WorldWideScience

Sample records for optimal statistical inference

  1. Statistical Physics, Optimization, Inference, and Message-Passing Algorithms : Lecture Notes of the Les Houches School of Physics : Special Issue, October 2013

    CERN Document Server

    Ricci-Tersenghi, Federico; Zdeborova, Lenka; Zecchina, Riccardo; Tramel, Eric W; Cugliandolo, Leticia F

    2015-01-01

    This book contains a collection of the presentations that were given in October 2013 at the Les Houches Autumn School on statistical physics, optimization, inference, and message-passing algorithms. In the last decade, there has been increasing convergence of interest and methods between theoretical physics and fields as diverse as probability, machine learning, optimization, and inference problems. In particular, much theoretical and applied work in statistical physics and computer science has relied on the use of message-passing algorithms and their connection to the statistical physics of glasses and spin glasses. For example, both the replica and cavity methods have led to recent advances in compressed sensing, sparse estimation, and random constraint satisfaction, to name a few. This book’s detailed pedagogical lectures on statistical inference, computational complexity, the replica and cavity methods, and belief propagation are aimed particularly at PhD students, post-docs, and young researchers desir...

  2. Bayesian statistical inference

    Directory of Open Access Journals (Sweden)

    Bruno De Finetti

    2017-04-01

    Full Text Available This work was translated into English and published in the volume: Bruno De Finetti, Induction and Probability, Biblioteca di Statistica, eds. P. Monari, D. Cocchi, Clueb, Bologna, 1993.Bayesian statistical Inference is one of the last fundamental philosophical papers in which we can find the essential De Finetti's approach to the statistical inference.

  3. Statistical inference an integrated approach

    CERN Document Server

    Migon, Helio S; Louzada, Francisco

    2014-01-01

    Introduction Information The concept of probability Assessing subjective probabilities An example Linear algebra and probability Notation Outline of the bookElements of Inference Common statistical modelsLikelihood-based functions Bayes theorem Exchangeability Sufficiency and exponential family Parameter elimination Prior Distribution Entirely subjective specification Specification through functional forms Conjugacy with the exponential family Non-informative priors Hierarchical priors Estimation Introduction to decision theoryBayesian point estimation Classical point estimation Empirical Bayes estimation Comparison of estimators Interval estimation Estimation in the Normal model Approximating Methods The general problem of inference Optimization techniquesAsymptotic theory Other analytical approximations Numerical integration methods Simulation methods Hypothesis Testing Introduction Classical hypothesis testingBayesian hypothesis testing Hypothesis testing and confidence intervalsAsymptotic tests Prediction...

  4. Statistical inference for financial engineering

    CERN Document Server

    Taniguchi, Masanobu; Ogata, Hiroaki; Taniai, Hiroyuki

    2014-01-01

    This monograph provides the fundamentals of statistical inference for financial engineering and covers some selected methods suitable for analyzing financial time series data. In order to describe the actual financial data, various stochastic processes, e.g. non-Gaussian linear processes, non-linear processes, long-memory processes, locally stationary processes etc. are introduced and their optimal estimation is considered as well. This book also includes several statistical approaches, e.g., discriminant analysis, the empirical likelihood method, control variate method, quantile regression, realized volatility etc., which have been recently developed and are considered to be powerful tools for analyzing the financial data, establishing a new bridge between time series and financial engineering. This book is well suited as a professional reference book on finance, statistics and statistical financial engineering. Readers are expected to have an undergraduate-level knowledge of statistics.

  5. Geometric statistical inference

    International Nuclear Information System (INIS)

    Periwal, Vipul

    1999-01-01

    A reparametrization-covariant formulation of the inverse problem of probability is explicitly solved for finite sample sizes. The inferred distribution is explicitly continuous for finite sample size. A geometric solution of the statistical inference problem in higher dimensions is outlined

  6. Introductory statistical inference

    CERN Document Server

    Mukhopadhyay, Nitis

    2014-01-01

    This gracefully organized text reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, figures, tables, and computer simulations to develop and illustrate concepts. Drills and boxed summaries emphasize and reinforce important ideas and special techniques.Beginning with a review of the basic concepts and methods in probability theory, moments, and moment generating functions, the author moves to more intricate topics. Introductory Statistical Inference studies multivariate random variables, exponential families of dist

  7. Statistical Inference at Work: Statistical Process Control as an Example

    Science.gov (United States)

    Bakker, Arthur; Kent, Phillip; Derry, Jan; Noss, Richard; Hoyles, Celia

    2008-01-01

    To characterise statistical inference in the workplace this paper compares a prototypical type of statistical inference at work, statistical process control (SPC), with a type of statistical inference that is better known in educational settings, hypothesis testing. Although there are some similarities between the reasoning structure involved in…

  8. Statistical inference

    CERN Document Server

    Rohatgi, Vijay K

    2003-01-01

    Unified treatment of probability and statistics examines and analyzes the relationship between the two fields, exploring inferential issues. Numerous problems, examples, and diagrams--some with solutions--plus clear-cut, highlighted summaries of results. Advanced undergraduate to graduate level. Contents: 1. Introduction. 2. Probability Model. 3. Probability Distributions. 4. Introduction to Statistical Inference. 5. More on Mathematical Expectation. 6. Some Discrete Models. 7. Some Continuous Models. 8. Functions of Random Variables and Random Vectors. 9. Large-Sample Theory. 10. General Meth

  9. Nonparametric statistical inference

    CERN Document Server

    Gibbons, Jean Dickinson

    2010-01-01

    Overall, this remains a very fine book suitable for a graduate-level course in nonparametric statistics. I recommend it for all people interested in learning the basic ideas of nonparametric statistical inference.-Eugenia Stoimenova, Journal of Applied Statistics, June 2012… one of the best books available for a graduate (or advanced undergraduate) text for a theory course on nonparametric statistics. … a very well-written and organized book on nonparametric statistics, especially useful and recommended for teachers and graduate students.-Biometrics, 67, September 2011This excellently presente

  10. Statistical inference an integrated Bayesianlikelihood approach

    CERN Document Server

    Aitkin, Murray

    2010-01-01

    Filling a gap in current Bayesian theory, Statistical Inference: An Integrated Bayesian/Likelihood Approach presents a unified Bayesian treatment of parameter inference and model comparisons that can be used with simple diffuse prior specifications. This novel approach provides new solutions to difficult model comparison problems and offers direct Bayesian counterparts of frequentist t-tests and other standard statistical methods for hypothesis testing.After an overview of the competing theories of statistical inference, the book introduces the Bayes/likelihood approach used throughout. It pre

  11. Optimization methods for logical inference

    CERN Document Server

    Chandru, Vijay

    2011-01-01

    Merging logic and mathematics in deductive inference-an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though ""solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs."" Presenting powerful, proven optimization techniques for logic in

  12. Statistical inference and Aristotle's Rhetoric.

    Science.gov (United States)

    Macdonald, Ranald R

    2004-11-01

    Formal logic operates in a closed system where all the information relevant to any conclusion is present, whereas this is not the case when one reasons about events and states of the world. Pollard and Richardson drew attention to the fact that the reasoning behind statistical tests does not lead to logically justifiable conclusions. In this paper statistical inferences are defended not by logic but by the standards of everyday reasoning. Aristotle invented formal logic, but argued that people mostly get at the truth with the aid of enthymemes--incomplete syllogisms which include arguing from examples, analogies and signs. It is proposed that statistical tests work in the same way--in that they are based on examples, invoke the analogy of a model and use the size of the effect under test as a sign that the chance hypothesis is unlikely. Of existing theories of statistical inference only a weak version of Fisher's takes this into account. Aristotle anticipated Fisher by producing an argument of the form that there were too many cases in which an outcome went in a particular direction for that direction to be plausibly attributed to chance. We can therefore conclude that Aristotle would have approved of statistical inference and there is a good reason for calling this form of statistical inference classical.

  13. Statistical inference based on divergence measures

    CERN Document Server

    Pardo, Leandro

    2005-01-01

    The idea of using functionals of Information Theory, such as entropies or divergences, in statistical inference is not new. However, in spite of the fact that divergence statistics have become a very good alternative to the classical likelihood ratio test and the Pearson-type statistic in discrete models, many statisticians remain unaware of this powerful approach.Statistical Inference Based on Divergence Measures explores classical problems of statistical inference, such as estimation and hypothesis testing, on the basis of measures of entropy and divergence. The first two chapters form an overview, from a statistical perspective, of the most important measures of entropy and divergence and study their properties. The author then examines the statistical analysis of discrete multivariate data with emphasis is on problems in contingency tables and loglinear models using phi-divergence test statistics as well as minimum phi-divergence estimators. The final chapter looks at testing in general populations, prese...

  14. Parametric statistical inference basic theory and modern approaches

    CERN Document Server

    Zacks, Shelemyahu; Tsokos, C P

    1981-01-01

    Parametric Statistical Inference: Basic Theory and Modern Approaches presents the developments and modern trends in statistical inference to students who do not have advanced mathematical and statistical preparation. The topics discussed in the book are basic and common to many fields of statistical inference and thus serve as a jumping board for in-depth study. The book is organized into eight chapters. Chapter 1 provides an overview of how the theory of statistical inference is presented in subsequent chapters. Chapter 2 briefly discusses statistical distributions and their properties. Chapt

  15. Optimal inference with suboptimal models: Addiction and active Bayesian inference

    Science.gov (United States)

    Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl

    2015-01-01

    When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321

  16. Inferring Demographic History Using Two-Locus Statistics.

    Science.gov (United States)

    Ragsdale, Aaron P; Gutenkunst, Ryan N

    2017-06-01

    Population demographic history may be learned from contemporary genetic variation data. Methods based on aggregating the statistics of many single loci into an allele frequency spectrum (AFS) have proven powerful, but such methods ignore potentially informative patterns of linkage disequilibrium (LD) between neighboring loci. To leverage such patterns, we developed a composite-likelihood framework for inferring demographic history from aggregated statistics of pairs of loci. Using this framework, we show that two-locus statistics are more sensitive to demographic history than single-locus statistics such as the AFS. In particular, two-locus statistics escape the notorious confounding of depth and duration of a bottleneck, and they provide a means to estimate effective population size based on the recombination rather than mutation rate. We applied our approach to a Zambian population of Drosophila melanogaster Notably, using both single- and two-locus statistics, we inferred a substantially lower ancestral effective population size than previous works and did not infer a bottleneck history. Together, our results demonstrate the broad potential for two-locus statistics to enable powerful population genetic inference. Copyright © 2017 by the Genetics Society of America.

  17. Probability and Statistical Inference

    OpenAIRE

    Prosper, Harrison B.

    2006-01-01

    These lectures introduce key concepts in probability and statistical inference at a level suitable for graduate students in particle physics. Our goal is to paint as vivid a picture as possible of the concepts covered.

  18. Statistical inference for the lifetime performance index based on generalised order statistics from exponential distribution

    Science.gov (United States)

    Vali Ahmadi, Mohammad; Doostparast, Mahdi; Ahmadi, Jafar

    2015-04-01

    In manufacturing industries, the lifetime of an item is usually characterised by a random variable X and considered to be satisfactory if X exceeds a given lower lifetime limit L. The probability of a satisfactory item is then ηL := P(X ≥ L), called conforming rate. In industrial companies, however, the lifetime performance index, proposed by Montgomery and denoted by CL, is widely used as a process capability index instead of the conforming rate. Assuming a parametric model for the random variable X, we show that there is a connection between the conforming rate and the lifetime performance index. Consequently, the statistical inferences about ηL and CL are equivalent. Hence, we restrict ourselves to statistical inference for CL based on generalised order statistics, which contains several ordered data models such as usual order statistics, progressively Type-II censored data and records. Various point and interval estimators for the parameter CL are obtained and optimal critical regions for the hypothesis testing problems concerning CL are proposed. Finally, two real data-sets on the lifetimes of insulating fluid and ball bearings, due to Nelson (1982) and Caroni (2002), respectively, and a simulated sample are analysed.

  19. On quantum statistical inference

    NARCIS (Netherlands)

    Barndorff-Nielsen, O.E.; Gill, R.D.; Jupp, P.E.

    2003-01-01

    Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have

  20. Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology

    Science.gov (United States)

    Alsing, Justin; Wandelt, Benjamin; Feeney, Stephen

    2018-03-01

    Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelihood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data-space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper we use massive asymptotically-optimal data compression to reduce the dimensionality of the data-space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (DELFI), which learns a parameterized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate Density Estimation Likelihood-Free Inference with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as ˜104 simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological datasets.

  1. Data-driven inference for the spatial scan statistic.

    Science.gov (United States)

    Almeida, Alexandre C L; Duarte, Anderson R; Duczmal, Luiz H; Oliveira, Fernando L P; Takahashi, Ricardo H C

    2011-08-02

    Kulldorff's spatial scan statistic for aggregated area maps searches for clusters of cases without specifying their size (number of areas) or geographic location in advance. Their statistical significance is tested while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this adjustment is not done in an even manner for all possible cluster sizes. A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected for the original observed cases map with a most likely cluster of size k, taking into account only those most likely clusters of size k found under null hypothesis for comparison? This question is especially important when the p-value computed by the usual inference process is near the alpha significance level, regarding the correctness of the decision based in this inference. A practical procedure is provided to make more accurate inferences about the most likely cluster found by the spatial scan statistic.

  2. Statistical learning and selective inference.

    Science.gov (United States)

    Taylor, Jonathan; Tibshirani, Robert J

    2015-06-23

    We describe the problem of "selective inference." This addresses the following challenge: Having mined a set of data to find potential associations, how do we properly assess the strength of these associations? The fact that we have "cherry-picked"--searched for the strongest associations--means that we must set a higher bar for declaring significant the associations that we see. This challenge becomes more important in the era of big data and complex statistical modeling. The cherry tree (dataset) can be very large and the tools for cherry picking (statistical learning methods) are now very sophisticated. We describe some recent new developments in selective inference and illustrate their use in forward stepwise regression, the lasso, and principal components analysis.

  3. Data-driven inference for the spatial scan statistic

    Directory of Open Access Journals (Sweden)

    Duczmal Luiz H

    2011-08-01

    Full Text Available Abstract Background Kulldorff's spatial scan statistic for aggregated area maps searches for clusters of cases without specifying their size (number of areas or geographic location in advance. Their statistical significance is tested while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this adjustment is not done in an even manner for all possible cluster sizes. Results A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected for the original observed cases map with a most likely cluster of size k, taking into account only those most likely clusters of size k found under null hypothesis for comparison? This question is especially important when the p-value computed by the usual inference process is near the alpha significance level, regarding the correctness of the decision based in this inference. Conclusions A practical procedure is provided to make more accurate inferences about the most likely cluster found by the spatial scan statistic.

  4. International Conference on Trends and Perspectives in Linear Statistical Inference

    CERN Document Server

    Rosen, Dietrich

    2018-01-01

    This volume features selected contributions on a variety of topics related to linear statistical inference. The peer-reviewed papers from the International Conference on Trends and Perspectives in Linear Statistical Inference (LinStat 2016) held in Istanbul, Turkey, 22-25 August 2016, cover topics in both theoretical and applied statistics, such as linear models, high-dimensional statistics, computational statistics, the design of experiments, and multivariate analysis. The book is intended for statisticians, Ph.D. students, and professionals who are interested in statistical inference. .

  5. Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization

    Science.gov (United States)

    Gelman, Andrew; Lee, Daniel; Guo, Jiqiang

    2015-01-01

    Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…

  6. Statistical inference via fiducial methods

    OpenAIRE

    Salomé, Diemer

    1998-01-01

    In this thesis the attention is restricted to inductive reasoning using a mathematical probability model. A statistical procedure prescribes, for every theoretically possible set of data, the inference about the unknown of interest. ... Zie: Summary

  7. Statistical inference a short course

    CERN Document Server

    Panik, Michael J

    2012-01-01

    A concise, easily accessible introduction to descriptive and inferential techniques Statistical Inference: A Short Course offers a concise presentation of the essentials of basic statistics for readers seeking to acquire a working knowledge of statistical concepts, measures, and procedures. The author conducts tests on the assumption of randomness and normality, provides nonparametric methods when parametric approaches might not work. The book also explores how to determine a confidence interval for a population median while also providing coverage of ratio estimation, randomness, and causal

  8. Nonparametric predictive inference in statistical process control

    NARCIS (Netherlands)

    Arts, G.R.J.; Coolen, F.P.A.; Laan, van der P.

    2000-01-01

    New methods for statistical process control are presented, where the inferences have a nonparametric predictive nature. We consider several problems in process control in terms of uncertainties about future observable random quantities, and we develop inferences for these random quantities hased on

  9. Statistics for nuclear engineers and scientists. Part 1. Basic statistical inference

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, W.J.

    1981-02-01

    This report is intended for the use of engineers and scientists working in the nuclear industry, especially at the Bettis Atomic Power Laboratory. It serves as the basis for several Bettis in-house statistics courses. The objectives of the report are to introduce the reader to the language and concepts of statistics and to provide a basic set of techniques to apply to problems of the collection and analysis of data. Part 1 covers subjects of basic inference. The subjects include: descriptive statistics; probability; simple inference for normally distributed populations, and for non-normal populations as well; comparison of two populations; the analysis of variance; quality control procedures; and linear regression analysis.

  10. Reasoning about Informal Statistical Inference: One Statistician's View

    Science.gov (United States)

    Rossman, Allan J.

    2008-01-01

    This paper identifies key concepts and issues associated with the reasoning of informal statistical inference. I focus on key ideas of inference that I think all students should learn, including at secondary level as well as tertiary. I argue that a fundamental component of inference is to go beyond the data at hand, and I propose that statistical…

  11. Recent Advances in System Reliability Signatures, Multi-state Systems and Statistical Inference

    CERN Document Server

    Frenkel, Ilia

    2012-01-01

    Recent Advances in System Reliability discusses developments in modern reliability theory such as signatures, multi-state systems and statistical inference. It describes the latest achievements in these fields, and covers the application of these achievements to reliability engineering practice. The chapters cover a wide range of new theoretical subjects and have been written by leading experts in reliability theory and its applications.  The topics include: concepts and different definitions of signatures (D-spectra),  their  properties and applications  to  reliability of coherent systems and network-type structures; Lz-transform of Markov stochastic process and its application to multi-state system reliability analysis; methods for cost-reliability and cost-availability analysis of multi-state systems; optimal replacement and protection strategy; and statistical inference. Recent Advances in System Reliability presents many examples to illustrate the theoretical results. Real world multi-state systems...

  12. Statistical inference from imperfect photon detection

    International Nuclear Information System (INIS)

    Audenaert, Koenraad M R; Scheel, Stefan

    2009-01-01

    We consider the statistical properties of photon detection with imperfect detectors that exhibit dark counts and less than unit efficiency, in the context of tomographic reconstruction. In this context, the detectors are used to implement certain positive operator-valued measures (POVMs) that would allow us to reconstruct the quantum state or quantum process under consideration. Here we look at the intermediate step of inferring outcome probabilities from measured outcome frequencies, and show how this inference can be performed in a statistically sound way in the presence of detector imperfections. Merging outcome probabilities for different sets of POVMs into a consistent quantum state picture has been treated elsewhere (Audenaert and Scheel 2009 New J. Phys. 11 023028). Single-photon pulsed measurements as well as continuous wave measurements are covered.

  13. Models for probability and statistical inference theory and applications

    CERN Document Server

    Stapleton, James H

    2007-01-01

    This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readersModels for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping.Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses mo...

  14. Optimal causal inference: estimating stored information and approximating causal architecture.

    Science.gov (United States)

    Still, Susanne; Crutchfield, James P; Ellison, Christopher J

    2010-09-01

    We introduce an approach to inferring the causal architecture of stochastic dynamical systems that extends rate-distortion theory to use causal shielding--a natural principle of learning. We study two distinct cases of causal inference: optimal causal filtering and optimal causal estimation. Filtering corresponds to the ideal case in which the probability distribution of measurement sequences is known, giving a principled method to approximate a system's causal structure at a desired level of representation. We show that in the limit in which a model-complexity constraint is relaxed, filtering finds the exact causal architecture of a stochastic dynamical system, known as the causal-state partition. From this, one can estimate the amount of historical information the process stores. More generally, causal filtering finds a graded model-complexity hierarchy of approximations to the causal architecture. Abrupt changes in the hierarchy, as a function of approximation, capture distinct scales of structural organization. For nonideal cases with finite data, we show how the correct number of the underlying causal states can be found by optimal causal estimation. A previously derived model-complexity control term allows us to correct for the effect of statistical fluctuations in probability estimates and thereby avoid overfitting.

  15. Statistical inferences for bearings life using sudden death test

    Directory of Open Access Journals (Sweden)

    Morariu Cristin-Olimpiu

    2017-01-01

    Full Text Available In this paper we propose a calculus method for reliability indicators estimation and a complete statistical inferences for three parameters Weibull distribution of bearings life. Using experimental values regarding the durability of bearings tested on stands by the sudden death tests involves a series of particularities of the estimation using maximum likelihood method and statistical inference accomplishment. The paper detailing these features and also provides an example calculation.

  16. Statistical distributions of optimal global alignment scores of random protein sequences

    Directory of Open Access Journals (Sweden)

    Tang Jiaowei

    2005-10-01

    Full Text Available Abstract Background The inference of homology from statistically significant sequence similarity is a central issue in sequence alignments. So far the statistical distribution function underlying the optimal global alignments has not been completely determined. Results In this study, random and real but unrelated sequences prepared in six different ways were selected as reference datasets to obtain their respective statistical distributions of global alignment scores. All alignments were carried out with the Needleman-Wunsch algorithm and optimal scores were fitted to the Gumbel, normal and gamma distributions respectively. The three-parameter gamma distribution performs the best as the theoretical distribution function of global alignment scores, as it agrees perfectly well with the distribution of alignment scores. The normal distribution also agrees well with the score distribution frequencies when the shape parameter of the gamma distribution is sufficiently large, for this is the scenario when the normal distribution can be viewed as an approximation of the gamma distribution. Conclusion We have shown that the optimal global alignment scores of random protein sequences fit the three-parameter gamma distribution function. This would be useful for the inference of homology between sequences whose relationship is unknown, through the evaluation of gamma distribution significance between sequences.

  17. Ignorability in Statistical and Probabilistic Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2005-01-01

    When dealing with incomplete data in statistical learning, or incomplete observations in probabilistic inference, one needs to distinguish the fact that a certain event is observed from the fact that the observed event has happened. Since the modeling and computational complexities entailed...

  18. Thermodynamics of statistical inference by cells.

    Science.gov (United States)

    Lang, Alex H; Fisher, Charles K; Mora, Thierry; Mehta, Pankaj

    2014-10-03

    The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.

  19. On Quantum Statistical Inference, II

    OpenAIRE

    Barndorff-Nielsen, O. E.; Gill, R. D.; Jupp, P. E.

    2003-01-01

    Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, theoretical developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and inte...

  20. All of statistics a concise course in statistical inference

    CERN Document Server

    Wasserman, Larry

    2004-01-01

    This book is for people who want to learn probability and statistics quickly It brings together many of the main ideas in modern statistics in one place The book is suitable for students and researchers in statistics, computer science, data mining and machine learning This book covers a much wider range of topics than a typical introductory text on mathematical statistics It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses The reader is assumed to know calculus and a little linear algebra No previous knowledge of probability and statistics is required The text can be used at the advanced undergraduate and graduate level Larry Wasserman is Professor of Statistics at Carnegie Mellon University He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bi...

  1. Subjective randomness as statistical inference.

    Science.gov (United States)

    Griffiths, Thomas L; Daniels, Dylan; Austerweil, Joseph L; Tenenbaum, Joshua B

    2018-06-01

    Some events seem more random than others. For example, when tossing a coin, a sequence of eight heads in a row does not seem very random. Where do these intuitions about randomness come from? We argue that subjective randomness can be understood as the result of a statistical inference assessing the evidence that an event provides for having been produced by a random generating process. We show how this account provides a link to previous work relating randomness to algorithmic complexity, in which random events are those that cannot be described by short computer programs. Algorithmic complexity is both incomputable and too general to capture the regularities that people can recognize, but viewing randomness as statistical inference provides two paths to addressing these problems: considering regularities generated by simpler computing machines, and restricting the set of probability distributions that characterize regularity. Building on previous work exploring these different routes to a more restricted notion of randomness, we define strong quantitative models of human randomness judgments that apply not just to binary sequences - which have been the focus of much of the previous work on subjective randomness - but also to binary matrices and spatial clustering. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Inference and the Introductory Statistics Course

    Science.gov (United States)

    Pfannkuch, Maxine; Regan, Matt; Wild, Chris; Budgett, Stephanie; Forbes, Sharleen; Harraway, John; Parsonage, Ross

    2011-01-01

    This article sets out some of the rationale and arguments for making major changes to the teaching and learning of statistical inference in introductory courses at our universities by changing from a norm-based, mathematical approach to more conceptually accessible computer-based approaches. The core problem of the inferential argument with its…

  3. Statistical causal inferences and their applications in public health research

    CERN Document Server

    Wu, Pan; Chen, Ding-Geng

    2016-01-01

    This book compiles and presents new developments in statistical causal inference. The accompanying data and computer programs are publicly available so readers may replicate the model development and data analysis presented in each chapter. In this way, methodology is taught so that readers may implement it directly. The book brings together experts engaged in causal inference research to present and discuss recent issues in causal inference methodological development. This is also a timely look at causal inference applied to scenarios that range from clinical trials to mediation and public health research more broadly. In an academic setting, this book will serve as a reference and guide to a course in causal inference at the graduate level (Master's or Doctorate). It is particularly relevant for students pursuing degrees in Statistics, Biostatistics and Computational Biology. Researchers and data analysts in public health and biomedical research will also find this book to be an important reference.

  4. Statistical inference for noisy nonlinear ecological dynamic systems.

    Science.gov (United States)

    Wood, Simon N

    2010-08-26

    Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near-chaotic dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes plus demographic and environmental process noise, and are only observable with error. Their sensitivity to history means that minute changes in the driving noise realization, or the system parameters, will cause drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability density of the observable data and the process noise, rendering it useless as the basis for obtaining measures of statistical fit. Because the joint density is the basis for the fit measures used by all conventional statistical methods, this is a major theoretical shortcoming. The inability to make well-founded statistical inferences about biological dynamic models in the chaotic and near-chaotic regimes, other than on an ad hoc basis, leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of biological science. Here I show that this impasse can be resolved in a simple and general manner, using a method that requires only the ability to simulate the observed data on a system from the dynamic model about which inferences are required. The raw data series are reduced to phase-insensitive summary statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to obtain the mean and the covariance matrix of the statistics, given model parameters, allowing the construction of a 'synthetic likelihood' that assesses model fit. This likelihood can be explored using a straightforward Markov chain Monte Carlo sampler, but one further post-processing step returns pure likelihood-based inference. I apply the method to establish the dynamic nature of the fluctuations in Nicholson's classic blowfly experiments.

  5. Statistical inference on residual life

    CERN Document Server

    Jeong, Jong-Hyeon

    2014-01-01

    This is a monograph on the concept of residual life, which is an alternative summary measure of time-to-event data, or survival data. The mean residual life has been used for many years under the name of life expectancy, so it is a natural concept for summarizing survival or reliability data. It is also more interpretable than the popular hazard function, especially for communications between patients and physicians regarding the efficacy of a new drug in the medical field. This book reviews existing statistical methods to infer the residual life distribution. The review and comparison includes existing inference methods for mean and median, or quantile, residual life analysis through medical data examples. The concept of the residual life is also extended to competing risks analysis. The targeted audience includes biostatisticians, graduate students, and PhD (bio)statisticians. Knowledge in survival analysis at an introductory graduate level is advisable prior to reading this book.

  6. TARGETED SEQUENTIAL DESIGN FOR TARGETED LEARNING INFERENCE OF THE OPTIMAL TREATMENT RULE AND ITS MEAN REWARD.

    Science.gov (United States)

    Chambaz, Antoine; Zheng, Wenjing; van der Laan, Mark J

    2017-01-01

    This article studies the targeted sequential inference of an optimal treatment rule (TR) and its mean reward in the non-exceptional case, i.e. , assuming that there is no stratum of the baseline covariates where treatment is neither beneficial nor harmful, and under a companion margin assumption. Our pivotal estimator, whose definition hinges on the targeted minimum loss estimation (TMLE) principle, actually infers the mean reward under the current estimate of the optimal TR. This data-adaptive statistical parameter is worthy of interest on its own. Our main result is a central limit theorem which enables the construction of confidence intervals on both mean rewards under the current estimate of the optimal TR and under the optimal TR itself. The asymptotic variance of the estimator takes the form of the variance of an efficient influence curve at a limiting distribution, allowing to discuss the efficiency of inference. As a by product, we also derive confidence intervals on two cumulated pseudo-regrets, a key notion in the study of bandits problems. A simulation study illustrates the procedure. One of the corner-stones of the theoretical study is a new maximal inequality for martingales with respect to the uniform entropy integral.

  7. Pointwise probability reinforcements for robust statistical inference.

    Science.gov (United States)

    Frénay, Benoît; Verleysen, Michel

    2014-02-01

    Statistical inference using machine learning techniques may be difficult with small datasets because of abnormally frequent data (AFDs). AFDs are observations that are much more frequent in the training sample that they should be, with respect to their theoretical probability, and include e.g. outliers. Estimates of parameters tend to be biased towards models which support such data. This paper proposes to introduce pointwise probability reinforcements (PPRs): the probability of each observation is reinforced by a PPR and a regularisation allows controlling the amount of reinforcement which compensates for AFDs. The proposed solution is very generic, since it can be used to robustify any statistical inference method which can be formulated as a likelihood maximisation. Experiments show that PPRs can be easily used to tackle regression, classification and projection: models are freed from the influence of outliers. Moreover, outliers can be filtered manually since an abnormality degree is obtained for each observation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Statistical inference and visualization in scale-space for spatially dependent images

    KAUST Repository

    Vaughan, Amy

    2012-03-01

    SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for statistical inferences. In this paper we develop a spatial SiZer for finding significant features and conducting goodness-of-fit tests for spatially dependent images. The spatial SiZer utilizes a family of kernel estimates of the image and provides not only exploratory data analysis but also statistical inference with spatial correlation taken into account. It is also capable of comparing the observed image with a specific null model being tested by adjusting the statistical inference using an assumed covariance structure. Pixel locations having statistically significant differences between the image and a given null model are highlighted by arrows. The spatial SiZer is compared with the existing independent SiZer via the analysis of simulated data with and without signal on both planar and spherical domains. We apply the spatial SiZer method to the decadal temperature change over some regions of the Earth. © 2011 The Korean Statistical Society.

  9. Statistical Inference and Patterns of Inequality in the Global North

    Science.gov (United States)

    Moran, Timothy Patrick

    2006-01-01

    Cross-national inequality trends have historically been a crucial field of inquiry across the social sciences, and new methodological techniques of statistical inference have recently improved the ability to analyze these trends over time. This paper applies Monte Carlo, bootstrap inference methods to the income surveys of the Luxembourg Income…

  10. Model averaging, optimal inference and habit formation

    Directory of Open Access Journals (Sweden)

    Thomas H B FitzGerald

    2014-06-01

    Full Text Available Postulating that the brain performs approximate Bayesian inference generates principled and empirically testable models of neuronal function – the subject of much current interest in neuroscience and related disciplines. Current formulations address inference and learning under some assumed and particular model. In reality, organisms are often faced with an additional challenge – that of determining which model or models of their environment are the best for guiding behaviour. Bayesian model averaging – which says that an agent should weight the predictions of different models according to their evidence – provides a principled way to solve this problem. Importantly, because model evidence is determined by both the accuracy and complexity of the model, optimal inference requires that these be traded off against one another. This means an agent’s behaviour should show an equivalent balance. We hypothesise that Bayesian model averaging plays an important role in cognition, given that it is both optimal and realisable within a plausible neuronal architecture. We outline model averaging and how it might be implemented, and then explore a number of implications for brain and behaviour. In particular, we propose that model averaging can explain a number of apparently suboptimal phenomena within the framework of approximate (bounded Bayesian inference, focussing particularly upon the relationship between goal-directed and habitual behaviour.

  11. Statistical Inference on Memory Structure of Processes and Its Applications to Information Theory

    Science.gov (United States)

    2016-05-12

    Distribution Unlimited UU UU UU UU 12-05-2016 15-May-2014 14-Feb-2015 Final Report: Statistical Inference on Memory Structure of Processes and Its Applications ...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 mathematical statistics ; time series; Markov chains; random...journals: Final Report: Statistical Inference on Memory Structure of Processes and Its Applications to Information Theory Report Title Three areas

  12. GWIS: Genome-Wide Inferred Statistics for Functions of Multiple Phenotypes

    NARCIS (Netherlands)

    Nieuwboer, H.A.; Pool, R.; Dolan, C.V.; Boomsma, D.I.; Nivard, M.G.

    2016-01-01

    Here we present a method of genome-wide inferred study (GWIS) that provides an approximation of genome-wide association study (GWAS) summary statistics for a variable that is a function of phenotypes for which GWAS summary statistics, phenotypic means, and covariances are available. A GWIS can be

  13. Fisher information and statistical inference for phase-type distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Esparza, Luz Judith R; Nielsen, Bo Friis

    2011-01-01

    This paper is concerned with statistical inference for both continuous and discrete phase-type distributions. We consider maximum likelihood estimation, where traditionally the expectation-maximization (EM) algorithm has been employed. Certain numerical aspects of this method are revised and we...

  14. Assessment of statistical education in Indonesia: Preliminary results and initiation to simulation-based inference

    Science.gov (United States)

    Saputra, K. V. I.; Cahyadi, L.; Sembiring, U. A.

    2018-01-01

    Start in this paper, we assess our traditional elementary statistics education and also we introduce elementary statistics with simulation-based inference. To assess our statistical class, we adapt the well-known CAOS (Comprehensive Assessment of Outcomes in Statistics) test that serves as an external measure to assess the student’s basic statistical literacy. This test generally represents as an accepted measure of statistical literacy. We also introduce a new teaching method on elementary statistics class. Different from the traditional elementary statistics course, we will introduce a simulation-based inference method to conduct hypothesis testing. From the literature, it has shown that this new teaching method works very well in increasing student’s understanding of statistics.

  15. Bayesian Information Criterion as an Alternative way of Statistical Inference

    Directory of Open Access Journals (Sweden)

    Nadejda Yu. Gubanova

    2012-05-01

    Full Text Available The article treats Bayesian information criterion as an alternative to traditional methods of statistical inference, based on NHST. The comparison of ANOVA and BIC results for psychological experiment is discussed.

  16. Using Alien Coins to Test Whether Simple Inference Is Bayesian

    Science.gov (United States)

    Cassey, Peter; Hawkins, Guy E.; Donkin, Chris; Brown, Scott D.

    2016-01-01

    Reasoning and inference are well-studied aspects of basic cognition that have been explained as statistically optimal Bayesian inference. Using a simplified experimental design, we conducted quantitative comparisons between Bayesian inference and human inference at the level of individuals. In 3 experiments, with more than 13,000 participants, we…

  17. Practical Statistics for LHC Physicists: Bayesian Inference (3/3)

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    These lectures cover those principles and practices of statistics that are most relevant for work at the LHC. The first lecture discusses the basic ideas of descriptive statistics, probability and likelihood. The second lecture covers the key ideas in the frequentist approach, including confidence limits, profile likelihoods, p-values, and hypothesis testing. The third lecture covers inference in the Bayesian approach. Throughout, real-world examples will be used to illustrate the practical application of the ideas. No previous knowledge is assumed.

  18. Practical Statistics for LHC Physicists: Frequentist Inference (2/3)

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    These lectures cover those principles and practices of statistics that are most relevant for work at the LHC. The first lecture discusses the basic ideas of descriptive statistics, probability and likelihood. The second lecture covers the key ideas in the frequentist approach, including confidence limits, profile likelihoods, p-values, and hypothesis testing. The third lecture covers inference in the Bayesian approach. Throughout, real-world examples will be used to illustrate the practical application of the ideas. No previous knowledge is assumed.

  19. Simulation and Statistical Inference of Stochastic Reaction Networks with Applications to Epidemic Models

    KAUST Repository

    Moraes, Alvaro

    2015-01-01

    Epidemics have shaped, sometimes more than wars and natural disasters, demo- graphic aspects of human populations around the world, their health habits and their economies. Ebola and the Middle East Respiratory Syndrome (MERS) are clear and current examples of potential hazards at planetary scale. During the spread of an epidemic disease, there are phenomena, like the sudden extinction of the epidemic, that can not be captured by deterministic models. As a consequence, stochastic models have been proposed during the last decades. A typical forward problem in the stochastic setting could be the approximation of the expected number of infected individuals found in one month from now. On the other hand, a typical inverse problem could be, given a discretely observed set of epidemiological data, infer the transmission rate of the epidemic or its basic reproduction number. Markovian epidemic models are stochastic models belonging to a wide class of pure jump processes known as Stochastic Reaction Networks (SRNs), that are intended to describe the time evolution of interacting particle systems where one particle interacts with the others through a finite set of reaction channels. SRNs have been mainly developed to model biochemical reactions but they also have applications in neural networks, virus kinetics, and dynamics of social networks, among others. 4 This PhD thesis is focused on novel fast simulation algorithms and statistical inference methods for SRNs. Our novel Multi-level Monte Carlo (MLMC) hybrid simulation algorithms provide accurate estimates of expected values of a given observable of SRNs at a prescribed final time. They are designed to control the global approximation error up to a user-selected accuracy and up to a certain confidence level, and with near optimal computational work. We also present novel dual-weighted residual expansions for fast estimation of weak and strong errors arising from the MLMC methodology. Regarding the statistical inference

  20. Statistical inference for a class of multivariate negative binomial distributions

    DEFF Research Database (Denmark)

    Rubak, Ege Holger; Møller, Jesper; McCullagh, Peter

    This paper considers statistical inference procedures for a class of models for positively correlated count variables called α-permanental random fields, and which can be viewed as a family of multivariate negative binomial distributions. Their appealing probabilistic properties have earlier been...

  1. Targeted estimation of nuisance parameters to obtain valid statistical inference.

    Science.gov (United States)

    van der Laan, Mark J

    2014-01-01

    In order to obtain concrete results, we focus on estimation of the treatment specific mean, controlling for all measured baseline covariates, based on observing independent and identically distributed copies of a random variable consisting of baseline covariates, a subsequently assigned binary treatment, and a final outcome. The statistical model only assumes possible restrictions on the conditional distribution of treatment, given the covariates, the so-called propensity score. Estimators of the treatment specific mean involve estimation of the propensity score and/or estimation of the conditional mean of the outcome, given the treatment and covariates. In order to make these estimators asymptotically unbiased at any data distribution in the statistical model, it is essential to use data-adaptive estimators of these nuisance parameters such as ensemble learning, and specifically super-learning. Because such estimators involve optimal trade-off of bias and variance w.r.t. the infinite dimensional nuisance parameter itself, they result in a sub-optimal bias/variance trade-off for the resulting real-valued estimator of the estimand. We demonstrate that additional targeting of the estimators of these nuisance parameters guarantees that this bias for the estimand is second order and thereby allows us to prove theorems that establish asymptotic linearity of the estimator of the treatment specific mean under regularity conditions. These insights result in novel targeted minimum loss-based estimators (TMLEs) that use ensemble learning with additional targeted bias reduction to construct estimators of the nuisance parameters. In particular, we construct collaborative TMLEs (C-TMLEs) with known influence curve allowing for statistical inference, even though these C-TMLEs involve variable selection for the propensity score based on a criterion that measures how effective the resulting fit of the propensity score is in removing bias for the estimand. As a particular special

  2. Distinguishing between statistical significance and practical/clinical meaningfulness using statistical inference.

    Science.gov (United States)

    Wilkinson, Michael

    2014-03-01

    Decisions about support for predictions of theories in light of data are made using statistical inference. The dominant approach in sport and exercise science is the Neyman-Pearson (N-P) significance-testing approach. When applied correctly it provides a reliable procedure for making dichotomous decisions for accepting or rejecting zero-effect null hypotheses with known and controlled long-run error rates. Type I and type II error rates must be specified in advance and the latter controlled by conducting an a priori sample size calculation. The N-P approach does not provide the probability of hypotheses or indicate the strength of support for hypotheses in light of data, yet many scientists believe it does. Outcomes of analyses allow conclusions only about the existence of non-zero effects, and provide no information about the likely size of true effects or their practical/clinical value. Bayesian inference can show how much support data provide for different hypotheses, and how personal convictions should be altered in light of data, but the approach is complicated by formulating probability distributions about prior subjective estimates of population effects. A pragmatic solution is magnitude-based inference, which allows scientists to estimate the true magnitude of population effects and how likely they are to exceed an effect magnitude of practical/clinical importance, thereby integrating elements of subjective Bayesian-style thinking. While this approach is gaining acceptance, progress might be hastened if scientists appreciate the shortcomings of traditional N-P null hypothesis significance testing.

  3. An efficient forward–reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks

    KAUST Repository

    Bayer, Christian; Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro

    2016-01-01

    then employ this SRN bridge-generation technique to the statistical inference problem of approximating reaction propensities based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which, during phase I, we solve

  4. Statistical Inference for a Class of Multivariate Negative Binomial Distributions

    DEFF Research Database (Denmark)

    Rubak, Ege H.; Møller, Jesper; McCullagh, Peter

    This paper considers statistical inference procedures for a class of models for positively correlated count variables called -permanental random fields, and which can be viewed as a family of multivariate negative binomial distributions. Their appealing probabilistic properties have earlier been...... studied in the literature, while this is the first statistical paper on -permanental random fields. The focus is on maximum likelihood estimation, maximum quasi-likelihood estimation and on maximum composite likelihood estimation based on uni- and bivariate distributions. Furthermore, new results...

  5. Optimal Design and Related Areas in Optimization and Statistics

    CERN Document Server

    Pronzato, Luc

    2009-01-01

    This edited volume, dedicated to Henry P. Wynn, reflects his broad range of research interests, focusing in particular on the applications of optimal design theory in optimization and statistics. It covers algorithms for constructing optimal experimental designs, general gradient-type algorithms for convex optimization, majorization and stochastic ordering, algebraic statistics, Bayesian networks and nonlinear regression. Written by leading specialists in the field, each chapter contains a survey of the existing literature along with substantial new material. This work will appeal to both the

  6. The Heuristic Value of p in Inductive Statistical Inference

    Directory of Open Access Journals (Sweden)

    Joachim I. Krueger

    2017-06-01

    Full Text Available Many statistical methods yield the probability of the observed data – or data more extreme – under the assumption that a particular hypothesis is true. This probability is commonly known as ‘the’ p-value. (Null Hypothesis Significance Testing ([NH]ST is the most prominent of these methods. The p-value has been subjected to much speculation, analysis, and criticism. We explore how well the p-value predicts what researchers presumably seek: the probability of the hypothesis being true given the evidence, and the probability of reproducing significant results. We also explore the effect of sample size on inferential accuracy, bias, and error. In a series of simulation experiments, we find that the p-value performs quite well as a heuristic cue in inductive inference, although there are identifiable limits to its usefulness. We conclude that despite its general usefulness, the p-value cannot bear the full burden of inductive inference; it is but one of several heuristic cues available to the data analyst. Depending on the inferential challenge at hand, investigators may supplement their reports with effect size estimates, Bayes factors, or other suitable statistics, to communicate what they think the data say.

  7. The Heuristic Value of p in Inductive Statistical Inference.

    Science.gov (United States)

    Krueger, Joachim I; Heck, Patrick R

    2017-01-01

    Many statistical methods yield the probability of the observed data - or data more extreme - under the assumption that a particular hypothesis is true. This probability is commonly known as 'the' p -value. (Null Hypothesis) Significance Testing ([NH]ST) is the most prominent of these methods. The p -value has been subjected to much speculation, analysis, and criticism. We explore how well the p -value predicts what researchers presumably seek: the probability of the hypothesis being true given the evidence, and the probability of reproducing significant results. We also explore the effect of sample size on inferential accuracy, bias, and error. In a series of simulation experiments, we find that the p -value performs quite well as a heuristic cue in inductive inference, although there are identifiable limits to its usefulness. We conclude that despite its general usefulness, the p -value cannot bear the full burden of inductive inference; it is but one of several heuristic cues available to the data analyst. Depending on the inferential challenge at hand, investigators may supplement their reports with effect size estimates, Bayes factors, or other suitable statistics, to communicate what they think the data say.

  8. Statistical inference for remote sensing-based estimates of net deforestation

    Science.gov (United States)

    Ronald E. McRoberts; Brian F. Walters

    2012-01-01

    Statistical inference requires expression of an estimate in probabilistic terms, usually in the form of a confidence interval. An approach to constructing confidence intervals for remote sensing-based estimates of net deforestation is illustrated. The approach is based on post-classification methods using two independent forest/non-forest classifications because...

  9. Statistical inference and visualization in scale-space for spatially dependent images

    KAUST Repository

    Vaughan, Amy; Jun, Mikyoung; Park, Cheolwoo

    2012-01-01

    SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for statistical inferences. In this paper we develop a spatial SiZer for finding significant features and conducting goodness-of-fit tests

  10. Statistical Inference for Porous Materials using Persistent Homology.

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chul [Univ. of Georgia, Athens, GA (United States); Heath, Jason E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We propose a porous materials analysis pipeline using persistent homology. We rst compute persistent homology of binarized 3D images of sampled material subvolumes. For each image we compute sets of homology intervals, which are represented as summary graphics called persistence diagrams. We convert persistence diagrams into image vectors in order to analyze the similarity of the homology of the material images using the mature tools for image analysis. Each image is treated as a vector and we compute its principal components to extract features. We t a statistical model using the loadings of principal components to estimate material porosity, permeability, anisotropy, and tortuosity. We also propose an adaptive version of the structural similarity index (SSIM), a similarity metric for images, as a measure to determine the statistical representative elementary volumes (sREV) for persistence homology. Thus we provide a capability for making a statistical inference of the uid ow and transport properties of porous materials based on their geometry and connectivity.

  11. An efficient forward–reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks

    KAUST Repository

    Bayer, Christian

    2016-02-20

    © 2016 Taylor & Francis Group, LLC. ABSTRACT: In this work, we present an extension of the forward–reverse representation introduced by Bayer and Schoenmakers (Annals of Applied Probability, 24(5):1994–2032, 2014) to the context of stochastic reaction networks (SRNs). We apply this stochastic representation to the computation of efficient approximations of expected values of functionals of SRN bridges, that is, SRNs conditional on their values in the extremes of given time intervals. We then employ this SRN bridge-generation technique to the statistical inference problem of approximating reaction propensities based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which, during phase I, we solve a set of deterministic optimization problems where the SRNs are replaced by their reaction-rate ordinary differential equations approximation; then, during phase II, we apply the Monte Carlo version of the expectation-maximization algorithm to the phase I output. By selecting a set of overdispersed seeds as initial points in phase I, the output of parallel runs from our two-phase method is a cluster of approximate maximum likelihood estimates. Our results are supported by numerical examples.

  12. An efficient forward-reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks

    KAUST Repository

    Vilanova, Pedro

    2016-01-07

    In this work, we present an extension of the forward-reverse representation introduced in Simulation of forward-reverse stochastic representations for conditional diffusions , a 2014 paper by Bayer and Schoenmakers to the context of stochastic reaction networks (SRNs). We apply this stochastic representation to the computation of efficient approximations of expected values of functionals of SRN bridges, i.e., SRNs conditional on their values in the extremes of given time-intervals. We then employ this SRN bridge-generation technique to the statistical inference problem of approximating reaction propensities based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which, during phase I, we solve a set of deterministic optimization problems where the SRNs are replaced by their reaction-rate ordinary differential equations approximation; then, during phase II, we apply the Monte Carlo version of the Expectation-Maximization algorithm to the phase I output. By selecting a set of over-dispersed seeds as initial points in phase I, the output of parallel runs from our two-phase method is a cluster of approximate maximum likelihood estimates. Our results are supported by numerical examples.

  13. Statistical Inference for Data Adaptive Target Parameters.

    Science.gov (United States)

    Hubbard, Alan E; Kherad-Pajouh, Sara; van der Laan, Mark J

    2016-05-01

    Consider one observes n i.i.d. copies of a random variable with a probability distribution that is known to be an element of a particular statistical model. In order to define our statistical target we partition the sample in V equal size sub-samples, and use this partitioning to define V splits in an estimation sample (one of the V subsamples) and corresponding complementary parameter-generating sample. For each of the V parameter-generating samples, we apply an algorithm that maps the sample to a statistical target parameter. We define our sample-split data adaptive statistical target parameter as the average of these V-sample specific target parameters. We present an estimator (and corresponding central limit theorem) of this type of data adaptive target parameter. This general methodology for generating data adaptive target parameters is demonstrated with a number of practical examples that highlight new opportunities for statistical learning from data. This new framework provides a rigorous statistical methodology for both exploratory and confirmatory analysis within the same data. Given that more research is becoming "data-driven", the theory developed within this paper provides a new impetus for a greater involvement of statistical inference into problems that are being increasingly addressed by clever, yet ad hoc pattern finding methods. To suggest such potential, and to verify the predictions of the theory, extensive simulation studies, along with a data analysis based on adaptively determined intervention rules are shown and give insight into how to structure such an approach. The results show that the data adaptive target parameter approach provides a general framework and resulting methodology for data-driven science.

  14. Statistical inference of the generation probability of T-cell receptors from sequence repertoires.

    Science.gov (United States)

    Murugan, Anand; Mora, Thierry; Walczak, Aleksandra M; Callan, Curtis G

    2012-10-02

    Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.

  15. A normative inference approach for optimal sample sizes in decisions from experience

    Science.gov (United States)

    Ostwald, Dirk; Starke, Ludger; Hertwig, Ralph

    2015-01-01

    “Decisions from experience” (DFE) refers to a body of work that emerged in research on behavioral decision making over the last decade. One of the major experimental paradigms employed to study experience-based choice is the “sampling paradigm,” which serves as a model of decision making under limited knowledge about the statistical structure of the world. In this paradigm respondents are presented with two payoff distributions, which, in contrast to standard approaches in behavioral economics, are specified not in terms of explicit outcome-probability information, but by the opportunity to sample outcomes from each distribution without economic consequences. Participants are encouraged to explore the distributions until they feel confident enough to decide from which they would prefer to draw from in a final trial involving real monetary payoffs. One commonly employed measure to characterize the behavior of participants in the sampling paradigm is the sample size, that is, the number of outcome draws which participants choose to obtain from each distribution prior to terminating sampling. A natural question that arises in this context concerns the “optimal” sample size, which could be used as a normative benchmark to evaluate human sampling behavior in DFE. In this theoretical study, we relate the DFE sampling paradigm to the classical statistical decision theoretic literature and, under a probabilistic inference assumption, evaluate optimal sample sizes for DFE. In our treatment we go beyond analytically established results by showing how the classical statistical decision theoretic framework can be used to derive optimal sample sizes under arbitrary, but numerically evaluable, constraints. Finally, we critically evaluate the value of deriving optimal sample sizes under this framework as testable predictions for the experimental study of sampling behavior in DFE. PMID:26441720

  16. Statistical Models for Inferring Vegetation Composition from Fossil Pollen

    Science.gov (United States)

    Paciorek, C.; McLachlan, J. S.; Shang, Z.

    2011-12-01

    Fossil pollen provide information about vegetation composition that can be used to help understand how vegetation has changed over the past. However, these data have not traditionally been analyzed in a way that allows for statistical inference about spatio-temporal patterns and trends. We build a Bayesian hierarchical model called STEPPS (Spatio-Temporal Empirical Prediction from Pollen in Sediments) that predicts forest composition in southern New England, USA, over the last two millenia based on fossil pollen. The critical relationships between abundances of tree taxa in the pollen record and abundances in actual vegetation are estimated using modern (Forest Inventory Analysis) data and (witness tree) data from colonial records. This gives us two time points at which both pollen and direct vegetation data are available. Based on these relationships, and incorporating our uncertainty about them, we predict forest composition using fossil pollen. We estimate the spatial distribution and relative abundances of tree species and draw inference about how these patterns have changed over time. Finally, we describe ongoing work to extend the modeling to the upper Midwest of the U.S., including an approach to infer tree density and thereby estimate the prairie-forest boundary in Minnesota and Wisconsin. This work is part of the PalEON project, which brings together a team of ecosystem modelers, paleoecologists, and statisticians with the goal of reconstructing vegetation responses to climate during the last two millenia in the northeastern and midwestern United States. The estimates from the statistical modeling will be used to assess and calibrate ecosystem models that are used to project ecological changes in response to global change.

  17. Robust inference from multiple test statistics via permutations: a better alternative to the single test statistic approach for randomized trials.

    Science.gov (United States)

    Ganju, Jitendra; Yu, Xinxin; Ma, Guoguang Julie

    2013-01-01

    Formal inference in randomized clinical trials is based on controlling the type I error rate associated with a single pre-specified statistic. The deficiency of using just one method of analysis is that it depends on assumptions that may not be met. For robust inference, we propose pre-specifying multiple test statistics and relying on the minimum p-value for testing the null hypothesis of no treatment effect. The null hypothesis associated with the various test statistics is that the treatment groups are indistinguishable. The critical value for hypothesis testing comes from permutation distributions. Rejection of the null hypothesis when the smallest p-value is less than the critical value controls the type I error rate at its designated value. Even if one of the candidate test statistics has low power, the adverse effect on the power of the minimum p-value statistic is not much. Its use is illustrated with examples. We conclude that it is better to rely on the minimum p-value rather than a single statistic particularly when that single statistic is the logrank test, because of the cost and complexity of many survival trials. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Statistical detection of EEG synchrony using empirical bayesian inference.

    Directory of Open Access Journals (Sweden)

    Archana K Singh

    Full Text Available There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001 for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries.

  19. Statistical detection of EEG synchrony using empirical bayesian inference.

    Science.gov (United States)

    Singh, Archana K; Asoh, Hideki; Takeda, Yuji; Phillips, Steven

    2015-01-01

    There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV) between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR) suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001) for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries.

  20. Evaluating the Use of Random Distribution Theory to Introduce Statistical Inference Concepts to Business Students

    Science.gov (United States)

    Larwin, Karen H.; Larwin, David A.

    2011-01-01

    Bootstrapping methods and random distribution methods are increasingly recommended as better approaches for teaching students about statistical inference in introductory-level statistics courses. The authors examined the effect of teaching undergraduate business statistics students using random distribution and bootstrapping simulations. It is the…

  1. Statistical inference for extended or shortened phase II studies based on Simon's two-stage designs.

    Science.gov (United States)

    Zhao, Junjun; Yu, Menggang; Feng, Xi-Ping

    2015-06-07

    Simon's two-stage designs are popular choices for conducting phase II clinical trials, especially in the oncology trials to reduce the number of patients placed on ineffective experimental therapies. Recently Koyama and Chen (2008) discussed how to conduct proper inference for such studies because they found that inference procedures used with Simon's designs almost always ignore the actual sampling plan used. In particular, they proposed an inference method for studies when the actual second stage sample sizes differ from planned ones. We consider an alternative inference method based on likelihood ratio. In particular, we order permissible sample paths under Simon's two-stage designs using their corresponding conditional likelihood. In this way, we can calculate p-values using the common definition: the probability of obtaining a test statistic value at least as extreme as that observed under the null hypothesis. In addition to providing inference for a couple of scenarios where Koyama and Chen's method can be difficult to apply, the resulting estimate based on our method appears to have certain advantage in terms of inference properties in many numerical simulations. It generally led to smaller biases and narrower confidence intervals while maintaining similar coverages. We also illustrated the two methods in a real data setting. Inference procedures used with Simon's designs almost always ignore the actual sampling plan. Reported P-values, point estimates and confidence intervals for the response rate are not usually adjusted for the design's adaptiveness. Proper statistical inference procedures should be used.

  2. Statistical inferences under the Null hypothesis: Common mistakes and pitfalls in neuroimaging studies.

    Directory of Open Access Journals (Sweden)

    Jean-Michel eHupé

    2015-02-01

    Full Text Available Published studies using functional and structural MRI include many errors in the way data are analyzed and conclusions reported. This was observed when working on a comprehensive review of the neural bases of synesthesia, but these errors are probably endemic to neuroimaging studies. All studies reviewed had based their conclusions using Null Hypothesis Significance Tests (NHST. NHST have yet been criticized since their inception because they are more appropriate for taking decisions related to a Null hypothesis (like in manufacturing than for making inferences about behavioral and neuronal processes. Here I focus on a few key problems of NHST related to brain imaging techniques, and explain why or when we should not rely on significance tests. I also observed that, often, the ill-posed logic of NHST was even not correctly applied, and describe what I identified as common mistakes or at least problematic practices in published papers, in light of what could be considered as the very basics of statistical inference. MRI statistics also involve much more complex issues than standard statistical inference. Analysis pipelines vary a lot between studies, even for those using the same software, and there is no consensus which pipeline is the best. I propose a synthetic view of the logic behind the possible methodological choices, and warn against the usage and interpretation of two statistical methods popular in brain imaging studies, the false discovery rate (FDR procedure and permutation tests. I suggest that current models for the analysis of brain imaging data suffer from serious limitations and call for a revision taking into account the new statistics (confidence intervals logic.

  3. Optimal inverse magnetorheological damper modeling using shuffled frog-leaping algorithm–based adaptive neuro-fuzzy inference system approach

    Directory of Open Access Journals (Sweden)

    Xiufang Lin

    2016-08-01

    Full Text Available Magnetorheological dampers have become prominent semi-active control devices for vibration mitigation of structures which are subjected to severe loads. However, the damping force cannot be controlled directly due to the inherent nonlinear characteristics of the magnetorheological dampers. Therefore, for fully exploiting the capabilities of the magnetorheological dampers, one of the challenging aspects is to develop an accurate inverse model which can appropriately predict the input voltage to control the damping force. In this article, a hybrid modeling strategy combining shuffled frog-leaping algorithm and adaptive-network-based fuzzy inference system is proposed to model the inverse dynamic characteristics of the magnetorheological dampers for improving the modeling accuracy. The shuffled frog-leaping algorithm is employed to optimize the premise parameters of the adaptive-network-based fuzzy inference system while the consequent parameters are tuned by a least square estimation method, here known as shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system approach. To evaluate the effectiveness of the proposed approach, the inverse modeling results based on the shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system approach are compared with those based on the adaptive-network-based fuzzy inference system and genetic algorithm–based adaptive-network-based fuzzy inference system approaches. Analysis of variance test is carried out to statistically compare the performance of the proposed methods and the results demonstrate that the shuffled frog-leaping algorithm-based adaptive-network-based fuzzy inference system strategy outperforms the other two methods in terms of modeling (training accuracy and checking accuracy.

  4. Statistical inference for discrete-time samples from affine stochastic delay differential equations

    DEFF Research Database (Denmark)

    Küchler, Uwe; Sørensen, Michael

    2013-01-01

    Statistical inference for discrete time observations of an affine stochastic delay differential equation is considered. The main focus is on maximum pseudo-likelihood estimators, which are easy to calculate in practice. A more general class of prediction-based estimating functions is investigated...

  5. Terminal-Dependent Statistical Inference for the FBSDEs Models

    Directory of Open Access Journals (Sweden)

    Yunquan Song

    2014-01-01

    Full Text Available The original stochastic differential equations (OSDEs and forward-backward stochastic differential equations (FBSDEs are often used to model complex dynamic process that arise in financial, ecological, and many other areas. The main difference between OSDEs and FBSDEs is that the latter is designed to depend on a terminal condition, which is a key factor in some financial and ecological circumstances. It is interesting but challenging to estimate FBSDE parameters from noisy data and the terminal condition. However, to the best of our knowledge, the terminal-dependent statistical inference for such a model has not been explored in the existing literature. We proposed a nonparametric terminal control variables estimation method to address this problem. The reason why we use the terminal control variables is that the newly proposed inference procedures inherit the terminal-dependent characteristic. Through this new proposed method, the estimators of the functional coefficients of the FBSDEs model are obtained. The asymptotic properties of the estimators are also discussed. Simulation studies show that the proposed method gives satisfying estimates for the FBSDE parameters from noisy data and the terminal condition. A simulation is performed to test the feasibility of our method.

  6. Initiating statistical maintenance optimization

    International Nuclear Information System (INIS)

    Doyle, E. Kevin; Tuomi, Vesa; Rowley, Ian

    2007-01-01

    Since the 1980 s maintenance optimization has been centered around various formulations of Reliability Centered Maintenance (RCM). Several such optimization techniques have been implemented at the Bruce Nuclear Station. Further cost refinement of the Station preventive maintenance strategy includes evaluation of statistical optimization techniques. A review of successful pilot efforts in this direction is provided as well as initial work with graphical analysis. The present situation reguarding data sourcing, the principle impediment to use of stochastic methods in previous years, is discussed. The use of Crowe/AMSAA (Army Materials Systems Analysis Activity) plots is demonstrated from the point of view of justifying expenditures in optimization efforts. (author)

  7. Statistical inference involving binomial and negative binomial parameters.

    Science.gov (United States)

    García-Pérez, Miguel A; Núñez-Antón, Vicente

    2009-05-01

    Statistical inference about two binomial parameters implies that they are both estimated by binomial sampling. There are occasions in which one aims at testing the equality of two binomial parameters before and after the occurrence of the first success along a sequence of Bernoulli trials. In these cases, the binomial parameter before the first success is estimated by negative binomial sampling whereas that after the first success is estimated by binomial sampling, and both estimates are related. This paper derives statistical tools to test two hypotheses, namely, that both binomial parameters equal some specified value and that both parameters are equal though unknown. Simulation studies are used to show that in small samples both tests are accurate in keeping the nominal Type-I error rates, and also to determine sample size requirements to detect large, medium, and small effects with adequate power. Additional simulations also show that the tests are sufficiently robust to certain violations of their assumptions.

  8. Statistical inference to advance network models in epidemiology.

    Science.gov (United States)

    Welch, David; Bansal, Shweta; Hunter, David R

    2011-03-01

    Contact networks are playing an increasingly important role in the study of epidemiology. Most of the existing work in this area has focused on considering the effect of underlying network structure on epidemic dynamics by using tools from probability theory and computer simulation. This work has provided much insight on the role that heterogeneity in host contact patterns plays on infectious disease dynamics. Despite the important understanding afforded by the probability and simulation paradigm, this approach does not directly address important questions about the structure of contact networks such as what is the best network model for a particular mode of disease transmission, how parameter values of a given model should be estimated, or how precisely the data allow us to estimate these parameter values. We argue that these questions are best answered within a statistical framework and discuss the role of statistical inference in estimating contact networks from epidemiological data. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. An Efficient Forward-Reverse EM Algorithm for Statistical Inference in Stochastic Reaction Networks

    KAUST Repository

    Bayer, Christian; Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro

    2016-01-01

    In this work [1], we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem

  10. Principles for statistical inference on big spatio-temporal data from climate models

    KAUST Repository

    Castruccio, Stefano; Genton, Marc G.

    2018-01-01

    The vast increase in size of modern spatio-temporal datasets has prompted statisticians working in environmental applications to develop new and efficient methodologies that are still able to achieve inference for nontrivial models within an affordable time. Climate model outputs push the limits of inference for Gaussian processes, as their size can easily be larger than 10 billion data points. Drawing from our experience in a set of previous work, we provide three principles for the statistical analysis of such large datasets that leverage recent methodological and computational advances. These principles emphasize the need of embedding distributed and parallel computing in the inferential process.

  11. Principles for statistical inference on big spatio-temporal data from climate models

    KAUST Repository

    Castruccio, Stefano

    2018-02-24

    The vast increase in size of modern spatio-temporal datasets has prompted statisticians working in environmental applications to develop new and efficient methodologies that are still able to achieve inference for nontrivial models within an affordable time. Climate model outputs push the limits of inference for Gaussian processes, as their size can easily be larger than 10 billion data points. Drawing from our experience in a set of previous work, we provide three principles for the statistical analysis of such large datasets that leverage recent methodological and computational advances. These principles emphasize the need of embedding distributed and parallel computing in the inferential process.

  12. A model independent safeguard against background mismodeling for statistical inference

    Energy Technology Data Exchange (ETDEWEB)

    Priel, Nadav; Landsman, Hagar; Manfredini, Alessandro; Budnik, Ranny [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Herzl St. 234, Rehovot (Israel); Rauch, Ludwig, E-mail: nadav.priel@weizmann.ac.il, E-mail: rauch@mpi-hd.mpg.de, E-mail: hagar.landsman@weizmann.ac.il, E-mail: alessandro.manfredini@weizmann.ac.il, E-mail: ran.budnik@weizmann.ac.il [Teilchen- und Astroteilchenphysik, Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2017-05-01

    We propose a safeguard procedure for statistical inference that provides universal protection against mismodeling of the background. The method quantifies and incorporates the signal-like residuals of the background model into the likelihood function, using information available in a calibration dataset. This prevents possible false discovery claims that may arise through unknown mismodeling, and corrects the bias in limit setting created by overestimated or underestimated background. We demonstrate how the method removes the bias created by an incomplete background model using three realistic case studies.

  13. Statistical comparison of a hybrid approach with approximate and exact inference models for Fusion 2+

    Science.gov (United States)

    Lee, K. David; Wiesenfeld, Eric; Gelfand, Andrew

    2007-04-01

    One of the greatest challenges in modern combat is maintaining a high level of timely Situational Awareness (SA). In many situations, computational complexity and accuracy considerations make the development and deployment of real-time, high-level inference tools very difficult. An innovative hybrid framework that combines Bayesian inference, in the form of Bayesian Networks, and Possibility Theory, in the form of Fuzzy Logic systems, has recently been introduced to provide a rigorous framework for high-level inference. In previous research, the theoretical basis and benefits of the hybrid approach have been developed. However, lacking is a concrete experimental comparison of the hybrid framework with traditional fusion methods, to demonstrate and quantify this benefit. The goal of this research, therefore, is to provide a statistical analysis on the comparison of the accuracy and performance of hybrid network theory, with pure Bayesian and Fuzzy systems and an inexact Bayesian system approximated using Particle Filtering. To accomplish this task, domain specific models will be developed under these different theoretical approaches and then evaluated, via Monte Carlo Simulation, in comparison to situational ground truth to measure accuracy and fidelity. Following this, a rigorous statistical analysis of the performance results will be performed, to quantify the benefit of hybrid inference to other fusion tools.

  14. An inferentialist perspective on the coordination of actions and reasons involved in making a statistical inference

    Science.gov (United States)

    Bakker, Arthur; Ben-Zvi, Dani; Makar, Katie

    2017-12-01

    To understand how statistical and other types of reasoning are coordinated with actions to reduce uncertainty, we conducted a case study in vocational education that involved statistical hypothesis testing. We analyzed an intern's research project in a hospital laboratory in which reducing uncertainties was crucial to make a valid statistical inference. In his project, the intern, Sam, investigated whether patients' blood could be sent through pneumatic post without influencing the measurement of particular blood components. We asked, in the process of making a statistical inference, how are reasons and actions coordinated to reduce uncertainty? For the analysis, we used the semantic theory of inferentialism, specifically, the concept of webs of reasons and actions—complexes of interconnected reasons for facts and actions; these reasons include premises and conclusions, inferential relations, implications, motives for action, and utility of tools for specific purposes in a particular context. Analysis of interviews with Sam, his supervisor and teacher as well as video data of Sam in the classroom showed that many of Sam's actions aimed to reduce variability, rule out errors, and thus reduce uncertainties so as to arrive at a valid inference. Interestingly, the decisive factor was not the outcome of a t test but of the reference change value, a clinical chemical measure of analytic and biological variability. With insights from this case study, we expect that students can be better supported in connecting statistics with context and in dealing with uncertainty.

  15. Inference on network statistics by restricting to the network space: applications to sexual history data.

    Science.gov (United States)

    Goyal, Ravi; De Gruttola, Victor

    2018-01-30

    Analysis of sexual history data intended to describe sexual networks presents many challenges arising from the fact that most surveys collect information on only a very small fraction of the population of interest. In addition, partners are rarely identified and responses are subject to reporting biases. Typically, each network statistic of interest, such as mean number of sexual partners for men or women, is estimated independently of other network statistics. There is, however, a complex relationship among networks statistics; and knowledge of these relationships can aid in addressing concerns mentioned earlier. We develop a novel method that constrains a posterior predictive distribution of a collection of network statistics in order to leverage the relationships among network statistics in making inference about network properties of interest. The method ensures that inference on network properties is compatible with an actual network. Through extensive simulation studies, we also demonstrate that use of this method can improve estimates in settings where there is uncertainty that arises both from sampling and from systematic reporting bias compared with currently available approaches to estimation. To illustrate the method, we apply it to estimate network statistics using data from the Chicago Health and Social Life Survey. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Optimal state discrimination using particle statistics

    International Nuclear Information System (INIS)

    Bose, S.; Ekert, A.; Omar, Y.; Paunkovic, N.; Vedral, V.

    2003-01-01

    We present an application of particle statistics to the problem of optimal ambiguous discrimination of quantum states. The states to be discriminated are encoded in the internal degrees of freedom of identical particles, and we use the bunching and antibunching of the external degrees of freedom to discriminate between various internal states. We show that we can achieve the optimal single-shot discrimination probability using only the effects of particle statistics. We discuss interesting applications of our method to detecting entanglement and purifying mixed states. Our scheme can easily be implemented with the current technology

  17. Statistical inference for stochastic processes

    National Research Council Canada - National Science Library

    Basawa, Ishwar V; Prakasa Rao, B. L. S

    1980-01-01

    The aim of this monograph is to attempt to reduce the gap between theory and applications in the area of stochastic modelling, by directing the interest of future researchers to the inference aspects...

  18. High-dimensional statistical inference: From vector to matrix

    Science.gov (United States)

    Zhang, Anru

    Statistical inference for sparse signals or low-rank matrices in high-dimensional settings is of significant interest in a range of contemporary applications. It has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. In this thesis, we consider several problems in including sparse signal recovery (compressed sensing under restricted isometry) and low-rank matrix recovery (matrix recovery via rank-one projections and structured matrix completion). The first part of the thesis discusses compressed sensing and affine rank minimization in both noiseless and noisy cases and establishes sharp restricted isometry conditions for sparse signal and low-rank matrix recovery. The analysis relies on a key technical tool which represents points in a polytope by convex combinations of sparse vectors. The technique is elementary while leads to sharp results. It is shown that, in compressed sensing, delta kA 0, delta kA < 1/3 + epsilon, deltak A + thetak,kA < 1 + epsilon, or deltatkA< √(t - 1) / t + epsilon are not sufficient to guarantee the exact recovery of all k-sparse signals for large k. Similar result also holds for matrix recovery. In addition, the conditions delta kA<1/3, deltak A+ thetak,kA<1, delta tkA < √(t - 1)/t and deltarM<1/3, delta rM+ thetar,rM<1, delta trM< √(t - 1)/ t are also shown to be sufficient respectively for stable recovery of approximately sparse signals and low-rank matrices in the noisy case. For the second part of the thesis, we introduce a rank-one projection model for low-rank matrix recovery and propose a constrained nuclear norm minimization method for stable recovery of low-rank matrices in the noisy case. The procedure is adaptive to the rank and robust against small perturbations. Both upper and lower bounds for the estimation accuracy under the Frobenius norm loss are obtained. The proposed estimator is shown to be rate-optimal under certain conditions. The

  19. Inference of missing data and chemical model parameters using experimental statistics

    Science.gov (United States)

    Casey, Tiernan; Najm, Habib

    2017-11-01

    A method for determining the joint parameter density of Arrhenius rate expressions through the inference of missing experimental data is presented. This approach proposes noisy hypothetical data sets from target experiments and accepts those which agree with the reported statistics, in the form of nominal parameter values and their associated uncertainties. The data exploration procedure is formalized using Bayesian inference, employing maximum entropy and approximate Bayesian computation methods to arrive at a joint density on data and parameters. The method is demonstrated in the context of reactions in the H2-O2 system for predictive modeling of combustion systems of interest. Work supported by the US DOE BES CSGB. Sandia National Labs is a multimission lab managed and operated by Nat. Technology and Eng'g Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Intl, for the US DOE NCSA under contract DE-NA-0003525.

  20. Designs and Methods for Association Studies and Population Size Inference in Statistical Genetics

    DEFF Research Database (Denmark)

    Waltoft, Berit Lindum

    method provides a simple goodness of t test by comparing the observed SFS with the expected SFS under a given model of population size changes. By the use of Monte Carlo estimation the expected time between coalescent events can be estimated and the expected SFS can thereby be evaluated. Using......). The OR is interpreted as the eect of an exposure on the probability of being diseased at the end of follow-up, while the interpretation of the IRR is the eect of an exposure on the probability of becoming diseased. Through a simulation study, the OR from a classical case-control study is shown to be an inconsistent...... the classical chi-square statistics we are able to infer single parameter models. Multiple parameter models, e.g. multiple epochs, are harder to identify. By introducing the inference of population size back in time as an inverse problem, the second procedure applies the theory of smoothing splines to infer...

  1. IMAGINE: Interstellar MAGnetic field INference Engine

    Science.gov (United States)

    Steininger, Theo

    2018-03-01

    IMAGINE (Interstellar MAGnetic field INference Engine) performs inference on generic parametric models of the Galaxy. The modular open source framework uses highly optimized tools and technology such as the MultiNest sampler (ascl:1109.006) and the information field theory framework NIFTy (ascl:1302.013) to create an instance of the Milky Way based on a set of parameters for physical observables, using Bayesian statistics to judge the mismatch between measured data and model prediction. The flexibility of the IMAGINE framework allows for simple refitting for newly available data sets and makes state-of-the-art Bayesian methods easily accessible particularly for random components of the Galactic magnetic field.

  2. Statistical inference using weak chaos and infinite memory

    International Nuclear Information System (INIS)

    Welling, Max; Chen Yutian

    2010-01-01

    We describe a class of deterministic weakly chaotic dynamical systems with infinite memory. These 'herding systems' combine learning and inference into one algorithm, where moments or data-items are converted directly into an arbitrarily long sequence of pseudo-samples. This sequence has infinite range correlations and as such is highly structured. We show that its information content, as measured by sub-extensive entropy, can grow as fast as K log T, which is faster than the usual 1/2 K log T for exchangeable sequences generated by random posterior sampling from a Bayesian model. In one dimension we prove that herding sequences are equivalent to Sturmian sequences which have complexity exactly log(T + 1). More generally, we advocate the application of the rich theoretical framework around nonlinear dynamical systems, chaos theory and fractal geometry to statistical learning.

  3. Statistical inference using weak chaos and infinite memory

    Energy Technology Data Exchange (ETDEWEB)

    Welling, Max; Chen Yutian, E-mail: welling@ics.uci.ed, E-mail: yutian.chen@uci.ed [Donald Bren School of Information and Computer Science, University of California Irvine CA 92697-3425 (United States)

    2010-06-01

    We describe a class of deterministic weakly chaotic dynamical systems with infinite memory. These 'herding systems' combine learning and inference into one algorithm, where moments or data-items are converted directly into an arbitrarily long sequence of pseudo-samples. This sequence has infinite range correlations and as such is highly structured. We show that its information content, as measured by sub-extensive entropy, can grow as fast as K log T, which is faster than the usual 1/2 K log T for exchangeable sequences generated by random posterior sampling from a Bayesian model. In one dimension we prove that herding sequences are equivalent to Sturmian sequences which have complexity exactly log(T + 1). More generally, we advocate the application of the rich theoretical framework around nonlinear dynamical systems, chaos theory and fractal geometry to statistical learning.

  4. Final Report, DOE Early Career Award: Predictive modeling of complex physical systems: new tools for statistical inference, uncertainty quantification, and experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-08-31

    Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesian inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.

  5. Statistical inference with quantum measurements: methodologies for nitrogen vacancy centers in diamond

    Science.gov (United States)

    Hincks, Ian; Granade, Christopher; Cory, David G.

    2018-01-01

    The analysis of photon count data from the standard nitrogen vacancy (NV) measurement process is treated as a statistical inference problem. This has applications toward gaining better and more rigorous error bars for tasks such as parameter estimation (e.g. magnetometry), tomography, and randomized benchmarking. We start by providing a summary of the standard phenomenological model of the NV optical process in terms of Lindblad jump operators. This model is used to derive random variables describing emitted photons during measurement, to which finite visibility, dark counts, and imperfect state preparation are added. NV spin-state measurement is then stated as an abstract statistical inference problem consisting of an underlying biased coin obstructed by three Poisson rates. Relevant frequentist and Bayesian estimators are provided, discussed, and quantitatively compared. We show numerically that the risk of the maximum likelihood estimator is well approximated by the Cramér-Rao bound, for which we provide a simple formula. Of the estimators, we in particular promote the Bayes estimator, owing to its slightly better risk performance, and straightforward error propagation into more complex experiments. This is illustrated on experimental data, where quantum Hamiltonian learning is performed and cross-validated in a fully Bayesian setting, and compared to a more traditional weighted least squares fit.

  6. Statistical models for optimizing mineral exploration

    International Nuclear Information System (INIS)

    Wignall, T.K.; DeGeoffroy, J.

    1987-01-01

    The primary purpose of mineral exploration is to discover ore deposits. The emphasis of this volume is on the mathematical and computational aspects of optimizing mineral exploration. The seven chapters that make up the main body of the book are devoted to the description and application of various types of computerized geomathematical models. These chapters include: (1) the optimal selection of ore deposit types and regions of search, as well as prospecting selected areas, (2) designing airborne and ground field programs for the optimal coverage of prospecting areas, and (3) delineating and evaluating exploration targets within prospecting areas by means of statistical modeling. Many of these statistical programs are innovative and are designed to be useful for mineral exploration modeling. Examples of geomathematical models are applied to exploring for six main types of base and precious metal deposits, as well as other mineral resources (such as bauxite and uranium)

  7. Statistical Inference on the Canadian Middle Class

    Directory of Open Access Journals (Sweden)

    Russell Davidson

    2018-03-01

    Full Text Available Conventional wisdom says that the middle classes in many developed countries have recently suffered losses, in terms of both the share of the total population belonging to the middle class, and also their share in total income. Here, distribution-free methods are developed for inference on these shares, by means of deriving expressions for their asymptotic variances of sample estimates, and the covariance of the estimates. Asymptotic inference can be undertaken based on asymptotic normality. Bootstrap inference can be expected to be more reliable, and appropriate bootstrap procedures are proposed. As an illustration, samples of individual earnings drawn from Canadian census data are used to test various hypotheses about the middle-class shares, and confidence intervals for them are computed. It is found that, for the earlier censuses, sample sizes are large enough for asymptotic and bootstrap inference to be almost identical, but that, in the twenty-first century, the bootstrap fails on account of a strange phenomenon whereby many presumably different incomes in the data are rounded to one and the same value. Another difference between the centuries is the appearance of heavy right-hand tails in the income distributions of both men and women.

  8. Statistical inference for imperfect maintenance models with missing data

    International Nuclear Information System (INIS)

    Dijoux, Yann; Fouladirad, Mitra; Nguyen, Dinh Tuan

    2016-01-01

    The paper considers complex industrial systems with incomplete maintenance history. A corrective maintenance is performed after the occurrence of a failure and its efficiency is assumed to be imperfect. In maintenance analysis, the databases are not necessarily complete. Specifically, the observations are assumed to be window-censored. This situation arises relatively frequently after the purchase of a second-hand unit or in the absence of maintenance record during the burn-in phase. The joint assessment of the wear-out of the system and the maintenance efficiency is investigated under missing data. A review along with extensions of statistical inference procedures from an observation window are proposed in the case of perfect and minimal repair using the renewal and Poisson theories, respectively. Virtual age models are employed to model imperfect repair. In this framework, new estimation procedures are developed. In particular, maximum likelihood estimation methods are derived for the most classical virtual age models. The benefits of the new estimation procedures are highlighted by numerical simulations and an application to a real data set. - Highlights: • New estimation procedures for window-censored observations and imperfect repair. • Extensions of inference methods for perfect and minimal repair with missing data. • Overview of maximum likelihood method with complete and incomplete observations. • Benefits of the new procedures highlighted by simulation studies and real application.

  9. Developing a statistically powerful measure for quartet tree inference using phylogenetic identities and Markov invariants.

    Science.gov (United States)

    Sumner, Jeremy G; Taylor, Amelia; Holland, Barbara R; Jarvis, Peter D

    2017-12-01

    Recently there has been renewed interest in phylogenetic inference methods based on phylogenetic invariants, alongside the related Markov invariants. Broadly speaking, both these approaches give rise to polynomial functions of sequence site patterns that, in expectation value, either vanish for particular evolutionary trees (in the case of phylogenetic invariants) or have well understood transformation properties (in the case of Markov invariants). While both approaches have been valued for their intrinsic mathematical interest, it is not clear how they relate to each other, and to what extent they can be used as practical tools for inference of phylogenetic trees. In this paper, by focusing on the special case of binary sequence data and quartets of taxa, we are able to view these two different polynomial-based approaches within a common framework. To motivate the discussion, we present three desirable statistical properties that we argue any invariant-based phylogenetic method should satisfy: (1) sensible behaviour under reordering of input sequences; (2) stability as the taxa evolve independently according to a Markov process; and (3) explicit dependence on the assumption of a continuous-time process. Motivated by these statistical properties, we develop and explore several new phylogenetic inference methods. In particular, we develop a statistically bias-corrected version of the Markov invariants approach which satisfies all three properties. We also extend previous work by showing that the phylogenetic invariants can be implemented in such a way as to satisfy property (3). A simulation study shows that, in comparison to other methods, our new proposed approach based on bias-corrected Markov invariants is extremely powerful for phylogenetic inference. The binary case is of particular theoretical interest as-in this case only-the Markov invariants can be expressed as linear combinations of the phylogenetic invariants. A wider implication of this is that, for

  10. Statistical inference of seabed sound-speed structure in the Gulf of Oman Basin.

    Science.gov (United States)

    Sagers, Jason D; Knobles, David P

    2014-06-01

    Addressed is the statistical inference of the sound-speed depth profile of a thick soft seabed from broadband sound propagation data recorded in the Gulf of Oman Basin in 1977. The acoustic data are in the form of time series signals recorded on a sparse vertical line array and generated by explosive sources deployed along a 280 km track. The acoustic data offer a unique opportunity to study a deep-water bottom-limited thickly sedimented environment because of the large number of time series measurements, very low seabed attenuation, and auxiliary measurements. A maximum entropy method is employed to obtain a conditional posterior probability distribution (PPD) for the sound-speed ratio and the near-surface sound-speed gradient. The multiple data samples allow for a determination of the average error constraint value required to uniquely specify the PPD for each data sample. Two complicating features of the statistical inference study are addressed: (1) the need to develop an error function that can both utilize the measured multipath arrival structure and mitigate the effects of data errors and (2) the effect of small bathymetric slopes on the structure of the bottom interacting arrivals.

  11. Critical examination of logical formulations in quantum theory. Statistical inference and Hilbertian distance between quantum states

    International Nuclear Information System (INIS)

    Hadjisawas, Nicolas.

    1982-01-01

    After a critical study of the logical quantum mechanics formulations of Jauch and Piron, classical and quantum versions of statistical inference are studied. In order to do this, the significance of the Jaynes and Kulback principles (maximum likelihood, least squares principles) is revealed from the theorems established. In the quantum mechanics inference problem, a ''distance'' between states is defined. This concept is used to solve the quantum equivalent of the classical problem studied by Kulback. The ''projection postulate'' proposition is subsequently deduced [fr

  12. Difference-of-Convex optimization for variational kl-corrected inference in dirichlet process mixtures

    DEFF Research Database (Denmark)

    Bonnevie, Rasmus; Schmidt, Mikkel Nørgaard; Mørup, Morten

    2017-01-01

    Variational methods for approximate inference in Bayesian models optimise a lower bound on the marginal likelihood, but the optimization problem often suffers from being nonconvex and high-dimensional. This can be alleviated by working in a collapsed domain where a part of the parameter space...

  13. Statistical Inference on Stochastic Dominance Efficiency. Do Omitted Risk Factors Explain the Size and Book-to-Market Effects?

    NARCIS (Netherlands)

    G.T. Post (Thierry)

    2003-01-01

    textabstractThis paper discusses statistical inference on the second-order stochastic dominance (SSD) efficiency of a given portfolio relative to all portfolios formed from a set of assets. We derive the asymptotic sampling distribution of the Post test statistic for SSD efficiency. Unfortunately, a

  14. BIG-DATA and the Challenges for Statistical Inference and Economics Teaching and Learning

    Directory of Open Access Journals (Sweden)

    J.L. Peñaloza Figueroa

    2017-04-01

    Full Text Available The  increasing  automation  in  data  collection,  either  in  structured  or unstructured formats, as well as the development of reading, concatenation and comparison algorithms and the growing analytical skills which characterize the era of Big Data, cannot not only be considered a technological achievement, but an organizational, methodological and analytical challenge for knowledge as well, which is necessary to generate opportunities and added value. In fact, exploiting the potential of Big-Data includes all fields of community activity; and given its ability to extract behaviour patterns, we are interested in the challenges for the field of teaching and learning, particularly in the field of statistical inference and economic theory. Big-Data can improve the understanding of concepts, models and techniques used in both statistical inference and economic theory, and it can also generate reliable and robust short and long term predictions. These facts have led to the demand for analytical capabilities, which in turn encourages teachers and students to demand access to massive information produced by individuals, companies and public and private organizations in their transactions and inter- relationships. Mass data (Big Data is changing the way people access, understand and organize knowledge, which in turn is causing a shift in the approach to statistics and economics teaching, considering them as a real way of thinking rather than just operational and technical disciplines. Hence, the question is how teachers can use automated collection and analytical skills to their advantage when teaching statistics and economics; and whether it will lead to a change in what is taught and how it is taught.

  15. Optimization of critical medium components for higher phycocyanin ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... culture medium was screened and optimized using the statistical experimental designs of Plackett- .... statistical inference for exploring the functional relation- ..... from the F-test with a very low probability value (0.0015).

  16. Statistical fluctuations of an ocean surface inferred from shoes and ships

    Science.gov (United States)

    Lerche, Ian; Maubeuge, Frédéric

    1995-12-01

    This paper shows that it is possible to roughly estimate some ocean properties using simple time-dependent statistical models of ocean fluctuations. Based on a real incident, the loss by a vessel of a Nike shoes container in the North Pacific Ocean, a statistical model was tested on data sets consisting of the Nike shoes found by beachcombers a few months later. This statistical treatment of the shoes' motion allows one to infer velocity trends of the Pacific Ocean, together with their fluctuation strengths. The idea is to suppose that there is a mean bulk flow speed that can depend on location on the ocean surface and time. The fluctuations of the surface flow speed are then treated as statistically random. The distribution of shoes is described in space and time using Markov probability processes related to the mean and fluctuating ocean properties. The aim of the exercise is to provide some of the properties of the Pacific Ocean that are otherwise calculated using a sophisticated numerical model, OSCURS, where numerous data are needed. Relevant quantities are sharply estimated, which can be useful to (1) constrain output results from OSCURS computations, and (2) elucidate the behavior patterns of ocean flow characteristics on long time scales.

  17. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2015-08-01

    Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.

  18. Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models.

    Science.gov (United States)

    Petersson, K M; Nichols, T E; Poline, J B; Holmes, A P

    1999-01-01

    Functional neuroimaging (FNI) provides experimental access to the intact living brain making it possible to study higher cognitive functions in humans. In this review and in a companion paper in this issue, we discuss some common methods used to analyse FNI data. The emphasis in both papers is on assumptions and limitations of the methods reviewed. There are several methods available to analyse FNI data indicating that none is optimal for all purposes. In order to make optimal use of the methods available it is important to know the limits of applicability. For the interpretation of FNI results it is also important to take into account the assumptions, approximations and inherent limitations of the methods used. This paper gives a brief overview over some non-inferential descriptive methods and common statistical models used in FNI. Issues relating to the complex problem of model selection are discussed. In general, proper model selection is a necessary prerequisite for the validity of the subsequent statistical inference. The non-inferential section describes methods that, combined with inspection of parameter estimates and other simple measures, can aid in the process of model selection and verification of assumptions. The section on statistical models covers approaches to global normalization and some aspects of univariate, multivariate, and Bayesian models. Finally, approaches to functional connectivity and effective connectivity are discussed. In the companion paper we review issues related to signal detection and statistical inference. PMID:10466149

  19. Statistical inference approach to structural reconstruction of complex networks from binary time series

    Science.gov (United States)

    Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng

    2018-02-01

    Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.

  20. Human Inferences about Sequences: A Minimal Transition Probability Model.

    Directory of Open Access Journals (Sweden)

    Florent Meyniel

    2016-12-01

    Full Text Available The brain constantly infers the causes of the inputs it receives and uses these inferences to generate statistical expectations about future observations. Experimental evidence for these expectations and their violations include explicit reports, sequential effects on reaction times, and mismatch or surprise signals recorded in electrophysiology and functional MRI. Here, we explore the hypothesis that the brain acts as a near-optimal inference device that constantly attempts to infer the time-varying matrix of transition probabilities between the stimuli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious Bayesian model, with a single free parameter, accounts for a broad range of findings on surprise signals, sequential effects and the perception of randomness. Notably, it explains the pervasive asymmetry between repetitions and alternations encountered in those studies. Our analysis suggests that a neural machinery for inferring transition probabilities lies at the core of human sequence knowledge.

  1. Forward and backward inference in spatial cognition.

    Directory of Open Access Journals (Sweden)

    Will D Penny

    Full Text Available This paper shows that the various computations underlying spatial cognition can be implemented using statistical inference in a single probabilistic model. Inference is implemented using a common set of 'lower-level' computations involving forward and backward inference over time. For example, to estimate where you are in a known environment, forward inference is used to optimally combine location estimates from path integration with those from sensory input. To decide which way to turn to reach a goal, forward inference is used to compute the likelihood of reaching that goal under each option. To work out which environment you are in, forward inference is used to compute the likelihood of sensory observations under the different hypotheses. For reaching sensory goals that require a chaining together of decisions, forward inference can be used to compute a state trajectory that will lead to that goal, and backward inference to refine the route and estimate control signals that produce the required trajectory. We propose that these computations are reflected in recent findings of pattern replay in the mammalian brain. Specifically, that theta sequences reflect decision making, theta flickering reflects model selection, and remote replay reflects route and motor planning. We also propose a mapping of the above computational processes onto lateral and medial entorhinal cortex and hippocampus.

  2. Large scale statistical inference of signaling pathways from RNAi and microarray data

    Directory of Open Access Journals (Sweden)

    Poustka Annemarie

    2007-10-01

    Full Text Available Abstract Background The advent of RNA interference techniques enables the selective silencing of biologically interesting genes in an efficient way. In combination with DNA microarray technology this enables researchers to gain insights into signaling pathways by observing downstream effects of individual knock-downs on gene expression. These secondary effects can be used to computationally reverse engineer features of the upstream signaling pathway. Results In this paper we address this challenging problem by extending previous work by Markowetz et al., who proposed a statistical framework to score networks hypotheses in a Bayesian manner. Our extensions go in three directions: First, we introduce a way to omit the data discretization step needed in the original framework via a calculation based on p-values instead. Second, we show how prior assumptions on the network structure can be incorporated into the scoring scheme using regularization techniques. Third and most important, we propose methods to scale up the original approach, which is limited to around 5 genes, to large scale networks. Conclusion Comparisons of these methods on artificial data are conducted. Our proposed module network is employed to infer the signaling network between 13 genes in the ER-α pathway in human MCF-7 breast cancer cells. Using a bootstrapping approach this reconstruction can be found with good statistical stability. The code for the module network inference method is available in the latest version of the R-package nem, which can be obtained from the Bioconductor homepage.

  3. A statistical method for lung tumor segmentation uncertainty in PET images based on user inference.

    Science.gov (United States)

    Zheng, Chaojie; Wang, Xiuying; Feng, Dagan

    2015-01-01

    PET has been widely accepted as an effective imaging modality for lung tumor diagnosis and treatment. However, standard criteria for delineating tumor boundary from PET are yet to develop largely due to relatively low quality of PET images, uncertain tumor boundary definition, and variety of tumor characteristics. In this paper, we propose a statistical solution to segmentation uncertainty on the basis of user inference. We firstly define the uncertainty segmentation band on the basis of segmentation probability map constructed from Random Walks (RW) algorithm; and then based on the extracted features of the user inference, we use Principle Component Analysis (PCA) to formulate the statistical model for labeling the uncertainty band. We validated our method on 10 lung PET-CT phantom studies from the public RIDER collections [1] and 16 clinical PET studies where tumors were manually delineated by two experienced radiologists. The methods were validated using Dice similarity coefficient (DSC) to measure the spatial volume overlap. Our method achieved an average DSC of 0.878 ± 0.078 on phantom studies and 0.835 ± 0.039 on clinical studies.

  4. Truth, possibility and probability new logical foundations of probability and statistical inference

    CERN Document Server

    Chuaqui, R

    1991-01-01

    Anyone involved in the philosophy of science is naturally drawn into the study of the foundations of probability. Different interpretations of probability, based on competing philosophical ideas, lead to different statistical techniques, and frequently to mutually contradictory consequences. This unique book presents a new interpretation of probability, rooted in the traditional interpretation that was current in the 17th and 18th centuries. Mathematical models are constructed based on this interpretation, and statistical inference and decision theory are applied, including some examples in artificial intelligence, solving the main foundational problems. Nonstandard analysis is extensively developed for the construction of the models and in some of the proofs. Many nonstandard theorems are proved, some of them new, in particular, a representation theorem that asserts that any stochastic process can be approximated by a process defined over a space with equiprobable outcomes.

  5. Challenges and Approaches to Statistical Design and Inference in High Dimensional Investigations

    Science.gov (United States)

    Garrett, Karen A.; Allison, David B.

    2015-01-01

    Summary Advances in modern technologies have facilitated high-dimensional experiments (HDEs) that generate tremendous amounts of genomic, proteomic, and other “omic” data. HDEs involving whole-genome sequences and polymorphisms, expression levels of genes, protein abundance measurements, and combinations thereof have become a vanguard for new analytic approaches to the analysis of HDE data. Such situations demand creative approaches to the processes of statistical inference, estimation, prediction, classification, and study design. The novel and challenging biological questions asked from HDE data have resulted in many specialized analytic techniques being developed. This chapter discusses some of the unique statistical challenges facing investigators studying high-dimensional biology, and describes some approaches being developed by statistical scientists. We have included some focus on the increasing interest in questions involving testing multiple propositions simultaneously, appropriate inferential indicators for the types of questions biologists are interested in, and the need for replication of results across independent studies, investigators, and settings. A key consideration inherent throughout is the challenge in providing methods that a statistician judges to be sound and a biologist finds informative. PMID:19588106

  6. Challenges and approaches to statistical design and inference in high-dimensional investigations.

    Science.gov (United States)

    Gadbury, Gary L; Garrett, Karen A; Allison, David B

    2009-01-01

    Advances in modern technologies have facilitated high-dimensional experiments (HDEs) that generate tremendous amounts of genomic, proteomic, and other "omic" data. HDEs involving whole-genome sequences and polymorphisms, expression levels of genes, protein abundance measurements, and combinations thereof have become a vanguard for new analytic approaches to the analysis of HDE data. Such situations demand creative approaches to the processes of statistical inference, estimation, prediction, classification, and study design. The novel and challenging biological questions asked from HDE data have resulted in many specialized analytic techniques being developed. This chapter discusses some of the unique statistical challenges facing investigators studying high-dimensional biology and describes some approaches being developed by statistical scientists. We have included some focus on the increasing interest in questions involving testing multiple propositions simultaneously, appropriate inferential indicators for the types of questions biologists are interested in, and the need for replication of results across independent studies, investigators, and settings. A key consideration inherent throughout is the challenge in providing methods that a statistician judges to be sound and a biologist finds informative.

  7. Statistical inference, the bootstrap, and neural-network modeling with application to foreign exchange rates.

    Science.gov (United States)

    White, H; Racine, J

    2001-01-01

    We propose tests for individual and joint irrelevance of network inputs. Such tests can be used to determine whether an input or group of inputs "belong" in a particular model, thus permitting valid statistical inference based on estimated feedforward neural-network models. The approaches employ well-known statistical resampling techniques. We conduct a small Monte Carlo experiment showing that our tests have reasonable level and power behavior, and we apply our methods to examine whether there are predictable regularities in foreign exchange rates. We find that exchange rates do appear to contain information that is exploitable for enhanced point prediction, but the nature of the predictive relations evolves through time.

  8. Network inference via adaptive optimal design

    Directory of Open Access Journals (Sweden)

    Stigter Johannes D

    2012-09-01

    Full Text Available Abstract Background Current research in network reverse engineering for genetic or metabolic networks very often does not include a proper experimental and/or input design. In this paper we address this issue in more detail and suggest a method that includes an iterative design of experiments based, on the most recent data that become available. The presented approach allows a reliable reconstruction of the network and addresses an important issue, i.e., the analysis and the propagation of uncertainties as they exist in both the data and in our own knowledge. These two types of uncertainties have their immediate ramifications for the uncertainties in the parameter estimates and, hence, are taken into account from the very beginning of our experimental design. Findings The method is demonstrated for two small networks that include a genetic network for mRNA synthesis and degradation and an oscillatory network describing a molecular network underlying adenosine 3’-5’ cyclic monophosphate (cAMP as observed in populations of Dyctyostelium cells. In both cases a substantial reduction in parameter uncertainty was observed. Extension to larger scale networks is possible but needs a more rigorous parameter estimation algorithm that includes sparsity as a constraint in the optimization procedure. Conclusion We conclude that a careful experiment design very often (but not always pays off in terms of reliability in the inferred network topology. For large scale networks a better parameter estimation algorithm is required that includes sparsity as an additional constraint. These algorithms are available in the literature and can also be used in an adaptive optimal design setting as demonstrated in this paper.

  9. Direct Learning of Systematics-Aware Summary Statistics

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Complex machine learning tools, such as deep neural networks and gradient boosting algorithms, are increasingly being used to construct powerful discriminative features for High Energy Physics analyses. These methods are typically trained with simulated or auxiliary data samples by optimising some classification or regression surrogate objective. The learned feature representations are then used to build a sample-based statistical model to perform inference (e.g. interval estimation or hypothesis testing) over a set of parameters of interest. However, the effectiveness of the mentioned approach can be reduced by the presence of known uncertainties that cause differences between training and experimental data, included in the statistical model via nuisance parameters. This work presents an end-to-end algorithm, which leverages on existing deep learning technologies but directly aims to produce inference-optimal sample-summary statistics. By including the statistical model and a differentiable approximation of ...

  10. On statistical inference in time series analysis of the evolution of road safety.

    Science.gov (United States)

    Commandeur, Jacques J F; Bijleveld, Frits D; Bergel-Hayat, Ruth; Antoniou, Constantinos; Yannis, George; Papadimitriou, Eleonora

    2013-11-01

    Data collected for building a road safety observatory usually include observations made sequentially through time. Examples of such data, called time series data, include annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle kilometers driven in a country, as well as the corresponding values of safety performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc.). Some commonly used statistical techniques imply assumptions that are often violated by the special properties of time series data, namely serial dependency among disturbances associated with the observations. The first objective of this paper is to demonstrate the impact of such violations to the applicability of standard methods of statistical inference, which leads to an under or overestimation of the standard error and consequently may produce erroneous inferences. Moreover, having established the adverse consequences of ignoring serial dependency issues, the paper aims to describe rigorous statistical techniques used to overcome them. In particular, appropriate time series analysis techniques of varying complexity are employed to describe the development over time, relating the accident-occurrences to explanatory factors such as exposure measures or safety performance indicators, and forecasting the development into the near future. Traditional regression models (whether they are linear, generalized linear or nonlinear) are shown not to naturally capture the inherent dependencies in time series data. Dedicated time series analysis techniques, such as the ARMA-type and DRAG approaches are discussed next, followed by structural time series models, which are a subclass of state space methods. The paper concludes with general recommendations and practice guidelines for the use of time series models in road safety research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Feature network models for proximity data : statistical inference, model selection, network representations and links with related models

    NARCIS (Netherlands)

    Frank, Laurence Emmanuelle

    2006-01-01

    Feature Network Models (FNM) are graphical structures that represent proximity data in a discrete space with the use of features. A statistical inference theory is introduced, based on the additivity properties of networks and the linear regression framework. Considering features as predictor

  12. Optimal Decision Rules in Repeated Games Where Players Infer an Opponent’s Mind via Simplified Belief Calculation

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Nakamura

    2016-07-01

    Full Text Available In strategic situations, humans infer the state of mind of others, e.g., emotions or intentions, adapting their behavior appropriately. Nonetheless, evolutionary studies of cooperation typically focus only on reaction norms, e.g., tit for tat, whereby individuals make their next decisions by only considering the observed outcome rather than focusing on their opponent’s state of mind. In this paper, we analyze repeated two-player games in which players explicitly infer their opponent’s unobservable state of mind. Using Markov decision processes, we investigate optimal decision rules and their performance in cooperation. The state-of-mind inference requires Bayesian belief calculations, which is computationally intensive. We therefore study two models in which players simplify these belief calculations. In Model 1, players adopt a heuristic to approximately infer their opponent’s state of mind, whereas in Model 2, players use information regarding their opponent’s previous state of mind, obtained from external evidence, e.g., emotional signals. We show that players in both models reach almost optimal behavior through commitment-like decision rules by which players are committed to selecting the same action regardless of their opponent’s behavior. These commitment-like decision rules can enhance or reduce cooperation depending on the opponent’s strategy.

  13. An Efficient Forward-Reverse EM Algorithm for Statistical Inference in Stochastic Reaction Networks

    KAUST Repository

    Bayer, Christian

    2016-01-06

    In this work [1], we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem of approximating the reaction coefficients based on discretely observed data. To this end, we introduce an efficient two-phase algorithm in which the first phase is deterministic and it is intended to provide a starting point for the second phase which is the Monte Carlo EM Algorithm.

  14. Statistical Optimality in Multipartite Ranking and Ordinal Regression.

    Science.gov (United States)

    Uematsu, Kazuki; Lee, Yoonkyung

    2015-05-01

    Statistical optimality in multipartite ranking is investigated as an extension of bipartite ranking. We consider the optimality of ranking algorithms through minimization of the theoretical risk which combines pairwise ranking errors of ordinal categories with differential ranking costs. The extension shows that for a certain class of convex loss functions including exponential loss, the optimal ranking function can be represented as a ratio of weighted conditional probability of upper categories to lower categories, where the weights are given by the misranking costs. This result also bridges traditional ranking methods such as proportional odds model in statistics with various ranking algorithms in machine learning. Further, the analysis of multipartite ranking with different costs provides a new perspective on non-smooth list-wise ranking measures such as the discounted cumulative gain and preference learning. We illustrate our findings with simulation study and real data analysis.

  15. Confidence intervals permit, but don't guarantee, better inference than statistical significance testing

    Directory of Open Access Journals (Sweden)

    Melissa Coulson

    2010-07-01

    Full Text Available A statistically significant result, and a non-significant result may differ little, although significance status may tempt an interpretation of difference. Two studies are reported that compared interpretation of such results presented using null hypothesis significance testing (NHST, or confidence intervals (CIs. Authors of articles published in psychology, behavioural neuroscience, and medical journals were asked, via email, to interpret two fictitious studies that found similar results, one statistically significant, and the other non-significant. Responses from 330 authors varied greatly, but interpretation was generally poor, whether results were presented as CIs or using NHST. However, when interpreting CIs respondents who mentioned NHST were 60% likely to conclude, unjustifiably, the two results conflicted, whereas those who interpreted CIs without reference to NHST were 95% likely to conclude, justifiably, the two results were consistent. Findings were generally similar for all three disciplines. An email survey of academic psychologists confirmed that CIs elicit better interpretations if NHST is not invoked. Improved statistical inference can result from encouragement of meta-analytic thinking and use of CIs but, for full benefit, such highly desirable statistical reform requires also that researchers interpret CIs without recourse to NHST.

  16. Modeling and control of an unstable system using probabilistic fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Sozhamadevi N.

    2015-09-01

    Full Text Available A new type Fuzzy Inference System is proposed, a Probabilistic Fuzzy Inference system which model and minimizes the effects of statistical uncertainties. The blend of two different concepts, degree of truth and probability of truth in a unique framework leads to this new concept. This combination is carried out both in Fuzzy sets and Fuzzy rules, which gives rise to Probabilistic Fuzzy Sets and Probabilistic Fuzzy Rules. Introducing these probabilistic elements, a distinctive probabilistic fuzzy inference system is developed and this involves fuzzification, inference and output processing. This integrated approach accounts for all of the uncertainty like rule uncertainties and measurement uncertainties present in the systems and has led to the design which performs optimally after training. In this paper a Probabilistic Fuzzy Inference System is applied for modeling and control of a highly nonlinear, unstable system and also proved its effectiveness.

  17. Statistical inference of the nuclear accidents occurrence number for the next decade

    International Nuclear Information System (INIS)

    Felizia, E.R.

    1987-01-01

    This paper aims to give a response using the classical statistical and bayesian inference techniques regarding the common characteristic in the Harrisburg and Chernobyl nuclear accidents: in both reactors, core fusion occurred. In relation to the last mentioned techniques, the most recent developments were applied, based on the decision theory of uncertainty; among others, the principle of maximum entropy. Besides, as a preliminar information on the accidents occurrence frequency with core fusion, the German risk analysis results were used. The estimations predicted for the next decade an average between one or two accidents with core fusion and low possibilities for the 'no accident' event in the same period. (Author)

  18. Optimizing refiner operation with statistical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, G [Noranda Research Centre, Pointe Claire, PQ (Canada)

    1997-02-01

    The impact of refining conditions on the energy efficiency of the process and on the handsheet quality of a chemi-mechanical pulp was studied as part of a series of pilot scale refining trials. Statistical models of refiner performance were constructed from these results and non-linear optimization of process conditions were conducted. Optimization results indicated that increasing the ratio of specific energy applied in the first stage led to a reduction of some 15 per cent in the total energy requirement. The strategy can also be used to obtain significant increases in pulp quality for a given energy input. 20 refs., 6 tabs.

  19. The Pearson diffusions: A class of statistically tractable diffusion processes

    DEFF Research Database (Denmark)

    Forman, Julie Lyng; Sørensen, Michael

    The Pearson diffusions is a flexible class of diffusions defined by having linear drift and quadratic squared diffusion coefficient. It is demonstrated that for this class explicit statistical inference is feasible. Explicit optimal martingale estimating func- tions are found, and the corresponding...

  20. Optimal allocation of testing resources for statistical simulations

    Science.gov (United States)

    Quintana, Carolina; Millwater, Harry R.; Singh, Gulshan; Golden, Patrick

    2015-07-01

    Statistical estimates from simulation involve uncertainty caused by the variability in the input random variables due to limited data. Allocating resources to obtain more experimental data of the input variables to better characterize their probability distributions can reduce the variance of statistical estimates. The methodology proposed determines the optimal number of additional experiments required to minimize the variance of the output moments given single or multiple constraints. The method uses multivariate t-distribution and Wishart distribution to generate realizations of the population mean and covariance of the input variables, respectively, given an amount of available data. This method handles independent and correlated random variables. A particle swarm method is used for the optimization. The optimal number of additional experiments per variable depends on the number and variance of the initial data, the influence of the variable in the output function and the cost of each additional experiment. The methodology is demonstrated using a fretting fatigue example.

  1. Statistical physics of hard optimization problems

    International Nuclear Information System (INIS)

    Zdeborova, L.

    2009-01-01

    Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial (NP)-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this article is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfy ability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named ”locked” constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfy ability.

  2. Statistical physics of hard optimization problems

    International Nuclear Information System (INIS)

    Zdeborova, L.

    2009-01-01

    Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an non-deterministic polynomial-complete problem the practically arising instances might, in fact, be easy to solve. The principal the question we address in the article is: How to recognize if an non-deterministic polynomial-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named 'locked' constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability (Authors)

  3. Statistical physics of hard optimization problems

    Science.gov (United States)

    Zdeborová, Lenka

    2009-06-01

    Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial (NP)-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this article is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named "locked" constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability.

  4. Automatic physical inference with information maximizing neural networks

    Science.gov (United States)

    Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-04-01

    Compressing large data sets to a manageable number of summaries that are informative about the underlying parameters vastly simplifies both frequentist and Bayesian inference. When only simulations are available, these summaries are typically chosen heuristically, so they may inadvertently miss important information. We introduce a simulation-based machine learning technique that trains artificial neural networks to find nonlinear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). In test cases where the posterior can be derived exactly, likelihood-free inference based on automatically derived IMNN summaries produces nearly exact posteriors, showing that these summaries are good approximations to sufficient statistics. In a series of numerical examples of increasing complexity and astrophysical relevance we show that IMNNs are robustly capable of automatically finding optimal, nonlinear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima. We anticipate that the automatic physical inference method described in this paper will be essential to obtain both accurate and precise cosmological parameter estimates from complex and large astronomical data sets, including those from LSST and Euclid.

  5. Multiple Illuminant Colour Estimation via Statistical Inference on Factor Graphs.

    Science.gov (United States)

    Mutimbu, Lawrence; Robles-Kelly, Antonio

    2016-08-31

    This paper presents a method to recover a spatially varying illuminant colour estimate from scenes lit by multiple light sources. Starting with the image formation process, we formulate the illuminant recovery problem in a statistically datadriven setting. To do this, we use a factor graph defined across the scale space of the input image. In the graph, we utilise a set of illuminant prototypes computed using a data driven approach. As a result, our method delivers a pixelwise illuminant colour estimate being devoid of libraries or user input. The use of a factor graph also allows for the illuminant estimates to be recovered making use of a maximum a posteriori (MAP) inference process. Moreover, we compute the probability marginals by performing a Delaunay triangulation on our factor graph. We illustrate the utility of our method for pixelwise illuminant colour recovery on widely available datasets and compare against a number of alternatives. We also show sample colour correction results on real-world images.

  6. Statistical optimization of cultural conditions by response surface ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... Full Length Research Paper. Statistical optimization of cultural conditions by response surface methodology for phenol degradation by a novel ... Phenol is a hydrocarbon compound that is highly toxic, ... Microorganism.

  7. Optimization of analytical parameters for inferring relationships among Escherichia coli isolates from repetitive-element PCR by maximizing correspondence with multilocus sequence typing data.

    Science.gov (United States)

    Goldberg, Tony L; Gillespie, Thomas R; Singer, Randall S

    2006-09-01

    Repetitive-element PCR (rep-PCR) is a method for genotyping bacteria based on the selective amplification of repetitive genetic elements dispersed throughout bacterial chromosomes. The method has great potential for large-scale epidemiological studies because of its speed and simplicity; however, objective guidelines for inferring relationships among bacterial isolates from rep-PCR data are lacking. We used multilocus sequence typing (MLST) as a "gold standard" to optimize the analytical parameters for inferring relationships among Escherichia coli isolates from rep-PCR data. We chose 12 isolates from a large database to represent a wide range of pairwise genetic distances, based on the initial evaluation of their rep-PCR fingerprints. We conducted MLST with these same isolates and systematically varied the analytical parameters to maximize the correspondence between the relationships inferred from rep-PCR and those inferred from MLST. Methods that compared the shapes of densitometric profiles ("curve-based" methods) yielded consistently higher correspondence values between data types than did methods that calculated indices of similarity based on shared and different bands (maximum correspondences of 84.5% and 80.3%, respectively). Curve-based methods were also markedly more robust in accommodating variations in user-specified analytical parameter values than were "band-sharing coefficient" methods, and they enhanced the reproducibility of rep-PCR. Phylogenetic analyses of rep-PCR data yielded trees with high topological correspondence to trees based on MLST and high statistical support for major clades. These results indicate that rep-PCR yields accurate information for inferring relationships among E. coli isolates and that accuracy can be enhanced with the use of analytical methods that consider the shapes of densitometric profiles.

  8. A statistical approach to optimizing concrete mixture design.

    Science.gov (United States)

    Ahmad, Shamsad; Alghamdi, Saeid A

    2014-01-01

    A step-by-step statistical approach is proposed to obtain optimum proportioning of concrete mixtures using the data obtained through a statistically planned experimental program. The utility of the proposed approach for optimizing the design of concrete mixture is illustrated considering a typical case in which trial mixtures were considered according to a full factorial experiment design involving three factors and their three levels (3(3)). A total of 27 concrete mixtures with three replicates (81 specimens) were considered by varying the levels of key factors affecting compressive strength of concrete, namely, water/cementitious materials ratio (0.38, 0.43, and 0.48), cementitious materials content (350, 375, and 400 kg/m(3)), and fine/total aggregate ratio (0.35, 0.40, and 0.45). The experimental data were utilized to carry out analysis of variance (ANOVA) and to develop a polynomial regression model for compressive strength in terms of the three design factors considered in this study. The developed statistical model was used to show how optimization of concrete mixtures can be carried out with different possible options.

  9. A Statistical Approach to Optimizing Concrete Mixture Design

    Directory of Open Access Journals (Sweden)

    Shamsad Ahmad

    2014-01-01

    Full Text Available A step-by-step statistical approach is proposed to obtain optimum proportioning of concrete mixtures using the data obtained through a statistically planned experimental program. The utility of the proposed approach for optimizing the design of concrete mixture is illustrated considering a typical case in which trial mixtures were considered according to a full factorial experiment design involving three factors and their three levels (33. A total of 27 concrete mixtures with three replicates (81 specimens were considered by varying the levels of key factors affecting compressive strength of concrete, namely, water/cementitious materials ratio (0.38, 0.43, and 0.48, cementitious materials content (350, 375, and 400 kg/m3, and fine/total aggregate ratio (0.35, 0.40, and 0.45. The experimental data were utilized to carry out analysis of variance (ANOVA and to develop a polynomial regression model for compressive strength in terms of the three design factors considered in this study. The developed statistical model was used to show how optimization of concrete mixtures can be carried out with different possible options.

  10. A Statistical Approach to Optimizing Concrete Mixture Design

    OpenAIRE

    Ahmad, Shamsad; Alghamdi, Saeid A.

    2014-01-01

    A step-by-step statistical approach is proposed to obtain optimum proportioning of concrete mixtures using the data obtained through a statistically planned experimental program. The utility of the proposed approach for optimizing the design of concrete mixture is illustrated considering a typical case in which trial mixtures were considered according to a full factorial experiment design involving three factors and their three levels (33). A total of 27 concrete mixtures with three replicate...

  11. Optimal Prediction of Moving Sound Source Direction in the Owl.

    Directory of Open Access Journals (Sweden)

    Weston Cox

    2015-07-01

    Full Text Available Capturing nature's statistical structure in behavioral responses is at the core of the ability to function adaptively in the environment. Bayesian statistical inference describes how sensory and prior information can be combined optimally to guide behavior. An outstanding open question of how neural coding supports Bayesian inference includes how sensory cues are optimally integrated over time. Here we address what neural response properties allow a neural system to perform Bayesian prediction, i.e., predicting where a source will be in the near future given sensory information and prior assumptions. The work here shows that the population vector decoder will perform Bayesian prediction when the receptive fields of the neurons encode the target dynamics with shifting receptive fields. We test the model using the system that underlies sound localization in barn owls. Neurons in the owl's midbrain show shifting receptive fields for moving sources that are consistent with the predictions of the model. We predict that neural populations can be specialized to represent the statistics of dynamic stimuli to allow for a vector read-out of Bayes-optimal predictions.

  12. Estimating the Optimal Dosage of Sodium Valproate in Idiopathic Generalized Epilepsy with Adaptive Neuro-Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Somayyeh Lotfi Noghabi

    2012-07-01

    Full Text Available Introduction: Epilepsy is a clinical syndrome in which seizures have a tendency to recur. Sodium valproate is the most effective drug in the treatment of all types of generalized seizures. Finding the optimal dosage (the lowest effective dose of sodium valproate is a real challenge to all neurologists. In this study, a new approach based on Adaptive Neuro-Fuzzy Inference System (ANFIS was presented for estimating the optimal dosage of sodium valproate in IGE (Idiopathic Generalized Epilepsy patients. Methods: 40 patients with Idiopathic Generalized Epilepsy, who were referred to the neurology department of Mashhad University of Medical Sciences between the years 2006-2011, were included in this study. The function Adaptive Neuro- Fuzzy Inference System (ANFIS constructs a Fuzzy Inference System (FIS whose membership function parameters are tuned (adjusted using either a back-propagation algorithm alone, or in combination with the least squares type of method (hybrid algorithm. In this study, we used hybrid method for adjusting the parameters. Methods: The R-square of the proposed system was %598 and the Pearson correlation coefficient was significant (P 0.05. Although the accuracy of the model was not high, it wasgood enough to be applied for treating the IGE patients with sodium valproate. Discussion: This paper presented a new application of ANFIS for estimating the optimal dosage of sodium valproate in IGE patients. Fuzzy set theory plays an important role in dealing with uncertainty when making decisions in medical applications. Collectively, it seems that ANFIS has a high capacity to be applied in medical sciences, especially neurology.

  13. Practical Bayesian Inference

    Science.gov (United States)

    Bailer-Jones, Coryn A. L.

    2017-04-01

    Preface; 1. Probability basics; 2. Estimation and uncertainty; 3. Statistical models and inference; 4. Linear models, least squares, and maximum likelihood; 5. Parameter estimation: single parameter; 6. Parameter estimation: multiple parameters; 7. Approximating distributions; 8. Monte Carlo methods for inference; 9. Parameter estimation: Markov chain Monte Carlo; 10. Frequentist hypothesis testing; 11. Model comparison; 12. Dealing with more complicated problems; References; Index.

  14. A neuro-fuzzy inference system tuned by particle swarm optimization algorithm for sensor monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Mauro Vitor de [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil). Div. de Instrumentacao e Confiabilidade Humana]. E-mail: mvitor@ien.gov.br; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Monitoracao de Processos

    2005-07-01

    A neuro-fuzzy inference system (ANFIS) tuned by particle swarm optimization (PSO) algorithm has been developed for monitor the relevant sensor in a nuclear plant using the information of other sensors. The antecedent parameters of the ANFIS that estimates the relevant sensor signal are optimized by a PSO algorithm and consequent parameters use a least-squares algorithm. The proposed sensor-monitoring algorithm was demonstrated through the estimation of the nuclear power value in a pressurized water reactor using as input to the ANFIS six other correlated signals. The obtained results are compared to two similar ANFIS using one gradient descendent (GD) and other genetic algorithm (GA), as antecedent parameters training algorithm. (author)

  15. A neuro-fuzzy inference system tuned by particle swarm optimization algorithm for sensor monitoring

    International Nuclear Information System (INIS)

    Oliveira, Mauro Vitor de; Schirru, Roberto

    2005-01-01

    A neuro-fuzzy inference system (ANFIS) tuned by particle swarm optimization (PSO) algorithm has been developed for monitor the relevant sensor in a nuclear plant using the information of other sensors. The antecedent parameters of the ANFIS that estimates the relevant sensor signal are optimized by a PSO algorithm and consequent parameters use a least-squares algorithm. The proposed sensor-monitoring algorithm was demonstrated through the estimation of the nuclear power value in a pressurized water reactor using as input to the ANFIS six other correlated signals. The obtained results are compared to two similar ANFIS using one gradient descendent (GD) and other genetic algorithm (GA), as antecedent parameters training algorithm. (author)

  16. Optimal prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Wan, Can; Wu, Zhao; Pinson, Pierre

    2014-01-01

    direct optimization of both the coverage probability and sharpness to ensure the quality. The proposed method does not involve the statistical inference or distribution assumption of forecasting errors needed in most existing methods. Case studies using real wind farm data from Australia have been...

  17. Optimization of Indoor Thermal Comfort Parameters with the Adaptive Network-Based Fuzzy Inference System and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-01-01

    Full Text Available The goal of this study is to improve thermal comfort and indoor air quality with the adaptive network-based fuzzy inference system (ANFIS model and improved particle swarm optimization (PSO algorithm. A method to optimize air conditioning parameters and installation distance is proposed. The methodology is demonstrated through a prototype case, which corresponds to a typical laboratory in colleges and universities. A laboratory model is established, and simulated flow field information is obtained with the CFD software. Subsequently, the ANFIS model is employed instead of the CFD model to predict indoor flow parameters, and the CFD database is utilized to train ANN input-output “metamodels” for the subsequent optimization. With the improved PSO algorithm and the stratified sequence method, the objective functions are optimized. The functions comprise PMV, PPD, and mean age of air. The optimal installation distance is determined with the hemisphere model. Results show that most of the staff obtain a satisfactory degree of thermal comfort and that the proposed method can significantly reduce the cost of building an experimental device. The proposed methodology can be used to determine appropriate air supply parameters and air conditioner installation position for a pleasant and healthy indoor environment.

  18. Multivariate Statistical Inference of Lightning Occurrence, and Using Lightning Observations

    Science.gov (United States)

    Boccippio, Dennis

    2004-01-01

    Two classes of multivariate statistical inference using TRMM Lightning Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple lightning/no-lightning classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and lightning observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by lightning observations.

  19. Statistical theory and inference

    CERN Document Server

    Olive, David J

    2014-01-01

    This text is for  a one semester graduate course in statistical theory and covers minimal and complete sufficient statistics, maximum likelihood estimators, method of moments, bias and mean square error, uniform minimum variance estimators and the Cramer-Rao lower bound, an introduction to large sample theory, likelihood ratio tests and uniformly most powerful  tests and the Neyman Pearson Lemma. A major goal of this text is to make these topics much more accessible to students by using the theory of exponential families. Exponential families, indicator functions and the support of the distribution are used throughout the text to simplify the theory. More than 50 ``brand name" distributions are used to illustrate the theory with many examples of exponential families, maximum likelihood estimators and uniformly minimum variance unbiased estimators. There are many homework problems with over 30 pages of solutions.

  20. Nonparametric statistical inference

    CERN Document Server

    Gibbons, Jean Dickinson

    2014-01-01

    Thoroughly revised and reorganized, the fourth edition presents in-depth coverage of the theory and methods of the most widely used nonparametric procedures in statistical analysis and offers example applications appropriate for all areas of the social, behavioral, and life sciences. The book presents new material on the quantiles, the calculation of exact and simulated power, multiple comparisons, additional goodness-of-fit tests, methods of analysis of count data, and modern computer applications using MINITAB, SAS, and STATXACT. It includes tabular guides for simplified applications of tests and finding P values and confidence interval estimates.

  1. Statistical inference for the additive hazards model under outcome-dependent sampling.

    Science.gov (United States)

    Yu, Jichang; Liu, Yanyan; Sandler, Dale P; Zhou, Haibo

    2015-09-01

    Cost-effective study design and proper inference procedures for data from such designs are always of particular interests to study investigators. In this article, we propose a biased sampling scheme, an outcome-dependent sampling (ODS) design for survival data with right censoring under the additive hazards model. We develop a weighted pseudo-score estimator for the regression parameters for the proposed design and derive the asymptotic properties of the proposed estimator. We also provide some suggestions for using the proposed method by evaluating the relative efficiency of the proposed method against simple random sampling design and derive the optimal allocation of the subsamples for the proposed design. Simulation studies show that the proposed ODS design is more powerful than other existing designs and the proposed estimator is more efficient than other estimators. We apply our method to analyze a cancer study conducted at NIEHS, the Cancer Incidence and Mortality of Uranium Miners Study, to study the risk of radon exposure to cancer.

  2. On quantum statistical inference

    NARCIS (Netherlands)

    Barndorff-Nielsen, O.E.; Gill, R.D.; Jupp, P.E.

    2001-01-01

    Recent developments in the mathematical foundations of quantum mechanics have brought the theory closer to that of classical probability and statistics. On the other hand, the unique character of quantum physics sets many of the questions addressed apart from those met classically in stochastics.

  3. Application of maximum entropy to statistical inference for inversion of data from a single track segment.

    Science.gov (United States)

    Stotts, Steven A; Koch, Robert A

    2017-08-01

    In this paper an approach is presented to estimate the constraint required to apply maximum entropy (ME) for statistical inference with underwater acoustic data from a single track segment. Previous algorithms for estimating the ME constraint require multiple source track segments to determine the constraint. The approach is relevant for addressing model mismatch effects, i.e., inaccuracies in parameter values determined from inversions because the propagation model does not account for all acoustic processes that contribute to the measured data. One effect of model mismatch is that the lowest cost inversion solution may be well outside a relatively well-known parameter value's uncertainty interval (prior), e.g., source speed from track reconstruction or towed source levels. The approach requires, for some particular parameter value, the ME constraint to produce an inferred uncertainty interval that encompasses the prior. Motivating this approach is the hypothesis that the proposed constraint determination procedure would produce a posterior probability density that accounts for the effect of model mismatch on inferred values of other inversion parameters for which the priors might be quite broad. Applications to both measured and simulated data are presented for model mismatch that produces minimum cost solutions either inside or outside some priors.

  4. Inference as Prediction

    Science.gov (United States)

    Watson, Jane

    2007-01-01

    Inference, or decision making, is seen in curriculum documents as the final step in a statistical investigation. For a formal statistical enquiry this may be associated with sophisticated tests involving probability distributions. For young students without the mathematical background to perform such tests, it is still possible to draw informal…

  5. Heuristic versus statistical physics approach to optimization problems

    International Nuclear Information System (INIS)

    Jedrzejek, C.; Cieplinski, L.

    1995-01-01

    Optimization is a crucial ingredient of many calculation schemes in science and engineering. In this paper we assess several classes of methods: heuristic algorithms, methods directly relying on statistical physics such as the mean-field method and simulated annealing; and Hopfield-type neural networks and genetic algorithms partly related to statistical physics. We perform the analysis for three types of problems: (1) the Travelling Salesman Problem, (2) vector quantization, and (3) traffic control problem in multistage interconnection network. In general, heuristic algorithms perform better (except for genetic algorithms) and much faster but have to be specific for every problem. The key to improving the performance could be to include heuristic features into general purpose statistical physics methods. (author)

  6. Fast optimization of statistical potentials for structurally constrained phylogenetic models

    Directory of Open Access Journals (Sweden)

    Rodrigue Nicolas

    2009-09-01

    Full Text Available Abstract Background Statistical approaches for protein design are relevant in the field of molecular evolutionary studies. In recent years, new, so-called structurally constrained (SC models of protein-coding sequence evolution have been proposed, which use statistical potentials to assess sequence-structure compatibility. In a previous work, we defined a statistical framework for optimizing knowledge-based potentials especially suited to SC models. Our method used the maximum likelihood principle and provided what we call the joint potentials. However, the method required numerical estimations by the use of computationally heavy Markov Chain Monte Carlo sampling algorithms. Results Here, we develop an alternative optimization procedure, based on a leave-one-out argument coupled to fast gradient descent algorithms. We assess that the leave-one-out potential yields very similar results to the joint approach developed previously, both in terms of the resulting potential parameters, and by Bayes factor evaluation in a phylogenetic context. On the other hand, the leave-one-out approach results in a considerable computational benefit (up to a 1,000 fold decrease in computational time for the optimization procedure. Conclusion Due to its computational speed, the optimization method we propose offers an attractive alternative for the design and empirical evaluation of alternative forms of potentials, using large data sets and high-dimensional parameterizations.

  7. Phase Transitions in Combinatorial Optimization Problems Basics, Algorithms and Statistical Mechanics

    CERN Document Server

    Hartmann, Alexander K

    2005-01-01

    A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary

  8. Variations on Bayesian Prediction and Inference

    Science.gov (United States)

    2016-05-09

    inference 2.2.1 Background There are a number of statistical inference problems that are not generally formulated via a full probability model...problem of inference about an unknown parameter, the Bayesian approach requires a full probability 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...the problem of inference about an unknown parameter, the Bayesian approach requires a full probability model/likelihood which can be an obstacle

  9. The anatomy of choice: active inference and agency.

    Science.gov (United States)

    Friston, Karl; Schwartenbeck, Philipp; Fitzgerald, Thomas; Moutoussis, Michael; Behrens, Timothy; Dolan, Raymond J

    2013-01-01

    This paper considers agency in the setting of embodied or active inference. In brief, we associate a sense of agency with prior beliefs about action and ask what sorts of beliefs underlie optimal behavior. In particular, we consider prior beliefs that action minimizes the Kullback-Leibler (KL) divergence between desired states and attainable states in the future. This allows one to formulate bounded rationality as approximate Bayesian inference that optimizes a free energy bound on model evidence. We show that constructs like expected utility, exploration bonuses, softmax choice rules and optimism bias emerge as natural consequences of this formulation. Previous accounts of active inference have focused on predictive coding and Bayesian filtering schemes for minimizing free energy. Here, we consider variational Bayes as an alternative scheme that provides formal constraints on the computational anatomy of inference and action-constraints that are remarkably consistent with neuroanatomy. Furthermore, this scheme contextualizes optimal decision theory and economic (utilitarian) formulations as pure inference problems. For example, expected utility theory emerges as a special case of free energy minimization, where the sensitivity or inverse temperature (of softmax functions and quantal response equilibria) has a unique and Bayes-optimal solution-that minimizes free energy. This sensitivity corresponds to the precision of beliefs about behavior, such that attainable goals are afforded a higher precision or confidence. In turn, this means that optimal behavior entails a representation of confidence about outcomes that are under an agent's control.

  10. Statistical physics of hard combinatorial optimization: Vertex cover problem

    Science.gov (United States)

    Zhao, Jin-Hua; Zhou, Hai-Jun

    2014-07-01

    Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of spin glasses and the associated message-passing algorithms have greatly deepened our understanding of typical-case computation complexity. In this paper, we use the vertex cover problem, a basic nondeterministic-polynomial (NP)-complete combinatorial optimization problem of wide application, as an example to introduce the statistical physical methods and algorithms. We do not go into the technical details but emphasize mainly the intuitive physical meanings of the message-passing equations. A nonfamiliar reader shall be able to understand to a large extent the physics behind the mean field approaches and to adjust the mean field methods in solving other optimization problems.

  11. Distributional Inference

    NARCIS (Netherlands)

    Kroese, A.H.; van der Meulen, E.A.; Poortema, Klaas; Schaafsma, W.

    1995-01-01

    The making of statistical inferences in distributional form is conceptionally complicated because the epistemic 'probabilities' assigned are mixtures of fact and fiction. In this respect they are essentially different from 'physical' or 'frequency-theoretic' probabilities. The distributional form is

  12. Examples in parametric inference with R

    CERN Document Server

    Dixit, Ulhas Jayram

    2016-01-01

    This book discusses examples in parametric inference with R. Combining basic theory with modern approaches, it presents the latest developments and trends in statistical inference for students who do not have an advanced mathematical and statistical background. The topics discussed in the book are fundamental and common to many fields of statistical inference and thus serve as a point of departure for in-depth study. The book is divided into eight chapters: Chapter 1 provides an overview of topics on sufficiency and completeness, while Chapter 2 briefly discusses unbiased estimation. Chapter 3 focuses on the study of moments and maximum likelihood estimators, and Chapter 4 presents bounds for the variance. In Chapter 5, topics on consistent estimator are discussed. Chapter 6 discusses Bayes, while Chapter 7 studies some more powerful tests. Lastly, Chapter 8 examines unbiased and other tests. Senior undergraduate and graduate students in statistics and mathematics, and those who have taken an introductory cou...

  13. Bayesian Inference in Statistical Analysis

    CERN Document Server

    Box, George E P

    2011-01-01

    The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Rob

  14. Characteristic statistic algorithm (CSA) for in-core loading pattern optimization

    International Nuclear Information System (INIS)

    Liu Zhihong; Hu Yongming; Shi Gong

    2007-01-01

    To solve the problem of PWR in-core loading pattern optimization, a more suitable global optimization algorithm, i.e., Characteristic statistic algorithm (CSA), is used. The searching process of this algorithm and how to apply it to this problem are presented. Loading pattern optimization code SCYCLE is developed. Two different problems on real PWR models are calculated and the results are compared with other algorithms. It is shown that SCYCLE has high efficiency and good global performance on this problem. (authors)

  15. Variational inference & deep learning: A new synthesis

    OpenAIRE

    Kingma, D.P.

    2017-01-01

    In this thesis, Variational Inference and Deep Learning: A New Synthesis, we propose novel solutions to the problems of variational (Bayesian) inference, generative modeling, representation learning, semi-supervised learning, and stochastic optimization.

  16. Variational inference & deep learning : A new synthesis

    NARCIS (Netherlands)

    Kingma, D.P.

    2017-01-01

    In this thesis, Variational Inference and Deep Learning: A New Synthesis, we propose novel solutions to the problems of variational (Bayesian) inference, generative modeling, representation learning, semi-supervised learning, and stochastic optimization.

  17. Logical inference and evaluation

    International Nuclear Information System (INIS)

    Perey, F.G.

    1981-01-01

    Most methodologies of evaluation currently used are based upon the theory of statistical inference. It is generally perceived that this theory is not capable of dealing satisfactorily with what are called systematic errors. Theories of logical inference should be capable of treating all of the information available, including that not involving frequency data. A theory of logical inference is presented as an extension of deductive logic via the concept of plausibility and the application of group theory. Some conclusions, based upon the application of this theory to evaluation of data, are also given

  18. Inference

    DEFF Research Database (Denmark)

    Møller, Jesper

    2010-01-01

    Chapter 9: This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods based on a maximum likelihood or Bayesian approach combined with markov chain Monte Carlo...... (MCMC) techniques. Due to space limitations the focus is on spatial point processes....

  19. Sb2Te3 and Its Superlattices: Optimization by Statistical Design.

    Science.gov (United States)

    Behera, Jitendra K; Zhou, Xilin; Ranjan, Alok; Simpson, Robert E

    2018-05-02

    The objective of this work is to demonstrate the usefulness of fractional factorial design for optimizing the crystal quality of chalcogenide van der Waals (vdW) crystals. We statistically analyze the growth parameters of highly c axis oriented Sb 2 Te 3 crystals and Sb 2 Te 3 -GeTe phase change vdW heterostructured superlattices. The statistical significance of the growth parameters of temperature, pressure, power, buffer materials, and buffer layer thickness was found by fractional factorial design and response surface analysis. Temperature, pressure, power, and their second-order interactions are the major factors that significantly influence the quality of the crystals. Additionally, using tungsten rather than molybdenum as a buffer layer significantly enhances the crystal quality. Fractional factorial design minimizes the number of experiments that are necessary to find the optimal growth conditions, resulting in an order of magnitude improvement in the crystal quality. We highlight that statistical design of experiment methods, which is more commonly used in product design, should be considered more broadly by those designing and optimizing materials.

  20. Statistical Methods for Population Genetic Inference Based on Low-Depth Sequencing Data from Modern and Ancient DNA

    DEFF Research Database (Denmark)

    Korneliussen, Thorfinn Sand

    Due to the recent advances in DNA sequencing technology genomic data are being generated at an unprecedented rate and we are gaining access to entire genomes at population level. The technology does, however, not give direct access to the genetic variation and the many levels of preprocessing...... that is required before being able to make inferences from the data introduces multiple levels of uncertainty, especially for low-depth data. Therefore methods that take into account the inherent uncertainty are needed for being able to make robust inferences in the downstream analysis of such data. This poses...... a problem for a range of key summary statistics within populations genetics where existing methods are based on the assumption that the true genotypes are known. Motivated by this I present: 1) a new method for the estimation of relatedness between pairs of individuals, 2) a new method for estimating...

  1. Applying a multiobjective metaheuristic inspired by honey bees to phylogenetic inference.

    Science.gov (United States)

    Santander-Jiménez, Sergio; Vega-Rodríguez, Miguel A

    2013-10-01

    The development of increasingly popular multiobjective metaheuristics has allowed bioinformaticians to deal with optimization problems in computational biology where multiple objective functions must be taken into account. One of the most relevant research topics that can benefit from these techniques is phylogenetic inference. Throughout the years, different researchers have proposed their own view about the reconstruction of ancestral evolutionary relationships among species. As a result, biologists often report different phylogenetic trees from a same dataset when considering distinct optimality principles. In this work, we detail a multiobjective swarm intelligence approach based on the novel Artificial Bee Colony algorithm for inferring phylogenies. The aim of this paper is to propose a complementary view of phylogenetics according to the maximum parsimony and maximum likelihood criteria, in order to generate a set of phylogenetic trees that represent a compromise between these principles. Experimental results on a variety of nucleotide data sets and statistical studies highlight the relevance of the proposal with regard to other multiobjective algorithms and state-of-the-art biological methods. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. The anatomy of choice: active inference and agency

    Directory of Open Access Journals (Sweden)

    Karl eFriston

    2013-09-01

    Full Text Available This paper considers agency in the setting of embodied or active inference. In brief, we associate a sense of agency with prior beliefs about action and ask what sorts of beliefs underlie optimal behaviour. In particular, we consider prior beliefs that action minimises the Kullback-Leibler divergence between desired states and attainable states in the future. This allows one to formulate bounded rationality as approximate Bayesian inference that optimises a free energy bound on model evidence. We show that constructs like expected utility, exploration bonuses, softmax choice rules and optimism bias emerge as natural consequences of this formulation. Previous accounts of active inference have focused on predictive coding and Bayesian filtering schemes for minimising free energy. Here, we consider variational Bayes as an alternative scheme that provides formal constraints on the computational anatomy of inference and action – constraints that are remarkably consistent with neuroanatomy. Furthermore, this scheme contextualises optimal decision theory and economic (utilitarian formulations as pure inference problems. For example, expected utility theory emerges as a special case of free energy minimisation, where the sensitivity or inverse temperature (of softmax functions and quantal response equilibria has a unique and Bayes-optimal solution – that minimises free energy. This sensitivity corresponds to the precision of beliefs about behaviour, such that attainable goals are afforded a higher precision or confidence. In turn, this means that optimal behaviour entails a representation of confidence about outcomes that are under an agent's control.

  3. Inference in models with adaptive learning

    NARCIS (Netherlands)

    Chevillon, G.; Massmann, M.; Mavroeidis, S.

    2010-01-01

    Identification of structural parameters in models with adaptive learning can be weak, causing standard inference procedures to become unreliable. Learning also induces persistent dynamics, and this makes the distribution of estimators and test statistics non-standard. Valid inference can be

  4. Sampling, Probability Models and Statistical Reasoning Statistical

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Sampling, Probability Models and Statistical Reasoning Statistical Inference. Mohan Delampady V R Padmawar. General Article Volume 1 Issue 5 May 1996 pp 49-58 ...

  5. Outcome-Dependent Sampling Design and Inference for Cox's Proportional Hazards Model.

    Science.gov (United States)

    Yu, Jichang; Liu, Yanyan; Cai, Jianwen; Sandler, Dale P; Zhou, Haibo

    2016-11-01

    We propose a cost-effective outcome-dependent sampling design for the failure time data and develop an efficient inference procedure for data collected with this design. To account for the biased sampling scheme, we derive estimators from a weighted partial likelihood estimating equation. The proposed estimators for regression parameters are shown to be consistent and asymptotically normally distributed. A criteria that can be used to optimally implement the ODS design in practice is proposed and studied. The small sample performance of the proposed method is evaluated by simulation studies. The proposed design and inference procedure is shown to be statistically more powerful than existing alternative designs with the same sample sizes. We illustrate the proposed method with an existing real data from the Cancer Incidence and Mortality of Uranium Miners Study.

  6. Simulation-based optimal Bayesian experimental design for nonlinear systems

    KAUST Repository

    Huan, Xun

    2013-01-01

    The optimal selection of experimental conditions is essential to maximizing the value of data for inference and prediction, particularly in situations where experiments are time-consuming and expensive to conduct. We propose a general mathematical framework and an algorithmic approach for optimal experimental design with nonlinear simulation-based models; in particular, we focus on finding sets of experiments that provide the most information about targeted sets of parameters.Our framework employs a Bayesian statistical setting, which provides a foundation for inference from noisy, indirect, and incomplete data, and a natural mechanism for incorporating heterogeneous sources of information. An objective function is constructed from information theoretic measures, reflecting expected information gain from proposed combinations of experiments. Polynomial chaos approximations and a two-stage Monte Carlo sampling method are used to evaluate the expected information gain. Stochastic approximation algorithms are then used to make optimization feasible in computationally intensive and high-dimensional settings. These algorithms are demonstrated on model problems and on nonlinear parameter inference problems arising in detailed combustion kinetics. © 2012 Elsevier Inc.

  7. Cortical hierarchies perform Bayesian causal inference in multisensory perception.

    Directory of Open Access Journals (Sweden)

    Tim Rohe

    2015-02-01

    Full Text Available To form a veridical percept of the environment, the brain needs to integrate sensory signals from a common source but segregate those from independent sources. Thus, perception inherently relies on solving the "causal inference problem." Behaviorally, humans solve this problem optimally as predicted by Bayesian Causal Inference; yet, the underlying neural mechanisms are unexplored. Combining psychophysics, Bayesian modeling, functional magnetic resonance imaging (fMRI, and multivariate decoding in an audiovisual spatial localization task, we demonstrate that Bayesian Causal Inference is performed by a hierarchy of multisensory processes in the human brain. At the bottom of the hierarchy, in auditory and visual areas, location is represented on the basis that the two signals are generated by independent sources (= segregation. At the next stage, in posterior intraparietal sulcus, location is estimated under the assumption that the two signals are from a common source (= forced fusion. Only at the top of the hierarchy, in anterior intraparietal sulcus, the uncertainty about the causal structure of the world is taken into account and sensory signals are combined as predicted by Bayesian Causal Inference. Characterizing the computational operations of signal interactions reveals the hierarchical nature of multisensory perception in human neocortex. It unravels how the brain accomplishes Bayesian Causal Inference, a statistical computation fundamental for perception and cognition. Our results demonstrate how the brain combines information in the face of uncertainty about the underlying causal structure of the world.

  8. An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics

    Science.gov (United States)

    Turkington, Bruce

    2013-08-01

    A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a vector of resolved variables, selected to describe the macroscopic state of the system, a family of quasi-equilibrium probability densities on phase space corresponding to the resolved variables is employed as a statistical model, and the evolution of the mean resolved vector is estimated by optimizing over paths of these densities. Specifically, a cost function is constructed to quantify the lack-of-fit to the microscopic dynamics of any feasible path of densities from the statistical model; it is an ensemble-averaged, weighted, squared-norm of the residual that results from submitting the path of densities to the Liouville equation. The path that minimizes the time integral of the cost function determines the best-fit evolution of the mean resolved vector. The closed reduced equations satisfied by the optimal path are derived by Hamilton-Jacobi theory. When expressed in terms of the macroscopic variables, these equations have the generic structure of governing equations for nonequilibrium thermodynamics. In particular, the value function for the optimization principle coincides with the dissipation potential that defines the relation between thermodynamic forces and fluxes. The adjustable closure parameters in the best-fit reduced equations depend explicitly on the arbitrary weights that enter into the lack-of-fit cost function. Two particular model reductions are outlined to illustrate the general method. In each example the set of weights in the optimization principle contracts into a single effective closure parameter.

  9. Statistical inference for template aging

    Science.gov (United States)

    Schuckers, Michael E.

    2006-04-01

    A change in classification error rates for a biometric device is often referred to as template aging. Here we offer two methods for determining whether the effect of time is statistically significant. The first of these is the use of a generalized linear model to determine if these error rates change linearly over time. This approach generalizes previous work assessing the impact of covariates using generalized linear models. The second approach uses of likelihood ratio tests methodology. The focus here is on statistical methods for estimation not the underlying cause of the change in error rates over time. These methodologies are applied to data from the National Institutes of Standards and Technology Biometric Score Set Release 1. The results of these applications are discussed.

  10. Optimal moment determination in POME-copula based hydrometeorological dependence modelling

    Science.gov (United States)

    Liu, Dengfeng; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Chen, Yuanfang; Chen, Xi

    2017-07-01

    Copula has been commonly applied in multivariate modelling in various fields where marginal distribution inference is a key element. To develop a flexible, unbiased mathematical inference framework in hydrometeorological multivariate applications, the principle of maximum entropy (POME) is being increasingly coupled with copula. However, in previous POME-based studies, determination of optimal moment constraints has generally not been considered. The main contribution of this study is the determination of optimal moments for POME for developing a coupled optimal moment-POME-copula framework to model hydrometeorological multivariate events. In this framework, margins (marginals, or marginal distributions) are derived with the use of POME, subject to optimal moment constraints. Then, various candidate copulas are constructed according to the derived margins, and finally the most probable one is determined, based on goodness-of-fit statistics. This optimal moment-POME-copula framework is applied to model the dependence patterns of three types of hydrometeorological events: (i) single-site streamflow-water level; (ii) multi-site streamflow; and (iii) multi-site precipitation, with data collected from Yichang and Hankou in the Yangtze River basin, China. Results indicate that the optimal-moment POME is more accurate in margin fitting and the corresponding copulas reflect a good statistical performance in correlation simulation. Also, the derived copulas, capturing more patterns which traditional correlation coefficients cannot reflect, provide an efficient way in other applied scenarios concerning hydrometeorological multivariate modelling.

  11. Uncertainty in prediction and in inference

    International Nuclear Information System (INIS)

    Hilgevoord, J.; Uffink, J.

    1991-01-01

    The concepts of uncertainty in prediction and inference are introduced and illustrated using the diffraction of light as an example. The close relationship between the concepts of uncertainty in inference and resolving power is noted. A general quantitative measure of uncertainty in inference can be obtained by means of the so-called statistical distance between probability distributions. When applied to quantum mechanics, this distance leads to a measure of the distinguishability of quantum states, which essentially is the absolute value of the matrix element between the states. The importance of this result to the quantum mechanical uncertainty principle is noted. The second part of the paper provides a derivation of the statistical distance on the basis of the so-called method of support

  12. Introduction to Bayesian statistics

    CERN Document Server

    Bolstad, William M

    2017-01-01

    There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...

  13. On quantum statistical inference

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Gill, Richard D.; Jupp, Peter E.

    Recent developments in the mathematical foundations of quantum mechanics have brought the theory closer to that of classical probability and statistics. On the other hand, the unique character of quantum physics sets many of the questions addressed apart from those met classically in stochastics....... Furthermore, concurrent advances in experimental techniques and in the theory of quantum computation have led to a strong interest in questions of quantum information, in particular in the sense of the amount of information about unknown parameters in given observational data or accessible through various...

  14. The statistical-inference approach to generalized thermodynamics

    International Nuclear Information System (INIS)

    Lavenda, B.H.; Scherer, C.

    1987-01-01

    Limit theorems, such as the central-limit theorem and the weak law of large numbers, are applicable to statistical thermodynamics for sufficiently large sample size of indipendent and identically distributed observations performed on extensive thermodynamic (chance) variables. The estimation of the intensive thermodynamic quantities is a problem in parametric statistical estimation. The normal approximation to the Gibbs' distribution is justified by the analysis of large deviations. Statistical thermodynamics is generalized to include the statistical estimation of variance as well as mean values

  15. ddClone: joint statistical inference of clonal populations from single cell and bulk tumour sequencing data.

    Science.gov (United States)

    Salehi, Sohrab; Steif, Adi; Roth, Andrew; Aparicio, Samuel; Bouchard-Côté, Alexandre; Shah, Sohrab P

    2017-03-01

    Next-generation sequencing (NGS) of bulk tumour tissue can identify constituent cell populations in cancers and measure their abundance. This requires computational deconvolution of allelic counts from somatic mutations, which may be incapable of fully resolving the underlying population structure. Single cell sequencing (SCS) is a more direct method, although its replacement of NGS is impeded by technical noise and sampling limitations. We propose ddClone, which analytically integrates NGS and SCS data, leveraging their complementary attributes through joint statistical inference. We show on real and simulated datasets that ddClone produces more accurate results than can be achieved by either method alone.

  16. Outcome-Dependent Sampling Design and Inference for Cox’s Proportional Hazards Model

    Science.gov (United States)

    Yu, Jichang; Liu, Yanyan; Cai, Jianwen; Sandler, Dale P.; Zhou, Haibo

    2016-01-01

    We propose a cost-effective outcome-dependent sampling design for the failure time data and develop an efficient inference procedure for data collected with this design. To account for the biased sampling scheme, we derive estimators from a weighted partial likelihood estimating equation. The proposed estimators for regression parameters are shown to be consistent and asymptotically normally distributed. A criteria that can be used to optimally implement the ODS design in practice is proposed and studied. The small sample performance of the proposed method is evaluated by simulation studies. The proposed design and inference procedure is shown to be statistically more powerful than existing alternative designs with the same sample sizes. We illustrate the proposed method with an existing real data from the Cancer Incidence and Mortality of Uranium Miners Study. PMID:28090134

  17. Hippocampal Structure Predicts Statistical Learning and Associative Inference Abilities during Development.

    Science.gov (United States)

    Schlichting, Margaret L; Guarino, Katharine F; Schapiro, Anna C; Turk-Browne, Nicholas B; Preston, Alison R

    2017-01-01

    Despite the importance of learning and remembering across the lifespan, little is known about how the episodic memory system develops to support the extraction of associative structure from the environment. Here, we relate individual differences in volumes along the hippocampal long axis to performance on statistical learning and associative inference tasks-both of which require encoding associations that span multiple episodes-in a developmental sample ranging from ages 6 to 30 years. Relating age to volume, we found dissociable patterns across the hippocampal long axis, with opposite nonlinear volume changes in the head and body. These structural differences were paralleled by performance gains across the age range on both tasks, suggesting improvements in the cross-episode binding ability from childhood to adulthood. Controlling for age, we also found that smaller hippocampal heads were associated with superior behavioral performance on both tasks, consistent with this region's hypothesized role in forming generalized codes spanning events. Collectively, these results highlight the importance of examining hippocampal development as a function of position along the hippocampal axis and suggest that the hippocampal head is particularly important in encoding associative structure across development.

  18. Phase Transitions in Combinatorial Optimization Problems: Basics, Algorithms and Statistical Mechanics

    Science.gov (United States)

    Hartmann, Alexander K.; Weigt, Martin

    2005-10-01

    A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary basics in required detail. Throughout, the algorithms are shown with examples and calculations, while the proofs are given in a way suitable for graduate students, post-docs, and researchers. Ideal for newcomers to this young, multidisciplinary field.

  19. A review of statistical modelling and inference for electrical capacitance tomography

    International Nuclear Information System (INIS)

    Watzenig, D; Fox, C

    2009-01-01

    Bayesian inference applied to electrical capacitance tomography, or other inverse problems, provides a framework for quantified model fitting. Estimation of unknown quantities of interest is based on the posterior distribution over the unknown permittivity and unobserved data, conditioned on measured data. Key components in this framework are a prior model requiring a parametrization of the permittivity and a normalizable prior density, the likelihood function that follows from a decomposition of measurements into deterministic and random parts, and numerical simulation of noise-free measurements. Uncertainty in recovered permittivities arises from measurement noise, measurement sensitivities, model inaccuracy, discretization error and a priori uncertainty; each of these sources may be accounted for and in some cases taken advantage of. Estimates or properties of the permittivity can be calculated as summary statistics over the posterior distribution using Markov chain Monte Carlo sampling. Several modified Metropolis–Hastings algorithms are available to speed up this computationally expensive step. The bias in estimates that is induced by the representation of unknowns may be avoided by design of a prior density. The differing purpose of applications means that there is no single 'Bayesian' analysis. Further, differing solutions will use different modelling choices, perhaps influenced by the need for computational efficiency. We solve a reference problem of recovering the unknown shape of a constant permittivity inclusion in an otherwise uniform background. Statistics calculated in the reference problem give accurate estimates of inclusion area, and other properties, when using measured data. The alternatives available for structuring inferential solutions in other applications are clarified by contrasting them against the choice we made in our reference solution. (topical review)

  20. Perceptual inference.

    Science.gov (United States)

    Aggelopoulos, Nikolaos C

    2015-08-01

    Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Combining statistical inference and decisions in ecology

    Science.gov (United States)

    Williams, Perry J.; Hooten, Mevin B.

    2016-01-01

    Statistical decision theory (SDT) is a sub-field of decision theory that formally incorporates statistical investigation into a decision-theoretic framework to account for uncertainties in a decision problem. SDT provides a unifying analysis of three types of information: statistical results from a data set, knowledge of the consequences of potential choices (i.e., loss), and prior beliefs about a system. SDT links the theoretical development of a large body of statistical methods including point estimation, hypothesis testing, and confidence interval estimation. The theory and application of SDT have mainly been developed and published in the fields of mathematics, statistics, operations research, and other decision sciences, but have had limited exposure in ecology. Thus, we provide an introduction to SDT for ecologists and describe its utility for linking the conventionally separate tasks of statistical investigation and decision making in a single framework. We describe the basic framework of both Bayesian and frequentist SDT, its traditional use in statistics, and discuss its application to decision problems that occur in ecology. We demonstrate SDT with two types of decisions: Bayesian point estimation, and an applied management problem of selecting a prescribed fire rotation for managing a grassland bird species. Central to SDT, and decision theory in general, are loss functions. Thus, we also provide basic guidance and references for constructing loss functions for an SDT problem.

  2. Statistical and optimal learning with applications in business analytics

    Science.gov (United States)

    Han, Bin

    Statistical learning is widely used in business analytics to discover structure or exploit patterns from historical data, and build models that capture relationships between an outcome of interest and a set of variables. Optimal learning on the other hand, solves the operational side of the problem, by iterating between decision making and data acquisition/learning. All too often the two problems go hand-in-hand, which exhibit a feedback loop between statistics and optimization. We apply this statistical/optimal learning concept on a context of fundraising marketing campaign problem arising in many non-profit organizations. Many such organizations use direct-mail marketing to cultivate one-time donors and convert them into recurring contributors. Cultivated donors generate much more revenue than new donors, but also lapse with time, making it important to steadily draw in new cultivations. The direct-mail budget is limited, but better-designed mailings can improve success rates without increasing costs. We first apply statistical learning to analyze the effectiveness of several design approaches used in practice, based on a massive dataset covering 8.6 million direct-mail communications with donors to the American Red Cross during 2009-2011. We find evidence that mailed appeals are more effective when they emphasize disaster preparedness and training efforts over post-disaster cleanup. Including small cards that affirm donors' identity as Red Cross supporters is an effective strategy, while including gift items such as address labels is not. Finally, very recent acquisitions are more likely to respond to appeals that ask them to contribute an amount similar to their most recent donation, but this approach has an adverse effect on donors with a longer history. We show via simulation that a simple design strategy based on these insights has potential to improve success rates from 5.4% to 8.1%. Given these findings, when new scenario arises, however, new data need to

  3. Shot Group Statistics for Small Arms Applications

    Science.gov (United States)

    2017-06-01

    if its probability distribution is known with sufficient accuracy, then it can be used to make a sound statistical inference on the unknown... statistical inference on the unknown, population standard deviations of the x and y impact-point positions. The dispersion measures treated in this report...known with sufficient accuracy, then it can be used to make a sound statistical inference on the unknown, population standard deviations of the x and y

  4. Image-Data Compression Using Edge-Optimizing Algorithm for WFA Inference.

    Science.gov (United States)

    Culik, Karel II; Kari, Jarkko

    1994-01-01

    Presents an inference algorithm that produces a weighted finite automata (WFA), in particular, the grayness functions of graytone images. Image-data compression results based on the new inference algorithm produces a WFA with a relatively small number of edges. Image-data compression results alone and in combination with wavelets are discussed.…

  5. Powerful Statistical Inference for Nested Data Using Sufficient Summary Statistics

    Science.gov (United States)

    Dowding, Irene; Haufe, Stefan

    2018-01-01

    Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level t-test. This “naive” approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level t-test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment. PMID:29615885

  6. Inference

    DEFF Research Database (Denmark)

    Møller, Jesper

    (This text written by Jesper Møller, Aalborg University, is submitted for the collection ‘Stochastic Geometry: Highlights, Interactions and New Perspectives', edited by Wilfrid S. Kendall and Ilya Molchanov, to be published by ClarendonPress, Oxford, and planned to appear as Section 4.1 with the ......(This text written by Jesper Møller, Aalborg University, is submitted for the collection ‘Stochastic Geometry: Highlights, Interactions and New Perspectives', edited by Wilfrid S. Kendall and Ilya Molchanov, to be published by ClarendonPress, Oxford, and planned to appear as Section 4.......1 with the title ‘Inference'.) This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods using Markov chain Monte Carlo (MCMC) simulations. Due to space limitations the focus...

  7. An application of an optimal statistic for characterizing relative orientations

    Science.gov (United States)

    Jow, Dylan L.; Hill, Ryley; Scott, Douglas; Soler, J. D.; Martin, P. G.; Devlin, M. J.; Fissel, L. M.; Poidevin, F.

    2018-02-01

    We present the projected Rayleigh statistic (PRS), a modification of the classic Rayleigh statistic, as a test for non-uniform relative orientation between two pseudo-vector fields. In the application here, this gives an effective way of investigating whether polarization pseudo-vectors (spin-2 quantities) are preferentially parallel or perpendicular to filaments in the interstellar medium. For example, there are other potential applications in astrophysics, e.g. when comparing small-scale orientations with larger scale shear patterns. We compare the efficiency of the PRS against histogram binning methods that have previously been used for characterizing the relative orientations of gas column density structures with the magnetic field projected on the plane of the sky. We examine data for the Vela C molecular cloud, where the column density is inferred from Herschel submillimetre observations, and the magnetic field from observations by the Balloon-borne Large-Aperture Submillimetre Telescope in the 250-, 350- and 500-μm wavelength bands. We find that the PRS has greater statistical power than approaches that bin the relative orientation angles, as it makes more efficient use of the information contained in the data. In particular, the use of the PRS to test for preferential alignment results in a higher statistical significance, in each of the four Vela C regions, with the greatest increase being by a factor 1.3 in the South-Nest region in the 250 - μ m band.

  8. Comparison between statistical and optimization methods in accessing unmixing of spectrally similar materials

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2010-11-01

    Full Text Available This paper reports on the results from ordinary least squares and ridge regression as statistical methods, and is compared to numerical optimization methods such as the stochastic method for global optimization, simulated annealing, particle swarm...

  9. Role of sufficient statistics in stochastic thermodynamics and its implication to sensory adaptation

    Science.gov (United States)

    Matsumoto, Takumi; Sagawa, Takahiro

    2018-04-01

    A sufficient statistic is a significant concept in statistics, which means a probability variable that has sufficient information required for an inference task. We investigate the roles of sufficient statistics and related quantities in stochastic thermodynamics. Specifically, we prove that for general continuous-time bipartite networks, the existence of a sufficient statistic implies that an informational quantity called the sensory capacity takes the maximum. Since the maximal sensory capacity imposes a constraint that the energetic efficiency cannot exceed one-half, our result implies that the existence of a sufficient statistic is inevitably accompanied by energetic dissipation. We also show that, in a particular parameter region of linear Langevin systems there exists the optimal noise intensity at which the sensory capacity, the information-thermodynamic efficiency, and the total entropy production are optimized at the same time. We apply our general result to a model of sensory adaptation of E. coli and find that the sensory capacity is nearly maximal with experimentally realistic parameters.

  10. Optimal Predictions in Everyday Cognition: The Wisdom of Individuals or Crowds?

    Science.gov (United States)

    Mozer, Michael C.; Pashler, Harold; Homaei, Hadjar

    2008-01-01

    Griffiths and Tenenbaum (2006) asked individuals to make predictions about the duration or extent of everyday events (e.g., cake baking times), and reported that predictions were optimal, employing Bayesian inference based on veridical prior distributions. Although the predictions conformed strikingly to statistics of the world, they reflect…

  11. Some challenges with statistical inference in adaptive designs.

    Science.gov (United States)

    Hung, H M James; Wang, Sue-Jane; Yang, Peiling

    2014-01-01

    Adaptive designs have generated a great deal of attention to clinical trial communities. The literature contains many statistical methods to deal with added statistical uncertainties concerning the adaptations. Increasingly encountered in regulatory applications are adaptive statistical information designs that allow modification of sample size or related statistical information and adaptive selection designs that allow selection of doses or patient populations during the course of a clinical trial. For adaptive statistical information designs, a few statistical testing methods are mathematically equivalent, as a number of articles have stipulated, but arguably there are large differences in their practical ramifications. We pinpoint some undesirable features of these methods in this work. For adaptive selection designs, the selection based on biomarker data for testing the correlated clinical endpoints may increase statistical uncertainty in terms of type I error probability, and most importantly the increased statistical uncertainty may be impossible to assess.

  12. Ensemble stacking mitigates biases in inference of synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Brendan Chambers

    2018-03-01

    Full Text Available A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches. Mapping the routing of spikes through local circuitry is crucial for understanding neocortical computation. Under appropriate experimental conditions, these maps can be used to infer likely patterns of synaptic recruitment, linking activity to underlying anatomical connections. Such inferences help to reveal the synaptic implementation of population dynamics and computation. We compare a number of standard functional measures to infer underlying connectivity. We find that regularization impacts measures

  13. Statistical identifiability and convergence evaluation for nonlinear pharmacokinetic models with particle swarm optimization.

    Science.gov (United States)

    Kim, Seongho; Li, Lang

    2014-02-01

    The statistical identifiability of nonlinear pharmacokinetic (PK) models with the Michaelis-Menten (MM) kinetic equation is considered using a global optimization approach, which is particle swarm optimization (PSO). If a model is statistically non-identifiable, the conventional derivative-based estimation approach is often terminated earlier without converging, due to the singularity. To circumvent this difficulty, we develop a derivative-free global optimization algorithm by combining PSO with a derivative-free local optimization algorithm to improve the rate of convergence of PSO. We further propose an efficient approach to not only checking the convergence of estimation but also detecting the identifiability of nonlinear PK models. PK simulation studies demonstrate that the convergence and identifiability of the PK model can be detected efficiently through the proposed approach. The proposed approach is then applied to clinical PK data along with a two-compartmental model. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Maximum entropy approach to statistical inference for an ocean acoustic waveguide.

    Science.gov (United States)

    Knobles, D P; Sagers, J D; Koch, R A

    2012-02-01

    A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (β) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. © 2012 Acoustical Society of America

  15. Survey design, statistical analysis, and basis for statistical inferences in coastal habitat injury assessment: Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    McDonald, L.L.; Erickson, W.P.; Strickland, M.D.

    1995-01-01

    The objective of the Coastal Habitat Injury Assessment study was to document and quantify injury to biota of the shallow subtidal, intertidal, and supratidal zones throughout the shoreline affected by oil or cleanup activity associated with the Exxon Valdez oil spill. The results of these studies were to be used to support the Trustee's Type B Natural Resource Damage Assessment under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). A probability based stratified random sample of shoreline segments was selected with probability proportional to size from each of 15 strata (5 habitat types crossed with 3 levels of potential oil impact) based on those data available in July, 1989. Three study regions were used: Prince William Sound, Cook Inlet/Kenai Peninsula, and Kodiak/Alaska Peninsula. A Geographic Information System was utilized to combine oiling and habitat data and to select the probability sample of study sites. Quasi-experiments were conducted where randomly selected oiled sites were compared to matched reference sites. Two levels of statistical inferences, philosophical bases, and limitations are discussed and illustrated with example data from the resulting studies. 25 refs., 4 figs., 1 tab

  16. [Applications of mathematical statistics methods on compatibility researches of traditional Chinese medicines formulae].

    Science.gov (United States)

    Mai, Lan-Yin; Li, Yi-Xuan; Chen, Yong; Xie, Zhen; Li, Jie; Zhong, Ming-Yu

    2014-05-01

    The compatibility of traditional Chinese medicines (TCMs) formulae containing enormous information, is a complex component system. Applications of mathematical statistics methods on the compatibility researches of traditional Chinese medicines formulae have great significance for promoting the modernization of traditional Chinese medicines and improving clinical efficacies and optimizations of formulae. As a tool for quantitative analysis, data inference and exploring inherent rules of substances, the mathematical statistics method can be used to reveal the working mechanisms of the compatibility of traditional Chinese medicines formulae in qualitatively and quantitatively. By reviewing studies based on the applications of mathematical statistics methods, this paper were summarized from perspective of dosages optimization, efficacies and changes of chemical components as well as the rules of incompatibility and contraindication of formulae, will provide the references for further studying and revealing the working mechanisms and the connotations of traditional Chinese medicines.

  17. Optimal structural inference of signaling pathways from unordered and overlapping gene sets.

    Science.gov (United States)

    Acharya, Lipi R; Judeh, Thair; Wang, Guangdi; Zhu, Dongxiao

    2012-02-15

    A plethora of bioinformatics analysis has led to the discovery of numerous gene sets, which can be interpreted as discrete measurements emitted from latent signaling pathways. Their potential to infer signaling pathway structures, however, has not been sufficiently exploited. Existing methods accommodating discrete data do not explicitly consider signal cascading mechanisms that characterize a signaling pathway. Novel computational methods are thus needed to fully utilize gene sets and broaden the scope from focusing only on pairwise interactions to the more general cascading events in the inference of signaling pathway structures. We propose a gene set based simulated annealing (SA) algorithm for the reconstruction of signaling pathway structures. A signaling pathway structure is a directed graph containing up to a few hundred nodes and many overlapping signal cascades, where each cascade represents a chain of molecular interactions from the cell surface to the nucleus. Gene sets in our context refer to discrete sets of genes participating in signal cascades, the basic building blocks of a signaling pathway, with no prior information about gene orderings in the cascades. From a compendium of gene sets related to a pathway, SA aims to search for signal cascades that characterize the optimal signaling pathway structure. In the search process, the extent of overlap among signal cascades is used to measure the optimality of a structure. Throughout, we treat gene sets as random samples from a first-order Markov chain model. We evaluated the performance of SA in three case studies. In the first study conducted on 83 KEGG pathways, SA demonstrated a significantly better performance than Bayesian network methods. Since both SA and Bayesian network methods accommodate discrete data, use a 'search and score' network learning strategy and output a directed network, they can be compared in terms of performance and computational time. In the second study, we compared SA and

  18. Lectures on algebraic statistics

    CERN Document Server

    Drton, Mathias; Sullivant, Seth

    2009-01-01

    How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.

  19. STATISTICAL RELATIONAL LEARNING AND SCRIPT INDUCTION FOR TEXTUAL INFERENCE

    Science.gov (United States)

    2017-12-01

    compensate for parser errors. We replace deterministic conjunction by an average combiner, which encodes causal independence. Our framework was the...sentence similarity (STS) and sentence paraphrasing, but not Textual Entailment, where deeper inferences are required. As the formula for conjunction ...When combined, our algorithm learns to rely on systems that not just agree on an output but also the provenance of this output in conjunction with the

  20. Towards better error statistics for atmospheric inversions of methane surface fluxes

    Directory of Open Access Journals (Sweden)

    A. Berchet

    2013-07-01

    Full Text Available We adapt general statistical methods to estimate the optimal error covariance matrices in a regional inversion system inferring methane surface emissions from atmospheric concentrations. Using a minimal set of physical hypotheses on the patterns of errors, we compute a guess of the error statistics that is optimal in regard to objective statistical criteria for the specific inversion system. With this very general approach applied to a real-data case, we recover sources of errors in the observations and in the prior state of the system that are consistent with expert knowledge while inferred from objective criteria and with affordable computation costs. By not assuming any specific error patterns, our results depict the variability and the inter-dependency of errors induced by complex factors such as the misrepresentation of the observations in the transport model or the inability of the model to reproduce well the situations of steep gradients of concentrations. Situations with probable significant biases (e.g., during the night when vertical mixing is ill-represented by the transport model can also be diagnosed by our methods in order to point at necessary improvement in a model. By additionally analysing the sensitivity of the inversion to each observation, guidelines to enhance data selection in regional inversions are also proposed. We applied our method to a recent significant accidental methane release from an offshore platform in the North Sea and found methane fluxes of the same magnitude than what was officially declared.

  1. Improvement of characteristic statistic algorithm and its application on equilibrium cycle reloading optimization

    International Nuclear Information System (INIS)

    Hu, Y.; Liu, Z.; Shi, X.; Wang, B.

    2006-01-01

    A brief introduction of characteristic statistic algorithm (CSA) is given in the paper, which is a new global optimization algorithm to solve the problem of PWR in-core fuel management optimization. CSA is modified by the adoption of back propagation neural network and fast local adjustment. Then the modified CSA is applied to PWR Equilibrium Cycle Reloading Optimization, and the corresponding optimization code of CSA-DYW is developed. CSA-DYW is used to optimize the equilibrium cycle of 18 month reloading of Daya bay nuclear plant Unit 1 reactor. The results show that CSA-DYW has high efficiency and good global performance on PWR Equilibrium Cycle Reloading Optimization. (authors)

  2. EI: A Program for Ecological Inference

    Directory of Open Access Journals (Sweden)

    Gary King

    2004-09-01

    Full Text Available The program EI provides a method of inferring individual behavior from aggregate data. It implements the statistical procedures, diagnostics, and graphics from the book A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from Aggregate Data (King 1997. Ecological inference, as traditionally defined, is the process of using aggregate (i.e., "ecological" data to infer discrete individual-level relationships of interest when individual-level data are not available. Ecological inferences are required in political science research when individual-level surveys are unavailable (e.g., local or comparative electoral politics, unreliable (racial politics, insufficient (political geography, or infeasible (political history. They are also required in numerous areas of ma jor significance in public policy (e.g., for applying the Voting Rights Act and other academic disciplines ranging from epidemiology and marketing to sociology and quantitative history.

  3. Data Acquisition and Preprocessing in Studies on Humans: What Is Not Taught in Statistics Classes?

    Science.gov (United States)

    Zhu, Yeyi; Hernandez, Ladia M; Mueller, Peter; Dong, Yongquan; Forman, Michele R

    2013-01-01

    The aim of this paper is to address issues in research that may be missing from statistics classes and important for (bio-)statistics students. In the context of a case study, we discuss data acquisition and preprocessing steps that fill the gap between research questions posed by subject matter scientists and statistical methodology for formal inference. Issues include participant recruitment, data collection training and standardization, variable coding, data review and verification, data cleaning and editing, and documentation. Despite the critical importance of these details in research, most of these issues are rarely discussed in an applied statistics program. One reason for the lack of more formal training is the difficulty in addressing the many challenges that can possibly arise in the course of a study in a systematic way. This article can help to bridge this gap between research questions and formal statistical inference by using an illustrative case study for a discussion. We hope that reading and discussing this paper and practicing data preprocessing exercises will sensitize statistics students to these important issues and achieve optimal conduct, quality control, analysis, and interpretation of a study.

  4. Decision-making when data and inferences are not conclusive: risk-benefit and acceptable regret approach.

    Science.gov (United States)

    Hozo, Iztok; Schell, Michael J; Djulbegovic, Benjamin

    2008-07-01

    The absolute truth in research is unobtainable, as no evidence or research hypothesis is ever 100% conclusive. Therefore, all data and inferences can in principle be considered as "inconclusive." Scientific inference and decision-making need to take into account errors, which are unavoidable in the research enterprise. The errors can occur at the level of conclusions that aim to discern the truthfulness of research hypothesis based on the accuracy of research evidence and hypothesis, and decisions, the goal of which is to enable optimal decision-making under present and specific circumstances. To optimize the chance of both correct conclusions and correct decisions, the synthesis of all major statistical approaches to clinical research is needed. The integration of these approaches (frequentist, Bayesian, and decision-analytic) can be accomplished through formal risk:benefit (R:B) analysis. This chapter illustrates the rational choice of a research hypothesis using R:B analysis based on decision-theoretic expected utility theory framework and the concept of "acceptable regret" to calculate the threshold probability of the "truth" above which the benefit of accepting a research hypothesis outweighs its risks.

  5. On principles of inductive inference

    OpenAIRE

    Kostecki, Ryszard Paweł

    2011-01-01

    We propose an intersubjective epistemic approach to foundations of probability theory and statistical inference, based on relative entropy and category theory, and aimed to bypass the mathematical and conceptual problems of existing foundational approaches.

  6. The Stream Flow Prediction Model Using Fuzzy Inference System and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mahmoud Mohammad RezapourTabari

    2013-03-01

    Full Text Available The aim of this study is the spatial prediction runoff using hydrometric and meteorological stations data. The research shows that usually there is a certain communication between the meteorological and hydrometric data of upstream basin and runoff rates in output basin. So, if can be extracted the rules related to historical data that recorded at stations, can be easily predicted runoff amount based on data measured. Accordingly, among the tools available, the fuzzy theory (with flexibility in developing fuzzy rules can be provide the knowledge lies in the observed data to parameters prediction in real time. So, in this research the fuzzy inference system has been used for estimating runoff rates at stations located in the Taleghan river downstream using rain gage stations and hydrometric stations upstream. Because the inappropriate values associated with membership functions, the fuzzy system model can not provide correct value for the prediction. In this study, a combination of intelligence-based optimization algorithm and fuzzy theory developed to accelerate and improve modeling. The result of proposed model, optimum values to each membership function that related to dependent and independent variable extracted and based on it’s the runoff rates in rivers downstream predicted. The results of this study were shown that the high accuracy of proposed model compared with fuzzy inference system. Also based on proposed model can be more accurately the rate of runoff estimated for future conditions.

  7. Ensemble stacking mitigates biases in inference of synaptic connectivity.

    Science.gov (United States)

    Chambers, Brendan; Levy, Maayan; Dechery, Joseph B; MacLean, Jason N

    2018-01-01

    A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches.

  8. Statistical modeling for degradation data

    CERN Document Server

    Lio, Yuhlong; Ng, Hon; Tsai, Tzong-Ru

    2017-01-01

    This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.

  9. Order statistics & inference estimation methods

    CERN Document Server

    Balakrishnan, N

    1991-01-01

    The literature on order statistics and inferenc eis quite extensive and covers a large number of fields ,but most of it is dispersed throughout numerous publications. This volume is the consolidtion of the most important results and places an emphasis on estimation. Both theoretical and computational procedures are presented to meet the needs of researchers, professionals, and students. The methods of estimation discussed are well-illustrated with numerous practical examples from both the physical and life sciences, including sociology,psychology,a nd electrical and chemical engineering. A co

  10. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    Science.gov (United States)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  11. Quantum-Like Representation of Non-Bayesian Inference

    Science.gov (United States)

    Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.

    2013-01-01

    This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.

  12. Statistical aspects of determinantal point processes

    DEFF Research Database (Denmark)

    Lavancier, Frédéric; Møller, Jesper; Rubak, Ege Holger

    The statistical aspects of determinantal point processes (DPPs) seem largely unexplored. We review the appealing properties of DDPs, demonstrate that they are useful models for repulsiveness, detail a simulation procedure, and provide freely available software for simulation and statistical...... inference. We pay special attention to stationary DPPs, where we give a simple condition ensuring their existence, construct parametric models, describe how they can be well approximated so that the likelihood can be evaluated and realizations can be simulated, and discuss how statistical inference...

  13. Towards Bayesian Inference of the Fast-Ion Distribution Function

    DEFF Research Database (Denmark)

    Stagner, L.; Heidbrink, W.W.; Salewski, Mirko

    2012-01-01

    sensitivity of the measurements are incorporated into Bayesian likelihood probabilities, while prior probabilities enforce physical constraints. As an initial step, this poster uses Bayesian statistics to infer the DIII-D electron density profile from multiple diagnostic measurements. Likelihood functions....... However, when theory and experiment disagree (for one or more diagnostics), it is unclear how to proceed. Bayesian statistics provides a framework to infer the DF, quantify errors, and reconcile discrepant diagnostic measurements. Diagnostic errors and ``weight functions" that describe the phase space...

  14. Parametric statistical inference for discretely observed diffusion processes

    DEFF Research Database (Denmark)

    Pedersen, Asger Roer

    Part 1: Theoretical results Part 2: Statistical applications of Gaussian diffusion processes in freshwater ecology......Part 1: Theoretical results Part 2: Statistical applications of Gaussian diffusion processes in freshwater ecology...

  15. Three-dimensional reconstruction of statistically optimal unit cells of polydisperse particulate composites from microtomography

    International Nuclear Information System (INIS)

    Lee, H.; Brandyberry, M.; Tudor, A.; Matous, K.

    2009-01-01

    In this paper, we present a systematic approach for characterization and reconstruction of statistically optimal representative unit cells of polydisperse particulate composites. Microtomography is used to gather rich three-dimensional data of a packed glass bead system. First-, second-, and third-order probability functions are used to characterize the morphology of the material, and the parallel augmented simulated annealing algorithm is employed for reconstruction of the statistically equivalent medium. Both the fully resolved probability spectrum and the geometrically exact particle shapes are considered in this study, rendering the optimization problem multidimensional with a highly complex objective function. A ten-phase particulate composite composed of packed glass beads in a cylindrical specimen is investigated, and a unit cell is reconstructed on massively parallel computers. Further, rigorous error analysis of the statistical descriptors (probability functions) is presented and a detailed comparison between statistics of the voxel-derived pack and the representative cell is made.

  16. Large-Scale Optimization for Bayesian Inference in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Willcox, Karen [MIT; Marzouk, Youssef [MIT

    2013-11-12

    The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to

  17. Statistical Sensitive Data Protection and Inference Prevention with Decision Tree Methods

    National Research Council Canada - National Science Library

    Chang, LiWu

    2003-01-01

    .... We consider inference as correct classification and approach it with decision tree methods. As in our previous work, sensitive data are viewed as classes of those test data and non-sensitive data are the rest attribute values...

  18. Selecting the right statistical model for analysis of insect count data by using information theoretic measures.

    Science.gov (United States)

    Sileshi, G

    2006-10-01

    Researchers and regulatory agencies often make statistical inferences from insect count data using modelling approaches that assume homogeneous variance. Such models do not allow for formal appraisal of variability which in its different forms is the subject of interest in ecology. Therefore, the objectives of this paper were to (i) compare models suitable for handling variance heterogeneity and (ii) select optimal models to ensure valid statistical inferences from insect count data. The log-normal, standard Poisson, Poisson corrected for overdispersion, zero-inflated Poisson, the negative binomial distribution and zero-inflated negative binomial models were compared using six count datasets on foliage-dwelling insects and five families of soil-dwelling insects. Akaike's and Schwarz Bayesian information criteria were used for comparing the various models. Over 50% of the counts were zeros even in locally abundant species such as Ootheca bennigseni Weise, Mesoplatys ochroptera Stål and Diaecoderus spp. The Poisson model after correction for overdispersion and the standard negative binomial distribution model provided better description of the probability distribution of seven out of the 11 insects than the log-normal, standard Poisson, zero-inflated Poisson or zero-inflated negative binomial models. It is concluded that excess zeros and variance heterogeneity are common data phenomena in insect counts. If not properly modelled, these properties can invalidate the normal distribution assumptions resulting in biased estimation of ecological effects and jeopardizing the integrity of the scientific inferences. Therefore, it is recommended that statistical models appropriate for handling these data properties be selected using objective criteria to ensure efficient statistical inference.

  19. Beginning statistics with data analysis

    CERN Document Server

    Mosteller, Frederick; Rourke, Robert EK

    2013-01-01

    This introduction to the world of statistics covers exploratory data analysis, methods for collecting data, formal statistical inference, and techniques of regression and analysis of variance. 1983 edition.

  20. Optimal design of tests for heat exchanger fouling identification

    International Nuclear Information System (INIS)

    Palmer, Kyle A.; Hale, William T.; Such, Kyle D.; Shea, Brian R.; Bollas, George M.

    2016-01-01

    Highlights: • Built-in test design that optimizes the information extractable from the said test. • Method minimizes the covariance of a fault with system uncertainty. • Method applied for the identification and quantification of heat exchanger fouling. • Heat exchanger fouling is identifiable despite the uncertainty in inputs and states. - Graphical Abstract: - Abstract: Particulate fouling in plate fin heat exchangers of aircraft environmental control systems is a recurring issue in environments rich in foreign object debris. Heat exchanger fouling detection, in terms of quantification of its severity, is critical for aircraft maintenance scheduling and safe operation. In this work, we focus on methods for offline fouling detection during aircraft ground handling, where the allowable variability range of admissible inputs is wider. We explore methods of optimal experimental design to estimate heat exchanger inputs and input trajectories that maximize the identifiability of fouling. In particular, we present a methodology in which D-optimality is used as a criterion for statistically significant inference of heat exchanger fouling in uncertain environments. The optimal tests are designed on the basis of a heat exchanger model of the inherent mass, energy and momentum balances, validated against literature data. The model is then used to infer sensitivities of the heat exchanger outputs with respect to fouling metrics and maximize them by manipulating input trajectories; thus enhancing the accuracy in quantifying the fouling extent. The proposed methodology is evaluated with statistical indices of the confidence in estimating thermal fouling resistance at uncertain operating conditions, explored in a series of case studies.

  1. Bayesian emulation for optimization in multi-step portfolio decisions

    OpenAIRE

    Irie, Kaoru; West, Mike

    2016-01-01

    We discuss the Bayesian emulation approach to computational solution of multi-step portfolio studies in financial time series. "Bayesian emulation for decisions" involves mapping the technical structure of a decision analysis problem to that of Bayesian inference in a purely synthetic "emulating" statistical model. This provides access to standard posterior analytic, simulation and optimization methods that yield indirect solutions of the decision problem. We develop this in time series portf...

  2. A probabilistic framework for microarray data analysis: fundamental probability models and statistical inference.

    Science.gov (United States)

    Ogunnaike, Babatunde A; Gelmi, Claudio A; Edwards, Jeremy S

    2010-05-21

    Gene expression studies generate large quantities of data with the defining characteristic that the number of genes (whose expression profiles are to be determined) exceed the number of available replicates by several orders of magnitude. Standard spot-by-spot analysis still seeks to extract useful information for each gene on the basis of the number of available replicates, and thus plays to the weakness of microarrays. On the other hand, because of the data volume, treating the entire data set as an ensemble, and developing theoretical distributions for these ensembles provides a framework that plays instead to the strength of microarrays. We present theoretical results that under reasonable assumptions, the distribution of microarray intensities follows the Gamma model, with the biological interpretations of the model parameters emerging naturally. We subsequently establish that for each microarray data set, the fractional intensities can be represented as a mixture of Beta densities, and develop a procedure for using these results to draw statistical inference regarding differential gene expression. We illustrate the results with experimental data from gene expression studies on Deinococcus radiodurans following DNA damage using cDNA microarrays. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Portfolio optimization problem with nonidentical variances of asset returns using statistical mechanical informatics

    Science.gov (United States)

    Shinzato, Takashi

    2016-12-01

    The portfolio optimization problem in which the variances of the return rates of assets are not identical is analyzed in this paper using the methodology of statistical mechanical informatics, specifically, replica analysis. We defined two characteristic quantities of an optimal portfolio, namely, minimal investment risk and investment concentration, in order to solve the portfolio optimization problem and analytically determined their asymptotical behaviors using replica analysis. Numerical experiments were also performed, and a comparison between the results of our simulation and those obtained via replica analysis validated our proposed method.

  4. Mixed normal inference on multicointegration

    NARCIS (Netherlands)

    Boswijk, H.P.

    2009-01-01

    Asymptotic likelihood analysis of cointegration in I(2) models, see Johansen (1997, 2006), Boswijk (2000) and Paruolo (2000), has shown that inference on most parameters is mixed normal, implying hypothesis test statistics with an asymptotic 2 null distribution. The asymptotic distribution of the

  5. Spurious correlations and inference in landscape genetics

    Science.gov (United States)

    Samuel A. Cushman; Erin L. Landguth

    2010-01-01

    Reliable interpretation of landscape genetic analyses depends on statistical methods that have high power to identify the correct process driving gene flow while rejecting incorrect alternative hypotheses. Little is known about statistical power and inference in individual-based landscape genetics. Our objective was to evaluate the power of causalmodelling with partial...

  6. Inference for shared-frailty survival models with left-truncated data

    NARCIS (Netherlands)

    van den Berg, G.J.; Drepper, B.

    2016-01-01

    Shared-frailty survival models specify that systematic unobserved determinants of duration outcomes are identical within groups of individuals. We consider random-effects likelihood-based statistical inference if the duration data are subject to left-truncation. Such inference with left-truncated

  7. Task-based data-acquisition optimization for sparse image reconstruction systems

    Science.gov (United States)

    Chen, Yujia; Lou, Yang; Kupinski, Matthew A.; Anastasio, Mark A.

    2017-03-01

    Conventional wisdom dictates that imaging hardware should be optimized by use of an ideal observer (IO) that exploits full statistical knowledge of the class of objects to be imaged, without consideration of the reconstruction method to be employed. However, accurate and tractable models of the complete object statistics are often difficult to determine in practice. Moreover, in imaging systems that employ compressive sensing concepts, imaging hardware and (sparse) image reconstruction are innately coupled technologies. We have previously proposed a sparsity-driven ideal observer (SDIO) that can be employed to optimize hardware by use of a stochastic object model that describes object sparsity. The SDIO and sparse reconstruction method can therefore be "matched" in the sense that they both utilize the same statistical information regarding the class of objects to be imaged. To efficiently compute SDIO performance, the posterior distribution is estimated by use of computational tools developed recently for variational Bayesian inference. Subsequently, the SDIO test statistic can be computed semi-analytically. The advantages of employing the SDIO instead of a Hotelling observer are systematically demonstrated in case studies in which magnetic resonance imaging (MRI) data acquisition schemes are optimized for signal detection tasks.

  8. On the criticality of inferred models

    Science.gov (United States)

    Mastromatteo, Iacopo; Marsili, Matteo

    2011-10-01

    Advanced inference techniques allow one to reconstruct a pattern of interaction from high dimensional data sets, from probing simultaneously thousands of units of extended systems—such as cells, neural tissues and financial markets. We focus here on the statistical properties of inferred models and argue that inference procedures are likely to yield models which are close to singular values of parameters, akin to critical points in physics where phase transitions occur. These are points where the response of physical systems to external perturbations, as measured by the susceptibility, is very large and diverges in the limit of infinite size. We show that the reparameterization invariant metrics in the space of probability distributions of these models (the Fisher information) are directly related to the susceptibility of the inferred model. As a result, distinguishable models tend to accumulate close to critical points, where the susceptibility diverges in infinite systems. This region is the one where the estimate of inferred parameters is most stable. In order to illustrate these points, we discuss inference of interacting point processes with application to financial data and show that sensible choices of observation time scales naturally yield models which are close to criticality.

  9. On the criticality of inferred models

    International Nuclear Information System (INIS)

    Mastromatteo, Iacopo; Marsili, Matteo

    2011-01-01

    Advanced inference techniques allow one to reconstruct a pattern of interaction from high dimensional data sets, from probing simultaneously thousands of units of extended systems—such as cells, neural tissues and financial markets. We focus here on the statistical properties of inferred models and argue that inference procedures are likely to yield models which are close to singular values of parameters, akin to critical points in physics where phase transitions occur. These are points where the response of physical systems to external perturbations, as measured by the susceptibility, is very large and diverges in the limit of infinite size. We show that the reparameterization invariant metrics in the space of probability distributions of these models (the Fisher information) are directly related to the susceptibility of the inferred model. As a result, distinguishable models tend to accumulate close to critical points, where the susceptibility diverges in infinite systems. This region is the one where the estimate of inferred parameters is most stable. In order to illustrate these points, we discuss inference of interacting point processes with application to financial data and show that sensible choices of observation time scales naturally yield models which are close to criticality

  10. Statistical media and process optimization for biotransformation of rice bran to vanillin using Pediococcus acidilactici.

    Science.gov (United States)

    Kaur, Baljinder; Chakraborty, Debkumar

    2013-11-01

    An isolate of P. acidilactici capable of producing vanillin from rice bran was isolated from a milk product. Response Surface Methodology was employed for statistical media and process optimization for production of biovanillin. Statistical medium optimization was done in two steps involving Placket Burman Design and Central Composite Response Designs. The RSM optimized vanillin production medium consisted of 15% (w/v) rice bran, 0.5% (w/v) peptone, 0.1% (w/v) ammonium nitrate, 0.005% (w/v) ferulic acid, 0.005% (w/v) magnesium sulphate, and 0.1% (v/v) tween-80, pH 5.6, at a temperature of 37 degrees C under shaking conditions at 180 rpm. 1.269 g/L vanillin was obtained within 24 h of incubation in optimized culture medium. This is the first report indicating such a high vanillin yield obtained during biotransformation of ferulic acid to vanillin using a Pediococcal isolate.

  11. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems

    Science.gov (United States)

    Takabe, Satoshi; Hukushima, Koji

    2016-05-01

    Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α -uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α =2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c =e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c =1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α ≥3 , minimum vertex covers on α -uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c =e /(α -1 ) where the replica symmetry is broken.

  12. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems.

    Science.gov (United States)

    Takabe, Satoshi; Hukushima, Koji

    2016-05-01

    Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random graphs of α-uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for α=2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c=e in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical result c=1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the minimum hitting sets with α≥3, minimum vertex covers on α-uniform random graphs, is also studied. Analytic and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical average degree c=e/(α-1) where the replica symmetry is broken.

  13. The Role of Working Memory in the Probabilistic Inference of Future Sensory Events.

    Science.gov (United States)

    Cashdollar, Nathan; Ruhnau, Philipp; Weisz, Nathan; Hasson, Uri

    2017-05-01

    The ability to represent the emerging regularity of sensory information from the external environment has been thought to allow one to probabilistically infer future sensory occurrences and thus optimize behavior. However, the underlying neural implementation of this process is still not comprehensively understood. Through a convergence of behavioral and neurophysiological evidence, we establish that the probabilistic inference of future events is critically linked to people's ability to maintain the recent past in working memory. Magnetoencephalography recordings demonstrated that when visual stimuli occurring over an extended time series had a greater statistical regularity, individuals with higher working-memory capacity (WMC) displayed enhanced slow-wave neural oscillations in the θ frequency band (4-8 Hz.) prior to, but not during stimulus appearance. This prestimulus neural activity was specifically linked to contexts where information could be anticipated and influenced the preferential sensory processing for this visual information after its appearance. A separate behavioral study demonstrated that this process intrinsically emerges during continuous perception and underpins a realistic advantage for efficient behavioral responses. In this way, WMC optimizes the anticipation of higher level semantic concepts expected to occur in the near future. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Sensitivity analysis and optimization of system dynamics models : Regression analysis and statistical design of experiments

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    1995-01-01

    This tutorial discusses what-if analysis and optimization of System Dynamics models. These problems are solved, using the statistical techniques of regression analysis and design of experiments (DOE). These issues are illustrated by applying the statistical techniques to a System Dynamics model for

  15. Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study.

    Science.gov (United States)

    Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S

    2015-01-16

    Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.

  16. Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis

    Directory of Open Access Journals (Sweden)

    Zhongrong Zhang

    2016-01-01

    Full Text Available Wind energy has increasingly played a vital role in mitigating conventional resource shortages. Nevertheless, the stochastic nature of wind poses a great challenge when attempting to find an accurate forecasting model for wind power. Therefore, precise wind power forecasts are of primary importance to solve operational, planning and economic problems in the growing wind power scenario. Previous research has focused efforts on the deterministic forecast of wind power values, but less attention has been paid to providing information about wind energy. Based on an optimal Adaptive-Network-Based Fuzzy Inference System (ANFIS and Singular Spectrum Analysis (SSA, this paper develops a hybrid uncertainty forecasting model, IFASF (Interval Forecast-ANFIS-SSA-Firefly Alogorithm, to obtain the upper and lower bounds of daily average wind power, which is beneficial for the practical operation of both the grid company and independent power producers. To strengthen the practical ability of this developed model, this paper presents a comparison between IFASF and other benchmarks, which provides a general reference for this aspect for statistical or artificially intelligent interval forecast methods. The comparison results show that the developed model outperforms eight benchmarks and has a satisfactory forecasting effectiveness in three different wind farms with two time horizons.

  17. Working with sample data exploration and inference

    CERN Document Server

    Chaffe-Stengel, Priscilla

    2014-01-01

    Managers and analysts routinely collect and examine key performance measures to better understand their operations and make good decisions. Being able to render the complexity of operations data into a coherent account of significant events requires an understanding of how to work well with raw data and to make appropriate inferences. Although some statistical techniques for analyzing data and making inferences are sophisticated and require specialized expertise, there are methods that are understandable and applicable by anyone with basic algebra skills and the support of a spreadsheet package. By applying these fundamental methods themselves rather than turning over both the data and the responsibility for analysis and interpretation to an expert, managers will develop a richer understanding and potentially gain better control over their environment. This text is intended to describe these fundamental statistical techniques to managers, data analysts, and students. Statistical analysis of sample data is enh...

  18. Multi-Agent Inference in Social Networks: A Finite Population Learning Approach.

    Science.gov (United States)

    Fan, Jianqing; Tong, Xin; Zeng, Yao

    When people in a society want to make inference about some parameter, each person may want to use data collected by other people. Information (data) exchange in social networks is usually costly, so to make reliable statistical decisions, people need to trade off the benefits and costs of information acquisition. Conflicts of interests and coordination problems will arise in the process. Classical statistics does not consider people's incentives and interactions in the data collection process. To address this imperfection, this work explores multi-agent Bayesian inference problems with a game theoretic social network model. Motivated by our interest in aggregate inference at the societal level, we propose a new concept, finite population learning , to address whether with high probability, a large fraction of people in a given finite population network can make "good" inference. Serving as a foundation, this concept enables us to study the long run trend of aggregate inference quality as population grows.

  19. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment.

    Science.gov (United States)

    Berkes, Pietro; Orbán, Gergo; Lengyel, Máté; Fiser, József

    2011-01-07

    The brain maintains internal models of its environment to interpret sensory inputs and to prepare actions. Although behavioral studies have demonstrated that these internal models are optimally adapted to the statistics of the environment, the neural underpinning of this adaptation is unknown. Using a Bayesian model of sensory cortical processing, we related stimulus-evoked and spontaneous neural activities to inferences and prior expectations in an internal model and predicted that they should match if the model is statistically optimal. To test this prediction, we analyzed visual cortical activity of awake ferrets during development. Similarity between spontaneous and evoked activities increased with age and was specific to responses evoked by natural scenes. This demonstrates the progressive adaptation of internal models to the statistics of natural stimuli at the neural level.

  20. Active Inference, homeostatic regulation and adaptive behavioural control.

    Science.gov (United States)

    Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl

    2015-11-01

    We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Cluster-level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions.

    Science.gov (United States)

    Bansal, Ravi; Peterson, Bradley S

    2018-06-01

    Identifying regional effects of interest in MRI datasets usually entails testing a priori hypotheses across many thousands of brain voxels, requiring control for false positive findings in these multiple hypotheses testing. Recent studies have suggested that parametric statistical methods may have incorrectly modeled functional MRI data, thereby leading to higher false positive rates than their nominal rates. Nonparametric methods for statistical inference when conducting multiple statistical tests, in contrast, are thought to produce false positives at the nominal rate, which has thus led to the suggestion that previously reported studies should reanalyze their fMRI data using nonparametric tools. To understand better why parametric methods may yield excessive false positives, we assessed their performance when applied both to simulated datasets of 1D, 2D, and 3D Gaussian Random Fields (GRFs) and to 710 real-world, resting-state fMRI datasets. We showed that both the simulated 2D and 3D GRFs and the real-world data contain a small percentage (<6%) of very large clusters (on average 60 times larger than the average cluster size), which were not present in 1D GRFs. These unexpectedly large clusters were deemed statistically significant using parametric methods, leading to empirical familywise error rates (FWERs) as high as 65%: the high empirical FWERs were not a consequence of parametric methods failing to model spatial smoothness accurately, but rather of these very large clusters that are inherently present in smooth, high-dimensional random fields. In fact, when discounting these very large clusters, the empirical FWER for parametric methods was 3.24%. Furthermore, even an empirical FWER of 65% would yield on average less than one of those very large clusters in each brain-wide analysis. Nonparametric methods, in contrast, estimated distributions from those large clusters, and therefore, by construct rejected the large clusters as false positives at the nominal

  2. Inference with constrained hidden Markov models in PRISM

    DEFF Research Database (Denmark)

    Christiansen, Henning; Have, Christian Theil; Lassen, Ole Torp

    2010-01-01

    A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we show how HMMs can be extended with side-constraints and present constraint solving techniques for efficient inference. De......_different are integrated. We experimentally validate our approach on the biologically motivated problem of global pairwise alignment.......A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we show how HMMs can be extended with side-constraints and present constraint solving techniques for efficient inference...

  3. Optimal statistic for detecting gravitational wave signals from binary inspirals with LISA

    CERN Document Server

    Rogan, A

    2004-01-01

    A binary compact object early in its inspiral phase will be picked up by its nearly monochromatic gravitational radiation by LISA. But even this innocuous appearing candidate poses interesting detection challenges. The data that will be scanned for such sources will be a set of three functions of LISA's twelve data streams obtained through time-delay interferometry, which is necessary to cancel the noise contributions from laser-frequency fluctuations and optical-bench motions to these data streams. We call these three functions pseudo-detectors. The sensitivity of any pseudo-detector to a given sky position is a function of LISA's orbital position. Moreover, at a given point in LISA's orbit, each pseudo-detector has a different sensitivity to the same sky position. In this work, we obtain the optimal statistic for detecting gravitational wave signals, such as from compact binaries early in their inspiral stage, in LISA data. We also present how the sensitivity of LISA, defined by this optimal statistic, vari...

  4. Active inference, sensory attenuation and illusions.

    Science.gov (United States)

    Brown, Harriet; Adams, Rick A; Parees, Isabel; Edwards, Mark; Friston, Karl

    2013-11-01

    Active inference provides a simple and neurobiologically plausible account of how action and perception are coupled in producing (Bayes) optimal behaviour. This can be seen most easily as minimising prediction error: we can either change our predictions to explain sensory input through perception. Alternatively, we can actively change sensory input to fulfil our predictions. In active inference, this action is mediated by classical reflex arcs that minimise proprioceptive prediction error created by descending proprioceptive predictions. However, this creates a conflict between action and perception; in that, self-generated movements require predictions to override the sensory evidence that one is not actually moving. However, ignoring sensory evidence means that externally generated sensations will not be perceived. Conversely, attending to (proprioceptive and somatosensory) sensations enables the detection of externally generated events but precludes generation of actions. This conflict can be resolved by attenuating the precision of sensory evidence during movement or, equivalently, attending away from the consequences of self-made acts. We propose that this Bayes optimal withdrawal of precise sensory evidence during movement is the cause of psychophysical sensory attenuation. Furthermore, it explains the force-matching illusion and reproduces empirical results almost exactly. Finally, if attenuation is removed, the force-matching illusion disappears and false (delusional) inferences about agency emerge. This is important, given the negative correlation between sensory attenuation and delusional beliefs in normal subjects--and the reduction in the magnitude of the illusion in schizophrenia. Active inference therefore links the neuromodulatory optimisation of precision to sensory attenuation and illusory phenomena during the attribution of agency in normal subjects. It also provides a functional account of deficits in syndromes characterised by false inference

  5. QInfer: Statistical inference software for quantum applications

    Directory of Open Access Journals (Sweden)

    Christopher Granade

    2017-04-01

    Full Text Available Characterizing quantum systems through experimental data is critical to applications as diverse as metrology and quantum computing. Analyzing this experimental data in a robust and reproducible manner is made challenging, however, by the lack of readily-available software for performing principled statistical analysis. We improve the robustness and reproducibility of characterization by introducing an open-source library, QInfer, to address this need. Our library makes it easy to analyze data from tomography, randomized benchmarking, and Hamiltonian learning experiments either in post-processing, or online as data is acquired. QInfer also provides functionality for predicting the performance of proposed experimental protocols from simulated runs. By delivering easy-to-use characterization tools based on principled statistical analysis, QInfer helps address many outstanding challenges facing quantum technology.

  6. Targeted learning in data science causal inference for complex longitudinal studies

    CERN Document Server

    van der Laan, Mark J

    2018-01-01

    This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by using the general template of targeted maximum likelihood estimators. These targeted machine learning algorithms estimate quantities of interest while still providing valid inference. Targeted learning methods within data science area critical component for solving scientific problems in the modern age. The techniques can answer complex questions including optimal rules for assigning treatment based on longitudinal data with time-dependent confounding, as well as other estimands in dependent data structures, such as networks. Included in Targeted Learning in Data Science are demonstrations with soft ware packages and real data sets that present a case that targeted learning is crucial for the next generatio...

  7. Optimizing DNA assembly based on statistical language modelling.

    Science.gov (United States)

    Fang, Gang; Zhang, Shemin; Dong, Yafei

    2017-12-15

    By successively assembling genetic parts such as BioBrick according to grammatical models, complex genetic constructs composed of dozens of functional blocks can be built. However, usually every category of genetic parts includes a few or many parts. With increasing quantity of genetic parts, the process of assembling more than a few sets of these parts can be expensive, time consuming and error prone. At the last step of assembling it is somewhat difficult to decide which part should be selected. Based on statistical language model, which is a probability distribution P(s) over strings S that attempts to reflect how frequently a string S occurs as a sentence, the most commonly used parts will be selected. Then, a dynamic programming algorithm was designed to figure out the solution of maximum probability. The algorithm optimizes the results of a genetic design based on a grammatical model and finds an optimal solution. In this way, redundant operations can be reduced and the time and cost required for conducting biological experiments can be minimized. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. The Development of Introductory Statistics Students' Informal Inferential Reasoning and Its Relationship to Formal Inferential Reasoning

    Science.gov (United States)

    Jacob, Bridgette L.

    2013-01-01

    The difficulties introductory statistics students have with formal statistical inference are well known in the field of statistics education. "Informal" statistical inference has been studied as a means to introduce inferential reasoning well before and without the formalities of formal statistical inference. This mixed methods study…

  9. General Purpose Probabilistic Programming Platform with Effective Stochastic Inference

    Science.gov (United States)

    2018-04-01

    REFERENCES 74 LIST OF ACRONYMS 80 ii List of Figures Figure 1. The problem of inferring curves from data while simultaneously choosing the...bottom path) as the inverse problem to computer graphics (top path). ........ 18 Figure 18. An illustration of generative probabilistic graphics for 3D...Building these systems involves simultaneously developing mathematical models, inference algorithms and optimized software implementations. Small changes

  10. Statistical perspectives on inverse problems

    DEFF Research Database (Denmark)

    Andersen, Kim Emil

    of the interior of an object from electrical boundary measurements. One part of this thesis concerns statistical approaches for solving, possibly non-linear, inverse problems. Thus inverse problems are recasted in a form suitable for statistical inference. In particular, a Bayesian approach for regularisation...... problem is given in terms of probability distributions. Posterior inference is obtained by Markov chain Monte Carlo methods and new, powerful simulation techniques based on e.g. coupled Markov chains and simulated tempering is developed to improve the computational efficiency of the overall simulation......Inverse problems arise in many scientific disciplines and pertain to situations where inference is to be made about a particular phenomenon from indirect measurements. A typical example, arising in diffusion tomography, is the inverse boundary value problem for non-invasive reconstruction...

  11. Stochastic processes inference theory

    CERN Document Server

    Rao, Malempati M

    2014-01-01

    This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.

  12. The influence of design characteristics on statistical inference in nonlinear estimation: A simulation study based on survival data and hazard modeling

    DEFF Research Database (Denmark)

    Andersen, J.S.; Bedaux, J.J.M.; Kooijman, S.A.L.M.

    2000-01-01

    This paper describes the influence of design characteristics on the statistical inference for an ecotoxicological hazard-based model using simulated survival data. The design characteristics of interest are the number and spacing of observations (counts) in time, the number and spacing of exposure...... concentrations (within c(min) and c(max)), and the initial number of individuals at time 0 in each concentration. A comparison of the coverage probabilities for confidence limits arising from the profile-likelihood approach and the Wald-based approach is carried out. The Wald-based approach is very sensitive...

  13. Machine learning a Bayesian and optimization perspective

    CERN Document Server

    Theodoridis, Sergios

    2015-01-01

    This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches, which rely on optimization techniques, as well as Bayesian inference, which is based on a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as shor...

  14. Robust optimization of the output voltage of nanogenerators by statistical design of experiments

    KAUST Repository

    Song, Jinhui

    2010-09-01

    Nanogenerators were first demonstrated by deflecting aligned ZnO nanowires using a conductive atomic force microscopy (AFM) tip. The output of a nanogenerator is affected by three parameters: tip normal force, tip scanning speed, and tip abrasion. In this work, systematic experimental studies have been carried out to examine the combined effects of these three parameters on the output, using statistical design of experiments. A statistical model has been built to analyze the data and predict the optimal parameter settings. For an AFM tip of cone angle 70° coated with Pt, and ZnO nanowires with a diameter of 50 nm and lengths of 600 nm to 1 μm, the optimized parameters for the nanogenerator were found to be a normal force of 137 nN and scanning speed of 40 μm/s, rather than the conventional settings of 120 nN for the normal force and 30 μm/s for the scanning speed. A nanogenerator with the optimized settings has three times the average output voltage of one with the conventional settings. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  15. Robust optimization of the output voltage of nanogenerators by statistical design of experiments

    KAUST Repository

    Song, Jinhui; Xie, Huizhi; Wu, Wenzhuo; Roshan Joseph, V.; Jeff Wu, C. F.; Wang, Zhong Lin

    2010-01-01

    Nanogenerators were first demonstrated by deflecting aligned ZnO nanowires using a conductive atomic force microscopy (AFM) tip. The output of a nanogenerator is affected by three parameters: tip normal force, tip scanning speed, and tip abrasion. In this work, systematic experimental studies have been carried out to examine the combined effects of these three parameters on the output, using statistical design of experiments. A statistical model has been built to analyze the data and predict the optimal parameter settings. For an AFM tip of cone angle 70° coated with Pt, and ZnO nanowires with a diameter of 50 nm and lengths of 600 nm to 1 μm, the optimized parameters for the nanogenerator were found to be a normal force of 137 nN and scanning speed of 40 μm/s, rather than the conventional settings of 120 nN for the normal force and 30 μm/s for the scanning speed. A nanogenerator with the optimized settings has three times the average output voltage of one with the conventional settings. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  16. Rigorous force field optimization principles based on statistical distance minimization

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, Lukas, E-mail: vlcekl1@ornl.gov [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States); Joint Institute for Computational Sciences, University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6173 (United States); Chialvo, Ariel A. [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States)

    2015-10-14

    We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. We exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of the approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.

  17. Finite-sample instrumental variables Inference using an Asymptotically Pivotal Statistic

    NARCIS (Netherlands)

    Bekker, P.; Kleibergen, F.R.

    2001-01-01

    The paper considers the K-statistic, Kleibergen’s (2000) adaptation ofthe Anderson-Rubin (AR) statistic in instrumental variables regression.Compared to the AR-statistic this K-statistic shows improvedasymptotic efficiency in terms of degrees of freedom in overidentifiedmodels and yet it shares,

  18. Statistical inference based on latent ability estimates

    NARCIS (Netherlands)

    Hoijtink, H.J.A.; Boomsma, A.

    The quality of approximations to first and second order moments (e.g., statistics like means, variances, regression coefficients) based on latent ability estimates is being discussed. The ability estimates are obtained using either the Rasch, oi the two-parameter logistic model. Straightforward use

  19. Finite-sample instrumental variables inference using an asymptotically pivotal statistic

    NARCIS (Netherlands)

    Bekker, Paul A.; Kleibergen, Frank

    2001-01-01

    The paper considers the K-statistic, Kleibergen’s (2000) adaptation of the Anderson-Rubin (AR) statistic in instrumental variables regression. Compared to the AR-statistic this K-statistic shows improved asymptotic efficiency in terms of degrees of freedom in overidenti?ed models and yet it shares,

  20. Statistical inference and comparison of stochastic models for the hydraulic conductivity at the Finnsjoen-site

    International Nuclear Information System (INIS)

    Norman, S.

    1992-04-01

    The origin of this study was to find a good, or even the best, stochastic model for the hydraulic conductivity field at the Finnsjoe site. The conductivity field in question are regularized, that is upscaled. The reason for performing regularization of measurement data is primarily the need for long correlation scales. This is needed in order to model reasonably large domains that can be used when describing regional groundwater flow accurately. A theory of regularization is discussed in this report. In order to find the best model, jacknifing is employed to compare different stochastic models. The theory for this method is described. In the act of doing so we also take a look at linear predictor theory, so called kriging, and include a general discussion of stochastic functions and intrinsic random functions. The statistical inference methods for finding the models are also described, in particular regression, iterative generalized regression (IGLSE) and non-parametric variogram estimators. A large amount of results is presented for a regularization scale of 36 metre. (30 refs.) (au)

  1. Probability, statistics, and computational science.

    Science.gov (United States)

    Beerenwinkel, Niko; Siebourg, Juliane

    2012-01-01

    In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.

  2. Design of uav robust autopilot based on adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Mohand Achour Touat

    2008-04-01

    Full Text Available  This paper is devoted to the application of adaptive neuro-fuzzy inference systems to the robust control of the UAV longitudinal motion. The adaptive neore-fuzzy inference system model needs to be trained by input/output data. This data were obtained from the modeling of a ”crisp” robust control system. The synthesis of this system is based on the separation theorem, which defines the structure and parameters of LQG-optimal controller, and further - robust optimization of this controller, based on the genetic algorithm. Such design procedure can define the rule base and parameters of fuzzyfication and defuzzyfication algorithms of the adaptive neore-fuzzy inference system controller, which ensure the robust properties of the control system. Simulation of the closed loop control system of UAV longitudinal motion with adaptive neore-fuzzy inference system controller demonstrates high efficiency of proposed design procedure.

  3. On Maximum Entropy and Inference

    Directory of Open Access Journals (Sweden)

    Luigi Gresele

    2017-11-01

    Full Text Available Maximum entropy is a powerful concept that entails a sharp separation between relevant and irrelevant variables. It is typically invoked in inference, once an assumption is made on what the relevant variables are, in order to estimate a model from data, that affords predictions on all other (dependent variables. Conversely, maximum entropy can be invoked to retrieve the relevant variables (sufficient statistics directly from the data, once a model is identified by Bayesian model selection. We explore this approach in the case of spin models with interactions of arbitrary order, and we discuss how relevant interactions can be inferred. In this perspective, the dimensionality of the inference problem is not set by the number of parameters in the model, but by the frequency distribution of the data. We illustrate the method showing its ability to recover the correct model in a few prototype cases and discuss its application on a real dataset.

  4. Meaningful mediation analysis : Plausible causal inference and informative communication

    NARCIS (Netherlands)

    Pieters, Rik

    2017-01-01

    Statistical mediation analysis has become the technique of choice in consumer research to make causal inferences about the influence of a treatment on an outcome via one or more mediators. This tutorial aims to strengthen two weak links that impede statistical mediation analysis from reaching its

  5. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.

    Science.gov (United States)

    Kim, Sehwi; Jung, Inkyung

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.

  6. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models

    DEFF Research Database (Denmark)

    Fournier, David A.; Skaug, Hans J.; Ancheta, Johnoel

    2011-01-01

    Many criteria for statistical parameter estimation, such as maximum likelihood, are formulated as a nonlinear optimization problem.Automatic Differentiation Model Builder (ADMB) is a programming framework based on automatic differentiation, aimed at highly nonlinear models with a large number...... of such a feature is the generic implementation of Laplace approximation of high-dimensional integrals for use in latent variable models. We also review the literature in which ADMB has been used, and discuss future development of ADMB as an open source project. Overall, the main advantages ofADMB are flexibility...

  7. A formal model of interpersonal inference

    Directory of Open Access Journals (Sweden)

    Michael eMoutoussis

    2014-03-01

    Full Text Available Introduction: We propose that active Bayesian inference – a general framework for decision-making – can equally be applied to interpersonal exchanges. Social cognition, however, entails special challenges. We address these challenges through a novel formulation of a formal model and demonstrate its psychological significance. Method: We review relevant literature, especially with regards to interpersonal representations, formulate a mathematical model and present a simulation study. The model accommodates normative models from utility theory and places them within the broader setting of Bayesian inference. Crucially, we endow people's prior beliefs, into which utilities are absorbed, with preferences of self and others. The simulation illustrates the model's dynamics and furnishes elementary predictions of the theory. Results: 1. Because beliefs about self and others inform both the desirability and plausibility of outcomes, in this framework interpersonal representations become beliefs that have to be actively inferred. This inference, akin to 'mentalising' in the psychological literature, is based upon the outcomes of interpersonal exchanges. 2. We show how some well-known social-psychological phenomena (e.g. self-serving biases can be explained in terms of active interpersonal inference. 3. Mentalising naturally entails Bayesian updating of how people value social outcomes. Crucially this includes inference about one’s own qualities and preferences. Conclusion: We inaugurate a Bayes optimal framework for modelling intersubject variability in mentalising during interpersonal exchanges. Here, interpersonal representations are endowed with explicit functional and affective properties. We suggest the active inference framework lends itself to the study of psychiatric conditions where mentalising is distorted.

  8. View Discovery in OLAP Databases through Statistical Combinatorial Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, Cliff A.; Burke, Edward J.; Critchlow, Terence J.

    2009-05-01

    The capability of OLAP database software systems to handle data complexity comes at a high price for analysts, presenting them a combinatorially vast space of views of a relational database. We respond to the need to deploy technologies sufficient to allow users to guide themselves to areas of local structure by casting the space of ``views'' of an OLAP database as a combinatorial object of all projections and subsets, and ``view discovery'' as an search process over that lattice. We equip the view lattice with statistical information theoretical measures sufficient to support a combinatorial optimization process. We outline ``hop-chaining'' as a particular view discovery algorithm over this object, wherein users are guided across a permutation of the dimensions by searching for successive two-dimensional views, pushing seen dimensions into an increasingly large background filter in a ``spiraling'' search process. We illustrate this work in the context of data cubes recording summary statistics for radiation portal monitors at US ports.

  9. Kinetic Analysis of Dynamic Positron Emission Tomography Data using Open-Source Image Processing and Statistical Inference Tools.

    Science.gov (United States)

    Hawe, David; Hernández Fernández, Francisco R; O'Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O'Sullivan, Finbarr

    2012-05-01

    In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue. In statistical terms, the residue function is essentially a survival function - a familiar life-time data construct. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as flow, flux, volume of distribution and transit time summaries. This review emphasises a nonparametric approach to the estimation of the residue based on a piecewise linear form. Rapid implementation of this by quadratic programming is described. The approach provides a reference for statistical assessment of widely used one- and two-compartmental model forms. We illustrate the method with data from two of the most well-established PET radiotracers, (15)O-H(2)O and (18)F-fluorodeoxyglucose, used for assessment of blood perfusion and glucose metabolism respectively. The presentation illustrates the use of two open-source tools, AMIDE and R, for PET scan manipulation and model inference.

  10. Sparse linear models: Variational approximate inference and Bayesian experimental design

    International Nuclear Information System (INIS)

    Seeger, Matthias W

    2009-01-01

    A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

  11. Sparse linear models: Variational approximate inference and Bayesian experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Matthias W [Saarland University and Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbruecken (Germany)

    2009-12-01

    A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

  12. Population-based statistical inference for temporal sequence of somatic mutations in cancer genomes.

    Science.gov (United States)

    Rhee, Je-Keun; Kim, Tae-Min

    2018-04-20

    It is well recognized that accumulation of somatic mutations in cancer genomes plays a role in carcinogenesis; however, the temporal sequence and evolutionary relationship of somatic mutations remain largely unknown. In this study, we built a population-based statistical framework to infer the temporal sequence of acquisition of somatic mutations. Using the model, we analyzed the mutation profiles of 1954 tumor specimens across eight tumor types. As a result, we identified tumor type-specific directed networks composed of 2-15 cancer-related genes (nodes) and their mutational orders (edges). The most common ancestors identified in pairwise comparison of somatic mutations were TP53 mutations in breast, head/neck, and lung cancers. The known relationship of KRAS to TP53 mutations in colorectal cancers was identified, as well as potential ancestors of TP53 mutation such as NOTCH1, EGFR, and PTEN mutations in head/neck, lung and endometrial cancers, respectively. We also identified apoptosis-related genes enriched with ancestor mutations in lung cancers and a relationship between APC hotspot mutations and TP53 mutations in colorectal cancers. While evolutionary analysis of cancers has focused on clonal versus subclonal mutations identified in individual genomes, our analysis aims to further discriminate ancestor versus descendant mutations in population-scale mutation profiles that may help select cancer drivers with clinical relevance.

  13. How to practise Bayesian statistics outside the Bayesian church: What philosophy for Bayesian statistical modelling?

    NARCIS (Netherlands)

    Borsboom, D.; Haig, B.D.

    2013-01-01

    Unlike most other statistical frameworks, Bayesian statistical inference is wedded to a particular approach in the philosophy of science (see Howson & Urbach, 2006); this approach is called Bayesianism. Rather than being concerned with model fitting, this position in the philosophy of science

  14. Nonparametric predictive inference in statistical process control

    NARCIS (Netherlands)

    Arts, G.R.J.; Coolen, F.P.A.; Laan, van der P.

    2004-01-01

    Statistical process control (SPC) is used to decide when to stop a process as confidence in the quality of the next item(s) is low. Information to specify a parametric model is not always available, and as SPC is of a predictive nature, we present a control chart developed using nonparametric

  15. Inference in partially identified models with many moment inequalities using Lasso

    DEFF Research Database (Denmark)

    Bugni, Federico A.; Caner, Mehmet; Kock, Anders Bredahl

    This paper considers the problem of inference in a partially identified moment (in)equality model with possibly many moment inequalities. Our contribution is to propose a novel two-step new inference method based on the combination of two ideas. On the one hand, our test statistic and critical...

  16. Making Type Inference Practical

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff; Oxhøj, Nicholas; Palsberg, Jens

    1992-01-01

    We present the implementation of a type inference algorithm for untyped object-oriented programs with inheritance, assignments, and late binding. The algorithm significantly improves our previous one, presented at OOPSLA'91, since it can handle collection classes, such as List, in a useful way. Abo......, the complexity has been dramatically improved, from exponential time to low polynomial time. The implementation uses the techniques of incremental graph construction and constraint template instantiation to avoid representing intermediate results, doing superfluous work, and recomputing type information....... Experiments indicate that the implementation type checks as much as 100 lines pr. second. This results in a mature product, on which a number of tools can be based, for example a safety tool, an image compression tool, a code optimization tool, and an annotation tool. This may make type inference for object...

  17. Optimal Inference for Instrumental Variables Regression with non-Gaussian Errors

    DEFF Research Database (Denmark)

    Cattaneo, Matias D.; Crump, Richard K.; Jansson, Michael

    This paper is concerned with inference on the coefficient on the endogenous regressor in a linear instrumental variables model with a single endogenous regressor, nonrandom exogenous regressors and instruments, and i.i.d. errors whose distribution is unknown. It is shown that under mild smoothness...

  18. Statistical Validation of Engineering and Scientific Models: Background

    International Nuclear Information System (INIS)

    Hills, Richard G.; Trucano, Timothy G.

    1999-01-01

    A tutorial is presented discussing the basic issues associated with propagation of uncertainty analysis and statistical validation of engineering and scientific models. The propagation of uncertainty tutorial illustrates the use of the sensitivity method and the Monte Carlo method to evaluate the uncertainty in predictions for linear and nonlinear models. Four example applications are presented; a linear model, a model for the behavior of a damped spring-mass system, a transient thermal conduction model, and a nonlinear transient convective-diffusive model based on Burger's equation. Correlated and uncorrelated model input parameters are considered. The model validation tutorial builds on the material presented in the propagation of uncertainty tutoriaI and uses the damp spring-mass system as the example application. The validation tutorial illustrates several concepts associated with the application of statistical inference to test model predictions against experimental observations. Several validation methods are presented including error band based, multivariate, sum of squares of residuals, and optimization methods. After completion of the tutorial, a survey of statistical model validation literature is presented and recommendations for future work are made

  19. Optimization Model for Uncertain Statistics Based on an Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Yongchao Hou

    2014-01-01

    Full Text Available Uncertain statistics is a methodology for collecting and interpreting the expert’s experimental data by uncertainty theory. In order to estimate uncertainty distributions, an optimization model based on analytic hierarchy process (AHP and interpolation method is proposed in this paper. In addition, the principle of least squares method is presented to estimate uncertainty distributions with known functional form. Finally, the effectiveness of this method is illustrated by an example.

  20. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  1. Statistics of Extremes

    KAUST Repository

    Davison, Anthony C.; Huser, Raphaë l

    2015-01-01

    Statistics of extremes concerns inference for rare events. Often the events have never yet been observed, and their probabilities must therefore be estimated by extrapolation of tail models fitted to available data. Because data concerning the event

  2. Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback.

    Science.gov (United States)

    Orhan, A Emin; Ma, Wei Ji

    2017-07-26

    Animals perform near-optimal probabilistic inference in a wide range of psychophysical tasks. Probabilistic inference requires trial-to-trial representation of the uncertainties associated with task variables and subsequent use of this representation. Previous work has implemented such computations using neural networks with hand-crafted and task-dependent operations. We show that generic neural networks trained with a simple error-based learning rule perform near-optimal probabilistic inference in nine common psychophysical tasks. In a probabilistic categorization task, error-based learning in a generic network simultaneously explains a monkey's learning curve and the evolution of qualitative aspects of its choice behavior. In all tasks, the number of neurons required for a given level of performance grows sublinearly with the input population size, a substantial improvement on previous implementations of probabilistic inference. The trained networks develop a novel sparsity-based probabilistic population code. Our results suggest that probabilistic inference emerges naturally in generic neural networks trained with error-based learning rules.Behavioural tasks often require probability distributions to be inferred about task specific variables. Here, the authors demonstrate that generic neural networks can be trained using a simple error-based learning rule to perform such probabilistic computations efficiently without any need for task specific operations.

  3. Information Geometry, Inference Methods and Chaotic Energy Levels Statistics

    OpenAIRE

    Cafaro, Carlo

    2008-01-01

    In this Letter, we propose a novel information-geometric characterization of chaotic (integrable) energy level statistics of a quantum antiferromagnetic Ising spin chain in a tilted (transverse) external magnetic field. Finally, we conjecture our results might find some potential physical applications in quantum energy level statistics.

  4. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS

    Science.gov (United States)

    Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi

    2016-09-01

    This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.

  5. Statistics of Extremes

    KAUST Repository

    Davison, Anthony C.

    2015-04-10

    Statistics of extremes concerns inference for rare events. Often the events have never yet been observed, and their probabilities must therefore be estimated by extrapolation of tail models fitted to available data. Because data concerning the event of interest may be very limited, efficient methods of inference play an important role. This article reviews this domain, emphasizing current research topics. We first sketch the classical theory of extremes for maxima and threshold exceedances of stationary series. We then review multivariate theory, distinguishing asymptotic independence and dependence models, followed by a description of models for spatial and spatiotemporal extreme events. Finally, we discuss inference and describe two applications. Animations illustrate some of the main ideas. © 2015 by Annual Reviews. All rights reserved.

  6. Finite-sample instrumental variables inference using an asymptotically pivotal statistic

    NARCIS (Netherlands)

    Bekker, P; Kleibergen, F

    2003-01-01

    We consider the K-statistic, Kleibergen's (2002, Econometrica 70, 1781-1803) adaptation of the Anderson-Rubin (AR) statistic in instrumental variables regression. Whereas Kleibergen (2002) especially analyzes the asymptotic behavior of the statistic, we focus on finite-sample properties in, a

  7. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-06

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  8. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-01

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  9. Estimation and inference in the same-different test

    DEFF Research Database (Denmark)

    Christensen, Rune Haubo Bojesen; Brockhoff, Per B.

    2009-01-01

    as well as similarity. We show that the likelihood root statistic is equivalent to the well known G(2) likelihood ratio statistic for tests of no difference. As an additional practical tool, we introduce the profile likelihood curve to provide a convenient graphical summary of the information in the data......Inference for the Thurstonian delta in the same-different protocol via the well known Wald statistic is shown to be inappropriate in a wide range of situations. We introduce the likelihood root statistic as an alternative to the Wald statistic to produce CIs and p-values for assessing difference...

  10. On Difference of Convex Optimization to Visualize Statistical Data and Dissimilarities

    DEFF Research Database (Denmark)

    Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero

    2016-01-01

    In this talk we address the problem of visualizing in a bounded region a set of individuals, which has attached a dissimilarity measure and a statistical value. This problem, which extends the standard Multidimensional Scaling Analysis, is written as a global optimization problem whose objective...... is the difference of two convex functions (DC). Suitable DC decompositions allow us to use the DCA algorithm in a very efficient way. Our algorithmic approach is used to visualize two real-world datasets....

  11. Introduction to statistical inference and its applications with R

    CERN Document Server

    Trosset, Michael W

    2009-01-01

    ExperimentsExamples Randomization The Importance of Probability Games of Chance Mathematical Preliminaries Sets Counting Functions Limits Probability Interpretations of Probability Axioms of Probability Finite Sample Spaces Conditional Probability Random VariablesCase Study: Padrolling in Milton Murayama's All I asking for is my bodyDiscrete Random VariablesBasic Concepts Examples Expectation Binomial DistributionsContinuous Random Variables A Motivating Example Basic Concepts Elementary Examples Normal Distributions Normal Sampling DistributionsQuantifying Population Attributes Symmetry Quantiles The Method of Least SquaresData The Plug-In Principle Plug-In Estimates of Mean and Variance Plug-In Estimates of Quantiles Kernel Density Estimates Case Study: Are Forearm Lengths Normally Distributed? TransformationsLots of Data Averaging Decreases Variation The Weak Law of Large Numbers The Central Limit TheoremInferenceA Motivating Example Point EstimationHeuristics of Hypothesis Testing Testing Hypotheses about...

  12. Inference in hybrid Bayesian networks

    DEFF Research Database (Denmark)

    Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2009-01-01

    Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....

  13. Dynamic statistical optimization of GNSS radio occultation bending angles: advanced algorithm and performance analysis

    Science.gov (United States)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.

    2015-08-01

    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.

  14. Mocapy++ - a toolkit for inference and learning in dynamic Bayesian networks

    DEFF Research Database (Denmark)

    Paluszewski, Martin; Hamelryck, Thomas Wim

    2010-01-01

    Background Mocapy++ is a toolkit for parameter learning and inference in dynamic Bayesian networks (DBNs). It supports a wide range of DBN architectures and probability distributions, including distributions from directional statistics (the statistics of angles, directions and orientations...

  15. Structured statistical models of inductive reasoning.

    Science.gov (United States)

    Kemp, Charles; Tenenbaum, Joshua B

    2009-01-01

    Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet both goals and describes [corrected] 4 applications of the framework: a taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabilistic inferences about the extensions of novel properties, but the priors for the 4 models are defined over different kinds of structures that capture different relationships between the categories in a domain. The framework therefore shows how statistical inference can operate over structured background knowledge, and the authors argue that this interaction between structure and statistics is critical for explaining the power and flexibility of human reasoning.

  16. Statistical aspects of determinantal point processes

    DEFF Research Database (Denmark)

    Lavancier, Frédéric; Møller, Jesper; Rubak, Ege

    The statistical aspects of determinantal point processes (DPPs) seem largely unexplored. We review the appealing properties of DDPs, demonstrate that they are useful models for repulsiveness, detail a simulation procedure, and provide freely available software for simulation and statistical infer...

  17. Optimal choice of word length when comparing two Markov sequences using a χ 2-statistic.

    Science.gov (United States)

    Bai, Xin; Tang, Kujin; Ren, Jie; Waterman, Michael; Sun, Fengzhu

    2017-10-03

    Alignment-free sequence comparison using counts of word patterns (grams, k-tuples) has become an active research topic due to the large amount of sequence data from the new sequencing technologies. Genome sequences are frequently modelled by Markov chains and the likelihood ratio test or the corresponding approximate χ 2 -statistic has been suggested to compare two sequences. However, it is not known how to best choose the word length k in such studies. We develop an optimal strategy to choose k by maximizing the statistical power of detecting differences between two sequences. Let the orders of the Markov chains for the two sequences be r 1 and r 2 , respectively. We show through both simulations and theoretical studies that the optimal k= max(r 1 ,r 2 )+1 for both long sequences and next generation sequencing (NGS) read data. The orders of the Markov chains may be unknown and several methods have been developed to estimate the orders of Markov chains based on both long sequences and NGS reads. We study the power loss of the statistics when the estimated orders are used. It is shown that the power loss is minimal for some of the estimators of the orders of Markov chains. Our studies provide guidelines on choosing the optimal word length for the comparison of Markov sequences.

  18. Performance Evaluation of the Machine Learning Algorithms Used in Inference Mechanism of a Medical Decision Support System

    Directory of Open Access Journals (Sweden)

    Mert Bal

    2014-01-01

    Full Text Available The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.

  19. Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system.

    Science.gov (United States)

    Bal, Mert; Amasyali, M Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse

    2014-01-01

    The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.

  20. Maximum Likelihood Estimation and Inference With Examples in R, SAS and ADMB

    CERN Document Server

    Millar, Russell B

    2011-01-01

    This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statis

  1. Efficient statistical tests to compare Youden index: accounting for contingency correlation.

    Science.gov (United States)

    Chen, Fangyao; Xue, Yuqiang; Tan, Ming T; Chen, Pingyan

    2015-04-30

    Youden index is widely utilized in studies evaluating accuracy of diagnostic tests and performance of predictive, prognostic, or risk models. However, both one and two independent sample tests on Youden index have been derived ignoring the dependence (association) between sensitivity and specificity, resulting in potentially misleading findings. Besides, paired sample test on Youden index is currently unavailable. This article develops efficient statistical inference procedures for one sample, independent, and paired sample tests on Youden index by accounting for contingency correlation, namely associations between sensitivity and specificity and paired samples typically represented in contingency tables. For one and two independent sample tests, the variances are estimated by Delta method, and the statistical inference is based on the central limit theory, which are then verified by bootstrap estimates. For paired samples test, we show that the estimated covariance of the two sensitivities and specificities can be represented as a function of kappa statistic so the test can be readily carried out. We then show the remarkable accuracy of the estimated variance using a constrained optimization approach. Simulation is performed to evaluate the statistical properties of the derived tests. The proposed approaches yield more stable type I errors at the nominal level and substantially higher power (efficiency) than does the original Youden's approach. Therefore, the simple explicit large sample solution performs very well. Because we can readily implement the asymptotic and exact bootstrap computation with common software like R, the method is broadly applicable to the evaluation of diagnostic tests and model performance. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Causal inference in biology networks with integrated belief propagation.

    Science.gov (United States)

    Chang, Rui; Karr, Jonathan R; Schadt, Eric E

    2015-01-01

    Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the 'fitness' of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot.

  3. Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction

    Science.gov (United States)

    Smelyanskiy, V. N.; Luchinsky, D. G.; Stefanovska, A.; McClintock, P. V.

    2005-03-01

    We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of polynomial basis functions representing the nonlinear force governing system oscillations. The strength and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure signal. Our new inference technique does not require extensive global optimization, and it is applicable to a wide range of complex dynamical systems subject to noise.

  4. Understanding Computational Bayesian Statistics

    CERN Document Server

    Bolstad, William M

    2011-01-01

    A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistic

  5. A Unified Statistical Rain-Attenuation Model for Communication Link Fade Predictions and Optimal Stochastic Fade Control Design Using a Location-Dependent Rain-Statistic Database

    Science.gov (United States)

    Manning, Robert M.

    1990-01-01

    A static and dynamic rain-attenuation model is presented which describes the statistics of attenuation on an arbitrarily specified satellite link for any location for which there are long-term rainfall statistics. The model may be used in the design of the optimal stochastic control algorithms to mitigate the effects of attenuation and maintain link reliability. A rain-statistics data base is compiled, which makes it possible to apply the model to any location in the continental U.S. with a resolution of 0-5 degrees in latitude and longitude. The model predictions are compared with experimental observations, showing good agreement.

  6. Topics in theoretical and applied statistics

    CERN Document Server

    Giommi, Andrea

    2016-01-01

    This book highlights the latest research findings from the 46th International Meeting of the Italian Statistical Society (SIS) in Rome, during which both methodological and applied statistical research was discussed. This selection of fully peer-reviewed papers, originally presented at the meeting, addresses a broad range of topics, including the theory of statistical inference; data mining and multivariate statistical analysis; survey methodologies; analysis of social, demographic and health data; and economic statistics and econometrics.

  7. Statistical optimization of thermo-alkali stable xylanase production from Bacillus tequilensis strain ARMATI

    Directory of Open Access Journals (Sweden)

    Ameer Khusro

    2016-07-01

    Conclusions: The cellulase-free xylanase showed an alkali-tolerant and thermo-stable property with potentially applicable nature at industrial scale. This statistical approach established a major contribution in enzyme production from the isolate by optimizing independent factors and represents a first reference on the enhanced production of thermo-alkali stable cellulase-free xylanase from B. tequilensis.

  8. Fuzzy statistical decision-making theory and applications

    CERN Document Server

    Kabak, Özgür

    2016-01-01

    This book offers a comprehensive reference guide to fuzzy statistics and fuzzy decision-making techniques. It provides readers with all the necessary tools for making statistical inference in the case of incomplete information or insufficient data, where classical statistics cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including: fuzzy probability distributions, fuzzy frequency distributions, fuzzy Bayesian inference, fuzzy mean, mode and median, fuzzy dispersion, fuzzy p-value, and many others. To foster a better understanding, all the chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers and postgraduate students pursuing research on fuzzy statistics. Moreover, by extending all the main aspects of classical statistical decision-making to its fuzzy counterpart, the book presents a dynamic snapshot of the field that is expected to stimu...

  9. Simple simulation of diffusion bridges with application to likelihood inference for diffusions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Sørensen, Michael

    2014-01-01

    the accuracy and efficiency of the approximate method and compare it to exact simulation methods. In the study, our method provides a very good approximation to the distribution of a diffusion bridge for bridges that are likely to occur in applications to statistical inference. To illustrate the usefulness......With a view to statistical inference for discretely observed diffusion models, we propose simple methods of simulating diffusion bridges, approximately and exactly. Diffusion bridge simulation plays a fundamental role in likelihood and Bayesian inference for diffusion processes. First a simple......-dimensional diffusions and is applicable to all one-dimensional diffusion processes with finite speed-measure. One advantage of the new approach is that simple simulation methods like the Milstein scheme can be applied to bridge simulation. Another advantage over previous bridge simulation methods is that the proposed...

  10. Statistical Computing

    Indian Academy of Sciences (India)

    inference and finite population sampling. Sudhakar Kunte. Elements of statistical computing are discussed in this series. ... which captain gets an option to decide whether to field first or bat first ... may of course not be fair, in the sense that the team which wins ... describe two methods of drawing a random number between 0.

  11. Implementing and analyzing the multi-threaded LP-inference

    Science.gov (United States)

    Bolotova, S. Yu; Trofimenko, E. V.; Leschinskaya, M. V.

    2018-03-01

    The logical production equations provide new possibilities for the backward inference optimization in intelligent production-type systems. The strategy of a relevant backward inference is aimed at minimization of a number of queries to external information source (either to a database or an interactive user). The idea of the method is based on the computing of initial preimages set and searching for the true preimage. The execution of each stage can be organized independently and in parallel and the actual work at a given stage can also be distributed between parallel computers. This paper is devoted to the parallel algorithms of the relevant inference based on the advanced scheme of the parallel computations “pipeline” which allows to increase the degree of parallelism. The author also provides some details of the LP-structures implementation.

  12. A human genome-wide library of local phylogeny predictions for whole-genome inference problems

    Directory of Open Access Journals (Sweden)

    Schwartz Russell

    2008-08-01

    Full Text Available Abstract Background Many common inference problems in computational genetics depend on inferring aspects of the evolutionary history of a data set given a set of observed modern sequences. Detailed predictions of the full phylogenies are therefore of value in improving our ability to make further inferences about population history and sources of genetic variation. Making phylogenetic predictions on the scale needed for whole-genome analysis is, however, extremely computationally demanding. Results In order to facilitate phylogeny-based predictions on a genomic scale, we develop a library of maximum parsimony phylogenies within local regions spanning all autosomal human chromosomes based on Haplotype Map variation data. We demonstrate the utility of this library for population genetic inferences by examining a tree statistic we call 'imperfection,' which measures the reuse of variant sites within a phylogeny. This statistic is significantly predictive of recombination rate, shows additional regional and population-specific conservation, and allows us to identify outlier genes likely to have experienced unusual amounts of variation in recent human history. Conclusion Recent theoretical advances in algorithms for phylogenetic tree reconstruction have made it possible to perform large-scale inferences of local maximum parsimony phylogenies from single nucleotide polymorphism (SNP data. As results from the imperfection statistic demonstrate, phylogeny predictions encode substantial information useful for detecting genomic features and population history. This data set should serve as a platform for many kinds of inferences one may wish to make about human population history and genetic variation.

  13. The Bayesian statistical decision theory applied to the optimization of generating set maintenance

    International Nuclear Information System (INIS)

    Procaccia, H.; Cordier, R.; Muller, S.

    1994-11-01

    The difficulty in RCM methodology is the allocation of a new periodicity of preventive maintenance on one equipment when a critical failure has been identified: until now this new allocation has been based on the engineer's judgment, and one must wait for a full cycle of feedback experience before to validate it. Statistical decision theory could be a more rational alternative for the optimization of preventive maintenance periodicity. This methodology has been applied to inspection and maintenance optimization of cylinders of diesel generator engines of 900 MW nuclear plants, and has shown that previous preventive maintenance periodicity can be extended. (authors). 8 refs., 5 figs

  14. High-throughput optimization by statistical designs: example with rat liver slices cryopreservation.

    Science.gov (United States)

    Martin, H; Bournique, B; Blanchi, B; Lerche-Langrand, C

    2003-08-01

    The purpose of this study was to optimize cryopreservation conditions of rat liver slices in a high-throughput format, with focus on reproducibility. A statistical design of 32 experiments was performed and intracellular lactate dehydrogenase (LDHi) activity and antipyrine (AP) metabolism were evaluated as biomarkers. At freezing, modified University of Wisconsin solution was better than Williams'E medium, and pure dimethyl sulfoxide was better than a cryoprotectant mixture. The best cryoprotectant concentrations were 10% for LDHi and 20% for AP metabolism. Fetal calf serum could be used at 50 or 80%, and incubation of slices with the cryoprotectant could last 10 or 20 min. At thawing, 42 degrees C was better than 22 degrees C. After thawing, 1h was better than 3h of preculture. Cryopreservation increased the interslice variability of the biomarkers. After cryopreservation, LDHi and AP metabolism levels were up to 84 and 80% of fresh values. However, these high levels were not reproducibly achieved. Two factors involved in the day-to-day variability of LDHi were identified: the incubation time with the cryoprotectant and the preculture time. In conclusion, the statistical design was very efficient to quickly determine optimized conditions by simultaneously measuring the role of numerous factors. The cryopreservation procedure developed appears suitable for qualitative metabolic profiling studies.

  15. Damping layout optimization for ship's cabin noise reduction based on statistical energy analysis

    Directory of Open Access Journals (Sweden)

    WU Weiguo

    2017-08-01

    Full Text Available An optimization analysis study concerning the damping control of ship's cabin noise was carried out in order to improve the effect and reduce the weight of damping. Based on the Statistical Energy Analysis (SEA method, a theoretical deduction and numerical analysis of the first-order sensitivity analysis of the A-weighted sound pressure level concerning the damping loss factor of the subsystem were carried out. On this basis, a mathematical optimization model was proposed and an optimization program developed. Next, the secondary development of VA One software was implemented through the use of MATLAB, while the cabin noise damping control layout optimization system was established. Finally, the optimization model of the ship was constructed and numerical experiments of damping control optimization conducted. The damping installation region was divided into five parts with different damping thicknesses. The total weight of damping was set as an objective function and the A-weighted sound pressure level of the target cabin was set as a constraint condition. The best damping thickness was obtained through the optimization program, and the total damping weight was reduced by 60.4%. The results show that the damping noise reduction effect of unit weight is significantly improved through the optimization method. This research successfully solves the installation position and thickness selection problems in the acoustic design of damping control, providing a reliable analysis method and guidance for the design.

  16. Logic-based methods for optimization combining optimization and constraint satisfaction

    CERN Document Server

    Hooker, John

    2011-01-01

    A pioneering look at the fundamental role of logic in optimization and constraint satisfaction While recent efforts to combine optimization and constraint satisfaction have received considerable attention, little has been said about using logic in optimization as the key to unifying the two fields. Logic-Based Methods for Optimization develops for the first time a comprehensive conceptual framework for integrating optimization and constraint satisfaction, then goes a step further and shows how extending logical inference to optimization allows for more powerful as well as flexible

  17. Parameters optimization defined by statistical analysis for cysteine-dextran radiolabeling with technetium tricarbonyl core

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Nunez, Eutimio Gustavo, E-mail: eutimiocu@yahoo.co [Radiopharmacy Center, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil); Linkowski Faintuch, Bluma; Teodoro, Rodrigo; Pereira Wiecek, Danielle; Gomes da Silva, Natanael [Radiopharmacy Center, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil); Papadopoulos, Minas [Institute of Radioisotopes, Radiodiagnostic Products, National Center for Scientific Research ' Demokritos' , Athens (Greece); Pelecanou, Maria [Institute of Biology, National Center for Scientific Research ' Demokritos' , Athens (Greece); Pirmettis, Ioannis [Institute of Radioisotopes, Radiodiagnostic Products, National Center for Scientific Research ' Demokritos' , Athens (Greece); Santos Oliveira Filho, Renato de [Faculty of Medicine, Federal University of Sao Paulo, SP (Brazil); Duatti, Adriano [Department of Radiological Sciences, University of Ferrara, Ferrara (Italy); Pasqualini, Roberto [CIS Bio International, Gif sur Yvette (France)

    2011-04-15

    The objective of this study was the development of a statistical approach for radiolabeling optimization of cysteine-dextran conjugates with Tc-99m tricarbonyl core. This strategy has been applied to the labeling of 2-propylene-S-cysteine-dextran in the attempt to prepare a new class of tracers for sentinel lymph node detection, and can be extended to other radiopharmaceuticals for different targets. The statistical routine was based on three-level factorial design. Best labeling conditions were achieved. The specific activity reached was 5 MBq/{mu}g.

  18. Statistical process control using optimized neural networks: a case study.

    Science.gov (United States)

    Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid

    2014-09-01

    The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization

    OpenAIRE

    Izmirlioglu, Gulten; Demirci, Ali

    2015-01-01

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium componen...

  20. Variability aware compact model characterization for statistical circuit design optimization

    Science.gov (United States)

    Qiao, Ying; Qian, Kun; Spanos, Costas J.

    2012-03-01

    Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.

  1. Statistical mechanics of sparse generalization and graphical model selection

    International Nuclear Information System (INIS)

    Lage-Castellanos, Alejandro; Pagnani, Andrea; Weigt, Martin

    2009-01-01

    One of the crucial tasks in many inference problems is the extraction of an underlying sparse graphical model from a given number of high-dimensional measurements. In machine learning, this is frequently achieved using, as a penalty term, the L p norm of the model parameters, with p≤1 for efficient dilution. Here we propose a statistical mechanics analysis of the problem in the setting of perceptron memorization and generalization. Using a replica approach, we are able to evaluate the relative performance of naive dilution (obtained by learning without dilution, following by applying a threshold to the model parameters), L 1 dilution (which is frequently used in convex optimization) and L 0 dilution (which is optimal but computationally hard to implement). Whereas both L p diluted approaches clearly outperform the naive approach, we find a small region where L 0 works almost perfectly and strongly outperforms the simpler to implement L 1 dilution

  2. Empirical Statistical Power for Testing Multilocus Genotypic Effects under Unbalanced Designs Using a Gibbs Sampler

    Directory of Open Access Journals (Sweden)

    Chaeyoung Lee

    2012-11-01

    Full Text Available Epistasis that may explain a large portion of the phenotypic variation for complex economic traits of animals has been ignored in many genetic association studies. A Baysian method was introduced to draw inferences about multilocus genotypic effects based on their marginal posterior distributions by a Gibbs sampler. A simulation study was conducted to provide statistical powers under various unbalanced designs by using this method. Data were simulated by combined designs of number of loci, within genotype variance, and sample size in unbalanced designs with or without null combined genotype cells. Mean empirical statistical power was estimated for testing posterior mean estimate of combined genotype effect. A practical example for obtaining empirical statistical power estimates with a given sample size was provided under unbalanced designs. The empirical statistical powers would be useful for determining an optimal design when interactive associations of multiple loci with complex phenotypes were examined.

  3. Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations

    Science.gov (United States)

    Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin

    2017-10-01

    The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.

  4. Insight From the Statistics of Nothing: Estimating Limits of Change Detection Using Inferred No-Change Areas in DEM Difference Maps and Application to Landslide Hazard Studies

    Science.gov (United States)

    Haneberg, W. C.

    2017-12-01

    Remote characterization of new landslides or areas of ongoing movement using differences in high resolution digital elevation models (DEMs) created through time, for example before and after major rains or earthquakes, is an attractive proposition. In the case of large catastrophic landslides, changes may be apparent enough that simple subtraction suffices. In other cases, statistical noise can obscure landslide signatures and place practical limits on detection. In ideal cases on land, GPS surveys of representative areas at the time of DEM creation can quantify the inherent errors. In less-than-ideal terrestrial cases and virtually all submarine cases, it may be impractical or impossible to independently estimate the DEM errors. Examining DEM difference statistics for areas reasonably inferred to have no change, however, can provide insight into the limits of detectability. Data from inferred no-change areas of airborne LiDAR DEM difference maps of the 2014 Oso, Washington landslide and landslide-prone colluvium slopes along the Ohio River valley in northern Kentucky, show that DEM difference maps can have non-zero mean and slope dependent error components consistent with published studies of DEM errors. Statistical thresholds derived from DEM difference error and slope data can help to distinguish between DEM differences that are likely real—and which may indicate landsliding—from those that are likely spurious or irrelevant. This presentation describes and compares two different approaches, one based upon a heuristic assumption about the proportion of the study area likely covered by new landslides and another based upon the amount of change necessary to ensure difference at a specified level of probability.

  5. Making inference from wildlife collision data: inferring predator absence from prey strikes

    Directory of Open Access Journals (Sweden)

    Peter Caley

    2017-02-01

    Full Text Available Wildlife collision data are ubiquitous, though challenging for making ecological inference due to typically irreducible uncertainty relating to the sampling process. We illustrate a new approach that is useful for generating inference from predator data arising from wildlife collisions. By simply conditioning on a second prey species sampled via the same collision process, and by using a biologically realistic numerical response functions, we can produce a coherent numerical response relationship between predator and prey. This relationship can then be used to make inference on the population size of the predator species, including the probability of extinction. The statistical conditioning enables us to account for unmeasured variation in factors influencing the runway strike incidence for individual airports and to enable valid comparisons. A practical application of the approach for testing hypotheses about the distribution and abundance of a predator species is illustrated using the hypothesized red fox incursion into Tasmania, Australia. We estimate that conditional on the numerical response between fox and lagomorph runway strikes on mainland Australia, the predictive probability of observing no runway strikes of foxes in Tasmania after observing 15 lagomorph strikes is 0.001. We conclude there is enough evidence to safely reject the null hypothesis that there is a widespread red fox population in Tasmania at a population density consistent with prey availability. The method is novel and has potential wider application.

  6. Making inference from wildlife collision data: inferring predator absence from prey strikes.

    Science.gov (United States)

    Caley, Peter; Hosack, Geoffrey R; Barry, Simon C

    2017-01-01

    Wildlife collision data are ubiquitous, though challenging for making ecological inference due to typically irreducible uncertainty relating to the sampling process. We illustrate a new approach that is useful for generating inference from predator data arising from wildlife collisions. By simply conditioning on a second prey species sampled via the same collision process, and by using a biologically realistic numerical response functions, we can produce a coherent numerical response relationship between predator and prey. This relationship can then be used to make inference on the population size of the predator species, including the probability of extinction. The statistical conditioning enables us to account for unmeasured variation in factors influencing the runway strike incidence for individual airports and to enable valid comparisons. A practical application of the approach for testing hypotheses about the distribution and abundance of a predator species is illustrated using the hypothesized red fox incursion into Tasmania, Australia. We estimate that conditional on the numerical response between fox and lagomorph runway strikes on mainland Australia, the predictive probability of observing no runway strikes of foxes in Tasmania after observing 15 lagomorph strikes is 0.001. We conclude there is enough evidence to safely reject the null hypothesis that there is a widespread red fox population in Tasmania at a population density consistent with prey availability. The method is novel and has potential wider application.

  7. Bootstrap inference when using multiple imputation.

    Science.gov (United States)

    Schomaker, Michael; Heumann, Christian

    2018-04-16

    Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g-formula for inference, a method for which no standard errors are available. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Statistical optimization of lovastatin production by Omphalotus olearius (DC.) singer in submerged fermentation.

    Science.gov (United States)

    Atlı, Burcu; Yamaç, Mustafa; Yıldız, Zeki; Isikhuemhen, Omoanghe S

    2016-01-01

    In this study, culture conditions were optimized to improve lovastatin production by Omphalotus olearius, isolate OBCC 2002, using statistical experimental designs. The Plackett-Burman design was used to select important variables affecting lovastatin production. Accordingly, glucose, peptone, and agitation speed were determined as the variables that have influence on lovastatin production. In a further experiment, these variables were optimized with a Box-Behnken design and applied in a submerged process; this resulted in 12.51 mg/L lovastatin production on a medium containing glucose (10 g/L), peptone (5 g/L), thiamine (1 mg/L), and NaCl (0.4 g/L) under static conditions. This level of lovastatin production is eight times higher than that produced under unoptimized media and growth conditions by Omphalotus olearius. To the best of our knowledge, this is the first attempt to optimize submerged fermentation process for lovastatin production by Omphalotus olearius.

  9. Deep Learning for Population Genetic Inference.

    Science.gov (United States)

    Sheehan, Sara; Song, Yun S

    2016-03-01

    Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme.

  10. Likelihood inference for unions of interacting discs

    DEFF Research Database (Denmark)

    Møller, Jesper; Helisova, K.

    2010-01-01

    This is probably the first paper which discusses likelihood inference for a random set using a germ-grain model, where the individual grains are unobservable, edge effects occur and other complications appear. We consider the case where the grains form a disc process modelled by a marked point...... process, where the germs are the centres and the marks are the associated radii of the discs. We propose to use a recent parametric class of interacting disc process models, where the minimal sufficient statistic depends on various geometric properties of the random set, and the density is specified......-based maximum likelihood inference and the effect of specifying different reference Poisson models....

  11. HIERARCHICAL PROBABILISTIC INFERENCE OF COSMIC SHEAR

    International Nuclear Information System (INIS)

    Schneider, Michael D.; Dawson, William A.; Hogg, David W.; Marshall, Philip J.; Bard, Deborah J.; Meyers, Joshua; Lang, Dustin

    2015-01-01

    Point estimators for the shearing of galaxy images induced by gravitational lensing involve a complex inverse problem in the presence of noise, pixelization, and model uncertainties. We present a probabilistic forward modeling approach to gravitational lensing inference that has the potential to mitigate the biased inferences in most common point estimators and is practical for upcoming lensing surveys. The first part of our statistical framework requires specification of a likelihood function for the pixel data in an imaging survey given parameterized models for the galaxies in the images. We derive the lensing shear posterior by marginalizing over all intrinsic galaxy properties that contribute to the pixel data (i.e., not limited to galaxy ellipticities) and learn the distributions for the intrinsic galaxy properties via hierarchical inference with a suitably flexible conditional probabilitiy distribution specification. We use importance sampling to separate the modeling of small imaging areas from the global shear inference, thereby rendering our algorithm computationally tractable for large surveys. With simple numerical examples we demonstrate the improvements in accuracy from our importance sampling approach, as well as the significance of the conditional distribution specification for the intrinsic galaxy properties when the data are generated from an unknown number of distinct galaxy populations with different morphological characteristics

  12. Inverse Ising inference with correlated samples

    International Nuclear Information System (INIS)

    Obermayer, Benedikt; Levine, Erel

    2014-01-01

    Correlations between two variables of a high-dimensional system can be indicative of an underlying interaction, but can also result from indirect effects. Inverse Ising inference is a method to distinguish one from the other. Essentially, the parameters of the least constrained statistical model are learned from the observed correlations such that direct interactions can be separated from indirect correlations. Among many other applications, this approach has been helpful for protein structure prediction, because residues which interact in the 3D structure often show correlated substitutions in a multiple sequence alignment. In this context, samples used for inference are not independent but share an evolutionary history on a phylogenetic tree. Here, we discuss the effects of correlations between samples on global inference. Such correlations could arise due to phylogeny but also via other slow dynamical processes. We present a simple analytical model to address the resulting inference biases, and develop an exact method accounting for background correlations in alignment data by combining phylogenetic modeling with an adaptive cluster expansion algorithm. We find that popular reweighting schemes are only marginally effective at removing phylogenetic bias, suggest a rescaling strategy that yields better results, and provide evidence that our conclusions carry over to the frequently used mean-field approach to the inverse Ising problem. (paper)

  13. Bayesian structural inference for hidden processes

    Science.gov (United States)

    Strelioff, Christopher C.; Crutchfield, James P.

    2014-04-01

    We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ɛ-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ɛ-machines, irrespective of estimated transition probabilities. Properties of ɛ-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.

  14. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels.

    Science.gov (United States)

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively "hiding" its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research.

  15. Pre-service primary school teachers’ knowledge of informal statistical inference

    NARCIS (Netherlands)

    de Vetten, Arjen; Schoonenboom, Judith; Keijzer, Ronald; van Oers, Bert

    2018-01-01

    The ability to reason inferentially is increasingly important in today’s society. It is hypothesized here that engaging primary school students in informal statistical reasoning (ISI), defined as making generalizations without the use of formal statistical tests, will help them acquire the

  16. Causal inference based on counterfactuals

    Directory of Open Access Journals (Sweden)

    Höfler M

    2005-09-01

    Full Text Available Abstract Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept.

  17. Parametric inference for biological sequence analysis.

    Science.gov (United States)

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    One of the major successes in computational biology has been the unification, by using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied to these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems that are associated with different statistical models. This article introduces the polytope propagation algorithm for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.

  18. Inferring species richness and turnover by statistical multiresolution texture analysis of satellite imagery.

    Directory of Open Access Journals (Sweden)

    Matteo Convertino

    richness, or [Formula: see text] diversity, based on the Shannon entropy of pixel intensity.To test our approach, we specifically use the green band of Landsat images for a water conservation area in the Florida Everglades. We validate our predictions against data of species occurrences for a twenty-eight years long period for both wet and dry seasons. Our method correctly predicts 73% of species richness. For species turnover, the newly proposed KL divergence prediction performance is near 100% accurate. This represents a significant improvement over the more conventional Shannon entropy difference, which provides 85% accuracy. Furthermore, we find that changes in soil and water patterns, as measured by fluctuations of the Shannon entropy for the red and blue bands respectively, are positively correlated with changes in vegetation. The fluctuations are smaller in the wet season when compared to the dry season. CONCLUSIONS/SIGNIFICANCE: Texture-based statistical multiresolution image analysis is a promising method for quantifying interseasonal differences and, consequently, the degree to which vegetation, soil, and water patterns vary. The proposed automated method for quantifying species richness and turnover can also provide analysis at higher spatial and temporal resolution than is currently obtainable from expensive monitoring campaigns, thus enabling more prompt, more cost effective inference and decision making support regarding anomalous variations in biodiversity. Additionally, a matrix-based visualization of the statistical multiresolution analysis is presented to facilitate both insight and quick recognition of anomalous data.

  19. Estimating uncertainty of inference for validation

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Jane M [Los Alamos National Laboratory; Langenbrunner, James R [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Ross, Timothy J [UNM

    2010-09-30

    first in a series of inference uncertainty estimations. While the methods demonstrated are primarily statistical, these do not preclude the use of nonprobabilistic methods for uncertainty characterization. The methods presented permit accurate determinations for validation and eventual prediction. It is a goal that these methods establish a standard against which best practice may evolve for determining degree of validation.

  20. Parameters optimization defined by statistical analysis for cysteine-dextran radiolabeling with technetium tricarbonyl core.

    Science.gov (United States)

    Núñez, Eutimio Gustavo Fernández; Faintuch, Bluma Linkowski; Teodoro, Rodrigo; Wiecek, Danielle Pereira; da Silva, Natanael Gomes; Papadopoulos, Minas; Pelecanou, Maria; Pirmettis, Ioannis; de Oliveira Filho, Renato Santos; Duatti, Adriano; Pasqualini, Roberto

    2011-04-01

    The objective of this study was the development of a statistical approach for radiolabeling optimization of cysteine-dextran conjugates with Tc-99m tricarbonyl core. This strategy has been applied to the labeling of 2-propylene-S-cysteine-dextran in the attempt to prepare a new class of tracers for sentinel lymph node detection, and can be extended to other radiopharmaceuticals for different targets. The statistical routine was based on three-level factorial design. Best labeling conditions were achieved. The specific activity reached was 5 MBq/μg. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  1. FUNSTAT and statistical image representations

    Science.gov (United States)

    Parzen, E.

    1983-01-01

    General ideas of functional statistical inference analysis of one sample and two samples, univariate and bivariate are outlined. ONESAM program is applied to analyze the univariate probability distributions of multi-spectral image data.

  2. Experimental design and process optimization

    CERN Document Server

    Rodrigues, Maria Isabel; Dos Santos, Elian Luiz

    2014-01-01

    Initial ConsiderationsTopics of Elementary StatisticsIntroductory NotionsGeneral IdeasVariablesPopulations and Samples Importance of the Form of the PopulationFirst Ideas of Interference on a Normal PopulationParameters and EstimatesNotions on Testing HypothesesInference of the Mean of a Normal PopulationInference of the Variance of a Normal PopulationInference of the Means of Two Normal PopulationsIndependent SamplesPaired Samples L

  3. The Role of the Sampling Distribution in Understanding Statistical Inference

    Science.gov (United States)

    Lipson, Kay

    2003-01-01

    Many statistics educators believe that few students develop the level of conceptual understanding essential for them to apply correctly the statistical techniques at their disposal and to interpret their outcomes appropriately. It is also commonly believed that the sampling distribution plays an important role in developing this understanding.…

  4. Understanding advanced statistical methods

    CERN Document Server

    Westfall, Peter

    2013-01-01

    Introduction: Probability, Statistics, and ScienceReality, Nature, Science, and ModelsStatistical Processes: Nature, Design and Measurement, and DataModelsDeterministic ModelsVariabilityParametersPurely Probabilistic Statistical ModelsStatistical Models with Both Deterministic and Probabilistic ComponentsStatistical InferenceGood and Bad ModelsUses of Probability ModelsRandom Variables and Their Probability DistributionsIntroductionTypes of Random Variables: Nominal, Ordinal, and ContinuousDiscrete Probability Distribution FunctionsContinuous Probability Distribution FunctionsSome Calculus-Derivatives and Least SquaresMore Calculus-Integrals and Cumulative Distribution FunctionsProbability Calculation and SimulationIntroductionAnalytic Calculations, Discrete and Continuous CasesSimulation-Based ApproximationGenerating Random NumbersIdentifying DistributionsIntroductionIdentifying Distributions from Theory AloneUsing Data: Estimating Distributions via the HistogramQuantiles: Theoretical and Data-Based Estimate...

  5. Exact nonparametric inference for detection of nonlinear determinism

    OpenAIRE

    Luo, Xiaodong; Zhang, Jie; Small, Michael; Moroz, Irene

    2005-01-01

    We propose an exact nonparametric inference scheme for the detection of nonlinear determinism. The essential fact utilized in our scheme is that, for a linear stochastic process with jointly symmetric innovations, its ordinary least square (OLS) linear prediction error is symmetric about zero. Based on this viewpoint, a class of linear signed rank statistics, e.g. the Wilcoxon signed rank statistic, can be derived with the known null distributions from the prediction error. Thus one of the ad...

  6. Statistics II essentials

    CERN Document Server

    Milewski, Emil G

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Statistics II discusses sampling theory, statistical inference, independent and dependent variables, correlation theory, experimental design, count data, chi-square test, and time se

  7. A New Statistical Tool: Scalar Score Function

    Czech Academy of Sciences Publication Activity Database

    Fabián, Zdeněk

    2011-01-01

    Roč. 2, - (2011), s. 109-116 ISSN 1934-7332 R&D Projects: GA ČR GA205/09/1079 Institutional research plan: CEZ:AV0Z10300504 Keywords : statistics * inference function * data characteristics * point estimates * heavy tails Subject RIV: BB - Applied Statistics, Operational Research

  8. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs......To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social......), and stochastic actor-oriented models. We focus most attention on ERGMs by providing an illustrative example of a model for a strategic information network within a local government. We draw inferences about the structural role played by individuals recognized as key innovators and conclude that such an approach...

  9. Campbell's and Rubin's Perspectives on Causal Inference

    Science.gov (United States)

    West, Stephen G.; Thoemmes, Felix

    2010-01-01

    Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…

  10. Networking—a statistical physics perspective

    Science.gov (United States)

    Yeung, Chi Ho; Saad, David

    2013-03-01

    Networking encompasses a variety of tasks related to the communication of information on networks; it has a substantial economic and societal impact on a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption requires new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with nonlinear large-scale systems. This review aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.

  11. Networking—a statistical physics perspective

    International Nuclear Information System (INIS)

    Yeung, Chi Ho; Saad, David

    2013-01-01

    Networking encompasses a variety of tasks related to the communication of information on networks; it has a substantial economic and societal impact on a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption requires new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with nonlinear large-scale systems. This review aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications. (topical review)

  12. Statistics and Informatics in Space Astrophysics

    Science.gov (United States)

    Feigelson, E.

    2017-12-01

    The interest in statistical and computational methodology has seen rapid growth in space-based astrophysics, parallel to the growth seen in Earth remote sensing. There is widespread agreement that scientific interpretation of the cosmic microwave background, discovery of exoplanets, and classifying multiwavelength surveys is too complex to be accomplished with traditional techniques. NASA operates several well-functioning Science Archive Research Centers providing 0.5 PBy datasets to the research community. These databases are integrated with full-text journal articles in the NASA Astrophysics Data System (200K pageviews/day). Data products use interoperable formats and protocols established by the International Virtual Observatory Alliance. NASA supercomputers also support complex astrophysical models of systems such as accretion disks and planet formation. Academic researcher interest in methodology has significantly grown in areas such as Bayesian inference and machine learning, and statistical research is underway to treat problems such as irregularly spaced time series and astrophysical model uncertainties. Several scholarly societies have created interest groups in astrostatistics and astroinformatics. Improvements are needed on several fronts. Community education in advanced methodology is not sufficiently rapid to meet the research needs. Statistical procedures within NASA science analysis software are sometimes not optimal, and pipeline development may not use modern software engineering techniques. NASA offers few grant opportunities supporting research in astroinformatics and astrostatistics.

  13. Statistical and optimization methods to expedite neural network training for transient identification

    International Nuclear Information System (INIS)

    Reifman, J.; Vitela, E.J.; Lee, J.C.

    1993-01-01

    Two complementary methods, statistical feature selection and nonlinear optimization through conjugate gradients, are used to expedite feedforward neural network training. Statistical feature selection techniques in the form of linear correlation coefficients and information-theoretic entropy are used to eliminate redundant and non-informative plant parameters to reduce the size of the network. The method of conjugate gradients is used to accelerate the network training convergence and to systematically calculate the Teaming and momentum constants at each iteration. The proposed techniques are compared with the backpropagation algorithm using the entire set of plant parameters in the training of neural networks to identify transients simulated with the Midland Nuclear Power Plant Unit 2 simulator. By using 25% of the plant parameters and the conjugate gradients, a 30-fold reduction in CPU time was obtained without degrading the diagnostic ability of the network

  14. View discovery in OLAP databases through statistical combinatorial optimization

    Energy Technology Data Exchange (ETDEWEB)

    Hengartner, Nick W [Los Alamos National Laboratory; Burke, John [PNNL; Critchlow, Terence [PNNL; Joslyn, Cliff [PNNL; Hogan, Emilie [PNNL

    2009-01-01

    OnLine Analytical Processing (OLAP) is a relational database technology providing users with rapid access to summary, aggregated views of a single large database, and is widely recognized for knowledge representation and discovery in high-dimensional relational databases. OLAP technologies provide intuitive and graphical access to the massively complex set of possible summary views available in large relational (SQL) structured data repositories. The capability of OLAP database software systems to handle data complexity comes at a high price for analysts, presenting them a combinatorially vast space of views of a relational database. We respond to the need to deploy technologies sufficient to allow users to guide themselves to areas of local structure by casting the space of 'views' of an OLAP database as a combinatorial object of all projections and subsets, and 'view discovery' as an search process over that lattice. We equip the view lattice with statistical information theoretical measures sufficient to support a combinatorial optimization process. We outline 'hop-chaining' as a particular view discovery algorithm over this object, wherein users are guided across a permutation of the dimensions by searching for successive two-dimensional views, pushing seen dimensions into an increasingly large background filter in a 'spiraling' search process. We illustrate this work in the context of data cubes recording summary statistics for radiation portal monitors at US ports.

  15. Deep Learning for Population Genetic Inference.

    Directory of Open Access Journals (Sweden)

    Sara Sheehan

    2016-03-01

    Full Text Available Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data to the output (e.g., population genetic parameters of interest. We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history. Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme.

  16. Deep Learning for Population Genetic Inference

    Science.gov (United States)

    Sheehan, Sara; Song, Yun S.

    2016-01-01

    Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme. PMID:27018908

  17. Statistical modeling/optimization and process intensification of microwave-assisted acidified oil esterification

    International Nuclear Information System (INIS)

    Ma, Lingling; Lv, Enmin; Du, Lixiong; Lu, Jie; Ding, Jincheng

    2016-01-01

    Highlights: • Microwave irradiation was employed for the esterification of acidified oil. • Optimization and modeling of the process was performed by RSM and ANN. • Both models have reliable prediction abilities but the ANN was superior over the RSM. • Membrane vapor permeation and in-situ dehydration were used to shift the equilibrium. • Two dehydration approaches improved the FFAs conversion rate by 20.0% approximately. - Abstract: The esterification of acidified oil with ethanol under microwave radiation was modeled and optimized using response surface methodology (RSM) and artificial neural network (ANN). The impacts of mass ratio of ethanol to acidified oil, catalyst loading, microwave power and reaction time are evaluated by Box-Behnken design (BBD) of RSM and multi-layer perceptron (MLP) of ANN. RSM combined with BBD shows the optimal conditions as catalyst loading of 5.85 g, mass ratio of ethanol to acidified oil of 0.35 (20.0 g acidified oil), microwave power of 328 W and reaction time of 98.0 min with the free fatty acids (FFAs) conversion of 78.57%. Both of the models are fitted well with the experimental data, however, ANN exhibits better prediction accuracy than RSM based on the statistical analyses. Furthermore, membrane vapor permeation and in-situ molecular sieve dehydration were investigated to enhance the esterification under the optimized conditions.

  18. Nonparametric predictive inference in reliability

    International Nuclear Information System (INIS)

    Coolen, F.P.A.; Coolen-Schrijner, P.; Yan, K.J.

    2002-01-01

    We introduce a recently developed statistical approach, called nonparametric predictive inference (NPI), to reliability. Bounds for the survival function for a future observation are presented. We illustrate how NPI can deal with right-censored data, and discuss aspects of competing risks. We present possible applications of NPI for Bernoulli data, and we briefly outline applications of NPI for replacement decisions. The emphasis is on introduction and illustration of NPI in reliability contexts, detailed mathematical justifications are presented elsewhere

  19. Fusion And Inference From Multiple And Massive Disparate Distributed Dynamic Data Sets

    Science.gov (United States)

    2017-07-01

    computational execution together form a comprehensive, widely- applicable paradigm for statistical graph inference. Approved for Public Release; Distribution...always involve challenging empirical modeling and implementation issues. Our project has propelled the mathematical development, statistical design...D. J., and Sussman, D. L., “A limit theorem for scaled eigenvectors of random dot product graphs,” Sankhya A. Mathemat - ical Statistics and

  20. Improvement of Statistical Decisions under Parametric Uncertainty

    Science.gov (United States)

    Nechval, Nicholas A.; Nechval, Konstantin N.; Purgailis, Maris; Berzins, Gundars; Rozevskis, Uldis

    2011-10-01

    A large number of problems in production planning and scheduling, location, transportation, finance, and engineering design require that decisions be made in the presence of uncertainty. Decision-making under uncertainty is a central problem in statistical inference, and has been formally studied in virtually all approaches to inference. The aim of the present paper is to show how the invariant embedding technique, the idea of which belongs to the authors, may be employed in the particular case of finding the improved statistical decisions under parametric uncertainty. This technique represents a simple and computationally attractive statistical method based on the constructive use of the invariance principle in mathematical statistics. Unlike the Bayesian approach, an invariant embedding technique is independent of the choice of priors. It allows one to eliminate unknown parameters from the problem and to find the best invariant decision rule, which has smaller risk than any of the well-known decision rules. To illustrate the proposed technique, application examples are given.

  1. An Intelligent Inference System for Robot Hand Optimal Grasp Preshaping

    Directory of Open Access Journals (Sweden)

    Cabbar Veysel Baysal

    2010-11-01

    Full Text Available This paper presents a novel Intelligent Inference System (IIS for the determination of an optimum preshape for multifingered robot hand grasping, given object under a manipulation task. The IIS is formed as hybrid agent architecture, by the synthesis of object properties, manipulation task characteristics, grasp space partitioning, lowlevel kinematical analysis, evaluation of contact wrench patterns via fuzzy approximate reasoning and ANN structure for incremental learning. The IIS is implemented in software with a robot hand simulation.

  2. Bayesian Inference for Functional Dynamics Exploring in fMRI Data

    Directory of Open Access Journals (Sweden)

    Xuan Guo

    2016-01-01

    Full Text Available This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM, Bayesian Connectivity Change Point Model (BCCPM, and Dynamic Bayesian Variable Partition Model (DBVPM, and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  3. Practical Statistics for LHC Physicists: Descriptive Statistics, Probability and Likelihood (1/3)

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    These lectures cover those principles and practices of statistics that are most relevant for work at the LHC. The first lecture discusses the basic ideas of descriptive statistics, probability and likelihood. The second lecture covers the key ideas in the frequentist approach, including confidence limits, profile likelihoods, p-values, and hypothesis testing. The third lecture covers inference in the Bayesian approach. Throughout, real-world examples will be used to illustrate the practical application of the ideas. No previous knowledge is assumed.

  4. Simultaneous learning and filtering without delusions: a Bayes-optimal combination of Predictive Inference and Adaptive Filtering.

    Science.gov (United States)

    Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V

    2015-01-01

    Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.

  5. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    Science.gov (United States)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  6. Variation in reaction norms: Statistical considerations and biological interpretation.

    Science.gov (United States)

    Morrissey, Michael B; Liefting, Maartje

    2016-09-01

    Analysis of reaction norms, the functions by which the phenotype produced by a given genotype depends on the environment, is critical to studying many aspects of phenotypic evolution. Different techniques are available for quantifying different aspects of reaction norm variation. We examine what biological inferences can be drawn from some of the more readily applicable analyses for studying reaction norms. We adopt a strongly biologically motivated view, but draw on statistical theory to highlight strengths and drawbacks of different techniques. In particular, consideration of some formal statistical theory leads to revision of some recently, and forcefully, advocated opinions on reaction norm analysis. We clarify what simple analysis of the slope between mean phenotype in two environments can tell us about reaction norms, explore the conditions under which polynomial regression can provide robust inferences about reaction norm shape, and explore how different existing approaches may be used to draw inferences about variation in reaction norm shape. We show how mixed model-based approaches can provide more robust inferences than more commonly used multistep statistical approaches, and derive new metrics of the relative importance of variation in reaction norm intercepts, slopes, and curvatures. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  7. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    Science.gov (United States)

    Pathak, Lakshmi; Singh, Vineeta; Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C K M; Mishra, B N

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.

  8. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    Directory of Open Access Journals (Sweden)

    Lakshmi Pathak

    Full Text Available Cholesterol oxidase (COD is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM, artificial neural network (ANN and genetic algorithm (GA have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.

  9. Evolutionary inference via the Poisson Indel Process.

    Science.gov (United States)

    Bouchard-Côté, Alexandre; Jordan, Michael I

    2013-01-22

    We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114-124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments.

  10. Optimization of aspergillus niger nutritional conditions using statistical experimental methods for bio-recovery of manganese from pyrolusite

    International Nuclear Information System (INIS)

    Mujeeb-ur-Rahman; Yasinzai, M.M.; Tareen, R.B.; Iqbal, A.; Gul, S.; Odhano, E.A.

    2011-01-01

    Optimization of aspergillus niger nutritional conditions using statistical experimental methods for bio-recovery of manganese from pyrolusite Mujeeb-ur-rahman, Mohammed Masoom Yasinzai, Rasool Bakhsh Tareen, Asim Iqbal, Ejaz Ali Odhano, Shereen Gul. The nutritional requirements for Aspergillus niger PCSIR-06 for bio-recovery of manganese from pyrolusite ore were optimized. Box-Bhenken design and response surface methodology were used for designing of experiment and statistical analysis of the results. This procedure limited the number of actual experiments to 54 for studying the possible interaction between six nutrients. The optimum concentration of the nutrients were Sucrose 148.5 g/L, KH/sub 2/PO/sub 4/ 0.50 g/L, NH/sub 4/NO/sub 3/ 0.33 g/L, MgSO/sub 4/ 0.41 g/L, Zn 23.76 mg/L, Fe 0.18 mg/L for Aspergillus niger to achieve maximum bio-recovery of manganese (82.47 +- 5.67%). The verification run confirmed the predicted optimized concentration of all the six ingredients for maximum bio leaching of manganese and successfully confirmed the use of Box-Bhenken experimental design for maximum bio-recovery. Results also revealed that small and less time consuming experimental designs could be efficient for optimization of bio-recovery processes. (author)

  11. Bayesian inference on proportional elections.

    Directory of Open Access Journals (Sweden)

    Gabriel Hideki Vatanabe Brunello

    Full Text Available Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software.

  12. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics.

    Science.gov (United States)

    Gross, Kevin; Rosenheim, Jay A

    2011-10-01

    Secondary pest outbreaks occur when the use of a pesticide to reduce densities of an unwanted target pest species triggers subsequent outbreaks of other pest species. Although secondary pest outbreaks are thought to be familiar in agriculture, their rigorous documentation is made difficult by the challenges of performing randomized experiments at suitable scales. Here, we quantify the frequency and monetary cost of secondary pest outbreaks elicited by early-season applications of broad-spectrum insecticides to control the plant bug Lygus spp. (primarily L. hesperus) in cotton grown in the San Joaquin Valley, California, USA. We do so by analyzing pest-control management practices for 969 cotton fields spanning nine years and 11 private ranches. Our analysis uses statistical methods to draw formal causal inferences from nonexperimental data that have become popular in public health and economics, but that are not yet widely known in ecology or agriculture. We find that, in fields that received an early-season broad-spectrum insecticide treatment for Lygus, 20.2% +/- 4.4% (mean +/- SE) of late-season pesticide costs were attributable to secondary pest outbreaks elicited by the early-season insecticide application for Lygus. In 2010 U.S. dollars, this equates to an additional $6.00 +/- $1.30 (mean +/- SE) per acre in management costs. To the extent that secondary pest outbreaks may be driven by eliminating pests' natural enemies, these figures place a lower bound on the monetary value of ecosystem services provided by native communities of arthropod predators and parasitoids in this agricultural system.

  13. Spatial Statistical Data Fusion (SSDF)

    Science.gov (United States)

    Braverman, Amy J.; Nguyen, Hai M.; Cressie, Noel

    2013-01-01

    As remote sensing for scientific purposes has transitioned from an experimental technology to an operational one, the selection of instruments has become more coordinated, so that the scientific community can exploit complementary measurements. However, tech nological and scientific heterogeneity across devices means that the statistical characteristics of the data they collect are different. The challenge addressed here is how to combine heterogeneous remote sensing data sets in a way that yields optimal statistical estimates of the underlying geophysical field, and provides rigorous uncertainty measures for those estimates. Different remote sensing data sets may have different spatial resolutions, different measurement error biases and variances, and other disparate characteristics. A state-of-the-art spatial statistical model was used to relate the true, but not directly observed, geophysical field to noisy, spatial aggregates observed by remote sensing instruments. The spatial covariances of the true field and the covariances of the true field with the observations were modeled. The observations are spatial averages of the true field values, over pixels, with different measurement noise superimposed. A kriging framework is used to infer optimal (minimum mean squared error and unbiased) estimates of the true field at point locations from pixel-level, noisy observations. A key feature of the spatial statistical model is the spatial mixed effects model that underlies it. The approach models the spatial covariance function of the underlying field using linear combinations of basis functions of fixed size. Approaches based on kriging require the inversion of very large spatial covariance matrices, and this is usually done by making simplifying assumptions about spatial covariance structure that simply do not hold for geophysical variables. In contrast, this method does not require these assumptions, and is also computationally much faster. This method is

  14. 2nd Conference of the International Society for Nonparametric Statistics

    CERN Document Server

    Manteiga, Wenceslao; Romo, Juan

    2016-01-01

    This volume collects selected, peer-reviewed contributions from the 2nd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Cádiz (Spain) between June 11–16 2014, and sponsored by the American Statistical Association, the Institute of Mathematical Statistics, the Bernoulli Society for Mathematical Statistics and Probability, the Journal of Nonparametric Statistics and Universidad Carlos III de Madrid. The 15 articles are a representative sample of the 336 contributed papers presented at the conference. They cover topics such as high-dimensional data modelling, inference for stochastic processes and for dependent data, nonparametric and goodness-of-fit testing, nonparametric curve estimation, object-oriented data analysis, and semiparametric inference. The aim of the ISNPS 2014 conference was to bring together recent advances and trends in several areas of nonparametric statistics in order to facilitate the exchange of research ideas, promote collaboration among researchers...

  15. Using MOEA with Redistribution and Consensus Branches to Infer Phylogenies.

    Science.gov (United States)

    Min, Xiaoping; Zhang, Mouzhao; Yuan, Sisi; Ge, Shengxiang; Liu, Xiangrong; Zeng, Xiangxiang; Xia, Ningshao

    2017-12-26

    In recent years, to infer phylogenies, which are NP-hard problems, more and more research has focused on using metaheuristics. Maximum Parsimony and Maximum Likelihood are two effective ways to conduct inference. Based on these methods, which can also be considered as the optimal criteria for phylogenies, various kinds of multi-objective metaheuristics have been used to reconstruct phylogenies. However, combining these two time-consuming methods results in those multi-objective metaheuristics being slower than a single objective. Therefore, we propose a novel, multi-objective optimization algorithm, MOEA-RC, to accelerate the processes of rebuilding phylogenies using structural information of elites in current populations. We compare MOEA-RC with two representative multi-objective algorithms, MOEA/D and NAGA-II, and a non-consensus version of MOEA-RC on three real-world datasets. The result is, within a given number of iterations, MOEA-RC achieves better solutions than the other algorithms.

  16. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration.

    Science.gov (United States)

    de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R

    2013-08-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. A method for crack sizing using Bayesian inference arising in eddy current testing

    International Nuclear Information System (INIS)

    Kojima, Fumio; Kikuchi, Mitsuhiro

    2008-01-01

    This paper is concerned with a sizing methodology of crack using Bayesian inference arising in eddy current testing. There is often uncertainty about data through quantitative measurements of nondestructive testing and this can yield misleading inference of crack sizing at on-site monitoring. In this paper, we propose optimal strategies of measurements in eddy current testing using Bayesian prior-to-posteriori analysis. First our likelihood functional is given by Gaussian distribution with the measurement model based on the hybrid use of finite and boundary element methods. Secondly, given a priori distributions of crack sizing, we propose a method for estimating the region of interest for sizing cracks. Finally an optimal sensing method is demonstrated using our idea. (author)

  18. An Integrated Simulation, Inference and Optimization Approach for Groundwater Remediation with Two-stage Health-Risk Assessment

    Directory of Open Access Journals (Sweden)

    Aili Yang

    2018-05-01

    Full Text Available In this study, an integrated simulation, inference and optimization approach with two-stage health risk assessment (i.e., ISIO-THRA is developed for supporting groundwater remediation for a petroleum-contaminated site in western Canada. Both environmental standards and health risk are considered as the constraints in the ISIO-THRA model. The health risk includes two parts: (1 the health risk during the remediation process and (2 the health risk in the natural attenuation period after remediation. In the ISIO-THRA framework, the relationship between contaminant concentrations and time is expressed through first-order decay models. The results demonstrate that: (1 stricter environmental standards and health risk would require larger pumping rates for the same remediation duration; (2 higher health risk may happen in the period of the remediation process; (3 for the same environmental standard and acceptable health-risk level, the remediation techniques that take the shortest time would be chosen. ISIO-THRA can help to systematically analyze interaction among contaminant transport, remediation duration, and environmental and health concerns, and further provide useful supportive information for decision makers.

  19. Likelihood-based inference for discretely observed birth-death-shift processes, with applications to evolution of mobile genetic elements.

    Science.gov (United States)

    Xu, Jason; Guttorp, Peter; Kato-Maeda, Midori; Minin, Vladimir N

    2015-12-01

    Continuous-time birth-death-shift (BDS) processes are frequently used in stochastic modeling, with many applications in ecology and epidemiology. In particular, such processes can model evolutionary dynamics of transposable elements-important genetic markers in molecular epidemiology. Estimation of the effects of individual covariates on the birth, death, and shift rates of the process can be accomplished by analyzing patient data, but inferring these rates in a discretely and unevenly observed setting presents computational challenges. We propose a multi-type branching process approximation to BDS processes and develop a corresponding expectation maximization algorithm, where we use spectral techniques to reduce calculation of expected sufficient statistics to low-dimensional integration. These techniques yield an efficient and robust optimization routine for inferring the rates of the BDS process, and apply broadly to multi-type branching processes whose rates can depend on many covariates. After rigorously testing our methodology in simulation studies, we apply our method to study intrapatient time evolution of IS6110 transposable element, a genetic marker frequently used during estimation of epidemiological clusters of Mycobacterium tuberculosis infections. © 2015, The International Biometric Society.

  20. Mathematical inference and control of molecular networks from perturbation experiments

    Science.gov (United States)

    Mohammed-Rasheed, Mohammed

    One of the main challenges facing biologists and mathematicians in the post genomic era is to understand the behavior of molecular networks and harness this understanding into an educated intervention of the cell. The cell maintains its function via an elaborate network of interconnecting positive and negative feedback loops of genes, RNA and proteins that send different signals to a large number of pathways and molecules. These structures are referred to as genetic regulatory networks (GRNs) or molecular networks. GRNs can be viewed as dynamical systems with inherent properties and mechanisms, such as steady-state equilibriums and stability, that determine the behavior of the cell. The biological relevance of the mathematical concepts are important as they may predict the differentiation of a stem cell, the maintenance of a normal cell, the development of cancer and its aberrant behavior, and the design of drugs and response to therapy. Uncovering the underlying GRN structure from gene/protein expression data, e.g., microarrays or perturbation experiments, is called inference or reverse engineering of the molecular network. Because of the high cost and time consuming nature of biological experiments, the number of available measurements or experiments is very small compared to the number of molecules (genes, RNA and proteins). In addition, the observations are noisy, where the noise is due to the measurements imperfections as well as the inherent stochasticity of genetic expression levels. Intra-cellular activities and extra-cellular environmental attributes are also another source of variability. Thus, the inference of GRNs is, in general, an under-determined problem with a highly noisy set of observations. The ultimate goal of GRN inference and analysis is to be able to intervene within the network, in order to force it away from undesirable cellular states and into desirable ones. However, it remains a major challenge to design optimal intervention strategies

  1. Application of Statistical Analysis for the Optimization of Mycelia and Polysaccharide Production by Tremella aurantialba

    Directory of Open Access Journals (Sweden)

    Zhicai Zhang

    2007-01-01

    Full Text Available Statistical analyses were applied to optimize the medium composition for the mycelial growth and polysaccharide production by Tremella aurantialba in shake flask cultures. Firstly, four significant factors (xylan, peptone, wheat bran and corn powder on mycelial growth and polysaccharide yield (p≤0.05 were obtained using one-at-a-time design. Subsequently, in order to study the mutual interactions between variables, the effects of these factors were further investigated using four-factor, three-level orthogonal test design and the optimal composition was (in g/L: xylan 40, peptone 10, wheat bran 20, corn powder 20, KH2PO4 1.2 and MgSO4·7H2O 0.6. Finally, the maximum mycelium yield and polysaccharide production in 50-litre stirred-tank bioreactor reached 36.8 and 3.01 g/L under the optimized medium, respectively.

  2. Inferring relevance in a changing world

    Directory of Open Access Journals (Sweden)

    Robert C Wilson

    2012-01-01

    Full Text Available Reinforcement learning models of human and animal learning usually concentrate on how we learn the relationship between different stimuli or actions and rewards. However, in real world situations stimuli are ill-defined. On the one hand, our immediate environment is extremely multi-dimensional. On the other hand, in every decision-making scenario only a few aspects of the environment are relevant for obtaining reward, while most are irrelevant. Thus a key question is how do we learn these relevant dimensions, that is, how do we learn what to learn about? We investigated this process of representation learning experimentally, using a task in which one stimulus dimension was relevant for determining reward at each point in time. As in real life situations, in our task the relevant dimension can change without warning, adding ever-present uncertainty engendered by a constantly changing environment. We show that human performance on this task is better described by a suboptimal strategy based on selective attention and serial hypothesis testing rather than a normative strategy based on probabilistic inference. From this, we conjecture that the problem of inferring relevance in general scenarios is too computationally demanding for the brain to solve optimally. As a result the brain utilizes approximations, employing these even in simplified scenarios in which optimal representation learning is tractable, such as the one in our experiment.

  3. Grouping preprocess for haplotype inference from SNP and CNV data

    International Nuclear Information System (INIS)

    Shindo, Hiroyuki; Chigira, Hiroshi; Nagaoka, Tomoyo; Inoue, Masato; Kamatani, Naoyuki

    2009-01-01

    The method of statistical haplotype inference is an indispensable technique in the field of medical science. The authors previously reported Hardy-Weinberg equilibrium-based haplotype inference that could manage single nucleotide polymorphism (SNP) data. We recently extended the method to cover copy number variation (CNV) data. Haplotype inference from mixed data is important because SNPs and CNVs are occasionally in linkage disequilibrium. The idea underlying the proposed method is simple, but the algorithm for it needs to be quite elaborate to reduce the calculation cost. Consequently, we have focused on the details on the algorithm in this study. Although the main advantage of the method is accuracy, in that it does not use any approximation, its main disadvantage is still the calculation cost, which is sometimes intractable for large data sets with missing values.

  4. Grouping preprocess for haplotype inference from SNP and CNV data

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Hiroyuki; Chigira, Hiroshi; Nagaoka, Tomoyo; Inoue, Masato [Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Kamatani, Naoyuki, E-mail: masato.inoue@eb.waseda.ac.j [Institute of Rheumatology, Tokyo Women' s Medical University, 10-22, Kawada-cho, Shinjuku-ku, Tokyo 162-0054 (Japan)

    2009-12-01

    The method of statistical haplotype inference is an indispensable technique in the field of medical science. The authors previously reported Hardy-Weinberg equilibrium-based haplotype inference that could manage single nucleotide polymorphism (SNP) data. We recently extended the method to cover copy number variation (CNV) data. Haplotype inference from mixed data is important because SNPs and CNVs are occasionally in linkage disequilibrium. The idea underlying the proposed method is simple, but the algorithm for it needs to be quite elaborate to reduce the calculation cost. Consequently, we have focused on the details on the algorithm in this study. Although the main advantage of the method is accuracy, in that it does not use any approximation, its main disadvantage is still the calculation cost, which is sometimes intractable for large data sets with missing values.

  5. A unified framework for haplotype inference in nuclear families.

    Science.gov (United States)

    Iliadis, Alexandros; Anastassiou, Dimitris; Wang, Xiaodong

    2012-07-01

    Many large genome-wide association studies include nuclear families with more than one child (trio families), allowing for analysis of differences between siblings (sib pair analysis). Statistical power can be increased when haplotypes are used instead of genotypes. Currently, haplotype inference in families with more than one child can be performed either using the familial information or statistical information derived from the population samples but not both. Building on our recently proposed tree-based deterministic framework (TDS) for trio families, we augment its applicability to general nuclear families. We impose a minimum recombinant approach locally and independently on each multiple children family, while resorting to the population-derived information to solve the remaining ambiguities. Thus our framework incorporates all available information (familial and population) in a given study. We demonstrate that using all the constraints in our approach we can have gains in the accuracy as opposed to breaking the multiple children families to separate trios and resorting to a trio inference algorithm or phasing each family in isolation. We believe that our proposed framework could be the method of choice for haplotype inference in studies that include nuclear families with multiple children. Our software (tds2.0) is downloadable from www.ee.columbia.edu/∼anastas/tds. © 2012 The Authors Annals of Human Genetics © 2012 Blackwell Publishing Ltd/University College London.

  6. Efficient Coding and Statistically Optimal Weighting of Covariance among Acoustic Attributes in Novel Sounds

    Science.gov (United States)

    Stilp, Christian E.; Kluender, Keith R.

    2012-01-01

    To the extent that sensorineural systems are efficient, redundancy should be extracted to optimize transmission of information, but perceptual evidence for this has been limited. Stilp and colleagues recently reported efficient coding of robust correlation (r = .97) among complex acoustic attributes (attack/decay, spectral shape) in novel sounds. Discrimination of sounds orthogonal to the correlation was initially inferior but later comparable to that of sounds obeying the correlation. These effects were attenuated for less-correlated stimuli (r = .54) for reasons that are unclear. Here, statistical properties of correlation among acoustic attributes essential for perceptual organization are investigated. Overall, simple strength of the principal correlation is inadequate to predict listener performance. Initial superiority of discrimination for statistically consistent sound pairs was relatively insensitive to decreased physical acoustic/psychoacoustic range of evidence supporting the correlation, and to more frequent presentations of the same orthogonal test pairs. However, increased range supporting an orthogonal dimension has substantial effects upon perceptual organization. Connectionist simulations and Eigenvalues from closed-form calculations of principal components analysis (PCA) reveal that perceptual organization is near-optimally weighted to shared versus unshared covariance in experienced sound distributions. Implications of reduced perceptual dimensionality for speech perception and plausible neural substrates are discussed. PMID:22292057

  7. Modern applied U-statistics

    CERN Document Server

    Kowalski, Jeanne

    2008-01-01

    A timely and applied approach to the newly discovered methods and applications of U-statisticsBuilt on years of collaborative research and academic experience, Modern Applied U-Statistics successfully presents a thorough introduction to the theory of U-statistics using in-depth examples and applications that address contemporary areas of study including biomedical and psychosocial research. Utilizing a "learn by example" approach, this book provides an accessible, yet in-depth, treatment of U-statistics, as well as addresses key concepts in asymptotic theory by integrating translational and cross-disciplinary research.The authors begin with an introduction of the essential and theoretical foundations of U-statistics such as the notion of convergence in probability and distribution, basic convergence results, stochastic Os, inference theory, generalized estimating equations, as well as the definition and asymptotic properties of U-statistics. With an emphasis on nonparametric applications when and where applic...

  8. Statistical inference of level densities from resolved resonance parameters

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1983-08-01

    Level densities are most directly obtained by counting the resonances observed in the resolved resonance range. Even in the measurements, however, weak levels are invariably missed so that one has to estimate their number and add it to the raw count. The main categories of missinglevel estimators are discussed in the present review, viz. (I) ladder methods including those based on the theory of Hamiltonian matrix ensembles (Dyson-Mehta statistics), (II) methods based on comparison with artificial cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (III) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The language of mathematical statistics is employed to clarify the basis of, and the relationship between, the various techniques. Recent progress in the treatment of resolution effects, detection thresholds and p-wave admixture is described. (orig.) [de

  9. Probably not future prediction using probability and statistical inference

    CERN Document Server

    Dworsky, Lawrence N

    2008-01-01

    An engaging, entertaining, and informative introduction to probability and prediction in our everyday lives Although Probably Not deals with probability and statistics, it is not heavily mathematical and is not filled with complex derivations, proofs, and theoretical problem sets. This book unveils the world of statistics through questions such as what is known based upon the information at hand and what can be expected to happen. While learning essential concepts including "the confidence factor" and "random walks," readers will be entertained and intrigued as they move from chapter to chapter. Moreover, the author provides a foundation of basic principles to guide decision making in almost all facets of life including playing games, developing winning business strategies, and managing personal finances. Much of the book is organized around easy-to-follow examples that address common, everyday issues such as: How travel time is affected by congestion, driving speed, and traffic lights Why different gambling ...

  10. Graphical models for inferring single molecule dynamics

    Directory of Open Access Journals (Sweden)

    Gonzalez Ruben L

    2010-10-01

    Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.

  11. Simultaneous Learning and Filtering without Delusions: A Bayes-Optimal Derivation of Combining Predictive Inference and AdaptiveFiltering

    Directory of Open Access Journals (Sweden)

    Jan eKneissler

    2015-04-01

    Full Text Available Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF. PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than ten-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.

  12. Using statistical inference for decision making in best estimate analyses

    International Nuclear Information System (INIS)

    Sermer, P.; Weaver, K.; Hoppe, F.; Olive, C.; Quach, D.

    2008-01-01

    For broad classes of safety analysis problems, one needs to make decisions when faced with randomly varying quantities which are also subject to errors. The means for doing this involves a statistical approach which takes into account the nature of the physical problems, and the statistical constraints they impose. We describe the methodology for doing this which has been developed at Nuclear Safety Solutions, and we draw some comparisons to other methods which are commonly used in Canada and internationally. Our methodology has the advantages of being robust and accurate and compares favourably to other best estimate methods. (author)

  13. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

    Science.gov (United States)

    Royle, J. Andrew; Dorazio, Robert M.

    2008-01-01

    A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.

  14. Statistical Inference on Optimal Points to Evaluate Multi-State Classification Systems

    Science.gov (United States)

    2014-09-18

    vs2+ ( dbcm3 ˆ 2 ) *vm3+( dbcs3 ˆ 2 ) * vs3 80 VETA <−VBCA+VBC EETA<−EBCA−EBC 82 W<− (EETA−TV) / s q r t ( VETA ) # T e s t p−v a l u e − t o compare t o a...event set, E = (ε1, ε2, ..., εk) to k distinct elements of a label set, L = (l1, l2, ..., lk) . These partitions may be referred to as classes. For...set of features, F = ( f1, f2, ..., fm) . These features are then used to assign the different elements from E to the respective labels, L , (A : E → F

  15. Aarhus Conference on Probability, Statistics and Their Applications : Celebrating the Scientific Achievements of Ole E. Barndorff-Nielsen

    CERN Document Server

    Stelzer, Robert; Thorbjørnsen, Steen; Veraart, Almut

    2016-01-01

    Collecting together twenty-three self-contained articles, this volume presents the current research of a number of renowned scientists in both probability theory and statistics as well as their various applications in economics, finance, the physics of wind-blown sand, queueing systems, risk assessment, turbulence and other areas. The contributions are dedicated to and inspired by the research of Ole E. Barndorff-Nielsen who, since the early 1960s, has been and continues to be a very active and influential researcher working on a wide range of important problems. The topics covered include, but are not limited to, econometrics, exponential families, Lévy processes and infinitely divisible distributions, limit theory, mathematical finance, random matrices, risk assessment, statistical inference for stochastic processes, stochastic analysis and optimal control, time series, and turbulence. The book will be of interest to researchers and graduate students in probability, statistics and their applications. .

  16. Evidence Accumulation and Change Rate Inference in Dynamic Environments.

    Science.gov (United States)

    Radillo, Adrian E; Veliz-Cuba, Alan; Josić, Krešimir; Kilpatrick, Zachary P

    2017-06-01

    In a constantly changing world, animals must account for environmental volatility when making decisions. To appropriately discount older, irrelevant information, they need to learn the rate at which the environment changes. We develop an ideal observer model capable of inferring the present state of the environment along with its rate of change. Key to this computation is an update of the posterior probability of all possible change point counts. This computation can be challenging, as the number of possibilities grows rapidly with time. However, we show how the computations can be simplified in the continuum limit by a moment closure approximation. The resulting low-dimensional system can be used to infer the environmental state and change rate with accuracy comparable to the ideal observer. The approximate computations can be performed by a neural network model via a rate-correlation-based plasticity rule. We thus show how optimal observers accumulate evidence in changing environments and map this computation to reduced models that perform inference using plausible neural mechanisms.

  17. [The research protocol VI: How to choose the appropriate statistical test. Inferential statistics].

    Science.gov (United States)

    Flores-Ruiz, Eric; Miranda-Novales, María Guadalupe; Villasís-Keever, Miguel Ángel

    2017-01-01

    The statistical analysis can be divided in two main components: descriptive analysis and inferential analysis. An inference is to elaborate conclusions from the tests performed with the data obtained from a sample of a population. Statistical tests are used in order to establish the probability that a conclusion obtained from a sample is applicable to the population from which it was obtained. However, choosing the appropriate statistical test in general poses a challenge for novice researchers. To choose the statistical test it is necessary to take into account three aspects: the research design, the number of measurements and the scale of measurement of the variables. Statistical tests are divided into two sets, parametric and nonparametric. Parametric tests can only be used if the data show a normal distribution. Choosing the right statistical test will make it easier for readers to understand and apply the results.

  18. The research protocol VI: How to choose the appropriate statistical test. Inferential statistics

    Directory of Open Access Journals (Sweden)

    Eric Flores-Ruiz

    2017-10-01

    Full Text Available The statistical analysis can be divided in two main components: descriptive analysis and inferential analysis. An inference is to elaborate conclusions from the tests performed with the data obtained from a sample of a population. Statistical tests are used in order to establish the probability that a conclusion obtained from a sample is applicable to the population from which it was obtained. However, choosing the appropriate statistical test in general poses a challenge for novice researchers. To choose the statistical test it is necessary to take into account three aspects: the research design, the number of measurements and the scale of measurement of the variables. Statistical tests are divided into two sets, parametric and nonparametric. Parametric tests can only be used if the data show a normal distribution. Choosing the right statistical test will make it easier for readers to understand and apply the results.

  19. Systematic parameter inference in stochastic mesoscopic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Huan; Yang, Xiu [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Zhen [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)

    2017-02-01

    We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.

  20. Frequentist and Bayesian inference for Gaussian-log-Gaussian wavelet trees and statistical signal processing applications

    DEFF Research Database (Denmark)

    Jacobsen, Christian Robert Dahl; Møller, Jesper

    2017-01-01

    We introduce new estimation methods for a subclass of the Gaussian scale mixture models for wavelet trees by Wainwright, Simoncelli and Willsky that rely on modern results for composite likelihoods and approximate Bayesian inference. Our methodology is illustrated for denoising and edge detection...

  1. Encryption of covert information into multiple statistical distributions

    International Nuclear Information System (INIS)

    Venkatesan, R.C.

    2007-01-01

    A novel strategy to encrypt covert information (code) via unitary projections into the null spaces of ill-conditioned eigenstructures of multiple host statistical distributions, inferred from incomplete constraints, is presented. The host pdf's are inferred using the maximum entropy principle. The projection of the covert information is dependent upon the pdf's of the host statistical distributions. The security of the encryption/decryption strategy is based on the extreme instability of the encoding process. A self-consistent procedure to derive keys for both symmetric and asymmetric cryptography is presented. The advantages of using a multiple pdf model to achieve encryption of covert information are briefly highlighted. Numerical simulations exemplify the efficacy of the model

  2. Optimism in the face of uncertainty supported by a statistically-designed multi-armed bandit algorithm.

    Science.gov (United States)

    Kamiura, Moto; Sano, Kohei

    2017-10-01

    The principle of optimism in the face of uncertainty is known as a heuristic in sequential decision-making problems. Overtaking method based on this principle is an effective algorithm to solve multi-armed bandit problems. It was defined by a set of some heuristic patterns of the formulation in the previous study. The objective of the present paper is to redefine the value functions of Overtaking method and to unify the formulation of them. The unified Overtaking method is associated with upper bounds of confidence intervals of expected rewards on statistics. The unification of the formulation enhances the universality of Overtaking method. Consequently we newly obtain Overtaking method for the exponentially distributed rewards, numerically analyze it, and show that it outperforms UCB algorithm on average. The present study suggests that the principle of optimism in the face of uncertainty should be regarded as the statistics-based consequence of the law of large numbers for the sample mean of rewards and estimation of upper bounds of expected rewards, rather than as a heuristic, in the context of multi-armed bandit problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Lies, damn lies and statistics

    International Nuclear Information System (INIS)

    Jones, M.D.

    2001-01-01

    Statistics are widely employed within archaeological research. This is becoming increasingly so as user friendly statistical packages make increasingly sophisticated analyses available to non statisticians. However, all statistical techniques are based on underlying assumptions of which the end user may be unaware. If statistical analyses are applied in ignorance of the underlying assumptions there is the potential for highly erroneous inferences to be drawn. This does happen within archaeology and here this is illustrated with the example of 'date pooling', a technique that has been widely misused in archaeological research. This misuse may have given rise to an inevitable and predictable misinterpretation of New Zealand's archaeological record. (author). 10 refs., 6 figs., 1 tab

  4. Probing NWP model deficiencies by statistical postprocessing

    DEFF Research Database (Denmark)

    Rosgaard, Martin Haubjerg; Nielsen, Henrik Aalborg; Nielsen, Torben S.

    2016-01-01

    The objective in this article is twofold. On one hand, a Model Output Statistics (MOS) framework for improved wind speed forecast accuracy is described and evaluated. On the other hand, the approach explored identifies unintuitive explanatory value from a diagnostic variable in an operational....... Based on the statistical model candidates inferred from the data, the lifted index NWP model diagnostic is consistently found among the NWP model predictors of the best performing statistical models across sites....

  5. An assessment of machine and statistical learning approaches to inferring networks of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Browne Fiona

    2006-12-01

    Full Text Available Protein-protein interactions (PPI play a key role in many biological systems. Over the past few years, an explosion in availability of functional biological data obtained from high-throughput technologies to infer PPI has been observed. However, results obtained from such experiments show high rates of false positives and false negatives predictions as well as systematic predictive bias. Recent research has revealed that several machine and statistical learning methods applied to integrate relatively weak, diverse sources of large-scale functional data may provide improved predictive accuracy and coverage of PPI. In this paper we describe the effects of applying different computational, integrative methods to predict PPI in Saccharomyces cerevisiae. We investigated the predictive ability of combining different sets of relatively strong and weak predictive datasets. We analysed several genomic datasets ranging from mRNA co-expression to marginal essentiality. Moreover, we expanded an existing multi-source dataset from S. cerevisiae by constructing a new set of putative interactions extracted from Gene Ontology (GO- driven annotations in the Saccharomyces Genome Database. Different classification techniques: Simple Naive Bayesian (SNB, Multilayer Perceptron (MLP and K-Nearest Neighbors (KNN were evaluated. Relatively simple classification methods (i.e. less computing intensive and mathematically complex, such as SNB, have been proven to be proficient at predicting PPI. SNB produced the “highest” predictive quality obtaining an area under Receiver Operating Characteristic (ROC curve (AUC value of 0.99. The lowest AUC value of 0.90 was obtained by the KNN classifier. This assessment also demonstrates the strong predictive power of GO-driven models, which offered predictive performance above 0.90 using the different machine learning and statistical techniques. As the predictive power of single-source datasets became weaker MLP and SNB performed

  6. Information Geometric Complexity of a Trivariate Gaussian Statistical Model

    Directory of Open Access Journals (Sweden)

    Domenico Felice

    2014-05-01

    Full Text Available We evaluate the information geometric complexity of entropic motion on low-dimensional Gaussian statistical manifolds in order to quantify how difficult it is to make macroscopic predictions about systems in the presence of limited information. Specifically, we observe that the complexity of such entropic inferences not only depends on the amount of available pieces of information but also on the manner in which such pieces are correlated. Finally, we uncover that, for certain correlational structures, the impossibility of reaching the most favorable configuration from an entropic inference viewpoint seems to lead to an information geometric analog of the well-known frustration effect that occurs in statistical physics.

  7. Statistical Challenges in Modeling Big Brain Signals

    KAUST Repository

    Yu, Zhaoxia; Pluta, Dustin; Shen, Tong; Chen, Chuansheng; Xue, Gui; Ombao, Hernando

    2017-01-01

    Brain signal data are inherently big: massive in amount, complex in structure, and high in dimensions. These characteristics impose great challenges for statistical inference and learning. Here we review several key challenges, discuss possible

  8. Statistical Optimization of Tannase Production by Penicillium sp. EZ-ZH390 in Submerged Fermentation

    OpenAIRE

    Zohreh Hamidi-Esfahani; Mohammad Ali Sahari; Mohammad Hossein Azizi

    2015-01-01

    Tannase has several important applications in food, feed, chemical and pharmaceutical industries. In the present study, production of tannase by mutant strain, Penicillium sp. EZ-ZH390, was optimized in submerged fermentation utilizing two statistical approaches. At first step, a one factor at a time design was employed to screen the preferable nutriments (carbon and nitrogen sources of the medium) to produce tannase. Screening of the carbon source resulted in the production of 10.74 U/mL of ...

  9. Inference of neuronal network spike dynamics and topology from calcium imaging data

    Directory of Open Access Journals (Sweden)

    Henry eLütcke

    2013-12-01

    Full Text Available Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP occurrence ('spike trains' from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a simulation framework for quantitatively assessing how well spike dynamics and network topology can be inferred from noisy calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal cells, we analyzed the quality of spike inference as a function of SNR and data acquisition rate using a recently introduced peeling algorithm. Given experimentally attainable values of SNR and acquisition rate, neural spike trains could be reconstructed accurately and with up to millisecond precision. We then applied statistical neuronal network models to explore how remaining uncertainties in spike inference affect estimates of network connectivity and topological features of network organization. We define the experimental conditions suitable for inferring whether the network has a scale-free structure and determine how well hub neurons can be identified. Our findings provide a benchmark for future calcium imaging studies that aim to reliably infer neuronal network properties.

  10. A review and comparison of Bayesian and likelihood-based inferences in beta regression and zero-or-one-inflated beta regression.

    Science.gov (United States)

    Liu, Fang; Eugenio, Evercita C

    2018-04-01

    Beta regression is an increasingly popular statistical technique in medical research for modeling of outcomes that assume values in (0, 1), such as proportions and patient reported outcomes. When outcomes take values in the intervals [0,1), (0,1], or [0,1], zero-or-one-inflated beta (zoib) regression can be used. We provide a thorough review on beta regression and zoib regression in the modeling, inferential, and computational aspects via the likelihood-based and Bayesian approaches. We demonstrate the statistical and practical importance of correctly modeling the inflation at zero/one rather than ad hoc replacing them with values close to zero/one via simulation studies; the latter approach can lead to biased estimates and invalid inferences. We show via simulation studies that the likelihood-based approach is computationally faster in general than MCMC algorithms used in the Bayesian inferences, but runs the risk of non-convergence, large biases, and sensitivity to starting values in the optimization algorithm especially with clustered/correlated data, data with sparse inflation at zero and one, and data that warrant regularization of the likelihood. The disadvantages of the regular likelihood-based approach make the Bayesian approach an attractive alternative in these cases. Software packages and tools for fitting beta and zoib regressions in both the likelihood-based and Bayesian frameworks are also reviewed.

  11. Development of the Bayesian method for unavailability inference. The new inferential theory and the examples of inference using BWR outage data in Japan

    International Nuclear Information System (INIS)

    Nakamura, Makoto

    2009-01-01

    It is important for Level 1 PSA to quantify input reliability parameters and their uncertainty. Bayesian methods for inference of system/component unavailability, however, are not well studied. At present practitioners allocate the uncertainty (i.e. error factor) of the unavailability based on engineering judgment. Systematic methods based on Bayesian statistics are needed for quantification of such uncertainty. In this study we have developed a new method for Bayesian inference of unavailability, where the posterior of system/component unavailability is described by the inverted gamma distribution. We show that the average of the posterior comes close to the point estimate of the unavailability as the number of outages goes to infinity. That indicates validity of the new method. Using plant data recorded in NUCIA, we have applied the new method to inference of system unavailability under unplanned outages due to violations of LCO at BWRs in Japan. According to the inference results, the unavailability is populated in the order of 10 -5 -10 -4 and the error factor is within 1-2. Thus, the new Bayesian method allows one to quantify magnitudes and widths (i.e. error factor) of uncertainty distributions of unavailability. (author)

  12. Causal inference as an emerging statistical approach in neurology: an example for epilepsy in the elderly

    Directory of Open Access Journals (Sweden)

    Moura LMVR

    2016-12-01

    Full Text Available Lidia MVR Moura,1,2 M Brandon Westover,1,2 David Kwasnik,1 Andrew J Cole,1,2 John Hsu3–5 1Massachusetts General Hospital, Department of Neurology, Epilepsy Service, Boston, MA, USA; 2Harvard Medical School, Boston, MA, USA; 3Massachusetts General Hospital, Mongan Institute, Boston, MA, USA; 4Harvard Medical School, Department of Medicine, Boston, MA, USA; 5Harvard Medical School, Department of Health Care Policy, Boston, MA, USA Abstract: The elderly population faces an increasing number of cases of chronic neurological conditions, such as epilepsy and Alzheimer’s disease. Because the elderly with epilepsy are commonly excluded from randomized controlled clinical trials, there are few rigorous studies to guide clinical practice. When the elderly are eligible for trials, they either rarely participate or frequently have poor adherence to therapy, thus limiting both generalizability and validity. In contrast, large observational data sets are increasingly available, but are susceptible to bias when using common analytic approaches. Recent developments in causal inference-analytic approaches also introduce the possibility of emulating randomized controlled trials to yield valid estimates. We provide a practical example of the application of the principles of causal inference to a large observational data set of patients with epilepsy. This review also provides a framework for comparative-effectiveness research in chronic neurological conditions. Keywords: epilepsy, epidemiology, neurostatistics, causal inference

  13. Statistical optimization of harvesting Chlorella vulgaris using a novel bio-source, Strychnos potatorum

    Directory of Open Access Journals (Sweden)

    Sirajunnisa Abdul Razack

    2015-09-01

    Full Text Available The present study was aimed at harvesting microalga, Chlorella vulgaris, by bioflocculation using seed powder of clearing nut, Strychnos potatorum. The research was essentially the prime step to yield a large biomass for utilising the cells in biodiesel production. Optimization of the parameters influencing bioflocculation was carried out statistically using RSM. The optimized conditions were 100 mg L−1 bioflocculant concentration, 35 °C temperature, 150 rpm agitation speed and 30 min incubation time and resulted in a maximum efficiency of 99.68%. Through cell viability test, using Trypan blue stain, it was found that cells were completely intact when treated with bioflocculant, but destroyed when exposed to chemical flocculant, alum. The overall study represented that S. potatorum could potentially be a bioflocculant of microalgal cells and a promising substitute for expensive and hazardous chemical flocculants. Moreover, this bioflocculant demonstrated their utility to harvest microalgal cells by economically, effectively and in an ecofriendly way.

  14. An algebra-based method for inferring gene regulatory networks.

    Science.gov (United States)

    Vera-Licona, Paola; Jarrah, Abdul; Garcia-Puente, Luis David; McGee, John; Laubenbacher, Reinhard

    2014-03-26

    The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the

  15. Applied Statistics Using SPSS, STATISTICA, MATLAB and R

    CERN Document Server

    De Sá, Joaquim P Marques

    2007-01-01

    This practical reference provides a comprehensive introduction and tutorial on the main statistical analysis topics, demonstrating their solution with the most common software package. Intended for anyone needing to apply statistical analysis to a large variety of science and enigineering problems, the book explains and shows how to use SPSS, MATLAB, STATISTICA and R for analysis such as data description, statistical inference, classification and regression, factor analysis, survival data and directional statistics. It concisely explains key concepts and methods, illustrated by practical examp

  16. Tropical geometry of statistical models.

    Science.gov (United States)

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.

  17. Brain networks for confidence weighting and hierarchical inference during probabilistic learning.

    Science.gov (United States)

    Meyniel, Florent; Dehaene, Stanislas

    2017-05-09

    Learning is difficult when the world fluctuates randomly and ceaselessly. Classical learning algorithms, such as the delta rule with constant learning rate, are not optimal. Mathematically, the optimal learning rule requires weighting prior knowledge and incoming evidence according to their respective reliabilities. This "confidence weighting" implies the maintenance of an accurate estimate of the reliability of what has been learned. Here, using fMRI and an ideal-observer analysis, we demonstrate that the brain's learning algorithm relies on confidence weighting. While in the fMRI scanner, human adults attempted to learn the transition probabilities underlying an auditory or visual sequence, and reported their confidence in those estimates. They knew that these transition probabilities could change simultaneously at unpredicted moments, and therefore that the learning problem was inherently hierarchical. Subjective confidence reports tightly followed the predictions derived from the ideal observer. In particular, subjects managed to attach distinct levels of confidence to each learned transition probability, as required by Bayes-optimal inference. Distinct brain areas tracked the likelihood of new observations given current predictions, and the confidence in those predictions. Both signals were combined in the right inferior frontal gyrus, where they operated in agreement with the confidence-weighting model. This brain region also presented signatures of a hierarchical process that disentangles distinct sources of uncertainty. Together, our results provide evidence that the sense of confidence is an essential ingredient of probabilistic learning in the human brain, and that the right inferior frontal gyrus hosts a confidence-based statistical learning algorithm for auditory and visual sequences.

  18. Brain networks for confidence weighting and hierarchical inference during probabilistic learning

    Science.gov (United States)

    Meyniel, Florent; Dehaene, Stanislas

    2017-01-01

    Learning is difficult when the world fluctuates randomly and ceaselessly. Classical learning algorithms, such as the delta rule with constant learning rate, are not optimal. Mathematically, the optimal learning rule requires weighting prior knowledge and incoming evidence according to their respective reliabilities. This “confidence weighting” implies the maintenance of an accurate estimate of the reliability of what has been learned. Here, using fMRI and an ideal-observer analysis, we demonstrate that the brain’s learning algorithm relies on confidence weighting. While in the fMRI scanner, human adults attempted to learn the transition probabilities underlying an auditory or visual sequence, and reported their confidence in those estimates. They knew that these transition probabilities could change simultaneously at unpredicted moments, and therefore that the learning problem was inherently hierarchical. Subjective confidence reports tightly followed the predictions derived from the ideal observer. In particular, subjects managed to attach distinct levels of confidence to each learned transition probability, as required by Bayes-optimal inference. Distinct brain areas tracked the likelihood of new observations given current predictions, and the confidence in those predictions. Both signals were combined in the right inferior frontal gyrus, where they operated in agreement with the confidence-weighting model. This brain region also presented signatures of a hierarchical process that disentangles distinct sources of uncertainty. Together, our results provide evidence that the sense of confidence is an essential ingredient of probabilistic learning in the human brain, and that the right inferior frontal gyrus hosts a confidence-based statistical learning algorithm for auditory and visual sequences. PMID:28439014

  19. Equivalent statistics and data interpretation.

    Science.gov (United States)

    Francis, Gregory

    2017-08-01

    Recent reform efforts in psychological science have led to a plethora of choices for scientists to analyze their data. A scientist making an inference about their data must now decide whether to report a p value, summarize the data with a standardized effect size and its confidence interval, report a Bayes Factor, or use other model comparison methods. To make good choices among these options, it is necessary for researchers to understand the characteristics of the various statistics used by the different analysis frameworks. Toward that end, this paper makes two contributions. First, it shows that for the case of a two-sample t test with known sample sizes, many different summary statistics are mathematically equivalent in the sense that they are based on the very same information in the data set. When the sample sizes are known, the p value provides as much information about a data set as the confidence interval of Cohen's d or a JZS Bayes factor. Second, this equivalence means that different analysis methods differ only in their interpretation of the empirical data. At first glance, it might seem that mathematical equivalence of the statistics suggests that it does not matter much which statistic is reported, but the opposite is true because the appropriateness of a reported statistic is relative to the inference it promotes. Accordingly, scientists should choose an analysis method appropriate for their scientific investigation. A direct comparison of the different inferential frameworks provides some guidance for scientists to make good choices and improve scientific practice.

  20. Improving statistical reasoning: theoretical models and practical implications

    National Research Council Canada - National Science Library

    Sedlmeier, Peter

    1999-01-01

    ... in Psychology? 206 References 216 Author Index 230 Subject Index 235 v PrefacePreface Statistical literacy, the art of drawing reasonable inferences from an abundance of numbers provided daily by...

  1. Inferring Characteristics of Sensorimotor Behavior by Quantifying Dynamics of Animal Locomotion

    Science.gov (United States)

    Leung, KaWai

    Locomotion is one of the most well-studied topics in animal behavioral studies. Many fundamental and clinical research make use of the locomotion of an animal model to explore various aspects in sensorimotor behavior. In the past, most of these studies focused on population average of a specific trait due to limitation of data collection and processing power. With recent advance in computer vision and statistical modeling techniques, it is now possible to track and analyze large amounts of behavioral data. In this thesis, I present two projects that aim to infer the characteristics of sensorimotor behavior by quantifying the dynamics of locomotion of nematode Caenorhabditis elegans and fruit fly Drosophila melanogaster, shedding light on statistical dependence between sensing and behavior. In the first project, I investigate the possibility of inferring noxious sensory information from the behavior of Caenorhabditis elegans. I develop a statistical model to infer the heat stimulus level perceived by individual animals from their stereotyped escape responses after stimulation by an IR laser. The model allows quantification of analgesic-like effects of chemical agents or genetic mutations in the worm. At the same time, the method is able to differentiate perturbations of locomotion behavior that are beyond affecting the sensory system. With this model I propose experimental designs that allows statistically significant identification of analgesic-like effects. In the second project, I investigate the relationship of energy budget and stability of locomotion in determining the walking speed distribution of Drosophila melanogaster during aging. The locomotion stability at different age groups is estimated from video recordings using Floquet theory. I calculate the power consumption of different locomotion speed using a biomechanics model. In conclusion, the power consumption, not stability, predicts the locomotion speed distribution at different ages.

  2. Application of Bayesian inference to stochastic analytic continuation

    International Nuclear Information System (INIS)

    Fuchs, S; Pruschke, T; Jarrell, M

    2010-01-01

    We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data. The algorithm is strictly based on principles of Bayesian statistical inference. It utilizes Monte Carlo simulations to calculate a weighted average of possible energy spectra. We apply the algorithm to imaginary-time quantum Monte Carlo data and compare the resulting energy spectra with those from a standard maximum entropy calculation.

  3. Empirical inference festschrift in honor of Vladimir N. Vapnik

    CERN Document Server

    Schölkopf, Bernhard; Vovk, Vladimir

    2013-01-01

    This book honours the outstanding contributions of Vladimir Vapnik, a rare example of a scientist for whom the following statements hold true simultaneously: his work led to the inception of a new field of research, the theory of statistical learning and empirical inference; he has lived to see the field blossom; and he is still as active as ever.

  4. Estimation of parameter uncertainty for an activated sludge model using Bayesian inference: a comparison with the frequentist method.

    Science.gov (United States)

    Zonta, Zivko J; Flotats, Xavier; Magrí, Albert

    2014-08-01

    The procedure commonly used for the assessment of the parameters included in activated sludge models (ASMs) relies on the estimation of their optimal value within a confidence region (i.e. frequentist inference). Once optimal values are estimated, parameter uncertainty is computed through the covariance matrix. However, alternative approaches based on the consideration of the model parameters as probability distributions (i.e. Bayesian inference), may be of interest. The aim of this work is to apply (and compare) both Bayesian and frequentist inference methods when assessing uncertainty for an ASM-type model, which considers intracellular storage and biomass growth, simultaneously. Practical identifiability was addressed exclusively considering respirometric profiles based on the oxygen uptake rate and with the aid of probabilistic global sensitivity analysis. Parameter uncertainty was thus estimated according to both the Bayesian and frequentist inferential procedures. Results were compared in order to evidence the strengths and weaknesses of both approaches. Since it was demonstrated that Bayesian inference could be reduced to a frequentist approach under particular hypotheses, the former can be considered as a more generalist methodology. Hence, the use of Bayesian inference is encouraged for tackling inferential issues in ASM environments.

  5. Inferring time derivatives including cell growth rates using Gaussian processes

    Science.gov (United States)

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta

    2016-12-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.

  6. Applying Statistical Process Control to Clinical Data: An Illustration.

    Science.gov (United States)

    Pfadt, Al; And Others

    1992-01-01

    Principles of statistical process control are applied to a clinical setting through the use of control charts to detect changes, as part of treatment planning and clinical decision-making processes. The logic of control chart analysis is derived from principles of statistical inference. Sample charts offer examples of evaluating baselines and…

  7. Phylogenetic Inference of HIV Transmission Clusters

    Directory of Open Access Journals (Sweden)

    Vlad Novitsky

    2017-10-01

    Full Text Available Better understanding the structure and dynamics of HIV transmission networks is essential for designing the most efficient interventions to prevent new HIV transmissions, and ultimately for gaining control of the HIV epidemic. The inference of phylogenetic relationships and the interpretation of results rely on the definition of the HIV transmission cluster. The definition of the HIV cluster is complex and dependent on multiple factors, including the design of sampling, accuracy of sequencing, precision of sequence alignment, evolutionary models, the phylogenetic method of inference, and specified thresholds for cluster support. While the majority of studies focus on clusters, non-clustered cases could also be highly informative. A new dimension in the analysis of the global and local HIV epidemics is the concept of phylogenetically distinct HIV sub-epidemics. The identification of active HIV sub-epidemics reveals spreading viral lineages and may help in the design of targeted interventions.HIVclustering can also be affected by sampling density. Obtaining a proper sampling density may increase statistical power and reduce sampling bias, so sampling density should be taken into account in study design and in interpretation of phylogenetic results. Finally, recent advances in long-range genotyping may enable more accurate inference of HIV transmission networks. If performed in real time, it could both inform public-health strategies and be clinically relevant (e.g., drug-resistance testing.

  8. Statistically defining optimal conditions of coagulation time of skim milk

    International Nuclear Information System (INIS)

    Celebi, M.; Ozdemir, Z.O.; Eroglu, E.; Guney, I

    2014-01-01

    Milk consist huge amount of largely water and different proteins. Kappa-kazein of these milk proteins can be coagulated by Mucor miehei rennet enzyme, is an aspartic protease which cleavege 105 (phenly alanine)-106 (methionine) peptide bond. It is commonly used clotting milk proteins for cheese production in dairy industry. The aim of this study to measure milk clotting times of skim milk by using Mucor Miehei rennet and determination of optimal conditions of milk clotting time by mathematical modelling. In this research, milk clotting times of skim milk were measured at different pHs (3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and temperatures (20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 degree C). It was used statistical approach for defining best pH and temperature for milk clotting time of skim milk. Milk clotting activity was increase at acidic pHs and high temperatures. (author)

  9. Statistical Analysis for High-Dimensional Data : The Abel Symposium 2014

    CERN Document Server

    Bühlmann, Peter; Glad, Ingrid; Langaas, Mette; Richardson, Sylvia; Vannucci, Marina

    2016-01-01

    This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on...

  10. Philosophy and the practice of Bayesian statistics.

    Science.gov (United States)

    Gelman, Andrew; Shalizi, Cosma Rohilla

    2013-02-01

    A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework. © 2012 The British Psychological Society.

  11. Inference algorithms and learning theory for Bayesian sparse factor analysis

    International Nuclear Information System (INIS)

    Rattray, Magnus; Sharp, Kevin; Stegle, Oliver; Winn, John

    2009-01-01

    Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.

  12. Inference algorithms and learning theory for Bayesian sparse factor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rattray, Magnus; Sharp, Kevin [School of Computer Science, University of Manchester, Manchester M13 9PL (United Kingdom); Stegle, Oliver [Max-Planck-Institute for Biological Cybernetics, Tuebingen (Germany); Winn, John, E-mail: magnus.rattray@manchester.ac.u [Microsoft Research Cambridge, Roger Needham Building, Cambridge, CB3 0FB (United Kingdom)

    2009-12-01

    Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.

  13. A neuro-fuzzy inference system for sensor monitoring

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    A neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods has been developed to monitor the relevant sensor using the information of other sensors. The paramters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors

  14. Optimization of phototrophic hydrogen production by Rhodopseudomonas palustris PBUM001 via statistical experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Zadariana [Department of Civil Engineering, Faculty of Engineering, University of Malaya (Malaysia); Faculty of Civil Engineering, Technology University of MARA (Malaysia); Mohamad Annuar, Mohamad Suffian; Vikineswary, S. [Institute of Biological Sciences, University of Malaya (Malaysia); Ibrahim, Shaliza [Department of Civil Engineering, Faculty of Engineering, University of Malaya (Malaysia)

    2009-09-15

    Phototrophic hydrogen production by indigenous purple non-sulfur bacteria, Rhodopseudomonas palustris PBUM001 from palm oil mill effluent (POME) was optimized using response surface methodology (RSM). The process parameters studied include inoculum sizes (% v/v), POME concentration (% v/v), light intensity (klux), agitation (rpm) and pH. The experimental data on cumulative hydrogen production and COD reduction were fitted into a quadratic polynomial model using response surface regression analysis. The path to optimal process conditions was determined by analyzing response surface three-dimensional surface plot and contour plot. Statistical analysis on experimental data collected following Box-Behnken design showed that 100% (v/v) POME concentration, 10% (v/v) inoculum size, light intensity at 4.0 klux, agitation rate at 250 rpm and pH of 6 were the best conditions. The maximum predicted cumulative hydrogen production and COD reduction obtained under these conditions was 1.05 ml H{sub 2}/ml POME and 31.71% respectively. Subsequent verification experiments at optimal process values gave the maximum yield of cumulative hydrogen at 0.66 {+-} 0.07 ml H{sub 2}/ml POME and COD reduction at 30.54 {+-} 9.85%. (author)

  15. Powerful Inference With the D-Statistic on Low-Coverage Whole-Genome Data

    DEFF Research Database (Denmark)

    Soraggi, Samuele; Wiuf, Carsten; Albrechtsen, Anders

    2018-01-01

    The detection of ancient gene flow between human populations is an important issue in population genetics. A common tool for detecting ancient admixture events is the D-statistic. The D-statistic is based on the hypothesis of a genetic relationship that involves four populations, whose correctness...... is assessed by evaluating specific coincidences of alleles between the groups. When working with high throughput sequencing data calling genotypes accurately is not always possible, therefore the D-statistic currently samples a single base from the reads of one individual per population. This implies ignoring...... much of the information in the data, an issue especially striking in the case of ancient genomes. We provide a significant improvement to overcome the problems of the D-statistic by considering all reads from multiple individuals in each population. We also apply type-specific error correction...

  16. Causal Inference and Explaining Away in a Spiking Network

    Science.gov (United States)

    Moreno-Bote, Rubén; Drugowitsch, Jan

    2015-01-01

    While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification. PMID:26621426

  17. On the Origins of Suboptimality in Human Probabilistic Inference

    Science.gov (United States)

    Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M.

    2014-01-01

    Humans have been shown to combine noisy sensory information with previous experience (priors), in qualitative and sometimes quantitative agreement with the statistically-optimal predictions of Bayesian integration. However, when the prior distribution becomes more complex than a simple Gaussian, such as skewed or bimodal, training takes much longer and performance appears suboptimal. It is unclear whether such suboptimality arises from an imprecise internal representation of the complex prior, or from additional constraints in performing probabilistic computations on complex distributions, even when accurately represented. Here we probe the sources of suboptimality in probabilistic inference using a novel estimation task in which subjects are exposed to an explicitly provided distribution, thereby removing the need to remember the prior. Subjects had to estimate the location of a target given a noisy cue and a visual representation of the prior probability density over locations, which changed on each trial. Different classes of priors were examined (Gaussian, unimodal, bimodal). Subjects' performance was in qualitative agreement with the predictions of Bayesian Decision Theory although generally suboptimal. The degree of suboptimality was modulated by statistical features of the priors but was largely independent of the class of the prior and level of noise in the cue, suggesting that suboptimality in dealing with complex statistical features, such as bimodality, may be due to a problem of acquiring the priors rather than computing with them. We performed a factorial model comparison across a large set of Bayesian observer models to identify additional sources of noise and suboptimality. Our analysis rejects several models of stochastic behavior, including probability matching and sample-averaging strategies. Instead we show that subjects' response variability was mainly driven by a combination of a noisy estimation of the parameters of the priors, and by

  18. On the origins of suboptimality in human probabilistic inference.

    Directory of Open Access Journals (Sweden)

    Luigi Acerbi

    2014-06-01

    Full Text Available Humans have been shown to combine noisy sensory information with previous experience (priors, in qualitative and sometimes quantitative agreement with the statistically-optimal predictions of Bayesian integration. However, when the prior distribution becomes more complex than a simple Gaussian, such as skewed or bimodal, training takes much longer and performance appears suboptimal. It is unclear whether such suboptimality arises from an imprecise internal representation of the complex prior, or from additional constraints in performing probabilistic computations on complex distributions, even when accurately represented. Here we probe the sources of suboptimality in probabilistic inference using a novel estimation task in which subjects are exposed to an explicitly provided distribution, thereby removing the need to remember the prior. Subjects had to estimate the location of a target given a noisy cue and a visual representation of the prior probability density over locations, which changed on each trial. Different classes of priors were examined (Gaussian, unimodal, bimodal. Subjects' performance was in qualitative agreement with the predictions of Bayesian Decision Theory although generally suboptimal. The degree of suboptimality was modulated by statistical features of the priors but was largely independent of the class of the prior and level of noise in the cue, suggesting that suboptimality in dealing with complex statistical features, such as bimodality, may be due to a problem of acquiring the priors rather than computing with them. We performed a factorial model comparison across a large set of Bayesian observer models to identify additional sources of noise and suboptimality. Our analysis rejects several models of stochastic behavior, including probability matching and sample-averaging strategies. Instead we show that subjects' response variability was mainly driven by a combination of a noisy estimation of the parameters of the

  19. Direct Evidence for a Dual Process Model of Deductive Inference

    Science.gov (United States)

    Markovits, Henry; Brunet, Marie-Laurence; Thompson, Valerie; Brisson, Janie

    2013-01-01

    In 2 experiments, we tested a strong version of a dual process theory of conditional inference (cf. Verschueren et al., 2005a, 2005b) that assumes that most reasoners have 2 strategies available, the choice of which is determined by situational variables, cognitive capacity, and metacognitive control. The statistical strategy evaluates inferences…

  20. Strain improvement and statistical optimization as a combined strategy for improving fructosyltransferase production by Aureobasidium pullulans NAC8

    Directory of Open Access Journals (Sweden)

    Adedeji Nelson Ademakinwa

    2017-12-01

    A relatively low FTase-producing strain of Aureobasidium pullulans NAC8 was enhanced for optimum production using a two-pronged approach involving mutagenesis and statistical optimization. The improved mutant strain also had remarkable biotechnological properties that make it a suitable alternative than the wild-type.

  1. A linear programming model for protein inference problem in shotgun proteomics.

    Science.gov (United States)

    Huang, Ting; He, Zengyou

    2012-11-15

    Assembling peptides identified from tandem mass spectra into a list of proteins, referred to as protein inference, is an important issue in shotgun proteomics. The objective of protein inference is to find a subset of proteins that are truly present in the sample. Although many methods have been proposed for protein inference, several issues such as peptide degeneracy still remain unsolved. In this article, we present a linear programming model for protein inference. In this model, we use a transformation of the joint probability that each peptide/protein pair is present in the sample as the variable. Then, both the peptide probability and protein probability can be expressed as a formula in terms of the linear combination of these variables. Based on this simple fact, the protein inference problem is formulated as an optimization problem: minimize the number of proteins with non-zero probabilities under the constraint that the difference between the calculated peptide probability and the peptide probability generated from peptide identification algorithms should be less than some threshold. This model addresses the peptide degeneracy issue by forcing some joint probability variables involving degenerate peptides to be zero in a rigorous manner. The corresponding inference algorithm is named as ProteinLP. We test the performance of ProteinLP on six datasets. Experimental results show that our method is competitive with the state-of-the-art protein inference algorithms. The source code of our algorithm is available at: https://sourceforge.net/projects/prolp/. zyhe@dlut.edu.cn. Supplementary data are available at Bioinformatics Online.

  2. The relation between statistical power and inference in fMRI.

    Directory of Open Access Journals (Sweden)

    Henk R Cremers

    Full Text Available Statistically underpowered studies can result in experimental failure even when all other experimental considerations have been addressed impeccably. In fMRI the combination of a large number of dependent variables, a relatively small number of observations (subjects, and a need to correct for multiple comparisons can decrease statistical power dramatically. This problem has been clearly addressed yet remains controversial-especially in regards to the expected effect sizes in fMRI, and especially for between-subjects effects such as group comparisons and brain-behavior correlations. We aimed to clarify the power problem by considering and contrasting two simulated scenarios of such possible brain-behavior correlations: weak diffuse effects and strong localized effects. Sampling from these scenarios shows that, particularly in the weak diffuse scenario, common sample sizes (n = 20-30 display extremely low statistical power, poorly represent the actual effects in the full sample, and show large variation on subsequent replications. Empirical data from the Human Connectome Project resembles the weak diffuse scenario much more than the localized strong scenario, which underscores the extent of the power problem for many studies. Possible solutions to the power problem include increasing the sample size, using less stringent thresholds, or focusing on a region-of-interest. However, these approaches are not always feasible and some have major drawbacks. The most prominent solutions that may help address the power problem include model-based (multivariate prediction methods and meta-analyses with related synthesis-oriented approaches.

  3. Cognitive Transfer Outcomes for a Simulation-Based Introductory Statistics Curriculum

    Science.gov (United States)

    Backman, Matthew D.; Delmas, Robert C.; Garfield, Joan

    2017-01-01

    Cognitive transfer is the ability to apply learned skills and knowledge to new applications and contexts. This investigation evaluates cognitive transfer outcomes for a tertiary-level introductory statistics course using the CATALST curriculum, which exclusively used simulation-based methods to develop foundations of statistical inference. A…

  4. Statistically designed enzymatic hydrolysis of an icariin/β-cyclodextrin inclusion complex optimized for production of icaritin

    Directory of Open Access Journals (Sweden)

    Xin Jin

    2012-02-01

    Full Text Available This study focuses on the preparation and enzymic hydrolysis of an icariin/β-cyclodextrin inclusion complex to efficiently generate icaritin. The physical characteristics of the inclusion complex were evaluated by differential scanning calorimetry (DSC. Enzymatic hydrolysis was optimized for the conversion of icariin/β-cyclodextrin complex to icaritin by Box–Behnken statistical design. The inclusion complex formulation increased the solubility of icariin approximately 17-fold, from 29.2 to 513.5 μg/mL at 60 °C. The optimum conditions were predicted by Box–Behnken statistical design as follows: 60 °C, pH 7.0, the ratio of enzyme/substrate (1:1.1 and reaction time 7 h. Under the optimal conditions the conversion of icariin was 97.91% and the reaction time was decreased by 68% compared with that without β-CD inclusion. Product analysis by melting point, ESI-MS, UV, IR, 1H NMR and 13C NMR confirmed the authenticity of icaritin with a purity of 99.3% and a yield of 473 mg of icaritin from 1.1 g icariin.

  5. Application of Bayesian statistical decision theory for a maintenance optimization problem

    International Nuclear Information System (INIS)

    Procaccia, H.; Cordier, R.; Muller, S.

    1997-01-01

    Reliability-centered maintenance (RCM) is a rational approach that can be used to identify the equipment of facilities that may turn out to be critical with respect to safety, to availability, or to maintenance costs. Is is dor these critical pieces of equipment alone that a corrective (one waits for a failure) or preventive (the type and frequency are specified) maintenance policy is established. But this approach has limitations: - when there is little operating feedback and it concerns rare events affecting a piece of equipment judged critical on a priori grounds (how is it possible, in this case, to decide whether or not it is critical, since there is conflict between the gravity of the potential failure and its frequency?); - when the aim is propose an optimal maintenance frequency for a critical piece of equipment - changing the maintenance frequency hitherto applied may cause a significant drift in the observed reliability of the equipment, an aspect not generally taken into account in the RCM approach. In these two situations, expert judgments can be combined with the available operating feedback (Bayesian approach) and the combination of risk of failure and economic consequences taken into account (statistical decision theory) to achieve a true optimization of maintenance policy choices. This paper presents an application on the maintenance of diesel generator component

  6. sick: The Spectroscopic Inference Crank

    Science.gov (United States)

    Casey, Andrew R.

    2016-03-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  7. SICK: THE SPECTROSCOPIC INFERENCE CRANK

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Andrew R., E-mail: arc@ast.cam.ac.uk [Institute of Astronomy, University of Cambridge, Madingley Road, Cambdridge, CB3 0HA (United Kingdom)

    2016-03-15

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  8. SICK: THE SPECTROSCOPIC INFERENCE CRANK

    International Nuclear Information System (INIS)

    Casey, Andrew R.

    2016-01-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  9. Statistical Challenges in Modeling Big Brain Signals

    KAUST Repository

    Yu, Zhaoxia

    2017-11-01

    Brain signal data are inherently big: massive in amount, complex in structure, and high in dimensions. These characteristics impose great challenges for statistical inference and learning. Here we review several key challenges, discuss possible solutions, and highlight future research directions.

  10. Using Artificial Intelligence to Retrieve the Optimal Parameters and Structures of Adaptive Network-Based Fuzzy Inference System for Typhoon Precipitation Forecast Modeling

    Directory of Open Access Journals (Sweden)

    Chien-Lin Huang

    2015-01-01

    Full Text Available This study aims to construct a typhoon precipitation forecast model providing forecasts one to six hours in advance using optimal model parameters and structures retrieved from a combination of the adaptive network-based fuzzy inference system (ANFIS and artificial intelligence. To enhance the accuracy of the precipitation forecast, two structures were then used to establish the precipitation forecast model for a specific lead-time: a single-model structure and a dual-model hybrid structure where the forecast models of higher and lower precipitation were integrated. In order to rapidly, automatically, and accurately retrieve the optimal parameters and structures of the ANFIS-based precipitation forecast model, a tabu search was applied to identify the adjacent radius in subtractive clustering when constructing the ANFIS structure. The coupled structure was also employed to establish a precipitation forecast model across short and long lead-times in order to improve the accuracy of long-term precipitation forecasts. The study area is the Shimen Reservoir, and the analyzed period is from 2001 to 2009. Results showed that the optimal initial ANFIS parameters selected by the tabu search, combined with the dual-model hybrid method and the coupled structure, provided the favors in computation efficiency and high-reliability predictions in typhoon precipitation forecasts regarding short to long lead-time forecasting horizons.

  11. Robust optimization based upon statistical theory.

    Science.gov (United States)

    Sobotta, B; Söhn, M; Alber, M

    2010-08-01

    Organ movement is still the biggest challenge in cancer treatment despite advances in online imaging. Due to the resulting geometric uncertainties, the delivered dose cannot be predicted precisely at treatment planning time. Consequently, all associated dose metrics (e.g., EUD and maxDose) are random variables with a patient-specific probability distribution. The method that the authors propose makes these distributions the basis of the optimization and evaluation process. The authors start from a model of motion derived from patient-specific imaging. On a multitude of geometry instances sampled from this model, a dose metric is evaluated. The resulting pdf of this dose metric is termed outcome distribution. The approach optimizes the shape of the outcome distribution based on its mean and variance. This is in contrast to the conventional optimization of a nominal value (e.g., PTV EUD) computed on a single geometry instance. The mean and variance allow for an estimate of the expected treatment outcome along with the residual uncertainty. Besides being applicable to the target, the proposed method also seamlessly includes the organs at risk (OARs). The likelihood that a given value of a metric is reached in the treatment is predicted quantitatively. This information reveals potential hazards that may occur during the course of the treatment, thus helping the expert to find the right balance between the risk of insufficient normal tissue sparing and the risk of insufficient tumor control. By feeding this information to the optimizer, outcome distributions can be obtained where the probability of exceeding a given OAR maximum and that of falling short of a given target goal can be minimized simultaneously. The method is applicable to any source of residual motion uncertainty in treatment delivery. Any model that quantifies organ movement and deformation in terms of probability distributions can be used as basis for the algorithm. Thus, it can generate dose

  12. Pareto-Optimal Model Selection via SPRINT-Race.

    Science.gov (United States)

    Zhang, Tiantian; Georgiopoulos, Michael; Anagnostopoulos, Georgios C

    2018-02-01

    In machine learning, the notion of multi-objective model selection (MOMS) refers to the problem of identifying the set of Pareto-optimal models that optimize by compromising more than one predefined objectives simultaneously. This paper introduces SPRINT-Race, the first multi-objective racing algorithm in a fixed-confidence setting, which is based on the sequential probability ratio with indifference zone test. SPRINT-Race addresses the problem of MOMS with multiple stochastic optimization objectives in the proper Pareto-optimality sense. In SPRINT-Race, a pairwise dominance or non-dominance relationship is statistically inferred via a non-parametric, ternary-decision, dual-sequential probability ratio test. The overall probability of falsely eliminating any Pareto-optimal models or mistakenly returning any clearly dominated models is strictly controlled by a sequential Holm's step-down family-wise error rate control method. As a fixed-confidence model selection algorithm, the objective of SPRINT-Race is to minimize the computational effort required to achieve a prescribed confidence level about the quality of the returned models. The performance of SPRINT-Race is first examined via an artificially constructed MOMS problem with known ground truth. Subsequently, SPRINT-Race is applied on two real-world applications: 1) hybrid recommender system design and 2) multi-criteria stock selection. The experimental results verify that SPRINT-Race is an effective and efficient tool for such MOMS problems. code of SPRINT-Race is available at https://github.com/watera427/SPRINT-Race.

  13. Adaptive design optimization: a mutual information-based approach to model discrimination in cognitive science.

    Science.gov (United States)

    Cavagnaro, Daniel R; Myung, Jay I; Pitt, Mark A; Kujala, Janne V

    2010-04-01

    Discriminating among competing statistical models is a pressing issue for many experimentalists in the field of cognitive science. Resolving this issue begins with designing maximally informative experiments. To this end, the problem to be solved in adaptive design optimization is identifying experimental designs under which one can infer the underlying model in the fewest possible steps. When the models under consideration are nonlinear, as is often the case in cognitive science, this problem can be impossible to solve analytically without simplifying assumptions. However, as we show in this letter, a full solution can be found numerically with the help of a Bayesian computational trick derived from the statistics literature, which recasts the problem as a probability density simulation in which the optimal design is the mode of the density. We use a utility function based on mutual information and give three intuitive interpretations of the utility function in terms of Bayesian posterior estimates. As a proof of concept, we offer a simple example application to an experiment on memory retention.

  14. Powerful Inference with the D-Statistic on Low-Coverage Whole-Genome Data.

    Science.gov (United States)

    Soraggi, Samuele; Wiuf, Carsten; Albrechtsen, Anders

    2018-02-02

    The detection of ancient gene flow between human populations is an important issue in population genetics. A common tool for detecting ancient admixture events is the D-statistic. The D-statistic is based on the hypothesis of a genetic relationship that involves four populations, whose correctness is assessed by evaluating specific coincidences of alleles between the groups. When working with high-throughput sequencing data, calling genotypes accurately is not always possible; therefore, the D-statistic currently samples a single base from the reads of one individual per population. This implies ignoring much of the information in the data, an issue especially striking in the case of ancient genomes. We provide a significant improvement to overcome the problems of the D-statistic by considering all reads from multiple individuals in each population. We also apply type-specific error correction to combat the problems of sequencing errors, and show a way to correct for introgression from an external population that is not part of the supposed genetic relationship, and how this leads to an estimate of the admixture rate. We prove that the D-statistic is approximated by a standard normal distribution. Furthermore, we show that our method outperforms the traditional D-statistic in detecting admixtures. The power gain is most pronounced for low and medium sequencing depth (1-10×), and performances are as good as with perfectly called genotypes at a sequencing depth of 2×. We show the reliability of error correction in scenarios with simulated errors and ancient data, and correct for introgression in known scenarios to estimate the admixture rates. Copyright © 2018 Soraggi et al.

  15. Statistics for mathematicians a rigorous first course

    CERN Document Server

    Panaretos, Victor M

    2016-01-01

    This textbook provides a coherent introduction to the main concepts and methods of one-parameter statistical inference. Intended for students of Mathematics taking their first course in Statistics, the focus is on Statistics for Mathematicians rather than on Mathematical Statistics. The goal is not to focus on the mathematical/theoretical aspects of the subject, but rather to provide an introduction to the subject tailored to the mindset and tastes of Mathematics students, who are sometimes turned off by the informal nature of Statistics courses. This book can be used as the basis for an elementary semester-long first course on Statistics with a firm sense of direction that does not sacrifice rigor. The deeper goal of the text is to attract the attention of promising Mathematics students.

  16. Entropic Inference

    Science.gov (United States)

    Caticha, Ariel

    2011-03-01

    In this tutorial we review the essential arguments behing entropic inference. We focus on the epistemological notion of information and its relation to the Bayesian beliefs of rational agents. The problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), includes as special cases both MaxEnt and Bayes' rule, and therefore unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme.

  17. Inference in hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Langseth, Helge; Nielsen, Thomas D.; Rumi, Rafael; Salmeron, Antonio

    2009-01-01

    Since the 1980s, Bayesian networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability techniques (like fault trees and reliability block diagrams). However, limitations in the BNs' calculation engine have prevented BNs from becoming equally popular for domains containing mixtures of both discrete and continuous variables (the so-called hybrid domains). In this paper we focus on these difficulties, and summarize some of the last decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability.

  18. Optimal day-ahead wind-thermal unit commitment considering statistical and predicted features of wind speeds

    International Nuclear Information System (INIS)

    Sun, Yanan; Dong, Jizhe; Ding, Lijuan

    2017-01-01

    Highlights: • A day–ahead wind–thermal unit commitment model is presented. • Wind speed transfer matrix is formed to depict the sequential wind features. • Spinning reserve setting considering wind power accuracy and variation is proposed. • Verified study is performed to check the correctness of the program. - Abstract: The increasing penetration of intermittent wind power affects the secure operation of power systems and leads to a requirement of robust and economic generation scheduling. This paper presents an optimal day–ahead wind–thermal generation scheduling method that considers the statistical and predicted features of wind speeds. In this method, the statistical analysis of historical wind data, which represents the local wind regime, is first implemented. Then, according to the statistical results and the predicted wind power, the spinning reserve requirements for the scheduling period are calculated. Based on the calculated spinning reserve requirements, the wind–thermal generation scheduling is finally conducted. To validate the program, a verified study is performed on a test system. Then, numerical studies to demonstrate the effectiveness of the proposed method are conducted.

  19. A Review of Some Aspects of Robust Inference for Time Series.

    Science.gov (United States)

    1984-09-01

    REVIEW OF SOME ASPECTSOF ROBUST INFERNCE FOR TIME SERIES by Ad . Dougla Main TE "iAL REPOW No. 63 Septermber 1984 Department of Statistics University of ...clear. One cannot hope to have a good method for dealing with outliers in time series by using only an instantaneous nonlinear transformation of the data...AI.49 716 A REVIEWd OF SOME ASPECTS OF ROBUST INFERENCE FOR TIME 1/1 SERIES(U) WASHINGTON UNIV SEATTLE DEPT OF STATISTICS R D MARTIN SEP 84 TR-53

  20. Conjunction analysis and propositional logic in fMRI data analysis using Bayesian statistics.

    Science.gov (United States)

    Rudert, Thomas; Lohmann, Gabriele

    2008-12-01

    To evaluate logical expressions over different effects in data analyses using the general linear model (GLM) and to evaluate logical expressions over different posterior probability maps (PPMs). In functional magnetic resonance imaging (fMRI) data analysis, the GLM was applied to estimate unknown regression parameters. Based on the GLM, Bayesian statistics can be used to determine the probability of conjunction, disjunction, implication, or any other arbitrary logical expression over different effects or contrast. For second-level inferences, PPMs from individual sessions or subjects are utilized. These PPMs can be combined to a logical expression and its probability can be computed. The methods proposed in this article are applied to data from a STROOP experiment and the methods are compared to conjunction analysis approaches for test-statistics. The combination of Bayesian statistics with propositional logic provides a new approach for data analyses in fMRI. Two different methods are introduced for propositional logic: the first for analyses using the GLM and the second for common inferences about different probability maps. The methods introduced extend the idea of conjunction analysis to a full propositional logic and adapt it from test-statistics to Bayesian statistics. The new approaches allow inferences that are not possible with known standard methods in fMRI. (c) 2008 Wiley-Liss, Inc.

  1. Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors

    Directory of Open Access Journals (Sweden)

    Frank Emmert-Streib

    2013-02-01

    Full Text Available The inference of gene regulatory networks gained within recent years a considerable interest in the biology and biomedical community. The purpose of this paper is to investigate the influence that environmental conditions can exhibit on the inference performance of network inference algorithms. Specifically, we study five network inference methods, Aracne, BC3NET, CLR, C3NET and MRNET, and compare the results for three different conditions: (I observational gene expression data: normal environmental condition, (II interventional gene expression data: growth in rich media, (III interventional gene expression data: normal environmental condition interrupted by a positive spike-in stimulation. Overall, we find that different statistical inference methods lead to comparable, but condition-specific results. Further, our results suggest that non-steady-state data enhance the inferability of regulatory networks.

  2. The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach

    Science.gov (United States)

    Smith, Tony E.; Lee, Ka Lok

    2012-01-01

    There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is independent of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce "spurious correlation" that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.

  3. Statistical methods for astronomical data analysis

    CERN Document Server

    Chattopadhyay, Asis Kumar

    2014-01-01

    This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for ...

  4. STATISTICAL OPTIMIZATION OF PROCESS VARIABLES FOR ...

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... The osmotic dehydration process was optimized for water loss and solutes gain. ... basis) with safe moisture content for storage (10% wet basis) [3]. Due to ... sucrose, glucose, fructose, corn syrup and sodium chlo- ride have ...

  5. In silico model-based inference: a contemporary approach for hypothesis testing in network biology.

    Science.gov (United States)

    Klinke, David J

    2014-01-01

    Inductive inference plays a central role in the study of biological systems where one aims to increase their understanding of the system by reasoning backwards from uncertain observations to identify causal relationships among components of the system. These causal relationships are postulated from prior knowledge as a hypothesis or simply a model. Experiments are designed to test the model. Inferential statistics are used to establish a level of confidence in how well our postulated model explains the acquired data. This iterative process, commonly referred to as the scientific method, either improves our confidence in a model or suggests that we revisit our prior knowledge to develop a new model. Advances in technology impact how we use prior knowledge and data to formulate models of biological networks and how we observe cellular behavior. However, the approach for model-based inference has remained largely unchanged since Fisher, Neyman and Pearson developed the ideas in the early 1900s that gave rise to what is now known as classical statistical hypothesis (model) testing. Here, I will summarize conventional methods for model-based inference and suggest a contemporary approach to aid in our quest to discover how cells dynamically interpret and transmit information for therapeutic aims that integrates ideas drawn from high performance computing, Bayesian statistics, and chemical kinetics. © 2014 American Institute of Chemical Engineers.

  6. The duration of uncertain times: audiovisual information about intervals is integrated in a statistically optimal fashion.

    Directory of Open Access Journals (Sweden)

    Jess Hartcher-O'Brien

    Full Text Available Often multisensory information is integrated in a statistically optimal fashion where each sensory source is weighted according to its precision. This integration scheme isstatistically optimal because it theoretically results in unbiased perceptual estimates with the highest precisionpossible.There is a current lack of consensus about how the nervous system processes multiple sensory cues to elapsed time.In order to shed light upon this, we adopt a computational approach to pinpoint the integration strategy underlying duration estimationof audio/visual stimuli. One of the assumptions of our computational approach is that the multisensory signals redundantly specify the same stimulus property. Our results clearly show that despite claims to the contrary, perceived duration is the result of an optimal weighting process, similar to that adopted for estimates of space. That is, participants weight the audio and visual information to arrive at the most precise, single duration estimate possible. The work also disentangles how different integration strategies - i.e. consideringthe time of onset/offset ofsignals - might alter the final estimate. As such we provide the first concrete evidence of an optimal integration strategy in human duration estimates.

  7. Genetic interaction motif finding by expectation maximization – a novel statistical model for inferring gene modules from synthetic lethality

    Directory of Open Access Journals (Sweden)

    Ye Ping

    2005-12-01

    Full Text Available Abstract Background Synthetic lethality experiments identify pairs of genes with complementary function. More direct functional associations (for example greater probability of membership in a single protein complex may be inferred between genes that share synthetic lethal interaction partners than genes that are directly synthetic lethal. Probabilistic algorithms that identify gene modules based on motif discovery are highly appropriate for the analysis of synthetic lethal genetic interaction data and have great potential in integrative analysis of heterogeneous datasets. Results We have developed Genetic Interaction Motif Finding (GIMF, an algorithm for unsupervised motif discovery from synthetic lethal interaction data. Interaction motifs are characterized by position weight matrices and optimized through expectation maximization. Given a seed gene, GIMF performs a nonlinear transform on the input genetic interaction data and automatically assigns genes to the motif or non-motif category. We demonstrate the capacity to extract known and novel pathways for Saccharomyces cerevisiae (budding yeast. Annotations suggested for several uncharacterized genes are supported by recent experimental evidence. GIMF is efficient in computation, requires no training and automatically down-weights promiscuous genes with high degrees. Conclusion GIMF effectively identifies pathways from synthetic lethality data with several unique features. It is mostly suitable for building gene modules around seed genes. Optimal choice of one single model parameter allows construction of gene networks with different levels of confidence. The impact of hub genes the generic probabilistic framework of GIMF may be used to group other types of biological entities such as proteins based on stochastic motifs. Analysis of the strongest motifs discovered by the algorithm indicates that synthetic lethal interactions are depleted between genes within a motif, suggesting that synthetic

  8. Optimal design of sampling and mapping schemes in the radiometric exploration of Chipilapa, El Salvador (Geo-statistics)

    International Nuclear Information System (INIS)

    Balcazar G, M.; Flores R, J.H.

    1992-01-01

    As part of the knowledge about the radiometric surface exploration, carried out in the geothermal field of Chipilapa, El Salvador, its were considered the geo-statistical parameters starting from the calculated variogram of the field data, being that the maxim distance of correlation of the samples in 'radon' in the different observation addresses (N-S, E-W, N W-S E, N E-S W), it was of 121 mts for the monitoring grill in future prospectus in the same area. Being derived of it an optimization (minimum cost) in the spacing of the field samples by means of geo-statistical techniques, without losing the detection of the anomaly. (Author)

  9. Reliability of dose volume constraint inference from clinical data

    Science.gov (United States)

    Lutz, C. M.; Møller, D. S.; Hoffmann, L.; Knap, M. M.; Alber, M.

    2017-04-01

    Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an ‘ideal’ cohort was generated where the most predictive model was equal to the postulated model. A bootstrap and a Cohort Replication Monte Carlo (CoRepMC) approach were applied to create 1000 equally sized populations each. The cohorts were then analyzed to establish inference frequency distributions. This was applied to nine scenarios for cohort sizes of 102 (1), 500 (2) to 2000 (3) patients (by sampling with replacement) and three postulated DVHP models. The Bootstrap was repeated for a ‘non-ideal’ cohort, where the most predictive model did not coincide with the postulated model. The Bootstrap produced chaotic results for all models of cohort size 1 for both the ideal and non-ideal cohorts. For cohort size 2 and 3, the distributions for all populations were more concentrated around the postulated DVHP. For the CoRepMC, the inference frequency increased with cohort size and incidence rate. Correct inference rates  >85 % were only achieved by cohorts with more than 500 patients. Both Bootstrap and CoRepMC indicate that inference of the correct or approximate DVHP for typical cohort sizes is highly uncertain. CoRepMC results were less spurious than Bootstrap results, demonstrating the large influence that randomness in dose-response has on the statistical analysis.

  10. Introductory statistics for the behavioral sciences

    CERN Document Server

    Welkowitz, Joan; Cohen, Jacob

    1971-01-01

    Introductory Statistics for the Behavioral Sciences provides an introduction to statistical concepts and principles. This book emphasizes the robustness of parametric procedures wherein such significant tests as t and F yield accurate results even if such assumptions as equal population variances and normal population distributions are not well met.Organized into three parts encompassing 16 chapters, this book begins with an overview of the rationale upon which much of behavioral science research is based, namely, drawing inferences about a population based on data obtained from a samp

  11. Complexity characterization in a probabilistic approach to dynamical systems through information geometry and inductive inference

    International Nuclear Information System (INIS)

    Ali, S A; Kim, D-H; Cafaro, C; Giffin, A

    2012-01-01

    Information geometric techniques and inductive inference methods hold great promise for solving computational problems of interest in classical and quantum physics, especially with regard to complexity characterization of dynamical systems in terms of their probabilistic description on curved statistical manifolds. In this paper, we investigate the possibility of describing the macroscopic behavior of complex systems in terms of the underlying statistical structure of their microscopic degrees of freedom by the use of statistical inductive inference and information geometry. We review the maximum relative entropy formalism and the theoretical structure of the information geometrodynamical approach to chaos on statistical manifolds M S . Special focus is devoted to a description of the roles played by the sectional curvature K M S , the Jacobi field intensity J M S and the information geometrodynamical entropy S M S . These quantities serve as powerful information-geometric complexity measures of information-constrained dynamics associated with arbitrary chaotic and regular systems defined on M S . Finally, the application of such information-geometric techniques to several theoretical models is presented.

  12. Data Science and Optimal Learning for Material Discovery and Design

    Science.gov (United States)

    ; Optimal Learning for Material Discovery & Design Data Science and Optimal Learning for Material inference and optimization methods that can constrain predictions using insights and results from theory directions in the application of information theoretic tools to materials problems related to learning from

  13. Identifikasi Gangguan Neurologis Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS

    Directory of Open Access Journals (Sweden)

    Jani Kusanti

    2015-07-01

    Abstract             The use of Adaptive Neuro Fuzzy Inference System (ANFIS methods in the process of identifying one of neurological disorders in the head, known in medical terms ischemic stroke from the ct scan of the head in order to identify the location of ischemic stroke. The steps are performed in the extraction process of identifying, among others, the image of the ct scan of the head by using a histogram. Enhanced image of the intensity histogram image results using Otsu threshold to obtain results pixels rated 1 related to the object while pixel rated 0 associated with the measurement background. The result used for image clustering process, to process image clusters used fuzzy c-mean (FCM clustering result is a row of the cluster center, the results of the data used to construct a fuzzy inference system (FIS. Fuzzy inference system applied is fuzzy inference model of Takagi-Sugeno-Kang. In this study ANFIS is used to optimize the results of the determination of the location of the blockage ischemic stroke. Used recursive least squares estimator (RLSE for learning. RMSE results obtained in the training process of 0.0432053, while in the process of generated test accuracy rate of 98.66%   Keywords— Stroke Ischemik, Global threshold, Fuzzy Inference System model Sugeno, ANFIS, RMSE

  14. More than one kind of inference: re-examining what's learned in feature inference and classification.

    Science.gov (United States)

    Sweller, Naomi; Hayes, Brett K

    2010-08-01

    Three studies examined how task demands that impact on attention to typical or atypical category features shape the category representations formed through classification learning and inference learning. During training categories were learned via exemplar classification or by inferring missing exemplar features. In the latter condition inferences were made about missing typical features alone (typical feature inference) or about both missing typical and atypical features (mixed feature inference). Classification and mixed feature inference led to the incorporation of typical and atypical features into category representations, with both kinds of features influencing inferences about familiar (Experiments 1 and 2) and novel (Experiment 3) test items. Those in the typical inference condition focused primarily on typical features. Together with formal modelling, these results challenge previous accounts that have characterized inference learning as producing a focus on typical category features. The results show that two different kinds of inference learning are possible and that these are subserved by different kinds of category representations.

  15. Maximum Likelihood Method for Predicting Environmental Conditions from Assemblage Composition: The R Package bio.infer

    Directory of Open Access Journals (Sweden)

    Lester L. Yuan

    2007-06-01

    Full Text Available This paper provides a brief introduction to the R package bio.infer, a set of scripts that facilitates the use of maximum likelihood (ML methods for predicting environmental conditions from assemblage composition. Environmental conditions can often be inferred from only biological data, and these inferences are useful when other sources of data are unavailable. ML prediction methods are statistically rigorous and applicable to a broader set of problems than more commonly used weighted averaging techniques. However, ML methods require a substantially greater investment of time to program algorithms and to perform computations. This package is designed to reduce the effort required to apply ML prediction methods.

  16. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction

    Science.gov (United States)

    Imbens, Guido W.; Rubin, Donald B.

    2015-01-01

    Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In this groundbreaking text, two world-renowned experts present statistical methods for studying such questions. This book starts with the notion of potential outcomes, each corresponding…

  17. Constrained statistical inference : sample-size tables for ANOVA and regression

    NARCIS (Netherlands)

    Vanbrabant, Leonard; Van De Schoot, Rens; Rosseel, Yves

    2015-01-01

    Researchers in the social and behavioral sciences often have clear expectations about the order/direction of the parameters in their statistical model. For example, a researcher might expect that regression coefficient β1 is larger than β2 and β3. The corresponding hypothesis is H: β1 > {β2, β3} and

  18. SEMANTIC PATCH INFERENCE

    DEFF Research Database (Denmark)

    Andersen, Jesper

    2009-01-01

    Collateral evolution the problem of updating several library-using programs in response to API changes in the used library. In this dissertation we address the issue of understanding collateral evolutions by automatically inferring a high-level specification of the changes evident in a given set ...... specifications inferred by spdiff in Linux are shown. We find that the inferred specifications concisely capture the actual collateral evolution performed in the examples....

  19. Extreme events in the Mediterranean area: A mixed deterministic-statistical approach

    International Nuclear Information System (INIS)

    Speranza, A.; Tartaglione, N.

    2006-01-01

    Statistical inference suffers for severe limitations when applied to extreme meteo-climatic events. A fundamental theorem proposes a constructive theory for a universal distribution law (the Generalized Extreme Value distribution) of extremes. Use of this theorem and of its derivations is nowadays quite common. However, when applying it, the selected events should be real extremes. In practical applications a major source of errors is the fact that there is no strict criterion for selecting extremes and, in order to fatten the statistical sample very mild selection criteria are often used. The theorem in question applies to stationary processes. When a trend is introduced, inference becomes even more problematic. Experience shows that any available a priori knowledge concerning the system can play a fundamental role in the analysis, in particular if it lowers the dimensionality of the parameter space to be explored. The inference procedures serve, then, the purpose of testing the reliability of inductive hypothesis, rather than proving them. Within the above general context, analysis of the hypothesis that the frequency and/or intensity of extreme weather events in the Mediterranean area may be changing is proposed. The analysis is based on a combined deterministic-statistical approach: dynamical analysis of intense perturbations is combined with statistical techniques in order to try to formulate the problem in such a way that meaningful conclusion may be achieved

  20. Nonparametric predictive inference for combining diagnostic tests with parametric copula

    Science.gov (United States)

    Muhammad, Noryanti; Coolen, F. P. A.; Coolen-Maturi, T.

    2017-09-01

    Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine and health care. The Receiver Operating Characteristic (ROC) curve is a popular statistical tool for describing the performance of diagnostic tests. The area under the ROC curve (AUC) is often used as a measure of the overall performance of the diagnostic test. In this paper, we interest in developing strategies for combining test results in order to increase the diagnostic accuracy. We introduce nonparametric predictive inference (NPI) for combining two diagnostic test results with considering dependence structure using parametric copula. NPI is a frequentist statistical framework for inference on a future observation based on past data observations. NPI uses lower and upper probabilities to quantify uncertainty and is based on only a few modelling assumptions. While copula is a well-known statistical concept for modelling dependence of random variables. A copula is a joint distribution function whose marginals are all uniformly distributed and it can be used to model the dependence separately from the marginal distributions. In this research, we estimate the copula density using a parametric method which is maximum likelihood estimator (MLE). We investigate the performance of this proposed method via data sets from the literature and discuss results to show how our method performs for different family of copulas. Finally, we briefly outline related challenges and opportunities for future research.