Engineering to Control Noise, Loading, and Optimal Operating Points
International Nuclear Information System (INIS)
Mitchell R. Swartz
2000-01-01
Successful engineering of low-energy nuclear systems requires control of noise, loading, and optimum operating point (OOP) manifolds. The latter result from the biphasic system response of low-energy nuclear reaction (LENR)/cold fusion systems, and their ash production rate, to input electrical power. Knowledge of the optimal operating point manifold can improve the reproducibility and efficacy of these systems in several ways. Improved control of noise, loading, and peak production rates is available through the study, and use, of OOP manifolds. Engineering of systems toward the OOP-manifold drive-point peak may, with inclusion of geometric factors, permit more accurate uniform determinations of the calibrated activity of these materials/systems
Nonlinear Burn Control and Operating Point Optimization in ITER
Boyer, Mark; Schuster, Eugenio
2013-10-01
Control of the fusion power through regulation of the plasma density and temperature will be essential for achieving and maintaining desired operating points in fusion reactors and burning plasma experiments like ITER. In this work, a volume averaged model for the evolution of the density of energy, deuterium and tritium fuel ions, alpha-particles, and impurity ions is used to synthesize a multi-input multi-output nonlinear feedback controller for stabilizing and modulating the burn condition. Adaptive control techniques are used to account for uncertainty in model parameters, including particle confinement times and recycling rates. The control approach makes use of the different possible methods for altering the fusion power, including adjusting the temperature through auxiliary heating, modulating the density and isotopic mix through fueling, and altering the impurity density through impurity injection. Furthermore, a model-based optimization scheme is proposed to drive the system as close as possible to desired fusion power and temperature references. Constraints are considered in the optimization scheme to ensure that, for example, density and beta limits are avoided, and that optimal operation is achieved even when actuators reach saturation. Supported by the NSF CAREER award program (ECCS-0645086).
Power-limited low-thrust trajectory optimization with operation point detection
Chi, Zhemin; Li, Haiyang; Jiang, Fanghua; Li, Junfeng
2018-06-01
The power-limited solar electric propulsion system is considered more practical in mission design. An accurate mathematical model of the propulsion system, based on experimental data of the power generation system, is used in this paper. An indirect method is used to deal with the time-optimal and fuel-optimal control problems, in which the solar electric propulsion system is described using a finite number of operation points, which are characterized by different pairs of thruster input power. In order to guarantee the integral accuracy for the discrete power-limited problem, a power operation detection technique is embedded in the fourth-order Runge-Kutta algorithm with fixed step. Moreover, the logarithmic homotopy method and normalization technique are employed to overcome the difficulties caused by using indirect methods. Three numerical simulations with actual propulsion systems are given to substantiate the feasibility and efficiency of the proposed method.
Directory of Open Access Journals (Sweden)
Joao CARDOSO NETO
2012-01-01
Full Text Available Chile is a country with great attractions for tourists in South America and the whole world. Among the many tourist Chilean attractions the city of Vina del Mar is one of the highlights, recognized nationally and internationally as one of the most beautiful places for summer. In Vina del Mar tourists have many options for leisure, besides pretty beaches, e.g. playa renaca, the city has beautiful squares and castles, e.g. Castillo Wulff built more than 100 (one hundred years ago. It is noteworthy that already exist over there five (5 tourist itineraries, so this work was developed in order to determine the best routes to these existing itineraries, and create a unique route that includes all the tourist points in Vina del Mar, because in this way, the tourists visiting this city can minimize the time spent in traveling, as well as optimize their moments of leisure, taking the opportunity to know all the city attractions. To determine shorter ways to do it and then propose some suggestions for improvement of the quality of the tourist service offered, it had used the exact method, by solving the mathematical model of the TSP (Traveling Salesman Problem, and the heuristic method, using the most economic insertion algorithm.
Directory of Open Access Journals (Sweden)
Juanjo Ugartemendia
2013-09-01
Full Text Available This paper presents a hydrogen powered hybrid solid oxide fuel cell-steam turbine (SOFC-ST system and studies its optimal operating conditions. This type of installation can be very appropriate to complement the intermittent generation of renewable energies, such as wind generation. A dynamic model of an alternative hybrid SOFC-ST configuration that is especially suited to work with hydrogen is developed. The proposed system recuperates the waste heat of the high temperature fuel cell, to feed a bottoming cycle (BC based on a steam turbine (ST. In order to optimize the behavior and performance of the system, a two-level control structure is proposed. Two controllers have been implemented for the stack temperature and fuel utilization factor. An upper supervisor generates optimal set-points in order to reach a maximal hydrogen efficiency. The simulation results obtained show that the proposed system allows one to reach high efficiencies at rated power levels.
International Nuclear Information System (INIS)
Xiong, Guojiang; Li, Yinhong; Chen, Jinfu; Shi, Dongyuan; Duan, Xianzhong
2014-01-01
Highlights: • New method for dynamic economic dispatch problem using POLBBO. • Considering valve-point effects, ramp rate limits, transmission network losses. • POLBBO is able to balance the global exploration and the local exploitation. • An effective simultaneous constraints handling technique is proposed. • The achieved results by POLBBO are better than those reported in other literatures. - Abstract: Shortage of energy resources, rising power generation cost, and increasing electric energy demand make the dynamic economic dispatch (DED) increasingly necessary in today’s competitive electricity market. In this paper, an enhanced biogeography-based optimization (BBO) referred to as POLBBO is proposed to solve the DED problem with valve-point effects. BBO is a relatively new powerful population-based meta-heuristic algorithm inspired by biogeography and has been extensively applied to many scientific and engineering problems. However, its direct-copying-based migration and random mutation operators make BBO possess good local exploitation ability but lack enough global exploration ability. To remedy the defect, on one hand, an efficient operator named polyphyletic migration operator is proposed to enhance the search ability of POLBBO. This operator can not only generate new features from more promising areas in the search space, but also effectively increase the population diversity. On the other hand, an orthogonal learning (OL) strategy based on orthogonal experimental design is presented. The OL strategy can quickly discover useful information from the search experiences and effectively utilize the information to construct a more promising solution, and thereby provide a systematic and elaborate reasoning method to guide the search directions of POLBBO. In addition, an effective simultaneous constraints handling technique without penalty factor settings is developed to handle various complicated constraints of the DED problem. Finally, four test
Directory of Open Access Journals (Sweden)
Siwei Han
2018-03-01
Full Text Available An optimal load-tracking operation strategy for a grid-connected tubular solid oxide fuel cell (SOFC is studied based on the steady-state analysis of the system thermodynamics and electrochemistry. Control of the SOFC is achieved by a two-level hierarchical control system. In the upper level, optimal setpoints of output voltage and the current corresponding to unit load demand is obtained through a nonlinear optimization by minimizing the SOFC’s internal power waste. In the lower level, a combined L1-MPC control strategy is designed to achieve fast set point tracking under system nonlinearities, while maintaining a constant fuel utilization factor. To prevent fuel starvation during the transient state resulting from the output power surging, a fuel flow constraint is imposed on the MPC with direct electron balance calculation. The proposed control schemes are testified on the grid-connected SOFC model.
Fixed points of quantum operations
International Nuclear Information System (INIS)
Arias, A.; Gheondea, A.; Gudder, S.
2002-01-01
Quantum operations frequently occur in quantum measurement theory, quantum probability, quantum computation, and quantum information theory. If an operator A is invariant under a quantum operation φ, we call A a φ-fixed point. Physically, the φ-fixed points are the operators that are not disturbed by the action of φ. Our main purpose is to answer the following question. If A is a φ-fixed point, is A compatible with the operation elements of φ? We shall show in general that the answer is no and we shall give some sufficient conditions under which the answer is yes. Our results will follow from some general theorems concerning completely positive maps and injectivity of operator systems and von Neumann algebras
DEFF Research Database (Denmark)
Berning, Torsten
2012-01-01
In this article an analytical method to calculate the dew point temperatures of the anode and cathode exit gas streams of a proton exchange membrane fuel cell is developed. The results of these calculations are used to create diagrams that show the dew point temperatures as function of the operat...... for conventional flow field plates. The diagrams presented here are created for completely dry inlet gases, but they can be easily corrected for a nonzero inlet relative humidity....
Yu Wei; Matthew P. Thompson; Jessica R. Haas; Gregory K. Dillon; Christopher D. O’Connor
2018-01-01
This study introduces a large fire containment strategy that builds upon recent advances in spatial fire planning, notably the concept of potential wildland fire operation delineations (PODs). Multiple PODs can be clustered together to form a âboxâ that is referred as the âresponse PODâ (or rPOD). Fire lines would be built along the boundary of an rPOD to contain a...
Optimization of transistor size and operating point for the LVDS driver of the ALICE ITS pixel chip
Froeen, Solveig Marie
2015-01-01
The ALICE Inner Tracker System (ITS) will be upgraded during Long Shutdown 2. The tracker layers will be equipped with monolithic pixel sensors chips. A Low Voltage Differential Signalling (LVDS) driver is required for the off chip data transmission. A current mode 1.2 Gb/s LVDS driver based on H-bridge scheme has already been implemented and tested. Although the present driver meets the specifications, a decrease of its power consumption is beneficial for the reduction of the material required for the detector powering and cooling. This report presents the study of a current mode LVDS driver based on H-bridge scheme where the switches are replaced with current sources that can deliver either ON level or OFF level currents. The ON current is the main static power contributor, and its value is set to 4 mA by specifications to have a differential signal of 400 mV over the 100 Ω termination resistor. The second contributor for the static power is the OFF power, which has to be optimized together with the dynami...
Optimal Power Flow by Interior Point and Non Interior Point Modern Optimization Algorithms
Directory of Open Access Journals (Sweden)
Marcin Połomski
2013-03-01
Full Text Available The idea of optimal power flow (OPF is to determine the optimal settings for control variables while respecting various constraints, and in general it is related to power system operational and planning optimization problems. A vast number of optimization methods have been applied to solve the OPF problem, but their performance is highly dependent on the size of a power system being optimized. The development of the OPF recently has tracked significant progress both in numerical optimization techniques and computer techniques application. In recent years, application of interior point methods to solve OPF problem has been paid great attention. This is due to the fact that IP methods are among the fastest algorithms, well suited to solve large-scale nonlinear optimization problems. This paper presents the primal-dual interior point method based optimal power flow algorithm and new variant of the non interior point method algorithm with application to optimal power flow problem. Described algorithms were implemented in custom software. The experiments show the usefulness of computational software and implemented algorithms for solving the optimal power flow problem, including the system model sizes comparable to the size of the National Power System.
Optimal mode of operation for biomass production
Betlem, Ben H.L.; Roffel, Brian; Mulder, P.
2002-01-01
The rate of biomass production is optimised for a predefined feed exhaustion using the residue ratio as a degree of freedom. Three modes of operation are considered: continuous, repeated batch, and repeated fed-batch operation. By means of the Production Curve, the transition points of the optimal
Optimal operation of batch membrane processes
Paulen, Radoslav
2016-01-01
This study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from th...
Optimization of power system operation
Zhu, Jizhong
2015-01-01
This book applies the latest applications of new technologies topower system operation and analysis, including new and importantareas that are not covered in the previous edition. Optimization of Power System Operation covers both traditional andmodern technologies, including power flow analysis, steady-statesecurity region analysis, security constrained economic dispatch,multi-area system economic dispatch, unit commitment, optimal powerflow, smart grid operation, optimal load shed, optimalreconfiguration of distribution network, power system uncertaintyanalysis, power system sensitivity analysis, analytic hierarchicalprocess, neural network, fuzzy theory, genetic algorithm,evolutionary programming, and particle swarm optimization, amongothers. New topics such as the wheeling model, multi-areawheeling, the total transfer capability computation in multipleareas, are also addressed. The new edition of this book continues to provide engineers andac demics with a complete picture of the optimization of techn...
Optimizing Probability of Detection Point Estimate Demonstration
Koshti, Ajay M.
2017-01-01
Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.
Characterizations of fixed points of quantum operations
International Nuclear Information System (INIS)
Li Yuan
2011-01-01
Let φ A be a general quantum operation. An operator B is said to be a fixed point of φ A , if φ A (B)=B. In this note, we shall show conditions under which B, a fixed point φ A , implies that B is compatible with the operation element of φ A . In particular, we offer an extension of the generalized Lueders theorem.
Optimal time points sampling in pathway modelling.
Hu, Shiyan
2004-01-01
Modelling cellular dynamics based on experimental data is at the heart of system biology. Considerable progress has been made to dynamic pathway modelling as well as the related parameter estimation. However, few of them gives consideration for the issue of optimal sampling time selection for parameter estimation. Time course experiments in molecular biology rarely produce large and accurate data sets and the experiments involved are usually time consuming and expensive. Therefore, to approximate parameters for models with only few available sampling data is of significant practical value. For signal transduction, the sampling intervals are usually not evenly distributed and are based on heuristics. In the paper, we investigate an approach to guide the process of selecting time points in an optimal way to minimize the variance of parameter estimates. In the method, we first formulate the problem to a nonlinear constrained optimization problem by maximum likelihood estimation. We then modify and apply a quantum-inspired evolutionary algorithm, which combines the advantages of both quantum computing and evolutionary computing, to solve the optimization problem. The new algorithm does not suffer from the morass of selecting good initial values and being stuck into local optimum as usually accompanied with the conventional numerical optimization techniques. The simulation results indicate the soundness of the new method.
Optimal External-Memory Planar Point Enclosure
DEFF Research Database (Denmark)
Arge, Lars; Samoladas, Vasilis; Yi, Ke
2007-01-01
.g. spatial and temporal databases, and is dual to the important and well-studied orthogonal range searching problem. Surprisingly, despite the fact that the problem can be solved optimally in internal memory with linear space and O(log N+K) query time, we show that one cannot construct a linear sized......In this paper we study the external memory planar point enclosure problem: Given N axis-parallel rectangles in the plane, construct a data structure on disk (an index) such that all K rectangles containing a query point can be reported I/O-efficiently. This problem has important applications in e...... external memory point enclosure data structure that can be used to answer a query in O(log B N+K/B) I/Os, where B is the disk block size. To obtain this bound, Ω(N/B 1−ε ) disk blocks are needed for some constant ε>0. With linear space, the best obtainable query bound is O(log 2 N+K/B) if a linear output...
On the Optimization of Point Absorber Buoys
Directory of Open Access Journals (Sweden)
Linnea Sjökvist
2014-05-01
Full Text Available A point absorbing wave energy converter (WEC is a complicated dynamical system. A semi-submerged buoy drives a power take-off device (PTO, which acts as a linear or non-linear damper of the WEC system. The buoy motion depends on the buoy geometry and dimensions, the mass of the moving parts of the system and on the damping force from the generator. The electromagnetic damping in the generator depends on both the generator specifications, the connected load and the buoy velocity. In this paper a velocity ratio has been used to study how the geometric parameters buoy draft and radius, assuming constant generator damping coefficient, affects the motion and the energy absorption of a WEC. It have been concluded that an optimal buoy geometry can be identified for a specific generator damping. The simulated WEC performance have been compared with experimental values from two WECs with similar generators but different buoys. Conclusions have been drawn about their behaviour.
Fixed point of the parabolic renormalization operator
Lanford III, Oscar E
2014-01-01
This monograph grew out of the authors' efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point. Inside, readers will find a detailed introduction into the theory of parabolic bifurcation, Fatou coordinates, Écalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization. The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both experts in the field as well as graduate students wishi...
Fixed point theory, variational analysis, and optimization
Al-Mezel, Saleh Abdullah R; Ansari, Qamrul Hasan
2015-01-01
""There is a real need for this book. It is useful for people who work in areas of nonlinear analysis, optimization theory, variational inequalities, and mathematical economics.""-Nan-Jing Huang, Sichuan University, Chengdu, People's Republic of China
Following an Optimal Batch Bioreactor Operations Model
DEFF Research Database (Denmark)
Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.
2012-01-01
The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...
A Feedback Optimal Control Algorithm with Optimal Measurement Time Points
Directory of Open Access Journals (Sweden)
Felix Jost
2017-02-01
Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.
Operator assisted optimization of sludge dewatering
DEFF Research Database (Denmark)
Grüttner, Henrik
1991-01-01
by the operator. By graphical presentation and an advisory service these data are used to support the operator in his dewatering operations and to secure a running optimization of the sludge dewatering. Evaluations show that this system is a useful tool for data collection and presentation and that the data...
Optimal Set-Point Synthesis in HVAC Systems
DEFF Research Database (Denmark)
Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik
2007-01-01
This paper presents optimal set-point synthesis for a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger and a water-to-air heat exchanger. The objective function is composed of the electrical power for different...... components, encompassing fans, primary/secondary pump, tertiary pump, and air-to-air heat exchanger wheel; and a fraction of thermal power used by the HVAC system. The goals that have to be achieved by the HVAC system appear as constraints in the optimization problem. To solve the optimization problem......, a steady state model of the HVAC system is derived while different supplying hydronic circuits are studied for the water-to-air heat exchanger. Finally, the optimal set-points and the optimal supplying hydronic circuit are resulted....
Primal Interior-Point Method for Large Sparse Minimax Optimization
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan
2009-01-01
Roč. 45, č. 5 (2009), s. 841-864 ISSN 0023-5954 R&D Projects: GA AV ČR IAA1030405; GA ČR GP201/06/P397 Institutional research plan: CEZ:AV0Z10300504 Keywords : unconstrained optimization * large-scale optimization * minimax optimization * nonsmooth optimization * interior-point methods * modified Newton methods * variable metric methods * computational experiments Subject RIV: BA - General Mathematics Impact factor: 0.445, year: 2009 http://dml.cz/handle/10338.dmlcz/140034
Operational radiation protection: A guide to optimization
International Nuclear Information System (INIS)
1990-01-01
The purpose of this publication is to provide practical guidance on the application of the dose limitation system contained in the Basic Safety Standards for Radiation Protection to operational situations both in large nuclear installations and in much smaller facilities. It is anticipated that this Guide will be useful to both the management and radiation protection staff of operations in which there is a potential for occupational radiation exposures and to the competent authorities with responsibilities for providing a programme of regulatory control. Contents: Dose limitation system; Optimization and its practical application to operational radiation protection; Major elements of an effective operational radiation protection programme; Review of selected parts of the basic safety standards with special reference to operational radiation protection; Optimization of radiation protection; Techniques for the systematic appraisal of operational radiation protection programmes. Refs and figs
Photovoltaic System with Smart Tracking of the Optimal Working Point
Directory of Open Access Journals (Sweden)
PATARAU, T.
2010-08-01
Full Text Available A photovoltaic (PV system, based on a Maximum Power Point Tracking (MPPT controller that extracts the maximum possible output power from the solar panel is described. Output efficiency of a PV energy system can be achieved only if the system working point is brought near the maximum power point (MPP. The proposed system, making use of several MPPT control algorithms (Perturb and Observe, Incremental conductance, Fuzzy Logic, demonstrates in simulations as well as in real experiments good tracking of the optimal working point.
A superlinear interior points algorithm for engineering design optimization
Herskovits, J.; Asquier, J.
1990-01-01
We present a quasi-Newton interior points algorithm for nonlinear constrained optimization. It is based on a general approach consisting of the iterative solution in the primal and dual spaces of the equalities in Karush-Kuhn-Tucker optimality conditions. This is done in such a way to have primal and dual feasibility at each iteration, which ensures satisfaction of those optimality conditions at the limit points. This approach is very strong and efficient, since at each iteration it only requires the solution of two linear systems with the same matrix, instead of quadratic programming subproblems. It is also particularly appropriate for engineering design optimization inasmuch at each iteration a feasible design is obtained. The present algorithm uses a quasi-Newton approximation of the second derivative of the Lagrangian function in order to have superlinear asymptotic convergence. We discuss theoretical aspects of the algorithm and its computer implementation.
Flow area optimization in point to area or area to point flows
International Nuclear Information System (INIS)
Ghodoossi, Lotfollah; Egrican, Niluefer
2003-01-01
This paper deals with the constructal theory of generation of shape and structure in flow systems connecting one point to a finite size area. The flow direction may be either from the point to the area or the area to the point. The formulation of the problem remains the same if the flow direction is reversed. Two models are used in optimization of the point to area or area to point flow problem: cost minimization and revenue maximization. The cost minimization model enables one to predict the shape of the optimized flow areas, but the geometric sizes of the flow areas are not predictable. That is, as an example, if the area of flow is a rectangle with a fixed area size, optimization of the point to area or area to point flow problem by using the cost minimization model will only predict the height/length ratio of the rectangle not the height and length itself. By using the revenue maximization model in optimization of the flow problems, all optimized geometric aspects of the interested flow areas will be derived as well. The aim of this paper is to optimize the point to area or area to point flow problems in various elemental flow area shapes and various structures of the flow system (various combinations of elemental flow areas) by using the revenue maximization model. The elemental flow area shapes used in this paper are either rectangular or triangular. The forms of the flow area structure, made up of an assembly of optimized elemental flow areas to obtain bigger flow areas, are rectangle-in-rectangle, rectangle-in-triangle, triangle-in-triangle and triangle-in-rectangle. The global maximum revenue, revenue collected per unit flow area and the shape and sizes of each flow area structure have been derived in optimized conditions. The results for each flow area structure have been compared with the results of the other structures to determine the structure that provides better performance. The conclusion is that the rectangle-in-triangle flow area structure
Primal-Dual Interior Point Multigrid Method for Topology Optimization
Czech Academy of Sciences Publication Activity Database
Kočvara, Michal; Mohammed, S.
2016-01-01
Roč. 38, č. 5 (2016), B685-B709 ISSN 1064-8275 Grant - others:European Commission - EC(XE) 313781 Institutional support: RVO:67985556 Keywords : topology optimization * multigrid method s * interior point method Subject RIV: BA - General Mathematics Impact factor: 2.195, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0462418.pdf
Optimization of ejector design and operation
Directory of Open Access Journals (Sweden)
Kuzmenko Konstantin
2016-01-01
Full Text Available The investigation aims at optimization of gas ejector operation. The goal consists in the improvement of the inflator design so that to enable 50 liters of gas inflation within ~30 milliseconds. For that, an experimental facility was developed and fabricated together with the measurement system to study pressure patterns in the inflator path.
Optimization of the bank's operating portfolio
Borodachev, S. M.; Medvedev, M. A.
2016-06-01
The theory of efficient portfolios developed by Markowitz is used to optimize the structure of the types of financial operations of a bank (bank portfolio) in order to increase the profit and reduce the risk. The focus of this paper is to check the stability of the model to errors in the original data.
Operation optimization of distributed generation using artificial intelligent techniques
Directory of Open Access Journals (Sweden)
Mahmoud H. Elkazaz
2016-06-01
Full Text Available Future smart grids will require an observable, controllable and flexible network architecture for reliable and efficient energy delivery. The use of artificial intelligence and advanced communication technologies is essential in building a fully automated system. This paper introduces a new technique for online optimal operation of distributed generation (DG resources, i.e. a hybrid fuel cell (FC and photovoltaic (PV system for residential applications. The proposed technique aims to minimize the total daily operating cost of a group of residential homes by managing the operation of embedded DG units remotely from a control centre. The target is formed as an objective function that is solved using genetic algorithm (GA optimization technique. The optimal settings of the DG units obtained from the optimization process are sent to each DG unit through a fully automated system. The results show that the proposed technique succeeded in defining the optimal operating points of the DGs that affect directly the total operating cost of the entire system.
International Nuclear Information System (INIS)
Holmberg, J.
1997-04-01
The thesis models risk management as an optimal control problem for a stochastic process. The approach classes the decisions made by management into three categories according to the control methods of a point process: (1) planned process lifetime, (2) modification of the design, and (3) operational decisions. The approach is used for optimization of plant shutdown criteria and surveillance test strategies of a hypothetical nuclear power plant
Energy Technology Data Exchange (ETDEWEB)
Holmberg, J [VTT Automation, Espoo (Finland)
1997-04-01
The thesis models risk management as an optimal control problem for a stochastic process. The approach classes the decisions made by management into three categories according to the control methods of a point process: (1) planned process lifetime, (2) modification of the design, and (3) operational decisions. The approach is used for optimization of plant shutdown criteria and surveillance test strategies of a hypothetical nuclear power plant. 62 refs. The thesis includes also five previous publications by author.
Directory of Open Access Journals (Sweden)
Thi Rein Myo
2008-11-01
Full Text Available Optimal point-to-point trajectory planning for planar redundant manipulator is considered in this study. The main objective is to minimize the sum of the position error of the end-effector at each intermediate point along the trajectory so that the end-effector can track the prescribed trajectory accurately. An algorithm combining Genetic Algorithm and Pattern Search as a Generalized Pattern Search GPS is introduced to design the optimal trajectory. To verify the proposed algorithm, simulations for a 3-D-O-F planar manipulator with different end-effector trajectories have been carried out. A comparison between the Genetic Algorithm and the Generalized Pattern Search shows that The GPS gives excellent tracking performance.
Optimal configuration of spatial points in the reactor cell
International Nuclear Information System (INIS)
Bosevski, T.
1968-01-01
Optimal configuration of spatial points was chosen in respect to the total number needed for integration of reactions in the reactor cell. Previously developed code VESTERN was used for numerical verification of the method on a standard reactor cell. The code applies the collision probability method for calculating the neutron flux distribution. It is shown that the total number of spatial points is twice smaller than the respective number of spatial zones needed for determination of number of reactions in the cell, with the preset precision. This result shows the direction for further condensing of the procedure for calculating the space-energy distribution of the neutron flux in a reactors cell [sr
Rule Optimization monthly reservoir operation Salvajina
International Nuclear Information System (INIS)
Sandoval Garcia, Maria Clemencia; Santacruz Salazar, Santiago; Ramirez Callejas, Carlos A
2007-01-01
In the present study a model was designed for the optimization of the rule for monthly operation of the Salvajina dam (Colombia) based in the technology) of dynamic programming. The model maximizes the benefits for electric power generation, ensuring at the same time flood regulation in winter and pollution relief during the summer. For the optimization of the rule of operation, it was necessary to define the levels and volumes of reserve and holding required for the control of flood zones in the Cauca river and to provide an effluent minimal flow and assure a daily flow at the Juanchito station (located 141 km downstream from the dam) of the Cauca river, 90 % of the time during the most critical summer periods.
Optimal Design and Operation of Permanent Irrigation Systems
Oron, Gideon; Walker, Wynn R.
1981-01-01
Solid-set pressurized irrigation system design and operation are studied with optimization techniques to determine the minimum cost distribution system. The principle of the analysis is to divide the irrigation system into subunits in such a manner that the trade-offs among energy, piping, and equipment costs are selected at the minimum cost point. The optimization procedure involves a nonlinear, mixed integer approach capable of achieving a variety of optimal solutions leading to significant conclusions with regard to the design and operation of the system. Factors investigated include field geometry, the effect of the pressure head, consumptive use rates, a smaller flow rate in the pipe system, and outlet (sprinkler or emitter) discharge.
Blue-noise remeshing with farthest point optimization
Yan, Dongming; Guo, Jianwei; Jia, Xiaohong; Zhang, Xiaopeng; Wonka, Peter
2014-01-01
In this paper, we present a novel method for surface sampling and remeshing with good blue-noise properties. Our approach is based on the farthest point optimization (FPO), a relaxation technique that generates high quality blue-noise point sets in 2D. We propose two important generalizations of the original FPO framework: adaptive sampling and sampling on surfaces. A simple and efficient algorithm for accelerating the FPO framework is also proposed. Experimental results show that the generalized FPO generates point sets with excellent blue-noise properties for adaptive and surface sampling. Furthermore, we demonstrate that our remeshing quality is superior to the current state-of-the art approaches. © 2014 The Eurographics Association and John Wiley & Sons Ltd.
Blue-noise remeshing with farthest point optimization
Yan, Dongming
2014-08-01
In this paper, we present a novel method for surface sampling and remeshing with good blue-noise properties. Our approach is based on the farthest point optimization (FPO), a relaxation technique that generates high quality blue-noise point sets in 2D. We propose two important generalizations of the original FPO framework: adaptive sampling and sampling on surfaces. A simple and efficient algorithm for accelerating the FPO framework is also proposed. Experimental results show that the generalized FPO generates point sets with excellent blue-noise properties for adaptive and surface sampling. Furthermore, we demonstrate that our remeshing quality is superior to the current state-of-the art approaches. © 2014 The Eurographics Association and John Wiley & Sons Ltd.
On Motivating Operations at the Point of Online Purchase Setting
Fagerstrom, Asle; Arntzen, Erik
2013-01-01
Consumer behavior analysis can be applied over a wide range of economic topics in which the main focus is the contingencies that influence the behavior of the economic agent. This paper provides an overview on the work that has been done on the impact from motivating operations at the point of online purchase situation. Motivating operations, a…
Directory of Open Access Journals (Sweden)
Elahe Fallah Mehdipour
2012-12-01
Full Text Available Optimal operation of multipurpose reservoirs is one of the complex and sometimes nonlinear problems in the field of multi-objective optimization. Evolutionary algorithms are optimization tools that search decision space using simulation of natural biological evolution and present a set of points as the optimum solutions of problem. In this research, application of multi-objective particle swarm optimization (MOPSO in optimal operation of Bazoft reservoir with different objectives, including generating hydropower energy, supplying downstream demands (drinking, industry and agriculture, recreation and flood control have been considered. In this regard, solution sets of the MOPSO algorithm in bi-combination of objectives and compromise programming (CP using different weighting and power coefficients have been first compared that the MOPSO algorithm in all combinations of objectives is more capable than the CP to find solution with appropriate distribution and these solutions have dominated the CP solutions. Then, ending points of solution set from the MOPSO algorithm and nonlinear programming (NLP results have been compared. Results showed that the MOPSO algorithm with 0.3 percent difference from the NLP results has more capability to present optimum solutions in the ending points of solution set.
Conformal four point functions and the operator product expansion
International Nuclear Information System (INIS)
Dolan, F.A.; Osborn, H.
2001-01-01
Various aspects of the four point function for scalar fields in conformally invariant theories are analysed. This depends on an arbitrary function of two conformal invariants u,v. A recurrence relation for the function corresponding to the contribution of an arbitrary spin field in the operator product expansion to the four point function is derived. This is solved explicitly in two and four dimensions in terms of ordinary hypergeometric functions of variables z,x which are simply related to u,v. The operator product expansion analysis is applied to the explicit expressions for the four point function found for free scalar, fermion and vector field theories in four dimensions. The results for four point functions obtained by using the AdS/CFT correspondence are also analysed in terms of functions related to those appearing in the operator product discussion
Schroedinger operators with point interactions and short range expansions
International Nuclear Information System (INIS)
Albeverio, S.; Hoeegh-Krohn, R.; Oslo Univ.
1984-01-01
We give a survey of recent results concerning Schroedinger operators with point interactions in R 3 . In the case where the point interactions are located at a discrete set of points we discuss results about the resolvent, the spectrum, the resonances and the scattering quantities. We also discuss the approximation of point interactions by short range local potentials (short range or low energy expansions) and the one electron model of a 3-dimensional crystal. Moreover we discuss Schroedinger operators with Coulomb plus point interactions, with applications to the determination of scattering lengths and of level shifts in mesic atoms. Further applications to the multiple well problem, to multiparticle systems, to crystals with random impurities, to polymers and quantum fields are also briefly discussed. (orig.)
Sequential Change-Point Detection via Online Convex Optimization
Directory of Open Access Journals (Sweden)
Yang Cao
2018-02-01
Full Text Available Sequential change-point detection when the distribution parameters are unknown is a fundamental problem in statistics and machine learning. When the post-change parameters are unknown, we consider a set of detection procedures based on sequential likelihood ratios with non-anticipating estimators constructed using online convex optimization algorithms such as online mirror descent, which provides a more versatile approach to tackling complex situations where recursive maximum likelihood estimators cannot be found. When the underlying distributions belong to a exponential family and the estimators satisfy the logarithm regret property, we show that this approach is nearly second-order asymptotically optimal. This means that the upper bound for the false alarm rate of the algorithm (measured by the average-run-length meets the lower bound asymptotically up to a log-log factor when the threshold tends to infinity. Our proof is achieved by making a connection between sequential change-point and online convex optimization and leveraging the logarithmic regret bound property of online mirror descent algorithm. Numerical and real data examples validate our theory.
Benchmarking of radiological departments. Starting point for successful process optimization
International Nuclear Information System (INIS)
Busch, Hans-Peter
2010-01-01
Continuous optimization of the process of organization and medical treatment is part of the successful management of radiological departments. The focus of this optimization can be cost units such as CT and MRI or the radiological parts of total patient treatment. Key performance indicators for process optimization are cost- effectiveness, service quality and quality of medical treatment. The potential for improvements can be seen by comparison (benchmark) with other hospitals and radiological departments. Clear definitions of key data and criteria are absolutely necessary for comparability. There is currently little information in the literature regarding the methodology and application of benchmarks especially from the perspective of radiological departments and case-based lump sums, even though benchmarking has frequently been applied to radiological departments by hospital management. The aim of this article is to describe and discuss systematic benchmarking as an effective starting point for successful process optimization. This includes the description of the methodology, recommendation of key parameters and discussion of the potential for cost-effectiveness analysis. The main focus of this article is cost-effectiveness (efficiency and effectiveness) with respect to cost units and treatment processes. (orig.)
Optimal operation of hybrid-SITs under a SBO accident
International Nuclear Information System (INIS)
Jeon, In Seop; Heo, Sun; Kang, Hyun Gook
2016-01-01
Highlights: • Operation strategy of hybrid-SIT (H-SIT) in station blackout (SBO) is developed. • There are five main factors which have to be carefully treated in the development of the operation strategy. • Optimal value of each main factor is investigated analytically and then through thermal-hydraulic analysis using computer code. • The optimum operation strategy is suggested based on the optimal value of the main factors. - Abstract: A hybrid safety injection tank (H-SIT) is designed to enhance the capability of pressurized water reactors against high-pressure accidents which might be caused by the combined accidents accompanied by station blackout (SBO), and is suggested as a useful alternative to electricity-driven motor injection pumps. The main purpose of the H-SIT is to provide coolant to the core so that core safety can be maintained for a longer period. As H-SITs have a limited inventory, their efficient use in cooling down the core is paramount to maximize the available time for long-term cooling component restoration. Therefore, an optimum operation strategy must be developed to support the operators for the most efficient H-SIT use. In this study, the main factors which have to be carefully treated in the development of an operation strategy are first identified. Then the optimal value of each main factor is investigated analytically, a process useful to get the basis of the global optimum points. Based on these analytical optimum points, a thermal-hydraulic analysis using MARS code is performed to get more accurate values and to verify the results of the analytical study. The available time for long-term cooling component restoration is also estimated. Finally, an integrated optimum operation strategy for H-SITs in SBO is suggested.
Constructing an optimal decision tree for FAST corner point detection
Alkhalid, Abdulaziz; Chikalov, Igor; Moshkov, Mikhail
2011-01-01
In this paper, we consider a problem that is originated in computer vision: determining an optimal testing strategy for the corner point detection problem that is a part of FAST algorithm [11,12]. The problem can be formulated as building a decision tree with the minimum average depth for a decision table with all discrete attributes. We experimentally compare performance of an exact algorithm based on dynamic programming and several greedy algorithms that differ in the attribute selection criterion. © 2011 Springer-Verlag.
Operational Optimization in Port Container Terminals
DEFF Research Database (Denmark)
As a result of the significant increase in worldwide containerized transportation the development of efficient handling systems in marine terminals has become very important for port competitiveness. In order to optimize the productivity the total handling time for containers in the terminal must...... be minimized. An overview of the different operational problems in port container terminals is presented and an aggregated model and solution approach is shown. Next, there will be focused on the yard storage problem and a mathematical formulation and solution proposals will be presented....
Data reconciliation and optimal operation of a Catalytic naphtha reformer
Directory of Open Access Journals (Sweden)
Tore Lid
2008-10-01
Full Text Available The naphtha reforming process converts low-octane gasoline blending components to high-octane components for use in high-performance gasoline fuels. The reformer also has an important function as the producer of hydrogen to the refinery hydrotreaters. A process model based on a unit model structure, is used for estimation of the process condition using data reconciliation. Measurements are classified as redundant or non redundant and the model variables are classified as observable, barely observable or unobservable. The computed uncertainty of the measured and unmeasured variables shows that even if a variable is observable it may have a very large uncertainty and may thereby be practically unobservable. The process condition at 21 data points, sampled from two years of operation, was reconciled and used to optimize the process operation. There are large seasonal variations in the reformer product price and two operational cases are studied. In case 1, the product price is high and throughput is maximized with respect to process and product quality constraints. In case 2, the product price is low and the throughput is minimized with respect to a low constraint on the hydrogen production. Based on the characteristics of the optimal operation, a "self optimizing" control structure is suggested for each of the two operational cases.
Measuring the exhaust gas dew point of continuously operated combustion plants
Energy Technology Data Exchange (ETDEWEB)
Fehler, D.
1985-07-16
Low waste-gas temperatures represent one means of minimizing the energy consumption of combustion facilities. However, condensation should be prevented to occur in the waste gas since this could result in a destruction of parts. Measuring the waste-gas dew point allows to control combustion parameters in such a way as to be able to operate at low temperatures without danger of condensation. Dew point sensors will provide an important signal for optimizing combustion facilities.
Eigenvectors and fixed point of non-linear operators
Directory of Open Access Journals (Sweden)
Giulio Trombetta
2007-12-01
Full Text Available Let X be a real inﬁnite-dimensional Banach space and ψ a measure of noncompactness on X. Let Ω be a bounded open subset of X and A : Ω → X a ψ-condensing operator, which has no ﬁxed points on ∂Ω.Then the ﬁxed point index, ind(A,Ω, of A on Ω is deﬁned (see, for example, ([1] and [18]. In particular, if A is a compact operator ind(A,Ω agrees with the classical Leray-Schauder degree of I −A on Ω relative to the point 0, deg(I −A,Ω,0. The main aim of this note is to investigate boundary conditions, under which the ﬁxed point index of strict- ψ-contractive or ψ-condensing operators A : Ω → X is equal to zero. Correspondingly, results on eigenvectors and nonzero ﬁxed points of k-ψ-contractive and ψ-condensing operators are obtained. In particular we generalize the Birkhoff-Kellog theorem [4] and Guo’s domain compression and expansion theorem [17]. The note is based mainly on the results contained in [7] and [8].
Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT
Energy Technology Data Exchange (ETDEWEB)
Aleman, Dionne M [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada); Glaser, Daniel [Division of Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology, Stockholm (Sweden); Romeijn, H Edwin [Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109-2117 (United States); Dempsey, James F, E-mail: aleman@mie.utoronto.c, E-mail: romeijn@umich.ed, E-mail: jfdempsey@viewray.co [ViewRay, Inc. 2 Thermo Fisher Way, Village of Oakwood, OH 44146 (United States)
2010-09-21
One of the most widely studied problems of the intensity-modulated radiation therapy (IMRT) treatment planning problem is the fluence map optimization (FMO) problem, the problem of determining the amount of radiation intensity, or fluence, of each beamlet in each beam. For a given set of beams, the fluences of the beamlets can drastically affect the quality of the treatment plan, and thus it is critical to obtain good fluence maps for radiation delivery. Although several approaches have been shown to yield good solutions to the FMO problem, these solutions are not guaranteed to be optimal. This shortcoming can be attributed to either optimization model complexity or properties of the algorithms used to solve the optimization model. We present a convex FMO formulation and an interior point algorithm that yields an optimal treatment plan in seconds, making it a viable option for clinical applications.
Interior point algorithms: guaranteed optimality for fluence map optimization in IMRT
International Nuclear Information System (INIS)
Aleman, Dionne M; Glaser, Daniel; Romeijn, H Edwin; Dempsey, James F
2010-01-01
One of the most widely studied problems of the intensity-modulated radiation therapy (IMRT) treatment planning problem is the fluence map optimization (FMO) problem, the problem of determining the amount of radiation intensity, or fluence, of each beamlet in each beam. For a given set of beams, the fluences of the beamlets can drastically affect the quality of the treatment plan, and thus it is critical to obtain good fluence maps for radiation delivery. Although several approaches have been shown to yield good solutions to the FMO problem, these solutions are not guaranteed to be optimal. This shortcoming can be attributed to either optimization model complexity or properties of the algorithms used to solve the optimization model. We present a convex FMO formulation and an interior point algorithm that yields an optimal treatment plan in seconds, making it a viable option for clinical applications.
Improving Small Signal Stability through Operating Point Adjustment
Energy Technology Data Exchange (ETDEWEB)
Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.; Chen, Yousu; Trudnowski, Daniel J.; Mittelstadt, William; Hauer, John F.; Dagle, Jeffery E.
2010-09-30
ModeMeter techniques for real-time small signal stability monitoring continue to mature, and more and more phasor measurements are available in power systems. It has come to the stage to bring modal information into real-time power system operation. This paper proposes to establish a procedure for Modal Analysis for Grid Operations (MANGO). Complementary to PSS’s and other traditional modulation-based control, MANGO aims to provide suggestions such as increasing generation or decreasing load for operators to mitigate low-frequency oscillations. Different from modulation-based control, the MANGO procedure proactively maintains adequate damping for all time, instead of reacting to disturbances when they occur. Effect of operating points on small signal stability is presented in this paper. Implementation with existing operating procedures is discussed. Several approaches for modal sensitivity estimation are investigated to associate modal damping and operating parameters. The effectiveness of the MANGO procedure is confirmed through simulation studies of several test systems.
Possible THz gain in superlattices at a stable operation point
DEFF Research Database (Denmark)
Wacker, Andreas; Allen, S. J.; Scott, J. S.
1997-01-01
We demonstrate that semiconductor superlattices may provide gain at THz frequencies at an operation point which is stable against fluctuations at lower frequency. While an explicit experimental demonstration for the sample considered could not be achieved, the underlying principle of quantum resp...... response is quite general and may prove successful for differently designed superlattices....
Production optimization of remotely operated gas wells
Energy Technology Data Exchange (ETDEWEB)
Juell, Aleksander
2012-07-01
From the introduction: The Remote Operations in Oklahoma Intended for Education (ROOKIE) project is a remote field laboratory constructed as a part of this research project. ROOKIE was initiated to provide data in research on production optimization of low productivity gas wells. In addition to this, ROOKIE is used as a teaching tool. Much of the remote operations technology used in the ROOKIE project has been used by the industry for several decades. The first use of remote data acquisition in Oklahoma was in 1989, as described by Luppens [7]. Even though this, for the most part, is old technology, the ROOKIE project is the first remote operations project set up with research and teaching as the main focus. This chapter will discuss the process of establishing the remote field laboratory and the data storage facilities. Results from the project will also be discussed. All testing, instrumentation installation, and modifications to the wells discussed in this chapter was performed by the author. The communication system between the well and NTNU, and the storage database was installed and configured by the author.(Author)
Point-splitting regularization of composite operators and anomalies
International Nuclear Information System (INIS)
Novotny, J.; Schnabl, M.
2000-01-01
The point-splitting regularization technique for composite operators is discussed in connection with anomaly calculation. We present a pedagogical and self-contained review of the topic with an emphasis on the technical details. We also develop simple algebraic tools to handle the path ordered exponential insertions used within the covariant and non-covariant version of the point-splitting method. The method is then applied to the calculation of the chiral, vector, trace, translation and Lorentz anomalies within diverse versions of the point-splitting regularization and a connection between the results is described. As an alternative to the standard approach we use the idea of deformed point-split transformation and corresponding Ward-Takahashi identities rather than an application of the equation of motion, which seems to reduce the complexity of the calculations. (orig.)
Computing three-point functions for short operators
International Nuclear Information System (INIS)
Bargheer, Till; Institute for Advanced Study, Princeton, NJ; Minahan, Joseph A.; Pereira, Raul
2013-11-01
We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.
Computing three-point functions for short operators
Energy Technology Data Exchange (ETDEWEB)
Bargheer, Till [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Minahan, Joseph A.; Pereira, Raul [Uppsala Univ. (Sweden). Dept. of Physics and Astronomy
2013-11-15
We compute the three-point structure constants for short primary operators of N=4 super Yang.Mills theory to leading order in 1/√(λ) by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.
Optimization of the NIF ignition point design hohlraum
International Nuclear Information System (INIS)
Callahan, D A; Hinkel, D E; Berger, R L; Divol, L; Dixit, S N; Edwards, M J; Haan, S W; Jones, O S; Lindl, J D; Meezan, N B; Michel, P A; Pollaine, S M; Suter, L J; Town, R P J; Bradley, P A
2008-01-01
In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt
Optimization of the NIF ignition point design hohlraum
Callahan, D. A.; Hinkel, D. E.; Berger, R. L.; Divol, L.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Jones, O. S.; Lindl, J. D.; Meezan, N. B.; Michel, P. A.; Pollaine, S. M.; Suter, L. J.; Town, R. P. J.; Bradley, P. A.
2008-05-01
In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt.
A novel hybrid particle swarm optimization for economic dispatch with valve-point loading effects
Energy Technology Data Exchange (ETDEWEB)
Niknam, Taher, E-mail: niknam@sutech.ac.i [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, P.O. 71555-313 (Iran, Islamic Republic of); Mojarrad, Hasan Doagou, E-mail: hasan_doagou@yahoo.co [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, P.O. 71555-313 (Iran, Islamic Republic of); Meymand, Hamed Zeinoddini, E-mail: h.zeinaddini@gmail.co [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, P.O. 71555-313 (Iran, Islamic Republic of)
2011-04-15
Economic dispatch (ED) is one of the important problems in the operation and management of the electric power systems which is formulated as an optimization problem. Modern heuristics stochastic optimization techniques appear to be efficient in solving ED problem without any restriction because of their ability to seek the global optimal solution. One of modern heuristic algorithms is particle swarm optimization (PSO). In PSO algorithm, particles change place to get close to the best position and find the global minimum point. Also, differential evolution (DE) is a robust statistical method for solving non-linear and non-convex optimization problem. The fast convergence of DE degrades its performance and reduces its search capability that leads to a higher probability towards obtaining a local optimum. In order to overcome this drawback a hybrid method is presented to solve the ED problem with valve-point loading effect by integrating the variable DE with the fuzzy adaptive PSO called FAPSO-VDE. DE is the main optimizer and the PSO is used to maintain the population diversity and prevent leading to misleading local optima for every improvement in the solution of the DE run. The parameters of proposed hybrid algorithm such as inertia weight, mutation and crossover factors are adaptively adjusted. The feasibility and effectiveness of the proposed hybrid algorithm is demonstrated for two case studies and results are compared with those of other methods. It is shown that FAPSO-VDE has high quality solution, superior convergence characteristics and shorter computation time.
Optimization of advanced plants operation: The Escrime project
International Nuclear Information System (INIS)
Fiche, C.; Papin, B.
1994-01-01
The Escrime program aims at defining the optimal share of tasks between humans and computers under normal or accidental plant operation. Basic principles we keep in mind are the following: human operators are likely to be necessary in the operation of future plants because we cannot demonstrate that plant design is error free, so unexpected situation can still happen; automation must not release the operators from their decisional role but only help them avoiding situations of cognitive overload which can lead to increase the risk of errors; the optimum share of tasks between human and automatic systems must be based on a critical analysis of the tasks and of the way they are handled. The last point appeared to be of major importance. The corresponding analysis of the French PWR's operating procedures enabled us to define a unified scheme for plant operation under the form of a hierarchy of goals and means. Beyond this analysis, development of a specific testing facility is under way to check the relevance of the proposed plant operation organization and to test the human-machine cooperation in different situations for various levels of automation. 7 refs, 4 figs
A common fixed point for operators in probabilistic normed spaces
International Nuclear Information System (INIS)
Ghaemi, M.B.; Lafuerza-Guillen, Bernardo; Razani, A.
2009-01-01
Probabilistic Metric spaces was introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of probabilistic normed space based on the definition of Menger [Alsina C, Schweizer B, Sklar A. On the definition of a probabilistic normed spaces. Aequationes Math 1993;46:91-8]. Here, we consider the equicontinuity of a class of linear operators in probabilistic normed spaces and finally, a common fixed point theorem is proved. Application to quantum Mechanic is considered.
International Nuclear Information System (INIS)
Alavi, Seyed Arash; Ahmadian, Ali; Aliakbar-Golkar, Masoud
2015-01-01
Highlights: • Energy management is necessary in the active distribution network to reduce operation costs. • Uncertainty modeling is essential in energy management studies in active distribution networks. • Point estimate method is a suitable method for uncertainty modeling due to its lower computation time and acceptable accuracy. • In the absence of Probability Distribution Function (PDF) robust optimization has a good ability for uncertainty modeling. - Abstract: Uncertainty can be defined as the probability of difference between the forecasted value and the real value. As this probability is small, the operation cost of the power system will be less. This purpose necessitates modeling of system random variables (such as the output power of renewable resources and the load demand) with appropriate and practicable methods. In this paper, an adequate procedure is proposed in order to do an optimal energy management on a typical micro-grid with regard to the relevant uncertainties. The point estimate method is applied for modeling the wind power and solar power uncertainties, and robust optimization technique is utilized to model load demand uncertainty. Finally, a comparison is done between deterministic and probabilistic management in different scenarios and their results are analyzed and evaluated
Matrix product density operators: Renormalization fixed points and boundary theories
Energy Technology Data Exchange (ETDEWEB)
Cirac, J.I. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Pérez-García, D., E-mail: dperezga@ucm.es [Departamento de Análisis Matemático, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid (Spain); ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid (Spain); Schuch, N. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Verstraete, F. [Department of Physics and Astronomy, Ghent University (Belgium); Vienna Center for Quantum Technology, University of Vienna (Austria)
2017-03-15
We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well as to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).
Attitude Control Optimization for ROCSAT-2 Operation
Chern, Jeng-Shing; Wu, A.-M.
The second satellite of the Republic of China is named ROCSAT-2. It is a small satellite with total mass of 750 kg for remote sensing and scientific purposes. The Remote Sensing Instrument (RSI) has resolutions of 2 m for panchromatic and 8 m for multi-spectral bands, respectively. It is mainly designed for disaster monitoring and rescue, environment and pollution monitoring, forest and agriculture planning, city and country planning, etc. for Taiwan and its surrounding islands and oceans. In order to monitor Taiwan area constantly for a long time, the orbit is designed to be sun-synchronous with 14 revolutions per day. As to the scientific payload, it is an Imager of Sprite, the Upper Atmospheric Lightening (ISUAL). Since it is a small satellite, the RSI, ISUAL, and solar panel are all body-fixed. Consequently, the satellite has to maneuver as a whole body so that either RSI or ISUAL or solar panel can be pointing to the desired direction. When ROCSAT-2 rises from the horizon and catches the sunlight, it has to maneuver to face the sun for the battery to be charged. As soon as it flies to Taiwan area, several maneuvers must be made to cover the whole area for remote sensing mission. Since the swath of ROCSAT-2 is 24 km, it needs four stripes to form the mosaic of Taiwan area. Usually, four maneuvers are required to fulfill the mission in one flight path. The sequence is very important from the point of view of saving energy. However, in some cases, we may need to sacrifice energy in order to obtain good remote sensing data at a particularly specified ground region. After that mission, its solar panel has to face the sun again. Then when ROCSAT-2 sets the horizon, it has to maneuver to point the ISUAL in the specified direction for sprite imaging mission. It is the direction where scientists predict the sprite is most probable to exist. Further maneuver may be required for the down loading of onboard data. When ROCSAT-2 rises from the horizon again, it completes
Multi-point optimization of recirculation flow type casing treatment in centrifugal compressors
Tun, Min Thaw; Sakaguchi, Daisaku
2016-06-01
High-pressure ratio and wide operating range are highly required for a turbocharger in diesel engines. A recirculation flow type casing treatment is effective for flow range enhancement of centrifugal compressors. Two ring grooves on a suction pipe and a shroud casing wall are connected by means of an annular passage and stable recirculation flow is formed at small flow rates from the downstream groove toward the upstream groove through the annular bypass. The shape of baseline recirculation flow type casing is modified and optimized by using a multi-point optimization code with a metamodel assisted evolutionary algorithm embedding a commercial CFD code CFX from ANSYS. The numerical optimization results give the optimized design of casing with improving adiabatic efficiency in wide operating flow rate range. Sensitivity analysis of design parameters as a function of efficiency has been performed. It is found that the optimized casing design provides optimized recirculation flow rate, in which an increment of entropy rise is minimized at grooves and passages of the rotating impeller.
Induction Motors Most Efficient Operation Points in Pumped Storage Systems
DEFF Research Database (Denmark)
Busca-Forcos, Andreea; Marinescu, Corneliu; Busca, Cristian
2015-01-01
A clear focus is nowadays on developing and improving the energy storage technologies. Pumped storage is a well-established one, and is capable of enhancing the integration of renewable energy sources. Pumped storage has an efficiency between 70-80%, and each of its elements affects it. Increased...... efficiency is desired especially when operating with renewable energy systems, which present low energy conversion factor (up to 50% - performance coefficient for wind turbines, and efficiency up to 40% for photovoltaic systems). In this paper the most efficient operation points of the induction motors...... in pumped storage systems are established. The variable speed operation of the pumped storage systems and motor loading conditions for pump applications have been the key factors for achieving the purpose of the paper....
Wang, Tiancai; He, Xing; Huang, Tingwen; Li, Chuandong; Zhang, Wei
2017-09-01
The economic emission dispatch (EED) problem aims to control generation cost and reduce the impact of waste gas on the environment. It has multiple constraints and nonconvex objectives. To solve it, the collective neurodynamic optimization (CNO) method, which combines heuristic approach and projection neural network (PNN), is attempted to optimize scheduling of an electrical microgrid with ten thermal generators and minimize the plus of generation and emission cost. As the objective function has non-derivative points considering valve point effect (VPE), differential inclusion approach is employed in the PNN model introduced to deal with them. Under certain conditions, the local optimality and convergence of the dynamic model for the optimization problem is analyzed. The capability of the algorithm is verified in a complicated situation, where transmission loss and prohibited operating zones are considered. In addition, the dynamic variation of load power at demand side is considered and the optimal scheduling of generators within 24 h is described. Copyright © 2017 Elsevier Ltd. All rights reserved.
Benefits analysis of Soft Open Points for electrical distribution network operation
International Nuclear Information System (INIS)
Cao, Wanyu; Wu, Jianzhong; Jenkins, Nick; Wang, Chengshan; Green, Timothy
2016-01-01
Highlights: • An analysis framework was developed to quantify the operational benefits. • The framework considers both network reconfiguration and SOP control. • Benefits were analyzed through both quantitative and sensitivity analysis. - Abstract: Soft Open Points (SOPs) are power electronic devices installed in place of normally-open points in electrical power distribution networks. They are able to provide active power flow control, reactive power compensation and voltage regulation under normal network operating conditions, as well as fast fault isolation and supply restoration under abnormal conditions. A steady state analysis framework was developed to quantify the operational benefits of a distribution network with SOPs under normal network operating conditions. A generic power injection model was developed and used to determine the optimal SOP operation using an improved Powell’s Direct Set method. Physical limits and power losses of the SOP device (based on back to back voltage-source converters) were considered in the model. Distribution network reconfiguration algorithms, with and without SOPs, were developed and used to identify the benefits of using SOPs. Test results on a 33-bus distribution network compared the benefits of using SOPs, traditional network reconfiguration and the combination of both. The results showed that using only one SOP achieved a similar improvement in network operation compared to the case of using network reconfiguration with all branches equipped with remotely controlled switches. A combination of SOP control and network reconfiguration provided the optimal network operation.
The Optimal Operation Criteria for a Gas Turbine Cogeneration System
Directory of Open Access Journals (Sweden)
Atsushi Akisawa
2009-04-01
Full Text Available The study demonstrated the optimal operation criteria of a gas turbine cogeneration system based on the analytical solution of a linear programming model. The optimal operation criteria gave the combination of equipment to supply electricity and steam with the minimum energy cost using the energy prices and the performance of equipment. By the comparison with a detailed optimization result of an existing cogeneration plant, it was shown that the optimal operation criteria successfully provided a direction for the system operation under the condition where the electric power output of the gas turbine was less than the capacity
Energy Technology Data Exchange (ETDEWEB)
Pei, Ji; Wang, Wen Jie; Yuan, Shouqi [National Research Center of Pumps, Jiangsu University, Zhenjiang (China)
2016-11-15
A wide operating band is important for a pump to safely perform at maximum efficiency while saving energy. To widen the operating range, a multi-point optimization process based on numerical simulations in order to improve impeller performance of a centrifugal pump used in nuclear plant applications is proposed by this research. The Reynolds average Navier Stokes equations are utilized to perform the calculations. The meridional shape of the impeller was optimized based on the following four parameters; shroud arc radius, hub arc radius, shroud angle, and hub angle as the design variables. Efficiencies calculated under 0.6Qd, 1.0Qd and 1.62Qd were selected as the three optimized objectives. The Design of experiment method was applied to generate various impellers while 35 impellers were generated by the Latin hypercube sampling method. A Response surface function based on a second order function was applied to construct a mathematical relationship between the objectives and design variables. A multi-objective genetic algorithm was utilized to solve the response surface function to obtain the best optimized objectives as well as the best combination of design parameters. The results indicated that the pump performance predicted by numerical simulation was in agreement with the experimental performance. The optimized efficiencies based on the three operating conditions were increased by 3.9 %, 6.1 % and 2.6 %, respectively. In addition, the velocity distribution, pressure distribution, streamline and turbulence kinetic energy distribution of the optimized and reference impeller were compared and analyzed to illustrate the performance improvement.
International Nuclear Information System (INIS)
Pei, Ji; Wang, Wen Jie; Yuan, Shouqi
2016-01-01
A wide operating band is important for a pump to safely perform at maximum efficiency while saving energy. To widen the operating range, a multi-point optimization process based on numerical simulations in order to improve impeller performance of a centrifugal pump used in nuclear plant applications is proposed by this research. The Reynolds average Navier Stokes equations are utilized to perform the calculations. The meridional shape of the impeller was optimized based on the following four parameters; shroud arc radius, hub arc radius, shroud angle, and hub angle as the design variables. Efficiencies calculated under 0.6Qd, 1.0Qd and 1.62Qd were selected as the three optimized objectives. The Design of experiment method was applied to generate various impellers while 35 impellers were generated by the Latin hypercube sampling method. A Response surface function based on a second order function was applied to construct a mathematical relationship between the objectives and design variables. A multi-objective genetic algorithm was utilized to solve the response surface function to obtain the best optimized objectives as well as the best combination of design parameters. The results indicated that the pump performance predicted by numerical simulation was in agreement with the experimental performance. The optimized efficiencies based on the three operating conditions were increased by 3.9 %, 6.1 % and 2.6 %, respectively. In addition, the velocity distribution, pressure distribution, streamline and turbulence kinetic energy distribution of the optimized and reference impeller were compared and analyzed to illustrate the performance improvement
Uher, Vojtěch; Gajdoš, Petr; Radecký, Michal; Snášel, Václav
2016-01-01
The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.
Li, Jinna; Kiumarsi, Bahare; Chai, Tianyou; Lewis, Frank L; Fan, Jialu
2017-12-01
Industrial flow lines are composed of unit processes operating on a fast time scale and performance measurements known as operational indices measured at a slower time scale. This paper presents a model-free optimal solution to a class of two time-scale industrial processes using off-policy reinforcement learning (RL). First, the lower-layer unit process control loop with a fast sampling period and the upper-layer operational index dynamics at a slow time scale are modeled. Second, a general optimal operational control problem is formulated to optimally prescribe the set-points for the unit industrial process. Then, a zero-sum game off-policy RL algorithm is developed to find the optimal set-points by using data measured in real-time. Finally, a simulation experiment is employed for an industrial flotation process to show the effectiveness of the proposed method.
Modeling and optimization of laser cutting operations
Directory of Open Access Journals (Sweden)
Gadallah Mohamed Hassan
2015-01-01
Full Text Available Laser beam cutting is one important nontraditional machining process. This paper optimizes the parameters of laser beam cutting parameters of stainless steel (316L considering the effect of input parameters such as power, oxygen pressure, frequency and cutting speed. Statistical design of experiments is carried in three different levels and process responses such as average kerf taper (Ta, surface roughness (Ra and heat affected zones are measured accordingly. A response surface model is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27OA are employed to search for an optimal combination to achieve desired process yield. Response Surface Models (RSMs are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective optimization problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA and optimized using Matlab developed environment. Optimum solutions are compared with Taguchi Methodology results. As such, practicing engineers have means to model, analyze and optimize nontraditional machining processes. Validation experiments are carried to verify the developed models with success.
Brown, Jonathan M.; Petersen, Jeremy D.
2014-01-01
NASA's WIND mission has been operating in a large amplitude Lissajous orbit in the vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular stationkeeping maneuvers are required to maintain the orbit due to the instability around the collinear libration points. Historically these stationkeeping maneuvers have been performed by applying an incremental change in velocity, or (delta)v along the spacecraft-Sun vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of libration point stationkeeping maneuvers can be minimized by applying the (delta)v in the direction of the local stable manifold found using dynamical systems theory. This paper presents the analysis of this new maneuver strategy which shows that the magnitude of stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in the orbit where the maneuver is performed. The implementation of the optimized maneuver method into operations is discussed and results are presented for the first two optimized stationkeeping maneuvers executed by WIND.
Optimal processor for malfunction detection in operating nuclear reactor
International Nuclear Information System (INIS)
Ciftcioglu, O.
1990-01-01
An optimal processor for diagnosing operational transients in a nuclear reactor is described. Basic design of the processor involves real-time processing of noise signal obtained from a particular in core sensor and the optimality is based on minimum alarm failure in contrast to minimum false alarm criterion from the safe and reliable plant operation viewpoint
Operational reliability of the Point Lepreau GS standby generators
Energy Technology Data Exchange (ETDEWEB)
Loughead, D. A.; McGregor, A. T. [Safety and Compllance Group, New Brunswick Electric Power Commission, Point Lepreau Generating Station, P.O.Box 10 Lepreau, New Brunswick E0G 2H0 (Canada)
1986-02-15
Performance of the two Point Lepreau GS standby generators during the first three years of licensed station operation is reviewed. It is shown that the mandated reliability/availability requirements have been met. The nature of starting and running failures has been examined and the consequences, in terms of design and procedural changes, discussed. A brief review of standby generator outages is included to permit estimates of standby generator availability and total Class III standby power unavailability. A pair of simple equations is introduced as a means of estimating the probable economic penalty, both cumulative and incremental, associated with the running failure of one standby generator while the other is on a maintenance outage. (authors)
Operational reliability of the Point Lepreau GS standby generators
International Nuclear Information System (INIS)
Loughead, D.A.; McGregor, A.T.
1986-01-01
Performance of the two Point Lepreau GS standby generators during the first three years of licensed station operation is reviewed. It is shown that the mandated reliability/availability requirements have been met. The nature of starting and running failures has been examined and the consequences, in terms of design and procedural changes, discussed. A brief review of standby generator outages is included to permit estimates of standby generator availability and total Class III standby power unavailability. A pair of simple equations is introduced as a means of estimating the probable economic penalty, both cumulative and incremental, associated with the running failure of one standby generator while the other is on a maintenance outage. (authors)
Optimizing refiner operation with statistical modelling
Energy Technology Data Exchange (ETDEWEB)
Broderick, G [Noranda Research Centre, Pointe Claire, PQ (Canada)
1997-02-01
The impact of refining conditions on the energy efficiency of the process and on the handsheet quality of a chemi-mechanical pulp was studied as part of a series of pilot scale refining trials. Statistical models of refiner performance were constructed from these results and non-linear optimization of process conditions were conducted. Optimization results indicated that increasing the ratio of specific energy applied in the first stage led to a reduction of some 15 per cent in the total energy requirement. The strategy can also be used to obtain significant increases in pulp quality for a given energy input. 20 refs., 6 tabs.
Future xenon system operational parameter optimization
International Nuclear Information System (INIS)
Lowrey, J.D.; Eslinger, P.W.; Miley, H.S.
2016-01-01
Any atmospheric monitoring network will have practical limitations in the density of its sampling stations. The classical approach to network optimization has been to have 12 or 24-h integration of air samples at the highest station density possible to improve minimum detectable concentrations. The authors present here considerations on optimizing sampler integration time to make the best use of any network and maximize the likelihood of collecting quality samples at any given location. In particular, this work makes the case that shorter duration sample integration (i.e. <12 h) enhances critical isotopic information and improves the source location capability of a radionuclide network, or even just one station. (author)
Extended Kalman Filter Modifications Based on an Optimization View Point
Skoglund, Martin; Hendeby, Gustaf; Axehill, Daniel
2015-01-01
The extended Kalman filter (EKF) has been animportant tool for state estimation of nonlinear systems sinceits introduction. However, the EKF does not possess the same optimality properties as the Kalman filter, and may perform poorly. By viewing the EKF as an optimization problem it is possible to, in many cases, improve its performance and robustness. The paper derives three variations of the EKF by applying different optimisation algorithms to the EKF costfunction and relate these to the it...
Optimization Criteria of Power Transformer Operation
Directory of Open Access Journals (Sweden)
A. A. Gonchar
2006-01-01
Full Text Available It has been shown that minimum losses in active power of a power transformer do not correspond to its maximum efficiency. For a transformer being operated there are no so called «zones of its economical operation». In this case strictly specified value of active power losses corresponds to a particular current of the winding.
Li, Haichen; Qin, Tao; Wang, Weiping; Lei, Xiaohui; Wu, Wenhui
2018-02-01
Due to the weakness in holding diversity and reaching global optimum, the standard particle swarm optimization has not performed well in reservoir optimal operation. To solve this problem, this paper introduces downhill simplex method to work together with the standard particle swarm optimization. The application of this approach in Goupitan reservoir optimal operation proves that the improved method had better accuracy and higher reliability with small investment.
Deterministic operations research models and methods in linear optimization
Rader, David J
2013-01-01
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear
Operations Optimization of Hybrid Energy Systems under Variable Markets
Energy Technology Data Exchange (ETDEWEB)
Chen, Jun; Garcia, Humberto E.
2016-07-01
Hybrid energy systems (HES) have been proposed to be an important element to enable increasing penetration of clean energy. This paper investigates the operations flexibility of HES, and develops a methodology for operations optimization to maximize its economic value based on predicted renewable generation and market information. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value, and is illustrated by numerical results.
Directory of Open Access Journals (Sweden)
Jamema Swamidas
2009-01-01
Full Text Available Objective : A three dimensional (3D image-based dosimetric study to quantitatively compare geometric vs. dose-point optimization in combination with graphical optimization for interstitial brachytherapy of soft tissue sarcoma (STS. Materials and Methods : Fifteen consecutive STS patients, treated with intra-operative, interstitial Brachytherapy, were enrolled in this dosimetric study. Treatment plans were generated using dose points situated at the "central plane between the catheters", "between the catheters throughout the implanted volume", at "distances perpendicular to the implant axis" and "on the surface of the target volume" Geometrically optimized plans had dose points defined between the catheters, while dose-point optimized plans had dose points defined at a plane perpendicular to the implant axis and on the target surface. Each plan was graphically optimized and compared using dose volume indices. Results : Target coverage was suboptimal with coverage index (CI = 0.67 when dose points were defined at the central plane while it was superior when the dose points were defined at the target surface (CI=0.93. The coverage of graphically optimized plans (GrO was similar to non-GrO with dose points defined on surface or perpendicular to the implant axis. A similar pattern was noticed with conformity index (0.61 vs. 0.82. GrO were more conformal and less homogeneous compared to non-GrO. Sum index was superior for dose points defined on the surface of the target and relatively inferior for plans with dose points at other locations (1.35 vs. 1.27. Conclusions : Optimization with dose points defined away from the implant plane and on target results in superior target coverage with optimal values of other indices. GrO offer better target coverage for implants with non-uniform geometry and target volume.
Dew Point modelling using GEP based multi objective optimization
Shroff, Siddharth; Dabhi, Vipul
2013-01-01
Different techniques are used to model the relationship between temperatures, dew point and relative humidity. Gene expression programming is capable of modelling complex realities with great accuracy, allowing at the same time, the extraction of knowledge from the evolved models compared to other learning algorithms. We aim to use Gene Expression Programming for modelling of dew point. Generally, accuracy of the model is the only objective used by selection mechanism of GEP. This will evolve...
An Optimization of ASI Operation Band in KSNP
International Nuclear Information System (INIS)
Park, C.O.; Um, K.S.; Lee, J.I.; Choi, T.S.; Yoo, J.S.; Kim, J.S.; Kim, J.J.; Ryu, S.H.; Choi, J.D.; Kwon, J.T.; Lee, C.C.; Kim, J.I.; Suh, D.S.
2002-01-01
A power level dependent ASI LCO (Limiting Condition for Operation) is developed for the Korea Standard Nuclear Power Plant to improve the plant operability in the low power range and to gain the additional thermal margin in the high power range. The ASI LCO for COLSS (Core Operating Limit Supervisory System) in the low power range between 20% and 40% is relaxed to ±0.57 from ±0.27 so as to enhance the plant operability especially during the fast return-to-power maneuvering after trip. In contrast, the ASI LCO in the high power range between 80% and 100% is tightened to ±0.17 from ±0.27 to recover unnecessarily eroded thermal margin that could otherwise be easily utilized for enhancing capacity factor like the power up-rating. In addition to the COLSS ASI optimization, the CPC ASI range trip set point is expanded from ±0.5 to ±0.7 to allow the COLSS LCO change and to enhance the plant operability for power range below 20% by virtually eliminating the possibility of ASI range trip. Safety evaluations for the limiting accidents of concern have been carried out to demonstrate that the power dependent ASI LCO does not cause any un-compliance with safety criteria and provides considerable thermal margin gain in the high power range. Thermal margin evaluation to date indicates that ±0.1 ASI reduction near full power level can lead to ∼2% overpower margin gain and more than 85 K gain in LOCA PCT. (authors)
Optimal Control Of Nonlinear Wave Energy Point Converters
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten
2013-01-01
idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states...
UMTS network planning, optimization, and inter-operation with GSM
Rahnema, Moe
2008-01-01
UMTS Network Planning, Optimization, and Inter-Operation with GSM is an accessible, one-stop reference to help engineers effectively reduce the time and costs involved in UMTS deployment and optimization. Rahnema includes detailed coverage from both a theoretical and practical perspective on the planning and optimization aspects of UMTS, and a number of other new techniques to help operators get the most out of their networks. Provides an end-to-end perspective, from network design to optimizationIncorporates the hands-on experiences of numerous researchersSingle
Optimization of the Phase Advance Between RHIC Interaction Points
Tomas, Rogelio
2005-01-01
We consider the scenario of having two identical Interaction Points (IPs) in the Relativistic Heavy Ion Collider (RHIC). The strengths of beam-beam resonances strongly depend on the phase advance between these two IPs and therefore certain phase advances could improve beam lifetime and luminosity. We compute the dynamic aperture as function of the phase advance between these IPs to find the optimum settings. The beam-beam interaction is treated in the weak-strong approximation and a complete non-linear model of the lattice is used. For the current RHIC proton working point (0.69,0.685) the design lattice is found to have the optimum phase advance. However this is not the case for other working points.
Systematic Methodology for Reproducible Optimizing Batch Operation
DEFF Research Database (Denmark)
Bonné, Dennis; Jørgensen, Sten Bay
2006-01-01
This contribution presents a systematic methodology for rapid acquirement of discrete-time state space model representations of batch processes based on their historical operation data. These state space models are parsimoniously parameterized as a set of local, interdependent models. The present...
Directory of Open Access Journals (Sweden)
Zhiqiang Yang
2016-05-01
Full Text Available Due to the dynamic process of maximum power point tracking (MPPT caused by turbulence and large rotor inertia, variable-speed wind turbines (VSWTs cannot maintain the optimal tip speed ratio (TSR from cut-in wind speed up to the rated speed. Therefore, in order to increase the total captured wind energy, the existing aerodynamic design for VSWT blades, which only focuses on performance improvement at a single TSR, needs to be improved to a multi-point design. In this paper, based on a closed-loop system of VSWTs, including turbulent wind, rotor, drive train and MPPT controller, the distribution of operational TSR and its description based on inflow wind energy are investigated. Moreover, a multi-point method considering the MPPT dynamic process for the aerodynamic optimization of VSWT blades is proposed. In the proposed method, the distribution of operational TSR is obtained through a dynamic simulation of the closed-loop system under a specific turbulent wind, and accordingly the multiple design TSRs and the corresponding weighting coefficients in the objective function are determined. Finally, using the blade of a National Renewable Energy Laboratory (NREL 1.5 MW wind turbine as the baseline, the proposed method is compared with the conventional single-point optimization method using the commercial software Bladed. Simulation results verify the effectiveness of the proposed method.
24 CFR 902.47 - Management operations portion of total PHAS points.
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Management operations portion of... Operations § 902.47 Management operations portion of total PHAS points. Of the total 100 points available for a PHAS score, a PHA may receive up to 30 points based on the Management Operations Indicator. ...
In-operation learning of optimal wind farm operation strategy
Oliva Gratacós, Joan
2017-01-01
In a wind farm, power losses due to wind turbine wake effects can be up to 30-40% under certain conditions. As the global installed wind power capacity increases, the mitigation of wake effects in wind farms is gaining more importance. Following a conventional control strategy, each individual turbine maximizes its own power production without taking into consideration its effects on the performance of downstream turbines. Therefore, this control scheme results in operation con...
Surrogate runner model for draft tube losses computation within a wide range of operating points
International Nuclear Information System (INIS)
Susan-Resiga, R; Ciocan, T; Muntean, S; De Colombel, T; Leroy, P
2014-01-01
We introduce a quasi two-dimensional (Q2D) methodology for assessing the swirling flow exiting the runner of hydraulic turbines at arbitrary operating points, within a wide operating range. The Q2D model does not need actual runner computations, and as a result it represents a surrogate runner model for a-priori assessment of the swirling flow ingested by the draft tube. The axial, radial and circumferential velocity components are computed on a conical section located immediately downstream the runner blades trailing edge, then used as inlet conditions for regular draft tube computations. The main advantage of our model is that it allows the determination of the draft tube losses within the intended turbine operating range in the early design stages of a new or refurbished runner, thus providing a robust and systematic methodology to meet the optimal requirements for the flow at the runner outlet
Directory of Open Access Journals (Sweden)
Luigi Piegari
2015-04-01
Full Text Available The power extracted from PV arrays is usually maximized using maximum power point tracking algorithms. One of the most widely used techniques is the perturb & observe algorithm, which periodically perturbs the operating point of the PV array, sometime with an adaptive perturbation step, and compares the PV power before and after the perturbation. This paper analyses the most suitable perturbation step to optimize maximum power point tracking performance and suggests a design criterion to select the parameters of the controller. Using this proposed adaptive step, the MPPT perturb & observe algorithm achieves an excellent dynamic response by adapting the perturbation step to the actual operating conditions of the PV array. The proposed algorithm has been validated and tested in a laboratory using a dual input inductor push-pull converter. This particular converter topology is an efficient interface to boost the low voltage of PV arrays and effectively control the power flow when input or output voltages are variable. The experimental results have proved the superiority of the proposed algorithm in comparison of traditional perturb & observe and incremental conductance techniques.
SIMULTANEOUS SCHEDULING AND OPERATIONAL OPTIMIZATION OF MULTIPRODUCT, CYCLIC CONTINUOUS PLANTS
Directory of Open Access Journals (Sweden)
A. Alle
2002-03-01
Full Text Available The problems of scheduling and optimization of operational conditions in multistage, multiproduct continuous plants with intermediate storage are simultaneously addressed. An MINLP model, called TSPFLOW, which is based on the TSP formulation for product sequencing, is proposed to schedule the operation of such plants. TSPFLOW yields a one-order-of-magnitude CPU time reduction as well as the solution of instances larger than those formerly reported (Pinto and Grossmann, 1994. Secondly, processing rates and yields are introduced as additional optimization variables in order to state the simultaneous problem of scheduling with operational optimization. Results show that trade-offs are very complex and that the development of a straightforward (rule of thumb method to optimally schedule the operation is less effective than the proposed approach.
SIMULTANEOUS SCHEDULING AND OPERATIONAL OPTIMIZATION OF MULTIPRODUCT, CYCLIC CONTINUOUS PLANTS
Directory of Open Access Journals (Sweden)
Alle A.
2002-01-01
Full Text Available The problems of scheduling and optimization of operational conditions in multistage, multiproduct continuous plants with intermediate storage are simultaneously addressed. An MINLP model, called TSPFLOW, which is based on the TSP formulation for product sequencing, is proposed to schedule the operation of such plants. TSPFLOW yields a one-order-of-magnitude CPU time reduction as well as the solution of instances larger than those formerly reported (Pinto and Grossmann, 1994. Secondly, processing rates and yields are introduced as additional optimization variables in order to state the simultaneous problem of scheduling with operational optimization. Results show that trade-offs are very complex and that the development of a straightforward (rule of thumb method to optimally schedule the operation is less effective than the proposed approach.
Multiobjective optimization in Gene Expression Programming for Dew Point
Shroff, Siddharth; Dabhi, Vipul
2013-01-01
The processes occurring in climatic change evolution and their variations play a major role in environmental engineering. Different techniques are used to model the relationship between temperatures, dew point and relative humidity. Gene expression programming is capable of modelling complex realities with great accuracy, allowing, at the same time, the extraction of knowledge from the evolved models compared to other learning algorithms. This research aims to use Gene Expression Programming ...
Optimal scope of supply chain network & operations design
Ma, N.
2014-01-01
The increasingly complex supply chain networks and operations call for the development of decision support systems and optimization techniques that take a holistic view of supply chain issues and provide support for integrated decision-making. The economic impacts of optimized supply chain are
Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms
Cao, Ming; Lu, Ming; Zhang, Jian-Ping
2004-01-01
This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation
Operating principle of Soft Open Points for electrical distribution network operation
International Nuclear Information System (INIS)
Cao, Wanyu; Wu, Jianzhong; Jenkins, Nick; Wang, Chengshan; Green, Timothy
2016-01-01
Highlights: • Two control modes were developed for a B2B VSCs based SOP. • The SOP operating principle was investigated under various network conditions. • The performance of the SOP using two control modes was analyzed. - Abstract: Soft Open Points (SOPs) are power electronic devices installed in place of normally-open points in electrical power distribution networks. They are able to provide active power flow control, reactive power compensation and voltage regulation under normal network operating conditions, as well as fast fault isolation and supply restoration under abnormal conditions. Two control modes were developed for the operation of an SOP, using back-to-back voltage-source converters (VSCs). A power flow control mode with current control provides independent control of real and reactive power. A supply restoration mode with a voltage controller enables power supply to isolated loads due to network faults. The operating principle of the back-to-back VSCs based SOP was investigated under both normal and abnormal network operating conditions. Studies on a two-feeder medium-voltage distribution network showed the performance of the SOP under different network-operating conditions: normal, during a fault and post-fault supply restoration. During the change of network operating conditions, a mode switch method based on the phase locked loop controller was used to achieve the transitions between the two control modes. Hard transitions by a direct mode switching were noticed unfavourable, but seamless transitions were obtained by deploying a soft cold load pickup and voltage synchronization process.
Synergy optimization and operation management on syndicate complementary knowledge cooperation
Tu, Kai-Jan
2014-10-01
The number of multi enterprises knowledge cooperation has grown steadily, as a result of global innovation competitions. I have conducted research based on optimization and operation studies in this article, and gained the conclusion that synergy management is effective means to break through various management barriers and solve cooperation's chaotic systems. Enterprises must communicate system vision and access complementary knowledge. These are crucial considerations for enterprises to exert their optimization and operation knowledge cooperation synergy to meet global marketing challenges.
Optimal Operation of Radial Distribution Systems Using Extended Dynamic Programming
DEFF Research Database (Denmark)
Lopez, Juan Camilo; Vergara, Pedro P.; Lyra, Christiano
2018-01-01
An extended dynamic programming (EDP) approach is developed to optimize the ac steady-state operation of radial electrical distribution systems (EDS). Based on the optimality principle of the recursive Hamilton-Jacobi-Bellman equations, the proposed EDP approach determines the optimal operation o...... approach is illustrated using real-scale systems and comparisons with commercial programming solvers. Finally, generalizations to consider other EDS operation problems are also discussed.......An extended dynamic programming (EDP) approach is developed to optimize the ac steady-state operation of radial electrical distribution systems (EDS). Based on the optimality principle of the recursive Hamilton-Jacobi-Bellman equations, the proposed EDP approach determines the optimal operation...... of the EDS by setting the values of the controllable variables at each time period. A suitable definition for the stages of the problem makes it possible to represent the optimal ac power flow of radial EDS as a dynamic programming problem, wherein the 'curse of dimensionality' is a minor concern, since...
Measuring Operational Success: Establishing Criteria to Benchmark the Point of Culmination
National Research Council Canada - National Science Library
Caraccilo, Dominic
1997-01-01
... has for the establishment of criteria that measure operational success on the battlefield. This void, in-turn, impacts directly on the operational commander's capability to identify his point(s) of culmination...
Optimized Latching Control of Floating Point Absorber Wave Energy Converter
Gadodia, Chaitanya; Shandilya, Shubham; Bansal, Hari Om
2018-03-01
There is an increasing demand for energy in today’s world. Currently main energy resources are fossil fuels, which will eventually drain out, also the emissions produced from them contribute to global warming. For a sustainable future, these fossil fuels should be replaced with renewable and green energy sources. Sea waves are a gigantic and undiscovered vitality asset. The potential for extricating energy from waves is extensive. To trap this energy, wave energy converters (WEC) are needed. There is a need for increasing the energy output and decreasing the cost requirement of these existing WECs. This paper presents a method which uses prediction as a part of the control scheme to increase the energy efficiency of the floating-point absorber WECs. Kalman Filter is used for estimation, coupled with latching control in regular as well as irregular sea waves. Modelling and Simulation results for the same are also included.
Service Operations Optimization: Recent Development in Supply Chain Management
Directory of Open Access Journals (Sweden)
Bin Shen
2015-01-01
Full Text Available Services are the key of success in operation management. Designing the effective strategies by optimization techniques is the fundamental and important condition for performance increase in service operations (SOs management. In this paper, we mainly focus on investigating SOs optimization in the areas of supply chain management, which create the greatest business values. Specifically, we study the recent development of SOs optimization associated with supply chain by categorizing them into four different industries (i.e., e-commerce industry, consumer service industry, public sector, and fashion industry and four various SOs features (i.e., advertising, channel coordination, pricing, and inventory. Moreover, we conduct the technical review on the stylish industries/topics and typical optimization models. The classical optimization approaches for SOs management in supply chain are presented. The managerial implications of SOs in supply chain are discussed.
Coordinating decentralized optimization of truck and shovel mining operations
Energy Technology Data Exchange (ETDEWEB)
Cheng, R.; Fraser Forbes, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; San Yip, W. [Suncor Energy, Fort McMurray, AB (Canada)
2006-07-01
Canada's oil sands contain the largest known reserve of oil in the world. Oil sands mining uses 3 functional processes, ore hauling, overburden removal and mechanical maintenance. The industry relies mainly on truck-and-shovel technology in its open-pit mining operations which contributes greatly to the overall mining operation cost. Coordination between operating units is crucial for achieving an enterprise-wide optimal operation level. Some of the challenges facing the industry include multiple or conflicting objectives such as minimizing the use of raw materials and energy while maximizing production. The large sets of constraints that define the feasible domain pose as challenge, as does the uncertainty in system parameters. One solution lies in assigning truck resources to various activities. This fully decentralized approach would treat the optimization of ore production, waste removal and equipment maintenance independently. It was emphasized that mine-wide optimal operation can only be achieved by coordinating ore hauling and overburden removal processes. For that reason, this presentation proposed a coordination approach for a decentralized optimization system. The approach is based on the Dantzig-Wolfe decomposition and auction-based methods that have been previously used to decompose large-scale optimization problems. The treatment of discrete variables and coordinator design was described and the method was illustrated with a simple truck and shovel mining simulation study. The approach can be applied to a wide range of applications such as coordinating decentralized optimal control systems and scheduling. 16 refs., 3 tabs., 2 figs.
Optimal control of operation efficiency of belt conveyor systems
International Nuclear Information System (INIS)
Zhang, Shirong; Xia, Xiaohua
2010-01-01
The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study.
Optimal control of operation efficiency of belt conveyor systems
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shirong [Department of Automation, Wuhan University, Wuhan 430072 (China); Xia, Xiaohua [Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002 (South Africa)
2010-06-15
The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study. (author)
Directory of Open Access Journals (Sweden)
Hongying Fei
2017-01-01
Full Text Available Over the past decades, optimization in operations management has grown ever more popular not only in the academic literature but also in practice. However, the problems have varied a lot, and few literature reviews have provided an overview of the models and algorithms that are applied to the optimization in operations management. In this paper, we first classify crucial optimization areas of operations management from the process point of view and then analyze the current status and trends of the studies in those areas. The purpose of this study is to give an overview of optimization modelling and resolution approaches, which are applied to operations management.
Analysis of Optimal Operation of an Energy Integrated Distillation Plant
DEFF Research Database (Denmark)
Li, Hong Wen; Hansen, C.A.; Gani, Rafiqul
2003-01-01
The efficiency of manufacturing systems can be significantly increased through diligent application of control based on mathematical models thereby enabling more tight integration of decision making with systems operation. In the present paper analysis of optimal operation of an energy integrated...
Nickel-Cadmium Battery Operation Management Optimization Using Robust Design
Blosiu, Julian O.; Deligiannis, Frank; DiStefano, Salvador
1996-01-01
In recent years following several spacecraft battery anomalies, it was determined that managing the operational factors of NASA flight NiCd rechargeable battery was very important in order to maintain space flight battery nominal performance. The optimization of existing flight battery operational performance was viewed as something new for a Taguchi Methods application.
Development of Optimal Stressor Scenarios for New Operational Energy Systems
2017-12-01
OPTIMAL STRESSOR SCENARIOS FOR NEW OPERATIONAL ENERGY SYSTEMS by Geoffrey E. Fastabend December 2017 Thesis Advisor: Alejandro S... ENERGY SYSTEMS 5. FUNDING NUMBERS 6. AUTHOR(S) Geoffrey E. Fastabend 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School...developed and tested simulation model for operational energy related systems in order to develop better stressor scenarios for acceptance testing
78 FR 23845 - Drawbridge Operation Regulations; Narrow Bay, Smith Point, NY
2013-04-23
... Operation Regulations; Narrow Bay, Smith Point, NY AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... deviation from the regulation governing the operation of the Smith Point Bridge, mile 6.1, across Narrow Bay, between Smith Point and Fire Island, New York. The deviation is necessary to facilitate the Smith Point...
Optimal Design of Fixed-Point and Floating-Point Arithmetic Units for Scientific Applications
Pongyupinpanich, Surapong
2012-01-01
The challenge in designing a floating-point arithmetic co-processor/processor for scientific and engineering applications is to improve the performance, efficiency, and computational accuracy of the arithmetic unit. The arithmetic unit should efficiently support several mathematical functions corresponding to scientific and engineering computation demands. Moreover, the computations should be performed as fast as possible with a high degree of accuracy. Thus, this thesis proposes algorithm, d...
Hierarchical Control for Optimal and Distributed Operation of Microgrid Systems
DEFF Research Database (Denmark)
Meng, Lexuan
manages the power flow with external grids, while the economic and optimal operation of MGs is not guaranteed by applying the existing schemes. Accordingly, this project dedicates to the study of real-time optimization methods for MGs, including the review of optimization algorithms, system level...... mathematical modeling, and the implementation of real-time optimization into existing hierarchical control schemes. Efficiency enhancement in DC MGs and optimal unbalance compensation in AC MGs are taken as the optimization objectives in this project. Necessary system dynamic modeling and stability analysis......, a discrete-time domain modeling method is proposed to establish an accurate system level model. Taking into account the different sampling times of real world plant, digital controller and communication devices, the system is modeled with these three parts separately, and with full consideration...
Mehr, Ali Farhang; Tumer, Irem
2005-01-01
In this paper, we will present a new methodology that measures the "worth" of deploying an additional testing instrument (sensor) in terms of the amount of information that can be retrieved from such measurement. This quantity is obtained using a probabilistic model of RLV's that has been partially developed in the NASA Ames Research Center. A number of correlated attributes are identified and used to obtain the worth of deploying a sensor in a given test point from an information-theoretic viewpoint. Once the information-theoretic worth of sensors is formulated and incorporated into our general model for IHM performance, the problem can be formulated as a constrained optimization problem where reliability and operational safety of the system as a whole is considered. Although this research is conducted specifically for RLV's, the proposed methodology in its generic form can be easily extended to other domains of systems health monitoring.
Fuzzy multiobjective models for optimal operation of a hydropower system
Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.
2013-06-01
Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.
Outwards pointing hysteresis operators and asymptotic behaviour of evolution equations
Czech Academy of Sciences Publication Activity Database
Klein, O.; Krejčí, Pavel
2003-01-01
Roč. 4, č. 5 (2003), s. 755-785 ISSN 1468-1218 Keywords : hysteresis operators * Prandtl-Ishlinskii operator * asymptotic behaviour Subject RIV: BA - General Mathematics Impact factor: 0.257, year: 2003 http://www.wias-berlin.de/preprint/748/wias_preprints_748.pdf
Reservoir Operating Rule Optimization for California's Sacramento Valley
Directory of Open Access Journals (Sweden)
Timothy Nelson
2016-03-01
Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss1art6Reservoir operating rules for water resource systems are typically developed by combining intuition, professional discussion, and simulation modeling. This paper describes a joint optimization–simulation approach to develop preliminary economically-based operating rules for major reservoirs in California’s Sacramento Valley, based on optimized results from CALVIN, a hydro-economic optimization model. We infer strategic operating rules from the optimization model results, including storage allocation rules to balance storage among multiple reservoirs, and reservoir release rules to determine monthly release for individual reservoirs. Results show the potential utility of considering previous year type on water availability and various system and sub-system storage conditions, in addition to normal consideration of local reservoir storage, season, and current inflows. We create a simple simulation to further refine and test the derived operating rules. Optimization model results show particular insights for balancing the allocation of water storage among Shasta, Trinity, and Oroville reservoirs over drawdown and refill seasons, as well as some insights for release rules at major reservoirs in the Sacramento Valley. We also discuss the applicability and limitations of developing reservoir operation rules from optimization model results.
Komputasi Aliran Daya Optimal Sistem Tenaga Skala Besar dengan Metode Primal Dual Interior Point
Directory of Open Access Journals (Sweden)
Syafii Syafii
2016-03-01
Full Text Available This paper focuses on the use of Primal Dual Interior Point method in the analysis of optimal power flow. Optimal power flow analysis with Primal Dual Interior Point method then compared with Linear Programming Method using Matpower program. The simulation results show that the computation results of Primal Dual Interior Point similar with Linear Programming Method for total cost of generation and large power generated by each power plant. But in terms of computation time Primal Dual Interior Point method is faster than the method of Linear Programming, especially for large systems. Primal Dual Interior Point method have solved the problem in 40.59 seconds, while Linear Programming method takes longer 239.72 seconds for large-scale system 9241 bus. This is because the settlement PDIP algorithm starts from the starting point x0, which is located within the area of feasible move towards the optimal point, in contrast to the simplex method that moves along the border of the feasible from one extreme point to the other extreme point. Thus Primal Dual Interior Point method have more efficient in solving optimal power flow problem of large-scale power systems.
Comparison of operation optimization methods in energy system modelling
DEFF Research Database (Denmark)
Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian
2013-01-01
In areas with large shares of Combined Heat and Power (CHP) production, significant introduction of intermittent renewable power production may lead to an increased number of operational constraints. As the operation pattern of each utility plant is determined by optimization of economics......, possibilities for decoupling production constraints may be valuable. Introduction of heat pumps in the district heating network may pose this ability. In order to evaluate if the introduction of heat pumps is economically viable, we develop calculation methods for the operation patterns of each of the used...... energy technologies. In the paper, three frequently used operation optimization methods are examined with respect to their impact on operation management of the combined technologies. One of the investigated approaches utilises linear programming for optimisation, one uses linear programming with binary...
Optimization of Operations Resources via Discrete Event Simulation Modeling
Joshi, B.; Morris, D.; White, N.; Unal, R.
1996-01-01
The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.
Optimizing Biorefinery Design and Operations via Linear Programming Models
Energy Technology Data Exchange (ETDEWEB)
Talmadge, Michael; Batan, Liaw; Lamers, Patrick; Hartley, Damon; Biddy, Mary; Tao, Ling; Tan, Eric
2017-03-28
The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LP models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with $4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for
Optimal day-ahead operational planning of microgrids
International Nuclear Information System (INIS)
Hosseinnezhad, Vahid; Rafiee, Mansour; Ahmadian, Mohammad; Siano, Pierluigi
2016-01-01
Highlights: • A new multi-objective model for optimal day-ahead operational planning of microgrids is proposed. • A new concept called seamlessness is introduced to control the sustainability of microgrid. • A new method is developed to manage the load and renewable energy resources estimation errors. • A new solution based on a combination of numerical and evolutionary approaches is proposed. - Abstract: Providing a cost-efficient, eco-friendly and sustainable energy is one of the main issues in modern societies. In response to this demand, new features of microgrid technology have provided huge potentials while distributing electricity more effectively, economically and securely. Accordingly, this paper presents a new multi-objective generation management model for optimal day-ahead operational planning of medium voltage microgrids. The proposed model optimizes both pollutant emission and operating cost of a microgrid by using multi-objective optimization. Besides, a seamlessness-selective algorithm is integrated into the model, which can be adopted to achieve the desired self-sufficiency level for microgrids along a specified planning horizon. Furthermore, the model is characterized by a reserve-assessment strategy developed to handle the load and renewable energy resources estimation errors. The introduced model is solved using a combination of numerical and evolutionary methods of species-based quantum particle swarm optimization to find the optimal scheduling scheme and minos-based optimal power flow to optimize the operating cost and emission. In addition, the suggested solution approach also incorporates an efficient mechanism for considering energy storage systems and coding the candidate solutions in the evolutionary algorithm. The proposed model is implemented on a test microgrid and is investigated through simulations to study the different aspects of the problem. The results show significant improvements and benefits which are obtained by
Examples of radiation protection optimization in design and operation
International Nuclear Information System (INIS)
Gonzalez, A.J.; Palacios, E.; Curti, A.; Agatiello, O.; Majchrzak, J.
1982-01-01
The practical use of the requirement of optimization of radiological protection is presented. Application examples for designing ventilation systems and for maintenance operations of nuclear plants are given. A method is developed for the application of the optimization requirement to the design of ventilation systems in contaminated environments. Representative values of the main parameters are presented and their relevant features are discussed. A practical example shows actual results for a radioisotope production plant. Causes influencing collective doses incurred by the workers during maintenance operations are analyzed. A method is presented for the optimization of both the level of training of personnel and the apportionment of individual doses. As an example, this methodology is applied to the maintenance operations in a nuclear power plant. (author)
Operational optimization in the downstream; Otimizacao operacional no downstream
Energy Technology Data Exchange (ETDEWEB)
Silberman, Luis; Cunha, Filipe Silveira Ramos da [Petroleo Ipiranga, Porto Alegre, RS (Brazil)
2004-07-01
On the present competitive down stream's market, there is a great necessity of optimization aiming to guarantee the best price and quality of our clients. Our goal is to attend these expectations while we guarantee an efficient operation. The greatest question is how far we are from the ideal model. This way, a lot of projects have been executed during the last years aiming the operational optimization of all our activities. We divide the projects in 4 areas: Logistic (new modals distribution), Transport (transport optimization - quality and more deliveries with less trucks), Client Support (Internet Ipiranga and Support Center), Distribution Terminals Productivity (automation and environment). This work intend to present our ideal, perfect and complete Downstream Operation model. We will talk about how close we are of this ideal model and we will present the projects that we had already developed and implanted on the automation of the terminals and the logistics area. (author)
Product quality driven design of bakery operations using dynamic optimization
Hadiyanto, M.; Esveld, D.C.; Boom, R.M.; Straten, van G.; Boxtel, van A.J.B.
2008-01-01
Abstract Quality driven design uses specified product qualities as a starting point for process design. By backward reasoning the required process conditions and processing system were found. In this work dynamic optimization was used as a tool to generate processing solutions for baking processes
Economic Optimization Analysis of Chengdu Electric Community Bus Operation
Yidong, Wang; Yun, Cai; Zhengping, Tan; Xiong, Wan
2018-03-01
In recent years, the government has strongly supported and promoted electric vehicles and has given priority to demonstration and popularization in the field of public transport. The economy of public transport operations has drawn increasing attention. In this paper, Chengdu wireless charging pure electric community bus is used as the research object, the battery, air conditioning, driver’s driving behavior and other economic influence factors were analyzed, and optimizing the operation plan through case data analysis, through the reasonable battery matching and mode of operation to help businesses effectively save operating costs and enhance economic efficiency.
Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation
Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah
2018-04-01
The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.
Optimizing Reservoir Operation to Adapt to the Climate Change
Madadgar, S.; Jung, I.; Moradkhani, H.
2010-12-01
Climate change and upcoming variation in flood timing necessitates the adaptation of current rule curves developed for operation of water reservoirs as to reduce the potential damage from either flood or draught events. This study attempts to optimize the current rule curves of Cougar Dam on McKenzie River in Oregon addressing some possible climate conditions in 21th century. The objective is to minimize the failure of operation to meet either designated demands or flood limit at a downstream checkpoint. A simulation/optimization model including the standard operation policy and a global optimization method, tunes the current rule curve upon 8 GCMs and 2 greenhouse gases emission scenarios. The Precipitation Runoff Modeling System (PRMS) is used as the hydrology model to project the streamflow for the period of 2000-2100 using downscaled precipitation and temperature forcing from 8 GCMs and two emission scenarios. An ensemble of rule curves, each associated with an individual scenario, is obtained by optimizing the reservoir operation. The simulation of reservoir operation, for all the scenarios and the expected value of the ensemble, is conducted and performance assessment using statistical indices including reliability, resilience, vulnerability and sustainability is made.
Break-Even Point for a Proof Slip Operation
Anderson, James F.
1972-01-01
Break-even analysis is applied to determine what magnitude of titles added per year is sufficient to utilize economically Library of Congress proof slips and a Xerox 914 copying machine in the cataloging operation of a library. A formula is derived, and an example of its use is given. (1 reference) (Author/SJ)
Big Rock Point Nuclear Plant. Annual operating report for 1976
International Nuclear Information System (INIS)
1977-01-01
Net electrical power generated was 244,492.9 MWH with the reactor on line 4,405 hrs. Information is presented concerning operations, power generation, shutdowns, corrective maintenance, chemistry and radiochemistry, occupational radiation exposure, release of radioactive materials, reportable occurrences, and fuel performance
76 FR 60733 - Drawbridge Operation Regulations; Narrow Bay, Smith Point, NY
2011-09-30
... Operation Regulations; Narrow Bay, Smith Point, NY AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... deviation from the regulation governing the operation of the Smith Point Bridge, 6.1, across Narrow Bay, between Smith Point and Fire Island, New York. The deviation is necessary to facilitate bridge...
On Point: The United States Army in Operation Iraqi Freedom
2004-01-01
to retain operational context. Moreover, times noted in the text have been adjusted from Greenwich Mean Time (“ Zulu ”) to local Kuwait time (+ 3...TF 1-64 AR unit history is composed of short narratives for each subordinate unit. Most cite times in zulu . 34. Ibid. 35. Ibid. Numbers of enemy...places in the world. Inside the city cemetery is the Tomb of Ali, son-in-law and cousin to Mohammed and founder of the Shiite sect. Coalition leaders
International Nuclear Information System (INIS)
Vahid-Pakdel, M.J.; Nojavan, Sayyad; Mohammadi-ivatloo, B.; Zare, Kazem
2017-01-01
Highlights: • Studying heating market impact on energy hub operation considering price uncertainty. • Investigating impact of implementation of heat demand response on hub operation. • Presenting stochastic method to consider wind generation and prices uncertainties. - Abstract: Multi carrier energy systems or energy hubs has provided more flexibility for energy management systems. On the other hand, due to mutual impact of different energy carriers in energy hubs, energy management studies become more challengeable. The initial patterns of energy demands from grids point of view can be modified by optimal scheduling of energy hubs. In this work, optimal operation of multi carrier energy system has been studied in the presence of wind farm, electrical and thermal storage systems, electrical and thermal demand response programs, electricity market and thermal energy market. Stochastic programming is implemented for modeling the system uncertainties such as demands, market prices and wind speed. It is shown that adding new source of heat energy for providing demand of consumers with market mechanism changes the optimal operation point of multi carrier energy system. Presented mixed integer linear formulation for the problem has been solved by executing CPLEX solver of GAMS optimization software. Simulation results shows that hub’s operation cost reduces up to 4.8% by enabling the option of using thermal energy market for meeting heat demand.
Simulation and OR (operations research) in combination for practical optimization
van Dijk, N.; van der Sluis, E.; Haijema, R.; Al-Ibrahim, A.; van der Wal, J.; Kuhl, M.E.; Steiger, N.M.; Armstrong, F.B.; Joines, J.A.
2005-01-01
Should we pool capacities or not? This is a question that one can regularly be confronted with in operations and service management. It is a question that necessarily requires a combination of queueing (as OR discipline) and simulation (as evaluative tool) and further steps for optimization. It will
Optimization Methods in Operations Research and Systems Analysis
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 6. Optimization Methods in Operations Research and Systems Analysis. V G Tikekar. Book Review Volume 2 Issue 6 June 1997 pp 91-92. Fulltext. Click here to view fulltext PDF. Permanent link:
Positive-operator-valued measure optimization of classical correlations
Hamieh, S; Kobes, R; Zaraket, H
We study the problem of optimization over positive-operator-valued measures to extract classical correlation in a bipartite quantum system. The proposed method is applied to binary states only. Moreover, to illustrate this method, an explicit example is studied in detail.
Operator support through modern optimal estimation and control
International Nuclear Information System (INIS)
Burdick, G.R.
1980-01-01
Applications of Modern Optimal Estimation and Control Theories are late in coming to the nuclear industry. Some features of the theories that might be exploited in nuclear systems applications are described. Activities at the Idaho National Engineering Laboratory relating to operator support using those theories are identified and some implementation challenges are discussed
Optimal operation of cogeneration units. State of art and perspective
International Nuclear Information System (INIS)
Polimeni, S.
2001-01-01
Optimal operation of cogeneration plants and of power plant fueling waste products is a complex challenge as they have to fulfill, beyond the contractual obligation of electric power supply, the constraints of supplying the required thermal energy to the user (for cogeneration units) or to burn completely the by-products of the industrial complex where they are integrated. Electrical power market evolution is pushing such units to a more and more volatile operation caused by uncertain selling price levels. This work intends to pinpoint the state of art in the optimization of these units outlining the important differences among the different size and cycles. The effect of the market liberalization on the automation systems and the optimization algorithms will be discussed [it
Driving external chemistry optimization via operations management principles.
Bi, F Christopher; Frost, Heather N; Ling, Xiaolan; Perry, David A; Sakata, Sylvie K; Bailey, Simon; Fobian, Yvette M; Sloan, Leslie; Wood, Anthony
2014-03-01
Confronted with the need to significantly raise the productivity of remotely located chemistry CROs Pfizer embraced a commitment to continuous improvement which leveraged the tools from both Lean Six Sigma and queue management theory to deliver positive measurable outcomes. During 2012 cycle times were reduced by 48% by optimization of the work in progress and conducting a detailed workflow analysis to identify and address pinch points. Compound flow was increased by 29% by optimizing the request process and de-risking the chemistry. Underpinning both achievements was the development of close working relationships and productive communications between Pfizer and CRO chemists. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Pang, X.; Rybarcyk, L.J.
2014-01-01
Particle swarm optimization (PSO) and genetic algorithm (GA) are both nature-inspired population based optimization methods. Compared to GA, whose long history can trace back to 1975, PSO is a relatively new heuristic search method first proposed in 1995. Due to its fast convergence rate in single objective optimization domain, the PSO method has been extended to optimize multi-objective problems. In this paper, we will introduce the PSO method and its multi-objective extension, the MOPSO, apply it along with the MOGA (mainly the NSGA-II) to simulations of the LANSCE linac and operational set point optimizations. Our tests show that both methods can provide very similar Pareto fronts but the MOPSO converges faster
Energy Technology Data Exchange (ETDEWEB)
Pang, X., E-mail: xpang@lanl.gov; Rybarcyk, L.J.
2014-03-21
Particle swarm optimization (PSO) and genetic algorithm (GA) are both nature-inspired population based optimization methods. Compared to GA, whose long history can trace back to 1975, PSO is a relatively new heuristic search method first proposed in 1995. Due to its fast convergence rate in single objective optimization domain, the PSO method has been extended to optimize multi-objective problems. In this paper, we will introduce the PSO method and its multi-objective extension, the MOPSO, apply it along with the MOGA (mainly the NSGA-II) to simulations of the LANSCE linac and operational set point optimizations. Our tests show that both methods can provide very similar Pareto fronts but the MOPSO converges faster.
A primal-dual interior point method for large-scale free material optimization
DEFF Research Database (Denmark)
Weldeyesus, Alemseged Gebrehiwot; Stolpe, Mathias
2015-01-01
Free Material Optimization (FMO) is a branch of structural optimization in which the design variable is the elastic material tensor that is allowed to vary over the design domain. The requirements are that the material tensor is symmetric positive semidefinite with bounded trace. The resulting...... optimization problem is a nonlinear semidefinite program with many small matrix inequalities for which a special-purpose optimization method should be developed. The objective of this article is to propose an efficient primal-dual interior point method for FMO that can robustly and accurately solve large...... of iterations the interior point method requires is modest and increases only marginally with problem size. The computed optimal solutions obtain a higher precision than other available special-purpose methods for FMO. The efficiency and robustness of the method is demonstrated by numerical experiments on a set...
Point charges optimally placed to represent the multipole expansion of charge distributions.
Directory of Open Access Journals (Sweden)
Ramu Anandakrishnan
Full Text Available We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance 2x the extent of the charge distribution--the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom, is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å is half that of the point multipole expansion up to the octupole
Optimal Operations and Resilient Investments in Steam Networks
Energy Technology Data Exchange (ETDEWEB)
Bungener, Stéphane L., E-mail: stephane.bungener@a3.epfl.ch [Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Van Eetvelde, Greet [Environmental and Spatial Management, Faculty of Engineering and Architecture, Ghent University, Ghent (Belgium); Maréchal, François [Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)
2016-01-20
Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors) should be sized to supply the consumers at nominal operating conditions as well as peak demand. First, this paper proposes an Mixed Integer Linear Programing formulation to optimize the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero), through the introduction of load shedding. Optimization of investments based on operational and investment costs are included in the formulation. Though rare, boiler failures can have a heavy impact on steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network’s resilience. The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.
Optimal Operations and Resilient Investments in Steam Networks
International Nuclear Information System (INIS)
Bungener, Stéphane L.; Van Eetvelde, Greet; Maréchal, François
2016-01-01
Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors) should be sized to supply the consumers at nominal operating conditions as well as peak demand. First, this paper proposes an Mixed Integer Linear Programing formulation to optimize the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero), through the introduction of load shedding. Optimization of investments based on operational and investment costs are included in the formulation. Though rare, boiler failures can have a heavy impact on steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network’s resilience. The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.
Directory of Open Access Journals (Sweden)
Mohammd Mohammed S.
2015-01-01
Full Text Available The aim of this work is to develop a method for optimization of operating parameters of a triple pressure heat recovery steam generator. Two types of optimization: (a thermodynamic and (b thermoeconomic were preformed. The purpose of the thermodynamic optimization is to maximize the efficiency of the plant. The selected objective for this purpose is minimization of the exergy destruction in the heat recovery steam generator (HRSG. The purpose of the thermoeconomic optimization is to decrease the production cost of electricity. Here, the total annual cost of HRSG, defined as a sum of annual values of the capital costs and the cost of the exergy destruction, is selected as the objective function. The optimal values of the most influencing variables are obtained by minimizing the objective function while satisfying a group of constraints. The optimization algorithm is developed and tested on a case of CCGT plant with complex configuration. Six operating parameters were subject of optimization: pressures and pinch point temperatures of every three (high, intermediate and low pressure steam stream in the HRSG. The influence of these variables on the objective function and production cost are investigated in detail. The differences between results of thermodynamic and the thermoeconomic optimization are discussed.
Near-maximum-power-point-operation (nMPPO) design of photovoltaic power generation system
Energy Technology Data Exchange (ETDEWEB)
Huang, B.J.; Sun, F.S.; Ho, R.W. [Department of Mechanical Engineering, National Taiwan University, Taipei 106, Taiwan (China)
2006-08-15
The present study proposes a PV system design, called 'near-maximum power-point-operation' (nMPPO) that can maintain the performance very close to PV system with MPPT (maximum-power-point tracking) but eliminate hardware of the MPPT. The concept of nMPPO is to match the design of battery bank voltage V{sub set} with the MPP (maximum-power point) of the PV module based on an analysis using meteorological data. Three design methods are used in the present study to determine the optimal V{sub set}. The analytical results show that nMPPO is feasible and the optimal V{sub set} falls in the range 13.2-15.0V for MSX60 PV module. The long-term performance simulation shows that the overall nMPPO efficiency {eta}{sub nMPPO} is higher than 94%. Two outdoor field tests were carried out in the present study to verify the design of nMPPO. The test results for a single PV module (60Wp) indicate that the nMPPO efficiency {eta}{sub nMPPO} is mostly higher than 93% at various PV temperature T{sub pv}. Another long-term field test of 1kWp PV array using nMPPO shows that the power generation using nMPPO is almost identical with MPPT at various weather conditions and T{sub pv} variation from 24{sup o}C to 70{sup o}C. (author)
Operating point resolved loss computation in electrical machines
Directory of Open Access Journals (Sweden)
Pfingsten Georg Von
2016-03-01
Full Text Available Magnetic circuits of electromagnetic energy converters, such as electrical machines, are nowadays highly utilized. This proposition is intrinsic for the magnetic as well as the electric circuit and depicts that significant enhancements of electrical machines are difficult to achieve in the absence of a detailed understanding of underlying effects. In order to improve the properties of electrical machines the accurate determination of the locally distributed iron losses based on idealized model assumptions solely is not sufficient. Other loss generating effects have to be considered and the possibility being able to distinguish between the causes of particular loss components is indispensable. Parasitic loss mechanisms additionally contributing to the total losses originating from field harmonics, non-linear material behaviour, rotational magnetizations, and detrimental effects caused by the manufacturing process or temperature, are not explicitly considered in the common iron-loss models, probably even not specifically contained in commonly used calibration factors. This paper presents a methodology being able to distinguish between different loss mechanisms and enables to individually consider particular loss mechanisms in the model of the electric machine. A sensitivity analysis of the model parameters can be performed to obtain information about which decisive loss origin for which working point has to be manipulated by the electromagnetic design or the control of the machine.
Site utility system optimization with operation adjustment under uncertainty
International Nuclear Information System (INIS)
Sun, Li; Gai, Limei; Smith, Robin
2017-01-01
Highlights: • Uncertainties are classified into time-based and probability-based uncertain factors. • Multi-period operation and recourses deal with uncertainty implementation. • Operation scheduling are specified at the design stage to deal with uncertainties. • Steam mains superheating affects steam distribution and power generation in the system. - Abstract: Utility systems must satisfy process energy and power demands under varying conditions. The system performance is decided by the system configuration and individual equipment operating load for boilers, gas turbines, steam turbines, condensers, and let down valves. Steam mains conditions in terms of steam pressures and steam superheating also play important roles on steam distribution in the system and power generation by steam expansion in steam turbines, and should be included in the system optimization. Uncertainties such as process steam power demand changes and electricity price fluctuations should be included in the system optimization to eliminate as much as possible the production loss caused by steam power deficits due to uncertainties. In this paper, uncertain factors are classified into time-based and probability-based uncertain factors, and operation scheduling containing multi-period equipment load sharing, redundant equipment start up, and electricity import to compensate for power deficits, have been presented to deal with the happens of uncertainties, and are formulated as a multi-period item and a recourse item in the optimization model. There are two case studies in this paper. One case illustrates the system design to determine system configuration, equipment selection, and system operation scheduling at the design stage to deal with uncertainties. The other case provides operational optimization scenarios for an existing system, especially when the steam superheating varies. The proposed method can provide practical guidance to system energy efficiency improvement.
Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu
2016-02-01
We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.
The effect of pre-operative optimization on post-operative outcome in Crohn's disease resections
DEFF Research Database (Denmark)
El-Hussuna, Alaa; Iesalnieks, Igors; Horesh, Nir
2017-01-01
BACKGROUND: The timing of surgical intervention in Crohn's disease (CD) may depend on pre-operative optimization (PO) which includes different interventions to decrease the risk for unfavourable post-operative outcome. The objective of this study was to investigate the effect of multi-model PO on...
Optimal Operation of Energy Storage in Power Transmission and Distribution
Akhavan Hejazi, Seyed Hossein
In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider
OPF-Based Optimal Location of Two Systems Two Terminal HVDC to Power System Optimal Operation
Directory of Open Access Journals (Sweden)
Mehdi Abolfazli
2013-04-01
Full Text Available In this paper a suitable mathematical model of the two terminal HVDC system is provided for optimal power flow (OPF and optimal location based on OPF such power injection model. The ability of voltage source converter (VSC-based HVDC to independently control active and reactive power is well represented by the model. The model is used to develop an OPF-based optimal location algorithm of two systems two terminal HVDC to minimize the total fuel cost and active power losses as objective function. The optimization framework is modeled as non-linear programming (NLP and solved by Matlab and GAMS softwares. The proposed algorithm is implemented on the IEEE 14- and 30-bus test systems. The simulation results show ability of two systems two terminal HVDC in improving the power system operation. Furthermore, two systems two terminal HVDC is compared by PST and OUPFC in the power system operation from economical and technical aspects.
Optimization of the Brillouin operator on the KNL architecture
Dürr, Stephan
2018-03-01
Experiences with optimizing the matrix-times-vector application of the Brillouin operator on the Intel KNL processor are reported. Without adjustments to the memory layout, performance figures of 360 Gflop/s in single and 270 Gflop/s in double precision are observed. This is with Nc = 3 colors, Nv = 12 right-hand-sides, Nthr = 256 threads, on lattices of size 323 × 64, using exclusively OMP pragmas. Interestingly, the same routine performs quite well on Intel Core i7 architectures, too. Some observations on the much harderWilson fermion matrix-times-vector optimization problem are added.
Neuro-optimal operation of a variable air volume HVAC and R system
International Nuclear Information System (INIS)
Ning Min; Zaheeruddin, M.
2010-01-01
Low operational efficiency especially under partial load conditions and poor control are some reasons for high energy consumption of heating, ventilation, air conditioning and refrigeration (HVAC and R) systems. To improve energy efficiency, HVAC and R systems should be efficiently operated to maintain a desired indoor environment under dynamic ambient and indoor conditions. This study proposes a neural network based optimal supervisory operation strategy to find the optimal set points for chilled water supply temperature, discharge air temperature and VAV system fan static pressure such that the indoor environment is maintained with the least chiller and fan energy consumption. To achieve this objective, a dynamic system model is developed first to simulate the system behavior under different control schemes and operating conditions. A multi-layer feed forward neural network is constructed and trained in unsupervised mode to minimize the cost function which is comprised of overall energy cost and penalty cost when one or more constraints are violated. After training, the network is implemented as a supervisory controller to compute the optimal settings for the system. Simulation results show that compared to the conventional night reset operation scheme, the optimal operation scheme saves around 10% energy under full load condition and 19% energy under partial load conditions.
Optimizing capital and time expenditures for drilling service operations
Energy Technology Data Exchange (ETDEWEB)
Zazovskiy, F Ya; Soltysyak, T I
1980-01-01
The operational efficiency of drilling services operations management are examined. The structure of time expenditure is analyzed for repair operations according to equipment type employed by the Ivano-Frankovsk Drilling Management under the Ukrneft' enterprise during 1977. The results of this analysis are weighed against a series of service operations carried out at industrial enterprises and connected with technical disruptions. Some of the cases examined include service competion operations outside of the industrial units when technical processes are disrupted only for the change of equipment which has outlived its usefulness and is no longer in series production. First of all, time expended for repair work can be reduced to zero during the drilling of shallow wells which do not require extensive drilling time. The actual savings, both in time and money, as far as repair work is concerned, hinges on the actual time factor for total oil depetion. An equation is provided for optimal time expenditure necessary for repair work and equipment replacement. An actual example is given from the Dolinsk UBR (Drillin Management) under the Ukrneft' enterprise where time spent on actual service operations has appeared to be less than the optimal figure cited in the above material. This is possible because of increased capital expenditures.
Multiobjective Optimization Modeling Approach for Multipurpose Single Reservoir Operation
Directory of Open Access Journals (Sweden)
Iosvany Recio Villa
2018-04-01
Full Text Available The water resources planning and management discipline recognizes the importance of a reservoir’s carryover storage. However, mathematical models for reservoir operation that include carryover storage are scarce. This paper presents a novel multiobjective optimization modeling framework that uses the constraint-ε method and genetic algorithms as optimization techniques for the operation of multipurpose simple reservoirs, including carryover storage. The carryover storage was conceived by modifying Kritsky and Menkel’s method for reservoir design at the operational stage. The main objective function minimizes the cost of the total annual water shortage for irrigation areas connected to a reservoir, while the secondary one maximizes its energy production. The model includes operational constraints for the reservoir, Kritsky and Menkel’s method, irrigation areas, and the hydropower plant. The study is applied to Carlos Manuel de Céspedes reservoir, establishing a 12-month planning horizon and an annual reliability of 75%. The results highly demonstrate the applicability of the model, obtaining monthly releases from the reservoir that include the carryover storage, degree of reservoir inflow regulation, water shortages in irrigation areas, and the energy generated by the hydroelectric plant. The main product is an operational graph that includes zones as well as rule and guide curves, which are used as triggers for long-term reservoir operation.
Williams, Daniel M.
2006-01-01
Described is the research process that NASA researchers used to validate the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept. The four phase building-block validation and verification process included multiple elements ranging from formal analysis of HVO procedures to flight test, to full-system architecture prototype that was successfully shown to the public at the June 2005 SATS Technical Demonstration in Danville, VA. Presented are significant results of each of the four research phases that extend early results presented at ICAS 2004. HVO study results have been incorporated into the development of the Next Generation Air Transportation System (NGATS) vision and offer a validated concept to provide a significant portion of the 3X capacity improvement sought after in the United States National Airspace System (NAS).
Optimal operation of water distribution networks by predictive control ...
African Journals Online (AJOL)
This paper presents an approach for the operational optimisation of potable water distribution networks. The maximisation of the use of low-cost power (e.g. overnight pumping) and the maintenance of a target chlorine concentration at final delivery points were defined as important optimisation objectives. The first objective ...
Directory of Open Access Journals (Sweden)
Fei Wang
2017-07-01
Full Text Available The optimized dispatch of different distributed generations (DGs in stand-alone microgrid (MG is of great significance to the operation’s reliability and economy, especially for energy crisis and environmental pollution. Based on controllable load (CL and combined cooling-heating-power (CCHP model of micro-gas turbine (MT, a multi-objective optimization model with relevant constraints to optimize the generation cost, load cut compensation and environmental benefit is proposed in this paper. The MG studied in this paper consists of photovoltaic (PV, wind turbine (WT, fuel cell (FC, diesel engine (DE, MT and energy storage (ES. Four typical scenarios were designed according to different day types (work day or weekend and weather conditions (sunny or rainy in view of the uncertainty of renewable energy in variable situations and load fluctuation. A modified dispatch strategy for CCHP is presented to further improve the operation economy without reducing the consumers’ comfort feeling. Chaotic optimization and elite retention strategy are introduced into basic particle swarm optimization (PSO to propose modified chaos particle swarm optimization (MCPSO whose search capability and convergence speed are improved greatly. Simulation results validate the correctness of the proposed model and the effectiveness of MCPSO algorithm in the optimized operation application of stand-alone MG.
Optimization of operation of energy supply systems with co-generation and absorption refrigeration
Directory of Open Access Journals (Sweden)
Stojiljković Mirko M.
2012-01-01
Full Text Available Co-generation systems, together with absorption refrigeration and thermal storage, can result in substantial benefits from the economic, energy and environmental point of view. Optimization of operation of such systems is important as a component of the entire optimization process in pre-construction phases, but also for short-term energy production planning and system control. This paper proposes an approach for operational optimization of energy supply systems with small or medium scale co-generation, additional boilers and heat pumps, absorption and compression refrigeration, thermal energy storage and interconnection to the electric utility grid. In this case, the objective is to minimize annual costs related to the plant operation. The optimization problem is defined as mixed integer nonlinear and solved combining modern stochastic techniques: genetic algorithms and simulated annealing with linear programming using the object oriented “ESO-MS” software solution for simulation and optimization of energy supply systems, developed as a part of this research. This approach is applied to optimize a hypothetical plant that might be used to supply a real residential settlement in Niš, Serbia. Results are compared to the ones obtained after transforming the problem to mixed 0-1 linear and applying the branch and bound method.
Energy Optimization Assessment at U.S. Army Installations: West Point Military Academy, NY
2008-09-01
chillers to work unnecessarily more than needed. Other buildings had setpoints at different areas above 55 °F. Many buildings are air-conditioned and... optimal . The cost of 12.5 cents/KWh makes it unlikely, especially where steam adsorption chillers exist. 11.8.2 Solution Use the existing steam...ER D C/ CE R L TR -0 8 -1 4 Energy Optimization Assessment at U.S. Army Installations West Point Military Academy, NY David M
Data driven approaches for diagnostics and optimization of NPP operation
International Nuclear Information System (INIS)
Pliska, J.; Machat, Z.
2014-01-01
The efficiency and heat rate is an important indicator of both the health of the power plant equipment and the quality of power plant operation. To achieve this challenges powerful tool is a statistical data processing of large data sets which are stored in data historians. These large data sets contain useful information about process quality and equipment and sensor health. The paper discusses data-driven approaches for model building of main power plant equipment such as condenser, cooling tower and the overall thermal cycle as well using multivariate regression techniques based on so called a regression triplet - data, model and method. Regression models comprise a base for diagnostics and optimization tasks. Diagnostics and optimization tasks are demonstrated on practical cases - diagnostics of main power plant equipment to early identify equipment fault, and optimization task of cooling circuit by cooling water flow control to achieve for a given boundary conditions the highest power output. (authors)
Energy Technology Data Exchange (ETDEWEB)
Ji, Aimin; Yin, Xu; Yuan, Minghai [Hohai University, Changzhou (China)
2015-09-15
There are two problems in Collaborative optimization (CO): (1) the local optima arising from the selection of an inappropriate initial point; (2) the low efficiency and accuracy root in inappropriate relaxation factors. To solve these problems, we first develop the Latin hypercube design (LHD) to determine an initial point of optimization, and then use the non-linear programming by quadratic Lagrangian (NLPQL) to search for the global solution. The effectiveness of the initial point selection strategy is verified by three benchmark functions with some dimensions and different complexities. Then we propose the Adaptive relaxation collaborative optimization (ARCO) algorithm to solve the inconsistency between the system level and the disciplines level, and in this method, the relaxation factors are determined according to the three separated stages of CO respectively. The performance of the ARCO algorithm is compared with the standard collaborative algorithm and the constant relaxation collaborative algorithm with a typical numerical example, which indicates that the ARCO algorithm is more efficient and accurate. Finally, we propose a Hybrid collaborative optimization (HCO) approach, which integrates the selection strategy of initial point with the ARCO algorithm. The results show that HCO can achieve the global optimal solution without the initial value and it also has advantages in convergence, accuracy and robustness. Therefore, the proposed HCO approach can solve the CO problems with applications in the spindle and the speed reducer.
International Nuclear Information System (INIS)
Ji, Aimin; Yin, Xu; Yuan, Minghai
2015-01-01
There are two problems in Collaborative optimization (CO): (1) the local optima arising from the selection of an inappropriate initial point; (2) the low efficiency and accuracy root in inappropriate relaxation factors. To solve these problems, we first develop the Latin hypercube design (LHD) to determine an initial point of optimization, and then use the non-linear programming by quadratic Lagrangian (NLPQL) to search for the global solution. The effectiveness of the initial point selection strategy is verified by three benchmark functions with some dimensions and different complexities. Then we propose the Adaptive relaxation collaborative optimization (ARCO) algorithm to solve the inconsistency between the system level and the disciplines level, and in this method, the relaxation factors are determined according to the three separated stages of CO respectively. The performance of the ARCO algorithm is compared with the standard collaborative algorithm and the constant relaxation collaborative algorithm with a typical numerical example, which indicates that the ARCO algorithm is more efficient and accurate. Finally, we propose a Hybrid collaborative optimization (HCO) approach, which integrates the selection strategy of initial point with the ARCO algorithm. The results show that HCO can achieve the global optimal solution without the initial value and it also has advantages in convergence, accuracy and robustness. Therefore, the proposed HCO approach can solve the CO problems with applications in the spindle and the speed reducer
Development of Inventory Optimization System for Operation Nuclear Plants
Energy Technology Data Exchange (ETDEWEB)
Jang, Se-Jin; Park, Jong-Hyuk; Yoo, Sung-Soo; Lee, Sang-Guk [Korea Electric Power Research Institutes, Taejon (Korea, Republic of)
2006-07-01
Inventory control of spare parts plays an increasingly important role in operation management. This is why inventory management systems such as manufacturing resources planning(MRP) and enterprise resource planning(ERP) have been added. However, most of these contributions have similar theoretical background. This means the concepts and techniques are mainly based on mathematical assumptions and modeling inventory of spare parts situations. Nuclear utilities in Korea have several problems to manage the optimum level of spare parts though they used MRP System. Because most of items have long lead time and they are imported from United States, Canada, France and so on. We developed the inventory optimization system for Operation Nuclear Plants to resolve these problems. In this paper, we report a data flow process, data load and inventory calculation process. The main contribution of this paper is development of inventory optimization system which can be used in domestic power plants.
A database structure for radiological optimization analyses of decommissioning operations
International Nuclear Information System (INIS)
Zeevaert, T.; Van de Walle, B.
1995-09-01
The structure of a database for decommissioning experiences is described. Radiological optimization is a major radiation protection principle in practices and interventions, involving radiological protection factors, economic costs, social factors. An important lack of knowledge with respect to these factors exists in the domain of the decommissioning of nuclear power plants, due to the low number of decommissioning operations already performed. Moreover, decommissioning takes place only once for a installation. Tasks, techniques, and procedures are in most cases rather specific, limiting the use of past experiences in the radiological optimization analyses of new decommissioning operations. Therefore, it is important that relevant data or information be acquired from decommissioning experiences. These data have to be stored in a database in a way they can be used efficiently in ALARA analyses of future decommissioning activities
Development of Inventory Optimization System for Operation Nuclear Plants
International Nuclear Information System (INIS)
Jang, Se-Jin; Park, Jong-Hyuk; Yoo, Sung-Soo; Lee, Sang-Guk
2006-01-01
Inventory control of spare parts plays an increasingly important role in operation management. This is why inventory management systems such as manufacturing resources planning(MRP) and enterprise resource planning(ERP) have been added. However, most of these contributions have similar theoretical background. This means the concepts and techniques are mainly based on mathematical assumptions and modeling inventory of spare parts situations. Nuclear utilities in Korea have several problems to manage the optimum level of spare parts though they used MRP System. Because most of items have long lead time and they are imported from United States, Canada, France and so on. We developed the inventory optimization system for Operation Nuclear Plants to resolve these problems. In this paper, we report a data flow process, data load and inventory calculation process. The main contribution of this paper is development of inventory optimization system which can be used in domestic power plants
Optimal Operation of a Josephson Parametric Amplifier for Vacuum Squeezing
Malnou, M.; Palken, D. A.; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.
2018-04-01
A Josephson parametric amplifier (JPA) can create squeezed states of microwave light, lowering the noise associated with certain quantum measurements. We experimentally study how the JPA's pump influences the phase-sensitive amplification and deamplification of a coherent tone's amplitude when that amplitude is commensurate with vacuum fluctuations. We predict and demonstrate that, by operating the JPA with a single current pump whose power is greater than the value that maximizes gain, the amplifier distortion is reduced and, consequently, squeezing is improved. Optimizing the singly pumped JPA's operation in this fashion, we directly observe 3.87 ±0.03 dB of vacuum squeezing over a bandwidth of 30 MHz.
Optimization of operation cycles in BWRs using neural networks
International Nuclear Information System (INIS)
Ortiz S, J. J.; Castillo, A.; Alejandro P, D.
2011-11-01
The first results of a system for the optimization of operation cycles in boiling water reactors by means of a multi state recurrent neural network are present in this work. The neural network finds the best combination of fuel cells; fuel reloads and control bars patterns previously designed, according to an energy function that qualifies the performance of the three partial solutions for the solution of the whole problem. The partial solutions are designed by means of optimization systems non couple among them and that can use any optimization technique. The phase of the fuel axial design is not made and the size of the axial areas is fixed during the optimization process. The methodology was applied to design a balance cycle of 18 months for the reactors of the nuclear power station of Laguna Verde. The results show that is possible to find combinations of partial solutions that in set represent good solutions to the complete design problem of an operation cycle of a nuclear reactor. The results are compared with others obtained previously by other techniques. This system was developed in platform Li nux and programmed in Fortran 95 taking advantage of the 8 nuclei of a work station Dell Precision T7400. (Author)
Optimal recovery of linear operators in non-Euclidean metrics
Energy Technology Data Exchange (ETDEWEB)
Osipenko, K Yu [Moscow State Aviation Technological University, Moscow (Russian Federation)
2014-10-31
The paper looks at problems concerning the recovery of operators from noisy information in non-Euclidean metrics. A number of general theorems are proved and applied to recovery problems for functions and their derivatives from the noisy Fourier transform. In some cases, a family of optimal methods is found, from which the methods requiring the least amount of original information are singled out. Bibliography: 25 titles.
Optimizing integrated airport surface and terminal airspace operations under uncertainty
Bosson, Christabelle S.
In airports and surrounding terminal airspaces, the integration of surface, arrival and departure scheduling and routing have the potential to improve the operations efficiency. Moreover, because both the airport surface and the terminal airspace are often altered by random perturbations, the consideration of uncertainty in flight schedules is crucial to improve the design of robust flight schedules. Previous research mainly focused on independently solving arrival scheduling problems, departure scheduling problems and surface management scheduling problems and most of the developed models are deterministic. This dissertation presents an alternate method to model the integrated operations by using a machine job-shop scheduling formulation. A multistage stochastic programming approach is chosen to formulate the problem in the presence of uncertainty and candidate solutions are obtained by solving sample average approximation problems with finite sample size. The developed mixed-integer-linear-programming algorithm-based scheduler is capable of computing optimal aircraft schedules and routings that reflect the integration of air and ground operations. The assembled methodology is applied to a Los Angeles case study. To show the benefits of integrated operations over First-Come-First-Served, a preliminary proof-of-concept is conducted for a set of fourteen aircraft evolving under deterministic conditions in a model of the Los Angeles International Airport surface and surrounding terminal areas. Using historical data, a representative 30-minute traffic schedule and aircraft mix scenario is constructed. The results of the Los Angeles application show that the integration of air and ground operations and the use of a time-based separation strategy enable both significant surface and air time savings. The solution computed by the optimization provides a more efficient routing and scheduling than the First-Come-First-Served solution. Additionally, a data driven analysis is
Operating point considerations for the Reference Theta-Pinch Reactor (RTPR)
International Nuclear Information System (INIS)
Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.
1976-01-01
Aspects of the continuing engineering design-point reassessment and optimization of the Reference Theta-Pinch Reactor (RTPR) are discussed. An updated interim design point which achieves a favorable energy balance and involves relaxed technological requirements, which nonetheless satisfy more rigorous physics and engineering constraints, is presented
International Nuclear Information System (INIS)
Castillo, Edward; Guerrero, Thomas; Castillo, Richard; White, Benjamin; Rojo, Javier
2012-01-01
Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. (paper)
Optimal Intermittent Operation of Water Distribution Networks under Water Shortage
Directory of Open Access Journals (Sweden)
mohamad Solgi
2017-07-01
Full Text Available Under water shortage conditions, it is necessary to exercise water consumption management practices in water distribution networks (WDN. Intermittent supply of water is one such practice that makes it possible to supply consumption nodal demands with the required pressure via water cutoff to some consumers during certain hours of the day. One of the most important issues that must be observed in this management practice is the equitable and uniform water distribution among the consumers. In the present study, uniformity in water distribution and minimum supply of water to all consumers are defined as justice and equity, respectively. Also, an optimization model has been developed to find an optimal intermittent supply schedule that ensures maximum number of demand nodes are supplied with water while the constraints on the operation of water distribution networks are also observed. To show the efficiency of the proposed model, it has been used in the Two-Loop distribution network under several different scenarios of water shortage. The optimization model has been solved using the honey bee mating optimization algorithm (HBMO linked to the hydraulic simulator EPANET. The results obtained confirm the efficiency of the proposed model in achieving an optimal intermittent supply schedule. Moreover, the model is found capable of distributing the available water in an equitable and just manner among all the consumers even under severe water shoratges.
78 FR 58570 - Environmental Assessment; Entergy Nuclear Operations, Inc., Big Rock Point
2013-09-24
... Assessment; Entergy Nuclear Operations, Inc., Big Rock Point AGENCY: Nuclear Regulatory Commission. ACTION... applicant or the licensee), for the Big Rock Point (BRP) Independent Spent Fuel Storage Installation (ISFSI... Rock Point (BRP) Independent Spent Fuel Storage Installation (ISFSI). II. Environmental Assessment (EA...
International Nuclear Information System (INIS)
Wu, Xia; Wu, Genhua
2014-01-01
Highlights: • A high efficient method for optimization of atomic clusters is developed. • Its performance is studied by optimizing Lennard-Jones clusters and Ag clusters. • The method is proved to be quite efficient. • A new Ag 61 cluster with stacking-fault face-centered cubic motif is found. - Abstract: Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag 61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron
Directory of Open Access Journals (Sweden)
KHANBABAZADEH Javad
2016-10-01
Full Text Available Distribution network designers and operators are trying to deliver electrical energy with high reliability and quality to their subscribers. Due to high losses in the distribution systems, using distributed generation can improves reliability, reduces losses and improves voltage profile of distribution network. Therefore, the choice of the location of these resources and also determining the amount of their generated power to maximize the benefits of this type of resource is an important issue which is discussed from different points of view today. In this paper, a new multi-objective optimal location and sizing of distributed generation resources is performed to maximize its benefits on the 33 bus distribution test network considering reliability and using a new Antlion Optimizer (ALO. The benefits for DG are considered as system losses reduction, system reliability improvement and benefits from the sale electricity and voltage profile improvement. For each of the mentioned benefits, the ALO algorithm is used to optimize the location and sizing of distributed generation resources. In order to verify the proposed approach, the obtained results have been analyzed and compared with the results of particle swarm optimization (PSO algorithm. The results show that the ALO has shown better performance in optimization problem solution versus PSO.
Energy Technology Data Exchange (ETDEWEB)
Liu, Youshan, E-mail: ysliu@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Teng, Jiwen, E-mail: jwteng@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Xu, Tao, E-mail: xutao@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101 (China); Badal, José, E-mail: badal@unizar.es [Physics of the Earth, Sciences B, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational
International Nuclear Information System (INIS)
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José
2017-01-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational
Integrated approach to optimize operation and maintenance costs for operating nuclear power plants
International Nuclear Information System (INIS)
2006-06-01
In the context of increasingly open electricity markets and the 'unbundling' of generating companies from former utility monopolies, an area of major concern is the economic performance of the existing fleet of nuclear power plants. Nuclear power, inevitably, must compete directly with other electricity generation sources. Coping with this competitive pressure is a challenge that the nuclear industry should meet if the nuclear option is to remain a viable one. This competitive environment has significant implications for nuclear plant operations, including, among others, the need for the more cost effective management of plant activities, and the greater use of analytical tools to balance the costs and benefits of proposed activities, in order to optimize operation and maintenance costs, and thus insure the economic competitiveness of existing nuclear power plants. In the framework of the activities on Nuclear Economic Performance Information System (NEPIS), the IAEA embarked in developing guidance on optimization of operation and maintenance costs for nuclear power plants. The report was prepared building on the fundamental that optimization of operation and maintenance costs of a nuclear power plant is a key component of a broader integrated business strategic planning process, having as overall result achievement of organization's business objectives. It provides advice on optimization of O and M costs in the framework of strategic business planning, with additional details on operational planning and controlling. This TECDOC was elaborated in 2004-2005 in the framework of the IAEA's programme on Nuclear Power Plant Operating Performance and Life Cycle Management, with the support of two consultants meetings and one technical meeting and based on contributions provided by participants. It can serve as a useful reference for the management and operation staff within utilities, nuclear power plant operators and regulators and other organizations involved in
The resilience of an operating point for a fusion power plant
Energy Technology Data Exchange (ETDEWEB)
Ward, David, E-mail: david.ward@ccfe.ac.uk; Kemp, Richard
2015-10-15
Highlights: • The need to control a power plant changes our view of the optimum design. • The need for control can be reduced by finding resilient design points. • It is important to include resilience and control in selecting design points. • Including these additional constraints reduces flexibility in choice of operating points. - Abstract: The operating point for fusion power plant design concepts is often determined by simultaneously satisfying the requirements of all of the main plant systems and finding an optimum solution, for instance the one with the lowest capital cost or cost of electricity. This static assessment takes no account of the sensitivity of that operating point to variations in key parameters and therefore includes no information about how difficult to adjust and control the chosen operating point may be. Control of the operation point is a large subject with much work still to be done, and is expected to play an increasing role in the future in choosing the optimum design point. Here we present results of two analyses: one relates to the ability to load follow, that is, to vary the power production in the light of varying demands for power from the electricity network; the other investigates in simple terms what choices we can make to improve the resilience of static operating points.
Optimal reservoir operation policies using novel nested algorithms
Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri
2015-04-01
Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested
International Nuclear Information System (INIS)
Yuan, Xiaohui; Ji, Bin; Zhang, Shuangquan; Tian, Hao; Chen, Zhihuan
2014-01-01
Highlights: • Dynamic load economic dispatch with wind power (DLEDW) model is established. • Markov chains combined with scenario analysis method are used to predict wind power. • Chance constrained technique is used to simulate the impacts of wind forecast error. • Improved artificial physical optimization algorithm is proposed to solve DLEDW. • Heuristic search strategies are applied to handle the constraints of DLEDW. - Abstract: Wind power, a kind of promising renewable energy resource, has recently been getting more attractive because of various environmental and economic considerations. But the penetration of wind power with its fluctuation nature has made the operation of power system more intractable. To coordinate the reliability and operation cost, this paper established a stochastic model of dynamic load economic dispatch with wind integration (DLEDW). In this model, constraints such as ramping up/down capacity, prohibited operating zone are considered and effects of valve-point are taken into account. Markov chains combined with scenario analysis method is used to generate predictive values of wind power and chance constrained programming (CCP) is applied to simulate the impacts of wind power fluctuation on system operation. An improved artificial physical optimization algorithm is presented to solve the DLEDW problem. Heuristic strategies based on the priority list and stochastic simulation techniques are proposed to handle the constraints. In addition, a local chaotic mutation strategy is applied to overcome the disadvantage of premature convergence of artificial physical optimization algorithm. Two test systems with and without wind power integration are used to verify the feasibility and effectiveness of the proposed method and the results are compared with those of gravitational search algorithm, particle swarm optimization and standard artificial physical optimization. The simulation results demonstrate that the proposed method has a
DEFF Research Database (Denmark)
Dollerup, Niels; Jepsen, Michael S.; Damkilde, Lars
2013-01-01
The artide describes a robust and effective implementation of the interior point optimization algorithm. The adopted method includes a precalculation step, which reduces the number of variables by fulfilling the equilibrium equations a priori. This work presents an improved implementation of the ...
DEFF Research Database (Denmark)
Dollerup, Niels; Jepsen, Michael S.; Frier, Christian
2014-01-01
A robust and effective finite element based implementation of lower bound limit state analysis applying an interior point formulation is presented in this paper. The lower bound formulation results in a convex optimization problem consisting of a number of linear constraints from the equilibrium...
Infeasible Interior-Point Methods for Linear Optimization Based on Large Neighborhood
Asadi, A.R.; Roos, C.
2015-01-01
In this paper, we design a class of infeasible interior-point methods for linear optimization based on large neighborhood. The algorithm is inspired by a full-Newton step infeasible algorithm with a linear convergence rate in problem dimension that was recently proposed by the second author.
Optimization Algorithms for Calculation of the Joint Design Point in Parallel Systems
DEFF Research Database (Denmark)
Enevoldsen, I.; Sørensen, John Dalsgaard
1992-01-01
In large structures it is often necessary to estimate the reliability of the system by use of parallel systems. Optimality criteria-based algorithms for calculation of the joint design point in a parallel system are described and efficient active set strategies are developed. Three possible...
A systemic approach for optimal cooling tower operation
International Nuclear Information System (INIS)
Cortinovis, Giorgia F.; Paiva, Jose L.; Song, Tah W.; Pinto, Jose M.
2009-01-01
The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate.
Energy Technology Data Exchange (ETDEWEB)
Wilson, Jr., Joe D. [Christopher Newport Univ., Newport News, VA (United States)
2003-01-01
The technology of Jefferson Laboratory's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) and Free Electron Laser (FEL) requires cooling from one of the world's largest 2K helium refrigerators known as the Central Helium Liquefier (CHL). The key characteristic of CHL is the ability to maintain a constant low vapor pressure over the large liquid helium inventory using a series of five cold compressors. The cold compressor system operates with a constrained discharge pressure over a range of suction pressures and mass flows to meet the operational requirements of CEBAF and FEL. The research topic is the prediction of the most thermodynamically efficient conditions for the system over its operating range of mass flows and vapor pressures with minimum disruption to JLab operations. The research goal is to find the operating points for each cold compressor for optimizing the overall system at any given flow and vapor pressure.
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operation of internal transmitter control... Transmitter Control Internal Transmitter Control Systems § 90.473 Operation of internal transmitter control systems through licensed fixed control points. An internal transmitter control system may be operated...
Optimization of operating regime of mass-diffusion cascades
International Nuclear Information System (INIS)
Chuzhinov, V.A.; Laguntsov, N.I.; Nikolaev, B.I.; Sulaberidze, G.A.
1975-01-01
This work deals with questions of the optimization of mass diffusion elements (columns or pumps) in cascades. Since the establishment and operation of real diffusion plants involves substantial outlays of material resources and energy, cascade optimization should be conducted in accordance with the criterion of the possibility of realizing further economies on the method and diffusion process. One of these indicators is the cost of the end product. Formulas are given for calculating the basic expenditures required for the production of an isotope in a cascade, and an analytical formula is obtained for assessing the cost of an enriched isotope mixture. Calculations are made of the influence of the steam flow rate on the cost of 99% 13 CH 4 and its constitutents, taking into account capital and power outlay on the construction and operation of the installation. It is demonstrated that as the result of a discrepancy between optimum power and capital outlays, the steam flow rate corresponding to the minimum cost is less than that corresponding to the maximum fractionating capacity of the column. In each specific case, optimization parameters should be selected having regard to the special features of the fractionating method and the fractionating apparatus. The results may be used in calculations of mass-diffusion fractionating installations, and also in comparisons of the effectiveness of the various methods used in the separation of these and other isotopes. (author)
Optimizing Environmental Flow Operation Rules based on Explicit IHA Constraints
Dongnan, L.; Wan, W.; Zhao, J.
2017-12-01
Multi-objective operation of reservoirs are increasingly asked to consider the environmental flow to support ecosystem health. Indicators of Hydrologic Alteration (IHA) is widely used to describe environmental flow regimes, but few studies have explicitly formulated it into optimization models and thus is difficult to direct reservoir release. In an attempt to incorporate the benefit of environmental flow into economic achievement, a two-objective reservoir optimization model is developed and all 33 hydrologic parameters of IHA are explicitly formulated into constraints. The benefit of economic is defined by Hydropower Production (HP) while the benefit of environmental flow is transformed into Eco-Index (EI) that combined 5 of the 33 IHA parameters chosen by principal component analysis method. Five scenarios (A to E) with different constraints are tested and solved by nonlinear programming. The case study of Jing Hong reservoir, located in the upstream of Mekong basin, China, shows: 1. A Pareto frontier is formed by maximizing on only HP objective in scenario A and on only EI objective in scenario B. 2. Scenario D using IHA parameters as constraints obtains the optimal benefits of both economic and ecological. 3. A sensitive weight coefficient is found in scenario E, but the trade-offs between HP and EI objectives are not within the Pareto frontier. 4. When the fraction of reservoir utilizable capacity reaches 0.8, both HP and EI capture acceptable values. At last, to make this modelmore conveniently applied to everyday practice, a simplified operation rule curve is extracted.
Improving operability of spouted beds using a simple optimizing control structure
Directory of Open Access Journals (Sweden)
N. A. CORRÊA
1999-12-01
Full Text Available In operations using spouted beds, it is of major importance, from an energy consumption point of view, to operate the process as close as possible to the minimum spout flow. At this point, the speed of the gas (for example, warm air in drying operations is greater than the amount of heat and mass transfer involved, although it only transfers the minimum amount of momentum to maintain the spout. Therefore, by staying close to this minimum flow condition, it is possible to perform a stable operation and to obtain energy savings not only in the heating of the gas but also in its displacement by blowers. In order to improve the operation of such processes, a study is carried out by implementing a simple optimizing control structure on a spouted bed experimental set-up. The air flow is regulated by a frequency inverter, at the speed of blower rotation. A PI controller was used and the set-point for the air flow rate is calculated on-line by a simple and well-known minimization method called Golden Section Search. This set-point is constantly updated with values very close to the actual minimum spout flow rate. To accomplish the calculations and data acquisitions, a microcomputer with an interface and an analog signal conditioner is used .
Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José
2017-05-01
The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant-Friedrichs-Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational
Optimal operation planning of radioactive waste processing system by fuzzy theory
International Nuclear Information System (INIS)
Yang, Jin Yeong; Lee, Kun Jai
2000-01-01
This study is concerned with the applications of linear goal programming and fuzzy theory to the analysis of management and operational problems in the radioactive processing system (RWPS). The developed model is validated and verified using actual data obtained from the RWPS at Kyoto University in Japan. The solution by goal programming and fuzzy theory would show the optimal operation point which is to maximize the total treatable radioactive waste volume and minimize the released radioactivity of liquid waste even under the restricted resources. (orig.)
A trust region interior point algorithm for optimal power flow problems
Energy Technology Data Exchange (ETDEWEB)
Wang Min [Hefei University of Technology (China). Dept. of Electrical Engineering and Automation; Liu Shengsong [Jiangsu Electric Power Dispatching and Telecommunication Company (China). Dept. of Automation
2005-05-01
This paper presents a new algorithm that uses the trust region interior point method to solve nonlinear optimal power flow (OPF) problems. The OPF problem is solved by a primal/dual interior point method with multiple centrality corrections as a sequence of linearized trust region sub-problems. It is the trust region that controls the linear step size and ensures the validity of the linear model. The convergence of the algorithm is improved through the modification of the trust region sub-problem. Numerical results of standard IEEE systems and two realistic networks ranging in size from 14 to 662 buses are presented. The computational results show that the proposed algorithm is very effective to optimal power flow applications, and favors the successive linear programming (SLP) method. Comparison with the predictor/corrector primal/dual interior point (PCPDIP) method is also made to demonstrate the superiority of the multiple centrality corrections technique. (author)
Bilevel Optimization for Scene Segmentation of LiDAR Point Cloud
Directory of Open Access Journals (Sweden)
LI Minglei
2018-02-01
Full Text Available The segmentation of point clouds obtained by light detection and ranging (LiDAR systems is a critical step for many tasks,such as data organization,reconstruction and information extraction.In this paper,we propose a bilevel progressive optimization algorithm based on the local differentiability.First,we define the topological relation and distance metric of points in the framework of Riemannian geometry,and in the point-based level using k-means method generates over-segmentation results,e.g.super voxels.Then these voxels are formulated as nodes which consist a minimal spanning tree.High level features are extracted from voxel structures,and a graph-based optimization method is designed to yield the final adaptive segmentation results.The implementation experiments on real data demonstrate that our method is efficient and superior to state-of-the-art methods.
Directory of Open Access Journals (Sweden)
Yutong Liu
2012-01-01
Full Text Available Purpose. To develop a technique to automate landmark selection for point-based interpolating transformations for nonlinear medical image registration. Materials and Methods. Interpolating transformations were calculated from homologous point landmarks on the source (image to be transformed and target (reference image. Point landmarks are placed at regular intervals on contours of anatomical features, and their positions are optimized along the contour surface by a function composed of curvature similarity and displacements of the homologous landmarks. The method was evaluated in two cases (=5 each. In one, MRI was registered to histological sections; in the second, geometric distortions in EPI MRI were corrected. Normalized mutual information and target registration error were calculated to compare the registration accuracy of the automatically and manually generated landmarks. Results. Statistical analyses demonstrated significant improvement (<0.05 in registration accuracy by landmark optimization in most data sets and trends towards improvement (<0.1 in others as compared to manual landmark selection.
Sobh, Tarek M.; Tibrewal, Abhilasha
2006-01-01
Operating systems theory primarily concentrates on the optimal use of computing resources. This paper presents an alternative approach to teaching and studying operating systems design and concepts by way of parametrically optimizing critical operating system functions. Detailed examples of two critical operating systems functions using the…
A quantum particle swarm optimizer with chaotic mutation operator
International Nuclear Information System (INIS)
Coelho, Leandro dos Santos
2008-01-01
Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm that shares many similarities with evolutionary computation techniques. However, the PSO is driven by the simulation of a social psychological metaphor motivated by collective behaviors of bird and other social organisms instead of the survival of the fittest individual. Inspired by the classical PSO method and quantum mechanics theories, this work presents a novel Quantum-behaved PSO (QPSO) using chaotic mutation operator. The application of chaotic sequences based on chaotic Zaslavskii map instead of random sequences in QPSO is a powerful strategy to diversify the QPSO population and improve the QPSO's performance in preventing premature convergence to local minima. The simulation results demonstrate good performance of the QPSO in solving a well-studied continuous optimization problem of mechanical engineering design
[Numerical simulation and operation optimization of biological filter].
Zou, Zong-Sen; Shi, Han-Chang; Chen, Xiang-Qiang; Xie, Xiao-Qing
2014-12-01
BioWin software and two sensitivity analysis methods were used to simulate the Denitrification Biological Filter (DNBF) + Biological Aerated Filter (BAF) process in Yuandang Wastewater Treatment Plant. Based on the BioWin model of DNBF + BAF process, the operation data of September 2013 were used for sensitivity analysis and model calibration, and the operation data of October 2013 were used for model validation. The results indicated that the calibrated model could accurately simulate practical DNBF + BAF processes, and the most sensitive parameters were the parameters related to biofilm, OHOs and aeration. After the validation and calibration of model, it was used for process optimization with simulating operation results under different conditions. The results showed that, the best operation condition for discharge standard B was: reflux ratio = 50%, ceasing methanol addition, influent C/N = 4.43; while the best operation condition for discharge standard A was: reflux ratio = 50%, influent COD = 155 mg x L(-1) after methanol addition, influent C/N = 5.10.
Optimal operation of integrated processes. Studies on heat recovery systems
Energy Technology Data Exchange (ETDEWEB)
Glemmestad, Bjoern
1997-12-31
Separators, reactors and a heat exchanger network (HEN) for heat recovery are important parts of an integrated plant. This thesis deals with the operation of HENs, in particular, optimal operation. The purpose of heat integration is to save energy, but the HEN also introduces new interactions and feedback into the overall plant. A prerequisite for optimisation is that there are extra degrees of freedom left after regulatory control is implemented. It is shown that extra degrees of freedom may not always be utilized for energy optimisation, and a quantitative expression for the degrees of freedom that can be so utilized are presented. A simplified expression that is often valid is also deduced. The thesis presents some improvements and generalisations of a structure based method that has been proposed earlier. Structural information is used to divide possible manipulations into three categories depending on how each manipulation affects the utility consumption. By means of these categories and two heuristic rules for operability, the possible manipulations are ordered in a priority table. This table is used to determine which manipulation should be preferred and which manipulation should be selected if an active manipulation is saturated. It is shown that the method may correspond to split-range control. A method that uses parametric information in addition to structural information is proposed. In this method, the optimal control structure is found through solving an integer programming problem. The thesis also proposes a method that combines the use of steady state optimisation and optimal selection of measurements. 86 refs., 46 figs., 8 tabs.
An efficient global energy optimization approach for robust 3D plane segmentation of point clouds
Dong, Zhen; Yang, Bisheng; Hu, Pingbo; Scherer, Sebastian
2018-03-01
Automatic 3D plane segmentation is necessary for many applications including point cloud registration, building information model (BIM) reconstruction, simultaneous localization and mapping (SLAM), and point cloud compression. However, most of the existing 3D plane segmentation methods still suffer from low precision and recall, and inaccurate and incomplete boundaries, especially for low-quality point clouds collected by RGB-D sensors. To overcome these challenges, this paper formulates the plane segmentation problem as a global energy optimization because it is robust to high levels of noise and clutter. First, the proposed method divides the raw point cloud into multiscale supervoxels, and considers planar supervoxels and individual points corresponding to nonplanar supervoxels as basic units. Then, an efficient hybrid region growing algorithm is utilized to generate initial plane set by incrementally merging adjacent basic units with similar features. Next, the initial plane set is further enriched and refined in a mutually reinforcing manner under the framework of global energy optimization. Finally, the performances of the proposed method are evaluated with respect to six metrics (i.e., plane precision, plane recall, under-segmentation rate, over-segmentation rate, boundary precision, and boundary recall) on two benchmark datasets. Comprehensive experiments demonstrate that the proposed method obtained good performances both in high-quality TLS point clouds (i.e., http://SEMANTIC3D.NET)
Optimal operating conditions for maximum biogas production in anaerobic bioreactors
International Nuclear Information System (INIS)
Balmant, W.; Oliveira, B.H.; Mitchell, D.A.; Vargas, J.V.C.; Ordonez, J.C.
2014-01-01
The objective of this paper is to demonstrate the existence of optimal residence time and substrate inlet mass flow rate for maximum methane production through numerical simulations performed with a general transient mathematical model of an anaerobic biodigester introduced in this study. It is herein suggested a simplified model with only the most important reaction steps which are carried out by a single type of microorganisms following Monod kinetics. The mathematical model was developed for a well mixed reactor (CSTR – Continuous Stirred-Tank Reactor), considering three main reaction steps: acidogenesis, with a μ max of 8.64 day −1 and a K S of 250 mg/L, acetogenesis, with a μ max of 2.64 day −1 and a K S of 32 mg/L, and methanogenesis, with a μ max of 1.392 day −1 and a K S of 100 mg/L. The yield coefficients were 0.1-g-dry-cells/g-pollymeric compound for acidogenesis, 0.1-g-dry-cells/g-propionic acid and 0.1-g-dry-cells/g-butyric acid for acetogenesis and 0.1 g-dry-cells/g-acetic acid for methanogenesis. The model describes both the transient and the steady-state regime for several different biodigester design and operating conditions. After model experimental validation, a parametric analysis was performed. It was found that biogas production is strongly dependent on the input polymeric substrate and fermentable monomer concentrations, but fairly independent of the input propionic, acetic and butyric acid concentrations. An optimisation study was then conducted and optimal residence time and substrate inlet mass flow rate were found for maximum methane production. The optima found were very sharp, showing a sudden drop of methane mass flow rate variation from the observed maximum to zero, within a 20% range around the optimal operating parameters, which stresses the importance of their identification, no matter how complex the actual bioreactor design may be. The model is therefore expected to be a useful tool for simulation, design, control and
Provisional-Ideal-Point-Based Multi-objective Optimization Method for Drone Delivery Problem
Omagari, Hiroki; Higashino, Shin-Ichiro
2018-04-01
In this paper, we proposed a new evolutionary multi-objective optimization method for solving drone delivery problems (DDP). It can be formulated as a constrained multi-objective optimization problem. In our previous research, we proposed the "aspiration-point-based method" to solve multi-objective optimization problems. However, this method needs to calculate the optimal values of each objective function value in advance. Moreover, it does not consider the constraint conditions except for the objective functions. Therefore, it cannot apply to DDP which has many constraint conditions. To solve these issues, we proposed "provisional-ideal-point-based method." The proposed method defines a "penalty value" to search for feasible solutions. It also defines a new reference solution named "provisional-ideal point" to search for the preferred solution for a decision maker. In this way, we can eliminate the preliminary calculations and its limited application scope. The results of the benchmark test problems show that the proposed method can generate the preferred solution efficiently. The usefulness of the proposed method is also demonstrated by applying it to DDP. As a result, the delivery path when combining one drone and one truck drastically reduces the traveling distance and the delivery time compared with the case of using only one truck.
Two-Stage Chaos Optimization Search Application in Maximum Power Point Tracking of PV Array
Directory of Open Access Journals (Sweden)
Lihua Wang
2014-01-01
Full Text Available In order to deliver the maximum available power to the load under the condition of varying solar irradiation and environment temperature, maximum power point tracking (MPPT technologies have been used widely in PV systems. Among all the MPPT schemes, the chaos method is one of the hot topics in recent years. In this paper, a novel two-stage chaos optimization method is presented which can make search faster and more effective. In the process of proposed chaos search, the improved logistic mapping with the better ergodic is used as the first carrier process. After finding the current optimal solution in a certain guarantee, the power function carrier as the secondary carrier process is used to reduce the search space of optimized variables and eventually find the maximum power point. Comparing with the traditional chaos search method, the proposed method can track the change quickly and accurately and also has better optimization results. The proposed method provides a new efficient way to track the maximum power point of PV array.
Simulation-optimization model of reservoir operation based on target storage curves
Directory of Open Access Journals (Sweden)
Hong-bin Fang
2014-10-01
Full Text Available This paper proposes a new storage allocation rule based on target storage curves. Joint operating rules are also proposed to solve the operation problems of a multi-reservoir system with joint demands and water transfer-supply projects. The joint operating rules include a water diversion rule to determine the amount of diverted water in a period, a hedging rule based on an aggregated reservoir to determine the total release from the system, and a storage allocation rule to specify the release from each reservoir. A simulation-optimization model was established to optimize the key points of the water diversion curves, the hedging rule curves, and the target storage curves using the improved particle swarm optimization (IPSO algorithm. The multi-reservoir water supply system located in Liaoning Province, China, including a water transfer-supply project, was employed as a case study to verify the effectiveness of the proposed join operating rules and target storage curves. The results indicate that the proposed operating rules are suitable for the complex system. The storage allocation rule based on target storage curves shows an improved performance with regard to system storage distribution.
Cooperative Optimal Operation of Wind-Storage Facilities
DEFF Research Database (Denmark)
Farashbashi-Astaneh, Seyed-Mostafa; Hu, Weihao; Chen, Zhe
2014-01-01
investment cost. We suggest benefitting the storage unit as a regulation service provider beside its normal operation for mitigating wind power imbalances. This idea comes from the fact that storage units have a fast ramping capability which is necessary to meet close to real-time regulation needs......As the penetration of wind power increases in power systems across the world, wind forecast errors become an emerging problem. Storage units are reliable tools to be used in cooperation with wind farms to mitigate imbalance penalties. Nevertheless they are not still economically viable due to huge....... In this paper a framework is proposed to formulate the optimal design of storage unit’s operation under different scenarios. These scenarios include whether the wind farm is actually generating more or less than the scheduled level submitted to day-ahead market. The results emphasize that the deployment...
Multiobjective Optimization of a Counterrotating Type Pump-Turbine Unit Operated at Turbine Mode
Directory of Open Access Journals (Sweden)
Jin-Hyuk Kim
2014-05-01
Full Text Available A multiobjective optimization for improving the turbine output and efficiency of a counterrotating type pump-turbine unit operated at turbine mode was carried out in this work. The blade geometry of both the runners was optimized using a hybrid multiobjective evolutionary algorithm coupled with a surrogate model. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model were discretized by finite volume approximations and solved on hexahedral grids to analyze the flow in the pump-turbine unit. As major hydrodynamic performance parameters, the turbine output and efficiency were selected as objective functions with two design variables related to the hub profiles of both the runner blades. These objectives were numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. Response surface approximation models for the objectives were constructed based on the objective function values at the design points. A fast nondominated sorting genetic algorithm for the local search coupled with the response surface approximation models was applied to determine the global Pareto-optimal solutions. The trade-off between the two objectives was determined and described with respect to the Pareto-optimal solutions. The results of this work showed that the turbine outputs and efficiencies of optimized pump-turbine units were simultaneously improved in comparison to the reference unit.
Ginting, E.; Tambunanand, M. M.; Syahputri, K.
2018-02-01
Evolutionary Operation Methods (EVOP) is a method that is designed used in the process of running or operating routinely in the company to enables high productivity. Quality is one of the critical factors for a company to win the competition. Because of these conditions, the research for products quality has been done by gathering the production data of the company and make a direct observation to the factory floor especially the drying department to identify the problem which is the high water content in the mosquito incense coil. PT.X which is producing mosquito coils attempted to reduce product defects caused by the inaccuracy of operating conditions. One of the parameters of good quality insect repellent that is water content, that if the moisture content is too high then the product easy to mold and broken, and vice versa if it is too low the products are easily broken and burn shorter hours. Three factors that affect the value of the optimal water content, the stirring time, drying temperature and drying time. To obtain the required conditions Evolutionary Operation (EVOP) methods is used. Evolutionary Operation (EVOP) is used as an efficient technique for optimization of two or three variable experimental parameters using two-level factorial designs with center point. Optimal operating conditions in the experiment are stirring time performed for 20 minutes, drying temperature at 65°C, and drying time for 130 minutes. The results of the analysis based on the method of Evolutionary Operation (EVOP) value is the optimum water content of 6.90%, which indicates the value has approached the optimal in a production plant that is 7%.
DEFF Research Database (Denmark)
Demenikov, Mads
2011-01-01
to optimization results based on full-reference image measures of restored images. In comparison with full-reference measures, the kurtosis measure is fast to compute and requires no images, noise distributions, or alignment of restored images, but only the signal-to-noise-ratio. © 2011 Optical Society of America.......I propose a novel, but yet simple, no-reference, objective image quality measure based on the kurtosis of the restored point spread function. Using this measure, I optimize several phase masks for extended-depth-of-field in hybrid imaging systems and obtain results that are identical...
SUMMARY AND EVALUATION OF STARTUP AND OPERATING EXPERIENCE AT INDIAN POINT STATION
Energy Technology Data Exchange (ETDEWEB)
Freyberg, R. H.; Prestele, J. A.
1963-09-15
A description of the Indian Point Power Station is given aiong with a summary and evaluation of startup and operating experience. Equipment failures and problems and various corrective measures are also outlined. (C.E.S.)
Point of Maintenance Ruggedized Operational Device Evaluation and Observation Test Report
National Research Council Canada - National Science Library
Gorman, Megan
2002-01-01
.... The Ruggedized Operational Device Evaluation and Observation (RODEO) test examined hardware packaging, software user interface, and environmental factors associated with the usability of potential Point of Maintenance (POMx) electronic tools...
Excited meson radiative transitions from lattice QCD using variationally optimized operators
Energy Technology Data Exchange (ETDEWEB)
Shultz, Christian J. [Old Dominion Univ., Norfolk, VA (United States); Dudek, Jozef J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2015-06-02
We explore the use of 'optimized' operators, designed to interpolate only a single meson eigenstate, in three-point correlation functions with a vector-current insertion. These operators are constructed as linear combinations in a large basis of meson interpolating fields using a variational analysis of matrices of two-point correlation functions. After performing such a determination at both zero and non-zero momentum, we compute three-point functions and are able to study radiative transition matrix elements featuring excited state mesons. The required two- and three-point correlation functions are efficiently computed using the distillation framework in which there is a factorization between quark propagation and operator construction, allowing for a large number of meson operators of definite momentum to be considered. We illustrate the method with a calculation using anisotopic lattices having three flavors of dynamical quark all tuned to the physical strange quark mass, considering form-factors and transitions of pseudoscalar and vector meson excitations. In conclusion, the dependence on photon virtuality for a number of form-factors and transitions is extracted and some discussion of excited-state phenomenology is presented.
Point-form electrodynamics and the construction of conserved current operators
International Nuclear Information System (INIS)
Klink, W.H.
2003-01-01
A general procedure for constructing conserved electromagnetic current operators in the presence of hadronic interactions is given. The four-momentum operator in point-form relativistic quantum mechanics is written as the sum of hadronic, photon, and electromagnetic four-momentum operators, where the electromagnetic four-momentum operator is generated from a vertex operator, in which a conserved current operator is contracted with the four-vector potential operator. The current operator is the sum of free, dynamically determined and model-dependent operators. The dynamically determined current operator is formed form a free current operator and the interacting hadronic four-momentum operator, in such a way that the sum of free and dynamically determined current operators is conserved with respect to the hadronic interactions. The model-dependent operator is a many-body current operator, formed as the commutator of an antisymmetric operator with the hadronic four-momentum operator. It is shown that such an operator is also conserved with respect to the hadronic interactions and also does not renormalize the charge. Refs. 9 (author)
Multi-objective optimal operation of smart reconfigurable distribution grids
Directory of Open Access Journals (Sweden)
Abdollah Kavousi-Fard
2016-02-01
Full Text Available Reconfiguration is a valuable technique that can support the distribution grid from different aspects such as operation cost and loss reduction, reliability improvement, and voltage stability enhancement. An intelligent and efficient optimization framework, however, is required to reach the desired efficiency through the reconfiguration strategy. This paper proposes a new multi-objective optimization model to make use of the reconfiguration strategy for minimizing the power losses, improving the voltage profile, and enhancing the load balance in distribution grids. The proposed model employs the min-max fuzzy approach to find the most satisfying solution from a set of nondominated solutions in the problem space. Due to the high complexity and the discrete nature of the proposed model, a new optimization method based on harmony search (HS algorithm is further proposed. Moreover, a new modification method is suggested to increase the harmony memory diversity in the improvisation stage and increase the convergence ability of the algorithm. The feasibility and satisfying performance of the proposed model are examined on the IEEE 32-bus distribution system.
Workforce Optimization for Bank Operation Centers: A Machine Learning Approach
Directory of Open Access Journals (Sweden)
Sefik Ilkin Serengil
2017-12-01
Full Text Available Online Banking Systems evolved and improved in recent years with the use of mobile and online technologies, performing money transfer transactions on these channels can be done without delay and human interaction, however commercial customers still tend to transfer money on bank branches due to several concerns. Bank Operation Centers serve to reduce the operational workload of branches. Centralized management also offers personalized service by appointed expert employees in these centers. Inherently, workload volume of money transfer transactions changes dramatically in hours. Therefore, work-force should be planned instantly or early to save labor force and increase operational efficiency. This paper introduces a hybrid multi stage approach for workforce planning in bank operation centers by the application of supervised and unsu-pervised learning algorithms. Expected workload would be predicted as supervised learning whereas employees are clus-tered into different skill groups as unsupervised learning to match transactions and proper employees. Finally, workforce optimization is analyzed for proposed approach on production data.
Operational characteristics optimization of human-computer system
Directory of Open Access Journals (Sweden)
Zulquernain Mallick
2010-09-01
Full Text Available Computer operational parameters are having vital influence on the operators efficiency from readability viewpoint. Four parameters namely font, text/background color, viewing angle and viewing distance are analyzed. The text reading task, in the form of English text, was presented on the computer screen to the participating subjects and their performance, measured in terms of number of words read per minute (NWRPM, was recorded. For the purpose of optimization, the Taguchi method is used to find the optimal parameters to maximize operators’ efficiency for performing readability task. Two levels of each parameter have been considered in this study. An orthogonal array, the signal-to-noise (S/N ratio and the analysis of variance (ANOVA were employed to investigate the operators’ performance/efficiency. Results showed that Times Roman font, black text on white background, 40 degree viewing angle and 60 cm viewing distance, the subjects were quite comfortable, efficient and read maximum number of words per minute. Text/background color was dominant parameter with a percentage contribution of 76.18% towards the laid down objective followed by font type at 18.17%, viewing distance 7.04% and viewing angle 0.58%. Experimental results are provided to confirm the effectiveness of this approach.
Liu, Jianguo; Yang, Bo; Chen, Changzhen
2013-02-01
The optimization of operating parameters for the isolation of peroxidase from horseradish (Armoracia rusticana) roots with ultrafiltration (UF) technology was systemically studied. The effects of UF operating conditions on the transmission of proteins were quantified using the parameter scanning UF. These conditions included solution pH, ionic strength, stirring speed and permeate flux. Under optimized conditions, the purity of horseradish peroxidase (HRP) obtained was greater than 84 % after a two-stage UF process and the recovery of HRP from the feedstock was close to 90 %. The resulting peroxidase product was then analysed by isoelectric focusing, SDS-PAGE and circular dichroism, to confirm its isoelectric point, molecular weight and molecular secondary structure. The effects of calcium ion on HRP specific activities were also experimentally determined.
Energy Technology Data Exchange (ETDEWEB)
Ilo, Albana [Siemens AG, Wien (Austria); Schaffer, Walter; Rieder, Thomas [Salzburg Netz GmbH, Salzburg (Austria); Dzafic, Izudin [Siemens AG, Nuernberg (Germany)
2012-07-01
A holistic approach of power system control that includes all voltage levels from highest to low voltage is provided. The power grid is conceived as a supply chain. The medium voltage grid represents the central link. The implemented automatic voltage control and the dynamic operation optimization are based on Distribution System State Estimator (DSSE) and Volt/Var Control (VVC) applications. The last one realizes the dynamic optimization of distribution network combining the reactive power of the decentralized generation, capacitors and voltage set points of on-line tap changers. Application of this method has shown, that by using the dynamic voltage control the grid can be stable operated near the low voltage limit. The conservation voltage reduction can be applied in real time. Furthermore the integration of the decentralized generation is facilitated with minimal costs. Until now in this regard required network expansion can be prevented or delayed. (orig.)
Triple solutions for multi-point boundary-value problem with p-Laplace operator
Directory of Open Access Journals (Sweden)
Yansheng Liu
2009-11-01
Full Text Available Using a fixed point theorem due to Avery and Peterson, this article shows the existence of solutions for multi-point boundary-value problem with p-Laplace operator and parameters. Also, we present an example to illustrate the results obtained.
Optimality with feedback control in relativistic dynamics of a mass point. Part 1
International Nuclear Information System (INIS)
Blaquiere, A.; Pauchard, M.; Tahri-Yousfi, N.; Wickers, D.
1984-01-01
This article is an account of part of a research task currently in progress; it deals with relativistic dynamics of a mass-point from the point of view of the theory of optimal feedback control. In the first part, the theoretical frame is presented with an application to the case of special Relativity. This application shows that the way followed in this article is a natural one for approaching Wave mechanics, and that it closely parallels the way along which Louis de Broglie introduced Wave mechanics [fr
On Implementing a Homogeneous Interior-Point Algorithm for Nonsymmetric Conic Optimization
DEFF Research Database (Denmark)
Skajaa, Anders; Jørgensen, John Bagterp; Hansen, Per Christian
Based on earlier work by Nesterov, an implementation of a homogeneous infeasible-start interior-point algorithm for solving nonsymmetric conic optimization problems is presented. Starting each iteration from (the vicinity of) the central path, the method computes (nearly) primal-dual symmetric...... approximate tangent directions followed by a purely primal centering procedure to locate the next central primal-dual point. Features of the algorithm include that it makes use only of the primal barrier function, that it is able to detect infeasibilities in the problem and that no phase-I method is needed...
DEFF Research Database (Denmark)
Structure from Motion (SFM) systems are composed of cameras and structure in the form of 3D points and other features. It is most often that the structure components outnumber the cameras by a great margin. It is not uncommon to have a configuration with 3 cameras observing more than 500 3D points...... an overview of existing triangulation methods with emphasis on performance versus optimality, and will suggest a fast triangulation algorithm based on linear constraints. The structure and camera motion estimation in a SFM system is based on the minimization of some norm of the reprojection error between...
International Nuclear Information System (INIS)
Jing, Z.X.; Jiang, X.S.; Wu, Q.H.; Tang, W.H.; Hua, B.
2014-01-01
This paper presents a comprehensive model of a small-scale integrated energy based district heating and cooling (DHC) system located in a residential area of hot-summer and cold-winter zone, which makes joint use of wind energy, solar energy, natural gas and electric energy. The model includes an off-grid wind turbine generator, heat producers, chillers, a water supply network and terminal loads. This research also investigates an optimal operating strategy based on Group Search Optimizer (GSO), through which the daily running cost of the system is optimized in both the heating and cooling modes. The strategy can be used to find the optimal number of operating chillers, optimal outlet water temperature set points of boilers and optimal water flow set points of pumps, taking into account cost functions and various operating constraints. In order to verify the model and the optimal operating strategy, performance tests have been undertaken using MATLAB. The simulation results prove the validity of the model and show that the strategy is able to minimize the system operation cost. The proposed system is evaluated in comparison with a conventional separation production (SP) system. The feasibility of investment for the DHC system is also discussed. The comparative results demonstrate the investment feasibility, the significant energy saving and the cost reduction, achieved in daily operation in an environment, where there are varying heating loads, cooling loads, wind speeds, solar radiations and electricity prices. - Highlights: • A model of a small-scale integrated energy based DHC system is presented. • An off-grid wind generator used for water heating is embedded in the model. • An optimal control strategy is studied to optimize the running cost of the system. • The designed system is proved to be energy efficient and cost effective in operation
Optimal Operation of Interdependent Power Systems and Electrified Transportation Networks
Directory of Open Access Journals (Sweden)
M. Hadi Amini
2018-01-01
Full Text Available Electrified transportation and power systems are mutually coupled networks. In this paper, a novel framework is developed for interdependent power and transportation networks. Our approach constitutes solving an iterative least cost vehicle routing process, which utilizes the communication of electrified vehicles (EVs with competing charging stations, to exchange data such as electricity price, energy demand, and time of arrival. The EV routing problem is solved to minimize the total cost of travel using the Dijkstra algorithm with the input from EVs battery management system, electricity price from charging stations, powertrain component efficiencies and transportation network traffic conditions. Through the bidirectional communication of EVs with competing charging stations, EVs’ charging demand estimation is done much more accurately. Then the optimal power flow problem is solved for the power system, to find the locational marginal price at load buses where charging stations are connected. Finally, the electricity prices were communicated from the charging stations to the EVs, and the loop is closed. Locational electricity price acts as the shared parameter between the two optimization problems, i.e., optimal power flow and optimal routing problem. Electricity price depends on the power demand, which is affected by the charging of EVs. On the other hand, location of EV charging stations and their different pricing strategies might affect the routing decisions of the EVs. Our novel approach that combines the electrified transportation with power system operation, holds tremendous potential for solving electrified transportation issues and reducing energy costs. The effectiveness of the proposed approach is demonstrated using Shanghai transportation network and IEEE 9-bus test system. The results verify the cost-savings for both power system and transportation networks.
Energy Technology Data Exchange (ETDEWEB)
Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.; Chen, Yousu; Trudnowski, Daniel J.; Diao, Ruisheng; Fuller, Jason C.; Mittelstadt, William A.; Hauer, John F.; Dagle, Jeffery E.
2010-10-18
Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis, also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.
Point-based warping with optimized weighting factors of displacement vectors
Pielot, Ranier; Scholz, Michael; Obermayer, Klaus; Gundelfinger, Eckart D.; Hess, Andreas
2000-06-01
The accurate comparison of inter-individual 3D image brain datasets requires non-affine transformation techniques (warping) to reduce geometric variations. Constrained by the biological prerequisites we use in this study a landmark-based warping method with weighted sums of displacement vectors, which is enhanced by an optimization process. Furthermore, we investigate fast automatic procedures for determining landmarks to improve the practicability of 3D warping. This combined approach was tested on 3D autoradiographs of Gerbil brains. The autoradiographs were obtained after injecting a non-metabolized radioactive glucose derivative into the Gerbil thereby visualizing neuronal activity in the brain. Afterwards the brain was processed with standard autoradiographical methods. The landmark-generator computes corresponding reference points simultaneously within a given number of datasets by Monte-Carlo-techniques. The warping function is a distance weighted exponential function with a landmark- specific weighting factor. These weighting factors are optimized by a computational evolution strategy. The warping quality is quantified by several coefficients (correlation coefficient, overlap-index, and registration error). The described approach combines a highly suitable procedure to automatically detect landmarks in autoradiographical brain images and an enhanced point-based warping technique, optimizing the local weighting factors. This optimization process significantly improves the similarity between the warped and the target dataset.
78 FR 44881 - Drawbridge Operation Regulation; York River, Between Yorktown and Gloucester Point, VA
2013-07-25
... deviation from the operating schedule that governs the operation of the Coleman Memorial Bridge (US 17/George P. Coleman Memorial Swing Bridge) across the York River, mile 7.0, between Gloucester Point and Yorktown, VA. This deviation is necessary to facilitate maintenance work on the moveable spans on the...
47 CFR 90.471 - Points of operation in internal transmitter control systems.
2010-10-01
...) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Transmitter Control Internal Transmitter Control Systems § 90.471 Points of operation in internal transmitter control systems. The... licensee for internal communications and transmitter control purposes. Operating positions in internal...
Singular Spectrum Near a Singular Point of Friedrichs Model Operators of Absolute Type
International Nuclear Information System (INIS)
Iakovlev, Serguei I.
2006-01-01
In L 2 (R) we consider a family of self adjoint operators of the Friedrichs model: A m =|t| m +V. Here |t| m is the operator of multiplication by the corresponding function of the independent variable t element of R, and (perturbation) is a trace-class integral operator with a continuous Hermitian kernel ν(t,x) satisfying some smoothness condition. These absolute type operators have one singular point of order m>0. Conditions on the kernel ν(t,x) are found guaranteeing the absence of the point spectrum and the singular continuous one of such operators near the origin. These conditions are actually necessary and sufficient. They depend on the finiteness of the rank of a perturbation operator and on the order of singularity. The sharpness of these conditions is confirmed by counterexamples
Comparison of Optimization and Two-point Methods in Estimation of Soil Water Retention Curve
Ghanbarian-Alavijeh, B.; Liaghat, A. M.; Huang, G.
2009-04-01
Soil water retention curve (SWRC) is one of the soil hydraulic properties in which its direct measurement is time consuming and expensive. Since, its measurement is unavoidable in study of environmental sciences i.e. investigation of unsaturated hydraulic conductivity and solute transport, in this study the attempt is to predict soil water retention curve from two measured points. By using Cresswell and Paydar (1996) method (two-point method) and an optimization method developed in this study on the basis of two points of SWRC, parameters of Tyler and Wheatcraft (1990) model (fractal dimension and air entry value) were estimated and then water content at different matric potentials were estimated and compared with their measured values (n=180). For each method, we used both 3 and 1500 kPa (case 1) and 33 and 1500 kPa (case 2) as two points of SWRC. The calculated RMSE values showed that in the Creswell and Paydar (1996) method, there exists no significant difference between case 1 and case 2. However, the calculated RMSE value in case 2 (2.35) was slightly less than case 1 (2.37). The results also showed that the developed optimization method in this study had significantly less RMSE values for cases 1 (1.63) and 2 (1.33) rather than Cresswell and Paydar (1996) method.
Directory of Open Access Journals (Sweden)
B. Thamaraikannan
2014-01-01
Full Text Available This paper studies in detail the background and implementation of a teaching-learning based optimization (TLBO algorithm with differential operator for optimization task of a few mechanical components, which are essential for most of the mechanical engineering applications. Like most of the other heuristic techniques, TLBO is also a population-based method and uses a population of solutions to proceed to the global solution. A differential operator is incorporated into the TLBO for effective search of better solutions. To validate the effectiveness of the proposed method, three typical optimization problems are considered in this research: firstly, to optimize the weight in a belt-pulley drive, secondly, to optimize the volume in a closed coil helical spring, and finally to optimize the weight in a hollow shaft. have been demonstrated. Simulation result on the optimization (mechanical components problems reveals the ability of the proposed methodology to find better optimal solutions compared to other optimization algorithms.
Nazemizadeh, M.; Rahimi, H. N.; Amini Khoiy, K.
2012-03-01
This paper presents an optimal control strategy for optimal trajectory planning of mobile robots by considering nonlinear dynamic model and nonholonomic constraints of the system. The nonholonomic constraints of the system are introduced by a nonintegrable set of differential equations which represent kinematic restriction on the motion. The Lagrange's principle is employed to derive the nonlinear equations of the system. Then, the optimal path planning of the mobile robot is formulated as an optimal control problem. To set up the problem, the nonlinear equations of the system are assumed as constraints, and a minimum energy objective function is defined. To solve the problem, an indirect solution of the optimal control method is employed, and conditions of the optimality derived as a set of coupled nonlinear differential equations. The optimality equations are solved numerically, and various simulations are performed for a nonholonomic mobile robot to illustrate effectiveness of the proposed method.
Electricity pricing: optimal operation and investment by industrial consumers
Energy Technology Data Exchange (ETDEWEB)
Outhred, H.R.; Kaye, R.J.; Sutanto, D.; Manimaran, R.; Bannister, C.H.; Lee, Y.B.
1988-08-01
Ongoing research in the areas of economically efficient electricity pricing and industrial consumer response is described. A new electricity pricing theory is described that incorporates future uncertainty and intertemporal linkages between decisions. It indicates that electricity prices should contain two terms - short-run marginal cost plus a term that reflects how each particular decision is likely to affect future global welfare. A practical implementation using spot prices and forward contracts plus financial instruments for risk sharing and decision coordination is explored, and a procedure for developing long-term pricing policy is considered. The operation of industrial plant has been investigated and models developed to optimize plant behaviour in response to spot prices and forward contracts for electricity. These models are described and results of simulation studies discussed. The economic efficiency and risk sharing advantages of this advanced tariff structure compared with a conventional time-of-use tariff are illustrated.
OPTIMIZATION OF OPERATION PARAMETERS OF 80-KEV ELECTRON GUN
Directory of Open Access Journals (Sweden)
JEONG DONG KIM
2014-06-01
As a first step, the electron generator of an 80-keV electron gun was manufactured. In order to produce the high beam power from electron linear accelerator, a proper beam current is required form the electron generator. In this study, the beam current was measured by evaluating the performance of the electron generator. The beam current was determined by five parameters: high voltage at the electron gun, cathode voltage, pulse width, pulse amplitude, and bias voltage at the grid. From the experimental results under optimal conditions, the high voltage was determined to be 80 kV, the pulse width was 500 ns, and the cathode voltage was from 4.2 V to 4.6 V. The beam current was measured as 1.9 A at maximum. These results satisfy the beam current required for the operation of an electron linear accelerator.
Optimizing wellfield operation in a variable power price regime
DEFF Research Database (Denmark)
Bauer-Gottwein, Peter; Schneider, Raphael; Davidsen, Claus
Wellfield management is a multi-objective optimization problem. One important management objective has been energy efficiency in terms of minimizing the energy footprint (EFP) of delivered water (MWh/m3). However, power systems in most countries are moving in the direction of deregulated power...... use itself. We estimated energy footprint as a function of wellfield pumping rate (EFP-Q relationship) for a wellfield in Denmark using a coupled well and pipe network model. This EFP-Q relationship was subsequently used in a stochastic dynamic programming framework to minimize total cost of operating...... the combined wellfield-storage-demand system over the course of a 2-year planning period based on a time series of observed price on the Danish power market and a deterministic, time-varying hourly water demand. In the SDP setup, hourly pumping rates are the decision variables. Constraints include storage...
Optimizing Wellfield Operation in a Variable Power Price Regime
DEFF Research Database (Denmark)
Bauer-Gottwein, Peter; Schneider, Raphael; Davidsen, Claus
2016-01-01
Wellfield management is a multiobjective optimization problem. One important objective has been energy efficiency in terms of minimizing the energy footprint (EFP) of delivered water (MWh/m3). However, power systems in most countries are moving in the direction of deregulated markets and price...... itself. We estimated EFP of pumped water as a function of wellfield pumping rate (EFP-Q relationship) for a wellfield in Denmark using a coupled well and pipe network model. This EFP-Q relationship was subsequently used in a Stochastic Dynamic Programming (SDP) framework to minimize total cost...... of operating the combined wellfield-storage-demand system over the course of a 2-year planning period based on a time series of observed price on the Danish power market and a deterministic, time-varying hourly water demand. In the SDP setup, hourly pumping rates are the decision variables. Constraints include...
What SCADA systems can offer to optimize field operations
International Nuclear Information System (INIS)
McLean, D.J.
1997-01-01
A new technology developed by Kenomic Controls Ltd. of Calgary was designed to solve some of the problems associated with producing gas wells with high gas to liquids ratios. The rationale and the system architecture of the SCADA (Supervisory Control and Data Acquisition) system were described. The most common application of SCADA is the Electronic Flow Measurement (EFM) installation using a solar or thermo-electric generator as a power source for the local electronics. Benefits that the SCADA system can provide to producing fields such as increased revenue, decreased operating costs, decreased fixed capital and working capital requirements, the planning and implementation strategies for SCADA were outlined. A case history of a gas well production optimization system in the Pierceland area of northwest Saskatchewan was provided as an illustrative example. 9 figs
Directory of Open Access Journals (Sweden)
Yin Luo
2012-01-01
Full Text Available Traditional pump scheduling models neglect the operation reliability which directly relates with the unscheduled maintenance cost and the wear cost during the operation. Just for this, based on the assumption that the vibration directly relates with the operation reliability and the degree of wear, it could express the operation reliability as the normalization of the vibration level. The characteristic of the vibration with the operation point was studied, it could be concluded that idealized flow versus vibration plot should be a distinct bathtub shape. There is a narrow sweet spot (80 to 100 percent BEP to obtain low vibration levels in this shape, and the vibration also follows similar law with the square of the rotation speed without resonance phenomena. Then, the operation reliability could be modeled as the function of the capacity and rotation speed of the pump and add this function to the traditional model to form the new. And contrast with the tradition method, the result shown that the new model could fix the result produced by the traditional, make the pump operate in low vibration, then the operation reliability could increase and the maintenance cost could decrease.
Energetic optimization of the chilled water systems operation at hotels
Directory of Open Access Journals (Sweden)
Reineris Montero Laurencio
2015-12-01
Full Text Available The hotel exploitation, while continuing to satisfy the customers, needs to decrease the requests of electric power as the principal energy carrier. Solving issues regarding the occupation of a hotel integrally, taking the air conditioning as center of attention, which demands the bigger consumptions of electricity, results in a complex task. To solve this issue, a procedure was implemented to optimize the operation of the water-chilled systems. The procedure integrates an energy model with a strategy of low occupation following energetic criteria based on combinatorial-evolutionary criteria. To classify the information, the formulation of the tasks and the synthesis of the solutions, a methodology of analysis and synthesis of engineering is used. The energetic model considers the variability of the local climatology and the occupation of the selected rooms, and includes: the thermal model of the building obtained by means of artificial neural networks, the hydraulic model and the model of the compression work. These elements allow to find the variable of decision occupation, performing intermediate calculations to obtain the velocity of rotation in the centrifugal pump and the output temperature of the cooler water, minimizing the requirements of electric power in the water-chilled systems. To evaluate the states of the system, a combinatorial optimization is used through the following methods: simple exhaustive, stepped exhaustive or genetic algorithm depending on the quantity of variants of occupation. All calculation tasks and algorithms of the procedure were automated through a computer application.
Installation and first operation of the negative ion optimization experiment
International Nuclear Information System (INIS)
De Muri, Michela; Cavenago, Marco; Serianni, Gianluigi; Veltri, Pierluigi; Bigi, Marco; Pasqualotto, Roberto; Barbisan, Marco; Recchia, Mauro; Zaniol, Barbara; Kulevoy, Timour; Petrenko, Sergey; Baseggio, Lucio; Cervaro, Vannino; Agostini, Fabio Degli; Franchin, Luca; Laterza, Bruno; Minarello, Alessandro; Rossetto, Federico; Sattin, Manuele; Zucchetti, Simone
2015-01-01
Highlights: • Negative ion sources are key components of the neutral beam injectors. • The NIO1 experiment is a RF ion source, 60 kV–135 mA hydrogen negative ion beam. • NIO1 can contribute to beam extraction and optics thanks to quick replacement and upgrading of parts. • This work presents installation, status and first experiments results of NIO1. - Abstract: Negative ion sources are key components of the neutral beam injectors for thermonuclear fusion experiments. The NIO1 experiment is a radio frequency ion source generating a 60 kV–135 mA hydrogen negative ion beam. The beam is composed of nine beamlets over an area of about 40 × 40 mm"2. This experiment is jointly developed by Consorzio RFX and INFN-LNL, with the purpose of providing and optimizing a test ion source, capable of working in continuous mode and in conditions similar to those foreseen for the larger ion sources of the ITER neutral beam injectors. At present research and development activities on these ion sources still address several important issues related to beam extraction and optics optimization, to which the NIO1 test facility can contribute thanks to its modular design, which allows for quick replacement and upgrading of components. This contribution presents the installation phases, the status of the test facility and the results of the first experiments, which have demonstrated that the source can operate in continuous mode.
Optimization of bridging agents size distribution for drilling operations
Energy Technology Data Exchange (ETDEWEB)
Waldmann, Alex; Andrade, Alex Rodrigues de; Pires Junior, Idvard Jose; Martins, Andre Leibsohn [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)]. E-mails: awaldmann@petrobras.com.br; andradear.gorceix@petrobras.com.br; idvard.gorceix@petrobras.com.br; aleibsohn@petrobras.com.br
2008-07-01
The conventional drilling technique is based on positive hydrostatic pressure against well walls to prevent inflows of native fluids into the well. Such inflows can cause security problems for the team well and to probe. As the differential pressure of the well to reservoir is always positive, the filtrate of the fluid tends to invade the reservoir rock. Minimize the invasion of drilling fluid is a relevant theme in the oil wells drilling operations. In the design of drilling fluid, a common practice in the industry is the addition of bridging agents in the composition of the fluid to form a cake of low permeability at well walls and hence restrict the invasive process. The choice of drilling fluid requires the optimization of the concentration, shape and size distribution of particles. The ability of the fluid to prevent the invasion is usually evaluated in laboratory tests through filtration in porous media consolidated. This paper presents a description of the methods available in the literature for optimization of the formulation of bridging agents to drill-in fluids, predicting the pore throat from data psychotherapy, and a sensitivity analysis of the main operational parameters. The analysis is based on experimental results of the impact of the size distribution and concentration of bridging agents in the filtration process of drill-in fluids through porous media submitted to various different differential of pressure. The final objective is to develop a software for use of PETROBRAS, which may relate different types and concentrations of bridging agents with the properties of the reservoir to minimize the invasion. (author)
Point-and-stare operation and high-speed image acquisition in real-time hyperspectral imaging
Driver, Richard D.; Bannon, David P.; Ciccone, Domenic; Hill, Sam L.
2010-04-01
The design and optical performance of a small-footprint, low-power, turnkey, Point-And-Stare hyperspectral analyzer, capable of fully automated field deployment in remote and harsh environments, is described. The unit is packaged for outdoor operation in an IP56 protected air-conditioned enclosure and includes a mechanically ruggedized fully reflective, aberration-corrected hyperspectral VNIR (400-1000 nm) spectrometer with a board-level detector optimized for point and stare operation, an on-board computer capable of full system data-acquisition and control, and a fully functioning internal hyperspectral calibration system for in-situ system spectral calibration and verification. Performance data on the unit under extremes of real-time survey operation and high spatial and high spectral resolution will be discussed. Hyperspectral acquisition including full parameter tracking is achieved by the addition of a fiber-optic based downwelling spectral channel for solar illumination tracking during hyperspectral acquisition and the use of other sensors for spatial and directional tracking to pinpoint view location. The system is mounted on a Pan-And-Tilt device, automatically controlled from the analyzer's on-board computer, making the HyperspecTM particularly adaptable for base security, border protection and remote deployments. A hyperspectral macro library has been developed to control hyperspectral image acquisition, system calibration and scene location control. The software allows the system to be operated in a fully automatic mode or under direct operator control through a GigE interface.
Sue-Ann, Goh; Ponnambalam, S. G.
This paper focuses on the operational issues of a Two-echelon Single-Vendor-Multiple-Buyers Supply chain (TSVMBSC) under vendor managed inventory (VMI) mode of operation. To determine the optimal sales quantity for each buyer in TSVMBC, a mathematical model is formulated. Based on the optimal sales quantity can be obtained and the optimal sales price that will determine the optimal channel profit and contract price between the vendor and buyer. All this parameters depends upon the understanding of the revenue sharing between the vendor and buyers. A Particle Swarm Optimization (PSO) is proposed for this problem. Solutions obtained from PSO is compared with the best known results reported in literature.
Saturne II synchroton injector parameters operation and control: computerization and optimization
International Nuclear Information System (INIS)
Lagniel, J.M.
1983-01-01
The injector control system has been studied, aiming at the beam quality improvement, the increasing of the versatility, and a better machine availability. It has been choosen to realize the three following functions: - acquisition of the principal parameters of the process, so as to control them quickly and to be warned if one of them is wrong (monitoring); - the control of those parameters, one by one or by families (starting, operating point); - the research of an optimal control (on a model or on the process itself) [fr
Optimal Protection Coordination for Microgrid under Different Operating Modes
Directory of Open Access Journals (Sweden)
Ming-Ta Yang
2013-01-01
Full Text Available Significant consequences result when a microgrid is connected to a distribution system. This study discusses the impacts of bolted three-phase faults and bolted single line-to-ground faults on the protection coordination of a distribution system connected by a microgrid which operates in utility-only mode or in grid-connected mode. The power system simulation software is used to build the test system. The linear programming method is applied to optimize the coordination of relays, and the relays coordination simulation software is used to verify if the coordination time intervals (CTIs of the primary/backup relay pairs are adequate. In addition, this study also proposes a relays protection coordination strategy when the microgrid operates in islanding mode during a utility power outage. Because conventional CO/LCO relays are not capable of detecting high impedance fault, intelligent electrical device (IED combined with wavelet transformer and neural network is proposed to accurately detect high impedance fault and identify the fault phase.
Optimizing Multireservoir System Operating Policies Using Exogenous Hydrologic Variables
Pina, Jasson; Tilmant, Amaury; Côté, Pascal
2017-11-01
Stochastic dual dynamic programming (SDDP) is one of the few available algorithms to optimize the operating policies of large-scale hydropower systems. This paper presents a variant, called SDDPX, in which exogenous hydrologic variables, such as snow water equivalent and/or sea surface temperature, are included in the state space vector together with the traditional (endogenous) variables, i.e., past inflows. A reoptimization procedure is also proposed in which SDDPX-derived benefit-to-go functions are employed within a simulation carried out over the historical record of both the endogenous and exogenous hydrologic variables. In SDDPX, release policies are now a function of storages, past inflows, and relevant exogenous variables that potentially capture more complex hydrological processes than those found in traditional SDDP formulations. To illustrate the potential gain associated with the use of exogenous variables when operating a multireservoir system, the 3,137 MW hydropower system of Rio Tinto (RT) located in the Saguenay-Lac-St-Jean River Basin in Quebec (Canada) is used as a case study. The performance of the system is assessed for various combinations of hydrologic state variables, ranging from the simple lag-one autoregressive model to more complex formulations involving past inflows, snow water equivalent, and winter precipitation.
Optimal Wind Power Uncertainty Intervals for Electricity Market Operation
Energy Technology Data Exchange (ETDEWEB)
Wang, Ying; Zhou, Zhi; Botterud, Audun; Zhang, Kaifeng
2018-01-01
It is important to select an appropriate uncertainty level of the wind power forecast for power system scheduling and electricity market operation. Traditional methods hedge against a predefined level of wind power uncertainty, such as a specific confidence interval or uncertainty set, which leaves the questions of how to best select the appropriate uncertainty levels. To bridge this gap, this paper proposes a model to optimize the forecast uncertainty intervals of wind power for power system scheduling problems, with the aim of achieving the best trade-off between economics and reliability. Then we reformulate and linearize the models into a mixed integer linear programming (MILP) without strong assumptions on the shape of the probability distribution. In order to invest the impacts on cost, reliability, and prices in a electricity market, we apply the proposed model on a twosettlement electricity market based on a six-bus test system and on a power system representing the U.S. state of Illinois. The results show that the proposed method can not only help to balance the economics and reliability of the power system scheduling, but also help to stabilize the energy prices in electricity market operation.
Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy
Magee, T. M.; Clement, M. A.; Zagona, E. A.
2012-12-01
Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level
Directory of Open Access Journals (Sweden)
Mun-Kyeom Kim
2017-09-01
Full Text Available This study introduces a frequency regulation strategy to enable the participation of wind turbines with permanent magnet synchronous generators (PMSGs. The optimal strategy focuses on developing the frequency support capability of PMSGs connected to the power system. Active power control is performed using maximum power point tracking (MPPT and de-loaded control to supply the required power reserve following a disturbance. A kinetic energy (KE reserve control is developed to enhance the frequency regulation capability of wind turbines. The coordination with the de-loaded control prevents instability in the PMSG wind system due to excessive KE discharge. A KE optimization method that maximizes the sum of the KE reserves at wind farms is also adopted to determine the de-loaded power reference for each PMSG wind turbine using the particle swarm optimization (PSO algorithm. To validate the effectiveness of the proposed optimal control and operation strategy, three different case studies are conducted using the PSCAD/EMTDC simulation tool. The results demonstrate that the optimal strategy enhances the frequency support contribution from PMSG wind turbines.
Directory of Open Access Journals (Sweden)
Md Selim Hossain
Full Text Available In this paper, we propose a novel parallel architecture for fast hardware implementation of elliptic curve point multiplication (ECPM, which is the key operation of an elliptic curve cryptography processor. The point multiplication over binary fields is synthesized on both FPGA and ASIC technology by designing fast elliptic curve group operations in Jacobian projective coordinates. A novel combined point doubling and point addition (PDPA architecture is proposed for group operations to achieve high speed and low hardware requirements for ECPM. It has been implemented over the binary field which is recommended by the National Institute of Standards and Technology (NIST. The proposed ECPM supports two Koblitz and random curves for the key sizes 233 and 163 bits. For group operations, a finite-field arithmetic operation, e.g. multiplication, is designed on a polynomial basis. The delay of a 233-bit point multiplication is only 3.05 and 3.56 μs, in a Xilinx Virtex-7 FPGA, for Koblitz and random curves, respectively, and 0.81 μs in an ASIC 65-nm technology, which are the fastest hardware implementation results reported in the literature to date. In addition, a 163-bit point multiplication is also implemented in FPGA and ASIC for fair comparison which takes around 0.33 and 0.46 μs, respectively. The area-time product of the proposed point multiplication is very low compared to similar designs. The performance ([Formula: see text] and Area × Time × Energy (ATE product of the proposed design are far better than the most significant studies found in the literature.
Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.
Prykhozhij, Sergey V; Fuller, Charlotte; Steele, Shelby L; Veinotte, Chansey J; Razaghi, Babak; Robitaille, Johane M; McMaster, Christopher R; Shlien, Adam; Malkin, David; Berman, Jason N
2018-06-14
We have optimized point mutation knock-ins into zebrafish genomic sites using clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 reagents and single-stranded oligodeoxynucleotides. The efficiency of knock-ins was assessed by a novel application of allele-specific polymerase chain reaction and confirmed by high-throughput sequencing. Anti-sense asymmetric oligo design was found to be the most successful optimization strategy. However, cut site proximity to the mutation and phosphorothioate oligo modifications also greatly improved knock-in efficiency. A previously unrecognized risk of off-target trans knock-ins was identified that we obviated through the development of a workflow for correct knock-in detection. Together these strategies greatly facilitate the study of human genetic diseases in zebrafish, with additional applicability to enhance CRISPR-based approaches in other animal model systems.
Torromé, Ricardo Gallego
2014-01-01
The action of parity inversion, time inversion and charge conjugation operations on several differential equations for a classical point charged particle are described. Moreover, we consider the notion of {\\it symmetrized acceleration} $\\Delta_q$ that for models of point charged electrodynamics is sensitive to deviations from the standard Lorentz force equation. It is shown that $\\Delta_q$ can be observed with current or near future technology and that it is an useful quantity for probing rad...
Optimal 25-Point Finite-Difference Subgridding Techniques for the 2D Helmholtz Equation
Directory of Open Access Journals (Sweden)
Tingting Wu
2016-01-01
Full Text Available We present an optimal 25-point finite-difference subgridding scheme for solving the 2D Helmholtz equation with perfectly matched layer (PML. This scheme is second order in accuracy and pointwise consistent with the equation. Subgrids are used to discretize the computational domain, including the interior domain and the PML. For the transitional node in the interior domain, the finite difference equation is formulated with ghost nodes, and its weight parameters are chosen by a refined choice strategy based on minimizing the numerical dispersion. Numerical experiments are given to illustrate that the newly proposed schemes can produce highly accurate seismic modeling results with enhanced efficiency.
Energy Technology Data Exchange (ETDEWEB)
Larbes, C.; Ait Cheikh, S.M.; Obeidi, T.; Zerguerras, A. [Laboratoire des Dispositifs de Communication et de Conversion Photovoltaique, Departement d' Electronique, Ecole Nationale Polytechnique, 10, Avenue Hassen Badi, El Harrach, Alger 16200 (Algeria)
2009-10-15
This paper presents an intelligent control method for the maximum power point tracking (MPPT) of a photovoltaic system under variable temperature and irradiance conditions. First, for the purpose of comparison and because of its proven and good performances, the perturbation and observation (P and O) technique is briefly introduced. A fuzzy logic controller based MPPT (FLC) is then proposed which has shown better performances compared to the P and O MPPT based approach. The proposed FLC has been also improved using genetic algorithms (GA) for optimisation. Different development stages are presented and the optimized fuzzy logic MPPT controller (OFLC) is then simulated and evaluated, which has shown better performances. (author)
International Nuclear Information System (INIS)
Feng Guangwen; Hu Youhua; Liu Qian
2009-01-01
In this paper, the application of the entropy weight TOPSIS method to optimal layout points in monitoring the Xinjiang radiation environment has been indroduced. With the help of SAS software, It has been found that the method is more ideal and feasible. The method can provide a reference for us to monitor radiation environment in the same regions further. As the method could bring great convenience and greatly reduce the inspecting work, it is very simple, flexible and effective for a comprehensive evaluation. (authors)
Optimal Constant DC Link Voltage Operation of aWave Energy Converter
Directory of Open Access Journals (Sweden)
Mats Leijon
2013-04-01
Full Text Available This article proposes a simple and reliable damping strategy for wave powerfarm operation of small-scale point-absorber converters. The strategy is based on passiverectification onto a constant DC-link, making it very suitable for grid integration of the farm.A complete model of the system has been developed in Matlab Simulink, and uses real sitedata as input. The optimal constant DC-voltage is evaluated as a function of the significantwave height and energy period of the waves. The total energy output of the WEC is derivedfor one year of experimental site data. The energy output is compared for two cases, onewhere the optimal DC-voltage is determined and held constant at half-hour basis throughoutthe year, and one where a selected value of the DC-voltage is kept constant throughout theyear regardless of sea state.
Automated and continuously operating acid dew point measuring instrument for flue gases
Energy Technology Data Exchange (ETDEWEB)
Reckmann, D.; Naundorf, G.
1986-06-01
Design and operation is explained for a sulfuric acid dew point indicator for continuous flue gas temperature control. The indicator operated successfully in trial tests over several years with brown coal, gas and oil combustion in a measurement range of 60 to 180 C. The design is regarded as uncomplicated and easy to manufacture. Its operating principle is based on electric conductivity measurement on a surface on which sulfuric acid vapor has condensed. A ring electrode and a PtRh/Pt thermal element as central electrode are employed. A scheme of the equipment design is provided. Accuracy of the indicator was compared to manual dew point sondes manufactured by Degussa and showed a maximum deviation of 5 C. Manual cleaning after a number of weeks of operation is required. Fly ash with a high lime content increases dust buildup and requires more frequent cleaning cycles.
Common fixed points in best approximation for Banach operator pairs with Ciric type I-contractions
Hussain, N.
2008-02-01
The common fixed point theorems, similar to those of Ciric [Lj.B. Ciric, On a common fixed point theorem of a Gregus type, Publ. Inst. Math. (Beograd) (N.S.) 49 (1991) 174-178; Lj.B. Ciric, On Diviccaro, Fisher and Sessa open questions, Arch. Math. (Brno) 29 (1993) 145-152; Lj.B. Ciric, On a generalization of Gregus fixed point theorem, Czechoslovak Math. J. 50 (2000) 449-458], Fisher and Sessa [B. Fisher, S. Sessa, On a fixed point theorem of Gregus, Internat. J. Math. Math. Sci. 9 (1986) 23-28], Jungck [G. Jungck, On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13 (1990) 497-500] and Mukherjee and Verma [R.N. Mukherjee, V. Verma, A note on fixed point theorem of Gregus, Math. Japon. 33 (1988) 745-749], are proved for a Banach operator pair. As applications, common fixed point and approximation results for Banach operator pair satisfying Ciric type contractive conditions are obtained without the assumption of linearity or affinity of either T or I. Our results unify and generalize various known results to a more general class of noncommuting mappings.
Chiral measurements with the Fixed-Point Dirac operator and construction of chiral currents
International Nuclear Information System (INIS)
Hasenfratz, P.; Hauswirth, S.; Holland, K.; Joerg, T.; Niedermayer, F.
2002-01-01
In this preliminary study, we examine the chiral properties of the parametrized Fixed-Point Dirac operator D FP , see how to improve its chirality via the Overlap construction, measure the renormalized quark condensate Σ-circumflex and the topological susceptibility χ t , and investigate local chirality of near zero modes of the Dirac operator. We also give a general construction of chiral currents and densities for chiral lattice actions
The training and assessment of operations engineers at Hinkley Point 'B' nuclear power station
International Nuclear Information System (INIS)
Walsey, B.A.; Howard, J.D.
1986-01-01
The Nuclear Power Training Centre at Oldbury-on-Severn was established to provide a common training of staff at all nuclear power stations operated by the Central Electricity Generating Board, following the ''Standard Specification for the Nuclear Training of Staff at CEGB Nuclear Power Stations''. The paper deals with the following aspects of AGR Stations: The Legislation applicable to these stations. The current training requirements for Operations Staff. The development of training for operations staff at Hinkley Point 'B' including training for career progression within the Operations Department. A detailed explanation of the training package developed for Reactor Desk Drivers at Hinkley 'B'. Revision training of Operations staff to ensure that they continue to run the plant in a safe and commercially viable manner. The training of Shift Operations Engineers for their duties under the Station Emergency Plan. (author)
Optimization of Control Points Number at Coordinate Measurements based on the Monte-Carlo Method
Korolev, A. A.; Kochetkov, A. V.; Zakharov, O. V.
2018-01-01
Improving the quality of products causes an increase in the requirements for the accuracy of the dimensions and shape of the surfaces of the workpieces. This, in turn, raises the requirements for accuracy and productivity of measuring of the workpieces. The use of coordinate measuring machines is currently the most effective measuring tool for solving similar problems. The article proposes a method for optimizing the number of control points using Monte Carlo simulation. Based on the measurement of a small sample from batches of workpieces, statistical modeling is performed, which allows one to obtain interval estimates of the measurement error. This approach is demonstrated by examples of applications for flatness, cylindricity and sphericity. Four options of uniform and uneven arrangement of control points are considered and their comparison is given. It is revealed that when the number of control points decreases, the arithmetic mean decreases, the standard deviation of the measurement error increases and the probability of the measurement α-error increases. In general, it has been established that it is possible to repeatedly reduce the number of control points while maintaining the required measurement accuracy.
Optimizing Wellfield Operation in a Variable Power Price Regime.
Bauer-Gottwein, Peter; Schneider, Raphael; Davidsen, Claus
2016-01-01
Wellfield management is a multiobjective optimization problem. One important objective has been energy efficiency in terms of minimizing the energy footprint (EFP) of delivered water (MWh/m(3) ). However, power systems in most countries are moving in the direction of deregulated markets and price variability is increasing in many markets because of increased penetration of intermittent renewable power sources. In this context the relevant management objective becomes minimizing the cost of electric energy used for pumping and distribution of groundwater from wells rather than minimizing energy use itself. We estimated EFP of pumped water as a function of wellfield pumping rate (EFP-Q relationship) for a wellfield in Denmark using a coupled well and pipe network model. This EFP-Q relationship was subsequently used in a Stochastic Dynamic Programming (SDP) framework to minimize total cost of operating the combined wellfield-storage-demand system over the course of a 2-year planning period based on a time series of observed price on the Danish power market and a deterministic, time-varying hourly water demand. In the SDP setup, hourly pumping rates are the decision variables. Constraints include storage capacity and hourly water demand fulfilment. The SDP was solved for a baseline situation and for five scenario runs representing different EFP-Q relationships and different maximum wellfield pumping rates. Savings were quantified as differences in total cost between the scenario and a constant-rate pumping benchmark. Minor savings up to 10% were found in the baseline scenario, while the scenario with constant EFP and unlimited pumping rate resulted in savings up to 40%. Key factors determining potential cost savings obtained by flexible wellfield operation under a variable power price regime are the shape of the EFP-Q relationship, the maximum feasible pumping rate and the capacity of available storage facilities. © 2015 The Authors. Groundwater published by Wiley
Energy Technology Data Exchange (ETDEWEB)
Hemmateenejad, Bahram, E-mail: hemmatb@sums.ac.ir [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of); Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Zare-Shahabadi, Vali [Young Researchers Club, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of); Akhond, Morteza [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of)
2011-10-17
Highlights: {yields} Ant colony systems help to build optimum classification and regression trees. {yields} Using of genetic algorithm operators in ant colony systems resulted in more appropriate models. {yields} Variable selection in each terminal node of the tree gives promising results. {yields} CART-ACS-GA could model the melting point of organic materials with prediction errors lower than previous models. - Abstract: The classification and regression trees (CART) possess the advantage of being able to handle large data sets and yield readily interpretable models. A conventional method of building a regression tree is recursive partitioning, which results in a good but not optimal tree. Ant colony system (ACS), which is a meta-heuristic algorithm and derived from the observation of real ants, can be used to overcome this problem. The purpose of this study was to explore the use of CART and its combination with ACS for modeling of melting points of a large variety of chemical compounds. Genetic algorithm (GA) operators (e.g., cross averring and mutation operators) were combined with ACS algorithm to select the best solution model. In addition, at each terminal node of the resulted tree, variable selection was done by ACS-GA algorithm to build an appropriate partial least squares (PLS) model. To test the ability of the resulted tree, a set of approximately 4173 structures and their melting points were used (3000 compounds as training set and 1173 as validation set). Further, an external test set containing of 277 drugs was used to validate the prediction ability of the tree. Comparison of the results obtained from both trees showed that the tree constructed by ACS-GA algorithm performs better than that produced by recursive partitioning procedure.
Optimal Operation Method of Smart House by Controllable Loads based on Smart Grid Topology
Yoza, Akihiro; Uchida, Kosuke; Yona, Atsushi; Senju, Tomonobu
2013-08-01
From the perspective of global warming suppression and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all electrification apartment house or residence such as DC smart house have increased in recent years. However, due to fluctuating power from renewable energy sources and loads, supply-demand balancing fluctuations of power system become problematic. Therefore, "smart grid" has become very popular in the worldwide. This article presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuations. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuations, it is possible to reduce the maximum electric power consumption and the electric cost. This system consists of photovoltaics generator, heat pump, battery, solar collector, and load. In order to verify the effectiveness of the proposed system, MATLAB is used in simulations.
Studies on optimal design and operation of integrated distillation arrangements
Energy Technology Data Exchange (ETDEWEB)
Christiansen, Atle Christer
1997-12-31
During the last decades, there has been growing concern in the chemical engineering environment over the task of developing more cost- and energy efficient process equipment. This thesis discusses measures for improving the end-use energy efficiency of separation systems. It emphasises a certain class of integrated distillation arrangements, in particular it considers means for direct coupling of distillation columns so as to use the underlying physics to facilitate more energy efficient separations. The numerical methods discussed are well suited to solve models of distillation columns. A tear and grid method is proposed that to some extent exploits the sparsity, since the number of tear variables required for solving a distillation model usually is rather small. The parameter continuation method described is well suited for ill-conditioned problems. The analysis of integrated columns is extended beyond the scope of numerical simulations by means of analytical results that applies in certain limiting cases. The consept of preferred separation, which is important for prefractionator arrangements, is considered. From this analysis is derived information that is important for the practical operation of such columns. Finally, the proposed numerical methods are used to optimize Petlyuk arrangements for separating ternary and quaternary mixtures. 166 refs., 130 figs., 20 tabs.
Optimized operation of dielectric laser accelerators: Single bunch
Directory of Open Access Journals (Sweden)
Adi Hanuka
2018-05-01
Full Text Available We introduce a general approach to determine the optimal charge, efficiency and gradient for laser driven accelerators in a self-consistent way. We propose a way to enhance the operational gradient of dielectric laser accelerators by leverage of beam-loading effect. While the latter may be detrimental from the perspective of the effective gradient experienced by the particles, it can be beneficial as the effective field experienced by the accelerating structure, is weaker. As a result, the constraint imposed by the damage threshold fluence is accordingly weakened and our self-consistent approach predicts permissible gradients of ∼10 GV/m, one order of magnitude higher than previously reported experimental results—with unbunched pulse of electrons. Our approach leads to maximum efficiency to occur for higher gradients as compared with a scenario in which the beam-loading effect on the material is ignored. In any case, maximum gradient does not occur for the same conditions that maximum efficiency does—a trade-off set of parameters is suggested.
Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.
2017-09-01
In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.
76 FR 65118 - Drawbridge Operation Regulation; Bear Creek, Sparrows Point, MD
2011-10-20
...-AA09 Drawbridge Operation Regulation; Bear Creek, Sparrows Point, MD AGENCY: Coast Guard, DHS. ACTION... regulation. The Baltimore County Revenue Authority (Dundalk Avenue) highway toll drawbridge across Bear Creek... applicable or necessary. Basis and Purpose The drawbridge across Bear Creek, mile 1.5 was removed and...
Cooperative scattering of scalar waves by optimized configurations of point scatterers
Schäfer, Frank; Eckert, Felix; Wellens, Thomas
2017-12-01
We investigate multiple scattering of scalar waves by an ensemble of N resonant point scatterers in three dimensions. For up to N = 21 scatterers, we numerically optimize the positions of the individual scatterers, to maximize the total scattering cross section for an incoming plane wave, on the one hand, and to minimize the decay rate associated to a long-lived scattering resonance, on the other. In both cases, the optimum is achieved by configurations where all scatterers are placed on a line parallel to the direction of the incoming plane wave. The associated maximal scattering cross section increases quadratically with the number of scatterers for large N, whereas the minimal decay rate—which is realized by configurations that are not the same as those that maximize the scattering cross section—decreases exponentially as a function of N. Finally, we also analyze the stability of our optimized configurations with respect to small random displacements of the scatterers. These results demonstrate that optimized configurations of scatterers bear a considerable potential for applications such as quantum memories or mirrors consisting of only a few atoms.
ATP-gamma-S shifts the operating point of outer hair cell transduction towards scala tympani.
Bobbin, Richard P; Salt, Alec N
2005-07-01
ATP receptor agonists and antagonists alter cochlear mechanics as measured by changes in distortion product otoacoustic emissions (DPOAE). Some of the effects on DPOAEs are consistent with the hypothesis that ATP affects mechano-electrical transduction and the operating point of the outer hair cells (OHCs). This hypothesis was tested by monitoring the effect of ATP-gamma-S on the operating point of the OHCs. Guinea pigs anesthetized with urethane and with sectioned middle ear muscles were used. The cochlear microphonic (CM) was recorded differentially (scala vestibuli referenced to scala tympani) across the basal turn before and after perfusion (20 min) of the perilymph compartment with artificial perilymph (AP) and ATP-gamma-S dissolved in AP. The operating point was derived from the cochlear microphonics (CM) recorded in response low frequency (200 Hz) tones at high level (106, 112 and 118 dB SPL). The analysis procedure used a Boltzmann function to simulate the CM waveform and the Boltzmann parameters were adjusted to best-fit the calculated waveform to the CM. Compared to the initial perfusion with AP, ATP-gamma-S (333 microM) enhanced peak clipping of the positive peak of the CM (that occurs during organ of Corti displacements towards scala tympani), which was in keeping with ATP-induced displacement of the transducer towards scala tympani. CM waveform analysis quantified the degree of displacement and showed that the changes were consistent with the stimulus being centered on a different region of the transducer curve. The change of operating point meant that the stimulus was applied to a region of the transducer curve where there was greater saturation of the output on excursions towards scala tympani and less saturation towards scala vestibuli. A significant degree of recovery of the operating point was observed after washing with AP. Dose response curves generated by perfusing ATP-gamma-S (333 microM) in a cumulative manner yielded an EC(50) of 19.8 micro
International Nuclear Information System (INIS)
Ishimoto, Yukitaka
2004-01-01
Amongst conformal field theories, there exist logarithmic conformal field theories such as c p,1 models. We have investigated c p,q models with a boundary in search of logarithmic theories and have found logarithmic solutions of two-point functions in the context of the Coulomb gas picture. We have also found the relations between coefficients in the two-point functions and correlation functions of logarithmic boundary operators, and have confirmed the solutions in [hep-th/0003184]. Other two-point functions and boundary operators have also been studied in the free boson construction of boundary CFT with SU(2) k symmetry in regard to logarithmic theories. This paper is based on a part of D. Phil. Thesis [hep-th/0312160]. (author)
Revisiting the dilatation operator of the Wilson-Fisher fixed point
Energy Technology Data Exchange (ETDEWEB)
Liendo, Pedro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2017-01-15
We revisit the order ε dilatation operator of the Wilson-Fisher fixed point obtained by Kehrein, Pismak, and Wegner in light of recent results in conformal field theory. Our approach is algebraic and based only on symmetry principles. The starting point of our analysis is that the first correction to the dilatation operator is a conformal invariant, which implies that its form is fixed up to an infinite set of coefficients associated with the scaling dimensions of higher-spin currents. These coefficients can be fixed using well-known perturbative results, however, they were recently re-obtained using CFT arguments without relying on perturbation theory. Our analysis then implies that all order-ε scaling dimensions of the Wilson-Fisher fixed point can be fixed by symmetry.
Optimal design and operation of a photovoltaic-electrolyser system using particle swarm optimisation
Sayedin, Farid; Maroufmashat, Azadeh; Roshandel, Ramin; Khavas, Sourena Sattari
2016-07-01
In this study, hydrogen generation is maximised by optimising the size and the operating conditions of an electrolyser (EL) directly connected to a photovoltaic (PV) module at different irradiance. Due to the variations of maximum power points of the PV module during a year and the complexity of the system, a nonlinear approach is considered. A mathematical model has been developed to determine the performance of the PV/EL system. The optimisation methodology presented here is based on the particle swarm optimisation algorithm. By this method, for the given number of PV modules, the optimal sizeand operating condition of a PV/EL system areachieved. The approach can be applied for different sizes of PV systems, various ambient temperatures and different locations with various climaticconditions. The results show that for the given location and the PV system, the energy transfer efficiency of PV/EL system can reach up to 97.83%.
Directory of Open Access Journals (Sweden)
A. Afghan-Toloee
2013-09-01
Full Text Available The problem of specifying the minimum number of sensors to deploy in a certain area to face multiple targets has been generally studied in the literatures. In this paper, we are arguing the multi-sensors deployment problem (MDP. The Multi-sensor placement problem can be clarified as minimizing the cost required to cover the multi target points in the area. We propose a more feasible method for the multi-sensor placement problem. Our method makes provision the high coverage of grid based placements while minimizing the cost as discovered in perimeter placement techniques. The NICA algorithm as improved ICA (Imperialist Competitive Algorithm is used to decrease the performance time to explore an enough solution compared to other meta-heuristic schemes such as GA, PSO and ICA. A three dimensional area is used for clarify the multiple target and placement points, making provision x, y, and z computations in the observation algorithm. A structure of model for the multi-sensor placement problem is proposed: The problem is constructed as an optimization problem with the objective to minimize the cost while covering all multiple target points upon a given probability of observation tolerance.
Directory of Open Access Journals (Sweden)
Ru-Min Chao
2016-01-01
Full Text Available This paper identifies the partial shading problem of a PV module using the one-diode model and simulating the characteristics exhibiting multiple-peak power output condition that is similar to a PV array. A modified particle swarm optimization (PSO algorithm based on the suggested search-agent deployment, retracking condition, and multicore operation is proposed in order to continuously locate the global maximum power point for the PV system. Partial shading simulation results for up to 16 modules in series/parallel formats are presented. A distributed PV system consisting of up to 8 a-silicon thin film PV panels and also having a dedicated DC/DC buck converter on each of the modules is tested. The converter reaches its steady state voltage output in 10 ms. However for MPPT operation, voltage, and current measurement interval is set to 20 ms to avoid unnecessary noise from the entire electric circuit. Based on the simulation and experiment results, each core of the proposed PSO operation should control no more than 4 PV modules in order to have the maximum tracking accuracy and minimum overall tracking time. Tracking for the global maximum power point of a distributed PV system under various partial shading conditions can be done within 1.3 seconds.
Springback effects during single point incremental forming: Optimization of the tool path
Giraud-Moreau, Laurence; Belchior, Jérémy; Lafon, Pascal; Lotoing, Lionel; Cherouat, Abel; Courtielle, Eric; Guines, Dominique; Maurine, Patrick
2018-05-01
Incremental sheet forming is an emerging process to manufacture sheet metal parts. This process is more flexible than conventional one and well suited for small batch production or prototyping. During the process, the sheet metal blank is clamped by a blank-holder and a small-size smooth-end hemispherical tool moves along a user-specified path to deform the sheet incrementally. Classical three-axis CNC milling machines, dedicated structure or serial robots can be used to perform the forming operation. Whatever the considered machine, large deviations between the theoretical shape and the real shape can be observed after the part unclamping. These deviations are due to both the lack of stiffness of the machine and residual stresses in the part at the end of the forming stage. In this paper, an optimization strategy of the tool path is proposed in order to minimize the elastic springback induced by residual stresses after unclamping. A finite element model of the SPIF process allowing the shape prediction of the formed part with a good accuracy is defined. This model, based on appropriated assumptions, leads to calculation times which remain compatible with an optimization procedure. The proposed optimization method is based on an iterative correction of the tool path. The efficiency of the method is shown by an improvement of the final shape.
OPTIMIZING THE DISTRIBUTION OF TIE POINTS FOR THE BUNDLE ADJUSTMENT OF HRSC IMAGE MOSAICS
Directory of Open Access Journals (Sweden)
J. Bostelmann
2017-07-01
Full Text Available For a systematic mapping of the Martian surface, the Mars Express orbiter is equipped with a multi-line scanner: Since the beginning of 2004 the High Resolution Stereo Camera (HRSC regularly acquires long image strips. By now more than 4,000 strips covering nearly the whole planet are available. Due to the nine channels, each with different viewing direction, and partly with different optical filters, each strip provides 3D and color information and allows the generation of digital terrain models (DTMs and orthophotos. To map larger regions, neighboring HRSC strips can be combined to build DTM and orthophoto mosaics. The global mapping scheme Mars Chart 30 is used to define the extent of these mosaics. In order to avoid unreasonably large data volumes, each MC-30 tile is divided into two parts, combining about 90 strips each. To ensure a seamless fit of these strips, several radiometric and geometric corrections are applied in the photogrammetric process. A simultaneous bundle adjustment of all strips as a block is carried out to estimate their precise exterior orientation. Because size, position, resolution and image quality of the strips in these blocks are heterogeneous, also the quality and distribution of the tie points vary. In absence of ground control points, heights of a global terrain model are used as reference information, and for this task a regular distribution of these tie points is preferable. Besides, their total number should be limited because of computational reasons. In this paper, we present an algorithm, which optimizes the distribution of tie points under these constraints. A large number of tie points used as input is reduced without affecting the geometric stability of the block by preserving connections between strips. This stability is achieved by using a regular grid in object space and discarding, for each grid cell, points which are redundant for the block adjustment. The set of tie points, filtered by the
Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method
Chen, Xiaomin; Wang, Gang
2017-05-01
The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.
International Nuclear Information System (INIS)
Osgouee, Ahmad
2010-01-01
many advanced control methods proposed for the control of nuclear SG water level, operators are still experiencing difficulties especially at low powers. Therefore, it seems that a suitable controller to replace the manual operations is still needed. In this paper optimization of SGL set-points and designing a robust control for SGL control system using will be discussed
Feedback dew-point sensor utilizing optimally cut plastic optical fibres
Hadjiloucas, S.; Irvine, J.; Keating, D. A.
2000-01-01
A plastic optical fibre reflectance sensor that makes full use of the critical angle of the fibres is implemented to monitor dew formation on a Peltier-cooled reflector surface. The optical configuration permits isolation of optoelectronic components from the sensing head and better light coupling between the reflector and the detecting fibre, giving a better signal of the onset of dew formation on the reflector. Continuous monitoring of the rate of change in reflectance as well as the absolute reflectance signals, the use of a novel polymethyl-methacrylate-coated hydrophobic film reflector on the Peltier element and the application of feedback around the point of dew formation, further reduces the possibility of contamination of the sensor head. Under closed-loop operation, the sensor is capable of cycling around the point of dew formation at a frequency of 2.5 Hz.
Hazard analysis and critical control point (HACCP) for an ultrasound food processing operation.
Chemat, Farid; Hoarau, Nicolas
2004-05-01
Emerging technologies, such as ultrasound (US), used for food and drink production often cause hazards for product safety. Classical quality control methods are inadequate to control these hazards. Hazard analysis of critical control points (HACCP) is the most secure and cost-effective method for controlling possible product contamination or cross-contamination, due to physical or chemical hazard during production. The following case study on the application of HACCP to an US food-processing operation demonstrates how the hazards at the critical control points of the process are effectively controlled through the implementation of HACCP.
AdS5/CFT4 four-point functions of chiral primary operators: Cubic vertices
International Nuclear Information System (INIS)
Lee, Sangmin
1999-01-01
We study the exchange diagrams in the computation of four-point functions of all chiral primary operators in D=4, N=4 super Yang-Mills using AdS/CFT correspondence. We identify all supergravity fields that can be exchanged and compute the cubic couplings. As a byproduct, we also rederive the normalization of the quadratic action of the exchanged fields. The cubic couplings computed in this paper and the propagators studied extensively in the literature can be used to compute almost all the exchange diagrams explicitly. Some issues in computing the complete four-point function in the 'massless sector' are discussed
Optimization of Single Point Incremental Forming of Al5052-O Sheet
Energy Technology Data Exchange (ETDEWEB)
Kim, Chan Il; Xiao, Xiao; Do, Van Cuong; Kim, Young Suk [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)
2017-03-15
Single point incremental forming (SPIF) is a sheet-forming technique. It is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. The Critical parameters in the forming process include tool diameter, step depth, feed rate, spindle speed, etc. In this study, these parameters and the die shape corresponding to the Varying Wall Angle Conical Frustum(VWACF) model were used for forming 0.8mm in thick Al5052-O sheets. The Taguchi method of Experiments of Design (DOE) and Grey relational optimization were used to determine the optimum parameters in SPIF. A response study was performed on formability, spring back, and thickness reduction. The research shows that the optimum combination of these parameters that yield best performance of SPIF is as follows: tool diameter, 6mm; spin speed, 60rpm; step depth, 0.3mm; and feed rate, 500mm/min.
Directory of Open Access Journals (Sweden)
Saidi Badreddine
2016-01-01
Full Text Available The single point incremental forming process is well-known to be perfectly suited for prototyping and small series. One of its fields of applicability is the medicine area for the forming of titanium prostheses or titanium medical implants. However this process is not yet very industrialized, mainly due its geometrical inaccuracy, its not homogeneous thickness distribution& Moreover considerable forces can occur. They must be controlled in order to preserve the tooling. In this paper, a numerical approach is proposed in order to minimize the maximum force achieved during the incremental forming of titanium sheets and to maximize the minimal thickness. A surface response methodology is used to find the optimal values of two input parameters of the process, the punch diameter and the vertical step size of the tool path.
Improved Full-Newton Step O(nL) Infeasible Interior-Point Method for Linear Optimization
Gu, G.; Mansouri, H.; Zangiabadi, M.; Bai, Y.Q.; Roos, C.
2009-01-01
We present several improvements of the full-Newton step infeasible interior-point method for linear optimization introduced by Roos (SIAM J. Optim. 16(4):1110–1136, 2006). Each main step of the method consists of a feasibility step and several centering steps. We use a more natural feasibility step,
International Nuclear Information System (INIS)
Han, In-Su; Park, Sang-Kyun; Chung, Chang-Bock
2016-01-01
Highlights: • A proton exchange membrane fuel cell system is operationally optimized. • A constrained optimization problem is formulated to maximize fuel cell efficiency. • Empirical and semi-empirical models for most system components are developed. • Sensitivity analysis is performed to elucidate the effects of major operating variables. • The optimization results are verified by comparison with actual operation data. - Abstract: This paper presents an operation optimization method and demonstrates its application to a proton exchange membrane fuel cell system. A constrained optimization problem was formulated to maximize the efficiency of a fuel cell system by incorporating practical models derived from actual operations of the system. Empirical and semi-empirical models for most of the system components were developed based on artificial neural networks and semi-empirical equations. Prior to system optimizations, the developed models were validated by comparing simulation results with the measured ones. Moreover, sensitivity analyses were performed to elucidate the effects of major operating variables on the system efficiency under practical operating constraints. Then, the optimal operating conditions were sought at various system power loads. The optimization results revealed that the efficiency gaps between the worst and best operation conditions of the system could reach 1.2–5.5% depending on the power output range. To verify the optimization results, the optimal operating conditions were applied to the fuel cell system, and the measured results were compared with the expected optimal values. The discrepancies between the measured and expected values were found to be trivial, indicating that the proposed operation optimization method was quite successful for a substantial increase in the efficiency of the fuel cell system.
Energy Technology Data Exchange (ETDEWEB)
Garrigos, Ausias; Blanes, Jose M.; Carrasco, Jose A. [Area de Tecnologia Electronica, Universidad Miguel Hernandez de Elche, Avda. de la Universidad s/n, 03202 Elche, Alicante (Spain); Ejea, Juan B. [Departamento de Ingenieria Electronica, Universidad de Valencia, Avda. Dr Moliner 50, 46100 Valencia, Valencia (Spain)
2007-05-15
In this paper, an approximate curve fitting method for photovoltaic modules is presented. The operation is based on solving a simple solar cell electrical model by a microcontroller in real time. Only four voltage and current coordinates are needed to obtain the solar module parameters and set its operation at maximum power in any conditions of illumination and temperature. Despite its simplicity, this method is suitable for low cost real time applications, as control loop reference generator in photovoltaic maximum power point circuits. The theory that supports the estimator together with simulations and experimental results are presented. (author)
WE-B-304-00: Point/Counterpoint: Biological Dose Optimization
International Nuclear Information System (INIS)
2015-01-01
The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning by the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations
Kim, U.; Parker, J.; Borden, R. C.
2014-12-01
In-situ chemical oxidation (ISCO) has been applied at many dense non-aqueous phase liquid (DNAPL) contaminated sites. A stirred reactor-type model was developed that considers DNAPL dissolution using a field-scale mass transfer function, instantaneous reaction of oxidant with aqueous and adsorbed contaminant and with readily oxidizable natural oxygen demand ("fast NOD"), and second-order kinetic reactions with "slow NOD." DNAPL dissolution enhancement as a function of oxidant concentration and inhibition due to manganese dioxide precipitation during permanganate injection are included in the model. The DNAPL source area is divided into multiple treatment zones with different areas, depths, and contaminant masses based on site characterization data. The performance model is coupled with a cost module that involves a set of unit costs representing specific fixed and operating costs. Monitoring of groundwater and/or soil concentrations in each treatment zone is employed to assess ISCO performance and make real-time decisions on oxidant reinjection or ISCO termination. Key ISCO design variables include the oxidant concentration to be injected, time to begin performance monitoring, groundwater and/or soil contaminant concentrations to trigger reinjection or terminate ISCO, number of monitoring wells or geoprobe locations per treatment zone, number of samples per sampling event and location, and monitoring frequency. Design variables for each treatment zone may be optimized to minimize expected cost over a set of Monte Carlo simulations that consider uncertainty in site parameters. The model is incorporated in the Stochastic Cost Optimization Toolkit (SCOToolkit) program, which couples the ISCO model with a dissolved plume transport model and with modules for other remediation strategies. An example problem is presented that illustrates design tradeoffs required to deal with characterization and monitoring uncertainty. Monitoring soil concentration changes during ISCO
International Nuclear Information System (INIS)
Etxeberria, A.; Vechiu, I.; Camblong, H.; Kreckelbergh, S.; Bacha, S.
2014-01-01
Highlights: • The control of a hybrid storage system using a Three Level NPC converter is analysed. • A sinusoidal PWM with an offset injection is used to control the storage system. • The operation of the selected converter is analysed in its entire operation range. • The operational limits of the Three Level NPC converter are defined. - Abstract: This work analyses the use of a Three-Level Neutral Point Clamped (3LNPC) converter to control the power flow of a Hybrid Energy Storage System (HESS) and at the same time interconnect it with the common AC bus of a microgrid. Nowadays there is not any storage technology capable of offering a high energy storage capacity, a high power capacity and a fast response at the same time. Therefore, the necessity of hybridising more than one storage technology is a widely accepted idea in order to satisfy the mentioned requirements. This work shows how the operational limits of the 3LNPC converter can be calculated and integrated in a control structure to facilitate an optimal use of the HESS according to the rules fixed by the user
Non-self-adjoint Schrödinger operators with nonlocal one-point interactions
Czech Academy of Sciences Publication Activity Database
Kuzhel, S.; Znojil, Miloslav
2017-01-01
Roč. 11, č. 4 (2017), s. 923-944 ISSN 1735-8787 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : 1-dimensional Schrodinger operator * nonlocal one-point interactions * boundary triplet Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.833, year: 2016
Motamed, Nima; Miresmail, Seyed Javad Haji; Rabiee, Behnam; Keyvani, Hossein; Farahani, Behzad; Maadi, Mansooreh; Zamani, Farhad
2016-03-01
The present study was carried out to determine the optimal cutoff points for homeostatic model assessment (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI) in the diagnosis of metabolic syndrome (MetS) and non-alcoholic fatty liver disease (NAFLD). The baseline data of 5511 subjects aged ≥18years of a cohort study in northern Iran were utilized to analyze. Receiver operating characteristic (ROC) analysis was conducted to determine the discriminatory capability of HOMA-IR and QUICKI in the diagnosis of MetS and NAFLD. Youden index was utilized to determine the optimal cutoff points of HOMA-IR and QUICKI in the diagnosis of MetS and NAFLD. The optimal cutoff points for HOMA-IR in the diagnosis of MetS and NAFLD were 2.0 [sensitivity=64.4%, specificity=66.8%] and 1.79 [sensitivity=66.2%, specificity=62.2%] in men and were 2.5 [sensitivity=57.6%, specificity=67.9%] and 1.95 [sensitivity=65.1%, specificity=54.7%] in women respectively. Furthermore, the optimal cutoff points for QUICKI in the diagnosis of MetS and NAFLD were 0.343 [sensitivity=63.7%, specificity=67.8%] and 0.347 [sensitivity=62.9%, specificity=65.0%] in men and were 0.331 [sensitivity=55.7%, specificity=70.7%] and 0.333 [sensitivity=53.2%, specificity=67.7%] in women respectively. Not only the optimal cutoff points of HOMA-IR and QUICKI were different for MetS and NAFLD, but also different cutoff points were obtained for men and women for each of these two conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Nemati, Mahdieh; Santos, Abel
2018-01-01
Herein, we present an innovative strategy for optimizing hierarchical structures of nanoporous anodic alumina (NAA) to advance their optical sensing performance toward multi-analyte biosensing. This approach is based on the fabrication of multilayered NAA and the formation of differential effective medium of their structure by controlling three fabrication parameters (i.e., anodization steps, anodization time, and pore widening time). The rationale of the proposed concept is that interferometric bilayered NAA (BL-NAA), which features two layers of different pore diameters, can provide distinct reflectometric interference spectroscopy (RIfS) signatures for each layer within the NAA structure and can therefore potentially be used for multi-point biosensing. This paper presents the structural fabrication of layered NAA structures, and the optimization and evaluation of their RIfS optical sensing performance through changes in the effective optical thickness (EOT) using quercetin as a model molecule. The bilayered or funnel-like NAA structures were designed with the aim of characterizing the sensitivity of both layers of quercetin molecules using RIfS and exploring the potential of these photonic structures, featuring different pore diameters, for simultaneous size-exclusion and multi-analyte optical biosensing. The sensing performance of the prepared NAA platforms was examined by real-time screening of binding reactions between human serum albumin (HSA)-modified NAA (i.e., sensing element) and quercetin (i.e., analyte). BL-NAAs display a complex optical interference spectrum, which can be resolved by fast Fourier transform (FFT) to monitor the EOT changes, where three distinctive peaks were revealed corresponding to the top, bottom, and total layer within the BL-NAA structures. The spectral shifts of these three characteristic peaks were used as sensing signals to monitor the binding events in each NAA pore in real-time upon exposure to different concentrations of
Directory of Open Access Journals (Sweden)
Mahdieh Nemati
2018-02-01
Full Text Available Herein, we present an innovative strategy for optimizing hierarchical structures of nanoporous anodic alumina (NAA to advance their optical sensing performance toward multi-analyte biosensing. This approach is based on the fabrication of multilayered NAA and the formation of differential effective medium of their structure by controlling three fabrication parameters (i.e., anodization steps, anodization time, and pore widening time. The rationale of the proposed concept is that interferometric bilayered NAA (BL-NAA, which features two layers of different pore diameters, can provide distinct reflectometric interference spectroscopy (RIfS signatures for each layer within the NAA structure and can therefore potentially be used for multi-point biosensing. This paper presents the structural fabrication of layered NAA structures, and the optimization and evaluation of their RIfS optical sensing performance through changes in the effective optical thickness (EOT using quercetin as a model molecule. The bilayered or funnel-like NAA structures were designed with the aim of characterizing the sensitivity of both layers of quercetin molecules using RIfS and exploring the potential of these photonic structures, featuring different pore diameters, for simultaneous size-exclusion and multi-analyte optical biosensing. The sensing performance of the prepared NAA platforms was examined by real-time screening of binding reactions between human serum albumin (HSA-modified NAA (i.e., sensing element and quercetin (i.e., analyte. BL-NAAs display a complex optical interference spectrum, which can be resolved by fast Fourier transform (FFT to monitor the EOT changes, where three distinctive peaks were revealed corresponding to the top, bottom, and total layer within the BL-NAA structures. The spectral shifts of these three characteristic peaks were used as sensing signals to monitor the binding events in each NAA pore in real-time upon exposure to different
Screening of natural substrates and optimization of operating ...
African Journals Online (AJOL)
STORAGESEVER
2009-02-18
Feb 18, 2009 ... 2Department of Chemical Engineering, Eritrea Institute of Technology, Eritrea, North-East Africa. ... The work involves optimizing various parameters like substrate ... of application in food industries (Brawman, 1981; Phutela.
Refrigerator Optimal Scheduling to Minimise the Cost of Operation
Directory of Open Access Journals (Sweden)
Bálint Roland
2016-12-01
Full Text Available The cost optimal scheduling of a household refrigerator is presented in this work. The fundamental approach is the model predictive control methodology applied to the piecewise affine model of the refrigerator.
Coordinated Optimal Operation Method of the Regional Energy Internet
Directory of Open Access Journals (Sweden)
Rishang Long
2017-05-01
Full Text Available The development of the energy internet has become one of the key ways to solve the energy crisis. This paper studies the system architecture, energy flow characteristics and coordinated optimization method of the regional energy internet. Considering the heat-to-electric ratio of a combined cooling, heating and power unit, energy storage life and real-time electricity price, a double-layer optimal scheduling model is proposed, which includes economic and environmental benefit in the upper layer and energy efficiency in the lower layer. A particle swarm optimizer–individual variation ant colony optimization algorithm is used to solve the computational efficiency and accuracy. Through the calculation and simulation of the simulated system, the energy savings, level of environmental protection and economic optimal dispatching scheme are realized.
Dynamics of Nearshore Sand Bars and Infra-gravity Waves: The Optimal Theory Point of View
Bouchette, F.; Mohammadi, B.
2016-12-01
It is well known that the dynamics of near-shore sand bars are partly controlled by the features (location of nodes, amplitude, length, period) of the so-called infra-gravity waves. Reciprocally, changes in the location, size and shape of near-shore sand bars can control wave/wave interactions which in their turn alter the infra-gravity content of the near-shore wave energy spectrum. The coupling infra-gravity / near-shore bar is thus definitely two ways. Regarding numerical modelling, several approaches have already been considered to analyze such coupled dynamics. Most of them are based on the following strategy: 1) define an energy spectrum including infra-gravity, 2) tentatively compute the radiation stresses driven by this energy spectrum, 3) compute sediment transport and changes in the seabottom elevation including sand bars, 4) loop on the computation of infra-gravity taking into account the morphological changes. In this work, we consider an alternative approach named Nearshore Optimal Theory, which is a kind of breakdown point of view for the modeling of near-shore hydro-morphodynamics and wave/ wave/ seabottom interactions. Optimal theory applied to near-shore hydro-morphodynamics arose with the design of solid coastal defense structures by shape optimization methods, and is being now extended in order to model dynamics of any near-shore system combining waves and sand. The basics are the following: the near-shore system state is through a functional J representative of the energy of the system in some way. This J is computed from a model embedding the physics to be studied only (here hydrodynamics forced by simple infra-gravity). Then the paradigm is to say that the system will evolve so that the energy J tends to minimize. No really matter the complexity of wave propagation nor wave/bottom interactions. As soon as J embeds the physics to be explored, the method does not require a comprehensive modeling. Near-shore Optimal Theory has already given
Optimization Of Scan Range For 3d Point Localization In Statscan Digital Medical Radiology
Directory of Open Access Journals (Sweden)
Jacinta S. Kimuyu
2015-08-01
Full Text Available The emergence of computerized medical imaging in early 1970s which merged with digital technology in the 1980s was celebrated as a major breakthrough in three-dimensional 3D medicine. However a recent South African innovation the high speed scanning Lodox Statscan Critical Digital Radiology modality posed challenges in X-ray photogrammetry due to the systems intricate imaging geometry. The study explored the suitability of the Direct Linear Transformation as a method for the determination of 3D coordinates of targeted points from multiple images acquired with the Statscan X-ray system and optimization of the scan range. This investigation was carried out as a first step towards the development of a method to determine the accurate positions of points on or inside the human body. The major causes of errors in three-dimensional point localization using Statscan images were firstly the X-ray beam divergence and secondly the position of the point targets above the X-ray platform. The experiments carried out with two reference frames showed that point positions could be established with RMS values in the mm range in the middle axis of the X-ray patient platform. This range of acceptable mm accuracies extends about 15 to 20 cm sideways towards the edge of the X-ray table and to about 20 cm above the table surface. Beyond this range accuracy deteriorated significantly reaching RMS values of 30mm to 40 mm. The experiments further showed that the inclusion of control points close to the table edges and more than 20 cm above the table resulted in lower accuracies for the L - parameters of the DLT solution than those derived from points close to the center axis only. As the accuracy of the L - parameters propagates into accuracy of the final coordinates of newly determined points it is essential to restrict the space of the control points to the above described limits. If one adopts the usual approach of surrounding the object by known control points then
International Nuclear Information System (INIS)
Bolsunov, A.A.; Zagrebaev, A.M.; Naumov, V.I.
1979-01-01
Considered is the task of reactivity excess distribution optimization in the system of reactors for the purpose of minimazing the summary power production losses at the fixed loading schedule. Mathematical formulation of the task is presented. Given are the curves, characterizing the dependence of possible degree of the reactor power drop on reactivity excees for non-stationary Xe poisoning at different nominal density of neutron flux. Analyzing the results, it is concluded that in case, when the reactors differ only in neutron flux density the reactor with lower neutron flux density should be involved in the variable operation schedule first as the poisoning of this reactor will be less, and therefore, the losses of the system power production will be less. It is advisable to reserve the reactivity excess in the reactor with greater power or in the reactor with higher burnup rate. It is stressed that the obtained results of the optimization task solution point out the possibility of obtaining the certain ecomonic effect and permit to correct the requirements on mobility of separate power units at system approach to NPP operation in a variable loading schedule
Design principles and operating principles: the yin and yang of optimal functioning.
Voit, Eberhard O
2003-03-01
Metabolic engineering has as a goal the improvement of yield of desired products from microorganisms and cell lines. This goal has traditionally been approached with experimental biotechnological methods, but it is becoming increasingly popular to precede the experimental phase by a mathematical modeling step that allows objective pre-screening of possible improvement strategies. The models are either linear and represent the stoichiometry and flux distribution in pathways or they are non-linear and account for the full kinetic behavior of the pathway, which is often significantly effected by regulatory signals. Linear flux analysis is simpler and requires less input information than a full kinetic analysis, and the question arises whether the consideration of non-linearities is really necessary for devising optimal strategies for yield improvements. The article analyzes this question with a generic, representative pathway. It shows that flux split ratios, which are the key criterion for linear flux analysis, are essentially sufficient for unregulated, but not for regulated branch points. The interrelationships between regulatory design on one hand and optimal patterns of operation on the other suggest the investigation of operating principles that complement design principles, like a user's manual complements the hardwiring of electronic equipment.
Morphological Operations to Extract Urban Curbs in 3D MLS Point Clouds
Directory of Open Access Journals (Sweden)
Borja Rodríguez-Cuenca
2016-06-01
Full Text Available Automatic curb detection is an important issue in road maintenance, three-dimensional (3D urban modeling, and autonomous navigation fields. This paper is focused on the segmentation of curbs and street boundaries using a 3D point cloud captured by a mobile laser scanner (MLS system. Our method provides a solution based on the projection of the measured point cloud on the XY plane. Over that plane, a segmentation algorithm is carried out based on morphological operations to determine the location of street boundaries. In addition, a solution to extract curb edges based on the roughness of the point cloud is proposed. The proposed method is valid in both straight and curved road sections and applicable both to laser scanner and stereo vision 3D data due to the independence of its scanning geometry. The proposed method has been successfully tested with two datasets measured by different sensors. The first dataset corresponds to a point cloud measured by a TOPCON sensor in the Spanish town of Cudillero. The second dataset corresponds to a point cloud measured by a RIEGL sensor in the Austrian town of Horn. The extraction method provides completeness and correctness rates above 90% and quality values higher than 85% in both studied datasets.
O'Connell, M.; Macknick, J.; Voisin, N.; Fu, T.
2017-12-01
The western US electric grid is highly dependent upon water resources for reliable operation. Hydropower and water-cooled thermoelectric technologies represent 67% of generating capacity in the western region of the US. While water resources provide a significant amount of generation and reliability for the grid, these same resources can represent vulnerabilities during times of drought or low flow conditions. A lack of water affects water-dependent technologies and can result in more expensive generators needing to run in order to meet electric grid demand, resulting in higher electricity prices and a higher cost to operate the grid. A companion study assesses the impact of changes in water availability and air temperatures on power operations by directly derating hydro and thermo-electric generators. In this study we assess the sensitivities and tipping points of water availability compared with higher fuel prices in electricity sector operations. We evaluate the impacts of varying electricity prices by modifying fuel prices for coal and natural gas. We then analyze the difference in simulation results between changes in fuel prices in combination with water availability and air temperature variability. We simulate three fuel price scenarios for a 2010 baseline scenario along with 100 historical and future hydro-climate conditions. We use the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions under each combination of fuel price and water constraint. Some of the metrics evaluated are total production cost, generation type mix, emissions, transmission congestion, and reserve procurement. These metrics give insight to how strained the system is, how much flexibility it still has, and to what extent water resource availability or fuel prices drive changes in the electricity sector operations. This work will provide insights into current electricity operations as well as future cases of increased penetration of variable
Design and development of bio-inspired framework for reservoir operation optimization
Asvini, M. Sakthi; Amudha, T.
2017-12-01
Frameworks for optimal reservoir operation play an important role in the management of water resources and delivery of economic benefits. Effective utilization and conservation of water from reservoirs helps to manage water deficit periods. The main challenge in reservoir optimization is to design operating rules that can be used to inform real-time decisions on reservoir release. We develop a bio-inspired framework for the optimization of reservoir release to satisfy the diverse needs of various stakeholders. In this work, single-objective optimization and multiobjective optimization problems are formulated using an algorithm known as "strawberry optimization" and tested with actual reservoir data. Results indicate that well planned reservoir operations lead to efficient deployment of the reservoir water with the help of optimal release patterns.
DEFF Research Database (Denmark)
Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte
2011-01-01
represent the future of electricity markets in some ways, is chosen as the studied power system in this paper. The impact of the optimal operation strategy for electric vehicles together with the optimal load response to spot market price on the distribution power system with high wind power penetrations...... are also discussed in the paper. Simulation results show that the proposed optimal operation strategy is an effective measure to achieve minimum energy costs of the PEV. The optimal operation strategy of the PEV and the optimal load response may have significant effects on the distribution power system......Since the hourly spot market price is available one day ahead in Denmark, the electricity price could be transferred to the consumers and they may make some optimal charge and discharge schedules for their electric vehicles in order to minimize their energy costs. This paper presents an optimal...
2015-03-01
biometric data collection. Capture role- player mock biometric data including finger prints, iris scans, and facial recognition photos. (MOC training...MARITIME INFORMATION DOMINANCE: OPTIMIZING TACTICAL NETWORK FOR BIOMETRIC DATA SHARING IN MARITIME INTERDICTION OPERATIONS by Adam R. Sinsel...MARITIME INFORMATION DOMINANCE: OPTIMIZING TACTICAL NETWORK FOR BIOMETRIC DATA SHARING IN MARITIME INTERDICTION OPERATIONS 6. AUTHOR(S) Adam R
Nested algorithms for optimal reservoir operation and their embedding in a decision support platform
Delipetrev, B.
2016-01-01
Reservoir operation is a multi-objective optimization problem traditionally solved with dynamic programming (DP) and stochastic dynamic programming (SDP) algorithms. The thesis presents novel algorithms for optimal reservoir operation named nested DP (nDP), nested SDP (nSDP), nested reinforcement
Real Time Optimal Control of Supercapacitor Operation for Frequency Response
Energy Technology Data Exchange (ETDEWEB)
Luo, Yusheng; Panwar, Mayank; Mohanpurkar, Manish; Hovsapian, Rob
2016-07-01
Supercapacitors are gaining wider applications in power systems due to fast dynamic response. Utilizing supercapacitors by means of power electronics interfaces for power compensation is a proven effective technique. For applications such as requency restoration if the cost of supercapacitors maintenance as well as the energy loss on the power electronics interfaces are addressed. It is infeasible to use traditional optimization control methods to mitigate the impacts of frequent cycling. This paper proposes a Front End Controller (FEC) using Generalized Predictive Control featuring real time receding optimization. The optimization constraints are based on cost and thermal management to enhance to the utilization efficiency of supercapacitors. A rigorous mathematical derivation is conducted and test results acquired from Digital Real Time Simulator are provided to demonstrate effectiveness.
Optimizing Warehouse Logistics Operations Through Site Selection Models: Istanbul, Turkey
National Research Council Canada - National Science Library
Erdemir, Ugur
2003-01-01
.... Given the dynamic environment surrounding the military operations, logistic sustainability requirements, rapid information technology developments, and budget-constrained Turkish DoD acquisition...
International Nuclear Information System (INIS)
Stojiljković, Mirko M.; Ignjatović, Marko G.; Vučković, Goran D.
2015-01-01
Buildings use a significant amount of primary energy and largely contribute to greenhouse gases emission. Cost optimality and cost effectiveness, including cost-optimal operation, are important for the adoption of energy efficient and environmentally friendly technologies. The long-term assessment of buildings-related greenhouse gases emission might take into account cost-optimal operation of their energy systems. This is often not the case in the literature. Long-term operation optimization problems are often of large scale and computationally intensive and time consuming. This paper formulates a bottom-up methodology relying on an efficient, but precise operation optimization approach, applicable to long-term problems and use with buildings simulations. We suggest moving-horizon short-term optimization to determine near-optimal operation modes and show that this approach, applied to flexible energy systems without seasonal storage, have satisfactory efficiency and accuracy compared with solving problem for an entire year. We also confirm it as a valuable pre-solve technique. Approach applicability and the importance of energy systems optimization are illustrated with a case study considering buildings envelope improvements and cogeneration and heat storage implementation in an urban residential settlement. EnergyPlus is used for buildings simulations while mixed integer linear programming optimization problems are constructed and solved using the custom-built software and the branch-and-cut solver Gurobi Optimizer. - Highlights: • Bottom-up approach for greenhouse gases emission assessment is presented. • Short-term moving-horizon optimization is used to define operation regimes. • Operation optimization and buildings simulations are connected with modeling tool. • Illustrated optimization method performed efficiently and gave accurate results.
Design, Performance and Optimization for Multimodal Radar Operation
Directory of Open Access Journals (Sweden)
Surendra S. Bhat
2012-09-01
Full Text Available This paper describes the underlying methodology behind an adaptive multimodal radar sensor that is capable of progressively optimizing its range resolution depending upon the target scattering features. It consists of a test-bed that enables the generation of linear frequency modulated waveforms of various bandwidths. This paper discusses a theoretical approach to optimizing the bandwidth used by the multimodal radar. It also discusses the various experimental results obtained from measurement. The resolution predicted from theory agrees quite well with that obtained from experiments for different target arrangements.
Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point.
Sánchez, Joan-Pau; McInnes, Colin R
2015-01-01
Within the context of anthropogenic climate change, but also considering the Earth's natural climate variability, this paper explores the speculative possibility of large-scale active control of the Earth's radiative forcing. In particular, the paper revisits the concept of deploying a large sunshade or occulting disk at a static position near the Sun-Earth L1 Lagrange equilibrium point. Among the solar radiation management methods that have been proposed thus far, space-based concepts are generally seen as the least timely, albeit also as one of the most efficient. Large occulting structures could potentially offset all of the global mean temperature increase due to greenhouse gas emissions. This paper investigates optimal configurations of orbiting occulting disks that not only offset a global temperature increase, but also mitigate regional differences such as latitudinal and seasonal difference of monthly mean temperature. A globally resolved energy balance model is used to provide insights into the coupling between the motion of the occulting disks and the Earth's climate. This allows us to revise previous studies, but also, for the first time, to search for families of orbits that improve the efficiency of occulting disks at offsetting climate change on both global and regional scales. Although natural orbits exist near the L1 equilibrium point, their period does not match that required for geoengineering purposes, thus forced orbits were designed that require small changes to the disk attitude in order to control its motion. Finally, configurations of two occulting disks are presented which provide the same shading area as previously published studies, but achieve reductions of residual latitudinal and seasonal temperature changes.
Optimal Sunshade Configurations for Space-Based Geoengineering near the Sun-Earth L1 Point.
Directory of Open Access Journals (Sweden)
Joan-Pau Sánchez
Full Text Available Within the context of anthropogenic climate change, but also considering the Earth's natural climate variability, this paper explores the speculative possibility of large-scale active control of the Earth's radiative forcing. In particular, the paper revisits the concept of deploying a large sunshade or occulting disk at a static position near the Sun-Earth L1 Lagrange equilibrium point. Among the solar radiation management methods that have been proposed thus far, space-based concepts are generally seen as the least timely, albeit also as one of the most efficient. Large occulting structures could potentially offset all of the global mean temperature increase due to greenhouse gas emissions. This paper investigates optimal configurations of orbiting occulting disks that not only offset a global temperature increase, but also mitigate regional differences such as latitudinal and seasonal difference of monthly mean temperature. A globally resolved energy balance model is used to provide insights into the coupling between the motion of the occulting disks and the Earth's climate. This allows us to revise previous studies, but also, for the first time, to search for families of orbits that improve the efficiency of occulting disks at offsetting climate change on both global and regional scales. Although natural orbits exist near the L1 equilibrium point, their period does not match that required for geoengineering purposes, thus forced orbits were designed that require small changes to the disk attitude in order to control its motion. Finally, configurations of two occulting disks are presented which provide the same shading area as previously published studies, but achieve reductions of residual latitudinal and seasonal temperature changes.
Supervising UAVs : improving operator performance by optimizing the human factor
Breda, L. van; Jansen, C.; Veltman, J.A.
2005-01-01
Tele-operated unmanned aerial vehicles (UAVs) have no operators on board and therefore enable extension of the present sensing and communication capabilities in civil and military missions, without unnecessarily endangering personnel or deploying expensive material. One should also realize that
Field-scale operation of methane biofiltration systems to mitigate point source methane emissions
International Nuclear Information System (INIS)
Hettiarachchi, Vijayamala C.; Hettiaratchi, Patrick J.; Mehrotra, Anil K.; Kumar, Sunil
2011-01-01
Methane biofiltration (MBF) is a novel low-cost technique for reducing low volume point source emissions of methane (CH 4 ). MBF uses a granular medium, such as soil or compost, to support the growth of methanotrophic bacteria responsible for converting CH 4 to carbon dioxide (CO 2 ) and water (H 2 O). A field research program was undertaken to evaluate the potential to treat low volume point source engineered CH 4 emissions using an MBF at a natural gas monitoring station. A new comprehensive three-dimensional numerical model was developed incorporating advection-diffusive flow of gas, biological reactions and heat and moisture flow. The one-dimensional version of this model was used as a guiding tool for designing and operating the MBF. The long-term monitoring results of the field MBF are also presented. The field MBF operated with no control of precipitation, evaporation, and temperature, provided more than 80% of CH 4 oxidation throughout spring, summer, and fall seasons. The numerical model was able to predict the CH 4 oxidation behavior of the field MBF with high accuracy. The numerical model simulations are presented for estimating CH 4 oxidation efficiencies under various operating conditions, including different filter bed depths and CH 4 flux rates. The field observations as well as numerical model simulations indicated that the long-term performance of MBFs is strongly dependent on environmental factors, such as ambient temperature and precipitation. - Highlights: → One-dimensional version of the model was used as a guiding tool for designing and operating the MBF. → Mathematical model predicted CH 4 oxidation behaviors of the field MBF with high accuracy i.e. (> 80 %). → Performance of MBF is dependent on ambient temperature and precipitation. - The developed numerical model simulations and field observations for estimating CH 4 oxidation efficiencies under various operating conditions indicate that the long-term performance of MBFs is strongly
Zubair, Mohammad; Nielsen, Eric; Luitjens, Justin; Hammond, Dana
2016-01-01
In the field of computational fluid dynamics, the Navier-Stokes equations are often solved using an unstructuredgrid approach to accommodate geometric complexity. Implicit solution methodologies for such spatial discretizations generally require frequent solution of large tightly-coupled systems of block-sparse linear equations. The multicolor point-implicit solver used in the current work typically requires a significant fraction of the overall application run time. In this work, an efficient implementation of the solver for graphics processing units is proposed. Several factors present unique challenges to achieving an efficient implementation in this environment. These include the variable amount of parallelism available in different kernel calls, indirect memory access patterns, low arithmetic intensity, and the requirement to support variable block sizes. In this work, the solver is reformulated to use standard sparse and dense Basic Linear Algebra Subprograms (BLAS) functions. However, numerical experiments show that the performance of the BLAS functions available in existing CUDA libraries is suboptimal for matrices representative of those encountered in actual simulations. Instead, optimized versions of these functions are developed. Depending on block size, the new implementations show performance gains of up to 7x over the existing CUDA library functions.
Cardiorespiratory optimal point during exercise testing as a predictor of all-cause mortality.
Ramos, Plínio S; Araújo, Claudio Gil S
2017-04-01
The cardiorespiratory optimal point (COP) is a novel index, calculated as the minimum oxygen ventilatory equivalent (VE/VO 2 ) obtained during cardiopulmonary exercise testing (CPET). In this study we demonstrate the prognostic value of COP both independently and in combination with maximum oxygen consumption (VO 2 max) in community-dwelling adults. Maximal cycle ergometer CPET was performed in 3331 adults (66% men) aged 40-85 years, healthy (18%) or with chronic disease (81%). COP cut-off values of 30 were selected based on the log-rank test. Risk discrimination was assessed using COP as an independent predictor and combined with VO 2 max. Median follow-up was 6.4 years (7.1% mortality). Subjects with COP >30 demonstrated increased mortality compared to those with COP 30 of 3.72 (95% CI 1.98-6.98; p30, either independently or in combination with low VO 2 max, is a good predictor of all-cause mortality in community-dwelling adults (healthy or with chronic disease). COP is a submaximal prognostic index that is simple to obtain and adds to CPET assessment, especially for adults unable or unwilling to achieve maximal exercise. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
Test Operations Procedure (TOP) 08-2-188 Chemical Point Detector Vapor Testing
2018-04-27
Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 08-2-188 Chemical Point Detector Vapor Testing 5a. CONTRACT...NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING...ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Dugway Proving Ground West Desert Test Center (TEDT-DPW) Dugway, UT 84022-5000 8. PERFORMING ORGANIZATION
OPTIMIZATION OF AGGREGATION AND SEQUENTIAL-PARALLEL EXECUTION MODES OF INTERSECTING OPERATION SETS
Directory of Open Access Journals (Sweden)
G. М. Levin
2016-01-01
Full Text Available A mathematical model and a method for the problem of optimization of aggregation and of sequential- parallel execution modes of intersecting operation sets are proposed. The proposed method is based on the two-level decomposition scheme. At the top level the variant of aggregation for groups of operations is selected, and at the lower level the execution modes of operations are optimized for a fixed version of aggregation.
Optimal Operational Monetary Policy Rules in an Endogenous Growth Model: a calibrated analysis
Arato, Hiroki
2009-01-01
This paper constructs an endogenous growth New Keynesian model and considers growth and welfare effect of Taylor-type (operational) monetary policy rules. The Ramsey equilibrium and optimal operational monetary policy rule is also computed. In the calibrated model, the Ramseyoptimal volatility of inflation rate is smaller than that in standard exogenous growth New Keynesian model with physical capital accumulation. Optimal operational monetary policy rule makes nominal interest rate respond s...
Control and operation cost optimization of the HISS cryogenic system
International Nuclear Information System (INIS)
Porter, J.; Anderson, D.; Bieser, F.
1984-01-01
This chapter describes a control strategy for the Heavy Ion Spectrometer System (HISS), which relies upon superconducting coils of cryostable design to provide a particle bending field of 3 tesla. The control strategy has allowed full time unattended operation and significant operating cost reductions. Microprocessor control of flash boiling style LIN circuits has been successful. It is determined that the overall operating cost of most cryogenic systems using closed loop helium systems can be minimized by properly balancing the total heat load between the helium and nitrogen circuits to take advantage of the non-linearity which exists in the power input to 4K refrigeration characteristic. Variable throughput compressors have the advantage of turndown capability at steady state. It is concluded that a hybrid system using digital and analog input for control, data display and alarms enables full time unattended operation
Workforce Optimization for Bank Operation Centers: A Machine Learning Approach
Sefik Ilkin Serengil; Alper Ozpinar
2017-01-01
Online Banking Systems evolved and improved in recent years with the use of mobile and online technologies, performing money transfer transactions on these channels can be done without delay and human interaction, however commercial customers still tend to transfer money on bank branches due to several concerns. Bank Operation Centers serve to reduce the operational workload of branches. Centralized management also offers personalized service by appointed expert employees in these centers. In...
Wrapping interactions and the genus expansion of the 2-point function of composite operators
International Nuclear Information System (INIS)
Sieg, Christoph; Torrielli, Alessandro
2005-01-01
We perform a systematic analysis of wrapping interactions for a general class of theories with color degrees of freedom, including N=4 SYM. Wrapping interactions arise in the genus expansion of the 2-point function of composite operators as finite size effects that start to appear at a certain order in the coupling constant at which the range of the interaction is equal to the length of the operators. We analyze in detail the relevant genus expansions, and introduce a strategy to single out the wrapping contributions, based on adding spectator fields. We use a toy model to demonstrate our procedure, performing all computations explicitly. Although completely general, our treatment should be particularly useful for applications to the recent problem of wrapping contributions in some checks of the AdS/CFT correspondence
Critical Point Facility (CPE) Group in the Spacelab Payload Operations Control Center (SL POCC)
1992-01-01
The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Critical Point Facility (CPE) group in the SL POCC during STS-42, IML-1 mission.
Directory of Open Access Journals (Sweden)
Hong-Yun Zhang
2012-09-01
Full Text Available Quantum-behaved particle swarm optimization (QPSO is an efficient and powerful population-based optimization technique, which is inspired by the conventional particle swarm optimization (PSO and quantum mechanics theories. In this paper, an improved QPSO named SQPSO is proposed, which combines QPSO with a selective probability operator to solve the economic dispatch (ED problems with valve-point effects and multiple fuel options. To show the performance of the proposed SQPSO, it is tested on five standard benchmark functions and two ED benchmark problems, including a 40-unit ED problem with valve-point effects and a 10-unit ED problem with multiple fuel options. The results are compared with differential evolution (DE, particle swarm optimization (PSO and basic QPSO, as well as a number of other methods reported in the literature in terms of solution quality, convergence speed and robustness. The simulation results confirm that the proposed SQPSO is effective and reliable for both function optimization and ED problems.
Optimizing the Operation of Maceration to Obtain Quality White Wines
Directory of Open Access Journals (Sweden)
Stegărus Diana
2014-06-01
Full Text Available This study monitors the physico-chemical properties of wines from Dragasani under the influence of pectolytic enzymes in various temperature conditions. during maceration contact is made between the grape skins and selected the optimal time leads to wines with more pronounced floral character. The physico-chemical extraction maceration leads to a more pronounced specific compounds, the time of maceration is very important in this case. The curing time is of great importance in producing varieties Muscat Ottonel and Tămâioasă Românească primarily for successful extraction of aromatic components from grape. As noted in the literature flavored grapes contain large amounts of terpene compounds are in free form or bound. To optimize the technological process is able to extract these compounds and to achieve a harmonious and balanced wine. The variants considered in the study presents the results of physico-chemical and aromatic wines obtained from the Muscat Ottonel and Tămâioasă Românească, which took into consideration both during maceration and the use of selected yeasts and enzymes, which form the basis for the selection of the optimal procedure for obtaining aromatic white wines in Dragasani Vineyard.
International Nuclear Information System (INIS)
Jamalipour, Mostafa; Sayareh, Reza; Gharib, Morteza; Khoshahval, Farrokh; Karimi, Mahmood Reza
2013-01-01
Highlights: ► A new method called QPSO-DM is applied to BNPP in-core fuel management optimization. ► It is found that QPSO-DM performs better than PSO and QPSO. ► This method provides a permissible arrangement for optimum loading pattern. - Abstract: This paper presents a new method using Quantum Particle Swarm Optimization with Differential Mutation operator (QPSO-DM) for optimizing WWER-1000 core fuel management. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have shown good performance on in-core fuel management optimization (ICFMO). The objective of this paper is to show that QPSO-DM performs very well and is comparable to PSO and Quantum Particle Swarm Optimization (QPSO). Most of the strategies for ICFMO are based on maximizing multiplication factor (k eff ) to increase cycle length and minimizing power peaking factor (P q ) in order to improve fuel integrity. PSO, QPSO and QPSO-DM have been implemented to fulfill these requirements for the first operating cycle of WWER-1000 Bushehr Nuclear Power Plant (BNPP). The results show that QPSO-DM performs better than the others. A program has been written in MATLAB to map PSO, QPSO and QPSO-DM for loading pattern optimization. WIMS and CITATION have been used to simulate reactor core for neutronic calculations
Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations
Directory of Open Access Journals (Sweden)
Nah-Oak Song
2015-08-01
Full Text Available We propose an optimal electric energy management of a cooperative multi-microgrid community with sequentially coordinated operations. The sequentially coordinated operations are suggested to distribute computational burden and yet to make the optimal 24 energy management of multi-microgrids possible. The sequential operations are mathematically modeled to find the optimal operation conditions and illustrated with physical interpretation of how to achieve optimal energy management in the cooperative multi-microgrid community. This global electric energy optimization of the cooperative community is realized by the ancillary internal trading between the microgrids in the cooperative community which reduces the extra cost from unnecessary external trading by adjusting the electric energy production amounts of combined heat and power (CHP generators and amounts of both internal and external electric energy trading of the cooperative community. A simulation study is also conducted to validate the proposed mathematical energy management models.
Optimization of a Point Focus Concentration Photovoltaic System with Passive Cooling
International Nuclear Information System (INIS)
Chenlo, F.
2015-01-01
The objective of this work is modeling the temperature of photovoltaic (PV) solar cells operating in concentration systems with circular geometry and coupled to a heat sink plate for passive cooling. The proposed thermal behavior model analyses the temperature surface distribution of both PV solar cell and heat sink plate as function of light concentration. The model also allows analyzing the influence of other parameters such as uniform and non-uniform variation of the heat sink plate thickness or variation of the thermal transmission coefficient. The optimal range of the concentration factor is studied using simple models for the PV solar cell efficiency and Fresnel lens concentrator performance together with a function of costs applied to medium concentration silicon crystalline PV cells and high efficiency and high concentration multi-junction PV cells. Finally, experimental main parameters and its procedures measurement for concentration systems are presented. Modeling results show that the use of a high conductivity disk thermally coupled between the rear side of the cell and the cooling plate reduces the working cell temperature. Results also indicates that use of a light redirecting prism by total internal reflection of sunlight, reduces optical losses due to concentrator defects and chromatic aberration and increases the angle tracking error acceptance without having to increase the area of the PV solar cell
Free-time and fixed end-point multi-target optimal control theory: Application to quantum computing
International Nuclear Information System (INIS)
Mishima, K.; Yamashita, K.
2011-01-01
Graphical abstract: The two-state Deutsch-Jozsa algortihm used to demonstrate the utility of free-time and fixed-end point multi-target optimal control theory. Research highlights: → Free-time and fixed-end point multi-target optimal control theory (FRFP-MTOCT) was constructed. → The features of our theory include optimization of the external time-dependent perturbations with high transition probabilities, that of the temporal duration, the monotonic convergence, and the ability to optimize multiple-laser pulses simultaneously. → The advantage of the theory and a comparison with conventional fixed-time and fixed end-point multi-target optimal control theory (FIFP-MTOCT) are presented by comparing data calculated using the present theory with those published previously [K. Mishima, K. Yamashita, Chem. Phys. 361 (2009) 106]. → The qubit system of our interest consists of two polar NaCl molecules coupled by dipole-dipole interaction. → The calculation examples show that our theory is useful for minor adjustment of the external fields. - Abstract: An extension of free-time and fixed end-point optimal control theory (FRFP-OCT) to monotonically convergent free-time and fixed end-point multi-target optimal control theory (FRFP-MTOCT) is presented. The features of our theory include optimization of the external time-dependent perturbations with high transition probabilities, that of the temporal duration, the monotonic convergence, and the ability to optimize multiple-laser pulses simultaneously. The advantage of the theory and a comparison with conventional fixed-time and fixed end-point multi-target optimal control theory (FIFP-MTOCT) are presented by comparing data calculated using the present theory with those published previously [K. Mishima, K. Yamashita, Chem. Phys. 361, (2009), 106]. The qubit system of our interest consists of two polar NaCl molecules coupled by dipole-dipole interaction. The calculation examples show that our theory is useful for minor
Support Vector Regression and Genetic Algorithm for HVAC Optimal Operation
Directory of Open Access Journals (Sweden)
Ching-Wei Chen
2016-01-01
Full Text Available This study covers records of various parameters affecting the power consumption of air-conditioning systems. Using the Support Vector Machine (SVM, the chiller power consumption model, secondary chilled water pump power consumption model, air handling unit fan power consumption model, and air handling unit load model were established. In addition, it was found that R2 of the models all reached 0.998, and the training time was far shorter than that of the neural network. Through genetic programming, a combination of operating parameters with the least power consumption of air conditioning operation was searched. Moreover, the air handling unit load in line with the air conditioning cooling load was predicted. The experimental results show that for the combination of operating parameters with the least power consumption in line with the cooling load obtained through genetic algorithm search, the power consumption of the air conditioning systems under said combination of operating parameters was reduced by 22% compared to the fixed operating parameters, thus indicating significant energy efficiency.
Optimal Economic Operation of Islanded Microgrid by Using a Modified PSO Algorithm
Directory of Open Access Journals (Sweden)
Yiwei Ma
2015-01-01
Full Text Available An optimal economic operation method is presented to attain a joint-optimization of cost reduction and operation strategy for islanded microgrid, which includes renewable energy source, the diesel generator, and battery storage system. The optimization objective is to minimize the overall generating cost involving depreciation cost, operation cost, emission cost, and economic subsidy available for renewable energy source, while satisfying various equality and inequality constraints. A novel dynamic optimization process is proposed based on two different operation control modes where diesel generator or battery storage acts as the master unit to maintain the system frequency and voltage stability, and a modified particle swarm optimization algorithm is applied to get faster solution to the practical economic operation problem of islanded microgrid. With the example system of an actual islanded microgrid in Dongao Island, China, the proposed models, dynamic optimization strategy, and solution algorithm are verified and the influences of different operation strategies and optimization algorithms on the economic operation are discussed. The results achieved demonstrate the effectiveness and feasibility of the proposed method.
Energy Technology Data Exchange (ETDEWEB)
Todorov, A K; Arnaudov, B K; Brankova, B A; Gyuleva, B I; Zakhariyev, G K
1977-01-01
The system for planning for the development of coal mines is a complex of interrelated plan optimization, plan calculation and supporting (accounting-analytical and standards) tasks. An important point in this complex is held by the plan optimization tasks. The questions about the synthesis and the structural peculiarities of the system, the essence and machine realization of the tasks are examined.
Optimal control of load-following operations in a pressurized water reactor
International Nuclear Information System (INIS)
Zhao Fuyu; Zhou Dawei
2000-01-01
According to the optimal control theory, the problem of load-following operation in a pressurized water reactor is formulated as a nonlinear-quadratic optimal control problem. One-dimensional core model is adopted. A successful optimization algorithm DDPSR is proposed to solving the obtained problem. The research results show that the DDPSR can converge with a long time interval and needs very small iteration number and computing time, and the practical reactor can be fairly operated in an optimal load-following manner and axial offset satisfies the required value from beginning to end. Control characters of boron concentration are discussed specially
DEFF Research Database (Denmark)
Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard
2015-01-01
optimization problems where the environment does not change dynamically. For that reason, the requirement for convergence in static optimization problems is not as timecritical as for dynamic optimization problems. Most MOEAs use generic variables and operators that scale to static multi-objective optimization...... problem. The domain specific operators only encode existing knowledge about the environment. A comprehensive comparative study is provided to evaluate the results of applying the CONTROLEUM-GA compared to NSGAII, e-NSGAII and e- MOEA. Experimental results demonstrate clear improvements in convergence time...
Operational optimization of large-scale SRF accelerators
International Nuclear Information System (INIS)
J. R. Delayen; L. R. Doolittle; C. E. Reece
1999-01-01
Unlike other types of accelerator subsystems, because of the flexibility in setting the gradient in each cavity, an SRF linac has many operational degrees of freedom. The overall linac has an operational envelope (beam voltage and current) that depends on acceptable reliability, cryogenic capacity, and RF power budget. For economic and end-user physics reasons, one typically wants to run as close to the edge of the operational envelope as possible. With about 160 cavities in each of the CEBAF linacs. The authors have been forced to treat this problem in a very general way, and satisfy other non-fundamental needs as energy lock and rapid recovery from failures. They present a description of the relevant diverse constraints and the solution developed for CEBAF
Optimizing the diagnostic power with gastric emptying scintigraphy at multiple time points
Directory of Open Access Journals (Sweden)
Gajewski Byron J
2011-05-01
Full Text Available Abstract Background Gastric Emptying Scintigraphy (GES at intervals over 4 hours after a standardized radio-labeled meal is commonly regarded as the gold standard for diagnosing gastroparesis. The objectives of this study were: 1 to investigate the best time point and the best combination of multiple time points for diagnosing gastroparesis with repeated GES measures, and 2 to contrast and cross-validate Fisher's Linear Discriminant Analysis (LDA, a rank based Distribution Free (DF approach, and the Classification And Regression Tree (CART model. Methods A total of 320 patients with GES measures at 1, 2, 3, and 4 hour (h after a standard meal using a standardized method were retrospectively collected. Area under the Receiver Operating Characteristic (ROC curve and the rate of false classification through jackknife cross-validation were used for model comparison. Results Due to strong correlation and an abnormality in data distribution, no substantial improvement in diagnostic power was found with the best linear combination by LDA approach even with data transformation. With DF method, the linear combination of 4-h and 3-h increased the Area Under the Curve (AUC and decreased the number of false classifications (0.87; 15.0% over individual time points (0.83, 0.82; 15.6%, 25.3%, for 4-h and 3-h, respectively at a higher sensitivity level (sensitivity = 0.9. The CART model using 4 hourly GES measurements along with patient's age was the most accurate diagnostic tool (AUC = 0.88, false classification = 13.8%. Patients having a 4-h gastric retention value >10% were 5 times more likely to have gastroparesis (179/207 = 86.5% than those with ≤10% (18/113 = 15.9%. Conclusions With a mixed group of patients either referred with suspected gastroparesis or investigated for other reasons, the CART model is more robust than the LDA and DF approaches, capable of accommodating covariate effects and can be generalized for cross institutional applications, but
State-of-The-Art of Modeling Methodologies and Optimization Operations in Integrated Energy System
Zheng, Zhan; Zhang, Yongjun
2017-08-01
Rapid advances in low carbon technologies and smart energy communities are reshaping future patterns. Uncertainty in energy productions and demand sides are paving the way towards decentralization management. Current energy infrastructures could not meet with supply and consumption challenges, along with emerging environment and economic requirements. Integrated Energy System(IES) whereby electric power, natural gas, heating couples with each other demonstrates that such a significant technique would gradually become one of main comprehensive and optimal energy solutions with high flexibility, friendly renewables absorption and improving efficiency. In these global energy trends, we summarize this literature review. Firstly the accurate definition and characteristics of IES have been presented. Energy subsystem and coupling elements modeling issues are analyzed. It is pointed out that decomposed and integrated analysis methods are the key algorithms for IES optimization operations problems, followed by exploring the IES market mechanisms. Finally several future research tendencies of IES, such as dynamic modeling, peer-to-peer trading, couple market design, sare under discussion.
Directory of Open Access Journals (Sweden)
Kuei-Hsiang Chao
2016-11-01
Full Text Available The present study proposes a maximum power point tracking (MPPT method in which improved teaching-learning-based optimization (I-TLBO is applied to perform global MPPT of photovoltaic (PV module arrays under dissimilar shading situations to ensure the maximum power output of the module arrays. The proposed I-TLBO enables the automatic adjustment of teaching factors according to the self-learning ability of students. Incorporating smart-tracking and self-study strategies can effectively improve the tracking response speed and steady-state tracking performance. To evaluate the feasibility of the proposed I-TLBO, a HIP-2717 PV module array from Sanyo Electric was employed to compose various arrays with different serial and parallel configurations. The arrays were operated under different shading conditions to test the MPPT with double, triple, or quadruple peaks of power-voltage characteristic curves. Boost converters were employed with TMS320F2808 digital signal processors to test the proposed MPPT method. Empirical results confirm that the proposed method exhibits more favorable dynamic and static-state response tracking performance compared with that of conventional TLBO.
Energy Technology Data Exchange (ETDEWEB)
Salanne, J.Ph.
2005-11-15
The operating points obtained by the coupling of the power supply with the electric discharge system can be unstable because of the dynamical behaviour of the discharge or because of a change in its length. In this work, the different possible couplings existing between the discharge and the characteristics of its power supply are analyzed in order to optimize the design and control of the power supply and to control the operating point. Analytical and numerical modeling of the system are proposed which allow to simulate the couplings between the power supply and the discharge. This approach is completed by experimental investigations allowing to consider the cases of peak/peak discharges, dielectric barrier discharges (DBD), and gliding arcs. (J.S.)
Optimal setpoint operation of the climate control of a church
Schijndel, van A.W.M.; Schellen, H.L.
2010-01-01
The report presents the characteristics of the Walloon Church in Delft (Netherlands) and a description of constraints for the indoor climate, giving criteria for the indoor air temperature and relative humidity with the focus on the preservation of the monumental organ. The setpoint operation of the
Optimization of peri-operative care in colorectal surgery
Kornmann, V.N.N.
2016-01-01
Colorectal cancer is an important health issue, and colorectal surgery is increasingly being performed. During the last years, quality and safety of care, new surgical techniques and attention for peri-operative risks resulted in reduction of postoperative morbidity and mortality. Despite these
Cost and radiation exposure optimization of demineralizer operation
International Nuclear Information System (INIS)
Bernal, F.E.; Burn, R.R.; Cook, G.M.; Simonetti, L.; Simpson, P.A.
1985-01-01
A pool water demineralizer is utilized at a research reactor to minimize impurities that become radioactive; to minimize impurities that react chemically with reactor components; to maintain optical clarity of the pool water; and to minimize aluminum fuel cladding corrosion by maintaining a slightly acidic pH. Balanced against these advantages are the dollar costs of equipment, resins, recharging chemicals, and maintenance; the man-rem costs of radiation exposure during maintenance, demineralizer recharges, and resin replacement; and hazardous chemical exposure. At the Ford Nuclear Reactor (FNR), maintenance of the demineralizer system is the second largest source of radiation exposure to operators. Theoretical and practical aspects of demineralizer operation are discussed. The most obvious way to reduce radiation exposure due to demineralizer system operation is to perform recharges after the reactor has been shut down for the maximum possible time. Setting a higher depletion limit and operating with the optimum system lineup reduce the frequency between recharges, saving both exposure and cost. Recharge frequency and resin lifetime seem to be relatively independent of the quality of the chemicals used and the personnel performing recharges, provided consistent procedures are followed
Nuclear risk and optimal civil liability of the operator
International Nuclear Information System (INIS)
Schmitt, Andre; Spaeter, Sandrine
2007-01-01
The civil liability of nuclear operators are regulated by two sets of international Conventions. In particular, strict liability, limited financial responsibility and the obligation of providing financial guaranties are imposed to the nuclear operator by the Paris Convention and the Vienna Convention. Then national legislations are free to increase the financial cap of responsibility fixed by the international regimes. First we present the main elements of these Conventions. Then we focus on the impact of a modification in the amount of responsibility of the nuclear operator on his risk mitigation policy and on his financial condition. In particular we show that an increase of the cap beyond a given level determined by the model gives the operator some incentives to lessen the investment in prevention, contrary to what is expected. Besides, the impact of the preventive activities done by the firm on its financial constraint depends on the sensitivity of the risk distribution to the variation of the prevention level: The risk mitigation activities must be discussed with respect to the severity of the incidents and/or to the size of the nuclear park
THE OPERATION MODES OPTIMIZATION OF THE NEUTRAL DISTRIBUTION NETWORKS
Directory of Open Access Journals (Sweden)
F. P. Shkarbets
2009-03-01
Full Text Available The variants of grounding the neutral wire of electric networks are considered and the recommendations are presented on increasing the level of operational reliability and electric safety of distribution networks with 6 kV voltage on the basis of limitation and suppression of transitional processes at asymmetrical damages.
Optimal design of a beam-based dynamic vibration absorber using fixed-points theory
Hua, Yingyu; Wong, Waion; Cheng, Li
2018-05-01
The addition of a dynamic vibration absorber (DVA) to a vibrating structure could provide an economic solution for vibration suppressions if the absorber is properly designed and located onto the structure. A common design of the DVA is a sprung mass because of its simple structure and low cost. However, the vibration suppression performance of this kind of DVA is limited by the ratio between the absorber mass and the mass of the primary structure. In this paper, a beam-based DVA (beam DVA) is proposed and optimized for minimizing the resonant vibration of a general structure. The vibration suppression performance of the proposed beam DVA depends on the mass ratio, the flexural rigidity and length of the beam. In comparison with the traditional sprung mass DVA, the proposed beam DVA shows more flexibility in vibration control design because it has more design parameters. With proper design, the beam DVA's vibration suppression capability can outperform that of the traditional DVA under the same mass constraint. The general approach is illustrated using a benchmark cantilever beam as an example. The receptance theory is introduced to model the compound system consisting of the host beam and the attached beam-based DVA. The model is validated through comparisons with the results from Abaqus as well as the Transfer Matrix method (TMM) method. Fixed-points theory is then employed to derive the analytical expressions for the optimum tuning ratio and damping ratio of the proposed beam absorber. A design guideline is then presented to choose the parameters of the beam absorber. Comparisons are finally presented between the beam absorber and the traditional DVA in terms of the vibration suppression effect. It is shown that the proposed beam absorber can outperform the traditional DVA by following this proposed guideline.
Bofill, Josep Maria; Ribas-Ariño, Jordi; García, Sergio Pablo; Quapp, Wolfgang
2017-10-21
The reaction path of a mechanically induced chemical transformation changes under stress. It is well established that the force-induced structural changes of minima and saddle points, i.e., the movement of the stationary points on the original or stress-free potential energy surface, can be described by a Newton Trajectory (NT). Given a reactive molecular system, a well-fitted pulling direction, and a sufficiently large value of the force, the minimum configuration of the reactant and the saddle point configuration of a transition state collapse at a point on the corresponding NT trajectory. This point is called barrier breakdown point or bond breaking point (BBP). The Hessian matrix at the BBP has a zero eigenvector which coincides with the gradient. It indicates which force (both in magnitude and direction) should be applied to the system to induce the reaction in a barrierless process. Within the manifold of BBPs, there exist optimal BBPs which indicate what is the optimal pulling direction and what is the minimal magnitude of the force to be applied for a given mechanochemical transformation. Since these special points are very important in the context of mechanochemistry and catalysis, it is crucial to develop efficient algorithms for their location. Here, we propose a Gauss-Newton algorithm that is based on the minimization of a positively defined function (the so-called σ-function). The behavior and efficiency of the new algorithm are shown for 2D test functions and for a real chemical example.
Energy Technology Data Exchange (ETDEWEB)
Niknam, Taher; Meymand, Hamed Zeinoddini; Nayeripour, Majid [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran)
2010-08-15
Fuel cell power plants (FCPPs) have been taken into a great deal of consideration in recent years. The continuing growth of the power demand together with environmental constraints is increasing interest to use FCPPs in power system. Since FCPPs are usually connected to distribution network, the effect of FCPPs on distribution network is more than other sections of power system. One of the most important issues in distribution networks is optimal operation management (OOM) which can be affected by FCPPs. This paper proposes a new approach for optimal operation management of distribution networks including FCCPs. In the article, we consider the total electrical energy losses, the total electrical energy cost and the total emission as the objective functions which should be minimized. Whereas the optimal operation in distribution networks has a nonlinear mixed integer optimization problem, the optimal solution could be obtained through an evolutionary method. We use a new evolutionary algorithm based on Fuzzy Adaptive Particle Swarm Optimization (FAPSO) to solve the optimal operation problem and compare this method with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization (ACO) and Tabu Search (TS) over two distribution test feeders. (author)
Development of a low frost-point generator operating at sub-atmospheric pressure
Cuccaro, R.; Rosso, L.; Smorgon, D.; Beltramino, G.; Tabandeh, S.; Fernicola, V.
2018-05-01
A low frost-point generator (INRIM 03) operating at sub-atmospheric pressure has been designed and constructed at the Istituto Nazionale di Ricerca Metrologica (INRIM) as part of a calibration facility for upper-air sounding instruments. This new humidity generator covers the frost-point temperature range between ‑99 °C and ‑20 °C and works at any controlled pressure between 200 hPa and 1100 hPa, achieving a complete saturation of the carrier gas (nitrogen) in a single passage through a stainless steel isothermal saturator. The generated humid gas contains a water vapour amount fraction between 14 × 10‑9 mol mol‑1 and 5 × 10‑3 mol mol‑1. In this work the design of the generator is reported together with characterisation and performance evaluation tests. A preliminary validation of the INRIM 03 against one of the INRIM humidity standards in the common region is also included. Based on experimental test results, an initial uncertainty evaluation of the generated frost-point temperature, T fp, and water vapour amount fraction, x w, in the limited range down to ‑75 °C at atmospheric pressure is reported. For the frost-point temperature, the uncertainty budget yields a total expanded uncertainty (k = 2) of less than 0.028 °C, while for the mole fraction the budget yields a total expanded uncertainty of less than 10‑6 mol mol‑1.
Optimal operation of a south double-skin facade
Energy Technology Data Exchange (ETDEWEB)
Gratia, E.; De Herde, A. [Universite Catholique de Louvain (Belgium). Architecture et Climat
2004-01-01
There is an increasing demand for higher quality office buildings. Occupants and developers of office buildings ask for a healthy and stimulating working environment. Double-skin facades are appropriate when buildings are subject to great external noise and wind loads. A further area of application is in rehabilitation work, when existing facades cannot be renewed, or where this is not desirable. Double-skin facades have a special esthetic of their own, and this can be exploited architecturally to great advantage. However there are still relatively few buildings in which double-skin facades have actually been realized, and there is still too little experience of their behaviour in operation. In this matter, we choose to study a multi-storey double-skin facades behaviour. Simulations were realized with TAS software on the building proposed in the frame of the subtask A of the Task 27 (performance of solar facade components) of the International Energy Agency. Simulations were performed on the chosen building with and without double-skin facades. We decide to study eight types of days; and we analyze the double-skin facade behaviour for various operations. The thermal behaviours of the building with and without double-skin are compared. The study of these eight cases showed the importance of the dynamic use of the double-skin. The operation of this one must be obligatorily related to the climatic conditions as well external as interior and a bad operation of the double-skin could lead to catastrophic results. (author)
Reducing Operating Costs by Optimizing Space in Facilities
2012-03-01
Design: Mapping the High Performance Workscape. Jossey-Bass. San Francisco. Berkman, Elliot. (2012). A Conceptual Guide to Statistics using SPSS. Sage ...Cleaning: Includes labor costs for in-house and contract service, payroll , taxes and fringe benefits, plus salaried supervisors and managers, as well as...Labor costs include payroll , taxes and fringe benefits for employees and contracted workers. Personnel include operating engineers, general
Bai, Y.Q.; Lesaja, G.; Roos, C.; Wang, G.Q.; El Ghami, M.
2008-01-01
In this paper we present a class of polynomial primal-dual interior-point algorithms for linear optimization based on a new class of kernel functions. This class is fairly general and includes the classical logarithmic function, the prototype self-regular function, and non-self-regular kernel
Optimal Operation of Industrial Batch Crystallizers : A Nonlinear Model-based Control Approach
Mesbah, A.
2010-01-01
Batch crystallization is extensively employed in the chemical, pharmaceutical, and food industries to separate and purify high value-added chemical substances. Despite their widespread application, optimal operation of batch crystallizers is particularly challenging. The difficulties primarily
Optimization of costs of Port Operations in Nigeria: A Scenario For ...
African Journals Online (AJOL)
2013-03-01
Mar 1, 2013 ... +Department of Maritime Management Technology,. Federal ... Abstract. This study attempts to optimize the cost of port operations in Nigeria. ..... Slack. Original Value. Lower. Bound. Upper Bound. Const. 1. 0. 685.7727. 672.
Optimization of an experimental hybrid microgrid operation: reliability and economic issues
Milo, Aitor; Gaztañaga, Haizea; Etxeberria Otadui, Ion; Bilbao, Endika; Rodríguez Cortés, Pedro
2009-01-01
In this paper a hybrid microgrid system, composed of RES (Renewable Energy System) and CHP (Combined Heat and Power) systems together with a battery based storage system is presented. The microgrid is accompanied by a centralized energy management system (CEMS) in order to optimize the microgrid operation both in grid-connected and in stand-alone modes. In grid-connected mode the optimization of the economic exploitation of the microgrid is privileged by applying optim...
Increase of Gas-Turbine Plant Efficiency by Optimizing Operation of Compressors
Matveev, V.; Goriachkin, E.; Volkov, A.
2018-01-01
The article presents optimization method for improving of the working process of axial compressors of gas turbine engines. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.
The optimization of nuclear power plants operation modes in emergency situations
Zagrebayev, A. M.; Trifonenkov, A. V.; Ramazanov, R. N.
2018-01-01
An emergency situations resulting in the necessity for temporary reactor trip may occur at the nuclear power plant while normal operating mode. The paper deals with some of the operation c aspects of nuclear power plant operation in emergency situations and during threatened period. The xenon poisoning causes limitations on the variety of statements of the problem of calculating characteristics of a set of optimal reactor power off controls. The article show a possibility and feasibility of new sets of optimization tasks for the operation of nuclear power plants under conditions of xenon poisoning in emergency circumstances.
Optimal Operation of Data Centers in Future Smart Grid
Ghamkhari, Seyed Mahdi
The emergence of cloud computing has established a growing trend towards building massive, energy-hungry, and geographically distributed data centers. Due to their enormous energy consumption, data centers are expected to have major impact on the electric grid by significantly increasing the load at locations where they are built. However, data centers also provide opportunities to help the grid with respect to robustness and load balancing. For instance, as data centers are major and yet flexible electric loads, they can be proper candidates to offer ancillary services, such as voluntary load reduction, to the smart grid. Also, data centers may better stabilize the price of energy in the electricity markets, and at the same time reduce their electricity cost by exploiting the diversity in the price of electricity in the day-ahead and real-time electricity markets. In this thesis, such potentials are investigated within an analytical profit maximization framework by developing new mathematical models based on queuing theory. The proposed models capture the trade-off between quality-of-service and power consumption in data centers. They are not only accurate, but also they posses convexity characteristics that facilitate joint optimization of data centers' service rates, demand levels and demand bids to different electricity markets. The analysis is further expanded to also develop a unified comprehensive energy portfolio optimization for data centers in the future smart grid. Specifically, it is shown how utilizing one energy option may affect selecting other energy options that are available to a data center. For example, we will show that the use of on-site storage and the deployment of geographical workload distribution can particularly help data centers in utilizing high-risk energy options such as renewable generation. The analytical approach in this thesis takes into account service-level-agreements, risk management constraints, and also the statistical
Optimal operation of smart houses by a real-time rolling horizon algorithm
Paterakis, N.G.; Pappi, I.N.; Catalão, J.P.S.; Erdinc, O.
2016-01-01
In this paper, a novel real-time rolling horizon optimization framework for the optimal operation of a smart household is presented. A home energy management system (HEMS) model based on mixed-integer linear programming (MILP) is developed in order to minimize the energy procurement cost considering
Differential operators associated with Gegenbauer polynomials - 2: The limit-point case
International Nuclear Information System (INIS)
Onyango Otieno, V.P.
1987-10-01
In this paper we study the limit-point case of the Gegenbauer differential equation -((1-x 2 ) υ+1/2 y'(x)) 1 +υ 2 (1-x 2 ) υ-1/2 y(x)=λ(1-x 2 ) υ-1/2 y(x), (x ε (-1,1), λ ε C) in both the so-called right-definite and left-definite cases based partially on a classical approach due to E.C. Titchmarsh. We then link the Titchmarsh approach with operator theoretic results in the spaces L 2 w (-1,1) and H 2 p,q (-1,1). (author). 19 refs
Harmening, Corinna; Neuner, Hans
2016-09-01
Due to the establishment of terrestrial laser scanner, the analysis strategies in engineering geodesy change from pointwise approaches to areal ones. These areal analysis strategies are commonly built on the modelling of the acquired point clouds. Freeform curves and surfaces like B-spline curves/surfaces are one possible approach to obtain space continuous information. A variety of parameters determines the B-spline's appearance; the B-spline's complexity is mostly determined by the number of control points. Usually, this number of control points is chosen quite arbitrarily by intuitive trial-and-error-procedures. In this paper, the Akaike Information Criterion and the Bayesian Information Criterion are investigated with regard to a justified and reproducible choice of the optimal number of control points of B-spline curves. Additionally, we develop a method which is based on the structural risk minimization of the statistical learning theory. Unlike the Akaike and the Bayesian Information Criteria this method doesn't use the number of parameters as complexity measure of the approximating functions but their Vapnik-Chervonenkis-dimension. Furthermore, it is also valid for non-linear models. Thus, the three methods differ in their target function to be minimized and consequently in their definition of optimality. The present paper will be continued by a second paper dealing with the choice of the optimal number of control points of B-spline surfaces.
Optimal estimation of the intensity function of a spatial point process
DEFF Research Database (Denmark)
Guan, Yongtao; Jalilian, Abdollah; Waagepetersen, Rasmus
easily computable estimating functions. We derive the optimal estimating function in a class of first-order estimating functions. The optimal estimating function depends on the solution of a certain Fredholm integral equation and reduces to the likelihood score in case of a Poisson process. We discuss...
Optimization of mechanical properties of structures from the point of aseismic design
International Nuclear Information System (INIS)
Model, N.; Dineva, P.; Hadjikov, L.
1987-01-01
The vibroinsulation problem is solved by passive and active dynamic systems control methods. The attacking of the problem by design of vibroisolators that passively extinguish the harmful vibration has begun historically earlier. Quite in the latest years some attention has been drawn on the possibility about dynamical system's active control. But the questions about the technical realization at the optimal and the modal regulators making the behaviour safe during earthquake remains open until now. The optimal control theory application to the aims of the dynamical systems stability motion (systems being described as rigid, nondeformable solids) by a passive vibroinsulation is done. Thus the optimal dynamic system properties are identified without one having to solve the problem about a technical realization of active control equipments. An aim of this paper is an application of an optimal control theory to obtaining optimal elastic and dissipative characteristics of the buildings at their aseismic design
International Nuclear Information System (INIS)
He Dakuo; Dong Gang; Wang Fuli; Mao Zhizhong
2011-01-01
A chaotic sequence based differential evolution (DE) approach for solving the dynamic economic dispatch problem (DEDP) with valve-point effect is presented in this paper. The proposed method combines the DE algorithm with the local search technique to improve the performance of the algorithm. DE is the main optimizer, while an approximated model for local search is applied to fine tune in the solution of the DE run. To accelerate convergence of DE, a series of constraints handling rules are adopted. An initial population obtained by using chaotic sequence exerts optimal performance of the proposed algorithm. The combined algorithm is validated for two test systems consisting of 10 and 13 thermal units whose incremental fuel cost function takes into account the valve-point loading effects. The proposed combined method outperforms other algorithms reported in literatures for DEDP considering valve-point effects.
Directory of Open Access Journals (Sweden)
Heidi L. Weiss
2004-01-01
Full Text Available The role of biomarkers in disease prognosis continues to be an important investigation in many cancer studies. In order for these biomarkers to have practical application in clinical decision making regarding patient treatment and follow-up, it is common to dichotomize patients into those with low vs. high expression levels. In this study, receiver operating characteristic (ROC curves, area under the curve (AUC of the ROC, sensitivity, specificity, as well as likelihood ratios were calculated to determine levels of growth factor biomarkers that best differentiate lung cancer cases versus control subjects. Selected cut-off points for p185erbB-2 and EGFR membrane appear to have good discriminating power to differentiate control tissues versus uninvolved tissues from patients with lung cancer (AUC = 89% and 90%, respectively; while AUC increased to at least 90% for selected cut-off points for p185erbB-2 membrane, EGFR membrane, and FASE when comparing between control versus carcinoma tissues from lung cancer cases. Using data from control subjects compared to patients with lung cancer, we presented a simple and intuitive approach to determine dichotomized levels of biomarkers and validated the value of these biomarkers as surrogate endpoints for cancer outcome.
Control and operation cost optimization of the HISS cryogenic system
International Nuclear Information System (INIS)
Porter, J.; Bieser, F.; Anderson, D.
1983-08-01
The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable design to provide a maximum particle bending field of 3 tesla. A previous paper describes the cryogenic facility including helium refrigeration and gas management. This paper discusses a control strategy which has allowed full time unattended operation, along with significant nitrogen and power cost reductions. Reduction of liquid nitrogen consumption has been accomplished by making use of the sensible heat available in the cold exhaust gas. Measured nitrogen throughput agrees with calculations for sensible heat utilization of zero to 70%. Calculated consumption saving over this range is 40 liters per hour for conductive losses to the supports only. The measured throughput differential for the total system is higher
International Nuclear Information System (INIS)
He, Yi; Scheraga, Harold A.; Liwo, Adam
2015-01-01
Coarse-grained models are useful tools to investigate the structural and thermodynamic properties of biomolecules. They are obtained by merging several atoms into one interaction site. Such simplified models try to capture as much as possible information of the original biomolecular system in all-atom representation but the resulting parameters of these coarse-grained force fields still need further optimization. In this paper, a force field optimization method, which is based on maximum-likelihood fitting of the simulated to the experimental conformational ensembles and least-squares fitting of the simulated to the experimental heat-capacity curves, is applied to optimize the Nucleic Acid united-RESidue 2-point (NARES-2P) model for coarse-grained simulations of nucleic acids recently developed in our laboratory. The optimized NARES-2P force field reproduces the structural and thermodynamic data of small DNA molecules much better than the original force field
DEFF Research Database (Denmark)
Anvari-Moghaddam, Amjad; Dragicevic, Tomislav; Meng, Lexuan
2016-01-01
Next generation power management at all scales is highly relying on the efficient scheduling and operation of different energy sources to maximize efficiency and utility. The ability to schedule and modulate the energy storage options within energy systems can also lead to more efficient use...... of the generating units. This optimal planning and operation management strategy becomes increasingly important for off-grid systems that operate independently of the main utility, such as microgrids or power systems on marine vessels. This work extends the principles of optimal planning and economic dispatch...... for the proposed plan is derived based on the solution from a mixed-integer nonlinear programming (MINLP) problem. Simulation results showed that including well-sized energy storage options together with optimal operation management of generating units can improve the economic operation of the test system while...
DEFF Research Database (Denmark)
Lythcke-Jørgensen, Christoffer Ernst; Münster, Marie; Ensinas, Adriano Viana
2016-01-01
This paper presents a novel, simple method for reducing external operating condition datasets to be used in multi-generation system optimization models. The method, called the Characteristic Operating Pattern (CHOP) method, is a visually-based aggregation method that clusters reference data based...... on parameter values rather than time of occurrence, thereby preserving important information on short-term relations between the relevant operating parameters. This is opposed to commonly used methods where data are averaged over chronological periods (months or years), and extreme conditions are hidden...... in the averaged values. The CHOP method is tested in a case study where the operation of a fictive Danish combined heat and power plant is optimized over a historical 5-year period. The optimization model is solved using the full external operating condition dataset, a reduced dataset obtained using the CHOP...
Using the PAW/PEM monitoring systems to support operations at Point Lepreau
International Nuclear Information System (INIS)
MacDonald, S.; McIntyre, M.; Dai, H.
1997-01-01
The plant data logger was brought on-line at the Point Lepreau Generating Station (PLGS) in 1992 in order to record information from instruments throughout the plant. Using the System Engineers Data Extraction (SEDE) utility, current plant data is at the fingertips of anyone with a network connection. System engineers can monitor the performance of their systems at any time and take pro-active measures to avoid problems with performance, as well as monitor behaviour during tests and plant upsets. Nuclear Safety personnel gather data for use in simulation and analysis validation, as well as to ensure that plant parameters are kept within the safe operating envelope. The PLGS operational safety group embarked on a project to develop a data management system. The project and the monitoring process has come to be known as the Plant Analysis Workbench (PAW). When the need for complex monitoring of safety system signals was identified, this led to a similar project called the Plant Expert Monitor (PEM). In this paper we present an overview of the functionality of both PAW and PEM, outlining in particular the expert system architecture in PEM and giving an example of its day-to-day use
Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm
Zhang, Runmei; Wu, Yulu; Zhang, Guangbin; Zhou, Wei; Tao, Yuqian
2018-03-01
In view of the current point cloud registration software has high hardware requirements, heavy workload and moltiple interactive definition, the source of software with better processing effect is not open, a two--step registration method based on normal vector distribution feature and coarse feature based iterative closest point (ICP) algorithm is proposed in this paper. This method combines fast point feature histogram (FPFH) algorithm, define the adjacency region of point cloud and the calculation model of the distribution of normal vectors, setting up the local coordinate system for each key point, and obtaining the transformation matrix to finish rough registration, the rough registration results of two stations are accurately registered by using the ICP algorithm. Experimental results show that, compared with the traditional ICP algorithm, the method used in this paper has obvious time and precision advantages for large amount of point clouds.
Tethered Balloon Operations at ARM AMF3 Site at Oliktok Point, AK
Dexheimer, D.; Lucero, D. A.; Helsel, F.; Hardesty, J.; Ivey, M.
2015-12-01
Oliktok Point has been the home of the Atmospheric Radiation Measurement Program's (ARM) third ARM Mobile Facility, or AMF3, since October 2013. The AMF3 is operated through Sandia National Laboratories and hosts instrumentation collecting continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. The Arctic region is warming more quickly than any other region due to climate change and Arctic sea ice is declining to record lows. Sparsity of atmospheric data from the Arctic leads to uncertainty in process comprehension, and atmospheric general circulation models (AGCM) are understood to underestimate low cloud presence in the Arctic. Increased vertical resolution of meteorological properties and cloud measurements will improve process understanding and help AGCMs better characterize Arctic clouds. SNL is developing a tethered balloon system capable of regular operation at AMF3 in order to provide increased vertical resolution atmospheric data. The tethered balloon can be operated within clouds at altitudes up to 7,000' AGL within DOE's R-2204 restricted area. Pressure, relative humidity, temperature, wind speed, and wind direction are recorded at multiple altitudes along the tether. These data were validated against stationary met tower data in Albuquerque, NM. The altitudes of the sensors were determined by GPS and calculated using a line counter and clinometer and compared. Wireless wetness sensors and supercooled liquid water content sensors have also been deployed and their data has been compared with other sensors. This presentation will provide an overview of the balloons, sensors, and test flights flown, and will provide a preliminary look at data from sensor validation campaigns and test flights.
Directory of Open Access Journals (Sweden)
Trine Krogh-Madsen
2017-12-01
Full Text Available In silico cardiac myocyte models present powerful tools for drug safety testing and for predicting phenotypical consequences of ion channel mutations, but their accuracy is sometimes limited. For example, several models describing human ventricular electrophysiology perform poorly when simulating effects of long QT mutations. Model optimization represents one way of obtaining models with stronger predictive power. Using a recent human ventricular myocyte model, we demonstrate that model optimization to clinical long QT data, in conjunction with physiologically-based bounds on intracellular calcium and sodium concentrations, better constrains model parameters. To determine if the model optimized to congenital long QT data better predicts risk of drug-induced long QT arrhythmogenesis, in particular Torsades de Pointes risk, we tested the optimized model against a database of known arrhythmogenic and non-arrhythmogenic ion channel blockers. When doing so, the optimized model provided an improved risk assessment. In particular, we demonstrate an elimination of false-positive outcomes generated by the baseline model, in which simulations of non-torsadogenic drugs, in particular verapamil, predict action potential prolongation. Our results underscore the importance of currents beyond those directly impacted by a drug block in determining torsadogenic risk. Our study also highlights the need for rich data in cardiac myocyte model optimization and substantiates such optimization as a method to generate models with higher accuracy of predictions of drug-induced cardiotoxicity.
Optimizing post-operative pain management in Latin America
Directory of Open Access Journals (Sweden)
João Batista Santos Garcia
2017-07-01
Full Text Available Post-operative pain management is a significant problem in clinical practice in Latin America. Insufficient or inappropriate pain management is in large part due to insufficient knowledge, attitudes and education, and poor communications at various levels. In addition, the lack of awareness of the availability and importance of clear policies and guidelines for recording pain intensity, the use of specific analgesics and the proper approach to patient education have led to the consistent under-treatment of pain management in the region. However, these problems are not insurmountable and can be addressed at both the provider and patient level. Robust policies and guidelines can help insure continuity of care and reduce unnecessary variations in practice. The objective of this paper is to call attention to the problems associated with Acute Post-Operative Pain (APOP and to suggest recommendations for their solutions in Latin America. A group of experts on anesthesiology, surgery and pain developed recommendations that will lead to more efficient and effective pain management. It will be necessary to change the knowledge and behavior of health professionals and patients, and to obtain a commitment of policy makers. Success will depend on a positive attitude and the commitment of each party through the development of policies, programs and the promotion of a more efficient and effective system for the delivery of APOP services as recommended by the authors of this paper. The writing group believes that implementation of these recommendations should significantly enhance efficient and effective post-operative pain management in Latin America. Resumo: O controle da dor no período pós-operatório é um problema significativo na prática clínica na América Latina. O controle insuficiente ou inadequado da dor é devido, em grande parte, à insuficiência de conhecimento, atitudes e formação e à comunicação precária em vários níveis. Al
Optimal operation of stationary and mobile batteries in distribution grids
International Nuclear Information System (INIS)
Wang, Yubo; Shi, Wenbo; Wang, Bin; Chu, Chi-Cheng; Gadh, Rajit
2017-01-01
Highlights: • A DSM minimizes both nodal operational cost and network power losses is proposed. • Uncertainties in distribution grids are captured with stochastic programming. • An ADMM based distributed method is applied for scalability and privacy preserving. - Abstract: The trending integrations of Battery Energy Storage System (BESS, stationary battery) and Electric Vehicles (EV, mobile battery) to distribution grids call for advanced Demand Side Management (DSM) technique that addresses the scalability concerns of the system and stochastic availabilities of EVs. Towards this goal, a stochastic DSM is proposed to capture the uncertainties in EVs. Numerical approximation is then used to make the problem tractable. To accelerate the computational speed, the proposed DSM is tightly relaxed to a convex form using second-order cone programming. Furthermore, in light of the continuous increasing problem size, a distributed method with a guaranteed convergence is applied to shift the centralized computational burden to distributed controllers. To verify the proposed DSM, real-life EV data collected on UCLA campus is used to test the proposed DSM in an IEEE benchmark test system. Numerical results demonstrate the correctness and merits of the proposed approach.
A note on fixed point optimality criteria for the location problem with arbitrary norms: Reply
DEFF Research Database (Denmark)
Juel, Henrik; Love, Robert F.
1983-01-01
The single-facility location problem in continuous space is considered, with distances given by arbitrary norms. When distances are Euclidean, for many practical problems the optimal location of the new facility coincides with one of the existing facilities. This property carries over to problems...... with generalized distances. In this paper a necessary and sufficient condition for the location of an existing facility to be the optimal location of the new facility is developed. Some computational examples using the condition are given....
Energy Technology Data Exchange (ETDEWEB)
Mather, Barry A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cho, Gyu-Jung [Sungkyunkwan University; Oh, Yun-Sik [Sungkyunkwan University; Kim, Min-Sung [Sungkyunkwan University; Kim, Ji-Soo [Sungkyunkwan University; Kim, Chul-Hwan [Sungkyunkwan University
2017-06-29
Voltage regulation devices have been traditionally installed and utilized to support distribution voltages. Installations of distributed energy resources (DERs) in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile for a feeder; therefore, in the distribution system planning stage of the optimal operation and dispatch of voltage regulation devices, possible high penetrations of DERs should be considered. In this paper, we model the IEEE 34-bus test feeder, including all essential equipment. An optimization method is adopted to determine the optimal siting and operation of the voltage regulation devices in the presence of distributed solar power generation. Finally, we verify the optimal configuration of the entire system through the optimization and simulation results.
Operating cycle optimization for a Magnus effect-based airborne wind energy system
International Nuclear Information System (INIS)
Milutinović, Milan; Čorić, Mirko; Deur, Joško
2015-01-01
Highlights: • Operating cycle of a Magnus effect-based AWE system has been optimized. • The cycle trajectory should be vertical and far from the ground based generator. • Vertical trajectory provides high pulling force that drives the generator. • Large distance from the generator is required for the feasibility of the cycle. - Abstract: The paper presents a control variables optimization study for an airborne wind energy production system. The system comprises an airborne module in the form of a buoyant, rotating cylinder, whose rotation in a wind stream induces the Magnus effect-based aerodynamic lift. Through a tether, the airborne module first drives the generator fixed on the ground, and then the generator becomes a motor that lowers the airborne module. The optimization is aimed at maximizing the average power produced at the generator during a continuously repeatable operating cycle. The control variables are the generator-side rope force and the cylinder rotation speed. The optimization is based on a multi-phase problem formulation, where operation is divided into ascending and descending phases, with free boundary conditions and free cycle duration. The presented simulation results show that significant power increase can be achieved by using the obtained optimal operating cycle instead of the initial, empirically based operation control strategy. A brief analysis is also given to provide a physical interpretation of the optimal cycle results
System and method of cylinder deactivation for optimal engine torque-speed map operation
Sujan, Vivek A; Frazier, Timothy R; Follen, Kenneth; Moon, Suk-Min
2014-11-11
This disclosure provides a system and method for determining cylinder deactivation in a vehicle engine to optimize fuel consumption while providing the desired or demanded power. In one aspect, data indicative of terrain variation is utilized in determining a vehicle target operating state. An optimal active cylinder distribution and corresponding fueling is determined from a recommendation from a supervisory agent monitoring the operating state of the vehicle of a subset of the total number of cylinders, and a determination as to which number of cylinders provides the optimal fuel consumption. Once the optimal cylinder number is determined, a transmission gear shift recommendation is provided in view of the determined active cylinder distribution and target operating state.
DEFF Research Database (Denmark)
Lund, Henrik; Salgi, Georges; Elmegaard, Brian
2009-01-01
on electricity spot markets by storing energy when electricity prices are low and producing electricity when prices are high. In order to make a profit on such markets, CAES plant operators have to identify proper strategies to decide when to sell and when to buy electricity. This paper describes three...... plants will not be able to achieve such optimal operation, since the fluctuations of spot market prices in the coming hours and days are not known. Consequently, two simple practical strategies have been identified and compared to the results of the optimal strategy. This comparison shows that...... independent computer-based methodologies which may be used for identifying the optimal operation strategy for a given CAES plant, on a given spot market and in a given year. The optimal strategy is identified as the one which provides the best business-economic net earnings for the plant. In practice, CAES...
Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N
2000-05-01
We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.
Optimal, Risk-based Operation and Maintenance Planning for Offshore Wind Turbines
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
2008-01-01
For offshore wind turbines costs to operation and maintenance are substantial. This paper describes a risk-based life-cycle approach for optimal planning of operation and maintenance. The approach is based on pre-posterior Bayesian decision theory. Deterioration mechanisms such as fatigue...
DEFF Research Database (Denmark)
Gong, Hui; Olsen, Flemming Ove
CO2 lasers are increasingly being utilized for quality welding in production. Considering the high cost of equipment, the start-up time and the set-up time should be minimized. Ideally the parameters should be set up and optimized more or less automatically. In this paper a control system...... is designed and built to automatically optimize the focal point position, one of the most important parameters in CO2 laser welding, in order to perform a desired deep/full penetration welding. The control system mainly consists of a multi-axis motion controller - PMAC, a light sensor - Photo Diode, a data...
Improved Full-Newton Step O(nL) Infeasible Interior-Point Method for Linear Optimization
Gu, G.; Mansouri, H.; Zangiabadi, M.; Bai, Y.Q.; Roos, C.
2009-01-01
We present several improvements of the full-Newton step infeasible interior-point method for linear optimization introduced by Roos (SIAM J. Optim. 16(4):1110–1136, 2006). Each main step of the method consists of a feasibility step and several centering steps. We use a more natural feasibility step, which targets the ?+-center of the next pair of perturbed problems. As for the centering steps, we apply a sharper quadratic convergence result, which leads to a slightly wider neighborhood for th...
Optimization of an Operative Period at Radical Mastectomies
Directory of Open Access Journals (Sweden)
V. Yu. Vasilyev
2008-01-01
Full Text Available Blood loss volume is determined visually and approximately in most cases of surgical interventions, which most commonly leads to its underestimation, inadequate compensation, and development of hypovolemia. The latter induces peripheral vasospasm resulting in circulatory hypoxia, metabolic acidosis, diminished immunity, and worse reparative capacities of the body in the postoperative period. The transfused liquid volumes exceeding blood loss cause an increase in interstitial fluid volume, tissue edema and, hence, lead to impaired pulmonary gas exchange, enlarged postoperative wound edema, and postoperative complications. Administration of infusion media at a temperature lower than the body temperature has multiple adverse effects that impair the function of organs and systems. The typical response to hypothermia is peripheral vasospasm, followed by the development of circulatory hypoxia and metabolic acidosis. The objective of the study was to precisely estimate the volume of intraoperative blood loss and its adequate compensation and to correct central hemodynamic parameters and the body’s water sectors by nor-mothermal infusion therapy. Subjects and methods. The body’s water sectors, central hemodynamics, oxygen balance, and intraoperative blood loss volume were studied. Three groups of patients with radical mastectomy were comparatively analyzed. In Group 1 including 35 women operated on for breast cancer, the magnitude of blood loss was determined by eye and standard infusion therapy was performed, by using the mean solution temperatures of 20°C. Group 2 comprised 20 patients in whom blood loss was measured using a balance and infusion therapy was performed in accordance with the volume of the measured blood loss at the same temperature as in Group 1. Group 3 (n=18 received infusion therapy with the solutions warmed up to 37°C in accordance with blood loss volume determined applying a balance. Results. The studies have shown it
Optimal sizing and operation of energy storage systems considering long term assessment
Directory of Open Access Journals (Sweden)
Gerardo Guerra
2018-01-01
Full Text Available This paper proposes a procedure for estimating the optimal sizing of Photovoltaic Generators and Energy Storage units when they are operated from the utility’s perspective. The goal is to explore the potential improvement on the overall operating conditions of the distribution system to which the Generators and Storage units will be connected. Optimization is conducted by means of a General Parallel Genetic Algorithm that seeks to maximize the technical benefits for the distribution system. The paper proposes an operation strategy for Energy Storage units based on the daily variation of load and generation; the operation strategy is optimized for an evaluation period of one year using hourly power curves. The construction of the yearly Storage operation curve results in a high-dimension optimization problem; as a result, different day-classification methods are applied in order to reduce the dimension of the optimization. Results show that the proposed approach is capable of producing significant improvements in system operating conditions and that the best performance is obtained when the day-classification is based on the similarity among daily power curves.
Optimization of fuel-cell tram operation based on two dimension dynamic programming
Zhang, Wenbin; Lu, Xuecheng; Zhao, Jingsong; Li, Jianqiu
2018-02-01
This paper proposes an optimal control strategy based on the two-dimension dynamic programming (2DDP) algorithm targeting at minimizing operation energy consumption for a fuel-cell tram. The energy consumption model with the tram dynamics is firstly deduced. Optimal control problem are analyzed and the 2DDP strategy is applied to solve the problem. The optimal tram speed profiles are obtained for each interstation which consist of three stages: accelerate to the set speed with the maximum traction power, dynamically adjust to maintain a uniform speed and decelerate to zero speed with the maximum braking power at a suitable timing. The optimal control curves of all the interstations are connected with the parking time to form the optimal control method of the whole line. The optimized speed profiles are also simplified for drivers to follow.
Waheed, S., Sr.; Ramirez, J.
2017-12-01
Uncertainty in both hydrologic behavior and model characterization is a concern for current and future water resource system planning, operation, and management. To develop optimal dam operation schemes under future uncertainty, the sensitivity of the precipitation-runoff response to changes in hydro-climatic forcing must be quantified. To achieve this purpose, accurate (observational and modeled) data should be implemented. Herein, many data sources were compared to representative hydrologic datasets. Due to limited availability of observed daily data, a random temporal cascade method was used to downscale the monthly precipitation into daily. Then, four interpolation methods were compared to transform the point into gridded data. Furthermore, a regression technique coupled with Kriging method was developed. The method is based on regressing modeled data (from VIC dataset) with the observed gridded temperature by relating the regression to the geometry of each grid. The sensitivity and identifiability of the Variable Infiltration Capacity model (VIC) for the Diyala River basin in Iraq were evaluated using GLUE technique. Diyala River is a Tigris River tributary in eastern Iraq. Its total length and basin area are about 216.5 km and 16,763.7 km2, respectively. Seven candidate parameters of VIC model (b_infilt, Ds, Ws, Dsmax, and depths of soil layer 1, 2, and 3) associated with the infiltration and surface runoff production processes are examined for 14000 random sets. The comparison between the different data showed that neither the observations from Tropical Rainfall Measurement Mission nor the VIC modeled data is accurate for gridded precipitation; therefore, a downscaling technique was applied. Moreover, the comparison between four different interpolation techniques revealed that the Kriging method is the most accurate. The optimal model performance was found to be 0.731 NSCE. Also, the GLUE analysis results implied that the depth of the second soil layer depth
Verheyleweghen, Adriaen; Jaeschke, Johannes
2017-01-01
The efficient and safe operation of subsea gas and oil production systems sets strict requirements to equipment reliability to avoid unplanned breakdowns and costly maintenance interventions. Because of this, condition monitoring is employed to assess the status of the system in real-time. However, the condition of the system is usually not considered explicitly when finding the optimal operation strategy. Instead, operational constraints on flow rates, pressures etc., based on worst-case sce...
Total output operation chart optimization of cascade reservoirs and its application
International Nuclear Information System (INIS)
Jiang, Zhiqiang; Ji, Changming; Sun, Ping; Wang, Liping; Zhang, Yanke
2014-01-01
Highlights: • We propose a new double nested model for cascade reservoirs operation optimization. • We use two methods to extract the output distribution ratio. • The adopted two methods perform better than the widely used methods at present. • Stepwise regression method performs better than mean value method on the whole. - Abstract: With the rapid development of cascade hydropower stations in recent decades, the cascade system composed of multiple reservoirs needs unified operation and management. However, the output distribution problem has not yet been solved reasonably when the total output of cascade system obtained, which makes the full utilization of hydropower resources in cascade reservoirs very difficult. Discriminant criterion method is a traditional and common method to solve the output distribution problem at present, but some shortcomings cannot be ignored in the practical application. In response to the above concern, this paper proposes a new total output operation chart optimization model and a new optimal output distribution model, the two models constitute to a double nested model with the goal of maximizing power generation. This paper takes the cascade reservoirs of Li Xianjiang River in China as an instance to obtain the optimal total output operation chart by the proposed double nested model and the 43 years historical runoff data, progressive searching method and progressive optimality algorithm are used in solving the model. In order to take the obtained total output operation chart into practical operation, mean value method and stepwise regression method are adopted to extract the output distribution ratios on the basis of the optimal simulation intermediate data. By comparing with discriminant criterion method and conventional method, the combined utilization of total output operation chart and output distribution ratios presents better performance in terms of power generation and assurance rate, which proves it is an effective
A comparative study of the design software systems from the view point of optimization
International Nuclear Information System (INIS)
Hong, U. P.; Park, G. J.; Park, C. M.
2001-01-01
Analysis technology is widely accepted and quite popular these days. Incorporation of the analysis result into design process is a key factor for the success of the analysis area. A few design software products have been commercialized. Generally, they are trying to make an interface between various design methods and analysis software. Optimization is a representative design method. The products are investigated and compared for the aspects of user convenience and algorithm performance. A few popular products are selected. Graphic User Interface(GUI) is compared for the function and efficiency. The performances of the optimization algorithms are tested by mathematical and engineering examples. The results are discussed
An Optimized Structure on FPGA of Key Point Detection in SIFT Algorithm
Directory of Open Access Journals (Sweden)
Xu Chenyu
2016-01-01
Full Text Available SIFT algorithm is the most efficient and powerful algorithm to describe the features of images and it has been applied in many fields. In this paper, we propose an optimized method to realize the hardware implementation of the SIFT algorithm. We mainly discuss the structure of Data Generation here. A pipeline architecture is introduced to accelerate this optimized system. Parameters’ setting and approximation’s controlling in different image qualities and hardware resources are the focus of this paper. The results of experiments fully prove that this structure is real-time and effective, and provide consultative opinion to meet the different situations.
Hromadka, J.; Correia, R.; Korposh, S.
2016-05-01
A fast method for the fabrication of the long period gratings (LPG) optical fibres operating at or near the phase matching turning point (PMTP) with the period of 109.0, 109.5 and 110.0 μm based on an amplitude mask writing system is described. The proposed system allows fabricating 3 cm long LPG sensors operating at PMPT within 20 min that is approximately 8 times faster than point-by-point approach. The reproducibility of the fabrication process was thoroughly studied. The response of the fabricated LPGs to the external change of the refractive index was investigated using water and methanol.
Directory of Open Access Journals (Sweden)
Christopher Expósito-Izquierdo
2017-02-01
Full Text Available This paper summarizes the main contributions of the Ph.D. thesis of Christopher Exp\\'osito-Izquierdo. This thesis seeks to develop a wide set of intelligent heuristic and meta-heuristic algorithms aimed at solving some of the most highlighted optimization problems associated with the transshipment and storage of containers at conventional maritime container terminals. Under the premise that no optimization technique can have a better performance than any other technique under all possible assumptions, the main point of interest in the domain of maritime logistics is to propose optimization techniques superior in terms of effectiveness and computational efficiency to previous proposals found in the scientific literature when solving individual optimization problems under realistic scenarios. Simultaneously, these optimization techniques should be enough competitive to be potentially implemented in practice. }}
Ye, Jing; Dang, Yaoguo; Li, Bingjun
2018-01-01
Grey-Markov forecasting model is a combination of grey prediction model and Markov chain which show obvious optimization effects for data sequences with characteristics of non-stationary and volatility. However, the state division process in traditional Grey-Markov forecasting model is mostly based on subjective real numbers that immediately affects the accuracy of forecasting values. To seek the solution, this paper introduces the central-point triangular whitenization weight function in state division to calculate possibilities of research values in each state which reflect preference degrees in different states in an objective way. On the other hand, background value optimization is applied in the traditional grey model to generate better fitting data. By this means, the improved Grey-Markov forecasting model is built. Finally, taking the grain production in Henan Province as an example, it verifies this model's validity by comparing with GM(1,1) based on background value optimization and the traditional Grey-Markov forecasting model.
Grisey, A.; Yon, S.; Pechoux, T.; Letort, V.; Lafitte, P.
2017-03-01
Treatment time reduction is a key issue to expand the use of high intensity focused ultrasound (HIFU) surgery, especially for benign pathologies. This study aims at quantitatively assessing the potential reduction of the treatment time arising from moving the focal point during long pulses. In this context, the optimization of the focal point trajectory is crucial to achieve a uniform thermal dose repartition and avoid boiling. At first, a numerical optimization algorithm was used to generate efficient trajectories. Thermal conduction was simulated in 3D with a finite difference code and damages to the tissue were modeled using the thermal dose formula. Given an initial trajectory, the thermal dose field was first computed, then, making use of Pontryagin's maximum principle, the trajectory was iteratively refined. Several initial trajectories were tested. Then, an ex vivo study was conducted in order to validate the efficicency of the resulting optimized strategies. Single pulses were performed at 3MHz on fresh veal liver samples with an Echopulse and the size of each unitary lesion was assessed by cutting each sample along three orthogonal planes and measuring the dimension of the whitened area based on photographs. We propose a promising approach to significantly shorten HIFU treatment time: the numerical optimization algorithm was shown to provide a reliable insight on trajectories that can improve treatment strategies. The model must now be improved in order to take in vivo conditions into account and extensively validated.
International Nuclear Information System (INIS)
Priyadarshi, S; Pierce, I; Hong, Y; Shore, K A
2012-01-01
In optical chaos communications a message is masked in the noise-like broadband output of a chaotic transmitter laser, and message recovery is enabled through the synchronization of the transmitter and the (chaotic) receiver laser. Key issues are to identify the laser operating conditions which provide the highest quality synchronization conditions and those which provide optimized message extraction. In general such operating conditions are not coincident. In this paper numerical simulations are performed with the aim of identifying a regime of operation where the highest quality synchronization and optimizing message extraction efficiency are achieved simultaneously. Use of such an operating regime will facilitate practical deployment of optical chaos communications systems without the need for re-adjustment of laser operating conditions in the field. (paper)
Directory of Open Access Journals (Sweden)
Neeraj Priyadarshi
2018-04-01
Full Text Available In this research paper, a hybrid Artificial Neural Network (ANN-Fuzzy Logic Control (FLC tuned Flower Pollination Algorithm (FPA as a Maximum Power Point Tracker (MPPT is employed to amend root mean square error (RMSE of photovoltaic (PV modeling. Moreover, Gaussian membership functions have been considered for fuzzy controller design. This paper interprets the Luo converter occupied brushless DC motor (BLDC-directed PV water pump application. Experimental responses certify the effectiveness of the suggested motor-pump system supporting diverse operating states. The Luo converter, a newly developed DC-DC converter, has high power density, better voltage gain transfer and superior output waveform and can track optimal power from PV modules. For BLDC speed control there is no extra circuitry, and phase current sensors are enforced for this scheme. The most recent attempt using adaptive neuro-fuzzy inference system (ANFIS-FPA-operated BLDC directed PV pump with advanced Luo converter, has not been formerly conferred.
Energy Technology Data Exchange (ETDEWEB)
Wang, Hesheng; Lai, Yinping [Department of Automation,Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation,Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China)
2016-12-15
In this paper, a new optimization model of time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator is designed. The task of this manipulator is to inspect the components of Tokamak, the inspecting velocity of manipulator must be limited in the operating space in order to get the clear pictures. With the limitation of joint velocity, acceleration and jerk, this optimization model can not only get the minimum working time along a specific path, but also ensure the imaging quality of camera through the constraint of inspecting velocity. The upper bound of the scanning speed is not a constant but changes according to the observation distance of camera in real time. The relation between scanning velocity and observation distance is estimated by curve-fitting. Experiment has been carried out to verify the feasibility of optimization model, moreover, the Laplace image sharpness evaluation method is adopted to evaluate the quality of images obtained by the proposed method.
International Nuclear Information System (INIS)
Wang, Hesheng; Lai, Yinping; Chen, Weidong
2016-01-01
In this paper, a new optimization model of time optimal trajectory planning with limitation of operating task for the Tokamak inspecting manipulator is designed. The task of this manipulator is to inspect the components of Tokamak, the inspecting velocity of manipulator must be limited in the operating space in order to get the clear pictures. With the limitation of joint velocity, acceleration and jerk, this optimization model can not only get the minimum working time along a specific path, but also ensure the imaging quality of camera through the constraint of inspecting velocity. The upper bound of the scanning speed is not a constant but changes according to the observation distance of camera in real time. The relation between scanning velocity and observation distance is estimated by curve-fitting. Experiment has been carried out to verify the feasibility of optimization model, moreover, the Laplace image sharpness evaluation method is adopted to evaluate the quality of images obtained by the proposed method.
A robust optimization based approach for microgrid operation in deregulated environment
International Nuclear Information System (INIS)
Gupta, R.A.; Gupta, Nand Kishor
2015-01-01
Highlights: • RO based approach developed for optimal MG operation in deregulated environment. • Wind uncertainty modeled by interval forecasting through ARIMA model. • Proposed approach evaluated using two realistic case studies. • Proposed approach evaluated the impact of degree of robustness. • Proposed approach gives a significant reduction in operation cost of microgrid. - Abstract: Micro Grids (MGs) are clusters of Distributed Energy Resource (DER) units and loads. MGs are self-sustainable and generally operated in two modes: (1) grid connected and (2) grid isolated. In deregulated environment, the operation of MG is managed by the Microgrid Operator (MO) with an objective to minimize the total cost of operation. The MG management is crucial in the deregulated power system due to (i) integration of intermittent renewable sources such as wind and Photo Voltaic (PV) generation, and (ii) volatile grid prices. This paper presents robust optimization based approach for optimal MG management considering wind power uncertainty. Time series based Autoregressive Integrated Moving Average (ARIMA) model is used to characterize the wind power uncertainty through interval forecasting. The proposed approach is illustrated through a case study having both dispatchable and non-dispatchable generators through different modes of operation. Further the impact of degree of robustness is analyzed in both cases on the total cost of operation of the MG. A comparative analysis between obtained results using proposed approach and other existing approach shows the strength of proposed approach in cost minimization in MG management
Core design and operation optimization methods based on time-dependent perturbation theory
International Nuclear Information System (INIS)
Greenspan, E.
1983-08-01
A general approach for the optimization of nuclear reactor core design and operation is outlined; it is based on two cornerstones: a newly developed time-dependent (or burnup-dependent) perturbation theory for nonlinear problems and a succesive iteration technique. The resulting approach is capable of handling realistic reactor models using computational methods of any degree of sophistication desired, while accounting for all the constraints imposed. Three general optimization strategies, different in the way for handling the constraints, are formulated. (author)
DEFF Research Database (Denmark)
Li, Jinghua; Fang, Jiakun; Zeng, Qing
2016-01-01
The integration of electrical and heating systems has great potential to enhance the flexibility of power systems to accommodate more renewable power such as the wind and solar. This study was to investigate an optimal way to integrate the energy of both systems in urban areas. The amount of energy...... the effectiveness of the proposed solution. The results showed that coordinated optimization of the energy distribution have significant benefits for reducing wind curtailment, operation cost, and energy losses. The proposed model and methodology could help system operators with decision support in the emerging...... conversion between the electrical system and heating system was optimally decided so that the demand within both systems could be met at the least operational cost. Besides, the best node to join with the electrical system and heating system was chosen by consideration of the energy transmission loss...
An Optimal Operating Strategy for Battery Life Cycle Costs in Electric Vehicles
Directory of Open Access Journals (Sweden)
Yinghua Han
2014-01-01
Full Text Available Impact on petroleum based vehicles on the environment, cost, and availability of fuel has led to an increased interest in electric vehicle as a means of transportation. Battery is a major component in an electric vehicle. Economic viability of these vehicles depends on the availability of cost-effective batteries. This paper presents a generalized formulation for determining the optimal operating strategy and cost optimization for battery. Assume that the deterioration of the battery is stochastic. Under the assumptions, the proposed operating strategy for battery is formulated as a nonlinear optimization problem considering reliability and failure number. And an explicit expression of the average cost rate is derived for battery lifetime. Results show that the proposed operating strategy enhances the availability and reliability at a low cost.
Energy Technology Data Exchange (ETDEWEB)
Sriyanyong, P. [King Mongkut' s Univ. of Technology, Bangkok (Thailand). Dept. of Teacher Training in Electrical Engineering
2008-07-01
This paper described the use of an enhanced particle swarm optimization (PSO) model to address the problem of dynamic economic dispatch (DED). A modified heuristic search method was incorporated into the PSO model. Both smooth and non-smooth cost functions were considered. The enhanced PSO model not only utilized the basic PSO algorithm in order to seek the optimal solution for the DED problem, but it also used a modified heuristic method to deal with constraints and increase the possibility of finding a feasible solution. In order to validate the enhanced PSO model, it was used and tested on 10-unit systems considering both smooth and non-smooth cost functions characteristics. The experimental results were also compared to other methods. The proposed technique was found to be better than other approaches. The enhanced PSO model outperformed others with respect to quality, stability and reliability. 23 refs., 1 tab., 8 figs.
Ferrer-Mileo, V; Guede-Fernandez, F; Fernandez-Chimeno, M; Ramos-Castro, J; Garcia-Gonzalez, M A
2015-08-01
This work compares several fiducial points to detect the arrival of a new pulse in a photoplethysmographic signal using the built-in camera of smartphones or a photoplethysmograph. Also, an optimization process for the signal preprocessing stage has been done. Finally we characterize the error produced when we use the best cutoff frequencies and fiducial point for smartphones and photopletysmograph and compare if the error of smartphones can be reasonably be explained by variations in pulse transit time. The results have revealed that the peak of the first derivative and the minimum of the second derivative of the pulse wave have the lowest error. Moreover, for these points, high pass filtering the signal between 0.1 to 0.8 Hz and low pass around 2.7 Hz or 3.5 Hz are the best cutoff frequencies. Finally, the error in smartphones is slightly higher than in a photoplethysmograph.
Ultrasound-guided thoracenthesis: the V-point as a site for optimal drainage positioning.
Zanforlin, A; Gavelli, G; Oboldi, D; Galletti, S
2013-01-01
In the latest years the use of lung ultrasound is increasing in the evaluation of pleural effusions, because it makes follow-up easier and drainage more efficient by providing guidance on the most appropriate sampling site. However, no standardized approach for ultrasound-guided thoracenthesis is actually available. To evaluate our usual ultrasonographic landmark as a possible standard site to perform thoracenthesis by assessing its value in terms of safety and efficiency (success at first attempt, drainage as complete as possible). Hospitalized patients with non organized pleural effusion underwent thoracenthesis after ultrasound evaluation. The point showing on ultrasound the maximum thickness of the effusion ("V-point") was chosen for drainage. 45 ultrasound guided thoracenthesis were performed in 12 months. In 22 cases there were no complications; 16 cases of cough, 2 cases of mild dyspnea without desaturation, 4 cases of mild pain; 2 cases of complications requiring medical intervention occurred. No case of pneumothorax related to the procedure was detected. In all cases drainage was successful on the first attempt. The collected values of maximum thickness at V-point (min 3.4 cm - max 15.3 cm) and drained fluid volume (min 70 ml - max 2000 ml) showed a significative correlation (p measure of the maximum thickness at V-point provides high efficiency to ultrasound guided thoracentesis and allows to estimate the amount of fluid in the pleural cavity. It is also an easy parameter that makes the proposed method quick to learn and apply.
A homogeneous interior-point algorithm for nonsymmetric convex conic optimization
DEFF Research Database (Denmark)
Skajaa, Anders; Ye, Yinyu
2014-01-01
-centered primal–dual point. Features of the algorithm include that it makes use only of the primal barrier function, that it is able to detect infeasibilities in the problem and that no phase-I method is needed. We prove convergence to TeX -accuracy in TeX iterations. To improve performance, the algorithm employs...
Optimizing the duration of point counts for monitoring trends in bird populations
Jared Verner
1988-01-01
Minute-by-minute analysis of point counts of birds in mixed-conifer forests in the Sierra National Forest, central California, showed that cumulative counts of species and individuals increased in a curvilinear fashion but did not reach asymptotes after 10 minutes of counting. Comparison of the expected number of individuals counted per hour with various combinations...
Directory of Open Access Journals (Sweden)
Navid Ghadipasha
2016-02-01
Full Text Available This paper discusses the initial steps towards the formulation and implementation of a generic and flexible model centric framework for integrated simulation, estimation, optimization and feedback control of polymerization processes. For the first time it combines the powerful capabilities of the automatic continuous on-line monitoring of polymerization system (ACOMP, with a modern simulation, estimation and optimization software environment towards an integrated scheme for the optimal operation of polymeric processes. An initial validation of the framework was performed for modelling and optimization using literature data, illustrating the flexibility of the method to apply under different systems and conditions. Subsequently, off-line capabilities of the system were fully tested experimentally for model validations, parameter estimation and process optimization using ACOMP data. Experimental results are provided for free radical solution polymerization of methyl methacrylate.
Optimal year-round operation of a concentrated solar energy plant in the south of Europe
International Nuclear Information System (INIS)
Martín, Lidia; Martín, Mariano
2013-01-01
We present the year-round optimization of the operation of a concentrated solar power facility evaluating the molten salts storage, the power block and cooling. We locate the plant in the south of Europe, Almería (Spain), where high solar radiation is available. The operation of the plant is a function of the solar incidence as well as the climate and atmospheric conditions. The optimization of the system is formulated as a multiperiod Non-linear Programming problem (NLP) that is solved for the optimal production of electricity over a year defining the main operating variables of the thermal and cooling cycles. For a maximum of 25 MW in summer and a minimum of 9.5 MW in winter the annual production cost of electricity is 0.15 €/kWh consuming an average of 2.1 L water /kWh. The investment for the plant is 260 M€. Scale-up studies reveal that the production cost can decrease by half while the investment per unit of power should become competitive with current coal based power plants if solar and coal facilities present similar production capacities. -- Highlights: • Plant design so far relies on process simulation and only partial optimization studies. • We optimize the operation of a concentrated solar power plant. • The facility involves solar field, molten salts, steam and electricity generation and cooling. • The results are promising and validate literature sensitive studies
International Nuclear Information System (INIS)
Gelston, Gariann M.
2010-01-01
For the Domestic Nuclear Detection Office's Rail Test Center (i.e., DNDO's RTC), port operation knowledge with flexible collection tools and technique are essential in both technology testing design and implementation intended for live operational settings. Increased contextual data, flexibility in procedures, and rapid availability of information are keys to addressing the challenges of optimization, validation, and analysis within live operational setting data collection. These concepts need to be integrated into technology testing designs, data collection, validation, and analysis processes. A modified data collection technique with a two phased live operation test method is proposed.
DEFF Research Database (Denmark)
Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte
2010-01-01
markets in some ways, is chosen as the studied power system in this paper. Two kinds of BESS, based on polysulfide-bromine (PSB) and vanadium redox (VRB) battery technologies, are studies in the paper. Simulation results show, that the proposed optimal operation strategy is an effective measure to achieve......Since the hourly spot market price is available one day ahead, the price could be transferred to the consumers and they may have some motivations to install an energy storage system in order to save their energy costs. This paper presents an optimal operation strategy for a battery energy storage...
Directory of Open Access Journals (Sweden)
Jason Jiunshiou Lee
Full Text Available Adolescent obesity has increased to alarming proportions globally. However, few studies have investigated the optimal waist circumference (WC of Asian adolescents. This study sought to establish the optimal WC cutoff points that identify a cluster of cardiovascular risk factors (CVRFs among 15-year-old ethnically Chinese adolescents. This study was a regional population-based study on the CVRFs among adolescents who enrolled in all the senior high schools in Taipei City, Taiwan, between 2011 and 2014. Four cross-sectional health examinations of first-year senior high school (grade 10 students were conducted from September to December of each year. A total of 124,643 adolescents aged 15 (boys: 63,654; girls: 60,989 were recruited. Participants who had at least three of five CVRFs were classified as the high-risk group. We used receiver-operating characteristic curves and the area under the curve (AUC to determine the optimal WC cutoff points and the accuracy of WC in predicting high cardiovascular risk. WC was a good predictor for high cardiovascular risk for both boys (AUC: 0.845, 95% confidence interval [CI]: 0.833-0.857 and girls (AUC: 0.763, 95% CI: 0.731-0.795. The optimal WC cutoff points were ≥78.9 cm for boys (77th percentile and ≥70.7 cm for girls (77th percentile. Adolescents with normal weight and an abnormal WC were more likely to be in the high cardiovascular risk group (odds ratio: 3.70, 95% CI: 2.65-5.17 compared to their peers with normal weight and normal WC. The optimal WC cutoff point of 15-year-old Taiwanese adolescents for identifying CVRFs should be the 77th percentile; the 90th percentile of the WC might be inadequate. The high WC criteria can help health professionals identify higher proportion of the adolescents with cardiovascular risks and refer them for further evaluations and interventions. Adolescents' height, weight and WC should be measured as a standard practice in routine health checkups.
International Nuclear Information System (INIS)
Kustrin, I.; Tuma, M.
1992-01-01
Our environment and nature are currently overburdened with the emission of noxious substances. Steam boilers fired with coal are therefore not very popular. Wherever possible, they are being replaced by devices which are less harmful for the environment because they use different fuel. This paper discusses replacing a steam boiler with a gas turbine and an utilizer. A mathematical model for performing the optimization of capital and operating costs is presented. The model optimizes the degree of preheating of the flue gases i.e. the temperature of the entering flue gases. The smallest temperature difference (pinch point) was not estimated by the pinch technology because the presented example is relatively simple and the pinch point temperature difference was chosen according to the values reported in various literature sources. The optimization is supplemented with an analysis of the thermal and exergetical efficiencies of the utilizer under different conditions (average temperature difference between the hot gases and water or steam, exit temperature of the hot gases), which condition the choice of the type of utilizer
Optimization of operating schedule of machines in granite industry using evolutionary algorithms
International Nuclear Information System (INIS)
Loganthurai, P.; Rajasekaran, V.; Gnanambal, K.
2014-01-01
Highlights: • Operating time of machines in granite industries was studied. • Operating time has been optimized using evolutionary algorithms such as PSO, DE. • The maximum demand has been reduced. • Hence the electricity cost of the industry and feeder stress have been reduced. - Abstract: Electrical energy consumption cost plays an important role in the production cost of any industry. The electrical energy consumption cost is calculated as two part tariff, the first part is maximum demand cost and the second part is energy consumption cost or unit cost (kW h). The maximum demand cost can be reduced without affecting the production. This paper focuses on the reduction of maximum demand by proper operating schedule of major equipments. For this analysis, various granite industries are considered. The major equipments in granite industries are cutting machine, polishing machine and compressor. To reduce the maximum demand, the operating time of polishing machine is rescheduled by optimization techniques such as Differential Evolution (DE) and particle swarm optimization (PSO). The maximum demand costs are calculated before and after rescheduling. The results show that if the machines are optimally operated, the cost is reduced. Both DE and PSO algorithms reduce the maximum demand cost at the same rate for all the granite industries. However, the optimum scheduling obtained by DE reduces the feeder power flow than the PSO scheduling
Research on Cascade Reservoirs’ Short-Term Optimal Operation under the Effect of Reverse Regulation
Directory of Open Access Journals (Sweden)
Changming Ji
2018-06-01
Full Text Available Currently research on joint operation of a large reservoir and its re-regulating reservoir focuses on either water quantity regulation or water head regulation. The accuracy of relevant models is in need of improvement if the influence of factors such as water flow hysteresis and the aftereffect of tail water level variation are taken into consideration. In this paper, given the actual production of Pankou-Xiaoxuan cascade hydropower stations that combines two operation modes (‘electricity to water’ and ‘water to electricity’, a coupling model of their short-term optimal operation is developed, which considers Xiaoxuan reservoir’s regulating effect on Pankou reservoir’s outflow volume and water head. Factors such as water flow hysteresis and the aftereffect of tail water level variation are also considered to enhance the model’s accuracy. The Backward Propagation (BP neural network is employed for precise calculation of the downstream reservoir’s inflow and the upstream reservoir’s tail water level. Besides, we put forth Accompanying Progressive Optimality Algorithm (APOA to solve the coupling model with aftereffect. An example is given to verify the scientificity of the proposed model and the advantages of APOA. Through analysis of the model calculation results, the optimal operation rules of the cascade reservoirs are obtained in terms of water quantity regulation and water head regulation, which can provide scientific reference for cascade reservoirs’ optimal operation.
Miharja, M.; Priadi, Y. N.
2018-05-01
Promoting a better public transport is a key strategy to cope with urban transport problems which are mostly caused by a huge private vehicle usage. A better public transport service quality not only focuses on one type of public transport mode, but also concerns on inter modes service integration. Fragmented inter mode public transport service leads to a longer trip chain as well as average travel time which would result in its failure to compete with a private vehicle. This paper examines the optimation process of operation system integration between Trans Jakarta Bus as the main public transport mode and Kopaja Bus as feeder public transport service in Jakarta. Using scoring-interview method combined with standard parameters in operation system integration, this paper identifies the key factors that determine the success of the two public transport operation system integrations. The study found that some key integration parameters, such as the cancellation of “system setoran”, passenger get in-get out at official stop points, and systematic payment, positively contribute to a better service integration. However, some parameters such as fine system, time and changing point reliability, and information system reliability are among those which need improvement. These findings are very useful for the authority to set the right strategy to improve operation system integration between Trans Jakarta and Kopaja Bus services.
Optimization of a primary circuit of the nuclear power plant from the vibration point of view
International Nuclear Information System (INIS)
Dupal, J.; Zeman, V.
2003-01-01
The primary circuit of the nuclear power plant (NPP) as a dynamical vibrating system can be disturbed by various excitation including earthquake or pressure pulsation generated by main circulation pumps (MCP). Especially, unpleasant pulsation vibration growth can be caused by the small differences of revolutions between main circulation pumps of the individual coolant loops. This growth corresponds to the well known beats. The paper deals with an approach to the improving and optimization of dynamical properties of the whole primary circuit system including the reactor and coolant loops under pressure pulsation. (author)
High-dimensional change-point estimation: Combining filtering with convex optimization
Soh, Yong Sheng; Chandrasekaran, Venkat
2017-01-01
We consider change-point estimation in a sequence of high-dimensional signals given noisy observations. Classical approaches to this problem such as the filtered derivative method are useful for sequences of scalar-valued signals, but they have undesirable scaling behavior in the high-dimensional setting. However, many high-dimensional signals encountered in practice frequently possess latent low-dimensional structure. Motivated by this observation, we propose a technique for high-dimensional...
Interior-Point Method for Non-Linear Non-Convex Optimization
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan
2004-01-01
Roč. 11, č. 5-6 (2004), s. 431-453 ISSN 1070-5325 R&D Projects: GA AV ČR IAA1030103 Institutional research plan: CEZ:AV0Z1030915 Keywords : non-linear programming * interior point methods * indefinite systems * indefinite preconditioners * preconditioned conjugate gradient method * merit functions * algorithms * computational experiments Subject RIV: BA - General Mathematics Impact factor: 0.727, year: 2004
Su, Yun-Ting; Hu, Shuowen; Bethel, James S.
2017-05-01
Light detection and ranging (LIDAR) has become a widely used tool in remote sensing for mapping, surveying, modeling, and a host of other applications. The motivation behind this work is the modeling of piping systems in industrial sites, where cylinders are the most common primitive or shape. We focus on cylinder parameter estimation in three-dimensional point clouds, proposing a mathematical formulation based on angular distance to determine the cylinder orientation. We demonstrate the accuracy and robustness of the technique on synthetically generated cylinder point clouds (where the true axis orientation is known) as well as on real LIDAR data of piping systems. The proposed algorithm is compared with a discrete space Hough transform-based approach as well as a continuous space inlier approach, which iteratively discards outlier points to refine the cylinder parameter estimates. Results show that the proposed method is more computationally efficient than the Hough transform approach and is more accurate than both the Hough transform approach and the inlier method.
Hariyani, S.; Meidiana, C.
2018-04-01
Increasing population led to the emergence of the urban infrastructure services issue including waste problems especially waste transportation system. Data in 2016 shows that the amount of waste in Malang was 659.21 tons / day. The amount of waste transported to landfill only reached 464.74 tons / day. This indicates that not all waste can be transported to the landfill Supiturang because Level of Service (LoS) reached 70.49%. This study aims to determine the effectiveness of waste transportation system and determine the fastest route from waste transfers point in Lowokwaru district to the landfill Supiturang. The data collection method in this research were 1) primary survey by interview officials from the Sanitation and Gardening Agency which questions related to the condition of the waste transportation system in waste transfer point, 2) Secondary survey related to data of waste transportation system in Malang City i.e the amount of waste generation in waste transfer point, number of garbage trucks and other data related to the garbage transportation system. To determine the fastest route analyzed by network analyst using ArcGIS software. The results of network analyst show that not all routes are already using the fastest route to the landfill Supiturang.
Gschwind, Michael K [Chappaqua, NY
2011-03-01
Mechanisms for implementing a floating point only single instruction multiple data instruction set architecture are provided. A processor is provided that comprises an issue unit, an execution unit coupled to the issue unit, and a vector register file coupled to the execution unit. The execution unit has logic that implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA). The floating point vector registers of the vector register file store both scalar and floating point values as vectors having a plurality of vector elements. The processor may be part of a data processing system.
International Nuclear Information System (INIS)
Murakami, Yoshiki; Itami, Kiyoshi; Sugihara, Masayoshi; Fujieda, Hirobumi.
1992-09-01
Steady-state and hybrid mode operations of ITER are investigated by 0-D power balance calculations assuming no radiation and charge-exchange cooling in divertor region. Operation points are optimized with respect to divertor heat load which must be reduced to the level of ignition mode (∼5 MW/m 2 ). Dependence of the divertor heat load on the variety of the models, i.e., constant-χ model, Bohm-type-χ model and JT-60U empirical scaling model, is also discussed. The divertor heat load increases linearly with the fusion power (P FUS ) in all models. The possible highest fusion power much differs for each model with an allowable divertor heat load. The heat load evaluated by constant-χ model is, for example, about 1.8 times larger than that by Bohm-type-χ model at P FUS = 750 MW. Effect of reduction of the helium accumulation, improvements of the confinement capability and the current-drive efficiency are also investigated aiming at lowering the divertor heat load. It is found that NBI power should be larger than about 60 MW to obtain a burn time longer than 2000 s. The optimized operation point, where the minimum divertor heat load is achieved, does not depend on the model and is the point with the minimum-P FUS and the maximum-P NBI . When P FUS = 690 MW and P NBI = 110 MW, the divertor heat load can be reduced to the level of ignition mode without impurity seeding if H = 2.2 is achieved. Controllability of the current-profile is also discussed. (J.P.N.)
Operational equations for the five-point rectangle, the geometric mean, and data in prismatic arrray
Energy Technology Data Exchange (ETDEWEB)
Silver, Gary L [Los Alamos National Laboratory
2009-01-01
This paper describes the results of three applications of operational calculus: new representations of five data in a rectangular array, new relationships among data in a prismatic array, and the operational analog of the geometric mean.
Optimized Granularity Analysis of Maximum Power Point Trackers in Low Power Applications
2017-06-01
CELL OPERATION Photovoltaic systems (solar panels) have become increasingly attractive as a sustainable, alternative energy source over the last...Energy Transfer of Directly Coupled DC System . Source: [10]. Further compounding this situation, the impedance of photovoltaic sources is constantly...Small-scale photovoltaic applications typically employ switching converters due to their small size and high efficiencies. The feedback mechanism used by
International Nuclear Information System (INIS)
Kuroki, Tsunehide; Sugino, Fumihiko
2017-01-01
In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.
Energy Technology Data Exchange (ETDEWEB)
Kuroki, Tsunehide, E-mail: kuroki@dg.kagawa-nct.ac.jp [General Eduction, National Institute of Technology, Kagawa College, 551 Kohda, Takuma-cho, Mitoyo, Kagawa 769-1192 (Japan); Sugino, Fumihiko, E-mail: fusugino@gmail.com [Okayama Institute for Quantum Physics, Furugyocho 1-7-36, Naka-ku, Okayama 703-8278 (Japan)
2017-06-15
In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.
Pantazes, Robert J; Saraf, Manish C; Maranas, Costas D
2007-08-01
In this paper, we introduce and test two new sequence-based protein scoring systems (i.e. S1, S2) for assessing the likelihood that a given protein hybrid will be functional. By binning together amino acids with similar properties (i.e. volume, hydrophobicity and charge) the scoring systems S1 and S2 allow for the quantification of the severity of mismatched interactions in the hybrids. The S2 scoring system is found to be able to significantly functionally enrich a cytochrome P450 library over other scoring methods. Given this scoring base, we subsequently constructed two separate optimization formulations (i.e. OPTCOMB and OPTOLIGO) for optimally designing protein combinatorial libraries involving recombination or mutations, respectively. Notably, two separate versions of OPTCOMB are generated (i.e. model M1, M2) with the latter allowing for position-dependent parental fragment skipping. Computational benchmarking results demonstrate the efficacy of models OPTCOMB and OPTOLIGO to generate high scoring libraries of a prespecified size.
Energy Technology Data Exchange (ETDEWEB)
Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-02-13
Drivetrain design has significant influence on the costs of wind power generation. Current industry practices usually approach the drivetrain design with loads and system requirements defined by the turbine manufacturer. Several different manufacturers are contracted to supply individual components from the low-speed shaft to the generator - each receiving separate design specifications from the turbine manufacturer. Increasingly, more integrated approaches to turbine design have shown promise for blades and towers. Yet, integrated drivetrain design is a challenging task owing to the complex physical behavior of the important load-bearing components, namely the main bearings, gearbox, and the generator. In this paper we combine two of NREL's systems engineering design tools, DriveSE and GeneratorSE, to enable a comprehensive system-level drivetrain optimization for the IEAWind reference turbine for land-based applications. We compare a more traditional design with integrated approaches employing decoupled and coupled design optimization. It is demonstrated that both approaches have the potential to realize notable mass savings with opportunities to lower the costs of energy.
Energy Technology Data Exchange (ETDEWEB)
Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-01-12
Drivetrain design has significant influence on the costs of wind power generation. Current industry practices usually approach the drivetrain design with loads and system requirements defined by the turbine manufacturer. Several different manufacturers are contracted to supply individual components from the low-speed shaft to the generator - each receiving separate design specifications from the turbine manufacturer. Increasingly, more integrated approaches to turbine design have shown promise for blades and towers. Yet, integrated drivetrain design is a challenging task owing to the complex physical behavior of the important load-bearing components, namely the main bearings, gearbox, and the generator. In this paper we combine two of NREL's systems engineering design tools, DriveSE and GeneratorSE, to enable a comprehensive system-level drivetrain optimization for the IEAWind reference turbine for land-based applications. We compare a more traditional design with integrated approaches employing decoupled and coupled design optimization. It is demonstrated that both approaches have the potential to realize notable mass savings with opportunities to lower the costs of energy.
Optimal robustness of supervised learning from a noniterative point of view
Hu, Chia-Lun J.
1995-08-01
In most artificial neural network applications, (e.g. pattern recognition) if the dimension of the input vectors is much larger than the number of patterns to be recognized, generally, a one- layered, hard-limited perceptron is sufficient to do the recognition job. As long as the training input-output mapping set is numerically given, and as long as this given set satisfies a special linear-independency relation, the connection matrix to meet the supervised learning requirements can be solved by a noniterative, one-step, algebra method. The learning of this noniterative scheme is very fast (close to real-time learning) because the learning is one-step and noniterative. The recognition of the untrained patterns is very robust because a universal geometrical optimization process of selecting the solution can be applied to the learning process. This paper reports the theoretical foundation of this noniterative learning scheme and focuses the result at the optimal robustness analysis. A real-time character recognition scheme is then designed along this line. This character recognition scheme will be used (in a movie presentation) to demonstrate the experimental results of some theoretical parts reported in this paper.
Directory of Open Access Journals (Sweden)
V. Volkov
2015-12-01
Full Text Available The results of forming methods of determination and system, as a part of the computer-integrated technology of transport operation, estimation of indecies of the optimal temperature state of the ICE and the vehicle under operation conditions, which is provided with the help of analysis of possible schemes and processes of the complex system of combined heating, using the technology of heat accumulation are described.
Wroblewski, David [Mentor, OH; Katrompas, Alexander M [Concord, OH; Parikh, Neel J [Richmond Heights, OH
2009-09-01
A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.
International Nuclear Information System (INIS)
Huang, Yanjun; Khajepour, Amir; Ding, Haitao; Bagheri, Farshid; Bahrami, Majid
2017-01-01
Highlights: • A novel two-layer energy-saving controller for automotive A/C-R system is developed. • A set-point optimizer at the outer loop is designed based on the steady state model. • A sliding mode controller in the inner loop is built. • Extensively experiments studies show that about 9% energy can be saving by this controller. - Abstract: This paper presents an energy-saving controller for automotive air-conditioning/refrigeration (A/C-R) systems. With their extensive application in homes, industry, and vehicles, A/C-R systems are consuming considerable amounts of energy. The proposed controller consists of two different time-scale layers. The outer or the slow time-scale layer called a set-point optimizer is used to find the set points related to energy efficiency by using the steady state model; whereas, the inner or the fast time-scale layer is used to track the obtained set points. In the inner loop, thanks to its robustness, a sliding mode controller (SMC) is utilized to track the set point of the cargo temperature. The currently used on/off controller is presented and employed as a basis for comparison to the proposed controller. More importantly, the real experimental results under several disturbed scenarios are analysed to demonstrate how the proposed controller can improve performance while reducing the energy consumption by 9% comparing with the on/off controller. The controller is suitable for any type of A/C-R system even though it is applied to an automotive A/C-R system in this paper.
Energy Technology Data Exchange (ETDEWEB)
Archer, Charles J.; Faraj, Daniel A.; Inglett, Todd A.; Ratterman, Joseph D.
2018-01-30
Methods, apparatus, and products are disclosed for providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer, each compute node connected to each adjacent compute node in the global combining network through a link, that include: receiving a network packet in a compute node, the network packet specifying a destination compute node; selecting, in dependence upon the destination compute node, at least one of the links for the compute node along which to forward the network packet toward the destination compute node; and forwarding the network packet along the selected link to the adjacent compute node connected to the compute node through the selected link.
Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub
International Nuclear Information System (INIS)
Ma, Tengfei; Wu, Junyong; Hao, Liangliang
2017-01-01
Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.
Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches
Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo
This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.
Optimal distribution of temperature points in μSR measurement of local field
International Nuclear Information System (INIS)
Pełka, R.; Zieliński, P.M.; Konieczny, P.; Wasiutyński, T.
2013-01-01
Three possible distributions of temperature points in the μSR measurement of local field (order parameter) are discussed. The least square method is applied to estimate the scale of the deviations of the fitted parameters from the true values. It indicates that the distribution corresponding to a uniform section of the order parameter values (uniform-in-signal) incurs the smallest errors. The distribution constructed on the basis of the zeros of the Chebyshev polynomials yields comparable uncertainties, while the uniform-in-temperature distribution turns out to be least effective incurring considerably larger errors. These findings can be useful while planning an order parameter measurement in the μSR experiment
Directory of Open Access Journals (Sweden)
Kriengsak Wattanawitoon
2011-01-01
Full Text Available We prove strong and weak convergence theorems of modified hybrid proximal-point algorithms for finding a common element of the zero point of a maximal monotone operator, the set of solutions of equilibrium problems, and the set of solution of the variational inequality operators of an inverse strongly monotone in a Banach space under different conditions. Moreover, applications to complementarity problems are given. Our results modify and improve the recently announced ones by Li and Song (2008 and many authors.
Optimal economic and environment operation of micro-grid power systems
International Nuclear Information System (INIS)
Elsied, Moataz; Oukaour, Amrane; Gualous, Hamid; Lo Brutto, Ottavio A.
2016-01-01
Highlights: • Real-time energy management system for Micro-Grid power systems is introduced. • The management system considered cost objective function and emission constraints. • The optimization problem is solved using Binary Particle Swarm Algorithm. • Advanced real-time interface libraries are used to run the optimization code. - Abstract: In this paper, an advanced real-time energy management system is proposed in order to optimize micro-grid performance in a real-time operation. The proposed strategy of the management system capitalizes on the power of binary particle swarm optimization algorithm to minimize the energy cost and carbon dioxide and pollutant emissions while maximizing the power of the available renewable energy resources. Advanced real-time interface libraries are used to run the optimization code. The simulation results are considered for three different scenarios considering the complexity of the proposed problem. The proposed management system along with its control system is experimentally tested to validate the simulation results obtained from the optimization algorithm. The experimental results highlight the effectiveness of the proposed management system for micro-grids operation.
Optimal Replacement Policy of Jet Engine Modules from the Aircarrier's Point of View
Directory of Open Access Journals (Sweden)
Anita Domitrović
2008-01-01
Full Text Available A mathematical model for optimising preventive maintenanceof aircraft jet engine was developed by dynamic programming.Replacement planning for jet engine modules is regardedas a multistage decision process, while optimum modulereplacement is considered as a problem of equipment replacement.The goal of the optimal replacement policy of jet enginemodules is a defined series of decisions resulting in minimummaintenance costs. The model was programmed inC++ programming language and tested by using CFM56 jetengine data. The optimum maintenance strategy costs werecompared to costs of simpler experience-based maintenancestrategies. The results of the comparison j usti.JY further developmentand usage of the model in order to achieve significant costreduction for airline carriers.
Optimization of recirculating laminar air flow in operating room air conditioning systems
Directory of Open Access Journals (Sweden)
Enver Yalcin
2016-04-01
Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.
Kanka, Jiri
2012-06-01
Fiber-optic long-period grating (LPG) operating near the dispersion turning point in its phase matching curve (PMC), referred to as a Turn Around Point (TAP) LPG, is known to be extremely sensitive to external parameters. Moreover, in a TAP LPG the phase matching condition can be almost satisfied over large spectral range, yielding a broadband LPG operation. TAP LPGs have been investigated, namely for use as broadband mode convertors and biosensors. So far TAP LPGs have been realized in specially designed or post-processed conventional fibers, not yet in PCFs, which allow a great degree of freedom in engineering the fiber's dispersion properties through the control of the PCF structural parameters. We have developed the design optimization technique for TAP PCF LPGs employing the finite element method for PCF modal analysis in a combination with the Nelder-Mead simplex method for minimizing the objective function based on target-specific PCF properties. Using this tool we have designed TAP PCF LPGs for specified wavelength ranges and refractive indices of medium in the air holes. Possible TAP PCF-LPG operational regimes - dual-resonance, broadband mode conversion and transmitted intensity-based operation - will be demonstrated numerically. Potential and limitations of TAP PCF-LPGs for evanescent chemical and biochemical sensing will be assessed.
Integrated Emission Management strategy for cost-optimal engine-aftertreatment operation
Cloudt, R.P.M.; Willems, F.P.T.
2011-01-01
A new cost-based control strategy is presented that optimizes engine-aftertreatment performance under all operating conditions. This Integrated Emission Management strategy minimizes fuel consumption within the set emission limits by on-line adjustment of air management based on the actual state of
The primary ion source for construction and optimization of operation parameters
International Nuclear Information System (INIS)
Synowiecki, A.; Gazda, E.
1986-01-01
The construction of primary ion source for SIMS has been presented. The influence of individual operation parameters on the properties of ion source has been investigated. Optimization of these parameters has allowed to appreciate usefulness of the ion source for SIMS study. 14 refs., 8 figs., 2 tabs. (author)
International Nuclear Information System (INIS)
Afrin, B.A.; Rechnov, A.V.; Usynin, G.B.
1987-01-01
The formulation and solution of optimization problem for parameters determining the layout of the central part of sodium cooled power reactor taking into account possible changes in fuel charge type during reactor operation time are performed. The losses under change of fuel composition type for two reactor modifications providing for minimum doubling time for oxide and carbide fuels respectively, are estimated
Optimal hysteretic control for a BMAP/SM/1/N queue with two operation modes
Directory of Open Access Journals (Sweden)
Alexander N. Dudin
2000-01-01
Full Text Available We consider BMAP/SM/1 type queueing system with finite buffer of size N. The system has two operation modes, which are characterized by the matrix generating function of BMAP-input, the kernel of the semi-Markovian service process, and utilization cost. An algorithm for determining the optimal hysteresis strategy is presented.
Optimal Operation and Stabilising Control of the Concentric Heat-Integrated Distillation Column
DEFF Research Database (Denmark)
Bisgaard, Thomas; Skogestad, Sigurd; Huusom, Jakob Kjøbsted
2016-01-01
A systematic control structure design method is applied on the concentric heat integrated distillation column (HIDiC) separating benzene and toluene. A degrees of freedom analysis is provided for identifying potential manipulated and controlled variables. Optimal operation is mapped and active...
Vonk, E.; Xu, YuePing; Booij, Martijn J.; Augustijn, Dionysius C.M.
2016-01-01
In this research we investigate the robustness of the common implicit stochastic optimization (ISO) method for dam reoperation. As a case study, we focus on the Xinanjiang-Fuchunjiang reservoir cascade in eastern China, for which adapted operating rules were proposed as a means to reduce the impact
Ogoshi, Yasuhiro; Nakai, Akio; Ogoshi, Sakiko; Mitsuhashi, Yoshinori; Araki, Chikahiro
A key aspect of the optimal support of students with special needs is co-ordination and co-operation between school, home and specialized agencies. Communication between these entities is of prime importance and can be facilitated through the use of a support system implementing ICF guidelines as outlined. This communication system can be considered to be a preventative rather than allopathic support.
Comparison of three control strategies for optimization of spray dryer operation
DEFF Research Database (Denmark)
Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
2017-01-01
controllers for operation of a four-stage spray dryer. The three controllers are a proportional-integral (PI) controller that is used in industrial practice for spray dryer operation, a linear model predictive controller with real-time optimization (MPC with RTO, MPC-RTO), and an economically optimizing...... nonlinear model predictive controller (E-NMPC). The MPC with RTO is based on the same linear state space model in the MPC and the RTO layer. The E-NMPC consists of a single optimization layer that uses a nonlinear system of ordinary differential equations for its predictions. The PI control strategy has...... the production rate, while minimizing the energy consumption, keeping the residual moisture content of the powder below a maximum limit, and avoiding that the powder sticks to the chamber walls. We use an industrially recorded disturbance scenario in order to produce realistic simulations and conclusions...
Barbagallo, Simone; Corradi, Luca; de Ville de Goyet, Jean; Iannucci, Marina; Porro, Ivan; Rosso, Nicola; Tanfani, Elena; Testi, Angela
2015-05-17
The Operating Room (OR) is a key resource of all major hospitals, but it also accounts for up 40% of resource costs. Improving cost effectiveness, while maintaining a quality of care, is a universal objective. These goals imply an optimization of planning and a scheduling of the activities involved. This is highly challenging due to the inherent variable and unpredictable nature of surgery. A Business Process Modeling Notation (BPMN 2.0) was used for the representation of the "OR Process" (being defined as the sequence of all of the elementary steps between "patient ready for surgery" to "patient operated upon") as a general pathway ("path"). The path was then both further standardized as much as possible and, at the same time, keeping all of the key-elements that would allow one to address or define the other steps of planning, and the inherent and wide variability in terms of patient specificity. The path was used to schedule OR activity, room-by-room, and day-by-day, feeding the process from a "waiting list database" and using a mathematical optimization model with the objective of ending up in an optimized planning. The OR process was defined with special attention paid to flows, timing and resource involvement. Standardization involved a dynamics operation and defined an expected operating time for each operation. The optimization model has been implemented and tested on real clinical data. The comparison of the results reported with the real data, shows that by using the optimization model, allows for the scheduling of about 30% more patients than in actual practice, as well as to better exploit the OR efficiency, increasing the average operating room utilization rate up to 20%. The optimization of OR activity planning is essential in order to manage the hospital's waiting list. Optimal planning is facilitated by defining the operation as a standard pathway where all variables are taken into account. By allowing a precise scheduling, it feeds the process of
Energy Technology Data Exchange (ETDEWEB)
Rana, Swapan; Parashar, Preeti [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 BT Road, Kolkata (India)
2011-11-15
We show that all multipartite pure states that are stochastic local operation and classical communication (SLOCC) equivalent to the N-qubit W state can be uniquely determined (among arbitrary states) from their bipartite marginals. We also prove that only (N-1) of the bipartite marginals are sufficient and that this is also the optimal number. Thus, contrary to the Greenberger-Horne-Zeilinger (GHZ) class, W-type states preserve their reducibility under SLOCC. We also study the optimal reducibility of some larger classes of states. The generic Dicke states |GD{sub N}{sup l}> are shown to be optimally determined by their (l+1)-partite marginals. The class of ''G'' states (superposition of W and W) are shown to be optimally determined by just two (N-2)-partite marginals.
An optimal cut-off point for the calving interval may be used as an indicator of bovine abortions.
Bronner, Anne; Morignat, Eric; Gay, Emilie; Calavas, Didier
2015-10-01
The bovine abortion surveillance system in France aims to detect as early as possible any resurgence of bovine brucellosis, a disease of which the country has been declared free since 2005. It relies on the mandatory notification and testing of each aborting cow, but under-reporting is high. This research uses a new and simple approach which considers the calving interval (CI) as a "diagnostic test" to determine optimal cut-off point c and estimate diagnostic performance of the CI to identify aborting cows, and herds with multiple abortions (i.e. three or more aborting cows per calving season). The period between two artificial inseminations (AI) was considered as a "gold standard". During the 2006-2010 calving seasons, the mean optimal CI cut-off point for identifying aborting cows was 691 days for dairy cows and 703 days for beef cows. Depending on the calving season, production type and scale at which c was computed (individual or herd), the average sensitivity of the CI varied from 42.6% to 64.4%; its average specificity from 96.7% to 99.7%; its average positive predictive value from 27.6% to 65.4%; and its average negative predictive value from 98.7% to 99.8%. When applied to the French bovine population as a whole, this indicator identified 2-3% of cows suspected to have aborted, and 10-15% of herds suspected of multiple abortions. The optimal cut-off point and CI performance were consistent over calving seasons. By applying an optimal CI cut-off point to the cattle demographics database, it becomes possible to identify herds with multiple abortions, carry out retrospective investigations to find the cause of these abortions and monitor a posteriori compliance of farmers with their obligation to report abortions for brucellosis surveillance needs. Therefore, the CI could be used as an indicator of abortions to help improve the current mandatory notification surveillance system. Copyright © 2015 Elsevier B.V. All rights reserved.
Operation Characteristics Optimization of Low Power Three-Phase Asynchronous Motors
Directory of Open Access Journals (Sweden)
VLAD, I.
2014-02-01
Full Text Available Most published papers on low power asynchronous motors were aimed to achieve better operational performances in different operating conditions. The optimal design of the general-purpose motors requires searching and selecting an electric machine to meet minimum operating costs criterion and certain customer imposed restrictive conditions. In this paper, there are many significant simulations providing qualitative and quantitative information on reducing active and reactive energy losses in motors, and on parameters and constructive solution. The optimization study applied the minimal operating costs criterion, and it took into account the starting restrictive conditions. Thirteen variables regarding electromagnetic stresses and main constructive dimensions were considered. The operating costs of the optimized motor decreased with 25.6%, as compared to the existing solution. This paper can be a practical and theoretical support for the development and implementation of modern design methods, based on theoretical and experimental study of stationary and transient processes in low power motors, to increase efficiency and power factor.
Optimized Skip-Stop Metro Line Operation Using Smart Card Data
Directory of Open Access Journals (Sweden)
Peitong Zhang
2017-01-01
Full Text Available Skip-stop operation is a low cost approach to improving the efficiency of metro operation and passenger travel experience. This paper proposes a novel method to optimize the skip-stop scheme for bidirectional metro lines so that the average passenger travel time can be minimized. Different from the conventional “A/B” scheme, the proposed Flexible Skip-Stop Scheme (FSSS can better accommodate spatially and temporally varied passenger demand. A genetic algorithm (GA based approach is then developed to efficiently search for the optimal solution. A case study is conducted based on a real world bidirectional metro line in Shenzhen, China, using the time-dependent passenger demand extracted from smart card data. It is found that the optimized skip-stop operation is able to reduce the average passenger travel time and transit agencies may benefit from this scheme due to energy and operational cost savings. Analyses are made to evaluate the effects of that fact that certain number of passengers fail to board the right train (due to skip operation. Results show that FSSS always outperforms the all-stop scheme even when most passengers of the skipped OD pairs are confused and cannot get on the right train.
Modeling Reservoir-River Networks in Support of Optimizing Seasonal-Scale Reservoir Operations
Villa, D. L.; Lowry, T. S.; Bier, A.; Barco, J.; Sun, A.
2011-12-01
HydroSCOPE (Hydropower Seasonal Concurrent Optimization of Power and the Environment) is a seasonal time-scale tool for scenario analysis and optimization of reservoir-river networks. Developed in MATLAB, HydroSCOPE is an object-oriented model that simulates basin-scale dynamics with an objective of optimizing reservoir operations to maximize revenue from power generation, reliability in the water supply, environmental performance, and flood control. HydroSCOPE is part of a larger toolset that is being developed through a Department of Energy multi-laboratory project. This project's goal is to provide conventional hydropower decision makers with better information to execute their day-ahead and seasonal operations and planning activities by integrating water balance and operational dynamics across a wide range of spatial and temporal scales. This presentation details the modeling approach and functionality of HydroSCOPE. HydroSCOPE consists of a river-reservoir network model and an optimization routine. The river-reservoir network model simulates the heat and water balance of river-reservoir networks for time-scales up to one year. The optimization routine software, DAKOTA (Design Analysis Kit for Optimization and Terascale Applications - dakota.sandia.gov), is seamlessly linked to the network model and is used to optimize daily volumetric releases from the reservoirs to best meet a set of user-defined constraints, such as maximizing revenue while minimizing environmental violations. The network model uses 1-D approximations for both the reservoirs and river reaches and is able to account for surface and sediment heat exchange as well as ice dynamics for both models. The reservoir model also accounts for inflow, density, and withdrawal zone mixing, and diffusive heat exchange. Routing for the river reaches is accomplished using a modified Muskingum-Cunge approach that automatically calculates the internal timestep and sub-reach lengths to match the conditions of
Directory of Open Access Journals (Sweden)
Aida Tayebiyan
2016-06-01
Full Text Available Background: Several reservoir systems have been constructed for hydropower generation around the world. Hydropower offers an economical source of electricity with reduce carbon emissions. Therefore, it is such a clean and renewable source of energy. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue. Yet, reservoir systems are inefficiently operated and manage according to policies determined at the construction time. It is worth noting that with little enhancement in operation of reservoir system, there could be an increase in efficiency of the scheme for many consumers. Methods: This research develops simulation-optimization models that reflect discrete hedging policy (DHP to manage and operate hydropower reservoir system and analyse it in both single and multireservoir system. Accordingly, three operational models (2 single reservoir systems and 1 multi-reservoir system were constructed and optimized by genetic algorithm (GA. Maximizing the total power generation in horizontal time is chosen as an objective function in order to improve the functional efficiency in hydropower production with consideration to operational and physical limitations. The constructed models, which is a cascade hydropower reservoirs system have been tested and evaluated in the Cameron Highland and Batang Padang in Malaysia. Results: According to the given results, usage of DHP for hydropower reservoir system operation could increase the power generation output to nearly 13% in the studied reservoir system compared to present operating policy (TNB operation. This substantial increase in power production will enhance economic development. Moreover, the given results of single and multi-reservoir systems affirmed that hedging policy could manage the single system much better than operation of the multi-reservoir system. Conclusion: It can be summarized that DHP is an efficient and feasible policy, which could be used
An Improved Multi-Objective Artificial Bee Colony Optimization Algorithm with Regulation Operators
Directory of Open Access Journals (Sweden)
Jiuyuan Huo
2017-02-01
Full Text Available To achieve effective and accurate optimization for multi-objective optimization problems, a multi-objective artificial bee colony algorithm with regulation operators (RMOABC inspired by the intelligent foraging behavior of honey bees was proposed in this paper. The proposed algorithm utilizes the Pareto dominance theory and takes advantage of adaptive grid and regulation operator mechanisms. The adaptive grid technique is used to adaptively assess the Pareto front maintained in an external archive and the regulation operator is used to balance the weights of the local search and the global search in the evolution of the algorithm. The performance of RMOABC was evaluated in comparison with other nature inspired algorithms includes NSGA-II and MOEA/D. The experiments results demonstrated that the RMOABC approach has better accuracy and minimal execution time.
Energy and operation management of a microgrid using particle swarm optimization
Radosavljević, Jordan; Jevtić, Miroljub; Klimenta, Dardan
2016-05-01
This article presents an efficient algorithm based on particle swarm optimization (PSO) for energy and operation management (EOM) of a microgrid including different distributed generation units and energy storage devices. The proposed approach employs PSO to minimize the total energy and operating cost of the microgrid via optimal adjustment of the control variables of the EOM, while satisfying various operating constraints. Owing to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties and market prices, a probabilistic approach in the EOM is introduced. The proposed method is examined and tested on a typical grid-connected microgrid including fuel cell, gas-fired microturbine, wind turbine, photovoltaic and energy storage devices. The obtained results prove the efficiency of the proposed approach to solve the EOM of the microgrids.
Optimal offering and operating strategies for wind-storage systems with linear decision rules
DEFF Research Database (Denmark)
Ding, Huajie; Pinson, Pierre; Hu, Zechun
2016-01-01
The participation of wind farm-energy storage systems (WF-ESS) in electricity markets calls for an integrated view of day-ahead offering strategies and real-time operation policies. Such an integrated strategy is proposed here by co-optimizing offering at the day-ahead stage and operation policy...... to be used at the balancing stage. Linear decision rules are seen as a natural approach to model and optimize the real-time operation policy. These allow enhancing profits from balancing markets based on updated information on prices and wind power generation. Our integrated strategies for WF...
Energy Technology Data Exchange (ETDEWEB)
Flory, John Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Padilla, Denise D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gauthier, John H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zwerneman, April Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Steven P [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-05-01
Upcoming weapon programs require an aggressive increase in Application Specific Integrated Circuit (ASIC) production at Sandia National Laboratories (SNL). SNL has developed unique modeling and optimization tools that have been instrumental in improving ASIC production productivity and efficiency, identifying optimal operational and tactical execution plans under resource constraints, and providing confidence in successful mission execution. With ten products and unprecedented levels of demand, a single set of shared resources, highly variable processes, and the need for external supplier task synchronization, scheduling is an integral part of successful manufacturing. The scheduler uses an iterative multi-objective genetic algorithm and a multi-dimensional performance evaluator. Schedule feasibility is assessed using a discrete event simulation (DES) that incorporates operational uncertainty, variability, and resource availability. The tools provide rapid scenario assessments and responses to variances in the operational environment, and have been used to inform major equipment investments and workforce planning decisions in multiple SNL facilities.
Optimization of conventional rule curves coupled with hedging rules for reservoir operation
DEFF Research Database (Denmark)
Taghian, Mehrdad; Rosbjerg, Dan; Haghighi, Ali
2014-01-01
As a common approach to reservoir operating policies, water levels at the end of each time interval should be kept at or above the rule curve. In this study, the policy is captured using rationing of the target yield to reduce the intensity of severe water shortages. For this purpose, a hybrid...... to achieve the optimal water allocation and the target storage levels for reservoirs. As a case study, a multipurpose, multireservoir system in southern Iran is selected. The results show that the model has good performance in extracting the optimum policy for reservoir operation under both normal...... model is developed to optimize simultaneously both the conventional rule curve and the hedging rule. In the compound model, a simple genetic algorithm is coupled with a simulation program, including an inner linear programming algorithm. In this way, operational policies are imposed by priority concepts...
International Nuclear Information System (INIS)
Joshi, J.B.
2002-01-01
Full text: In chemical industries different processes and operations involve a variety of multiphase contacting schemes for optimal production schedule in terms of ease of handling, time and money. A number of parameters will have to be optimized for this purpose. Further more, during the operation of a process plant, a number of problems such as reduction in process efficiency, deterioration in product quality etc. are encountered due to malfunctioning of one or more components. The successful operation of an industry depends on the early detection of the problems for appropriate remedial action. These are conveniently carried out by the application of radioisotopes either directly or in sealed condition depending upon the problem to be addressed. In this talk both types of radiotracer applications are discussed by taking specific examples
A prediction of Power Duration Curve from the Optimal Operation of the Multi Reservoirs System
Directory of Open Access Journals (Sweden)
Abdul Wahab Younis
2013-04-01
Full Text Available This study aims of predication Power Duration Curves(PDC resulting from the optimal operation of the multi reservoirs system which comprises the reservoirs of Bakhma dam,Dokan dam and Makhool dam for the division of years over 30 years.Discrete Differential Dynamic Programming(DDDP has been employed to find the optimal operation of the said reservoirs. PDC representing the relationship between the generated hydroelectric power and percentage of operation time equaled or exceeded . The importance of these curves lies in knowing the volume of electric power available for that percentage of operation time. The results have shown that the sum of yearly hydroelectric power for average Release and for the single operation was 5410,1604,2929(Mwfor the reservoirs of Bakhma, Dokan, Makhool dams, which resulted from the application of independent DDDP technology. Also, the hydroelectric power whose generation can be guranteed for 90% of the time is 344.91,107.7,188.15 (Mw for the single operation and 309.1,134.08,140.7 (Mw for the operation as a one system for the reservoirs of Bakhma, Dokan, and Makhool dams respectively.
Optimal Bidding of a Microgrid Based on Probabilistic Analysis of Island Operation
Directory of Open Access Journals (Sweden)
Siyoung Lee
2016-10-01
Full Text Available Island operation of a microgrid increases operation survivability and reliability when there is a large accident in a main grid. However, because a microgrid typically has limited generation capability, a microgrid operator (MGO has to take the risk of island operation into account in its market participation and generation scheduling to ensure efficient operation. In this paper, a microgrid islanding event is interpreted as a trade suspension of a contract, and a set of islanding rules is presented in the form of a market rule. The risk of island operation is evaluated by modeling the microgrid islanding stochastically using an islanding probability function, which is defined in the form of a conditional probability to reflect the influence of outside conditions. An optimal bidding strategy is obtained for the MGO by formulating and solving an optimization problem to minimize the expected operating cost. The effectiveness of the proposed method was investigated by numerical simulations in which the proposed method and two other methods were applied to the same microgrid. Numerical sensitivity analyses of the coefficients of the islanding probability function were conducted to determine how an MGO copes with changes in outside conditions.
Operation optimization of a distributed energy system considering energy costs and exergy efficiency
International Nuclear Information System (INIS)
Di Somma, M.; Yan, B.; Bianco, N.; Graditi, G.; Luh, P.B.; Mongibello, L.; Naso, V.
2015-01-01
Highlights: • Operation optimization model of a Distributed Energy System (DES). • Multi-objective strategy to optimize energy cost and exergy efficiency. • Exergy analysis in building energy supply systems. - Abstract: With the growing demand of energy on a worldwide scale, improving the efficiency of energy resource use has become one of the key challenges. Application of exergy principles in the context of building energy supply systems can achieve rational use of energy resources by taking into account the different quality levels of energy resources as well as those of building demands. This paper is on the operation optimization of a Distributed Energy System (DES). The model involves multiple energy devices that convert a set of primary energy carriers with different energy quality levels to meet given time-varying user demands at different energy quality levels. By promoting the usage of low-temperature energy sources to satisfy low-quality thermal energy demands, the waste of high-quality energy resources can be reduced, thereby improving the overall exergy efficiency. To consider the economic factor as well, a multi-objective linear programming problem is formulated. The Pareto frontier, including the best possible trade-offs between the economic and exergetic objectives, is obtained by minimizing a weighted sum of the total energy cost and total primary exergy input using branch-and-cut. The operation strategies of the DES under different weights for the two objectives are discussed. The operators of DESs can choose the operation strategy from the Pareto frontier based on costs, essential in the short run, and sustainability, crucial in the long run. The contribution of each energy device in reducing energy costs and the total exergy input is also analyzed. In addition, results show that the energy cost can be much reduced and the overall exergy efficiency can be significantly improved by the optimized operation of the DES as compared with the
Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra
2015-01-01
The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..
DEFF Research Database (Denmark)
Koutroulis, Eftichios; Blaabjerg, Frede
2012-01-01
The power-voltage characteristic of photovoltaic (PV) arrays operating under partial-shading conditions exhibits multiple local maximum power points (MPPs). In this paper, a new method to track the global MPP is presented, which is based on controlling a dc/dc converter connected at the PV array...
Directory of Open Access Journals (Sweden)
Yazheng Dang
2013-01-01
Full Text Available Inspired by the Moudafi (2010, we propose an algorithm for solving the split common fixed-point problem for a wide class of asymptotically quasi-nonexpansive operators and the weak and strong convergence of the algorithm are shown under some suitable conditions in Hilbert spaces. The algorithm and its convergence results improve and develop previous results for split feasibility problems.
Scenario based optimization of a container vessel with respect to its projected operating conditions
Directory of Open Access Journals (Sweden)
Wagner Jonas
2014-06-01
Full Text Available In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel’s calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.
Scenario based optimization of a container vessel with respect to its projected operating conditions
Directory of Open Access Journals (Sweden)
Jonas Wagner
2014-06-01
Full Text Available In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel's calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.
Scenario based optimization of a container vessel with respect to its projected operating conditions
Wagner, Jonas; Binkowski, Eva; Bronsart, Robert
2014-06-01
In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS) is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC) the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel's calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.
Condenser design optimization and operation characteristics of a novel miniature loop heat pipe
International Nuclear Information System (INIS)
Wan Zhenping; Wang Xiaowu; Tang Yong
2012-01-01
Highlights: ► A novel miniature LHP (mLHP) system was presented. ► Optimal design of condenser was considered. ► The heat transfer performance was investigated experimentally. - Abstract: Loop heat pipe (LHP) is a promising means for electronics cooling since LHP is a exceptionally efficient heat transfer device. In this paper, a novel miniature LHP (mLHP) system is presented and optimal design of condenser is considered seeing that evaporators have been able to handle very high-heat fluxes with low-heat transfer resistances since most of the previous researchers focused on the evaporator of mLHP. The arrayed pins were designed and machined out on the bottom of condenser to enhance condensation heat transfer. The parameters of the arrayed pins, including layout, cross-section shape and area, were optimized by finite element analysis. Tests were carried out on the mLHP with a CPU thermal simulator using forced air convection condenser cooling to validate the optimization. The operation characteristics of the mLHP with optimal design parameters of condenser were investigated experimentally. The experimental results show that the mLHP can reject head load 200 W while maintaining the cooled object temperatures below 100 °C, and for a variable power applied to the evaporator, the system presents reliable startups and continuous operation.
Directory of Open Access Journals (Sweden)
Thanh Tung Ha
2018-03-01
Full Text Available The structural and optimal operation of an Energy Hub (EH has a tremendous influence on the hub’s performance and reliability. This paper envisions an innovative methodology that prominently increases the synergy between structural and operational optimization and targets system cost affordability. The generalized energy system structure is presented theoretically with all selective hub sub-modules, including electric heater (EHe and solar sources block sub-modules. To minimize energy usage cost, an energy hub is proposed that consists of 12 kinds of elements (i.e., energy resources, conversion, and storage functions and is modeled mathematically in a General Algebraic Modeling System (GAMS, which indicates the optimal hub structure’s corresponding elements with binary variables (0, 1. Simulation results contrast with 144 various scenarios established in all 144 categories of hub structures, in which for each scenario the corresponding optimal operation cost is previously calculated. These case studies demonstrate the effectiveness of the suggested model and methodology. Finally, avenues for future research are also prospected.
Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.
Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas
2011-06-24
This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.
Optimal Operation of Network-Connected Combined Heat and Powers for Customer Profit Maximization
Directory of Open Access Journals (Sweden)
Da Xie
2016-06-01
Full Text Available Network-connected combined heat and powers (CHPs, owned by a community, can export surplus heat and electricity to corresponding heat and electric networks after community loads are satisfied. This paper proposes a new optimization model for network-connected CHP operation. Both CHPs’ overall efficiency and heat to electricity ratio (HTER are assumed to vary with loading levels. Based on different energy flow scenarios where heat and electricity are exported to the network from the community or imported, four profit models are established accordingly. They reflect the different relationships between CHP energy supply and community load demand across time. A discrete optimization model is then developed to maximize the profit for the community. The models are derived from the intervals determined by the daily operation modes of CHP and real-time buying and selling prices of heat, electricity and natural gas. By demonstrating the proposed models on a 1 MW network-connected CHP, results show that the community profits are maximized in energy markets. Thus, the proposed optimization approach can help customers to devise optimal CHP operating strategies for maximizing benefits.
Ground-based telescope pointing and tracking optimization using a neural controller.
Mancini, D; Brescia, M; Schipani, P
2003-01-01
Neural network models (NN) have emerged as important components for applications of adaptive control theories. Their basic generalization capability, based on acquired knowledge, together with execution rapidity and correlation ability between input stimula, are basic attributes to consider NN as an extremely powerful tool for on-line control of complex systems. By a control system point of view, not only accuracy and speed, but also, in some cases, a high level of adaptation capability is required in order to match all working phases of the whole system during its lifetime. This is particularly remarkable for a new generation ground-based telescope control system. Infact, strong changes in terms of system speed and instantaneous position error tolerance are necessary, especially in case of trajectory disturb induced by wind shake. The classical control scheme adopted in such a system is based on the proportional integral (PI) filter, already applied and implemented on a large amount of new generation telescopes, considered as a standard in this technological environment. In this paper we introduce the concept of a new approach, the neural variable structure proportional integral, (NVSPI), related to the implementation of a standard multi layer perceptron network in new generation ground-based Alt-Az telescope control systems. Its main purpose is to improve adaptive capability of the Variable structure proportional integral model, an already innovative control scheme recently introduced by authors [Proc SPIE (1997)], based on a modified version of classical PI control model, in terms of flexibility and accuracy of the dynamic response range also in presence of wind noise effects. The realization of a powerful well tested and validated telescope model simulation system allowed the possibility to directly compare performances of the two control schemes on simulated tracking trajectories, revealing extremely encouraging results in terms of NVSPI control robustness and
RETRAN operational transient analysis of the Big Rock Point plant boiling water reactor
International Nuclear Information System (INIS)
Sawtelle, G.R.; Atchison, J.D.; Farman, R.F.; VandeWalle, D.J.; Bazydlo, H.G.
1983-01-01
Energy Incorporated used the RETRAN computer code to model and calculate nine Consumers Power Company Big Rock Point Nuclear Power Plant transients. RETRAN, a best-estimate, one-dimensional, homogeneous-flow thermal-equilibrium code, is applicable to FSAR Chapter 15 transients for Conditions 1 through IV. The BWR analyses were performed in accordance with USNRC Standard Review Plan criteria and in response to the USNRC Systematic Evaluation Program. The RETRAN Big Rock Point model was verified by comparison to plant startup test data. This paper discusses the unique modeling techniques used in RETRAN to model this steam-drum-type BWR. Transient analyses results are also presented
Congruence from the Operator's Point of View: Compositionality Requirements on Process Semantics
Directory of Open Access Journals (Sweden)
Maciej Gazda
2010-08-01
Full Text Available One of the basic sanity properties of a behavioural semantics is that it constitutes a congruence with respect to standard process operators. This issue has been traditionally addressed by the development of rule formats for transition system specifications that define process algebras. In this paper we suggest a novel, orthogonal approach. Namely, we focus on a number of process operators, and for each of them attempt to find the widest possible class of congruences. To this end, we impose restrictions on sublanguages of Hennessy-Milner logic, so that a semantics whose modal characterization satisfies a given criterion is guaranteed to be a congruence with respect to the operator in question. We investigate action prefix, alternative composition, two restriction operators, and parallel composition.
Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space
Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.
2015-09-01
Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their
Fixed Point Theorems for T-Ciric Quasi-contractive Operator in CAT(0 Spaces
Directory of Open Access Journals (Sweden)
G. S. Saluja
2013-08-01
Full Text Available The purpose of this paper to study a three-step iterative algorithm for T-Ciric quasi-contractive (TCQC operator in the framework of CAT(0 spaces and establish strong convergence theorems for above said scheme and operator. Our results improve and extend the recent corresponding results from the existing literature (see, e.g., [28, 29, 30] and some others.
International Nuclear Information System (INIS)
Kanani, Homayoon; Shams, Mehrzad; Hasheminasab, Mohammadreza; Bozorgnezhad, Ali
2015-01-01
Highlights: • The optimization of the operating parameters in a serpentine PEMFC is done using RSM. • The RSM model can predict the cell power over the wide range of operating conditions. • St-An, St-Ca and RH-Ca have an optimum value to obtain the best performance. • The interactions of the operating conditions affect the output power significantly. • The cathode and anode stoichiometry are the most effective parameters on the power. - Abstract: Optimization of operating conditions to obtain maximum power in PEMFCs could have a significant role to reduce the costs of this emerging technology. In the present experimental study, a single serpentine PEMFC is used to investigate the effects of operating conditions on the electrical power production of the cell. Four significant parameters including cathode stoichiometry, anode stoichiometry, gases inlet temperature, and cathode relative humidity are studied using Design of Experiment (DOE) to obtain an optimal power. Central composite second order Response Surface Methodology (RSM) is used to model the relationship between goal function (power) and considered input parameters (operating conditions). Using this statistical–mathematical method leads to obtain a second-order equation for the cell power. This model considers interactions and quadratic effects of different operating conditions and predicts the maximum or minimum power production over the entire working range of the parameters. In this range, high stoichiometry of cathode and low stoichiometry of anode results in the minimum cell power and contrary the medium range of fuel and oxidant stoichiometry leads to the maximum power. Results show that there is an optimum value for the anode stoichiometry, cathode stoichiometry and relative humidity to reach the best performance. The predictions of the model are evaluated by experimental tests and they are in a good agreement for different ranges of the parameters