum Hamming distance $d$ over $GF(q$. One of the most important problems in coding theory is to construct codes with optimal minimum distances. In this paper 22 new ternary linear codes are presented. Two of them are optimal. All new codes improve the respective lower bounds in [11].

  5. Optimization of high-definition video coding and hybrid fiber-wireless transmission in the 60 GHz band

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Pham, Tien Thang; Beltrán, Marta

    2011-01-01

    The paper addresses the problem of distribution of highdefinition video over fiber-wireless networks. The physical layer architecture with the low complexity envelope detection solution is investigated. We present both experimental studies and simulation of high quality high-definition compressed...... video transmission over 60 GHz fiberwireless link. Using advanced video coding we satisfy low complexity and low delay constraints, meanwhile preserving the superb video quality after significantly extended wireless distance. © 2011 Optical Society of America....

  6. Development of an optimized procedure bridging design and structural analysis codes for the automatized design of the SMART

    International Nuclear Information System (INIS)

    Kim, Tae Wan; Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1998-09-01

    In this report, an optimized design and analysis procedure is established to apply to the SMART (System-integrated Modular Advanced ReacTor) development. The development of an optimized procedure is to minimize the time consumption and engineering effort by squeezing the design and feedback interactions. To achieve this goal, the data and information generated through the design development should be directly transferred to the analysis program with minimum operation. The verification of the design concept requires considerable effort since the communication between the design and analysis involves time consuming stage for the conversion of input information. In this report, an optimized procedure is established bridging the design and analysis stage utilizing the IDEAS, ABAQUS and ANSYS. (author). 3 refs., 2 tabs., 5 figs

  7. Colon specific CODES based Piroxicam tablet for colon targeting: statistical optimization, in vivo roentgenography and stability assessment.

    Science.gov (United States)

    Singh, Amit Kumar; Pathak, Kamla

    2015-03-01

    This study was aimed to statistically optimize CODES™ based Piroxicam (PXM) tablet for colon targeting. A 3(2) full factorial design was used for preparation of core tablet that was subsequently coated to get CODES™ based tablet. The experimental design of core tablets comprised of two independent variables: amount of lactulose and PEG 6000, each at three different levels and the dependent variable was %CDR at 12 h. The core tablets were evaluated for pharmacopoeial and non-pharmacopoeial test and coated with optimized levels of Eudragit E100 followed by HPMC K15 and finally with Eudragit S100. The in vitro drug release study of F1-F9 was carried out by change over media method (0.1 N HCl buffer, pH 1.2, phosphate buffer, pH 7.4 and phosphate buffer, pH 6.8 with enzyme β-galactosidase 120 IU) to select optimized formulation F9 that was subjected to in vivo roentgenography. Roentgenography study corroborated the in vitro performance, thus providing the proof of concept. The experimental design was validated by extra check point formulation and Diffuse Reflectance Spectroscopy revealed absence of any interaction between drug and formulation excipients. The shelf life of F9 was deduced as 12 months. Conclusively, colon targeted CODES™ technology based PXM tablets were successfully optimized and its potential of colon targeting was validated by roentgenography.

  8. Towards the optimization of a gyrokinetic Particle-In-Cell (PIC) code on large-scale hybrid architectures

    International Nuclear Information System (INIS)

    Ohana, N; Lanti, E; Tran, T M; Brunner, S; Hariri, F; Villard, L; Jocksch, A; Gheller, C

    2016-01-01

    With the aim of enabling state-of-the-art gyrokinetic PIC codes to benefit from the performance of recent multithreaded devices, we developed an application from a platform called the “PIC-engine” [1, 2, 3] embedding simplified basic features of the PIC method. The application solves the gyrokinetic equations in a sheared plasma slab using B-spline finite elements up to fourth order to represent the self-consistent electrostatic field. Preliminary studies of the so-called Particle-In-Fourier (PIF) approach, which uses Fourier modes as basis functions in the periodic dimensions of the system instead of the real-space grid, show that this method can be faster than PIC for simulations with a small number of Fourier modes. Similarly to the PIC-engine, multiple levels of parallelism have been implemented using MPI+OpenMP [2] and MPI+OpenACC [1], the latter exploiting the computational power of GPUs without requiring complete code rewriting. It is shown that sorting particles [3] can lead to performance improvement by increasing data locality and vectorizing grid memory access. Weak scalability tests have been successfully run on the GPU-equipped Cray XC30 Piz Daint (at CSCS) up to 4,096 nodes. The reduced time-to-solution will enable more realistic and thus more computationally intensive simulations of turbulent transport in magnetic fusion devices. (paper)

  9. Gauge color codes

    DEFF Research Database (Denmark)

    Bombin Palomo, Hector

    2015-01-01

    Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow...

  10. Method and codes for solving the optimization problem of initial material distribution and controlling of reactor during the run

    International Nuclear Information System (INIS)

    Isakova, L.Ya.; Rachkova, D.A.; Vtorova, O.Yu.; Matekin, M.P.; Sobol, I.M.

    1992-01-01

    The optimization problem of initial distribution of fuel composition and controlling of the reactor during the run is solved. The optimization problem is formulated as a multicriterial one with different types of constraints. The distinguished feature of the method proposed is the systematic scanning of multidimensional ares, where the trial points in the space of parameters are the points of uniformly distributed LP τ -sequences. The reactor computation is carried out by the four group diffusion method in two-dimensional cylindrical geometry. The burnup absorbers are taken into account as additional absorption cross-sections, represented by approximants. The tables of trials make possible the estimation of the values of global extrema. The coordinates of the points where the external values are attained can be estimated too

  11. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject F. Contributions to code validation using BWR data and to evaluation and optimization of accident management measures. Final report

    International Nuclear Information System (INIS)

    Di Marcello, Valentino; Imke, Uwe; Sanchez Espinoza, Victor

    2016-09-01

    The exact knowledge of the transient course of events and of the dominating processes during a severe accident in a nuclear power station is a mandatory requirement to elaborate strategies and measures to minimize the radiological consequences of core melt. Two typical experiments using boiling water reactor assemblies were modelled and simulated with the severe accident simulation code ATHLET-CD. The experiments are related to the early phase of core degradation in a boiling water reactor. The results reproduce the thermal behavior and the hydrogen production due to oxidation inside the bundle until relocation of material by melting. During flooding of the overheated assembly temperatures and hydrogen oxidation are under estimated. The deviations from the experimental results can be explained by the missing model to simulate bore carbide oxidation of the control rods. On basis of a hypothetical loss of coolant accident in a typical German boiling water reactor the effectivity of flooding the partial degraded core is investigated. This measure of mitigation is efficient and prevents failure of the reactor pressure vessel if it starts before molten material is relocated into the lower plenum. Considerable amount of hydrogen is produced by oxidation of the metallic components.

  12. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations

    International Nuclear Information System (INIS)

    Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.

    2000-01-01

    A new Monte Carlo (MC) algorithm, the 'dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm 3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 128 3 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a 'mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels. (author)

  13. Optimal size of stochastic Hodgkin-Huxley neuronal systems for maximal energy efficiency in coding pulse signals

    Science.gov (United States)

    Yu, Lianchun; Liu, Liwei

    2014-03-01

    The generation and conduction of action potentials (APs) represents a fundamental means of communication in the nervous system and is a metabolically expensive process. In this paper, we investigate the energy efficiency of neural systems in transferring pulse signals with APs. By analytically solving a bistable neuron model that mimics the AP generation with a particle crossing the barrier of a double well, we find the optimal number of ion channels that maximizes the energy efficiency of a neuron. We also investigate the energy efficiency of a neuron population in which the input pulse signals are represented with synchronized spikes and read out with a downstream coincidence detector neuron. We find an optimal number of neurons in neuron population, as well as the number of ion channels in each neuron that maximizes the energy efficiency. The energy efficiency also depends on the characters of the input signals, e.g., the pulse strength and the interpulse intervals. These results are confirmed by computer simulation of the stochastic Hodgkin-Huxley model with a detailed description of the ion channel random gating. We argue that the tradeoff between signal transmission reliability and energy cost may influence the size of the neural systems when energy use is constrained.

  14. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, M. [National Radiation Protection Department - NRPD, Atomic Energy Organization of Iran - AEOI, Tehran (Iran, Islamic Republic of); End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Kasesaz, Y.; Khalafi, H.; Shayesteh, M. [Radiation Application School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-07-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  15. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    International Nuclear Information System (INIS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Shayesteh, M.

    2015-01-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  16. Code Cactus; Code Cactus

    Energy Technology Data Exchange (ETDEWEB)

    Fajeau, M; Nguyen, L T; Saunier, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-09-01

    This code handles the following problems: -1) Analysis of thermal experiments on a water loop at high or low pressure; steady state or transient behavior; -2) Analysis of thermal and hydrodynamic behavior of water-cooled and moderated reactors, at either high or low pressure, with boiling permitted; fuel elements are assumed to be flat plates: - Flowrate in parallel channels coupled or not by conduction across plates, with conditions of pressure drops or flowrate, variable or not with respect to time is given; the power can be coupled to reactor kinetics calculation or supplied by the code user. The code, containing a schematic representation of safety rod behavior, is a one dimensional, multi-channel code, and has as its complement (FLID), a one-channel, two-dimensional code. (authors) [French] Ce code permet de traiter les problemes ci-dessous: 1. Depouillement d'essais thermiques sur boucle a eau, haute ou basse pression, en regime permanent ou transitoire; 2. Etudes thermiques et hydrauliques de reacteurs a eau, a plaques, a haute ou basse pression, ebullition permise: - repartition entre canaux paralleles, couples on non par conduction a travers plaques, pour des conditions de debit ou de pertes de charge imposees, variables ou non dans le temps; - la puissance peut etre couplee a la neutronique et une representation schematique des actions de securite est prevue. Ce code (Cactus) a une dimension d'espace et plusieurs canaux, a pour complement Flid qui traite l'etude d'un seul canal a deux dimensions. (auteurs)

  17. SU-E-T-590: Optimizing Magnetic Field Strengths with Matlab for An Ion-Optic System in Particle Therapy Consisting of Two Quadrupole Magnets for Subsequent Simulations with the Monte-Carlo Code FLUKA

    International Nuclear Information System (INIS)

    Baumann, K; Weber, U; Simeonov, Y; Zink, K

    2015-01-01

    Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular and thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system

  18. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  19. Joint research project WASA-BOSS: Further development and application of severe accident codes. Assessment and optimization of accident management measures. Project B: Accident analyses for pressurized water reactors with the application of the ATHLET-CD code

    International Nuclear Information System (INIS)

    Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Wilhelm, Polina

    2017-02-01

    Within the framework of the project an ATHLET-CD input deck for a generic German PWR of type KONVOI has been created. This input deck was applied to the simulation of severe accidents from the accident categories station blackout (SBO) and small-break loss-of-coolant accidents (SBLOCA). The complete accident transient from initial event at full power until the damage of reactor pressure vessel (RPV) is covered and all relevant severe accident phenomena are modelled: start of core heat up, fission product release, melting of fuel and absorber material, oxidation and release of hydrogen, relocation of molten material inside the core, relocation to the lower plenum, damage and failure of the RPV. The model has been applied to the analysis of preventive and mitigative accident management measures for SBO and SBLOCA transients. Therefore, the measures primary side depressurization (PSD), injection to the primary circuit by mobile pumps and for SBLOCA the delayed injection by the cold leg hydro-accumulators have been investigated and the assumptions and start criteria of these measures have been varied. The time evolutions of the transients and time margins for the initiation of additional measures have been assessed. An uncertainty and sensitivity study has been performed for the early phase of one SBO scenario with PSD (until the start of core melt). In addition to that, a code -to-code comparison between ATHLET-CD and the severe accident code MELCOR has been carried out.

  20. Code systems for effective and precise calculation of the basic neutron characteristics, core loading optimization, analysis and estimation of the operation regimes of WWER type reactors

    International Nuclear Information System (INIS)

    Apostolov, T.; Ivanov, K.; Prodanova, R.; Manolova, M.; Petrova, T.; Alekova, G.

    1993-01-01

    Two directions for investigations are suggested: 1) Analysis and evaluation of the real loading patterns and operational regimes for Kozloduy NPP WWER-440 and WWER-1000 in the frame of the recent safety criteria and nuclear power plant operating limits. 2) Development of modern code system for WWER type reactor core analysis with advanced features: new design and materials for fuel and control rods, increasing the fuel enrichment, using the integral and discrete burnable absorbers etc. The fuel technology design evolution maximizes the fuel utilization efficiency, improves operation performance and enhances safety margins. By the joint efforts of specialists from INRNE, Sofia (BG) and KAB, Berlin (GE), the codes NESSEL-IV-EC, PYTHIA and DERAB have been developed and verified. In the frame of the PHARE programme the joint project ASPERCA has been proposed intended for reactor physics calculations with PHYBER-WWER code for safety enhancement and operation reliability improvement. In-core fuel management benchmarks for 4 cycles of unit 2 (WWER-440) and 2 cycles of unit 5 (WWER-1000) have been performed. The coordination of burnable absorber design implementation, low leakage loadings usage, reloading enrichment increase and steel content reduction in the core have made the reactor core analysis more demanding and the definition of loading patterns - more difficult. This complexity requires routine use of three-dimensional fast accurate core model with extended and updated cross section libraries. To meet the needs of WWER advanced loading patterns and in-core fuel management improvements the HEXANES code systems is being developed and qualified. Some test calculations have been carried out by the HEXANES code system investigating the influence of Gd in the fuel on the main reactor physics parameters. For reevaluation of the core safety-related design limits forming the basis of licensing procedure, the code DYN3D/M2 is used. 16 refs., 3 figs. (author)

  1. Bit rates in audio source coding

    NARCIS (Netherlands)

    Veldhuis, Raymond N.J.

    1992-01-01

    The goal is to introduce and solve the audio coding optimization problem. Psychoacoustic results such as masking and excitation pattern models are combined with results from rate distortion theory to formulate the audio coding optimization problem. The solution of the audio optimization problem is a

  2. Optimized periodic verification testing blended risk and performance-based MOV inservice test program an application of ASME code case OMN-1

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, C.; Fleming, K.; Bidwell, D.; Forbes, P. [and others

    1996-12-01

    This paper presents an application of ASME Code Case OMN-1 to the GL 89-10 Program at the South Texas Project Electric Generating Station (STPEGS). Code Case OMN-1 provides guidance for a performance-based MOV inservice test program that can be used for periodic verification testing and allows consideration of risk insights. Blended probabilistic and deterministic evaluation techniques were used to establish inservice test strategies including both test methods and test frequency. Described in the paper are the methods and criteria for establishing MOV safety significance based on the STPEGS probabilistic safety assessment, deterministic considerations of MOV performance characteristics and performance margins, the expert panel evaluation process, and the development of inservice test strategies. Test strategies include a mix of dynamic and static testing as well as MOV exercising.

  3. Optimized periodic verification testing blended risk and performance-based MOV inservice test program an application of ASME code case OMN-1

    International Nuclear Information System (INIS)

    Sellers, C.; Fleming, K.; Bidwell, D.; Forbes, P.

    1996-01-01

    This paper presents an application of ASME Code Case OMN-1 to the GL 89-10 Program at the South Texas Project Electric Generating Station (STPEGS). Code Case OMN-1 provides guidance for a performance-based MOV inservice test program that can be used for periodic verification testing and allows consideration of risk insights. Blended probabilistic and deterministic evaluation techniques were used to establish inservice test strategies including both test methods and test frequency. Described in the paper are the methods and criteria for establishing MOV safety significance based on the STPEGS probabilistic safety assessment, deterministic considerations of MOV performance characteristics and performance margins, the expert panel evaluation process, and the development of inservice test strategies. Test strategies include a mix of dynamic and static testing as well as MOV exercising

  4. Speaking Code

    DEFF Research Database (Denmark)

    Cox, Geoff

    Speaking Code begins by invoking the “Hello World” convention used by programmers when learning a new language, helping to establish the interplay of text and code that runs through the book. Interweaving the voice of critical writing from the humanities with the tradition of computing and software...

  5. Optimization of the Penelope code in F language for the simulation of the X-ray spectrum in radiodiagnosis; Optimizacion del codigo PENELOPE en lenguage F para la simulacion del espectro de rayos X en radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Ballon P, C. I.; Quispe V, N. Y.; Vega R, J. L. J., E-mail: cballon@scifreelancer.com [Universidad Nacional de San Agustin de Arequipa, Av. Independencia s/n, 04000 Arequipa (Peru)

    2017-10-15

    The computational simulation to obtain the X-ray spectrum in the range of radio-diagnosis, allows a study and advance knowledge of the transport process of X-rays in the interaction with matter using the Monte Carlo method. With the obtaining of the X-ray spectra we can know the dose that the patient receives when he undergoes a radiographic study or CT, improving the quality of the obtained image. The objective of the present work was to implement and optimize the open source Penelope (Monte Carlo code for the simulation of the transport of electrons and photons in the matter) 2008 version programming extra code in functional language F, managing to double the processing speed, thus reducing the simulation time spent and errors when optimizing the software initially programmed in Fortran 77. The results were compared with those of Penelope, obtaining a good concordance. We also simulated the obtaining of a Pdd curve (depth dose profile) for a Theratron Equinox cobalt-60 teletherapy device, also validating the software implemented for high energies. (Author)

  6. Computer codes for ventilation in nuclear facilities

    International Nuclear Information System (INIS)

    Mulcey, P.

    1987-01-01

    In this paper the authors present some computer codes, developed in the last years, for ventilation and radioprotection. These codes are used for safety analysis in the conception, exploitation and dismantlement of nuclear facilities. The authors present particularly: DACC1 code used for aerosol deposit in sampling circuit of radiation monitors; PIAF code used for modelization of complex ventilation system; CLIMAT 6 code used for optimization of air conditioning system [fr

  7. Coding Labour

    Directory of Open Access Journals (Sweden)

    Anthony McCosker

    2014-03-01

    Full Text Available As well as introducing the Coding Labour section, the authors explore the diffusion of code across the material contexts of everyday life, through the objects and tools of mediation, the systems and practices of cultural production and organisational management, and in the material conditions of labour. Taking code beyond computation and software, their specific focus is on the increasingly familiar connections between code and labour with a focus on the codification and modulation of affect through technologies and practices of management within the contemporary work organisation. In the grey literature of spreadsheets, minutes, workload models, email and the like they identify a violence of forms through which workplace affect, in its constant flux of crisis and ‘prodromal’ modes, is regulated and governed.

  8. Explicit MDS Codes with Complementary Duals

    DEFF Research Database (Denmark)

    Beelen, Duals Peter; Jin, Lingfei

    2018-01-01

    In 1964, Massey introduced a class of codes with complementary duals which are called Linear Complimentary Dual (LCD for short) codes. He showed that LCD codes have applications in communication system, side-channel attack (SCA) and so on. LCD codes have been extensively studied in literature....... On the other hand, MDS codes form an optimal family of classical codes which have wide applications in both theory and practice. The main purpose of this paper is to give an explicit construction of several classes of LCD MDS codes, using tools from algebraic function fields. We exemplify this construction...

  9. Benchmark and parametric study of a passive flow controller (fluidic device) for the development of optimal designs using a CFD code

    International Nuclear Information System (INIS)

    Lim, Sang-Gyu; Lee, Seok-Ho; Kim, Han-Gon

    2010-01-01

    A passive flow controller or a fluidic device (FD) is used for a safety injection system (SIS) for efficient use of nuclear reactor emergency cooling water since it can control the injection flow rate in a passive and optimal way. The performance of the FD is represented by pressure loss coefficient (K-factor) which is further affected by the configuration of the components such as a control port direction and a nozzle angle. The flow control mechanism that is varied according to the water level inside a vortex chamber determines the duration of the safety injection. This paper deals with a computational fluid dynamics (CFD) analysis for simulating the flow characteristics of the FD using the ANSYS CFX 11.0. The CFD analysis is benchmarked against existing experimental data to obtain applicability to the prediction of the FD performance in terms of K-factor. The CFD calculation is implemented with Shear Stress Transport (SST) model for a swirling flow and a strong streamline curvature in the vortex chamber of the FD, considering a numerical efficiency. Based on the benchmark results, parametric analyses are performed for an optimal design of the FD by varying the control port direction and the nozzle angle. Consequently, the FD performance is enhanced according to the angle of the control port nozzle.

  10. Speech coding

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  11. Aztheca Code

    International Nuclear Information System (INIS)

    Quezada G, S.; Espinosa P, G.; Centeno P, J.; Sanchez M, H.

    2017-09-01

    This paper presents the Aztheca code, which is formed by the mathematical models of neutron kinetics, power generation, heat transfer, core thermo-hydraulics, recirculation systems, dynamic pressure and level models and control system. The Aztheca code is validated with plant data, as well as with predictions from the manufacturer when the reactor operates in a stationary state. On the other hand, to demonstrate that the model is applicable during a transient, an event occurred in a nuclear power plant with a BWR reactor is selected. The plant data are compared with the results obtained with RELAP-5 and the Aztheca model. The results show that both RELAP-5 and the Aztheca code have the ability to adequately predict the behavior of the reactor. (Author)

  12. Vocable Code

    DEFF Research Database (Denmark)

    Soon, Winnie; Cox, Geoff

    2018-01-01

    a computational and poetic composition for two screens: on one of these, texts and voices are repeated and disrupted by mathematical chaos, together exploring the performativity of code and language; on the other, is a mix of a computer programming syntax and human language. In this sense queer code can...... be understood as both an object and subject of study that intervenes in the world’s ‘becoming' and how material bodies are produced via human and nonhuman practices. Through mixing the natural and computer language, this article presents a script in six parts from a performative lecture for two persons...

  13. NSURE code

    International Nuclear Information System (INIS)

    Rattan, D.S.

    1993-11-01

    NSURE stands for Near-Surface Repository code. NSURE is a performance assessment code. developed for the safety assessment of near-surface disposal facilities for low-level radioactive waste (LLRW). Part one of this report documents the NSURE model, governing equations and formulation of the mathematical models, and their implementation under the SYVAC3 executive. The NSURE model simulates the release of nuclides from an engineered vault, their subsequent transport via the groundwater and surface water pathways tot he biosphere, and predicts the resulting dose rate to a critical individual. Part two of this report consists of a User's manual, describing simulation procedures, input data preparation, output and example test cases

  14. Adaptive distributed source coding.

    Science.gov (United States)

    Varodayan, David; Lin, Yao-Chung; Girod, Bernd

    2012-05-01

    We consider distributed source coding in the presence of hidden variables that parameterize the statistical dependence among sources. We derive the Slepian-Wolf bound and devise coding algorithms for a block-candidate model of this problem. The encoder sends, in addition to syndrome bits, a portion of the source to the decoder uncoded as doping bits. The decoder uses the sum-product algorithm to simultaneously recover the source symbols and the hidden statistical dependence variables. We also develop novel techniques based on density evolution (DE) to analyze the coding algorithms. We experimentally confirm that our DE analysis closely approximates practical performance. This result allows us to efficiently optimize parameters of the algorithms. In particular, we show that the system performs close to the Slepian-Wolf bound when an appropriate doping rate is selected. We then apply our coding and analysis techniques to a reduced-reference video quality monitoring system and show a bit rate saving of about 75% compared with fixed-length coding.

  15. The Aster code; Code Aster

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, J.M

    1999-07-01

    The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)

  16. Coding Class

    DEFF Research Database (Denmark)

    Ejsing-Duun, Stine; Hansbøl, Mikala

    Denne rapport rummer evaluering og dokumentation af Coding Class projektet1. Coding Class projektet blev igangsat i skoleåret 2016/2017 af IT-Branchen i samarbejde med en række medlemsvirksomheder, Københavns kommune, Vejle Kommune, Styrelsen for IT- og Læring (STIL) og den frivillige forening...... Coding Pirates2. Rapporten er forfattet af Docent i digitale læringsressourcer og forskningskoordinator for forsknings- og udviklingsmiljøet Digitalisering i Skolen (DiS), Mikala Hansbøl, fra Institut for Skole og Læring ved Professionshøjskolen Metropol; og Lektor i læringsteknologi, interaktionsdesign......, design tænkning og design-pædagogik, Stine Ejsing-Duun fra Forskningslab: It og Læringsdesign (ILD-LAB) ved Institut for kommunikation og psykologi, Aalborg Universitet i København. Vi har fulgt og gennemført evaluering og dokumentation af Coding Class projektet i perioden november 2016 til maj 2017...

  17. Uplink Coding

    Science.gov (United States)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the objectives, meeting goals and overall NASA goals for the NASA Data Standards Working Group. The presentation includes information on the technical progress surrounding the objective, short LDPC codes, and the general results on the Pu-Pw tradeoff.

  18. ANIMAL code

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1979-01-01

    This report describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic computer code. ANIMAL's physical model also appears. Formulated are temporal and spatial finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined are the functions of the algorithm's FORTRAN subroutines and variables

  19. Network Coding

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Network Coding. K V Rashmi Nihar B Shah P Vijay Kumar. General Article Volume 15 Issue 7 July 2010 pp 604-621. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/015/07/0604-0621 ...

  20. MCNP code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The MCNP code is the major Monte Carlo coupled neutron-photon transport research tool at the Los Alamos National Laboratory, and it represents the most extensive Monte Carlo development program in the United States which is available in the public domain. The present code is the direct descendent of the original Monte Carlo work of Fermi, von Neumaum, and Ulam at Los Alamos in the 1940s. Development has continued uninterrupted since that time, and the current version of MCNP (or its predecessors) has always included state-of-the-art methods in the Monte Carlo simulation of radiation transport, basic cross section data, geometry capability, variance reduction, and estimation procedures. The authors of the present code have oriented its development toward general user application. The documentation, though extensive, is presented in a clear and simple manner with many examples, illustrations, and sample problems. In addition to providing the desired results, the output listings give a a wealth of detailed information (some optional) concerning each state of the calculation. The code system is continually updated to take advantage of advances in computer hardware and software, including interactive modes of operation, diagnostic interrupts and restarts, and a variety of graphical and video aids

  1. Expander Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 1. Expander Codes - The Sipser–Spielman Construction. Priti Shankar. General Article Volume 10 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science Bangalore 560 012, India.

  2. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides.

    Science.gov (United States)

    Hia, Fabian; Chionh, Yok Hian; Pang, Yan Ling Joy; DeMott, Michael S; McBee, Megan E; Dedon, Peter C

    2015-03-11

    A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species. The reproducibility of the method with BCG was evident in bioanalyzer electrophoretic analysis of isolated RNA, which revealed quantitatively significant differences in the ncRNA profiles of exponentially growing and non-replicating hypoxic bacilli. The method also overcame an historical inconsistency in 5S rRNA isolation, with direct sequencing revealing a novel post-transcriptional processing of 5S rRNA to its functional form and with chemical analysis revealing seven post-transcriptional ribonucleoside modifications in the 5S rRNA. This optimized RNA isolation procedure thus provides a means to more rigorously explore the biology of ncRNA species in mycobacteria. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Panda code

    International Nuclear Information System (INIS)

    Altomare, S.; Minton, G.

    1975-02-01

    PANDA is a new two-group one-dimensional (slab/cylinder) neutron diffusion code designed to replace and extend the FAB series. PANDA allows for the nonlinear effects of xenon, enthalpy and Doppler. Fuel depletion is allowed. PANDA has a completely general search facility which will seek criticality, maximize reactivity, or minimize peaking. Any single parameter may be varied in a search. PANDA is written in FORTRAN IV, and as such is nearly machine independent. However, PANDA has been written with the present limitations of the Westinghouse CDC-6600 system in mind. Most computation loops are very short, and the code is less than half the useful 6600 memory size so that two jobs can reside in the core at once. (auth)

  4. Language Recognition via Sparse Coding

    Science.gov (United States)

    2016-09-08

    explanation is that sparse coding can achieve a near-optimal approximation of much complicated nonlinear relationship through local and piecewise linear...training examples, where x(i) ∈ RN is the ith example in the batch. Optionally, X can be normalized and whitened before sparse coding for better result...normalized input vectors are then ZCA- whitened [20]. Em- pirically, we choose ZCA- whitening over PCA- whitening , and there is no dimensionality reduction

  5. System Based Code: Principal Concept

    International Nuclear Information System (INIS)

    Yasuhide Asada; Masanori Tashimo; Masahiro Ueta

    2002-01-01

    This paper introduces a concept of the 'System Based Code' which has initially been proposed by the authors intending to give nuclear industry a leap of progress in the system reliability, performance improvement, and cost reduction. The concept of the System Based Code intends to give a theoretical procedure to optimize the reliability of the system by administrating every related engineering requirement throughout the life of the system from design to decommissioning. (authors)

  6. Stability analysis by ERATO code

    International Nuclear Information System (INIS)

    Tsunematsu, Toshihide; Takeda, Tatsuoki; Matsuura, Toshihiko; Azumi, Masafumi; Kurita, Gen-ichi

    1979-12-01

    Problems in MHD stability calculations by ERATO code are described; which concern convergence property of results, equilibrium codes, and machine optimization of ERATO code. It is concluded that irregularity on a convergence curve is not due to a fault of the ERATO code itself but due to inappropriate choice of the equilibrium calculation meshes. Also described are a code to calculate an equilibrium as a quasi-inverse problem and a code to calculate an equilibrium as a result of a transport process. Optimization of the code with respect to I/O operations reduced both CPU time and I/O time considerably. With the FACOM230-75 APU/CPU multiprocessor system, the performance is about 6 times as high as with the FACOM230-75 CPU, showing the effectiveness of a vector processing computer for the kind of MHD computations. This report is a summary of the material presented at the ERATO workshop 1979(ORNL), supplemented with some details. (author)

  7. ETR/ITER systems code

    Energy Technology Data Exchange (ETDEWEB)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L. (ed.)

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  8. ETR/ITER systems code

    International Nuclear Information System (INIS)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs

  9. Implementation of LT codes based on chaos

    International Nuclear Information System (INIS)

    Zhou Qian; Li Liang; Chen Zengqiang; Zhao Jiaxiang

    2008-01-01

    Fountain codes provide an efficient way to transfer information over erasure channels like the Internet. LT codes are the first codes fully realizing the digital fountain concept. They are asymptotically optimal rateless erasure codes with highly efficient encoding and decoding algorithms. In theory, for each encoding symbol of LT codes, its degree is randomly chosen according to a predetermined degree distribution, and its neighbours used to generate that encoding symbol are chosen uniformly at random. Practical implementation of LT codes usually realizes the randomness through pseudo-randomness number generator like linear congruential method. This paper applies the pseudo-randomness of chaotic sequence in the implementation of LT codes. Two Kent chaotic maps are used to determine the degree and neighbour(s) of each encoding symbol. It is shown that the implemented LT codes based on chaos perform better than the LT codes implemented by the traditional pseudo-randomness number generator. (general)

  10. From concatenated codes to graph codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom

    2004-01-01

    We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...

  11. Circular codes revisited: a statistical approach.

    Science.gov (United States)

    Gonzalez, D L; Giannerini, S; Rosa, R

    2011-04-21

    In 1996 Arquès and Michel [1996. A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45-58] discovered the existence of a common circular code in eukaryote and prokaryote genomes. Since then, circular code theory has provoked great interest and underwent a rapid development. In this paper we discuss some theoretical issues related to the synchronization properties of coding sequences and circular codes with particular emphasis on the problem of retrieval and maintenance of the reading frame. Motivated by the theoretical discussion, we adopt a rigorous statistical approach in order to try to answer different questions. First, we investigate the covering capability of the whole class of 216 self-complementary, C(3) maximal codes with respect to a large set of coding sequences. The results indicate that, on average, the code proposed by Arquès and Michel has the best covering capability but, still, there exists a great variability among sequences. Second, we focus on such code and explore the role played by the proportion of the bases by means of a hierarchy of permutation tests. The results show the existence of a sort of optimization mechanism such that coding sequences are tailored as to maximize or minimize the coverage of circular codes on specific reading frames. Such optimization clearly relates the function of circular codes with reading frame synchronization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Neutronics codes

    International Nuclear Information System (INIS)

    Buckel, G.

    1983-01-01

    The objectives are the development, testing and cultivation of reliable, efficient and user-optimized neutron-physical calculation methods and conformity with users' requirements concerning design of power reactors, planning and analysis of experiments necessary for their protection as well as research on physical key problems. A short outline of available computing programmes for the following objectives is given: - Provision of macroscopic group constants, - Calculation of neutron flux distribution in transport theory and diffusion approximation, - Evaluation of neutron flux-distribution, - Execution of disturbance calculations for the determination reactivity coefficients, and - graphical representation of results. (orig./RW) [de

  13. Joint research project WASA-BOSS: Further development and application of severe accident codes. Assessment and optimization of accident management measures. Project B: Accident analyses for pressurized water reactors with the application of the ATHLET-CD code; Verbundprojekt WASA-BOSS: Weiterentwicklung und Anwendung von Severe Accident Codes. Bewertung und Optimierung von Stoerfallmassnahmen. Teilprojekt B: Druckwasserreaktor-Stoerfallanalysen unter Verwendung des Severe-Accident-Codes ATHLET-CD

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Wilhelm, Polina

    2017-02-15

    Within the framework of the project an ATHLET-CD input deck for a generic German PWR of type KONVOI has been created. This input deck was applied to the simulation of severe accidents from the accident categories station blackout (SBO) and small-break loss-of-coolant accidents (SBLOCA). The complete accident transient from initial event at full power until the damage of reactor pressure vessel (RPV) is covered and all relevant severe accident phenomena are modelled: start of core heat up, fission product release, melting of fuel and absorber material, oxidation and release of hydrogen, relocation of molten material inside the core, relocation to the lower plenum, damage and failure of the RPV. The model has been applied to the analysis of preventive and mitigative accident management measures for SBO and SBLOCA transients. Therefore, the measures primary side depressurization (PSD), injection to the primary circuit by mobile pumps and for SBLOCA the delayed injection by the cold leg hydro-accumulators have been investigated and the assumptions and start criteria of these measures have been varied. The time evolutions of the transients and time margins for the initiation of additional measures have been assessed. An uncertainty and sensitivity study has been performed for the early phase of one SBO scenario with PSD (until the start of core melt). In addition to that, a code -to-code comparison between ATHLET-CD and the severe accident code MELCOR has been carried out.

  14. Code Modernization of VPIC

    Science.gov (United States)

    Bird, Robert; Nystrom, David; Albright, Brian

    2017-10-01

    The ability of scientific simulations to effectively deliver performant computation is increasingly being challenged by successive generations of high-performance computing architectures. Code development to support efficient computation on these modern architectures is both expensive, and highly complex; if it is approached without due care, it may also not be directly transferable between subsequent hardware generations. Previous works have discussed techniques to support the process of adapting a legacy code for modern hardware generations, but despite the breakthroughs in the areas of mini-app development, portable-performance, and cache oblivious algorithms the problem still remains largely unsolved. In this work we demonstrate how a focus on platform agnostic modern code-development can be applied to Particle-in-Cell (PIC) simulations to facilitate effective scientific delivery. This work builds directly on our previous work optimizing VPIC, in which we replaced intrinsic based vectorisation with compile generated auto-vectorization to improve the performance and portability of VPIC. In this work we present the use of a specialized SIMD queue for processing some particle operations, and also preview a GPU capable OpenMP variant of VPIC. Finally we include a lessons learnt. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.

  15. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  16. Automatic coding method of the ACR Code

    International Nuclear Information System (INIS)

    Park, Kwi Ae; Ihm, Jong Sool; Ahn, Woo Hyun; Baik, Seung Kook; Choi, Han Yong; Kim, Bong Gi

    1993-01-01

    The authors developed a computer program for automatic coding of ACR(American College of Radiology) code. The automatic coding of the ACR code is essential for computerization of the data in the department of radiology. This program was written in foxbase language and has been used for automatic coding of diagnosis in the Department of Radiology, Wallace Memorial Baptist since May 1992. The ACR dictionary files consisted of 11 files, one for the organ code and the others for the pathology code. The organ code was obtained by typing organ name or code number itself among the upper and lower level codes of the selected one that were simultaneous displayed on the screen. According to the first number of the selected organ code, the corresponding pathology code file was chosen automatically. By the similar fashion of organ code selection, the proper pathologic dode was obtained. An example of obtained ACR code is '131.3661'. This procedure was reproducible regardless of the number of fields of data. Because this program was written in 'User's Defined Function' from, decoding of the stored ACR code was achieved by this same program and incorporation of this program into program in to another data processing was possible. This program had merits of simple operation, accurate and detail coding, and easy adjustment for another program. Therefore, this program can be used for automation of routine work in the department of radiology

  17. Error-correction coding

    Science.gov (United States)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  18. Dynamic Shannon Coding

    OpenAIRE

    Gagie, Travis

    2005-01-01

    We present a new algorithm for dynamic prefix-free coding, based on Shannon coding. We give a simple analysis and prove a better upper bound on the length of the encoding produced than the corresponding bound for dynamic Huffman coding. We show how our algorithm can be modified for efficient length-restricted coding, alphabetic coding and coding with unequal letter costs.

  19. Fundamentals of convolutional coding

    CERN Document Server

    Johannesson, Rolf

    2015-01-01

    Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual

  20. Codes Over Hyperfields

    Directory of Open Access Journals (Sweden)

    Atamewoue Surdive

    2017-12-01

    Full Text Available In this paper, we define linear codes and cyclic codes over a finite Krasner hyperfield and we characterize these codes by their generator matrices and parity check matrices. We also demonstrate that codes over finite Krasner hyperfields are more interesting for code theory than codes over classical finite fields.

  1. Performance Analysis of CRC Codes for Systematic and Nonsystematic Polar Codes with List Decoding

    Directory of Open Access Journals (Sweden)

    Takumi Murata

    2018-01-01

    Full Text Available Successive cancellation list (SCL decoding of polar codes is an effective approach that can significantly outperform the original successive cancellation (SC decoding, provided that proper cyclic redundancy-check (CRC codes are employed at the stage of candidate selection. Previous studies on CRC-assisted polar codes mostly focus on improvement of the decoding algorithms as well as their implementation, and little attention has been paid to the CRC code structure itself. For the CRC-concatenated polar codes with CRC code as their outer code, the use of longer CRC code leads to reduction of information rate, whereas the use of shorter CRC code may reduce the error detection probability, thus degrading the frame error rate (FER performance. Therefore, CRC codes of proper length should be employed in order to optimize the FER performance for a given signal-to-noise ratio (SNR per information bit. In this paper, we investigate the effect of CRC codes on the FER performance of polar codes with list decoding in terms of the CRC code length as well as its generator polynomials. Both the original nonsystematic and systematic polar codes are considered, and we also demonstrate that different behaviors of CRC codes should be observed depending on whether the inner polar code is systematic or not.

  2. Applications of Coding in Network Communications

    Science.gov (United States)

    Chang, Christopher SungWook

    2012-01-01

    This thesis uses the tool of network coding to investigate fast peer-to-peer file distribution, anonymous communication, robust network construction under uncertainty, and prioritized transmission. In a peer-to-peer file distribution system, we use a linear optimization approach to show that the network coding framework significantly simplifies…

  3. Compiler Driven Code Comments and Refactoring

    DEFF Research Database (Denmark)

    Larsen, Per; Ladelsky, Razya; Karlsson, Sven

    2011-01-01

    . We demonstrate the ability of our tool to trans- form code, and suggest code refactoring that increase its amenability to optimization. The preliminary results shows that, with our tool-set, au- tomatic loop parallelization with the GNU C compiler, gcc, yields 8.6x best-case speedup over...

  4. The computer code system for reactor radiation shielding in design of nuclear power plant

    International Nuclear Information System (INIS)

    Li Chunhuai; Fu Shouxin; Liu Guilian

    1995-01-01

    The computer code system used in reactor radiation shielding design of nuclear power plant includes the source term codes, discrete ordinate transport codes, Monte Carlo and Albedo Monte Carlo codes, kernel integration codes, optimization code, temperature field code, skyshine code, coupling calculation codes and some processing codes for data libraries. This computer code system has more satisfactory variety of codes and complete sets of data library. It is widely used in reactor radiation shielding design and safety analysis of nuclear power plant and other nuclear facilities

  5. On Code Parameters and Coding Vector Representation for Practical RLNC

    DEFF Research Database (Denmark)

    Heide, Janus; Pedersen, Morten Videbæk; Fitzek, Frank

    2011-01-01

    RLNC provides a theoretically efficient method for coding. The drawbacks associated with it are the complexity of the decoding and the overhead resulting from the encoding vector. Increasing the field size and generation size presents a fundamental trade-off between packet-based throughput...... to higher energy consumption. Therefore, the optimal trade-off is system and topology dependent, as it depends on the cost in energy of performing coding operations versus transmitting data. We show that moderate field sizes are the correct choice when trade-offs are considered. The results show that sparse...

  6. Enhancement of Unequal Error Protection Properties of LDPC Codes

    Directory of Open Access Journals (Sweden)

    Poulliat Charly

    2007-01-01

    Full Text Available It has been widely recognized in the literature that irregular low-density parity-check (LDPC codes exhibit naturally an unequal error protection (UEP behavior. In this paper, we propose a general method to emphasize and control the UEP properties of LDPC codes. The method is based on a hierarchical optimization of the bit node irregularity profile for each sensitivity class within the codeword by maximizing the average bit node degree while guaranteeing a minimum degree as high as possible. We show that this optimization strategy is efficient, since the codes that we optimize show better UEP capabilities than the codes optimized for the additive white Gaussian noise channel.

  7. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject F. Contributions to code validation using BWR data and to evaluation and optimization of accident management measures. Final report; WASA-BOSS. Weiterentwicklung und Anwendung von Severe Accident Codes. Bewertung und Optimierung von Stoerfallmassnahmen. Teilprojekt F. Beitraege zur Codevalidierung anhand von SWR-Daten und zur Bewertung und Optimierung von Stoerfallmassnahmen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino; Imke, Uwe; Sanchez Espinoza, Victor

    2016-09-15

    The exact knowledge of the transient course of events and of the dominating processes during a severe accident in a nuclear power station is a mandatory requirement to elaborate strategies and measures to minimize the radiological consequences of core melt. Two typical experiments using boiling water reactor assemblies were modelled and simulated with the severe accident simulation code ATHLET-CD. The experiments are related to the early phase of core degradation in a boiling water reactor. The results reproduce the thermal behavior and the hydrogen production due to oxidation inside the bundle until relocation of material by melting. During flooding of the overheated assembly temperatures and hydrogen oxidation are under estimated. The deviations from the experimental results can be explained by the missing model to simulate bore carbide oxidation of the control rods. On basis of a hypothetical loss of coolant accident in a typical German boiling water reactor the effectivity of flooding the partial degraded core is investigated. This measure of mitigation is efficient and prevents failure of the reactor pressure vessel if it starts before molten material is relocated into the lower plenum. Considerable amount of hydrogen is produced by oxidation of the metallic components.

  8. Diagnostic Coding for Epilepsy.

    Science.gov (United States)

    Williams, Korwyn; Nuwer, Marc R; Buchhalter, Jeffrey R

    2016-02-01

    Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.

  9. Coding of Neuroinfectious Diseases.

    Science.gov (United States)

    Barkley, Gregory L

    2015-12-01

    Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.

  10. On Coding Non-Contiguous Letter Combinations

    Directory of Open Access Journals (Sweden)

    Frédéric eDandurand

    2011-06-01

    Full Text Available Starting from the hypothesis that printed word identification initially involves the parallel mapping of visual features onto location-specific letter identities, we analyze the type of information that would be involved in optimally mapping this location-specific orthographic code onto a location-invariant lexical code. We assume that some intermediate level of coding exists between individual letters and whole words, and that this involves the representation of letter combinations. We then investigate the nature of this intermediate level of coding given the constraints of optimality. This intermediate level of coding is expected to compress data while retaining as much information as possible about word identity. Information conveyed by letters is a function of how much they constrain word identity and how visible they are. Optimization of this coding is a combination of minimizing resources (using the most compact representations and maximizing information. We show that in a large proportion of cases, non-contiguous letter sequences contain more information than contiguous sequences, while at the same time requiring less precise coding. Moreover, we found that the best predictor of human performance in orthographic priming experiments was within-word ranking of conditional probabilities, rather than average conditional probabilities. We conclude that from an optimality perspective, readers learn to select certain contiguous and non-contiguous letter combinations as information that provides the best cue to word identity.

  11. Supervised Transfer Sparse Coding

    KAUST Repository

    Al-Shedivat, Maruan

    2014-07-27

    A combination of the sparse coding and transfer learn- ing techniques was shown to be accurate and robust in classification tasks where training and testing objects have a shared feature space but are sampled from differ- ent underlying distributions, i.e., belong to different do- mains. The key assumption in such case is that in spite of the domain disparity, samples from different domains share some common hidden factors. Previous methods often assumed that all the objects in the target domain are unlabeled, and thus the training set solely comprised objects from the source domain. However, in real world applications, the target domain often has some labeled objects, or one can always manually label a small num- ber of them. In this paper, we explore such possibil- ity and show how a small number of labeled data in the target domain can significantly leverage classifica- tion accuracy of the state-of-the-art transfer sparse cod- ing methods. We further propose a unified framework named supervised transfer sparse coding (STSC) which simultaneously optimizes sparse representation, domain transfer and classification. Experimental results on three applications demonstrate that a little manual labeling and then learning the model in a supervised fashion can significantly improve classification accuracy.

  12. Entropy Coding in HEVC

    OpenAIRE

    Sze, Vivienne; Marpe, Detlev

    2014-01-01

    Context-Based Adaptive Binary Arithmetic Coding (CABAC) is a method of entropy coding first introduced in H.264/AVC and now used in the latest High Efficiency Video Coding (HEVC) standard. While it provides high coding efficiency, the data dependencies in H.264/AVC CABAC make it challenging to parallelize and thus limit its throughput. Accordingly, during the standardization of entropy coding for HEVC, both aspects of coding efficiency and throughput were considered. This chapter describes th...

  13. Generalized concatenated quantum codes

    International Nuclear Information System (INIS)

    Grassl, Markus; Shor, Peter; Smith, Graeme; Smolin, John; Zeng Bei

    2009-01-01

    We discuss the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length but also asymptotically meet the quantum Hamming bound for large block length.

  14. Rateless feedback codes

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip

    2012-01-01

    This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....

  15. Advanced video coding systems

    CERN Document Server

    Gao, Wen

    2015-01-01

    This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV

  16. Coding for dummies

    CERN Document Server

    Abraham, Nikhil

    2015-01-01

    Hands-on exercises help you learn to code like a pro No coding experience is required for Coding For Dummies,your one-stop guide to building a foundation of knowledge inwriting computer code for web, application, and softwaredevelopment. It doesn't matter if you've dabbled in coding or neverwritten a line of code, this book guides you through the basics.Using foundational web development languages like HTML, CSS, andJavaScript, it explains in plain English how coding works and whyit's needed. Online exercises developed by Codecademy, a leading online codetraining site, help hone coding skill

  17. Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes

    Science.gov (United States)

    Harrington, James William

    Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present

  18. Calibration Methods for Reliability-Based Design Codes

    DEFF Research Database (Denmark)

    Gayton, N.; Mohamed, A.; Sørensen, John Dalsgaard

    2004-01-01

    The calibration methods are applied to define the optimal code format according to some target safety levels. The calibration procedure can be seen as a specific optimization process where the control variables are the partial factors of the code. Different methods are available in the literature...

  19. Structural reliability codes for probabilistic design

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    1997-01-01

    probabilistic code format has not only strong influence on the formal reliability measure, but also on the formal cost of failure to be associated if a design made to the target reliability level is considered to be optimal. In fact, the formal cost of failure can be different by several orders of size for two...... different, but by and large equally justifiable probabilistic code formats. Thus, the consequence is that a code format based on decision theoretical concepts and formulated as an extension of a probabilistic code format must specify formal values to be used as costs of failure. A principle of prudence...... is suggested for guiding the choice of the reference probabilistic code format for constant reliability. In the author's opinion there is an urgent need for establishing a standard probabilistic reliability code. This paper presents some considerations that may be debatable, but nevertheless point...

  20. Code Samples Used for Complexity and Control

    Science.gov (United States)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    The following sections are included: * MathematicaⓇ Code * Generic Chaotic Simulator * Vector Differential Operators * NLS Explorer * 2C++ Code * C++ Lambda Functions for Real Calculus * Accelerometer Data Processor * Simple Predictor-Corrector Integrator * Solving the BVP with the Shooting Method * Linear Hyperbolic PDE Solver * Linear Elliptic PDE Solver * Method of Lines for a Set of the NLS Equations * C# Code * Iterative Equation Solver * Simulated Annealing: A Function Minimum * Simple Nonlinear Dynamics * Nonlinear Pendulum Simulator * Lagrangian Dynamics Simulator * Complex-Valued Crowd Attractor Dynamics * Freeform Fortran Code * Lorenz Attractor Simulator * Complex Lorenz Attractor * Simple SGE Soliton * Complex Signal Presentation * Gaussian Wave Packet * Hermitian Matrices * Euclidean L2-Norm * Vector/Matrix Operations * Plain C-Code: Levenberg-Marquardt Optimizer * Free Basic Code: 2D Crowd Dynamics with 3000 Agents

  1. Protograph-Based Raptor-Like Codes

    Science.gov (United States)

    Divsalar, Dariush; Chen, Tsung-Yi; Wang, Jiadong; Wesel, Richard D.

    2014-01-01

    Theoretical analysis has long indicated that feedback improves the error exponent but not the capacity of pointto- point memoryless channels. The analytic and empirical results indicate that at short blocklength regime, practical rate-compatible punctured convolutional (RCPC) codes achieve low latency with the use of noiseless feedback. In 3GPP, standard rate-compatible turbo codes (RCPT) did not outperform the convolutional codes in the short blocklength regime. The reason is the convolutional codes for low number of states can be decoded optimally using Viterbi decoder. Despite excellent performance of convolutional codes at very short blocklengths, the strength of convolutional codes does not scale with the blocklength for a fixed number of states in its trellis.

  2. Construction of MDS self-dual codes from orthogonal matrices

    OpenAIRE

    Shi, Minjia; Sok, Lin; Solé, Patrick

    2016-01-01

    In this paper, we give algorithms and methods of construction of self-dual codes over finite fields using orthogonal matrices. Randomization in the orthogonal group, and code extension are the main tools. Some optimal, almost MDS, and MDS self-dual codes over both small and large prime fields are constructed.

  3. A Robust Cross Coding Scheme for OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2010-01-01

    In wireless OFDM-based systems, coding jointly over all the sub-carriers simultaneously performs better than coding separately per sub-carrier. However, the joint coding is not always optimal because its achievable channel capacity (i.e. the maximum data rate) is inversely proportional to the

  4. Context adaptive coding of bi-level images

    DEFF Research Database (Denmark)

    Forchhammer, Søren

    2008-01-01

    With the advent of sequential arithmetic coding, the focus of highly efficient lossless data compression is placed on modelling the data. Rissanen's Algorithm Context provided an elegant solution to universal coding with optimal convergence rate. Context based arithmetic coding laid the grounds f...

  5. Discussion on LDPC Codes and Uplink Coding

    Science.gov (United States)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  6. Locally orderless registration code

    DEFF Research Database (Denmark)

    2012-01-01

    This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows.......This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows....

  7. Decoding Codes on Graphs

    Indian Academy of Sciences (India)

    Shannon limit of the channel. Among the earliest discovered codes that approach the. Shannon limit were the low density parity check (LDPC) codes. The term low density arises from the property of the parity check matrix defining the code. We will now define this matrix and the role that it plays in decoding. 2. Linear Codes.

  8. Manually operated coded switch

    International Nuclear Information System (INIS)

    Barnette, J.H.

    1978-01-01

    The disclosure related to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made

  9. Coding in Muscle Disease.

    Science.gov (United States)

    Jones, Lyell K; Ney, John P

    2016-12-01

    Accurate coding is critically important for clinical practice and research. Ongoing changes to diagnostic and billing codes require the clinician to stay abreast of coding updates. Payment for health care services, data sets for health services research, and reporting for medical quality improvement all require accurate administrative coding. This article provides an overview of administrative coding for patients with muscle disease and includes a case-based review of diagnostic and Evaluation and Management (E/M) coding principles in patients with myopathy. Procedural coding for electrodiagnostic studies and neuromuscular ultrasound is also reviewed.

  10. QR Codes 101

    Science.gov (United States)

    Crompton, Helen; LaFrance, Jason; van 't Hooft, Mark

    2012-01-01

    A QR (quick-response) code is a two-dimensional scannable code, similar in function to a traditional bar code that one might find on a product at the supermarket. The main difference between the two is that, while a traditional bar code can hold a maximum of only 20 digits, a QR code can hold up to 7,089 characters, so it can contain much more…

  11. Codes and curves

    CERN Document Server

    Walker, Judy L

    2000-01-01

    When information is transmitted, errors are likely to occur. Coding theory examines efficient ways of packaging data so that these errors can be detected, or even corrected. The traditional tools of coding theory have come from combinatorics and group theory. Lately, however, coding theorists have added techniques from algebraic geometry to their toolboxes. In particular, by re-interpreting the Reed-Solomon codes, one can see how to define new codes based on divisors on algebraic curves. For instance, using modular curves over finite fields, Tsfasman, Vladut, and Zink showed that one can define a sequence of codes with asymptotically better parameters than any previously known codes. This monograph is based on a series of lectures the author gave as part of the IAS/PCMI program on arithmetic algebraic geometry. Here, the reader is introduced to the exciting field of algebraic geometric coding theory. Presenting the material in the same conversational tone of the lectures, the author covers linear codes, inclu...

  12. Application of coupled codes for safety analysis and licensing issues

    International Nuclear Information System (INIS)

    Langenbuch, S.; Velkov, K.

    2006-01-01

    An overview is given on the development and the advantages of coupled codes which integrate 3D neutron kinetics into thermal-hydraulic system codes. The work performed within GRS by coupling the thermal-hydraulic system code ATHLET and the 3D neutronics code QUABOX/CUBBOX is described as an example. The application of the coupled codes as best-estimate simulation tools for safety analysis is discussed. Some examples from German licensing practices are given which demonstrate how the improved analytical methods of coupled codes have contributed to solve licensing issues related to optimized and more economical use of fuel. (authors)

  13. User's manual of Tokamak Simulation Code

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Nishino, Tooru; Tsunematsu, Toshihide; Sugihara, Masayoshi.

    1992-12-01

    User's manual for use of Tokamak Simulation Code (TSC), which simulates the time-evolutional process of deformable motion of axisymmetric toroidal plasma, is summarized. For the use at JAERI computer system, the TSC is linked with the data management system GAEA. This manual is forcused on the procedure for the input and output by using the GAEA system. Model equations to give axisymmetric motion, outline of code system, optimal method to get the well converged solution are also described. (author)

  14. Optimization and Optimal Control

    CERN Document Server

    Chinchuluun, Altannar; Enkhbat, Rentsen; Tseveendorj, Ider

    2010-01-01

    During the last four decades there has been a remarkable development in optimization and optimal control. Due to its wide variety of applications, many scientists and researchers have paid attention to fields of optimization and optimal control. A huge number of new theoretical, algorithmic, and computational results have been observed in the last few years. This book gives the latest advances, and due to the rapid development of these fields, there are no other recent publications on the same topics. Key features: Provides a collection of selected contributions giving a state-of-the-art accou

  15. Optimally Stopped Optimization

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel

    We combine the fields of heuristic optimization and optimal stopping. We propose a strategy for benchmarking randomized optimization algorithms that minimizes the expected total cost for obtaining a good solution with an optimal number of calls to the solver. To do so, rather than letting the objective function alone define a cost to be minimized, we introduce a further cost-per-call of the algorithm. We show that this problem can be formulated using optimal stopping theory. The expected cost is a flexible figure of merit for benchmarking probabilistic solvers that can be computed when the optimal solution is not known, and that avoids the biases and arbitrariness that affect other measures. The optimal stopping formulation of benchmarking directly leads to a real-time, optimal-utilization strategy for probabilistic optimizers with practical impact. We apply our formulation to benchmark the performance of a D-Wave 2X quantum annealer and the HFS solver, a specialized classical heuristic algorithm designed for low tree-width graphs. On a set of frustrated-loop instances with planted solutions defined on up to N = 1098 variables, the D-Wave device is between one to two orders of magnitude faster than the HFS solver.

  16. Optimization of Antivirus Software

    OpenAIRE

    Catalin BOJA; Adrian VISOIU

    2007-01-01

    The paper describes the main techniques used in development of computer antivirus software applications. For this particular category of software, are identified and defined optimum criteria that helps determine which solution is better and what are the objectives of the optimization process. From the general viewpoint of software optimization are presented methods and techniques that are applied at code development level. Regarding the particularities of antivirus software, the paper analyze...

  17. Guided randomness in optimization

    CERN Document Server

    Clerc, Maurice

    2015-01-01

    The performance of an algorithm used depends on the GNA. This book focuses on the comparison of optimizers, it defines a stress-outcome approach which can be derived all the classic criteria (median, average, etc.) and other more sophisticated.   Source-codes used for the examples are also presented, this allows a reflection on the ""superfluous chance,"" succinctly explaining why and how the stochastic aspect of optimization could be avoided in some cases.

  18. Consensus Convolutional Sparse Coding

    KAUST Repository

    Choudhury, Biswarup

    2017-12-01

    Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high-dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaicing and 4D light field view synthesis.

  19. Consensus Convolutional Sparse Coding

    KAUST Repository

    Choudhury, Biswarup

    2017-04-11

    Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaickingand 4D light field view synthesis.

  20. Consensus Convolutional Sparse Coding

    KAUST Repository

    Choudhury, Biswarup; Swanson, Robin; Heide, Felix; Wetzstein, Gordon; Heidrich, Wolfgang

    2017-01-01

    Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high-dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaicing and 4D light field view synthesis.

  1. Statistical mechanics of error-correcting codes

    Science.gov (United States)

    Kabashima, Y.; Saad, D.

    1999-01-01

    We investigate the performance of error-correcting codes, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability is obtained for finite K and C. We examine the finite-temperature case to assess the use of simulated annealing for decoding and extend the analysis to accommodate other types of noisy channels.

  2. Neuronal codes for visual perception and memory.

    Science.gov (United States)

    Quian Quiroga, Rodrigo

    2016-03-01

    In this review, I describe and contrast the representation of stimuli in visual cortical areas and in the medial temporal lobe (MTL). While cortex is characterized by a distributed and implicit coding that is optimal for recognition and storage of semantic information, the MTL shows a much sparser and explicit coding of specific concepts that is ideal for episodic memory. I will describe the main characteristics of the coding in the MTL by the so-called concept cells and will then propose a model of the formation and recall of episodic memory based on partially overlapping assemblies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The materiality of Code

    DEFF Research Database (Denmark)

    Soon, Winnie

    2014-01-01

    This essay studies the source code of an artwork from a software studies perspective. By examining code that come close to the approach of critical code studies (Marino, 2006), I trace the network artwork, Pupufu (Lin, 2009) to understand various real-time approaches to social media platforms (MSN......, Twitter and Facebook). The focus is not to investigate the functionalities and efficiencies of the code, but to study and interpret the program level of code in order to trace the use of various technological methods such as third-party libraries and platforms’ interfaces. These are important...... to understand the socio-technical side of a changing network environment. Through the study of code, including but not limited to source code, technical specifications and other materials in relation to the artwork production, I would like to explore the materiality of code that goes beyond technical...

  4. Coding for optical channels

    CERN Document Server

    Djordjevic, Ivan; Vasic, Bane

    2010-01-01

    This unique book provides a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory and optical communication.

  5. SEVERO code - user's manual

    International Nuclear Information System (INIS)

    Sacramento, A.M. do.

    1989-01-01

    This user's manual contains all the necessary information concerning the use of SEVERO code. This computer code is related to the statistics of extremes = extreme winds, extreme precipitation and flooding hazard risk analysis. (A.C.A.S.)

  6. Workshop on Computational Optimization

    CERN Document Server

    2015-01-01

    Our everyday life is unthinkable without optimization. We try to minimize our effort and to maximize the achieved profit. Many real world and industrial problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks. This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization 2013. It presents recent advances in computational optimization. The volume includes important real life problems like parameter settings for controlling processes in bioreactor, resource constrained project scheduling, problems arising in transport services, error correcting codes, optimal system performance and energy consumption and so on. It shows how to develop algorithms for them based on new metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming and others.

  7. Synthesizing Certified Code

    OpenAIRE

    Whalen, Michael; Schumann, Johann; Fischer, Bernd

    2002-01-01

    Code certification is a lightweight approach for formally demonstrating software quality. Its basic idea is to require code producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates that can be checked independently. Since code certification uses the same underlying technology as program verification, it requires detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding annotations to th...

  8. FERRET data analysis code

    International Nuclear Information System (INIS)

    Schmittroth, F.

    1979-09-01

    A documentation of the FERRET data analysis code is given. The code provides a way to combine related measurements and calculations in a consistent evaluation. Basically a very general least-squares code, it is oriented towards problems frequently encountered in nuclear data and reactor physics. A strong emphasis is on the proper treatment of uncertainties and correlations and in providing quantitative uncertainty estimates. Documentation includes a review of the method, structure of the code, input formats, and examples

  9. Stylize Aesthetic QR Code

    OpenAIRE

    Xu, Mingliang; Su, Hao; Li, Yafei; Li, Xi; Liao, Jing; Niu, Jianwei; Lv, Pei; Zhou, Bing

    2018-01-01

    With the continued proliferation of smart mobile devices, Quick Response (QR) code has become one of the most-used types of two-dimensional code in the world. Aiming at beautifying the appearance of QR codes, existing works have developed a series of techniques to make the QR code more visual-pleasant. However, these works still leave much to be desired, such as visual diversity, aesthetic quality, flexibility, universal property, and robustness. To address these issues, in this paper, we pro...

  10. Enhancing QR Code Security

    OpenAIRE

    Zhang, Linfan; Zheng, Shuang

    2015-01-01

    Quick Response code opens possibility to convey data in a unique way yet insufficient prevention and protection might lead into QR code being exploited on behalf of attackers. This thesis starts by presenting a general introduction of background and stating two problems regarding QR code security, which followed by a comprehensive research on both QR code itself and related issues. From the research a solution taking advantages of cloud and cryptography together with an implementation come af...

  11. Opening up codings?

    DEFF Research Database (Denmark)

    Steensig, Jakob; Heinemann, Trine

    2015-01-01

    doing formal coding and when doing more “traditional” conversation analysis research based on collections. We are more wary, however, of the implication that coding-based research is the end result of a process that starts with qualitative investigations and ends with categories that can be coded...

  12. Refactoring test code

    NARCIS (Netherlands)

    A. van Deursen (Arie); L.M.F. Moonen (Leon); A. van den Bergh; G. Kok

    2001-01-01

    textabstractTwo key aspects of extreme programming (XP) are unit testing and merciless refactoring. Given the fact that the ideal test code / production code ratio approaches 1:1, it is not surprising that unit tests are being refactored. We found that refactoring test code is different from

  13. Software Certification - Coding, Code, and Coders

    Science.gov (United States)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  14. The network code

    International Nuclear Information System (INIS)

    1997-01-01

    The Network Code defines the rights and responsibilities of all users of the natural gas transportation system in the liberalised gas industry in the United Kingdom. This report describes the operation of the Code, what it means, how it works and its implications for the various participants in the industry. The topics covered are: development of the competitive gas market in the UK; key points in the Code; gas transportation charging; impact of the Code on producers upstream; impact on shippers; gas storage; supply point administration; impact of the Code on end users; the future. (20 tables; 33 figures) (UK)

  15. Coding for Electronic Mail

    Science.gov (United States)

    Rice, R. F.; Lee, J. J.

    1986-01-01

    Scheme for coding facsimile messages promises to reduce data transmission requirements to one-tenth current level. Coding scheme paves way for true electronic mail in which handwritten, typed, or printed messages or diagrams sent virtually instantaneously - between buildings or between continents. Scheme, called Universal System for Efficient Electronic Mail (USEEM), uses unsupervised character recognition and adaptive noiseless coding of text. Image quality of resulting delivered messages improved over messages transmitted by conventional coding. Coding scheme compatible with direct-entry electronic mail as well as facsimile reproduction. Text transmitted in this scheme automatically translated to word-processor form.

  16. A multiobjective approach to the genetic code adaptability problem.

    Science.gov (United States)

    de Oliveira, Lariza Laura; de Oliveira, Paulo S L; Tinós, Renato

    2015-02-19

    The organization of the canonical code has intrigued researches since it was first described. If we consider all codes mapping the 64 codes into 20 amino acids and one stop codon, there are more than 1.51×10(84) possible genetic codes. The main question related to the organization of the genetic code is why exactly the canonical code was selected among this huge number of possible genetic codes. Many researchers argue that the organization of the canonical code is a product of natural selection and that the code's robustness against mutations would support this hypothesis. In order to investigate the natural selection hypothesis, some researches employ optimization algorithms to identify regions of the genetic code space where best codes, according to a given evaluation function, can be found (engineering approach). The optimization process uses only one objective to evaluate the codes, generally based on the robustness for an amino acid property. Only one objective is also employed in the statistical approach for the comparison of the canonical code with random codes. We propose a multiobjective approach where two or more objectives are considered simultaneously to evaluate the genetic codes. In order to test our hypothesis that the multiobjective approach is useful for the analysis of the genetic code adaptability, we implemented a multiobjective optimization algorithm where two objectives are simultaneously optimized. Using as objectives the robustness against mutation with the amino acids properties polar requirement (objective 1) and robustness with respect to hydropathy index or molecular volume (objective 2), we found solutions closer to the canonical genetic code in terms of robustness, when compared with the results using only one objective reported by other authors. Using more objectives, more optimal solutions are obtained and, as a consequence, more information can be used to investigate the adaptability of the genetic code. The multiobjective approach

  17. NAGRADATA. Code key. Geology

    International Nuclear Information System (INIS)

    Mueller, W.H.; Schneider, B.; Staeuble, J.

    1984-01-01

    This reference manual provides users of the NAGRADATA system with comprehensive keys to the coding/decoding of geological and technical information to be stored in or retreaved from the databank. Emphasis has been placed on input data coding. When data is retreaved the translation into plain language of stored coded information is done automatically by computer. Three keys each, list the complete set of currently defined codes for the NAGRADATA system, namely codes with appropriate definitions, arranged: 1. according to subject matter (thematically) 2. the codes listed alphabetically and 3. the definitions listed alphabetically. Additional explanation is provided for the proper application of the codes and the logic behind the creation of new codes to be used within the NAGRADATA system. NAGRADATA makes use of codes instead of plain language for data storage; this offers the following advantages: speed of data processing, mainly data retrieval, economies of storage memory requirements, the standardisation of terminology. The nature of this thesaurian type 'key to codes' makes it impossible to either establish a final form or to cover the entire spectrum of requirements. Therefore, this first issue of codes to NAGRADATA must be considered to represent the current state of progress of a living system and future editions will be issued in a loose leave ringbook system which can be updated by an organised (updating) service. (author)

  18. XSOR codes users manual

    International Nuclear Information System (INIS)

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ''XSOR''. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms

  19. Reactor lattice codes

    International Nuclear Information System (INIS)

    Kulikowska, T.

    1999-01-01

    The present lecture has a main goal to show how the transport lattice calculations are realised in a standard computer code. This is illustrated on the example of the WIMSD code, belonging to the most popular tools for reactor calculations. Most of the approaches discussed here can be easily modified to any other lattice code. The description of the code assumes the basic knowledge of reactor lattice, on the level given in the lecture on 'Reactor lattice transport calculations'. For more advanced explanation of the WIMSD code the reader is directed to the detailed descriptions of the code cited in References. The discussion of the methods and models included in the code is followed by the generally used homogenisation procedure and several numerical examples of discrepancies in calculated multiplication factors based on different sources of library data. (author)

  20. DLLExternalCode

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read from files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.

  1. Optimization of Antivirus Software

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The paper describes the main techniques used in development of computer antivirus software applications. For this particular category of software, are identified and defined optimum criteria that helps determine which solution is better and what are the objectives of the optimization process. From the general viewpoint of software optimization are presented methods and techniques that are applied at code development level. Regarding the particularities of antivirus software, the paper analyzes some of the optimization concepts applied to this category of applications

  2. When sparse coding meets ranking: a joint framework for learning sparse codes and ranking scores

    KAUST Repository

    Wang, Jim Jing-Yan

    2017-06-28

    Sparse coding, which represents a data point as a sparse reconstruction code with regard to a dictionary, has been a popular data representation method. Meanwhile, in database retrieval problems, learning the ranking scores from data points plays an important role. Up to now, these two problems have always been considered separately, assuming that data coding and ranking are two independent and irrelevant problems. However, is there any internal relationship between sparse coding and ranking score learning? If yes, how to explore and make use of this internal relationship? In this paper, we try to answer these questions by developing the first joint sparse coding and ranking score learning algorithm. To explore the local distribution in the sparse code space, and also to bridge coding and ranking problems, we assume that in the neighborhood of each data point, the ranking scores can be approximated from the corresponding sparse codes by a local linear function. By considering the local approximation error of ranking scores, the reconstruction error and sparsity of sparse coding, and the query information provided by the user, we construct a unified objective function for learning of sparse codes, the dictionary and ranking scores. We further develop an iterative algorithm to solve this optimization problem.

  3. Coding and transmission of subband coded images on the Internet

    Science.gov (United States)

    Wah, Benjamin W.; Su, Xiao

    2001-09-01

    Subband-coded images can be transmitted in the Internet using either the TCP or the UDP protocol. Delivery by TCP gives superior decoding quality but with very long delays when the network is unreliable, whereas delivery by UDP has negligible delays but with degraded quality when packets are lost. Although images are delivered currently over the Internet by TCP, we study in this paper the use of UDP to deliver multi-description reconstruction-based subband-coded images. First, in order to facilitate recovery from UDP packet losses, we propose a joint sender-receiver approach for designing optimized reconstruction-based subband transform (ORB-ST) in multi-description coding (MDC). Second, we carefully evaluate the delay-quality trade-offs between the TCP delivery of SDC images and the UDP and combined TCP/UDP delivery of MDC images. Experimental results show that our proposed ORB-ST performs well in real Internet tests, and UDP and combined TCP/UDP delivery of MDC images provide a range of attractive alternatives to TCP delivery.

  4. Optimization of Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan

    2010-01-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  5. Toric Varieties and Codes, Error-correcting Codes, Quantum Codes, Secret Sharing and Decoding

    DEFF Research Database (Denmark)

    Hansen, Johan Peder

    We present toric varieties and associated toric codes and their decoding. Toric codes are applied to construct Linear Secret Sharing Schemes (LSSS) with strong multiplication by the Massey construction. Asymmetric Quantum Codes are obtained from toric codes by the A.R. Calderbank P.W. Shor and A.......M. Steane construction of stabilizer codes (CSS) from linear codes containing their dual codes....

  6. Optimization of analysis best-estimate of a fuel element BWR with Code STAR-CCM+; Optimizacion del analisis best-estimate de un elemento combustible BWR con el codigo STAR-CCM+

    Energy Technology Data Exchange (ETDEWEB)

    Morgado Canada, E.; Concejal Barmejo, A.; Jimenez Varas, G.; Solar Martinez, A.

    2014-07-01

    The objective of the project is the evaluation of the code STAR-CCM +, as well as the establishment of guidelines and standardized procedures for the discretization of the area of study and the selection of physical models suitable for the simulation of BWR fuel. For this purpose several of BFBT experiments have simulated [1] provide a data base for the development of experiments for measuring distribution of fractions of holes to changes in power in order to find the most appropriate models for the simulation of the problem. (Author)

  7. Quantum information and convex optimization

    International Nuclear Information System (INIS)

    Reimpell, Michael

    2008-01-01

    This thesis is concerned with convex optimization problems in quantum information theory. It features an iterative algorithm for optimal quantum error correcting codes, a postprocessing method for incomplete tomography data, a method to estimate the amount of entanglement in witness experiments, and it gives necessary and sufficient criteria for the existence of retrodiction strategies for a generalized mean king problem. (orig.)

  8. Quantum information and convex optimization

    Energy Technology Data Exchange (ETDEWEB)

    Reimpell, Michael

    2008-07-01

    This thesis is concerned with convex optimization problems in quantum information theory. It features an iterative algorithm for optimal quantum error correcting codes, a postprocessing method for incomplete tomography data, a method to estimate the amount of entanglement in witness experiments, and it gives necessary and sufficient criteria for the existence of retrodiction strategies for a generalized mean king problem. (orig.)

  9. Memory-efficient decoding of LDPC codes

    Science.gov (United States)

    Kwok-San Lee, Jason; Thorpe, Jeremy; Hawkins, Jon

    2005-01-01

    We present a low-complexity quantization scheme for the implementation of regular (3,6) LDPC codes. The quantization parameters are optimized to maximize the mutual information between the source and the quantized messages. Using this non-uniform quantized belief propagation algorithm, we have simulated that an optimized 3-bit quantizer operates with 0.2dB implementation loss relative to a floating point decoder, and an optimized 4-bit quantizer operates less than 0.1dB quantization loss.

  10. Vectorization and parallelization of a production reactor assembly code

    International Nuclear Information System (INIS)

    Vujic, J.L.; Martin, W.R.; Michigan Univ., Ann Arbor, MI

    1991-01-01

    In order to use efficiently the new features of supercomputers, production codes, usually written 10 -20 years ago, must be tailored for modern computer architectures. We have chosen to optimize the CPM-2 code, a production reactor assembly code based on the collision probability transport method. Substantial speedup in the execution times was obtained with the parallel/vector version of the CPM-2 code. In addition, we have developed a new transfer probability method, which removes some of the modelling limitations of the collision probability method encoded in the CPM-2 code, and can fully utilize the parallel/vector architecture of a multiprocessor IBM 3090. (author)

  11. Vectorization and parallelization of a production reactor assembly code

    International Nuclear Information System (INIS)

    Vujic, J.L.; Martin, W.R.

    1991-01-01

    In order to efficiently use new features of supercomputers, production codes, usually written 10 - 20 years ago, must be tailored for modern computer architectures. We have chosen to optimize the CPM-2 code, a production reactor assembly code based on the collision probability transport method. Substantial speedups in the execution times were obtained with the parallel/vector version of the CPM-2 code. In addition, we have developed a new transfer probability method, which removes some of the modelling limitations of the collision probability method encoded in the CPM-2 code, and can fully utilize parallel/vector architecture of a multiprocessor IBM 3090. (author)

  12. The Aesthetics of Coding

    DEFF Research Database (Denmark)

    Andersen, Christian Ulrik

    2007-01-01

    Computer art is often associated with computer-generated expressions (digitally manipulated audio/images in music, video, stage design, media facades, etc.). In recent computer art, however, the code-text itself – not the generated output – has become the artwork (Perl Poetry, ASCII Art, obfuscated...... code, etc.). The presentation relates this artistic fascination of code to a media critique expressed by Florian Cramer, claiming that the graphical interface represents a media separation (of text/code and image) causing alienation to the computer’s materiality. Cramer is thus the voice of a new ‘code...... avant-garde’. In line with Cramer, the artists Alex McLean and Adrian Ward (aka Slub) declare: “art-oriented programming needs to acknowledge the conditions of its own making – its poesis.” By analysing the Live Coding performances of Slub (where they program computer music live), the presentation...

  13. Majorana fermion codes

    International Nuclear Information System (INIS)

    Bravyi, Sergey; Terhal, Barbara M; Leemhuis, Bernhard

    2010-01-01

    We initiate the study of Majorana fermion codes (MFCs). These codes can be viewed as extensions of Kitaev's one-dimensional (1D) model of unpaired Majorana fermions in quantum wires to higher spatial dimensions and interacting fermions. The purpose of MFCs is to protect quantum information against low-weight fermionic errors, that is, operators acting on sufficiently small subsets of fermionic modes. We examine to what extent MFCs can surpass qubit stabilizer codes in terms of their stability properties. A general construction of 2D MFCs is proposed that combines topological protection based on a macroscopic code distance with protection based on fermionic parity conservation. Finally, we use MFCs to show how to transform any qubit stabilizer code to a weakly self-dual CSS code.

  14. Theory of epigenetic coding.

    Science.gov (United States)

    Elder, D

    1984-06-07

    The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward.

  15. DISP1 code

    International Nuclear Information System (INIS)

    Vokac, P.

    1999-12-01

    DISP1 code is a simple tool for assessment of the dispersion of the fission product cloud escaping from a nuclear power plant after an accident. The code makes it possible to tentatively check the feasibility of calculations by more complex PSA3 codes and/or codes for real-time dispersion calculations. The number of input parameters is reasonably low and the user interface is simple enough to allow a rapid processing of sensitivity analyses. All input data entered through the user interface are stored in the text format. Implementation of dispersion model corrections taken from the ARCON96 code enables the DISP1 code to be employed for assessment of the radiation hazard within the NPP area, in the control room for instance. (P.A.)

  16. On Analyzing LDPC Codes over Multiantenna MC-CDMA System

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar

    2014-01-01

    Full Text Available Multiantenna multicarrier code-division multiple access (MC-CDMA technique has been attracting much attention for designing future broadband wireless systems. In addition, low-density parity-check (LDPC code, a promising near-optimal error correction code, is also being widely considered in next generation communication systems. In this paper, we propose a simple method to construct a regular quasicyclic low-density parity-check (QC-LDPC code to improve the transmission performance over the precoded MC-CDMA system with limited feedback. Simulation results show that the coding gain of the proposed QC-LDPC codes is larger than that of the Reed-Solomon codes, and the performance of the multiantenna MC-CDMA system can be greatly improved by these QC-LDPC codes when the data rate is high.

  17. Phonological coding during reading.

    Science.gov (United States)

    Leinenger, Mallorie

    2014-11-01

    The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early [prelexical] or that phonological codes come online late [postlexical]) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eye-tracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model, Van Orden, 1987; dual-route model, e.g., M. Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; parallel distributed processing model, Seidenberg & McClelland, 1989) are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  18. The aeroelastic code FLEXLAST

    Energy Technology Data Exchange (ETDEWEB)

    Visser, B. [Stork Product Eng., Amsterdam (Netherlands)

    1996-09-01

    To support the discussion on aeroelastic codes, a description of the code FLEXLAST was given and experiences within benchmarks and measurement programmes were summarized. The code FLEXLAST has been developed since 1982 at Stork Product Engineering (SPE). Since 1992 FLEXLAST has been used by Dutch industries for wind turbine and rotor design. Based on the comparison with measurements, it can be concluded that the main shortcomings of wind turbine modelling lie in the field of aerodynamics, wind field and wake modelling. (au)

  19. On locality of Generalized Reed-Muller codes over the broadcast erasure channel

    KAUST Repository

    Alloum, Amira; Lin, Sian Jheng; Al-Naffouri, Tareq Y.

    2016-01-01

    , and more specifically at the application layer where Rateless, LDPC, Reed Slomon codes and network coding schemes have been extensively studied, optimized and standardized in the past. Beyond reusing, extending or adapting existing application layer packet

  20. MORSE Monte Carlo code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described

  1. QR codes for dummies

    CERN Document Server

    Waters, Joe

    2012-01-01

    Find out how to effectively create, use, and track QR codes QR (Quick Response) codes are popping up everywhere, and businesses are reaping the rewards. Get in on the action with the no-nonsense advice in this streamlined, portable guide. You'll find out how to get started, plan your strategy, and actually create the codes. Then you'll learn to link codes to mobile-friendly content, track your results, and develop ways to give your customers value that will keep them coming back. It's all presented in the straightforward style you've come to know and love, with a dash of humor thrown

  2. Tokamak Systems Code

    International Nuclear Information System (INIS)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged

  3. Topology Optimization for Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2011-01-01

    This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...

  4. Methodology for bus layout for topological quantum error correcting codes

    Energy Technology Data Exchange (ETDEWEB)

    Wosnitzka, Martin; Pedrocchi, Fabio L.; DiVincenzo, David P. [RWTH Aachen University, JARA Institute for Quantum Information, Aachen (Germany)

    2016-12-15

    Most quantum computing architectures can be realized as two-dimensional lattices of qubits that interact with each other. We take transmon qubits and transmission line resonators as promising candidates for qubits and couplers; we use them as basic building elements of a quantum code. We then propose a simple framework to determine the optimal experimental layout to realize quantum codes. We show that this engineering optimization problem can be reduced to the solution of standard binary linear programs. While solving such programs is a NP-hard problem, we propose a way to find scalable optimal architectures that require solving the linear program for a restricted number of qubits and couplers. We apply our methods to two celebrated quantum codes, namely the surface code and the Fibonacci code. (orig.)

  5. Energy-Efficient Channel Coding Strategy for Underwater Acoustic Networks

    Directory of Open Access Journals (Sweden)

    Grasielli Barreto

    2017-03-01

    Full Text Available Underwater acoustic networks (UAN allow for efficiently exploiting and monitoring the sub-aquatic environment. These networks are characterized by long propagation delays, error-prone channels and half-duplex communication. In this paper, we address the problem of energy-efficient communication through the use of optimized channel coding parameters. We consider a two-layer encoding scheme employing forward error correction (FEC codes and fountain codes (FC for UAN scenarios without feedback channels. We model and evaluate the energy consumption of different channel coding schemes for a K-distributed multipath channel. The parameters of the FEC encoding layer are optimized by selecting the optimal error correction capability and the code block size. The results show the best parameter choice as a function of the link distance and received signal-to-noise ratio.

  6. On quadratic residue codes and hyperelliptic curves

    Directory of Open Access Journals (Sweden)

    David Joyner

    2008-01-01

    Full Text Available For an odd prime p and each non-empty subset S⊂GF(p, consider the hyperelliptic curve X S defined by y 2 =f S (x, where f S (x = ∏ a∈S (x-a. Using a connection between binary quadratic residue codes and hyperelliptic curves over GF(p, this paper investigates how coding theory bounds give rise to bounds such as the following example: for all sufficiently large primes p there exists a subset S⊂GF(p for which the bound |X S (GF(p| > 1.39p holds. We also use the quasi-quadratic residue codes defined below to construct an example of a formally self-dual optimal code whose zeta function does not satisfy the ``Riemann hypothesis.''

  7. Advanced Imaging Optics Utilizing Wavefront Coding.

    Energy Technology Data Exchange (ETDEWEB)

    Scrymgeour, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boye, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Adelsberger, Kathleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  8. Efficient Coding of Information: Huffman Coding -RE ...

    Indian Academy of Sciences (India)

    to a stream of equally-likely symbols so as to recover the original stream in the event of errors. The for- ... The source-coding problem is one of finding a mapping from U to a ... probability that the random variable X takes the value x written as ...

  9. NR-code: Nonlinear reconstruction code

    Science.gov (United States)

    Yu, Yu; Pen, Ue-Li; Zhu, Hong-Ming

    2018-04-01

    NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.

  10. Fast H.264/AVC FRExt intra coding using belief propagation.

    Science.gov (United States)

    Milani, Simone

    2011-01-01

    In the H.264/AVC FRExt coder, the coding performance of Intra coding significantly overcomes the previous still image coding standards, like JPEG2000, thanks to a massive use of spatial prediction. Unfortunately, the adoption of an extensive set of predictors induces a significant increase of the computational complexity required by the rate-distortion optimization routine. The paper presents a complexity reduction strategy that aims at reducing the computational load of the Intra coding with a small loss in the compression performance. The proposed algorithm relies on selecting a reduced set of prediction modes according to their probabilities, which are estimated adopting a belief-propagation procedure. Experimental results show that the proposed method permits saving up to 60 % of the coding time required by an exhaustive rate-distortion optimization method with a negligible loss in performance. Moreover, it permits an accurate control of the computational complexity unlike other methods where the computational complexity depends upon the coded sequence.

  11. LDPC Code Design for Nonuniform Power-Line Channels

    Directory of Open Access Journals (Sweden)

    Sanaei Ali

    2007-01-01

    Full Text Available We investigate low-density parity-check code design for discrete multitone channels over power lines. Discrete multitone channels are well modeled as nonuniform channels, that is, different bits experience various channel parameters. We propose a coding system for discrete multitone channels that allows for using a single code over a nonuniform channel. The number of code parameters for the proposed system is much greater than the number of code parameters in conventional channel. Therefore, search-based optimization methods are impractical. We first formulate the problem of optimizing the rate of an irregular low-density parity-check code, with guaranteed convergence over a general nonuniform channel, as an iterative linear programming which is significantly more efficient than search-based methods. Then we use this technique for a typical power-line channel. The methodology of this paper is directly applicable to all decoding algorithms for which a density evolution analysis is possible.

  12. Specialized Monte Carlo codes versus general-purpose Monte Carlo codes

    International Nuclear Information System (INIS)

    Moskvin, Vadim; DesRosiers, Colleen; Papiez, Lech; Lu, Xiaoyi

    2002-01-01

    The possibilities of Monte Carlo modeling for dose calculations and optimization treatment are quite limited in radiation oncology applications. The main reason is that the Monte Carlo technique for dose calculations is time consuming while treatment planning may require hundreds of possible cases of dose simulations to be evaluated for dose optimization. The second reason is that general-purpose codes widely used in practice, require an experienced user to customize them for calculations. This paper discusses the concept of Monte Carlo code design that can avoid the main problems that are preventing wide spread use of this simulation technique in medical physics. (authors)

  13. Parallelization of Subchannel Analysis Code MATRA

    International Nuclear Information System (INIS)

    Kim, Seongjin; Hwang, Daehyun; Kwon, Hyouk

    2014-01-01

    A stand-alone calculation of MATRA code used up pertinent computing time for the thermal margin calculations while a relatively considerable time is needed to solve the whole core pin-by-pin problems. In addition, it is strongly required to improve the computation speed of the MATRA code to satisfy the overall performance of the multi-physics coupling calculations. Therefore, a parallel approach to improve and optimize the computability of the MATRA code is proposed and verified in this study. The parallel algorithm is embodied in the MATRA code using the MPI communication method and the modification of the previous code structure was minimized. An improvement is confirmed by comparing the results between the single and multiple processor algorithms. The speedup and efficiency are also evaluated when increasing the number of processors. The parallel algorithm was implemented to the subchannel code MATRA using the MPI. The performance of the parallel algorithm was verified by comparing the results with those from the MATRA with the single processor. It is also noticed that the performance of the MATRA code was greatly improved by implementing the parallel algorithm for the 1/8 core and whole core problems

  14. Deterministic and unambiguous dense coding

    International Nuclear Information System (INIS)

    Wu Shengjun; Cohen, Scott M.; Sun Yuqing; Griffiths, Robert B.

    2006-01-01

    Optimal dense coding using a partially-entangled pure state of Schmidt rank D and a noiseless quantum channel of dimension D is studied both in the deterministic case where at most L d messages can be transmitted with perfect fidelity, and in the unambiguous case where when the protocol succeeds (probability τ x ) Bob knows for sure that Alice sent message x, and when it fails (probability 1-τ x ) he knows it has failed. Alice is allowed any single-shot (one use) encoding procedure, and Bob any single-shot measurement. For D≤D a bound is obtained for L d in terms of the largest Schmidt coefficient of the entangled state, and is compared with published results by Mozes et al. [Phys. Rev. A71, 012311 (2005)]. For D>D it is shown that L d is strictly less than D 2 unless D is an integer multiple of D, in which case uniform (maximal) entanglement is not needed to achieve the optimal protocol. The unambiguous case is studied for D≤D, assuming τ x >0 for a set of DD messages, and a bound is obtained for the average . A bound on the average requires an additional assumption of encoding by isometries (unitaries when D=D) that are orthogonal for different messages. Both bounds are saturated when τ x is a constant independent of x, by a protocol based on one-shot entanglement concentration. For D>D it is shown that (at least) D 2 messages can be sent unambiguously. Whether unitary (isometric) encoding suffices for optimal protocols remains a major unanswered question, both for our work and for previous studies of dense coding using partially-entangled states, including noisy (mixed) states

  15. A finite element code for electric motor design

    Science.gov (United States)

    Campbell, C. Warren

    1994-01-01

    FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.

  16. Synthesizing Certified Code

    Science.gov (United States)

    Whalen, Michael; Schumann, Johann; Fischer, Bernd

    2002-01-01

    Code certification is a lightweight approach to demonstrate software quality on a formal level. Its basic idea is to require producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates which can be checked independently. Since code certification uses the same underlying technology as program verification, it also requires many detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding theses annotations to the code is time-consuming and error-prone. We address this problem by combining code certification with automatic program synthesis. We propose an approach to generate simultaneously, from a high-level specification, code and all annotations required to certify generated code. Here, we describe a certification extension of AUTOBAYES, a synthesis tool which automatically generates complex data analysis programs from compact specifications. AUTOBAYES contains sufficient high-level domain knowledge to generate detailed annotations. This allows us to use a general-purpose verification condition generator to produce a set of proof obligations in first-order logic. The obligations are then discharged using the automated theorem E-SETHEO. We demonstrate our approach by certifying operator safety for a generated iterative data classification program without manual annotation of the code.

  17. Code of Ethics

    Science.gov (United States)

    Division for Early Childhood, Council for Exceptional Children, 2009

    2009-01-01

    The Code of Ethics of the Division for Early Childhood (DEC) of the Council for Exceptional Children is a public statement of principles and practice guidelines supported by the mission of DEC. The foundation of this Code is based on sound ethical reasoning related to professional practice with young children with disabilities and their families…

  18. Interleaved Product LDPC Codes

    OpenAIRE

    Baldi, Marco; Cancellieri, Giovanni; Chiaraluce, Franco

    2011-01-01

    Product LDPC codes take advantage of LDPC decoding algorithms and the high minimum distance of product codes. We propose to add suitable interleavers to improve the waterfall performance of LDPC decoding. Interleaving also reduces the number of low weight codewords, that gives a further advantage in the error floor region.

  19. Insurance billing and coding.

    Science.gov (United States)

    Napier, Rebecca H; Bruelheide, Lori S; Demann, Eric T K; Haug, Richard H

    2008-07-01

    The purpose of this article is to highlight the importance of understanding various numeric and alpha-numeric codes for accurately billing dental and medically related services to private pay or third-party insurance carriers. In the United States, common dental terminology (CDT) codes are most commonly used by dentists to submit claims, whereas current procedural terminology (CPT) and International Classification of Diseases, Ninth Revision, Clinical Modification (ICD.9.CM) codes are more commonly used by physicians to bill for their services. The CPT and ICD.9.CM coding systems complement each other in that CPT codes provide the procedure and service information and ICD.9.CM codes provide the reason or rationale for a particular procedure or service. These codes are more commonly used for "medical necessity" determinations, and general dentists and specialists who routinely perform care, including trauma-related care, biopsies, and dental treatment as a result of or in anticipation of a cancer-related treatment, are likely to use these codes. Claim submissions for care provided can be completed electronically or by means of paper forms.

  20. Error Correcting Codes

    Indian Academy of Sciences (India)

    Science and Automation at ... the Reed-Solomon code contained 223 bytes of data, (a byte ... then you have a data storage system with error correction, that ..... practical codes, storing such a table is infeasible, as it is generally too large.

  1. Scrum Code Camps

    DEFF Research Database (Denmark)

    Pries-Heje, Lene; Pries-Heje, Jan; Dalgaard, Bente

    2013-01-01

    is required. In this paper we present the design of such a new approach, the Scrum Code Camp, which can be used to assess agile team capability in a transparent and consistent way. A design science research approach is used to analyze properties of two instances of the Scrum Code Camp where seven agile teams...

  2. RFQ simulation code

    International Nuclear Information System (INIS)

    Lysenko, W.P.

    1984-04-01

    We have developed the RFQLIB simulation system to provide a means to systematically generate the new versions of radio-frequency quadrupole (RFQ) linac simulation codes that are required by the constantly changing needs of a research environment. This integrated system simplifies keeping track of the various versions of the simulation code and makes it practical to maintain complete and up-to-date documentation. In this scheme, there is a certain standard version of the simulation code that forms a library upon which new versions are built. To generate a new version of the simulation code, the routines to be modified or added are appended to a standard command file, which contains the commands to compile the new routines and link them to the routines in the library. The library itself is rarely changed. Whenever the library is modified, however, this modification is seen by all versions of the simulation code, which actually exist as different versions of the command file. All code is written according to the rules of structured programming. Modularity is enforced by not using COMMON statements, simplifying the relation of the data flow to a hierarchy diagram. Simulation results are similar to those of the PARMTEQ code, as expected, because of the similar physical model. Different capabilities, such as those for generating beams matched in detail to the structure, are available in the new code for help in testing new ideas in designing RFQ linacs

  3. Error Correcting Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  4. 78 FR 18321 - International Code Council: The Update Process for the International Codes and Standards

    Science.gov (United States)

    2013-03-26

    ... Energy Conservation Code. International Existing Building Code. International Fire Code. International... Code. International Property Maintenance Code. International Residential Code. International Swimming Pool and Spa Code International Wildland-Urban Interface Code. International Zoning Code. ICC Standards...

  5. Practical Design of Delta-Sigma Multiple Description Audio Coding

    DEFF Research Database (Denmark)

    Leegaard, Jack Højholt; Østergaard, Jan; Jensen, Søren Holdt

    2014-01-01

    It was recently shown that delta-sigma quantization (DSQ) can be used for optimal multiple description (MD) coding of Gaussian sources. The DSQ scheme combined oversampling, prediction, and noise-shaping in order to trade off side distortion for central distortion in MD coding. It was shown that ...

  6. Spatially coupled LDPC coding in cooperative wireless networks

    NARCIS (Netherlands)

    Jayakody, D.N.K.; Skachek, V.; Chen, B.

    2016-01-01

    This paper proposes a novel technique of spatially coupled low-density parity-check (SC-LDPC) code-based soft forwarding relaying scheme for a two-way relay system. We introduce an array-based optimized SC-LDPC codes in relay channels. A more precise model is proposed to characterize the residual

  7. Validation of thermalhydraulic codes

    International Nuclear Information System (INIS)

    Wilkie, D.

    1992-01-01

    Thermalhydraulic codes require to be validated against experimental data collected over a wide range of situations if they are to be relied upon. A good example is provided by the nuclear industry where codes are used for safety studies and for determining operating conditions. Errors in the codes could lead to financial penalties, to the incorrect estimation of the consequences of accidents and even to the accidents themselves. Comparison between prediction and experiment is often described qualitatively or in approximate terms, e.g. ''agreement is within 10%''. A quantitative method is preferable, especially when several competing codes are available. The codes can then be ranked in order of merit. Such a method is described. (Author)

  8. Fracture flow code

    International Nuclear Information System (INIS)

    Dershowitz, W; Herbert, A.; Long, J.

    1989-03-01

    The hydrology of the SCV site will be modelled utilizing discrete fracture flow models. These models are complex, and can not be fully cerified by comparison to analytical solutions. The best approach for verification of these codes is therefore cross-verification between different codes. This is complicated by the variation in assumptions and solution techniques utilized in different codes. Cross-verification procedures are defined which allow comparison of the codes developed by Harwell Laboratory, Lawrence Berkeley Laboratory, and Golder Associates Inc. Six cross-verification datasets are defined for deterministic and stochastic verification of geometric and flow features of the codes. Additional datasets for verification of transport features will be documented in a future report. (13 figs., 7 tabs., 10 refs.) (authors)

  9. Huffman coding in advanced audio coding standard

    Science.gov (United States)

    Brzuchalski, Grzegorz

    2012-05-01

    This article presents several hardware architectures of Advanced Audio Coding (AAC) Huffman noiseless encoder, its optimisations and working implementation. Much attention has been paid to optimise the demand of hardware resources especially memory size. The aim of design was to get as short binary stream as possible in this standard. The Huffman encoder with whole audio-video system has been implemented in FPGA devices.

  10. Further results on binary convolutional codes with an optimum distance profile

    DEFF Research Database (Denmark)

    Johannesson, Rolf; Paaske, Erik

    1978-01-01

    Fixed binary convolutional codes are considered which are simultaneously optimal or near-optimal according to three criteria: namely, distance profiled, free distanced_{ infty}, and minimum number of weightd_{infty}paths. It is shown how the optimum distance profile criterion can be used to limit...... codes. As a counterpart to quick-look-in (QLI) codes which are not "transparent," we introduce rateR = 1/2easy-look-in-transparent (ELIT) codes with a feedforward inverse(1 + D,D). In general, ELIT codes haved_{infty}superior to that of QLI codes....

  11. Report number codes

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.N. (ed.)

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  12. Report number codes

    International Nuclear Information System (INIS)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name

  13. Coding visual features extracted from video sequences.

    Science.gov (United States)

    Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano

    2014-05-01

    Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.

  14. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2009-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  15. The Alba ray tracing code: ART

    Science.gov (United States)

    Nicolas, Josep; Barla, Alessandro; Juanhuix, Jordi

    2013-09-01

    The Alba ray tracing code (ART) is a suite of Matlab functions and tools for the ray tracing simulation of x-ray beamlines. The code is structured in different layers, which allow its usage as part of optimization routines as well as an easy control from a graphical user interface. Additional tools for slope error handling and for grating efficiency calculations are also included. Generic characteristics of ART include the accumulation of rays to improve statistics without memory limitations, and still providing normalized values of flux and resolution in physically meaningful units.

  16. Cryptography cracking codes

    CERN Document Server

    2014-01-01

    While cracking a code might seem like something few of us would encounter in our daily lives, it is actually far more prevalent than we may realize. Anyone who has had personal information taken because of a hacked email account can understand the need for cryptography and the importance of encryption-essentially the need to code information to keep it safe. This detailed volume examines the logic and science behind various ciphers, their real world uses, how codes can be broken, and the use of technology in this oft-overlooked field.

  17. Coded Splitting Tree Protocols

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...

  18. Transport theory and codes

    International Nuclear Information System (INIS)

    Clancy, B.E.

    1986-01-01

    This chapter begins with a neutron transport equation which includes the one dimensional plane geometry problems, the one dimensional spherical geometry problems, and numerical solutions. The section on the ANISN code and its look-alikes covers problems which can be solved; eigenvalue problems; outer iteration loop; inner iteration loop; and finite difference solution procedures. The input and output data for ANISN is also discussed. Two dimensional problems such as the DOT code are given. Finally, an overview of the Monte-Carlo methods and codes are elaborated on

  19. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  20. Variable weight spectral amplitude coding for multiservice OCDMA networks

    Science.gov (United States)

    Seyedzadeh, Saleh; Rahimian, Farzad Pour; Glesk, Ivan; Kakaee, Majid H.

    2017-09-01

    The emergence of heterogeneous data traffic such as voice over IP, video streaming and online gaming have demanded networks with capability of supporting quality of service (QoS) at the physical layer with traffic prioritisation. This paper proposes a new variable-weight code based on spectral amplitude coding for optical code-division multiple-access (OCDMA) networks to support QoS differentiation. The proposed variable-weight multi-service (VW-MS) code relies on basic matrix construction. A mathematical model is developed for performance evaluation of VW-MS OCDMA networks. It is shown that the proposed code provides an optimal code length with minimum cross-correlation value when compared to other codes. Numerical results for a VW-MS OCDMA network designed for triple-play services operating at 0.622 Gb/s, 1.25 Gb/s and 2.5 Gb/s are considered.

  1. Low Complexity List Decoding for Polar Codes with Multiple CRC Codes

    Directory of Open Access Journals (Sweden)

    Jong-Hwan Kim

    2017-04-01

    Full Text Available Polar codes are the first family of error correcting codes that provably achieve the capacity of symmetric binary-input discrete memoryless channels with low complexity. Since the development of polar codes, there have been many studies to improve their finite-length performance. As a result, polar codes are now adopted as a channel code for the control channel of 5G new radio of the 3rd generation partnership project. However, the decoder implementation is one of the big practical problems and low complexity decoding has been studied. This paper addresses a low complexity successive cancellation list decoding for polar codes utilizing multiple cyclic redundancy check (CRC codes. While some research uses multiple CRC codes to reduce memory and time complexity, we consider the operational complexity of decoding, and reduce it by optimizing CRC positions in combination with a modified decoding operation. Resultingly, the proposed scheme obtains not only complexity reduction from early stopping of decoding, but also additional reduction from the reduced number of decoding paths.

  2. Deciphering the genetic regulatory code using an inverse error control coding framework.

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel; May, Elebeoba Eni; Brown, William Michael; Johnston, Anna Marie; Watson, Jean-Paul

    2005-03-01

    We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.

  3. JPEG2000 COMPRESSION CODING USING HUMAN VISUAL SYSTEM MODEL

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang; Wu Chengke

    2005-01-01

    In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distortion. The novelty is that the method of visual weighting is not lifting the coefficients in wavelet domain, but is complemented by code stream organization. It remains all the features of Embedded Block Coding with Optimized Truncation (EBCOT) such as resolution progressive, good robust for error bit spread and compatibility of lossless compression. Well performed than other methods, it keeps the shortest standard codestream and decompression time and owns the ability of VIsual Progressive (VIP) coding.

  4. Surveillance test interval optimization

    International Nuclear Information System (INIS)

    Cepin, M.; Mavko, B.

    1995-01-01

    Technical specifications have been developed on the bases of deterministic analyses, engineering judgment, and expert opinion. This paper introduces our risk-based approach to surveillance test interval (STI) optimization. This approach consists of three main levels. The first level is the component level, which serves as a rough estimation of the optimal STI and can be calculated analytically by a differentiating equation for mean unavailability. The second and third levels give more representative results. They take into account the results of probabilistic risk assessment (PRA) calculated by a personal computer (PC) based code and are based on system unavailability at the system level and on core damage frequency at the plant level

  5. Advanced backend optimization

    CERN Document Server

    Touati, Sid

    2014-01-01

    This book is a summary of more than a decade of research in the area of backend optimization. It contains the latest fundamental research results in this field. While existing books are often more oriented toward Masters students, this book is aimed more towards professors and researchers as it contains more advanced subjects.It is unique in the sense that it contains information that has not previously been covered by other books in the field, with chapters on phase ordering in optimizing compilation; register saturation in instruction level parallelism; code size reduction for software pipe

  6. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    2012-09-01

    Full Text Available Tinkering with pre-existing genes has long been known as a major way to create new genes. Recently, however, motherless protein-coding genes have been found to have emerged de novo from ancestral non-coding DNAs. How these genes originated is not well addressed to date. Here we identified 24 hominoid-specific de novo protein-coding genes with precise origination timing in vertebrate phylogeny. Strand-specific RNA-Seq analyses were performed in five rhesus macaque tissues (liver, prefrontal cortex, skeletal muscle, adipose, and testis, which were then integrated with public transcriptome data from human, chimpanzee, and rhesus macaque. On the basis of comparing the RNA expression profiles in the three species, we found that most of the hominoid-specific de novo protein-coding genes encoded polyadenylated non-coding RNAs in rhesus macaque or chimpanzee with a similar transcript structure and correlated tissue expression profile. According to the rule of parsimony, the majority of these hominoid-specific de novo protein-coding genes appear to have acquired a regulated transcript structure and expression profile before acquiring coding potential. Interestingly, although the expression profile was largely correlated, the coding genes in human often showed higher transcriptional abundance than their non-coding counterparts in rhesus macaque. The major findings we report in this manuscript are robust and insensitive to the parameters used in the identification and analysis of de novo genes. Our results suggest that at least a portion of long non-coding RNAs, especially those with active and regulated transcription, may serve as a birth pool for protein-coding genes, which are then further optimized at the transcriptional level.

  7. Fulcrum Network Codes

    DEFF Research Database (Denmark)

    2015-01-01

    Fulcrum network codes, which are a network coding framework, achieve three objectives: (i) to reduce the overhead per coded packet to almost 1 bit per source packet; (ii) to operate the network using only low field size operations at intermediate nodes, dramatically reducing complexity...... in the network; and (iii) to deliver an end-to-end performance that is close to that of a high field size network coding system for high-end receivers while simultaneously catering to low-end ones that can only decode in a lower field size. Sources may encode using a high field size expansion to increase...... the number of dimensions seen by the network using a linear mapping. Receivers can tradeoff computational effort with network delay, decoding in the high field size, the low field size, or a combination thereof....

  8. Supervised Convolutional Sparse Coding

    KAUST Repository

    Affara, Lama Ahmed; Ghanem, Bernard; Wonka, Peter

    2018-01-01

    coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements

  9. SASSYS LMFBR systems code

    International Nuclear Information System (INIS)

    Dunn, F.E.; Prohammer, F.G.; Weber, D.P.

    1983-01-01

    The SASSYS LMFBR systems analysis code is being developed mainly to analyze the behavior of the shut-down heat-removal system and the consequences of failures in the system, although it is also capable of analyzing a wide range of transients, from mild operational transients through more severe transients leading to sodium boiling in the core and possible melting of clad and fuel. The code includes a detailed SAS4A multi-channel core treatment plus a general thermal-hydraulic treatment of the primary and intermediate heat-transport loops and the steam generators. The code can handle any LMFBR design, loop or pool, with an arbitrary arrangement of components. The code is fast running: usually faster than real time

  10. OCA Code Enforcement

    Data.gov (United States)

    Montgomery County of Maryland — The Office of the County Attorney (OCA) processes Code Violation Citations issued by County agencies. The citations can be viewed by issued department, issued date...

  11. The fast code

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, L.N.; Wilson, R.E. [Oregon State Univ., Dept. of Mechanical Engineering, Corvallis, OR (United States)

    1996-09-01

    The FAST Code which is capable of determining structural loads on a flexible, teetering, horizontal axis wind turbine is described and comparisons of calculated loads with test data are given at two wind speeds for the ESI-80. The FAST Code models a two-bladed HAWT with degrees of freedom for blade bending, teeter, drive train flexibility, yaw, and windwise and crosswind tower motion. The code allows blade dimensions, stiffnesses, and weights to differ and models tower shadow, wind shear, and turbulence. Additionally, dynamic stall is included as are delta-3 and an underslung rotor. Load comparisons are made with ESI-80 test data in the form of power spectral density, rainflow counting, occurrence histograms, and azimuth averaged bin plots. It is concluded that agreement between the FAST Code and test results is good. (au)

  12. Code Disentanglement: Initial Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wohlbier, John Greaton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rockefeller, Gabriel M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Calef, Matthew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-27

    The first step to making more ambitious changes in the EAP code base is to disentangle the code into a set of independent, levelized packages. We define a package as a collection of code, most often across a set of files, that provides a defined set of functionality; a package a) can be built and tested as an entity and b) fits within an overall levelization design. Each package contributes one or more libraries, or an application that uses the other libraries. A package set is levelized if the relationships between packages form a directed, acyclic graph and each package uses only packages at lower levels of the diagram (in Fortran this relationship is often describable by the use relationship between modules). Independent packages permit independent- and therefore parallel|development. The packages form separable units for the purposes of development and testing. This is a proven path for enabling finer-grained changes to a complex code.

  13. VT ZIP Code Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) A ZIP Code Tabulation Area (ZCTA) is a statistical geographic entity that approximates the delivery area for a U.S. Postal Service five-digit...

  14. Bandwidth efficient coding

    CERN Document Server

    Anderson, John B

    2017-01-01

    Bandwidth Efficient Coding addresses the major challenge in communication engineering today: how to communicate more bits of information in the same radio spectrum. Energy and bandwidth are needed to transmit bits, and bandwidth affects capacity the most. Methods have been developed that are ten times as energy efficient at a given bandwidth consumption as simple methods. These employ signals with very complex patterns and are called "coding" solutions. The book begins with classical theory before introducing new techniques that combine older methods of error correction coding and radio transmission in order to create narrowband methods that are as efficient in both spectrum and energy as nature allows. Other topics covered include modulation techniques such as CPM, coded QAM and pulse design.

  15. Reactor lattice codes

    International Nuclear Information System (INIS)

    Kulikowska, T.

    2001-01-01

    The description of reactor lattice codes is carried out on the example of the WIMSD-5B code. The WIMS code in its various version is the most recognised lattice code. It is used in all parts of the world for calculations of research and power reactors. The version WIMSD-5B is distributed free of charge by NEA Data Bank. The description of its main features given in the present lecture follows the aspects defined previously for lattice calculations in the lecture on Reactor Lattice Transport Calculations. The spatial models are described, and the approach to the energy treatment is given. Finally the specific algorithm applied in fuel depletion calculations is outlined. (author)

  16. Optimization of the ECT background coil

    International Nuclear Information System (INIS)

    Ballou, J.K.; Luton, J.N.

    1975-01-01

    This study was begun to optimize the Eccentric Coil Test (ECT) background coil. In the course of this work a general optimization code was obtained, tested, and applied to the ECT problem. So far this code has proven to be very satisfactory. The results obtained with this code and earlier codes have illustrated the parametric behavior of such a coil system and that the optimum for this type system is broad. This study also shows that a background coil with a winding current density of less than 3000 A/cm 2 is not feasible for the ECT models presented in this paper

  17. Critical Care Coding for Neurologists.

    Science.gov (United States)

    Nuwer, Marc R; Vespa, Paul M

    2015-10-01

    Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.

  18. Transmission imaging with a coded source

    International Nuclear Information System (INIS)

    Stoner, W.W.; Sage, J.P.; Braun, M.; Wilson, D.T.; Barrett, H.H.

    1976-01-01

    The conventional approach to transmission imaging is to use a rotating anode x-ray tube, which provides the small, brilliant x-ray source needed to cast sharp images of acceptable intensity. Stationary anode sources, although inherently less brilliant, are more compatible with the use of large area anodes, and so they can be made more powerful than rotating anode sources. Spatial modulation of the source distribution provides a way to introduce detailed structure in the transmission images cast by large area sources, and this permits the recovery of high resolution images, in spite of the source diameter. The spatial modulation is deliberately chosen to optimize recovery of image structure; the modulation pattern is therefore called a ''code.'' A variety of codes may be used; the essential mathematical property is that the code possess a sharply peaked autocorrelation function, because this property permits the decoding of the raw image cast by th coded source. Random point arrays, non-redundant point arrays, and the Fresnel zone pattern are examples of suitable codes. This paper is restricted to the case of the Fresnel zone pattern code, which has the unique additional property of generating raw images analogous to Fresnel holograms. Because the spatial frequency of these raw images are extremely coarse compared with actual holograms, a photoreduction step onto a holographic plate is necessary before the decoded image may be displayed with the aid of coherent illumination

  19. Lattice Index Coding

    OpenAIRE

    Natarajan, Lakshmi; Hong, Yi; Viterbo, Emanuele

    2014-01-01

    The index coding problem involves a sender with K messages to be transmitted across a broadcast channel, and a set of receivers each of which demands a subset of the K messages while having prior knowledge of a different subset as side information. We consider the specific case of noisy index coding where the broadcast channel is Gaussian and every receiver demands all the messages from the source. Instances of this communication problem arise in wireless relay networks, sensor networks, and ...

  20. Towards advanced code simulators

    International Nuclear Information System (INIS)

    Scriven, A.H.

    1990-01-01

    The Central Electricity Generating Board (CEGB) uses advanced thermohydraulic codes extensively to support PWR safety analyses. A system has been developed to allow fully interactive execution of any code with graphical simulation of the operator desk and mimic display. The system operates in a virtual machine environment, with the thermohydraulic code executing in one virtual machine, communicating via interrupts with any number of other virtual machines each running other programs and graphics drivers. The driver code itself does not have to be modified from its normal batch form. Shortly following the release of RELAP5 MOD1 in IBM compatible form in 1983, this code was used as the driver for this system. When RELAP5 MOD2 became available, it was adopted with no changes needed in the basic system. Overall the system has been used for some 5 years for the analysis of LOBI tests, full scale plant studies and for simple what-if studies. For gaining rapid understanding of system dependencies it has proved invaluable. The graphical mimic system, being independent of the driver code, has also been used with other codes to study core rewetting, to replay results obtained from batch jobs on a CRAY2 computer system and to display suitably processed experimental results from the LOBI facility to aid interpretation. For the above work real-time execution was not necessary. Current work now centers on implementing the RELAP 5 code on a true parallel architecture machine. Marconi Simulation have been contracted to investigate the feasibility of using upwards of 100 processors, each capable of a peak of 30 MIPS to run a highly detailed RELAP5 model in real time, complete with specially written 3D core neutronics and balance of plant models. This paper describes the experience of using RELAP5 as an analyzer/simulator, and outlines the proposed methods and problems associated with parallel execution of RELAP5

  1. Cracking the Gender Codes

    DEFF Research Database (Denmark)

    Rennison, Betina Wolfgang

    2016-01-01

    extensive work to raise the proportion of women. This has helped slightly, but women remain underrepresented at the corporate top. Why is this so? What can be done to solve it? This article presents five different types of answers relating to five discursive codes: nature, talent, business, exclusion...... in leadership management, we must become more aware and take advantage of this complexity. We must crack the codes in order to crack the curve....

  2. Quantum coding with finite resources

    Science.gov (United States)

    Tomamichel, Marco; Berta, Mario; Renes, Joseph M.

    2016-01-01

    The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances. PMID:27156995

  3. Advanced Code for Photocathode Design

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Jensen, Kevin [Naval Research Lab. (NRL), Washington, DC (United States); Montgomery, Eric [Univ. of Maryland, College Park, MD (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2015-12-15

    The Phase I activity demonstrated that PhotoQE could be upgraded and modified to allow input using a graphical user interface. Specific calls to platform-dependent (e.g. IMSL) function calls were removed, and Fortran77 components were rewritten for Fortran95 compliance. The subroutines, specifically the common block structures and shared data parameters, were reworked to allow the GUI to update material parameter data, and the system was targeted for desktop personal computer operation. The new structures overcomes the previous rigid and unmodifiable library structures by implementing new, materials library data sets and repositioning the library values to external files. Material data may originate from published literature or experimental measurements. Further optimization and restructuring would allow custom and specific emission models for beam codes that rely on parameterized photoemission algorithms. These would be based on simplified and parametric representations updated and extended from previous versions (e.g., Modified Fowler-Dubridge, Modified Three-Step, etc.).

  4. PEAR code review

    International Nuclear Information System (INIS)

    De Wit, R.; Jamieson, T.; Lord, M.; Lafortune, J.F.

    1997-07-01

    As a necessary component in the continuous improvement and refinement of methodologies employed in the nuclear industry, regulatory agencies need to periodically evaluate these processes to improve confidence in results and ensure appropriate levels of safety are being achieved. The independent and objective review of industry-standard computer codes forms an essential part of this program. To this end, this work undertakes an in-depth review of the computer code PEAR (Public Exposures from Accidental Releases), developed by Atomic Energy of Canada Limited (AECL) to assess accidental releases from CANDU reactors. PEAR is based largely on the models contained in the Canadian Standards Association (CSA) N288.2-M91. This report presents the results of a detailed technical review of the PEAR code to identify any variations from the CSA standard and other supporting documentation, verify the source code, assess the quality of numerical models and results, and identify general strengths and weaknesses of the code. The version of the code employed in this review is the one which AECL intends to use for CANDU 9 safety analyses. (author)

  5. KENO-V code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The KENO-V code is the current release of the Oak Ridge multigroup Monte Carlo criticality code development. The original KENO, with 16 group Hansen-Roach cross sections and P 1 scattering, was one ot the first multigroup Monte Carlo codes and it and its successors have always been a much-used research tool for criticality studies. KENO-V is able to accept large neutron cross section libraries (a 218 group set is distributed with the code) and has a general P/sub N/ scattering capability. A supergroup feature allows execution of large problems on small computers, but at the expense of increased calculation time and system input/output operations. This supergroup feature is activated automatically by the code in a manner which utilizes as much computer memory as is available. The primary purpose of KENO-V is to calculate the system k/sub eff/, from small bare critical assemblies to large reflected arrays of differing fissile and moderator elements. In this respect KENO-V neither has nor requires the many options and sophisticated biasing techniques of general Monte Carlo codes

  6. Code, standard and specifications

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    Radiography also same as the other technique, it need standard. This standard was used widely and method of used it also regular. With that, radiography testing only practical based on regulations as mentioned and documented. These regulation or guideline documented in code, standard and specifications. In Malaysia, level one and basic radiographer can do radiography work based on instruction give by level two or three radiographer. This instruction was produced based on guideline that mention in document. Level two must follow the specifications mentioned in standard when write the instruction. From this scenario, it makes clearly that this radiography work is a type of work that everything must follow the rule. For the code, the radiography follow the code of American Society for Mechanical Engineer (ASME) and the only code that have in Malaysia for this time is rule that published by Atomic Energy Licensing Board (AELB) known as Practical code for radiation Protection in Industrial radiography. With the existence of this code, all the radiography must follow the rule or standard regulated automatically.

  7. Fast Coding Unit Encoding Mechanism for Low Complexity Video Coding

    OpenAIRE

    Gao, Yuan; Liu, Pengyu; Wu, Yueying; Jia, Kebin; Gao, Guandong

    2016-01-01

    In high efficiency video coding (HEVC), coding tree contributes to excellent compression performance. However, coding tree brings extremely high computational complexity. Innovative works for improving coding tree to further reduce encoding time are stated in this paper. A novel low complexity coding tree mechanism is proposed for HEVC fast coding unit (CU) encoding. Firstly, this paper makes an in-depth study of the relationship among CU distribution, quantization parameter (QP) and content ...

  8. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject D. Study on water film cooling for PWR's passive containment cooling system. Final report

    International Nuclear Information System (INIS)

    Huang, Xi

    2016-07-01

    In the present study, a new phenomenological model was developed, to describe the water film flow under conditions of a passive containment cooling system (PCCS). The new model takes two different flow regimes into consideration, i.e. continuous water film and rivulets. For water film flow, the traditional Nusselt's was modified, to consider orientation angle and surface sheer stress. The transition from water film to rivulet as well as the structure of the stable rivulet at its onset point was modeled by using the minimum energy principle (MEP) combined with conservation equations. In addition, two different contact angles, i.e. advancing angle and retreating angle, were applied to take the hysteresis effect into consideration. The models of individual processes were validated as far as possible based on experimental data selected from open literature and from collaboration partner as well. With the models a new program module was developed and implemented into the COCOSYS program. The extended COCOSYS program was applied to analyze the containment behavior of the European generic containment and the performance of the passive containment cooling system ofthe AP1000. The results indicate clearly the importance of the new model and provide information for the optimization of the PCCS of AP1000.

  9. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject D. Study on water film cooling for PWR's passive containment cooling system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xi

    2016-07-15

    In the present study, a new phenomenological model was developed, to describe the water film flow under conditions of a passive containment cooling system (PCCS). The new model takes two different flow regimes into consideration, i.e. continuous water film and rivulets. For water film flow, the traditional Nusselt's was modified, to consider orientation angle and surface sheer stress. The transition from water film to rivulet as well as the structure of the stable rivulet at its onset point was modeled by using the minimum energy principle (MEP) combined with conservation equations. In addition, two different contact angles, i.e. advancing angle and retreating angle, were applied to take the hysteresis effect into consideration. The models of individual processes were validated as far as possible based on experimental data selected from open literature and from collaboration partner as well. With the models a new program module was developed and implemented into the COCOSYS program. The extended COCOSYS program was applied to analyze the containment behavior of the European generic containment and the performance of the passive containment cooling system ofthe AP1000. The results indicate clearly the importance of the new model and provide information for the optimization of the PCCS of AP1000.

  10. Pro Android Apps Performance Optimization

    CERN Document Server

    Guihot, Hervé

    2012-01-01

    Today's Android apps developers are often running into the need to refine, improve and optimize their apps performances. As more complex apps can be created, it is even more important for developers to deal with this critical issue. Android allows developers to write apps using Java, C or a combination of both with the Android SDK and the Android NDK. Pro Android Apps Performance Optimization reveals how to fine-tune your Android apps, making them more stable and faster. In this book, you'll learn the following: * How to optimize your Java code with the SDK, but also how to write and optimize

  11. FBCOT: a fast block coding option for JPEG 2000

    Science.gov (United States)

    Taubman, David; Naman, Aous; Mathew, Reji

    2017-09-01

    Based on the EBCOT algorithm, JPEG 2000 finds application in many fields, including high performance scientific, geospatial and video coding applications. Beyond digital cinema, JPEG 2000 is also attractive for low-latency video communications. The main obstacle for some of these applications is the relatively high computational complexity of the block coder, especially at high bit-rates. This paper proposes a drop-in replacement for the JPEG 2000 block coding algorithm, achieving much higher encoding and decoding throughputs, with only modest loss in coding efficiency (typically Coding with Optimized Truncation).

  12. Sparsity in Linear Predictive Coding of Speech

    DEFF Research Database (Denmark)

    Giacobello, Daniele

    of the effectiveness of their application in audio processing. The second part of the thesis deals with introducing sparsity directly in the linear prediction analysis-by-synthesis (LPAS) speech coding paradigm. We first propose a novel near-optimal method to look for a sparse approximate excitation using a compressed...... one with direct applications to coding but also consistent with the speech production model of voiced speech, where the excitation of the all-pole filter can be modeled as an impulse train, i.e., a sparse sequence. Introducing sparsity in the LP framework will also bring to de- velop the concept...... sensing formulation. Furthermore, we define a novel re-estimation procedure to adapt the predictor coefficients to the given sparse excitation, balancing the two representations in the context of speech coding. Finally, the advantages of the compact parametric representation of a segment of speech, given...

  13. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  14. Sandia National Laboratories analysis code data base

    Science.gov (United States)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  15. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  16. Nuclear code abstracts (1975 edition)

    International Nuclear Information System (INIS)

    Akanuma, Makoto; Hirakawa, Takashi

    1976-02-01

    Nuclear Code Abstracts is compiled in the Nuclear Code Committee to exchange information of the nuclear code developments among members of the committee. Enlarging the collection, the present one includes nuclear code abstracts obtained in 1975 through liaison officers of the organizations in Japan participating in the Nuclear Energy Agency's Computer Program Library at Ispra, Italy. The classification of nuclear codes and the format of code abstracts are the same as those in the library. (auth.)

  17. ACE - Manufacturer Identification Code (MID)

    Data.gov (United States)

    Department of Homeland Security — The ACE Manufacturer Identification Code (MID) application is used to track and control identifications codes for manufacturers. A manufacturer is identified on an...

  18. Algebraic and stochastic coding theory

    CERN Document Server

    Kythe, Dave K

    2012-01-01

    Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.

  19. Optical coding theory with Prime

    CERN Document Server

    Kwong, Wing C

    2013-01-01

    Although several books cover the coding theory of wireless communications and the hardware technologies and coding techniques of optical CDMA, no book has been specifically dedicated to optical coding theory-until now. Written by renowned authorities in the field, Optical Coding Theory with Prime gathers together in one volume the fundamentals and developments of optical coding theory, with a focus on families of prime codes, supplemented with several families of non-prime codes. The book also explores potential applications to coding-based optical systems and networks. Learn How to Construct

  20. The Aster code

    International Nuclear Information System (INIS)

    Delbecq, J.M.

    1999-01-01

    The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)

  1. Data exchange between zero dimensional code and physics platform in the CFETR integrated system code

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guoliang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Shi, Nan [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Zhou, Yifu; Mao, Shifeng [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Jian, Xiang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Jiale [Institute of Plasma Physics, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei (China); Liu, Li; Chan, Vincent [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China); Ye, Minyou, E-mail: yemy@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 China (China)

    2016-11-01

    Highlights: • The workflow of the zero dimensional code and the multi-dimension physics platform of CFETR integrated system codeis introduced. • The iteration process among the codes in the physics platform. • The data transfer between the zero dimensionalcode and the physical platform, including data iteration and validation, and justification for performance parameters.. - Abstract: The China Fusion Engineering Test Reactor (CFETR) integrated system code contains three parts: a zero dimensional code, a physics platform and an engineering platform. We use the zero dimensional code to identify a set of preliminary physics and engineering parameters for CFETR, which is used as input to initiate multi-dimension studies using the physics and engineering platform for design, verification and validation. Effective data exchange between the zero dimensional code and the physical platform is critical for the optimization of CFETR design. For example, in evaluating the impact of impurity radiation on core performance, an open field line code is used to calculate the impurity transport from the first-wall boundary to the pedestal. The impurity particle in the pedestal are used as boundary conditions in a transport code for calculating impurity transport in the core plasma and the impact of core radiation on core performance. Comparison of the results from the multi-dimensional study to those from the zero dimensional code is used to further refine the controlled radiation model. The data transfer between the zero dimensional code and the physical platform, including data iteration and validation, and justification for performance parameters will be presented in this paper.

  2. Speech coding code- excited linear prediction

    CERN Document Server

    Bäckström, Tom

    2017-01-01

    This book provides scientific understanding of the most central techniques used in speech coding both for advanced students as well as professionals with a background in speech audio and or digital signal processing. It provides a clear connection between the whys hows and whats thus enabling a clear view of the necessity purpose and solutions provided by various tools as well as their strengths and weaknesses in each respect Equivalently this book sheds light on the following perspectives for each technology presented Objective What do we want to achieve and especially why is this goal important Resource Information What information is available and how can it be useful and Resource Platform What kind of platforms are we working with and what are their capabilities restrictions This includes computational memory and acoustic properties and the transmission capacity of devices used. The book goes on to address Solutions Which solutions have been proposed and how can they be used to reach the stated goals and ...

  3. Applications of Derandomization Theory in Coding

    Science.gov (United States)

    Cheraghchi, Mahdi

    2011-07-01

    Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals whether a defective item is present within a specified group of items. We use randomness condensers to explicitly construct optimal, or nearly optimal, group testing schemes for a setting where the query outcomes can be highly unreliable, as well as the threshold model where a query returns positive if the number of defectives pass a certain threshold. Finally, we design ensembles of error-correcting codes that achieve the information-theoretic capacity of a large class of communication channels, and then use the obtained ensembles for construction of explicit capacity achieving codes. [This is a shortened version of the actual abstract in the thesis.

  4. Optimal design of unit hydrographs using probability distribution and ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    optimization formulation is solved using binary-coded genetic algorithms. The number of variables to ... Unit hydrograph; rainfall-runoff; hydrology; genetic algorithms; optimization; probability ..... Application of the model. Data derived from the ...

  5. Time domain topology optimization of 3D nanophotonic devices

    DEFF Research Database (Denmark)

    Elesin, Yuriy; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    2014-01-01

    We present an efficient parallel topology optimization framework for design of large scale 3D nanophotonic devices. The code shows excellent scalability and is demonstrated for optimization of broadband frequency splitter, waveguide intersection, photonic crystal-based waveguide and nanowire...

  6. Neural Elements for Predictive Coding

    Directory of Open Access Journals (Sweden)

    Stewart SHIPP

    2016-11-01

    Full Text Available Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backwards in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many ‘illusory’ instances of perception where what is seen (heard, etc is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forwards and backwards pathways should be completely separate, given their functional distinction; this aspect of circuitry – that neurons with extrinsically bifurcating axons do not project in both directions – has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy formulation of predictive coding is combined with the classic ‘canonical microcircuit’ and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a updates in the microcircuitry of primate visual cortex, and (b rapid technical advances made

  7. Neural Elements for Predictive Coding.

    Science.gov (United States)

    Shipp, Stewart

    2016-01-01

    Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backward in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many 'illusory' instances of perception where what is seen (heard, etc.) is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forward and backward pathways should be completely separate, given their functional distinction; this aspect of circuitry - that neurons with extrinsically bifurcating axons do not project in both directions - has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy) formulation of predictive coding is combined with the classic 'canonical microcircuit' and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a) updates in the microcircuitry of primate visual cortex, and (b) rapid technical advances made possible by transgenic neural

  8. Spatially coded backscatter radiography

    International Nuclear Information System (INIS)

    Thangavelu, S.; Hussein, E.M.A.

    2007-01-01

    Conventional radiography requires access to two opposite sides of an object, which makes it unsuitable for the inspection of extended and/or thick structures (airframes, bridges, floors etc.). Backscatter imaging can overcome this problem, but the indications obtained are difficult to interpret. This paper applies the coded aperture technique to gamma-ray backscatter-radiography in order to enhance the detectability of flaws. This spatial coding method involves the positioning of a mask with closed and open holes to selectively permit or block the passage of radiation. The obtained coded-aperture indications are then mathematically decoded to detect the presence of anomalies. Indications obtained from Monte Carlo calculations were utilized in this work to simulate radiation scattering measurements. These simulated measurements were used to investigate the applicability of this technique to the detection of flaws by backscatter radiography

  9. Aztheca Code; Codigo Aztheca

    Energy Technology Data Exchange (ETDEWEB)

    Quezada G, S.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Centeno P, J.; Sanchez M, H., E-mail: sequga@gmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, Circuito Exterior s/n, 04510 Ciudad de Mexico (Mexico)

    2017-09-15

    This paper presents the Aztheca code, which is formed by the mathematical models of neutron kinetics, power generation, heat transfer, core thermo-hydraulics, recirculation systems, dynamic pressure and level models and control system. The Aztheca code is validated with plant data, as well as with predictions from the manufacturer when the reactor operates in a stationary state. On the other hand, to demonstrate that the model is applicable during a transient, an event occurred in a nuclear power plant with a BWR reactor is selected. The plant data are compared with the results obtained with RELAP-5 and the Aztheca model. The results show that both RELAP-5 and the Aztheca code have the ability to adequately predict the behavior of the reactor. (Author)

  10. The Coding Question.

    Science.gov (United States)

    Gallistel, C R

    2017-07-01

    Recent electrophysiological results imply that the duration of the stimulus onset asynchrony in eyeblink conditioning is encoded by a mechanism intrinsic to the cerebellar Purkinje cell. This raises the general question - how is quantitative information (durations, distances, rates, probabilities, amounts, etc.) transmitted by spike trains and encoded into engrams? The usual assumption is that information is transmitted by firing rates. However, rate codes are energetically inefficient and computationally awkward. A combinatorial code is more plausible. If the engram consists of altered synaptic conductances (the usual assumption), then we must ask how numbers may be written to synapses. It is much easier to formulate a coding hypothesis if the engram is realized by a cell-intrinsic molecular mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Revised SRAC code system

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Ishiguro, Yukio; Kaneko, Kunio; Ido, Masaru.

    1986-09-01

    Since the publication of JAERI-1285 in 1983 for the preliminary version of the SRAC code system, a number of additions and modifications to the functions have been made to establish an overall neutronics code system. Major points are (1) addition of JENDL-2 version of data library, (2) a direct treatment of doubly heterogeneous effect on resonance absorption, (3) a generalized Dancoff factor, (4) a cell calculation based on the fixed boundary source problem, (5) the corresponding edit required for experimental analysis and reactor design, (6) a perturbation theory calculation for reactivity change, (7) an auxiliary code for core burnup and fuel management, etc. This report is a revision of the users manual which consists of the general description, input data requirements and their explanation, detailed information on usage, mathematics, contents of libraries and sample I/O. (author)

  12. Code query by example

    Science.gov (United States)

    Vaucouleur, Sebastien

    2011-02-01

    We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.

  13. The correspondence between projective codes and 2-weight codes

    NARCIS (Netherlands)

    Brouwer, A.E.; Eupen, van M.J.M.; Tilborg, van H.C.A.; Willems, F.M.J.

    1994-01-01

    The hyperplanes intersecting a 2-weight code in the same number of points obviously form the point set of a projective code. On the other hand, if we have a projective code C, then we can make a 2-weight code by taking the multiset of points E PC with multiplicity "Y(w), where W is the weight of

  14. Visualizing code and coverage changes for code review

    NARCIS (Netherlands)

    Oosterwaal, Sebastiaan; van Deursen, A.; De Souza Coelho, R.; Sawant, A.A.; Bacchelli, A.

    2016-01-01

    One of the tasks of reviewers is to verify that code modifications are well tested. However, current tools offer little support in understanding precisely how changes to the code relate to changes to the tests. In particular, it is hard to see whether (modified) test code covers the changed code.

  15. Turbo-Gallager Codes: The Emergence of an Intelligent Coding ...

    African Journals Online (AJOL)

    Today, both turbo codes and low-density parity-check codes are largely superior to other code families and are being used in an increasing number of modern communication systems including 3G standards, satellite and deep space communications. However, the two codes have certain distinctive characteristics that ...

  16. Code of Medical Ethics

    Directory of Open Access Journals (Sweden)

    . SZD-SZZ

    2017-03-01

    Full Text Available Te Code was approved on December 12, 1992, at the 3rd regular meeting of the General Assembly of the Medical Chamber of Slovenia and revised on April 24, 1997, at the 27th regular meeting of the General Assembly of the Medical Chamber of Slovenia. The Code was updated and harmonized with the Medical Association of Slovenia and approved on October 6, 2016, at the regular meeting of the General Assembly of the Medical Chamber of Slovenia.

  17. Supervised Convolutional Sparse Coding

    KAUST Repository

    Affara, Lama Ahmed

    2018-04-08

    Convolutional Sparse Coding (CSC) is a well-established image representation model especially suited for image restoration tasks. In this work, we extend the applicability of this model by proposing a supervised approach to convolutional sparse coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements to be discriminative. Experimental results show that using supervised convolutional learning results in two key advantages. First, we learn more semantically relevant filters in the dictionary and second, we achieve improved image reconstruction on unseen data.

  18. CONCEPT computer code

    International Nuclear Information System (INIS)

    Delene, J.

    1984-01-01

    CONCEPT is a computer code that will provide conceptual capital investment cost estimates for nuclear and coal-fired power plants. The code can develop an estimate for construction at any point in time. Any unit size within the range of about 400 to 1300 MW electric may be selected. Any of 23 reference site locations across the United States and Canada may be selected. PWR, BWR, and coal-fired plants burning high-sulfur and low-sulfur coal can be estimated. Multiple-unit plants can be estimated. Costs due to escalation/inflation and interest during construction are calculated

  19. Principles of speech coding

    CERN Document Server

    Ogunfunmi, Tokunbo

    2010-01-01

    It is becoming increasingly apparent that all forms of communication-including voice-will be transmitted through packet-switched networks based on the Internet Protocol (IP). Therefore, the design of modern devices that rely on speech interfaces, such as cell phones and PDAs, requires a complete and up-to-date understanding of the basics of speech coding. Outlines key signal processing algorithms used to mitigate impairments to speech quality in VoIP networksOffering a detailed yet easily accessible introduction to the field, Principles of Speech Coding provides an in-depth examination of the

  20. Evaluation Codes from an Affine Veriety Code Perspective

    DEFF Research Database (Denmark)

    Geil, Hans Olav

    2008-01-01

    Evaluation codes (also called order domain codes) are traditionally introduced as generalized one-point geometric Goppa codes. In the present paper we will give a new point of view on evaluation codes by introducing them instead as particular nice examples of affine variety codes. Our study...... includes a reformulation of the usual methods to estimate the minimum distances of evaluation codes into the setting of affine variety codes. Finally we describe the connection to the theory of one-pointgeometric Goppa codes. Contents 4.1 Introduction...... . . . . . . . . . . . . . . . . . . . . . . . 171 4.9 Codes form order domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.10 One-point geometric Goppa codes . . . . . . . . . . . . . . . . . . . . . . . . 176 4.11 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 References...

  1. Fast decoders for qudit topological codes

    International Nuclear Information System (INIS)

    Anwar, Hussain; Brown, Benjamin J; Campbell, Earl T; Browne, Dan E

    2014-01-01

    Qudit toric codes are a natural higher-dimensional generalization of the well-studied qubit toric code. However, standard methods for error correction of the qubit toric code are not applicable to them. Novel decoders are needed. In this paper we introduce two renormalization group decoders for qudit codes and analyse their error correction thresholds and efficiency. The first decoder is a generalization of a ‘hard-decisions’ decoder due to Bravyi and Haah (arXiv:1112.3252). We modify this decoder to overcome a percolation effect which limits its threshold performance for many-level quantum systems. The second decoder is a generalization of a ‘soft-decisions’ decoder due to Poulin and Duclos-Cianci (2010 Phys. Rev. Lett. 104 050504), with a small cell size to optimize the efficiency of implementation in the high dimensional case. In each case, we estimate thresholds for the uncorrelated bit-flip error model and provide a comparative analysis of the performance of both these approaches to error correction of qudit toric codes. (paper)

  2. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States)

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  3. Automated searching for quantum subsystem codes

    International Nuclear Information System (INIS)

    Crosswhite, Gregory M.; Bacon, Dave

    2011-01-01

    Quantum error correction allows for faulty quantum systems to behave in an effectively error-free manner. One important class of techniques for quantum error correction is the class of quantum subsystem codes, which are relevant both to active quantum error-correcting schemes as well as to the design of self-correcting quantum memories. Previous approaches for investigating these codes have focused on applying theoretical analysis to look for interesting codes and to investigate their properties. In this paper we present an alternative approach that uses computational analysis to accomplish the same goals. Specifically, we present an algorithm that computes the optimal quantum subsystem code that can be implemented given an arbitrary set of measurement operators that are tensor products of Pauli operators. We then demonstrate the utility of this algorithm by performing a systematic investigation of the quantum subsystem codes that exist in the setting where the interactions are limited to two-body interactions between neighbors on lattices derived from the convex uniform tilings of the plane.

  4. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    International Nuclear Information System (INIS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  5. UEP Concepts in Modulation and Coding

    Directory of Open Access Journals (Sweden)

    Werner Henkel

    2010-01-01

    Full Text Available First unequal error protection (UEP proposals date back to the 1960's (Masnick and Wolf; 1967, but now with the introduction of scalable video, UEP develops to a key concept for the transport of multimedia data. The paper presents an overview of some new approaches realizing UEP properties in physical transport, especially multicarrier modulation, or with LDPC and Turbo codes. For multicarrier modulation, UEP bit-loading together with hierarchical modulation is described allowing for an arbitrary number of classes, arbitrary SNR margins between the classes, and arbitrary number of bits per class. In Turbo coding, pruning, as a counterpart of puncturing is presented for flexible bit-rate adaptations, including tables with optimized pruning patterns. Bit- and/or check-irregular LDPC codes may be designed to provide UEP to its code bits. However, irregular degree distributions alone do not ensure UEP, and other necessary properties of the parity-check matrix for providing UEP are also pointed out. Pruning is also the means for constructing variable-rate LDPC codes for UEP, especially controlling the check-node profile.

  6. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2011-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  7. Dual Coding in Children.

    Science.gov (United States)

    Burton, John K.; Wildman, Terry M.

    The purpose of this study was to test the applicability of the dual coding hypothesis to children's recall performance. The hypothesis predicts that visual interference will have a small effect on the recall of visually presented words or pictures, but that acoustic interference will cause a decline in recall of visually presented words and…

  8. Physical layer network coding

    DEFF Research Database (Denmark)

    Fukui, Hironori; Popovski, Petar; Yomo, Hiroyuki

    2014-01-01

    Physical layer network coding (PLNC) has been proposed to improve throughput of the two-way relay channel, where two nodes communicate with each other, being assisted by a relay node. Most of the works related to PLNC are focused on a simple three-node model and they do not take into account...

  9. Radioactive action code

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    A new coding system, 'Hazrad', for buildings and transportation containers for alerting emergency services personnel to the presence of radioactive materials has been developed in the United Kingdom. The hazards of materials in the buildings or transport container, together with the recommended emergency action, are represented by a number of codes which are marked on the building or container and interpreted from a chart carried as a pocket-size guide. Buildings would be marked with the familiar yellow 'radioactive' trefoil, the written information 'Radioactive materials' and a list of isotopes. Under this the 'Hazrad' code would be written - three symbols to denote the relative radioactive risk (low, medium or high), the biological risk (also low, medium or high) and the third showing the type of radiation emitted, alpha, beta or gamma. The response cards indicate appropriate measures to take, eg for a high biological risk, Bio3, the wearing of a gas-tight protection suit is advised. The code and its uses are explained. (U.K.)

  10. Building Codes and Regulations.

    Science.gov (United States)

    Fisher, John L.

    The hazard of fire is of great concern to libraries due to combustible books and new plastics used in construction and interiors. Building codes and standards can offer architects and planners guidelines to follow but these standards should be closely monitored, updated, and researched for fire prevention. (DS)

  11. Physics of codes

    International Nuclear Information System (INIS)

    Cooper, R.K.; Jones, M.E.

    1989-01-01

    The title given this paper is a bit presumptuous, since one can hardly expect to cover the physics incorporated into all the codes already written and currently being written. The authors focus on those codes which have been found to be particularly useful in the analysis and design of linacs. At that the authors will be a bit parochial and discuss primarily those codes used for the design of radio-frequency (rf) linacs, although the discussions of TRANSPORT and MARYLIE have little to do with the time structures of the beams being analyzed. The plan of this paper is first to describe rather simply the concepts of emittance and brightness, then to describe rather briefly each of the codes TRANSPORT, PARMTEQ, TBCI, MARYLIE, and ISIS, indicating what physics is and is not included in each of them. It is expected that the vast majority of what is covered will apply equally well to protons and electrons (and other particles). This material is intended to be tutorial in nature and can in no way be expected to be exhaustive. 31 references, 4 figures

  12. Reliability and code level

    NARCIS (Netherlands)

    Kasperski, M.; Geurts, C.P.W.

    2005-01-01

    The paper describes the work of the IAWE Working Group WBG - Reliability and Code Level, one of the International Codification Working Groups set up at ICWE10 in Copenhagen. The following topics are covered: sources of uncertainties in the design wind load, appropriate design target values for the

  13. Ready, steady… Code!

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    This summer, CERN took part in the Google Summer of Code programme for the third year in succession. Open to students from all over the world, this programme leads to very successful collaborations for open source software projects.   Image: GSoC 2013. Google Summer of Code (GSoC) is a global programme that offers student developers grants to write code for open-source software projects. Since its creation in 2005, the programme has brought together some 6,000 students from over 100 countries worldwide. The students selected by Google are paired with a mentor from one of the participating projects, which can be led by institutes, organisations, companies, etc. This year, CERN PH Department’s SFT (Software Development for Experiments) Group took part in the GSoC programme for the third time, submitting 15 open-source projects. “Once published on the Google Summer for Code website (in April), the projects are open to applications,” says Jakob Blomer, one of the o...

  14. CERN Code of Conduct

    CERN Document Server

    Department, HR

    2010-01-01

    The Code is intended as a guide in helping us, as CERN contributors, to understand how to conduct ourselves, treat others and expect to be treated. It is based around the five core values of the Organization. We should all become familiar with it and try to incorporate it into our daily life at CERN.

  15. Nuclear safety code study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.H.; Ford, D.; Le, H.; Park, S.; Cooke, K.L.; Bleakney, T.; Spanier, J.; Wilburn, N.P.; O' Reilly, B.; Carmichael, B.

    1981-01-01

    The objective is to analyze an overpower accident in an LMFBR. A simplified model of the primary coolant loop was developed in order to understand the instabilities encountered with the MELT III and SAS codes. The computer programs were translated for switching to the IBM 4331. Numerical methods were investigated for solving the neutron kinetics equations; the Adams and Gear methods were compared. (DLC)

  16. Revised C++ coding conventions

    CERN Document Server

    Callot, O

    2001-01-01

    This document replaces the note LHCb 98-049 by Pavel Binko. After a few years of practice, some simplification and clarification of the rules was needed. As many more people have now some experience in writing C++ code, their opinion was also taken into account to get a commonly agreed set of conventions

  17. Corporate governance through codes

    NARCIS (Netherlands)

    Haxhi, I.; Aguilera, R.V.; Vodosek, M.; den Hartog, D.; McNett, J.M.

    2014-01-01

    The UK's 1992 Cadbury Report defines corporate governance (CG) as the system by which businesses are directed and controlled. CG codes are a set of best practices designed to address deficiencies in the formal contracts and institutions by suggesting prescriptions on the preferred role and

  18. Error Correcting Codes -34 ...

    Indian Academy of Sciences (India)

    information and coding theory. A large scale relay computer had failed to deliver the expected results due to a hardware fault. Hamming, one of the active proponents of computer usage, was determined to find an efficient means by which computers could detect and correct their own faults. A mathematician by train-.

  19. Broadcast Coded Slotted ALOHA

    DEFF Research Database (Denmark)

    Ivanov, Mikhail; Brännström, Frederik; Graell i Amat, Alexandre

    2016-01-01

    We propose an uncoordinated medium access control (MAC) protocol, called all-to-all broadcast coded slotted ALOHA (B-CSA) for reliable all-to-all broadcast with strict latency constraints. In B-CSA, each user acts as both transmitter and receiver in a half-duplex mode. The half-duplex mode gives ...

  20. Software Defined Coded Networking

    DEFF Research Database (Denmark)

    Di Paola, Carla; Roetter, Daniel Enrique Lucani; Palazzo, Sergio

    2017-01-01

    the quality of each link and even across neighbouring links and using simulations to show that an additional reduction of packet transmission in the order of 40% is possible. Second, to advocate for the use of network coding (NC) jointly with software defined networking (SDN) providing an implementation...

  1. New code of conduct

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    During his talk to the staff at the beginning of the year, the Director-General mentioned that a new code of conduct was being drawn up. What exactly is it and what is its purpose? Anne-Sylvie Catherin, Head of the Human Resources (HR) Department, talked to us about the whys and wherefores of the project.   Drawing by Georges Boixader from the cartoon strip “The World of Particles” by Brian Southworth. A code of conduct is a general framework laying down the behaviour expected of all members of an organisation's personnel. “CERN is one of the very few international organisations that don’t yet have one", explains Anne-Sylvie Catherin. “We have been thinking about introducing a code of conduct for a long time but lacked the necessary resources until now”. The call for a code of conduct has come from different sources within the Laboratory. “The Equal Opportunities Advisory Panel (read also the "Equal opportuni...

  2. (Almost) practical tree codes

    KAUST Repository

    Khina, Anatoly

    2016-08-15

    We consider the problem of stabilizing an unstable plant driven by bounded noise over a digital noisy communication link, a scenario at the heart of networked control. To stabilize such a plant, one needs real-time encoding and decoding with an error probability profile that decays exponentially with the decoding delay. The works of Schulman and Sahai over the past two decades have developed the notions of tree codes and anytime capacity, and provided the theoretical framework for studying such problems. Nonetheless, there has been little practical progress in this area due to the absence of explicit constructions of tree codes with efficient encoding and decoding algorithms. Recently, linear time-invariant tree codes were proposed to achieve the desired result under maximum-likelihood decoding. In this work, we take one more step towards practicality, by showing that these codes can be efficiently decoded using sequential decoding algorithms, up to some loss in performance (and with some practical complexity caveats). We supplement our theoretical results with numerical simulations that demonstrate the effectiveness of the decoder in a control system setting.

  3. Decoding Codes on Graphs

    Indian Academy of Sciences (India)

    having a probability Pi of being equal to a 1. Let us assume ... equal to a 0/1 has no bearing on the probability of the. It is often ... bits (call this set S) whose individual bits add up to zero ... In the context of binary error-correct~ng codes, specifi-.

  4. The Redox Code.

    Science.gov (United States)

    Jones, Dean P; Sies, Helmut

    2015-09-20

    The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.

  5. Z₂-double cyclic codes

    OpenAIRE

    Borges, J.

    2014-01-01

    A binary linear code C is a Z2-double cyclic code if the set of coordinates can be partitioned into two subsets such that any cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the Z2[x]-module Z2[x]/(x^r − 1) × Z2[x]/(x^s − 1). We determine the structure of Z2-double cyclic codes giving the generator polynomials of these codes. The related polynomial representation of Z2-double cyclic codes and its duals, and the relation...

  6. Coding for urologic office procedures.

    Science.gov (United States)

    Dowling, Robert A; Painter, Mark

    2013-11-01

    This article summarizes current best practices for documenting, coding, and billing common office-based urologic procedures. Topics covered include general principles, basic and advanced urologic coding, creation of medical records that support compliant coding practices, bundled codes and unbundling, global periods, modifiers for procedure codes, when to bill for evaluation and management services during the same visit, coding for supplies, and laboratory and radiology procedures pertinent to urology practice. Detailed information is included for the most common urology office procedures, and suggested resources and references are provided. This information is of value to physicians, office managers, and their coding staff. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. State of art in FE-based fuel performance codes

    International Nuclear Information System (INIS)

    Kim, Hyo Chan; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun

    2013-01-01

    Fuel performance codes approximate this complex behavior using an axisymmetric, axially-stacked, one-dimensional radial representation to save computation cost. However, the need for improved modeling of PCMI and, particularly, the importance of multidimensional capability for accurate fuel performance simulation has been identified as safety margin decreases. Finite element (FE) method that is reliable and proven solution in mechanical field has been introduced into fuel performance codes for multidimensional analysis. The present state of the art in numerical simulation of FE-based fuel performance predominantly involves 2-D axisymmetric model and 3-D volumetric model. The FRAPCON and FRAPTRAN own 1.5-D and 2-D FE model to simulate PCMI and cladding ballooning. In 2-D simulation, the FALCON code, developed by EPRI, is a 2-D (R-Z and R-θ) fully thermal-mechanically coupled steady-state and transient FE-based fuel behavior code. The French codes TOUTATIS and ALCYONE which are 3-D, and typically used to investigate localized behavior. In 2008, the Idaho National Laboratory (INL) has been developing multidimensional (2-D and 3-D) nuclear fuel performance code called BISON. In this paper, the current state of FE-based fuel performance code and their models are presented. Based on investigation into the codes, requirements and direction of development for new FE-based fuel performance code can be discussed. Based on comparison of models in FE-based fuel performance code, status of art in the codes can be discussed. A new FE-based fuel performance code should include typical pellet and cladding models which all codes own. In particular, specified pellet and cladding model such as gaseous swelling and high burnup structure (HBS) model should be developed to improve accuracy of code as well as consider AC condition. To reduce computation cost, the approximated gap and the optimized contact model should be also developed

  8. Bilayer Protograph Codes for Half-Duplex Relay Channels

    Science.gov (United States)

    Divsalar, Dariush; VanNguyen, Thuy; Nosratinia, Aria

    2013-01-01

    Direct to Earth return links are limited by the size and power of lander devices. A standard alternative is provided by a two-hops return link: a proximity link (from lander to orbiter relay) and a deep-space link (from orbiter relay to Earth). Although direct to Earth return links are limited by the size and power of lander devices, using an additional link and a proposed coding for relay channels, one can obtain a more reliable signal. Although significant progress has been made in the relay coding problem, existing codes must be painstakingly optimized to match to a single set of channel conditions, many of them do not offer easy encoding, and most of them do not have structured design. A high-performing LDPC (low-density parity-check) code for the relay channel addresses simultaneously two important issues: a code structure that allows low encoding complexity, and a flexible rate-compatible code that allows matching to various channel conditions. Most of the previous high-performance LDPC codes for the relay channel are tightly optimized for a given channel quality, and are not easily adapted without extensive re-optimization for various channel conditions. This code for the relay channel combines structured design and easy encoding with rate compatibility to allow adaptation to the three links involved in the relay channel, and furthermore offers very good performance. The proposed code is constructed by synthesizing a bilayer structure with a pro to graph. In addition to the contribution to relay encoding, an improved family of protograph codes was produced for the point-to-point AWGN (additive white Gaussian noise) channel whose high-rate members enjoy thresholds that are within 0.07 dB of capacity. These LDPC relay codes address three important issues in an integrative manner: low encoding complexity, modular structure allowing for easy design, and rate compatibility so that the code can be easily matched to a variety of channel conditions without extensive

  9. Essential idempotents and simplex codes

    Directory of Open Access Journals (Sweden)

    Gladys Chalom

    2017-01-01

    Full Text Available We define essential idempotents in group algebras and use them to prove that every mininmal abelian non-cyclic code is a repetition code. Also we use them to prove that every minimal abelian code is equivalent to a minimal cyclic code of the same length. Finally, we show that a binary cyclic code is simplex if and only if is of length of the form $n=2^k-1$ and is generated by an essential idempotent.

  10. Structural and Topology Optimization of Complex Civil Engineering Structures

    DEFF Research Database (Denmark)

    Hald, Frederik; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard

    2013-01-01

    This paper shows the use of topology optimization for finding an optimized form for civil engineering structures. Today topology optimization and shape optimization have been integrated in several commercial finite element codes. Here, the topology of two complex civil engineering structures...

  11. Rate-adaptive BCH codes for distributed source coding

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Larsen, Knud J.; Forchhammer, Søren

    2013-01-01

    This paper considers Bose-Chaudhuri-Hocquenghem (BCH) codes for distributed source coding. A feedback channel is employed to adapt the rate of the code during the decoding process. The focus is on codes with short block lengths for independently coding a binary source X and decoding it given its...... strategies for improving the reliability of the decoded result are analyzed, and methods for estimating the performance are proposed. In the analysis, noiseless feedback and noiseless communication are assumed. Simulation results show that rate-adaptive BCH codes achieve better performance than low...... correlated side information Y. The proposed codes have been analyzed in a high-correlation scenario, where the marginal probability of each symbol, Xi in X, given Y is highly skewed (unbalanced). Rate-adaptive BCH codes are presented and applied to distributed source coding. Adaptive and fixed checking...

  12. Entanglement-assisted quantum MDS codes constructed from negacyclic codes

    Science.gov (United States)

    Chen, Jianzhang; Huang, Yuanyuan; Feng, Chunhui; Chen, Riqing

    2017-12-01

    Recently, entanglement-assisted quantum codes have been constructed from cyclic codes by some scholars. However, how to determine the number of shared pairs required to construct entanglement-assisted quantum codes is not an easy work. In this paper, we propose a decomposition of the defining set of negacyclic codes. Based on this method, four families of entanglement-assisted quantum codes constructed in this paper satisfy the entanglement-assisted quantum Singleton bound, where the minimum distance satisfies q+1 ≤ d≤ n+2/2. Furthermore, we construct two families of entanglement-assisted quantum codes with maximal entanglement.

  13. Optimization strategies in complex systems

    NARCIS (Netherlands)

    Bussolari, L.; Contucci, P.; Giardinà, C.; Giberti, C.; Unguendoli, F.; Vernia, C.

    2003-01-01

    We consider a class of combinatorial optimization problems that emerge in a variety of domains among which: condensed matter physics, theory of financial risks, error correcting codes in information transmissions, molecular and protein conformation, image restoration. We show the performances of two

  14. Op-Ug TD Optimizer Tool Based on Matlab Code to Find Transition Depth From Open Pit to Block Caving / Narzędzie Optymalizacyjne Oparte O Kod Matlab Wykorzystane Do Określania Głębokości Przejściowej Od Wydobycia Odkrywkowego Do Wybierania Komorami

    Science.gov (United States)

    Bakhtavar, E.

    2015-09-01

    In this study, transition from open pit to block caving has been considered as a challenging problem. For this purpose, the linear integer programing code of Matlab was initially developed on the basis of the binary integer model proposed by Bakhtavar et al (2012). Then a program based on graphical user interface (GUI) was set up and named "Op-Ug TD Optimizer". It is a beneficial tool for simple application of the model in all situations where open pit is considered together with block caving method for mining an ore deposit. Finally, Op-Ug TD Optimizer has been explained step by step through solving the transition from open pit to block caving problem of a case ore deposit. W pracy tej rozważano skomplikowane zagadnienie przejścia od wybierania odkrywkowego do komorowego. W tym celu opracowano kod programowania liniowego w środowisku MATLAB w oparciu o model liczb binarnych zaproponowany przez Bakhtavara (2012). Następnie opracowano program z wykorzystujący graficzny interfejs użytkownika o nazwie Optymalizator Op-Ug TD. Jest to niezwykle cenne narzędzie umożliwiające stosowanie modelu dla wszystkich warunków w sytuacjach gdy rozważamy prowadzenie wydobycia metodą odkrywkową oraz wydobycie komorowe przy eksploatacji złóż rud żelaza. W końcowej części pracy podano szczegółową instrukcję stosowanie programu Optymalizator na przedstawionym przykładzie przejścia od wydobycia rud żelaza metodami odkrywkowymi poprzez wydobycie komorami.

  15. Efficient convolutional sparse coding

    Science.gov (United States)

    Wohlberg, Brendt

    2017-06-20

    Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.

  16. Coded Network Function Virtualization

    DEFF Research Database (Denmark)

    Al-Shuwaili, A.; Simone, O.; Kliewer, J.

    2016-01-01

    Network function virtualization (NFV) prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off......-the-shelf hardware is less reliable than the dedicated network elements used in conventional cellular deployments. The typical solution for this problem is to duplicate network functions across geographically distributed hardware in order to ensure diversity. In contrast, this letter proposes to leverage channel...... coding in order to enhance the robustness on NFV to hardware failure. The proposed approach targets the network function of uplink channel decoding, and builds on the algebraic structure of the encoded data frames in order to perform in-network coding on the signals to be processed at different servers...

  17. The NIMROD Code

    Science.gov (United States)

    Schnack, D. D.; Glasser, A. H.

    1996-11-01

    NIMROD is a new code system that is being developed for the analysis of modern fusion experiments. It is being designed from the beginning to make the maximum use of massively parallel computer architectures and computer graphics. The NIMROD physics kernel solves the three-dimensional, time-dependent two-fluid equations with neo-classical effects in toroidal geometry of arbitrary poloidal cross section. The NIMROD system also includes a pre-processor, a grid generator, and a post processor. User interaction with NIMROD is facilitated by a modern graphical user interface (GUI). The NIMROD project is using Quality Function Deployment (QFD) team management techniques to minimize re-engineering and reduce code development time. This paper gives an overview of the NIMROD project. Operation of the GUI is demonstrated, and the first results from the physics kernel are given.

  18. Cross-Platform JavaScript Coding: Shifting Sand Dunes and Shimmering Mirages.

    Science.gov (United States)

    Merchant, David

    1999-01-01

    Most libraries don't have the resources to cross-platform and cross-version test all of their JavaScript coding. Many turn to WYSIWYG; however, WYSIWYG editors don't generally produce optimized coding. Web developers should: test their coding on at least one 3.0 browser, code by hand using tools to help speed that process up, and include a simple…

  19. OPTIMIZATION METHODS AND SEO TOOLS

    Directory of Open Access Journals (Sweden)

    Maria Cristina ENACHE

    2014-06-01

    Full Text Available SEO is the activity of optimizing Web pages or whole sites in order to make them more search engine friendly, thus getting higher positions in search results. Search engine optimization (SEO involves designing, writing, and coding a website in a way that helps to improve the volume and quality of traffic to your website from people using search engines. While Search Engine Optimization is the focus of this booklet, keep in mind that it is one of many marketing techniques. A brief overview of other marketing techniques is provided at the end of this booklet.

  20. Computer code FIT

    International Nuclear Information System (INIS)

    Rohmann, D.; Koehler, T.

    1987-02-01

    This is a description of the computer code FIT, written in FORTRAN-77 for a PDP 11/34. FIT is an interactive program to decude position, width and intensity of lines of X-ray spectra (max. length of 4K channels). The lines (max. 30 lines per fit) may have Gauss- or Voigt-profile, as well as exponential tails. Spectrum and fit can be displayed on a Tektronix terminal. (orig.) [de

  1. Discrete Sparse Coding.

    Science.gov (United States)

    Exarchakis, Georgios; Lücke, Jörg

    2017-11-01

    Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.

  2. Code of Practice

    International Nuclear Information System (INIS)

    Doyle, Colin; Hone, Christopher; Nowlan, N.V.

    1984-05-01

    This Code of Practice introduces accepted safety procedures associated with the use of alpha, beta, gamma and X-radiation in secondary schools (pupils aged 12 to 18) in Ireland, and summarises good practice and procedures as they apply to radiation protection. Typical dose rates at various distances from sealed sources are quoted, and simplified equations are used to demonstrate dose and shielding calculations. The regulatory aspects of radiation protection are outlined, and references to statutory documents are given

  3. Tokamak simulation code manual

    International Nuclear Information System (INIS)

    Chung, Moon Kyoo; Oh, Byung Hoon; Hong, Bong Keun; Lee, Kwang Won

    1995-01-01

    The method to use TSC (Tokamak Simulation Code) developed by Princeton plasma physics laboratory is illustrated. In KT-2 tokamak, time dependent simulation of axisymmetric toroidal plasma and vertical stability have to be taken into account in design phase using TSC. In this report physical modelling of TSC are described and examples of application in JAERI and SERI are illustrated, which will be useful when TSC is installed KAERI computer system. (Author) 15 refs., 6 figs., 3 tabs

  4. Status of MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    N.V. Mokhov

    2003-04-09

    Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.

  5. Codes of Good Governance

    DEFF Research Database (Denmark)

    Beck Jørgensen, Torben; Sørensen, Ditte-Lene

    2013-01-01

    Good governance is a broad concept used by many international organizations to spell out how states or countries should be governed. Definitions vary, but there is a clear core of common public values, such as transparency, accountability, effectiveness, and the rule of law. It is quite likely......, transparency, neutrality, impartiality, effectiveness, accountability, and legality. The normative context of public administration, as expressed in codes, seems to ignore the New Public Management and Reinventing Government reform movements....

  6. Loading pattern optimization in hexagonal geometry using PANTHER

    International Nuclear Information System (INIS)

    Parks, G.T.; Knight, M.P.

    1996-01-01

    The extension of the loading pattern optimization capability of Nuclear Electric's reactor physics code PANTHER to hexagonal geometry cores is described. The variety of search methods available and the code's performance are illustrated by an example in which three search different methods are used in turn in order to find an optimal reload design for a sample hexagonal geometry problem. (author)

  7. Orthopedics coding and funding.

    Science.gov (United States)

    Baron, S; Duclos, C; Thoreux, P

    2014-02-01

    The French tarification à l'activité (T2A) prospective payment system is a financial system in which a health-care institution's resources are based on performed activity. Activity is described via the PMSI medical information system (programme de médicalisation du système d'information). The PMSI classifies hospital cases by clinical and economic categories known as diagnosis-related groups (DRG), each with an associated price tag. Coding a hospital case involves giving as realistic a description as possible so as to categorize it in the right DRG and thus ensure appropriate payment. For this, it is essential to understand what determines the pricing of inpatient stay: namely, the code for the surgical procedure, the patient's principal diagnosis (reason for admission), codes for comorbidities (everything that adds to management burden), and the management of the length of inpatient stay. The PMSI is used to analyze the institution's activity and dynamism: change on previous year, relation to target, and comparison with competing institutions based on indicators such as the mean length of stay performance indicator (MLS PI). The T2A system improves overall care efficiency. Quality of care, however, is not presently taken account of in the payment made to the institution, as there are no indicators for this; work needs to be done on this topic. Copyright © 2014. Published by Elsevier Masson SAS.

  8. MELCOR computer code manuals

    Energy Technology Data Exchange (ETDEWEB)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  9. MELCOR computer code manuals

    International Nuclear Information System (INIS)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L.; Hodge, S.A.; Hyman, C.R.; Sanders, R.L.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR's phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package

  10. Quality Improvement of MARS Code and Establishment of Code Coupling

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Jeong, Jae Jun; Kim, Kyung Doo

    2010-04-01

    The improvement of MARS code quality and coupling with regulatory auditing code have been accomplished for the establishment of self-reliable technology based regulatory auditing system. The unified auditing system code was realized also by implementing the CANDU specific models and correlations. As a part of the quality assurance activities, the various QA reports were published through the code assessments. The code manuals were updated and published a new manual which describe the new models and correlations. The code coupling methods were verified though the exercise of plant application. The education-training seminar and technology transfer were performed for the code users. The developed MARS-KS is utilized as reliable auditing tool for the resolving the safety issue and other regulatory calculations. The code can be utilized as a base technology for GEN IV reactor applications

  11. Design of convolutional tornado code

    Science.gov (United States)

    Zhou, Hui; Yang, Yao; Gao, Hongmin; Tan, Lu

    2017-09-01

    As a linear block code, the traditional tornado (tTN) code is inefficient in burst-erasure environment and its multi-level structure may lead to high encoding/decoding complexity. This paper presents a convolutional tornado (cTN) code which is able to improve the burst-erasure protection capability by applying the convolution property to the tTN code, and reduce computational complexity by abrogating the multi-level structure. The simulation results show that cTN code can provide a better packet loss protection performance with lower computation complexity than tTN code.

  12. Random linear codes in steganography

    Directory of Open Access Journals (Sweden)

    Kamil Kaczyński

    2016-12-01

    Full Text Available Syndrome coding using linear codes is a technique that allows improvement in the steganographic algorithms parameters. The use of random linear codes gives a great flexibility in choosing the parameters of the linear code. In parallel, it offers easy generation of parity check matrix. In this paper, the modification of LSB algorithm is presented. A random linear code [8, 2] was used as a base for algorithm modification. The implementation of the proposed algorithm, along with practical evaluation of algorithms’ parameters based on the test images was made.[b]Keywords:[/b] steganography, random linear codes, RLC, LSB

  13. Containment Code Validation Matrix

    International Nuclear Information System (INIS)

    Chin, Yu-Shan; Mathew, P.M.; Glowa, Glenn; Dickson, Ray; Liang, Zhe; Leitch, Brian; Barber, Duncan; Vasic, Aleks; Bentaib, Ahmed; Journeau, Christophe; Malet, Jeanne; Studer, Etienne; Meynet, Nicolas; Piluso, Pascal; Gelain, Thomas; Michielsen, Nathalie; Peillon, Samuel; Porcheron, Emmanuel; Albiol, Thierry; Clement, Bernard; Sonnenkalb, Martin; Klein-Hessling, Walter; Arndt, Siegfried; Weber, Gunter; Yanez, Jorge; Kotchourko, Alexei; Kuznetsov, Mike; Sangiorgi, Marco; Fontanet, Joan; Herranz, Luis; Garcia De La Rua, Carmen; Santiago, Aleza Enciso; Andreani, Michele; Paladino, Domenico; Dreier, Joerg; Lee, Richard; Amri, Abdallah

    2014-01-01

    The Committee on the Safety of Nuclear Installations (CSNI) formed the CCVM (Containment Code Validation Matrix) task group in 2002. The objective of this group was to define a basic set of available experiments for code validation, covering the range of containment (ex-vessel) phenomena expected in the course of light and heavy water reactor design basis accidents and beyond design basis accidents/severe accidents. It was to consider phenomena relevant to pressurised heavy water reactor (PHWR), pressurised water reactor (PWR) and boiling water reactor (BWR) designs of Western origin as well as of Eastern European VVER types. This work would complement the two existing CSNI validation matrices for thermal hydraulic code validation (NEA/CSNI/R(1993)14) and In-vessel core degradation (NEA/CSNI/R(2001)21). The report initially provides a brief overview of the main features of a PWR, BWR, CANDU and VVER reactors. It also provides an overview of the ex-vessel corium retention (core catcher). It then provides a general overview of the accident progression for light water and heavy water reactors. The main focus is to capture most of the phenomena and safety systems employed in these reactor types and to highlight the differences. This CCVM contains a description of 127 phenomena, broken down into 6 categories: - Containment Thermal-hydraulics Phenomena; - Hydrogen Behaviour (Combustion, Mitigation and Generation) Phenomena; - Aerosol and Fission Product Behaviour Phenomena; - Iodine Chemistry Phenomena; - Core Melt Distribution and Behaviour in Containment Phenomena; - Systems Phenomena. A synopsis is provided for each phenomenon, including a description, references for further information, significance for DBA and SA/BDBA and a list of experiments that may be used for code validation. The report identified 213 experiments, broken down into the same six categories (as done for the phenomena). An experiment synopsis is provided for each test. Along with a test description

  14. Decoding of concatenated codes with interleaved outer codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom; Thommesen, Christian

    2004-01-01

    Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes.......Recently Bleichenbacher et al. proposed a decoding algorithm for interleaved (N, K) Reed-Solomon codes, which allows close to N-K errors to be corrected in many cases. We discuss the application of this decoding algorithm to concatenated codes....

  15. TASS code topical report. V.1 TASS code technical manual

    International Nuclear Information System (INIS)

    Sim, Suk K.; Chang, W. P.; Kim, K. D.; Kim, H. C.; Yoon, H. Y.

    1997-02-01

    TASS 1.0 code has been developed at KAERI for the initial and reload non-LOCA safety analysis for the operating PWRs as well as the PWRs under construction in Korea. TASS code will replace various vendor's non-LOCA safety analysis codes currently used for the Westinghouse and ABB-CE type PWRs in Korea. This can be achieved through TASS code input modifications specific to each reactor type. The TASS code can be run interactively through the keyboard operation. A simimodular configuration used in developing the TASS code enables the user easily implement new models. TASS code has been programmed using FORTRAN77 which makes it easy to install and port for different computer environments. The TASS code can be utilized for the steady state simulation as well as the non-LOCA transient simulations such as power excursions, reactor coolant pump trips, load rejections, loss of feedwater, steam line breaks, steam generator tube ruptures, rod withdrawal and drop, and anticipated transients without scram (ATWS). The malfunctions of the control systems, components, operator actions and the transients caused by the malfunctions can be easily simulated using the TASS code. This technical report describes the TASS 1.0 code models including reactor thermal hydraulic, reactor core and control models. This TASS code models including reactor thermal hydraulic, reactor core and control models. This TASS code technical manual has been prepared as a part of the TASS code manual which includes TASS code user's manual and TASS code validation report, and will be submitted to the regulatory body as a TASS code topical report for a licensing non-LOCA safety analysis for the Westinghouse and ABB-CE type PWRs operating and under construction in Korea. (author). 42 refs., 29 tabs., 32 figs

  16. Construction of new quantum MDS codes derived from constacyclic codes

    Science.gov (United States)

    Taneja, Divya; Gupta, Manish; Narula, Rajesh; Bhullar, Jaskaran

    Obtaining quantum maximum distance separable (MDS) codes from dual containing classical constacyclic codes using Hermitian construction have paved a path to undertake the challenges related to such constructions. Using the same technique, some new parameters of quantum MDS codes have been constructed here. One set of parameters obtained in this paper has achieved much larger distance than work done earlier. The remaining constructed parameters of quantum MDS codes have large minimum distance and were not explored yet.

  17. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...

  18. Optimization design of biorthogonal wavelets for embedded image coding

    NARCIS (Netherlands)

    Lin, Z.; Zheng, N.; Liu, Y.; Wetering, van de H.M.M.

    2007-01-01

    We present here a simple technique for parametrization of popular biorthogonal wavelet filter banks (BWFBs) having vanishing moments (VMs) of arbitrary multiplicity. Given a prime wavelet filter with VMs of arbitrary multiplicity, after formulating it as a trigonometric polynomial depending on two

  19. An Optimal Dissipative Encoder for the Toric Code

    Science.gov (United States)

    2014-01-16

    Topological quantummemory J. Math. Phys. 43 4452–505 [6] Diehl S, Micheli A, Kantian A, Kraus B, Büchler H P and Zoller P 2008 Quantum states and phases in...Diehl S, Kantian A, Micheli A and Zoller P 2008 Preparation of entangled states by quantum Markov processes Phys. Rev. A 78 042307 [12] Marvian I 2013...Information Theory (Cambridge: Cambridge University Press) [20] Wolf M and Cirac J I 2008 Dividing quantum channels Commun. Math. Phys. 279 147 11

  20. Hardware Abstraction and Protocol Optimization for Coded Sensor Networks

    DEFF Research Database (Denmark)

    Nistor, Maricica; Roetter, Daniel Enrique Lucani; Barros, João

    2015-01-01

    The design of the communication protocols in wireless sensor networks (WSNs) often neglects several key characteristics of the sensor's hardware, while assuming that the number of transmitted bits is the dominating factor behind the system's energy consumption. A closer look at the hardware speci...