WorldWideScience

Sample records for optimal control predicts

  1. Optimization of a predictive controller of a pressurized water reactor Xenon oscillation using the particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Medeiros, Jose Antonio Carlos Canedo; Machado, Marcelo Dornellas; Lima, Alan Miranda M. de; Schirru, Roberto

    2007-01-01

    Predictive control systems are control systems that use a model of the controlled system (plant), used to predict the future behavior of the plant allowing the establishment of an anticipative control based on a future condition of the plant, and an optimizer that, considering a future time horizon of the plant output and a recent horizon of the control action, determines the controller's outputs to optimize a performance index of the controlled plant. The predictive control system does not require analytical models of the plant; the model of predictor of the plant can be learned from historical data of operation of the plant. The optimizer of the predictive controller establishes the strategy of the control: the minimization of a performance index (objective function) is done so that the present and future control actions are computed in such a way to minimize the objective function. The control strategy, implemented by the optimizer, induces the formation of an optimal control mechanism whose effect is to reduce the stabilization time, the 'overshoot' and 'undershoot', minimize the control actuation so that a compromise among those objectives is attained. The optimizer of the predictive controller is usually implemented using gradient-based algorithms. In this work we use the Particle Swarm Optimization algorithm (PSO) in the optimizer component of a predictive controller applied in the control of the xenon oscillation of a pressurized water reactor (PWR). The PSO is a stochastic optimization technique applied in several disciplines, simple and capable of providing a global optimal for high complexity problems and difficult to be optimized, providing in many cases better results than those obtained by other conventional and/or other artificial optimization techniques. (author)

  2. Parameter Optimization of MIMO Fuzzy Optimal Model Predictive Control By APSO

    Directory of Open Access Journals (Sweden)

    Adel Taieb

    2017-01-01

    Full Text Available This paper introduces a new development for designing a Multi-Input Multi-Output (MIMO Fuzzy Optimal Model Predictive Control (FOMPC using the Adaptive Particle Swarm Optimization (APSO algorithm. The aim of this proposed control, called FOMPC-APSO, is to develop an efficient algorithm that is able to have good performance by guaranteeing a minimal control. This is done by determining the optimal weights of the objective function. Our method is considered an optimization problem based on the APSO algorithm. The MIMO system to be controlled is modeled by a Takagi-Sugeno (TS fuzzy system whose parameters are identified using weighted recursive least squares method. The utility of the proposed controller is demonstrated by applying it to two nonlinear processes, Continuous Stirred Tank Reactor (CSTR and Tank system, where the proposed approach provides better performances compared with other methods.

  3. Optimization control of LNG regasification plant using Model Predictive Control

    Science.gov (United States)

    Wahid, A.; Adicandra, F. F.

    2018-03-01

    Optimization of liquified natural gas (LNG) regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to choose optimum LNG regasification plant design and maintaining the optimum operating conditions through the implementation of model predictive control (MPC). Optimal tuning parameter for MPC such as P (prediction horizon), M (control of the horizon) and T (sampling time) are achieved by using fine-tuning method. The optimal criterion for design is the minimum amount of energy used and for control is integral of square error (ISE). As a result, the optimum design is scheme 2 which is developed by Devold with an energy savings of 40%. To maintain the optimum conditions, required MPC with P, M and T as follows: tank storage pressure: 90, 2, 1; product pressure: 95, 2, 1; temperature vaporizer: 65, 2, 2; and temperature heater: 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6%, 63.5%, 3.1% and 58.2% compared to PI controller performance. The energy savings that MPC controllers can make when there is a disturbance in temperature rise 1°C of sea water is 0.02 MW.

  4. Real-Time Optimization for Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Edlund, Kristian; Frison, Gianluca

    2012-01-01

    In this paper, we develop an efficient homogeneous and self-dual interior-point method for the linear programs arising in economic model predictive control. To exploit structure in the optimization problems, the algorithm employs a highly specialized Riccati iteration procedure. Simulations show...

  5. Optimal strategy analysis based on robust predictive control for inventory system with random demand

    Science.gov (United States)

    Saputra, Aditya; Widowati, Sutrisno

    2017-12-01

    In this paper, the optimal strategy for a single product single supplier inventory system with random demand is analyzed by using robust predictive control with additive random parameter. We formulate the dynamical system of this system as a linear state space with additive random parameter. To determine and analyze the optimal strategy for the given inventory system, we use robust predictive control approach which gives the optimal strategy i.e. the optimal product volume that should be purchased from the supplier for each time period so that the expected cost is minimal. A numerical simulation is performed with some generated random inventory data. We simulate in MATLAB software where the inventory level must be controlled as close as possible to a set point decided by us. From the results, robust predictive control model provides the optimal strategy i.e. the optimal product volume that should be purchased and the inventory level was followed the given set point.

  6. Optimal control predicts human performance on objects with internal degrees of freedom.

    Directory of Open Access Journals (Sweden)

    Arne J Nagengast

    2009-06-01

    Full Text Available On a daily basis, humans interact with a vast range of objects and tools. A class of tasks, which can pose a serious challenge to our motor skills, are those that involve manipulating objects with internal degrees of freedom, such as when folding laundry or using a lasso. Here, we use the framework of optimal feedback control to make predictions of how humans should interact with such objects. We confirm the predictions experimentally in a two-dimensional object manipulation task, in which subjects learned to control six different objects with complex dynamics. We show that the non-intuitive behavior observed when controlling objects with internal degrees of freedom can be accounted for by a simple cost function representing a trade-off between effort and accuracy. In addition to using a simple linear, point-mass optimal control model, we also used an optimal control model, which considers the non-linear dynamics of the human arm. We find that the more realistic optimal control model captures aspects of the data that cannot be accounted for by the linear model or other previous theories of motor control. The results suggest that our everyday interactions with objects can be understood by optimality principles and advocate the use of more realistic optimal control models for the study of human motor neuroscience.

  7. Constrained Fuzzy Predictive Control Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Oussama Ait Sahed

    2015-01-01

    Full Text Available A fuzzy predictive controller using particle swarm optimization (PSO approach is proposed. The aim is to develop an efficient algorithm that is able to handle the relatively complex optimization problem with minimal computational time. This can be achieved using reduced population size and small number of iterations. In this algorithm, instead of using the uniform distribution as in the conventional PSO algorithm, the initial particles positions are distributed according to the normal distribution law, within the area around the best position. The radius limiting this area is adaptively changed according to the tracking error values. Moreover, the choice of the initial best position is based on prior knowledge about the search space landscape and the fact that in most practical applications the dynamic optimization problem changes are gradual. The efficiency of the proposed control algorithm is evaluated by considering the control of the model of a 4 × 4 Multi-Input Multi-Output industrial boiler. This model is characterized by being nonlinear with high interactions between its inputs and outputs, having a nonminimum phase behaviour, and containing instabilities and time delays. The obtained results are compared to those of the control algorithms based on the conventional PSO and the linear approach.

  8. Efficient operation scheduling for adsorption chillers using predictive optimization-based control methods

    Science.gov (United States)

    Bürger, Adrian; Sawant, Parantapa; Bohlayer, Markus; Altmann-Dieses, Angelika; Braun, Marco; Diehl, Moritz

    2017-10-01

    Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.

  9. Data Analytics Based Dual-Optimized Adaptive Model Predictive Control for the Power Plant Boiler

    Directory of Open Access Journals (Sweden)

    Zhenhao Tang

    2017-01-01

    Full Text Available To control the furnace temperature of a power plant boiler precisely, a dual-optimized adaptive model predictive control (DoAMPC method is designed based on the data analytics. In the proposed DoAMPC, an accurate predictive model is constructed adaptively by the hybrid algorithm of the least squares support vector machine and differential evolution method. Then, an optimization problem is constructed based on the predictive model and many constraint conditions. To control the boiler furnace temperature, the differential evolution method is utilized to decide the control variables by solving the optimization problem. The proposed method can adapt to the time-varying situation by updating the sample data. The experimental results based on practical data illustrate that the DoAMPC can control the boiler furnace temperature with errors of less than 1.5% which can meet the requirements of the real production process.

  10. Dynamic optimization and robust explicit model predictive control of hydrogen storage tank

    KAUST Repository

    Panos, C.

    2010-09-01

    We present a general framework for the optimal design and control of a metal-hydride bed under hydrogen desorption operation. The framework features: (i) a detailed two-dimension dynamic process model, (ii) a design and operational dynamic optimization step, and (iii) an explicit/multi-parametric model predictive controller design step. For the controller design, a reduced order approximate model is obtained, based on which nominal and robust multi-parametric controllers are designed. © 2010 Elsevier Ltd.

  11. Dynamic optimization and robust explicit model predictive control of hydrogen storage tank

    KAUST Repository

    Panos, C.; Kouramas, K.I.; Georgiadis, M.C.; Pistikopoulos, E.N.

    2010-01-01

    We present a general framework for the optimal design and control of a metal-hydride bed under hydrogen desorption operation. The framework features: (i) a detailed two-dimension dynamic process model, (ii) a design and operational dynamic optimization step, and (iii) an explicit/multi-parametric model predictive controller design step. For the controller design, a reduced order approximate model is obtained, based on which nominal and robust multi-parametric controllers are designed. © 2010 Elsevier Ltd.

  12. Economic Optimization of Spray Dryer Operation using Nonlinear Model Predictive Control

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2014-01-01

    In this paper we investigate an economically optimizing Nonlinear Model Predictive Control (E-NMPC) for a spray drying process. By simulation we evaluate the economic potential of this E-NMPC compared to a conventional PID based control strategy. Spray drying is the preferred process to reduce...... the water content for many liquid foodstuffs and produces a free flowing powder. The main challenge in controlling the spray drying process is to meet the residual moisture specifications and avoid that the powder sticks to the chamber walls of the spray dryer. We present a model for a spray dryer that has...... been validated on experimental data from a pilot plant. We use this model for simulation as well as for prediction in the E-NMPC. The E-NMPC is designed with hard input constraints and soft output constraints. The open-loop optimal control problem in the E-NMPC is solved using the single...

  13. Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2015-07-01

    Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.

  14. Model-Based Predictive Control Scheme for Cost Optimization and Balancing Services for Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    Weerts, Hermanus H. M.; Shafiei, Seyed Ehsan; Stoustrup, Jakob

    2014-01-01

    A new formulation of model predictive control for supermarket refrigeration systems is proposed to facilitate the regulatory power services as well as energy cost optimization of such systems in the smart grid. Nonlinear dynamics existed in large-scale refrigeration plants challenges the predictive...... control design. It is however shown that taking into account the knowledge of different time scales in the dynamical subsystems makes possible a linear formulation of a centralized predictive controller. A realistic scenario of regulatory power services in the smart grid is considered and formulated...... in the same objective as of cost optimization one. A simulation benchmark validated against real data and including significant dynamics of the system are employed to show the effectiveness of the proposed control scheme....

  15. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulation research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very

  16. Fuzzy Constrained Predictive Optimal Control of High Speed Train with Actuator Dynamics

    Directory of Open Access Journals (Sweden)

    Xi Wang

    2016-01-01

    Full Text Available We investigate the problem of fuzzy constrained predictive optimal control of high speed train considering the effect of actuator dynamics. The dynamics feature of the high speed train is modeled as a cascade of cars connected by flexible couplers, and the formulation is mathematically transformed into a Takagi-Sugeno (T-S fuzzy model. The goal of this study is to design a state feedback control law at each decision step to enhance safety, comfort, and energy efficiency of high speed train subject to safety constraints on the control input. Based on Lyapunov stability theory, the problem of optimizing an upper bound on the cruise control cost function subject to input constraints is reduced to a convex optimization problem involving linear matrix inequalities (LMIs. Furthermore, we analyze the influences of second-order actuator dynamics on the fuzzy constrained predictive controller, which shows risk of potentially deteriorating the overall system. Employing backstepping method, an actuator compensator is proposed to accommodate for the influence of the actuator dynamics. The experimental results show that with the proposed approach high speed train can track the desired speed, the relative coupler displacement between the neighbouring cars is stable at the equilibrium state, and the influence of actuator dynamics is reduced, which demonstrate the validity and effectiveness of the proposed approaches.

  17. Generalized Predictive Control and Neural Generalized Predictive Control

    Directory of Open Access Journals (Sweden)

    Sadhana CHIDRAWAR

    2008-12-01

    Full Text Available As Model Predictive Control (MPC relies on the predictive Control using a multilayer feed forward network as the plants linear model is presented. In using Newton-Raphson as the optimization algorithm, the number of iterations needed for convergence is significantly reduced from other techniques. This paper presents a detailed derivation of the Generalized Predictive Control and Neural Generalized Predictive Control with Newton-Raphson as minimization algorithm. Taking three separate systems, performances of the system has been tested. Simulation results show the effect of neural network on Generalized Predictive Control. The performance comparison of this three system configurations has been given in terms of ISE and IAE.

  18. Application of model predictive control for optimal operation of wind turbines

    Science.gov (United States)

    Yuan, Yuan; Cao, Pei; Tang, J.

    2017-04-01

    For large-scale wind turbines, reducing maintenance cost is a major challenge. Model predictive control (MPC) is a promising approach to deal with multiple conflicting objectives using the weighed sum approach. In this research, model predictive control method is applied to wind turbine to find an optimal balance between multiple objectives, such as the energy capture, loads on turbine components, and the pitch actuator usage. The actuator constraints are integrated into the objective function at the control design stage. The analysis is carried out in both the partial load region and full load region, and the performances are compared with those of a baseline gain scheduling PID controller. The application of this strategy achieves enhanced balance of component loads, the average power and actuator usages in partial load region.

  19. Real-time economic optimization for a fermentation process using Model Predictive Control

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Jørgensen, John Bagterp

    2014-01-01

    Fermentation is a widely used process in production of many foods, beverages, and pharmaceuticals. The main goal of the control system is to maximize profit of the fermentation process, and thus this is also the main goal of this paper. We present a simple dynamic model for a fermentation process...... and demonstrate its usefulness in economic optimization. The model is formulated as an index-1 differential algebraic equation (DAE), which guarantees conservation of mass and energy in discrete form. The optimization is based on recent advances within Economic Nonlinear Model Predictive Control (E......-NMPC), and also utilizes the index-1 DAE model. The E-NMPC uses the single-shooting method and the adjoint method for computation of the optimization gradients. The process constraints are relaxed to soft-constraints on the outputs. Finally we derive the analytical solution to the economic optimization problem...

  20. Active Power Optimal Control of Wind Turbines with Doubly Fed Inductive Generators Based on Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Guo Jiuwang

    2015-01-01

    Full Text Available Because of the randomness and fluctuation of wind energy, as well as the impact of strongly nonlinear characteristic of variable speed constant frequency (VSCF wind power generation system with doubly fed induction generators (DFIG, traditional active power control strategies are difficult to achieve high precision control and the output power of wind turbines is more fluctuated. In order to improve the quality of output electric energy of doubly fed wind turbines, on the basis of analyzing the operating principles and dynamic characteristics of doubly fed wind turbines, this paper proposes a new active power optimal control method of doubly fed wind turbines based on predictive control theory. This method uses state space model of wind turbines, based on the prediction of the future state of wind turbines, moves horizon optimization, and meanwhile, gets the control signals of pitch angle and generator torque. Simulation results show that the proposed control strategies can guarantee the utilization efficiency for wind energy. Simultaneously, they can improve operation stability of wind turbines and the quality of electric energy.

  1. Economic Optimization of Spray Dryer Operation using Nonlinear Model Predictive Control with State Estimation

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Jørgensen, John Bagterp; Rawlings, James B.

    2015-01-01

    In this paper, we develop an economically optimizing Nonlinear Model Predictive Controller (E-NMPC) for a complete spray drying plant with multiple stages. In the E-NMPC the initial state is estimated by an extended Kalman Filter (EKF) with noise covariances estimated by an autocovariance least...... squares method (ALS). We present a model for the spray drying plant and use this model for simulation as well as for prediction in the E-NMPC. The open-loop optimal control problem in the E-NMPC is solved using the single-shooting method combined with a quasi-Newton Sequential Quadratic programming (SQP......) algorithm and the adjoint method for computation of gradients. We evaluate the economic performance when unmeasured disturbances are present. By simulation, we demonstrate that the E-NMPC improves the profit of spray drying by 17% compared to conventional PI control....

  2. Model-based predictive control scheme for cost optimization and balancing services for supermarket refrigeration Systems

    NARCIS (Netherlands)

    Weerts, H.H.M.; Shafiei, S.E.; Stoustrup, J.; Izadi-Zamanabadi, R.; Boje, E.; Xia, X.

    2014-01-01

    A new formulation of model predictive control for supermarket refrigeration systems is proposed to facilitate the regulatory power services as well as energy cost optimization of such systems in the smart grid. Nonlinear dynamics existed in large-scale refrigeration plants challenges the predictive

  3. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    Science.gov (United States)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  4. Comparison of Linear and Nonlinear Model Predictive Control for Optimization of Spray Dryer Operation

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2015-01-01

    In this paper, we compare the performance of an economically optimizing Nonlinear Model Predictive Controller (E-NMPC) to a linear tracking Model Predictive Controller (MPC) for a spray drying plant. We find in this simulation study, that the economic performance of the two controllers are almost...... equal. We evaluate the economic performance with an industrially recorded disturbance scenario, where unmeasured disturbances and model mismatch are present. The state of the spray dryer, used in the E-NMPC and MPC, is estimated using Kalman Filters with noise covariances estimated by a maximum...

  5. Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation

    International Nuclear Information System (INIS)

    Chen, Xiao; Wang, Qian; Srebric, Jelena

    2016-01-01

    Highlights: • This study evaluates an occupant-feedback driven Model Predictive Controller (MPC). • The MPC adjusts indoor temperature based on a dynamic thermal sensation (DTS) model. • A chamber model for predicting chamber air temperature is developed and validated. • Experiments show that MPC using DTS performs better than using Predicted Mean Vote. - Abstract: In current centralized building climate control, occupants do not have much opportunity to intervene the automated control system. This study explores the benefit of using thermal comfort feedback from occupants in the model predictive control (MPC) design based on a novel dynamic thermal sensation (DTS) model. This DTS model based MPC was evaluated in chamber experiments. A hierarchical structure for thermal control was adopted in the chamber experiments. At the high level, an MPC controller calculates the optimal supply air temperature of the chamber heating, ventilation, and air conditioning (HVAC) system, using the feedback of occupants’ votes on thermal sensation. At the low level, the actual supply air temperature is controlled by the chiller/heater using a PI control to achieve the optimal set point. This DTS-based MPC was also compared to an MPC designed based on the Predicted Mean Vote (PMV) model for thermal sensation. The experiment results demonstrated that the DTS-based MPC using occupant feedback allows significant energy saving while maintaining occupant thermal comfort compared to the PMV-based MPC.

  6. A comparison of the economic benefits of centralized and distributed model predictive control strategies for optimal and sub-optimal mine dewatering system designs

    International Nuclear Information System (INIS)

    Romero, Alberto; Millar, Dean; Carvalho, Monica; Maestre, José M.; Camacho, Eduardo F.

    2015-01-01

    Mine dewatering can represent up to 5% of the total energy demand of a mine, and is one of the mine systems that aim to guarantee safe operating conditions. As mines go deeper, dewatering pumping heads become bigger, potentially involving several lift stages. Greater depth does not only mean greater dewatering cost, but more complex systems that require more sophisticated control systems, especially if mine operators wish to gain benefits from demand response incentives that are becoming a routine part of electricity tariffs. This work explores a two stage economic optimization procedure of an underground mine dewatering system, comprising two lifting stages, each one including a pump station and a water reservoir. First, the system design is optimized considering hourly characteristic dewatering demands for twelve days, one day representing each month of the year to account for seasonal dewatering demand variations. This design optimization minimizes the annualized cost of the system, and therefore includes the investment costs in underground reservoirs. Reservoir size, as well as an hourly pumping operation plan are calculated for specific operating environments, defined by characteristic hourly electricity prices and water inflows (seepage and water use from production activities), at best known through historical observations for the previous year. There is no guarantee that the system design will remain optimal when it faces the water inflows and market determined electricity prices of the year ahead, or subsequent years ahead, because these remain unknown at design time. Consequently, the dewatering optimized system design is adopted subsequently as part of a Model Predictive Control (MPC) strategy that adaptively maintains optimality during the operations phase. Centralized, distributed and non-centralized MPC strategies are explored. Results show that the system can be reliably controlled using any of these control strategies proposed. Under the operating

  7. Study on integrated approach of Nuclear Accident Hazard Predicting, Warning, and Optimized Controlling System based on GIS

    International Nuclear Information System (INIS)

    Tang Lijuan; Huang Shunxiang; Wang Xinming

    2012-01-01

    The issue of nuclear safety becomes the attention focus of international society after the nuclear accident happened in Fukushima. Aiming at the requirements of the prevention and controlling of Nuclear Accident establishment of Nuclear Accident Hazard Predicting, Warning and optimized Controlling System (NAPWS) is a imperative project that our country and army are desiderating, which includes multiple fields of subject as nuclear physics, atmospheric science, security science, computer science and geographical information technology, etc. Multiplatform, multi-system and multi-mode are integrated effectively based on GIS, accordingly the Predicting, Warning, and Optimized Controlling technology System of Nuclear Accident Hazard is established. (authors)

  8. Optimal Active Power Control of A Wind Farm Equipped with Energy Storage System based on Distributed Model Predictive Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Guo, Qinglai

    2016-01-01

    This paper presents the Distributed Model Predictive Control (D-MPC) of a wind farm equipped with fast and short-term Energy Storage System (ESS) for optimal active power control using the fast gradient method via dual decomposition. The primary objective of the D-MPC control of the wind farm...... is power reference tracking from system operators. Besides, by optimal distribution of the power references to individual wind turbines and the ESS unit, the wind turbine mechanical loads are alleviated. With the fast gradient method, the convergence rate of the DMPC is significantly improved which leads...

  9. Dynamic Algorithm for LQGPC Predictive Control

    DEFF Research Database (Denmark)

    Hangstrup, M.; Ordys, A.W.; Grimble, M.J.

    1998-01-01

    In this paper the optimal control law is derived for a multi-variable state space Linear Quadratic Gaussian Predictive Controller (LQGPC). A dynamic performance index is utilized resulting in an optimal steady state controller. Knowledge of future reference values is incorporated into the control......In this paper the optimal control law is derived for a multi-variable state space Linear Quadratic Gaussian Predictive Controller (LQGPC). A dynamic performance index is utilized resulting in an optimal steady state controller. Knowledge of future reference values is incorporated...... into the controller design and the solution is derived using the method of Lagrange multipliers. It is shown how well-known GPC controller can be obtained as a special case of the LQGPC controller design. The important advantage of using the LQGPC framework for designing predictive, e.g. GPS is that LQGPC enables...

  10. Self-optimizing robust nonlinear model predictive control

    NARCIS (Netherlands)

    Lazar, M.; Heemels, W.P.M.H.; Jokic, A.; Thoma, M.; Allgöwer, F.; Morari, M.

    2009-01-01

    This paper presents a novel method for designing robust MPC schemes that are self-optimizing in terms of disturbance attenuation. The method employs convex control Lyapunov functions and disturbance bounds to optimize robustness of the closed-loop system on-line, at each sampling instant - a unique

  11. Design of a model predictive load-following controller by discrete optimization of control rod speed for PWRs

    International Nuclear Information System (INIS)

    Kim, Jae Hwan; Park, Soon Ho; Na, Man Gyun

    2014-01-01

    Highlights: • A model predictive controller for load-following operation was developed. • Genetic algorithm optimizes the five nonlinear discrete control rod speeds. • The boron concentration is adjusted with automatic adjustment logic. • The proposed controller reflects the realistic control rod drive mechanism movement. • The performance was confirmed to be satisfactory by simulation from BOC to EOC. - Abstract: Currently, most existing nuclear power plants alter the reactor power by adjusting the boron concentration in the coolant because it has a smaller effect on the reactor power distribution. Frequent control rod movements for load-following operation induce xenon-oscillation. Therefore, a controller that can subdue this phenomenon effectively is needed. At an APR1400 nuclear power plant which is a pressurized water reactor (PWR), the reactor power is controlled automatically using a Reactor Regulating System (RRS) but the power distribution is controlled manually by operators. Therefore, for APR+ nuclear power plants which is an improved version of APR1400 nuclear reactor, a new concept of a reactor controller is needed to control both the reactor power and power distribution automatically. The model predictive control (MPC) method is applicable to multiple-input multiple-output control, and can be applied for complex and nonlinear systems, such as the nuclear power plants. In this study, an MPC controller was developed by applying a genetic algorithm to optimize the discrete control rod speeds and by reflecting the realistic movement of the control rod drive mechanism that moves at only five discrete speeds. The performance of the proposed controller was confirmed to be satisfactory by simulating the load-following operation of an APR+ nuclear power plant through interface with KISPAC-1D code

  12. Design and verification of controllers for longitudinal oscillations using optimal control theory and numerical simulation: Predictions for PEP-II

    International Nuclear Information System (INIS)

    Hindi, H.; Prabhakar, S.; Fox, J.; Teytelman, D.

    1997-12-01

    The authors present a technique for the design and verification of efficient bunch-by-bunch controllers for damping longitudinal multibunch instabilities. The controllers attempt to optimize the use of available feedback amplifier power--one of the most expensive components of a feedback system--and define the limits of closed loop system performance. The design technique alternates between analytic computation of single bunch optimal controllers and verification on a multibunch numerical simulator. The simulator identifies unstable coupled bunch modes and predicts their growth and damping rates. The results from the simulator are shown to be in reasonable agreement with analytical calculations based on the single bunch model. The technique is then used to evaluate the performance of a variety of controllers proposed for PEP-II

  13. Modeling Stationary Lithium-Ion Batteries for Optimization and Predictive Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Raszmann, Emma; Baker, Kyri; Shi, Ying; Christensen, Dane

    2017-02-22

    Accurately modeling stationary battery storage behavior is crucial to understand and predict its limitations in demand-side management scenarios. In this paper, a lithium-ion battery model was derived to estimate lifetime and state-of-charge for building-integrated use cases. The proposed battery model aims to balance speed and accuracy when modeling battery behavior for real-time predictive control and optimization. In order to achieve these goals, a mixed modeling approach was taken, which incorporates regression fits to experimental data and an equivalent circuit to model battery behavior. A comparison of the proposed battery model output to actual data from the manufacturer validates the modeling approach taken in the paper. Additionally, a dynamic test case demonstrates the effects of using regression models to represent internal resistance and capacity fading.

  14. Model-predictive control and real-time optimization of a cat cracker unit

    Directory of Open Access Journals (Sweden)

    Stig Strand

    1997-04-01

    Full Text Available A project for control and optimization of the Residual Catalytic Cracking Process at the Mongstad refinery is near completion. Four model-predictive control applications have been successfully implemented, using the IDCOM control software from Setpoint Inc. The most attractive feature of the controller is the well-defined control prioritizing hierarchy, and the linear impulse-response models have proved to give satisfactory performance on this process. Excitation and identification of the dynamic models proved to be a difficult task, and careful design and monitoring of the tests was mandatory in order to produce good results. Multi-variable Pseudo Random Binary Test Sequences were used for the excitation. Technical performance and operator acceptance of the new control functions have been good, but it is realized that a continuing effort is needed to fine-tune and maintain such functions.

  15. Developments in model-based optimization and control distributed control and industrial applications

    CERN Document Server

    Grancharova, Alexandra; Pereira, Fernando

    2015-01-01

    This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and desi...

  16. Domestic appliances energy optimization with model predictive control

    International Nuclear Information System (INIS)

    Rodrigues, E.M.G.; Godina, R.; Pouresmaeil, E.; Ferreira, J.R.; Catalão, J.P.S.

    2017-01-01

    Highlights: • An alternative power management control for home appliances that require thermal regulation is presented. • A Model Predictive Control scheme is assessed and its performance studied and compared to the thermostat. • Problem formulation is explored through tuning weights with the aim of reducing energetic consumption and cost. • A modulation scheme of a two-level Model Predictive Control signal as an interface block is presented. • The implementation costs in home appliances with thermal regulation requirements are reduced. - Abstract: A vital element in making a sustainable world is correctly managing the energy in the domestic sector. Thus, this sector evidently stands as a key one for to be addressed in terms of climate change goals. Increasingly, people are aware of electricity savings by turning off the equipment that is not been used, or connect electrical loads just outside the on-peak hours. However, these few efforts are not enough to reduce the global energy consumption, which is increasing. Much of the reduction was due to technological improvements, however with the advancing of the years new types of control arise. Domestic appliances with the purpose of heating and cooling rely on thermostatic regulation technique. The study in this paper is focused on the subject of an alternative power management control for home appliances that require thermal regulation. In this paper a Model Predictive Control scheme is assessed and its performance studied and compared to the thermostat with the aim of minimizing the cooling energy consumption through the minimization of the energy cost while satisfying the adequate temperature range for the human comfort. In addition, the Model Predictive Control problem formulation is explored through tuning weights with the aim of reducing energetic consumption and cost. For this purpose, the typical consumption of a 24 h period of a summer day was simulated a three-level tariff scheme was used. The new

  17. An Improved Optimal Slip Ratio Prediction considering Tyre Inflation Pressure Changes

    Directory of Open Access Journals (Sweden)

    Guoxing Li

    2015-01-01

    Full Text Available The prediction of optimal slip ratio is crucial to vehicle control systems. Many studies have verified there is a definitive impact of tyre pressure change on the optimal slip ratio. However, the existing method of optimal slip ratio prediction has not taken into account the influence of tyre pressure changes. By introducing a second-order factor, an improved optimal slip ratio prediction considering tyre inflation pressure is proposed in this paper. In order to verify and evaluate the performance of the improved prediction, a cosimulation platform is developed by using MATLAB/Simulink and CarSim software packages, achieving a comprehensive simulation study of vehicle braking performance cooperated with an ABS controller. The simulation results show that the braking distances and braking time under different tyre pressures and initial braking speeds are effectively shortened with the improved prediction of optimal slip ratio. When the tyre pressure is slightly lower than the nominal pressure, the difference of braking performances between original optimal slip ratio and improved optimal slip ratio is the most obvious.

  18. Adaptive filtering prediction and control

    CERN Document Server

    Goodwin, Graham C

    2009-01-01

    Preface1. Introduction to Adaptive TechniquesPart 1. Deterministic Systems2. Models for Deterministic Dynamical Systems3. Parameter Estimation for Deterministic Systems4. Deterministic Adaptive Prediction5. Control of Linear Deterministic Systems6. Adaptive Control of Linear Deterministic SystemsPart 2. Stochastic Systems7. Optimal Filtering and Prediction8. Parameter Estimation for Stochastic Dynamic Systems9. Adaptive Filtering and Prediction10. Control of Stochastic Systems11. Adaptive Control of Stochastic SystemsAppendicesA. A Brief Review of Some Results from Systems TheoryB. A Summary o

  19. Wind turbine control and model predictive control for uncertain systems

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz

    as disturbance models for controller design. The theoretical study deals with Model Predictive Control (MPC). MPC is an optimal control method which is characterized by the use of a receding prediction horizon. MPC has risen in popularity due to its inherent ability to systematically account for time...

  20. ADEX optimized adaptive controllers and systems from research to industrial practice

    CERN Document Server

    Martín-Sánchez, Juan M

    2015-01-01

    This book is a didactic explanation of the developments of predictive, adaptive predictive and optimized adaptive control, including the latest methodology of adaptive predictive expert (ADEX) control, and their practical applications. It is focused on the stability perspective, used in the introduction of these methodologies, and is divided into six parts, with exercises and real-time simulations provided for the reader as appropriate. ADEX Optimized Adaptive Controllers and Systems begins with the conceptual and intuitive knowledge of the technology and derives the stability conditions to be verified by the driver block and the adaptive mechanism of the optimized adaptive controller to guarantee achievement of desired control performance. The second and third parts are centered on the design of the driver block and adaptive mechanism, which verify these stability conditions. The authors then proceed to detail the stability theory that supports predictive, adaptive predictive and optimized adaptive control m...

  1. Hybrid Predictive Control for Dynamic Transport Problems

    CERN Document Server

    Núñez, Alfredo A; Cortés, Cristián E

    2013-01-01

    Hybrid Predictive Control for Dynamic Transport Problems develops methods for the design of predictive control strategies for nonlinear-dynamic hybrid discrete-/continuous-variable systems. The methodology is designed for real-time applications, particularly the study of dynamic transport systems. Operational and service policies are considered, as well as cost reduction. The control structure is based on a sound definition of the key variables and their evolution. A flexible objective function able to capture the predictive behaviour of the system variables is described. Coupled with efficient algorithms, mainly drawn from the area of computational intelligence, this is shown to optimize performance indices for real-time applications. The framework of the proposed predictive control methodology is generic and, being able to solve nonlinear mixed-integer optimization problems dynamically, is readily extendable to other industrial processes. The main topics of this book are: ●hybrid predictive control (HPC) ...

  2. Optimal control of inverted pendulum system using PID controller, LQR and MPC

    Science.gov (United States)

    Varghese, Elisa Sara; Vincent, Anju K.; Bagyaveereswaran, V.

    2017-11-01

    Inverted pendulum is a highly nonlinear system. Here we propose an optimal control technique for the control of an inverted Pendulum - cart system. The system is modeled, linearized and controlled. Here, the control objective is to control the system such that when the cart reaches a desired position the inverted pendulum stabilizes in the upright position. Initially PID controller is used to control the system. Later, Linear Quadratic Regulator (LQR) a well-known optimal control technique which makes use of the states of the dynamical system and control input to frame the optimal control decision is used. Various combinations of both PID and LQR controllers are implemented. To validate the robustness of the controller, the system is simulated with and without disturbance. Finally the system is also controlled using Model Predictive controller (MPC). MPC has well predictive ability to calculate future events and implement necessary control actions. The performance of the system is compared and analyzed.

  3. Adaptively Constrained Stochastic Model Predictive Control for the Optimal Dispatch of Microgrid

    Directory of Open Access Journals (Sweden)

    Xiaogang Guo

    2018-01-01

    Full Text Available In this paper, an adaptively constrained stochastic model predictive control (MPC is proposed to achieve less-conservative coordination between energy storage units and uncertain renewable energy sources (RESs in a microgrid (MG. Besides the economic objective of MG operation, the limits of state-of-charge (SOC and discharging/charging power of the energy storage unit are formulated as chance constraints when accommodating uncertainties of RESs, considering mild violations of these constraints are allowed during long-term operation, and a closed-loop online update strategy is performed to adaptively tighten or relax constraints according to the actual deviation probability of violation level from the desired one as well as the current change rate of deviation probability. Numerical studies show that the proposed adaptively constrained stochastic MPC for MG optimal operation is much less conservative compared with the scenario optimization based robust MPC, and also presents a better convergence performance to the desired constraint violation level than other online update strategies.

  4. Model predictive Controller for Mobile Robot

    OpenAIRE

    Alireza Rezaee

    2017-01-01

    This paper proposes a Model Predictive Controller (MPC) for control of a P2AT mobile robot. MPC refers to a group of controllers that employ a distinctly identical model of process to predict its future behavior over an extended prediction horizon. The design of a MPC is formulated as an optimal control problem. Then this problem is considered as linear quadratic equation (LQR) and is solved by making use of Ricatti equation. To show the effectiveness of the proposed method this controller is...

  5. Model-based dynamic control and optimization of gas networks

    Energy Technology Data Exchange (ETDEWEB)

    Hofsten, Kai

    2001-07-01

    This work contributes to the research on control, optimization and simulation of gas transmission systems to support the dispatch personnel at gas control centres for the decision makings in the daily operation of the natural gas transportation systems. Different control and optimization strategies have been studied. The focus is on the operation of long distance natural gas transportation systems. Stationary optimization in conjunction with linear model predictive control using state space models is proposed for supply security, the control of quality parameters and minimization of transportation costs for networks offering transportation services. The result from the stationary optimization together with a reformulation of a simplified fluid flow model formulates a linear dynamic optimization model. This model is used in a finite time control and state constrained linear model predictive controller. The deviation from the control and the state reference determined from the stationary optimization is penalized quadratically. Because of the time varying status of infrastructure, the control space is also generally time varying. When the average load is expected to change considerably, a new stationary optimization is performed, giving a new state and control reference together with a new dynamic model that is used for both optimization and state estimation. Another proposed control strategy is a control and output constrained nonlinear model predictive controller for the operation of gas transmission systems. Here, the objective is also the security of the supply, quality control and minimization of transportation costs. An output vector is defined, which together with a control vector are both penalized quadratically from their respective references in the objective function. The nonlinear model predictive controller can be combined with a stationary optimization. At each sampling instant, a non convex nonlinear programming problem is solved giving a local minimum

  6. Selection of References in Wind Turbine Model Predictive Control Design

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Hovgaard, Tobias

    2015-01-01

    a model predictive controller for a wind turbine. One of the important aspects for a tracking control problem is how to setup the optimal reference tracking problem, as it might be relevant to track, e.g., the three concurrent references: optimal pitch angle, optimal rotational speed, and optimal power......Lowering the cost of energy is one of the major focus areas in the wind turbine industry. Recent research has indicated that wind turbine controllers based on model predictive control methods can be useful in obtaining this objective. A number of design considerations have to be made when designing....... The importance if the individual references differ depending in particular on the wind speed. In this paper we investigate the performance of a reference tracking model predictive controller with two different setups of the used optimal reference signals. The controllers are evaluated using an industrial high...

  7. Swing Phase Control of Semi-Active Prosthetic Knee Using Neural Network Predictive Control With Particle Swarm Optimization.

    Science.gov (United States)

    Ekkachai, Kittipong; Nilkhamhang, Itthisek

    2016-11-01

    In recent years, intelligent prosthetic knees have been developed that enable amputees to walk as normally as possible when compared to healthy subjects. Although semi-active prosthetic knees utilizing magnetorheological (MR) dampers offer several advantages, they lack the ability to generate active force that is required during some states of a normal gait cycle. This prevents semi-active knees from achieving the same level of performance as active devices. In this work, a new control algorithm for a semi-active prosthetic knee during the swing phase is proposed to reduce this gap. The controller uses neural network predictive control and particle swarm optimization to calculate suitable command signals. Simulation results using a double pendulum model show that the generated knee trajectory of the proposed controller is more similar to the normal gait than previous open-loop controllers at various ambulation speeds. Moreover, the investigation shows that the algorithm can be calculated in real time by an embedded system, allowing for easy implementation on real prosthetic knees.

  8. Range-Space Predictive Control for Optimal Robot Motion

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav; Böhm, Josef

    2008-01-01

    Roč. 1, č. 1 (2008), s. 1-7 ISSN 1998-0140 R&D Projects: GA ČR GP102/06/P275 Institutional research plan: CEZ:AV0Z10750506 Keywords : Accurate manipulation * Industrial robotics * Predictive control * Range-space control Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/historie/belda-0305644.pdf

  9. Nonlinear model predictive control theory and algorithms

    CERN Document Server

    Grüne, Lars

    2017-01-01

    This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...

  10. Unreachable Setpoints in Model Predictive Control

    DEFF Research Database (Denmark)

    Rawlings, James B.; Bonné, Dennis; Jørgensen, John Bagterp

    2008-01-01

    In this work, a new model predictive controller is developed that handles unreachable setpoints better than traditional model predictive control methods. The new controller induces an interesting fast/slow asymmetry in the tracking response of the system. Nominal asymptotic stability of the optimal...... steady state is established for terminal constraint model predictive control (MPC). The region of attraction is the steerable set. Existing analysis methods for closed-loop properties of MPC are not applicable to this new formulation, and a new analysis method is developed. It is shown how to extend...

  11. Optimal control novel directions and applications

    CERN Document Server

    Aronna, Maria; Kalise, Dante

    2017-01-01

    Focusing on applications to science and engineering, this book presents the results of the ITN-FP7 SADCO network’s innovative research in optimization and control in the following interconnected topics: optimality conditions in optimal control, dynamic programming approaches to optimal feedback synthesis and reachability analysis, and computational developments in model predictive control. The novelty of the book resides in the fact that it has been developed by early career researchers, providing a good balance between clarity and scientific rigor. Each chapter features an introduction addressed to PhD students and some original contributions aimed at specialist researchers. Requiring only a graduate mathematical background, the book is self-contained. It will be of particular interest to graduate and advanced undergraduate students, industrial practitioners and to senior scientists wishing to update their knowledge.

  12. Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.

    Science.gov (United States)

    Aprasoff, Jonathan; Donchin, Opher

    2012-04-01

    Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.

  13. IMPORTANCE OF KINETIC MEASURES IN TRAJECTORY PREDICTION WITH OPTIMAL CONTROL

    Directory of Open Access Journals (Sweden)

    Ömer GÜNDOĞDU

    2001-02-01

    Full Text Available A two-dimensional sagittally symmetric human-body model was established to simulate an optimal trajectory for manual material handling tasks. Nonlinear control techniques and genetic algorithms were utilized in the optimizations to explore optimal lifting patterns. The simulation results were then compared with the experimental data. Since the kinetic measures such as joint reactions and moments are vital parameters in injury determination, the importance of comparing kinetic measures rather than kinematical ones was emphasized.

  14. Predictive Analytics for Coordinated Optimization in Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-13

    This talk will present NREL's work on developing predictive analytics that enables the optimal coordination of all the available resources in distribution systems to achieve the control objectives of system operators. Two projects will be presented. One focuses on developing short-term state forecasting-based optimal voltage regulation in distribution systems; and the other one focuses on actively engaging electricity consumers to benefit distribution system operations.

  15. Process control and optimization with simple interval calculation method

    DEFF Research Database (Denmark)

    Pomerantsev, A.; Rodionova, O.; Høskuldsson, Agnar

    2006-01-01

    for the quality improvement in the course of production. The latter is an active quality optimization, which takes into account the actual history of the process. The advocate approach is allied to the conventional method of multivariate statistical process control (MSPC) as it also employs the historical process......Methods of process control and optimization are presented and illustrated with a real world example. The optimization methods are based on the PLS block modeling as well as on the simple interval calculation methods of interval prediction and object status classification. It is proposed to employ...... the series of expanding PLS/SIC models in order to support the on-line process improvements. This method helps to predict the effect of planned actions on the product quality and thus enables passive quality control. We have also considered an optimization approach that proposes the correcting actions...

  16. Comparison of three control strategies for optimization of spray dryer operation

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2017-01-01

    controllers for operation of a four-stage spray dryer. The three controllers are a proportional-integral (PI) controller that is used in industrial practice for spray dryer operation, a linear model predictive controller with real-time optimization (MPC with RTO, MPC-RTO), and an economically optimizing...... nonlinear model predictive controller (E-NMPC). The MPC with RTO is based on the same linear state space model in the MPC and the RTO layer. The E-NMPC consists of a single optimization layer that uses a nonlinear system of ordinary differential equations for its predictions. The PI control strategy has...... the production rate, while minimizing the energy consumption, keeping the residual moisture content of the powder below a maximum limit, and avoiding that the powder sticks to the chamber walls. We use an industrially recorded disturbance scenario in order to produce realistic simulations and conclusions...

  17. Predictive torque and flux control of an induction machine drive ...

    Indian Academy of Sciences (India)

    Finite-state model predictive control; fuzzy decision making; multi-objective optimization; predictive torque control. Abstract. Among the numerous direct torque control techniques, the finite-state predictive torque control (FS-PTC) has emerged as a powerful alternative as it offers the fast dynamic response and the flexibility to ...

  18. Predicting the Motions and Forces of Wearable Robotic Systems Using Optimal Control

    Directory of Open Access Journals (Sweden)

    Matthew Millard

    2017-08-01

    Full Text Available Wearable robotic systems are being developed to prevent injury to the low back. Designing a wearable robotic system is challenging because it is difficult to predict how the exoskeleton will affect the movement of the wearer. To aid the design of exoskeletons, we formulate and numerically solve an optimal control problem (OCP to predict the movements and forces of a person as they lift a 15 kg box from the ground both without (human-only OCP and with (with-exo OCP the aid of an exoskeleton. We model the human body as a sagittal-plane multibody system that is actuated by agonist and antagonist pairs of muscle torque generators (MTGs at each joint. Using the literature as a guide, we have derived a set of MTGs that capture the active torque–angle, passive torque–angle, and torque–velocity characteristics of the flexor and extensor groups surrounding the hip, knee, ankle, lumbar spine, shoulder, elbow, and wrist. Uniquely, these MTGs are continuous to the second derivative and so are compatible with gradient-based optimization. The exoskeleton is modeled as a rigid-body mechanism that is actuated by a motor at the hip and the lumbar spine and is coupled to the wearer through kinematic constraints. We evaluate our results by comparing our predictions with experimental recordings of a human subject. Our results indicate that the predicted peak lumbar-flexion angles and extension torques of the human-only OCP are within the range reported in the literature. The results of the with-exo OCP indicate that the exoskeleton motors should provide relatively little support during the descent to the box but apply a substantial amount of support during the ascent phase. The support provided by the lumbar motor is similar in shape to the net moment generated at the L5/S1 joint by the body; however, the support of the hip motor is more complex because it is coupled to the passive forces that are being generated by the hip extensors of the human subject

  19. Fuzzy model predictive control algorithm applied in nuclear power plant

    International Nuclear Information System (INIS)

    Zuheir, Ahmad

    2006-01-01

    The aim of this paper is to design a predictive controller based on a fuzzy model. The Takagi-Sugeno fuzzy model with an Adaptive B-splines neuro-fuzzy implementation is used and incorporated as a predictor in a predictive controller. An optimization approach with a simplified gradient technique is used to calculate predictions of the future control actions. In this approach, adaptation of the fuzzy model using dynamic process information is carried out to build the predictive controller. The easy description of the fuzzy model and the easy computation of the gradient sector during the optimization procedure are the main advantages of the computation algorithm. The algorithm is applied to the control of a U-tube steam generation unit (UTSG) used for electricity generation. (author)

  20. Optimal control in a micro gas grid of prosumers using Model Predictive Control

    NARCIS (Netherlands)

    Alkano, Desti; Nefkens, W.J.; Scherpen, Jacqueline M.A.; Volkerts, M.

    This paper studies the optimal control of a micro grid of biogas prosumers equipped with local storage devices. Excess biogas can be upgraded and injected into the low- pressure gas grid or, alternatively, shipped per lorry to be used elsewhere in an effort to create revenue. The aim of the control

  1. Rate-Based Model Predictive Control of Turbofan Engine Clearance

    Science.gov (United States)

    DeCastro, Jonathan A.

    2006-01-01

    An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.

  2. A Feedback Optimal Control Algorithm with Optimal Measurement Time Points

    Directory of Open Access Journals (Sweden)

    Felix Jost

    2017-02-01

    Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.

  3. Improved fuzzy PID controller design using predictive functional control structure.

    Science.gov (United States)

    Wang, Yuzhong; Jin, Qibing; Zhang, Ridong

    2017-11-01

    In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Model Predictive Control Algorithms for Pen and Pump Insulin Administration

    DEFF Research Database (Denmark)

    Boiroux, Dimitri

    at mealtime, and the case where the insulin sensitivity increases during the night. This thesis consists of a summary report, glucose and insulin proles of the clinical studies and research papers submitted, peer-reviewed and/or published in the period September 2009 - September 2012....... of current closed-loop controllers. In this thesis, we present different control strategies based on Model Predictive Control (MPC) for an artificial pancreas. We use Nonlinear Model Predictive Control (NMPC) in order to determine the optimal insulin and blood glucose profiles. The optimal control problem...

  5. Optimization and Optimal Control

    CERN Document Server

    Chinchuluun, Altannar; Enkhbat, Rentsen; Tseveendorj, Ider

    2010-01-01

    During the last four decades there has been a remarkable development in optimization and optimal control. Due to its wide variety of applications, many scientists and researchers have paid attention to fields of optimization and optimal control. A huge number of new theoretical, algorithmic, and computational results have been observed in the last few years. This book gives the latest advances, and due to the rapid development of these fields, there are no other recent publications on the same topics. Key features: Provides a collection of selected contributions giving a state-of-the-art accou

  6. Optimization of maintenance for power system equipment using a predictive health model

    NARCIS (Netherlands)

    Bajracharya, G.; Koltunowicz, T.; Negenborn, R.R.; Papp, Z.; Djairam, D.; Schutter, B.D. de; Smit, J.J.

    2009-01-01

    In this paper, a model-predictive control based framework is proposed for modeling and optimization of the health state of power system equipment. In the framework, a predictive health model is proposed that predicts the health state of the equipment based on its usage and maintenance actions. Based

  7. Model Predictive Control for Smart Energy Systems

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus

    pumps, heat tanks, electrical vehicle battery charging/discharging, wind farms, power plants). 2.Embed forecasting methodologies for the weather (e.g. temperature, solar radiation), the electricity consumption, and the electricity price in a predictive control system. 3.Develop optimization algorithms....... Chapter 3 introduces Model Predictive Control (MPC) including state estimation, filtering and prediction for linear models. Chapter 4 simulates the models from Chapter 2 with the certainty equivalent MPC from Chapter 3. An economic MPC minimizes the costs of consumption based on real electricity prices...... that determined the flexibility of the units. A predictive control system easily handles constraints, e.g. limitations in power consumption, and predicts the future behavior of a unit by integrating predictions of electricity prices, consumption, and weather variables. The simulations demonstrate the expected...

  8. Predictive Duty Cycle Control of Three-Phase Active-Front-End Rectifiers

    DEFF Research Database (Denmark)

    Song, Zhanfeng; Tian, Yanjun; Chen, Wei

    2016-01-01

    This paper proposed an on-line optimizing duty cycle control approach for three-phase active-front-end rectifiers, aiming to obtain the optimal control actions under different operating conditions. Similar to finite control set model predictive control strategy, a cost function previously...

  9. Optimization and control of a continuous polymerization reactor

    Directory of Open Access Journals (Sweden)

    L. A. Alvarez

    2012-12-01

    Full Text Available This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO, the Model Predictive Control (MPC and a Target Calculation (TC that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.

  10. When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing.

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Yeo

    2016-12-01

    Full Text Available Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.

  11. When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing.

    Science.gov (United States)

    Yeo, Sang-Hoon; Franklin, David W; Wolpert, Daniel M

    2016-12-01

    Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.

  12. Model predictive control classical, robust and stochastic

    CERN Document Server

    Kouvaritakis, Basil

    2016-01-01

    For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplic...

  13. A Combined Cooperative Braking Model with a Predictive Control Strategy in an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Hongqiang Guo

    2013-12-01

    Full Text Available Cooperative braking with regenerative braking and mechanical braking plays an important role in electric vehicles for energy-saving control. Based on the parallel and the series cooperative braking models, a combined model with a predictive control strategy to get a better cooperative braking performance is presented. The balance problem between the maximum regenerative energy recovery efficiency and the optimum braking stability is solved through an off-line process optimization stream with the collaborative optimization algorithm (CO. To carry out the process optimization stream, the optimal Latin hypercube design (Opt LHD is presented to discrete the continuous design space. To solve the poor real-time problem of the optimization, a high-precision predictive model based on the off-line optimization data of the combined model is built, and a predictive control strategy is proposed and verified through simulation. The simulation results demonstrate that the predictive control strategy and the combined model are reasonable and effective.

  14. Hybrid robust predictive optimization method of power system dispatch

    Science.gov (United States)

    Chandra, Ramu Sharat [Niskayuna, NY; Liu, Yan [Ballston Lake, NY; Bose, Sumit [Niskayuna, NY; de Bedout, Juan Manuel [West Glenville, NY

    2011-08-02

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  15. Predictive control and identification: Applications to steering dynamics

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    1996-01-01

    and of the loss function, which defines the optimality of the control. Some guidelines on how to choose the design parameters, depending on the type of process to be controlled and on the required control performance, are presented. A predictive track keeping system for a Mariner Class Vessel is formulated based...... the under- standing of the connection between identification and control, analysed in Chapter 7. Chapter 7 focuses on how to make the on-line identification for predictive control more robust towards unmodelled dynamics. The theory is verified via simulation studies on a Mariner Class Vessel. The effects...... and the need of a prefilter in the estimation are analysed and illustrated. Based on the idea that the control criterion must be dual to the estimation criterion, an iterative optimal prefilter is designed. This seems to be an appealing way to tune the model towards the objective for which the model...

  16. A Building Model Framework for a Genetic Algorithm Multi-objective Model Predictive Control

    DEFF Research Database (Denmark)

    Arendt, Krzysztof; Ionesi, Ana; Jradi, Muhyiddine

    2016-01-01

    Model Predictive Control (MPC) of building systems is a promising approach to optimize building energy performance. In contrast to traditional control strategies which are reactive in nature, MPC optimizes the utilization of resources based on the predicted effects. It has been shown that energy ...

  17. Quantized Predictive Control over Erasure Channels

    DEFF Research Database (Denmark)

    E. Quevedo, Daniel; Østergaard, Jan

    2009-01-01

    .i.d. dropouts, the controller transmits data packets containing quantized plant input predictions. These minimize a finite horizon cost function and are provided by an appropriate optimal entropy coded dithered lattice vector quantizer. Within this context, we derive an equivalent noise-shaping model...

  18. Model Predictive Control of Mineral Column Flotation Process

    Directory of Open Access Journals (Sweden)

    Yahui Tian

    2018-06-01

    Full Text Available Column flotation is an efficient method commonly used in the mineral industry to separate useful minerals from ores of low grade and complex mineral composition. Its main purpose is to achieve maximum recovery while ensuring desired product grade. This work addresses a model predictive control design for a mineral column flotation process modeled by a set of nonlinear coupled heterodirectional hyperbolic partial differential equations (PDEs and ordinary differential equations (ODEs, which accounts for the interconnection of well-stirred regions represented by continuous stirred tank reactors (CSTRs and transport systems given by heterodirectional hyperbolic PDEs, with these two regions combined through the PDEs’ boundaries. The model predictive control considers both optimality of the process operations and naturally present input and state/output constraints. For the discrete controller design, spatially varying steady-state profiles are obtained by linearizing the coupled ODE–PDE model, and then the discrete system is obtained by using the Cayley–Tustin time discretization transformation without any spatial discretization and/or without model reduction. The model predictive controller is designed by solving an optimization problem with input and state/output constraints as well as input disturbance to minimize the objective function, which leads to an online-solvable finite constrained quadratic regulator problem. Finally, the controller performance to keep the output at the steady state within the constraint range is demonstrated by simulation studies, and it is concluded that the optimal control scheme presented in this work makes this flotation process more efficient.

  19. An Iterative Approach for Distributed Model Predictive Control of Irrigation Canals

    NARCIS (Netherlands)

    Doan, D.; Keviczky, T.; Negenborn, R.R.; De Schutter, B.

    2009-01-01

    Optimization techniques have played a fundamental role in designing automatic control systems for the most part of the past half century. This dependence is ever more obvious in today’s wide-spread use of online optimization-based control methods, such as Model Predictive Control (MPC) [1]. The

  20. Two stage neural network modelling for robust model predictive control.

    Science.gov (United States)

    Patan, Krzysztof

    2018-01-01

    The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Distributed Model Predictive Control for Smart Energy Systems

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus Fogtmann; Vandenberghe, Lieven; Poulsen, Niels Kjølstad

    2016-01-01

    Integration of a large number of flexible consumers in a smart grid requires a scalable power balancing strategy. We formulate the control problem as an optimization problem to be solved repeatedly by the aggregator in a model predictive control framework. To solve the large-scale control problem...

  2. Modeling, robust and distributed model predictive control for freeway networks

    NARCIS (Netherlands)

    Liu, S.

    2016-01-01

    In Model Predictive Control (MPC) for traffic networks, traffic models are crucial since they are used as prediction models for determining the optimal control actions. In order to reduce the computational complexity of MPC for traffic networks, macroscopic traffic models are often used instead of

  3. Desiccant wheel thermal performance modeling for indoor humidity optimal control

    International Nuclear Information System (INIS)

    Wang, Nan; Zhang, Jiangfeng; Xia, Xiaohua

    2013-01-01

    Highlights: • An optimal humidity control model is formulated to control the indoor humidity. • MPC strategy is used to implement the optimal operation solution. • Practical applications of the MPC strategy is illustrated by the case study. - Abstract: Thermal comfort is an important concern in the energy efficiency improvement of commercial buildings. Thermal comfort research focuses mostly on temperature control, but humidity control is an important aspect to maintain indoor comfort too. In this paper, an optimal humidity control model (OHCM) is presented. Model predictive control (MPC) strategy is applied to implement the optimal operation of the desiccant wheel during working hours of a commercial building. The OHCM is revised to apply the MPC strategy. A case is studied to illustrate the practical applications of the MPC strategy

  4. Induced optimism as mental rehearsal to decrease depressive predictive certainty.

    Science.gov (United States)

    Miranda, Regina; Weierich, Mariann; Khait, Valerie; Jurska, Justyna; Andersen, Susan M

    2017-03-01

    The present study examined whether practice in making optimistic future-event predictions would result in change in the hopelessness-related cognitions that characterize depression. Individuals (N = 170) with low, mild, and moderate-to-severe depressive symptoms were randomly assigned to a condition in which they practiced making optimistic future-event predictions or to a control condition in which they viewed the same stimuli but practiced determining whether a given phrase contained an adjective. Overall, individuals in the induced optimism condition showed increases in optimistic predictions, relative to the control condition, as a result of practice, but only individuals with moderate-to-severe symptoms of depression who practiced making optimistic future-event predictions showed decreases in depressive predictive certainty, relative to the control condition. In addition, they showed gains in efficiency in making optimistic predictions over the practice blocks, as assessed by response time. There was no difference in depressed mood by practice condition. Mental rehearsal might be one way of changing the hopelessness-related cognitions that characterize depression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.

    2016-01-01

    Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm ...... controller is shown very reliable keeping the comfort levels in the two considered seasons and shifting the load away from peak hours in order to achieve the desired flexible electricity consumption.......Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...

  6. Multiple model predictive control for optimal drug administration of mixed immunotherapy and chemotherapy of tumours.

    Science.gov (United States)

    Sharifi, N; Ozgoli, S; Ramezani, A

    2017-06-01

    Mixed immunotherapy and chemotherapy of tumours is one of the most efficient ways to improve cancer treatment strategies. However, it is important to 'design' an effective treatment programme which can optimize the ways of combining immunotherapy and chemotherapy to diminish their imminent side effects. Control engineering techniques could be used for this. The method of multiple model predictive controller (MMPC) is applied to the modified Stepanova model to induce the best combination of drugs scheduling under a better health criteria profile. The proposed MMPC is a feedback scheme that can perform global optimization for both tumour volume and immune competent cell density by performing multiple constraints. Although current studies usually assume that immunotherapy has no side effect, this paper presents a new method of mixed drug administration by employing MMPC, which implements several constraints for chemotherapy and immunotherapy by considering both drug toxicity and autoimmune. With designed controller we need maximum 57% and 28% of full dosage of drugs for chemotherapy and immunotherapy in some instances, respectively. Therefore, through the proposed controller less dosage of drugs are needed, which contribute to suitable results with a perceptible reduction in medicine side effects. It is observed that in the presence of MMPC, the amount of required drugs is minimized, while the tumour volume is reduced. The efficiency of the presented method has been illustrated through simulations, as the system from an initial condition in the malignant region of the state space (macroscopic tumour volume) transfers into the benign region (microscopic tumour volume) in which the immune system can control tumour growth. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Direct Speed Control of PMSM Drive Using SDRE and Convex Constrained Optimization

    Czech Academy of Sciences Publication Activity Database

    Šmídl, V.; Janouš, Š.; Adam, Lukáš; Peroutka, Z.

    2018-01-01

    Roč. 65, č. 1 (2018), s. 532-542 ISSN 1932-4529 Grant - others:GA MŠk(CZ) LO1607 Institutional support: RVO:67985556 Keywords : Velocity control * Optimization * Stators * Voltage control * Predictive control * Optimal control * Rotors Subject RIV: BD - Theory of Information Impact factor: 10.710, year: 2016 http://library.utia.cas.cz/separaty/2017/AS/smidl-0481225.pdf

  8. Neural Network Predictive Control for Vanadium Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Hai-Feng Shen

    2013-01-01

    Full Text Available The vanadium redox flow battery (VRB is a nonlinear system with unknown dynamics and disturbances. The flowrate of the electrolyte is an important control mechanism in the operation of a VRB system. Too low or too high flowrate is unfavorable for the safety and performance of VRB. This paper presents a neural network predictive control scheme to enhance the overall performance of the battery. A radial basis function (RBF network is employed to approximate the dynamics of the VRB system. The genetic algorithm (GA is used to obtain the optimum initial values of the RBF network parameters. The gradient descent algorithm is used to optimize the objective function of the predictive controller. Compared with the constant flowrate, the simulation results show that the flowrate optimized by neural network predictive controller can increase the power delivered by the battery during the discharge and decrease the power consumed during the charge.

  9. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen N.; Sichani, Mahdi T.; Mirzaei, Mahmood

    2014-01-01

    by forcing this condition. In the paper the theoretical framework for this principal is shown. The optimal controller requires information of the sea state for infinite horizon which is not applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this requirement....... This approach is then taken into account and an MPC controller is designed for a model wave energy converter and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....

  10. Model Predictive Control of Buoy Type Wave Energy Converter

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Sichani, Mahdi Teimouri; Mirzaei, Mahmood

    2014-01-01

    by forcing this condition. In the paper the theoretical framework for this principal is shown. The optimal controller requires information of the sea state for infinite horizon which is not applicable. Model Predictive Controllers (MPC) can have finite horizon which crosses out this requirement....... This approach is then taken into account and an MPC controller is designed for a model WEC and implemented on a numerical example. Further, the power outtake of this controller is compared to the optimal controller as an indicator of the performance of the designed controller....

  11. Stability of a neural predictive controller scheme on a neural model

    DEFF Research Database (Denmark)

    Luther, Jim Benjamin; Sørensen, Paul Haase

    2009-01-01

    In previous works presenting various forms of neural-network-based predictive controllers, the main emphasis has been on the implementation aspects, i.e. the development of a robust optimization algorithm for the controller, which will be able to perform in real time. However, the stability issue....... The resulting controller is tested on a nonlinear pneumatic servo system.......In previous works presenting various forms of neural-network-based predictive controllers, the main emphasis has been on the implementation aspects, i.e. the development of a robust optimization algorithm for the controller, which will be able to perform in real time. However, the stability issue...... has not been addressed specifically for these controllers. On the other hand a number of results concerning the stability of receding horizon controllers on a nonlinear system exist. In this paper we present a proof of stability for a predictive controller controlling a neural network model...

  12. A dynamic feedforward neural network based on gaussian particle swarm optimization and its application for predictive control.

    Science.gov (United States)

    Han, Min; Fan, Jianchao; Wang, Jun

    2011-09-01

    A dynamic feedforward neural network (DFNN) is proposed for predictive control, whose adaptive parameters are adjusted by using Gaussian particle swarm optimization (GPSO) in the training process. Adaptive time-delay operators are added in the DFNN to improve its generalization for poorly known nonlinear dynamic systems with long time delays. Furthermore, GPSO adopts a chaotic map with Gaussian function to balance the exploration and exploitation capabilities of particles, which improves the computational efficiency without compromising the performance of the DFNN. The stability of the particle dynamics is analyzed, based on the robust stability theory, without any restrictive assumption. A stability condition for the GPSO+DFNN model is derived, which ensures a satisfactory global search and quick convergence, without the need for gradients. The particle velocity ranges could change adaptively during the optimization process. The results of a comparative study show that the performance of the proposed algorithm can compete with selected algorithms on benchmark problems. Additional simulation results demonstrate the effectiveness and accuracy of the proposed combination algorithm in identifying and controlling nonlinear systems with long time delays.

  13. Coordinated control of active and reactive power of distribution network with distributed PV cluster via model predictive control

    Science.gov (United States)

    Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng

    2018-02-01

    A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method

  14. REALIGNED MODEL PREDICTIVE CONTROL OF A PROPYLENE DISTILLATION COLUMN

    Directory of Open Access Journals (Sweden)

    A. I. Hinojosa

    Full Text Available Abstract In the process industry, advanced controllers usually aim at an economic objective, which usually requires closed-loop stability and constraints satisfaction. In this paper, the application of a MPC in the optimization structure of an industrial Propylene/Propane (PP splitter is tested with a controller based on a state space model, which is suitable for heavily disturbed environments. The simulation platform is based on the integration of the commercial dynamic simulator Dynsim® and the rigorous steady-state optimizer ROMeo® with the real-time facilities of Matlab. The predictive controller is the Infinite Horizon Model Predictive Control (IHMPC, based on a state-space model that that does not require the use of a state observer because the non-minimum state is built with the past inputs and outputs. The controller considers the existence of zone control of the outputs and optimizing targets for the inputs. We verify that the controller is efficient to control the propylene distillation system in a disturbed scenario when compared with a conventional controller based on a state observer. The simulation results show a good performance in terms of stability of the controller and rejection of large disturbances in the composition of the feed of the propylene distillation column.

  15. Sparsely-Packetized Predictive Control by Orthogonal Matching Pursuit

    DEFF Research Database (Denmark)

    Nagahara, Masaaki; Quevedo, Daniel; Østergaard, Jan

    2012-01-01

    We study packetized predictive control, known to be robust against packet dropouts in networked systems. To obtain sparse packets for rate-limited networks, we design control packets via an ℓ0 optimization, which can be eectively solved by orthogonal matching pursuit. Our formulation ensures...

  16. Optimization of boiling water reactor control rod patterns using linear search

    International Nuclear Information System (INIS)

    Kiguchi, T.; Doi, K.; Fikuzaki, T.; Frogner, B.; Lin, C.; Long, A.B.

    1984-01-01

    A computer program for searching the optimal control rod pattern has been developed. The program is able to find a control rod pattern where the resulting power distribution is optimal in the sense that it is the closest to the desired power distribution, and it satisfies all operational constraints. The search procedure consists of iterative uses of two steps: sensitivity analyses of local power and thermal margins using a three-dimensional reactor simulator for a simplified prediction model; linear search for the optimal control rod pattern with the simplified model. The optimal control rod pattern is found along the direction where the performance index gradient is the steepest. This program has been verified to find the optimal control rod pattern through simulations using operational data from the Oyster Creek Reactor

  17. Generalized predictive control in the delta-domain

    DEFF Research Database (Denmark)

    Lauritsen, Morten Bach; Jensen, Morten Rostgaard; Poulsen, Niels Kjølstad

    1995-01-01

    This paper describes new approaches to generalized predictive control formulated in the delta (δ) domain. A new δ-domain version of the continuous-time emulator-based predictor is presented. It produces the optimal estimate in the deterministic case whenever the predictor order is chosen greater...... than or equal to the number of future predicted samples, however a “good” estimate is usually obtained in a much longer range of samples. This is particularly advantageous at fast sampling rates where a “conventional” predictor is bound to become very computationally demanding. Two controllers...

  18. Analysis of explicit model predictive control for path-following control.

    Science.gov (United States)

    Lee, Junho; Chang, Hyuk-Jun

    2018-01-01

    In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration.

  19. Analysis of explicit model predictive control for path-following control

    Science.gov (United States)

    2018-01-01

    In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keeping systems. MPC has been regarded as the key to handle such constrained systems. However, the massive computational complexity of MPC, which employs online optimization, has been a major drawback that limits the range of its target application to relatively small and/or slow problems. Explicit MPC can reduce this computational burden using a multi-parametric quadratic programming technique(mp-QP). The control objective is to derive an optimal front steering wheel angle at each sampling time so that autonomous vehicles travel along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In terms of the design of the proposed controller, a method of choosing weighting matrices in an optimization problem and the range of horizons for path-following control are described through simulations. For the verification of the proposed controller, simulation results obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and driver model are employed, and CarSim, which reflects the features of a vehicle more realistically than MATLAB/Simulink, is used for reliable demonstration. PMID:29534080

  20. Simulation, optimization and control of a thermal cracking furnace

    International Nuclear Information System (INIS)

    Masoumi, M.E.; Sadrameli, S.M.; Towfighi, J.; Niaei, A.

    2006-01-01

    The ethylene production process is one of the most important aspect of a petrochemical plant and the cracking furnace is the heart of the process. Since, ethylene is one of the raw materials in the chemical industry and the market situation of not only the feed and the product, but also the utility is rapidly changing, the optimal operation and control of the plant is important. A mathematical model, which describes the static and dynamic operations of a pilot plant furnace, was developed. The static simulation was used to predict the steady-state profiles of temperature, pressure and products yield. The dynamic simulation of the process was used to predict the transient behavior of thermal cracking reactor. Using a dynamic programming technique, an optimal temperature profile was developed along the reactor. Performances of temperature control loop were tested for different controller parameters and disturbances. The results of the simulation were tested experimentally in a computer control pilot plant

  1. Nonlinear Model Predictive Control for Cooperative Control and Estimation

    Science.gov (United States)

    Ru, Pengkai

    Recent advances in computational power have made it possible to do expensive online computations for control systems. It is becoming more realistic to perform computationally intensive optimization schemes online on systems that are not intrinsically stable and/or have very small time constants. Being one of the most important optimization based control approaches, model predictive control (MPC) has attracted a lot of interest from the research community due to its natural ability to incorporate constraints into its control formulation. Linear MPC has been well researched and its stability can be guaranteed in the majority of its application scenarios. However, one issue that still remains with linear MPC is that it completely ignores the system's inherent nonlinearities thus giving a sub-optimal solution. On the other hand, if achievable, nonlinear MPC, would naturally yield a globally optimal solution and take into account all the innate nonlinear characteristics. While an exact solution to a nonlinear MPC problem remains extremely computationally intensive, if not impossible, one might wonder if there is a middle ground between the two. We tried to strike a balance in this dissertation by employing a state representation technique, namely, the state dependent coefficient (SDC) representation. This new technique would render an improved performance in terms of optimality compared to linear MPC while still keeping the problem tractable. In fact, the computational power required is bounded only by a constant factor of the completely linearized MPC. The purpose of this research is to provide a theoretical framework for the design of a specific kind of nonlinear MPC controller and its extension into a general cooperative scheme. The controller is designed and implemented on quadcopter systems.

  2. Price-based Optimal Control of Electrical Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jokic, A.

    2007-09-10

    The research presented in this thesis is motivated by the following issue of concern for the operation of future power systems: Future power systems will be characterized by significantly increased uncertainties at all time scales and, consequently, their behavior in time will be difficult to predict. In Chapter 2 we will present a novel explicit, dynamic, distributed feedback control scheme that utilizes nodal-prices for real-time optimal power balance and network congestion control. The term explicit means that the controller is not based on solving an optimization problem on-line. Instead, the nodal prices updates are based on simple, explicitly defined and easily comprehensible rules. We prove that the developed control scheme, which acts on the measurements from the current state of the system, always provide the correct nodal prices. In Chapter 3 we will develop a novel, robust, hybrid MPC control (model predictive controller) scheme for power balance control with hard constraints on line power flows and network frequency deviations. The developed MPC controller acts in parallel with the explicit controller from Chapter 2, and its task is to enforce the constraints during the transient periods following suddenly occurring power imbalances in the system. In Chapter 4 the concept of autonomous power networks will be presented as a concise formulation to deal with economic, technical and reliability issues in power systems with a large penetration of distributed generating units. With autonomous power networks as new market entities, we propose a novel operational structure of ancillary service markets. In Chapter 5 we will consider the problem of controlling a general linear time-invariant dynamical system to an economically optimal operating point, which is defined by a multiparametric constrained convex optimization problem related with the steady-state operation of the system. The parameters in the optimization problem are values of the exogenous inputs to

  3. Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts.

    Directory of Open Access Journals (Sweden)

    J Lucas McKay

    Full Text Available Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3 across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2× compared to individual muscle control. Our results are consistent with the idea that hierarchical, task

  4. Oil Reservoir Production Optimization using Optimal Control

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan

    2011-01-01

    Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%.......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...

  5. Model predictive and reallocation problem for CubeSat fault recovery and attitude control

    Science.gov (United States)

    Franchi, Loris; Feruglio, Lorenzo; Mozzillo, Raffaele; Corpino, Sabrina

    2018-01-01

    In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the computational capabilities of on-board processing, expensive computing algorithms, such as Model Predictive Control, have begun to spread in space applications even on small on-board processor. The paper presents an algorithm for an optimal fault recovery of a 3U CubeSat, developed in MathWorks Matlab & Simulink environment. This algorithm involves optimization techniques aiming at obtaining the optimal recovery solution, and involves a Model Predictive Control approach for the attitude control. The simulated system is a CubeSat in Low Earth Orbit: the attitude control is performed with three magnetic torquers and a single reaction wheel. The simulation neglects the errors in the attitude determination of the satellite, and focuses on the recovery approach and control method. The optimal recovery approach takes advantage of the properties of magnetic actuation, which gives the possibility of the redistribution of the control action when a fault occurs on a single magnetic torquer, even in absence of redundant actuators. In addition, the paper presents the results of the implementation of Model Predictive approach to control the attitude of the satellite.

  6. Implementation of optimal trajectory control of series resonant converter

    Science.gov (United States)

    Oruganti, Ramesh; Yang, James J.; Lee, Fred C.

    1987-01-01

    Due to the presence of a high-frequency LC tank circuit, the dynamics of a resonant converter are unpredictable. There is often a large surge of tank energy during transients. Using state-plane analysis technique, an optimal trajectory control utilizing the desired solution trajectory as the control law was previously proposed for the series resonant converters. The method predicts the fastest response possible with minimum energy surge in the resonant tank. The principle of the control and its experimental implementation are described here. The dynamics of the converter are shown to be close to time-optimal.

  7. One-Step-Ahead Predictive Control for Hydroturbine Governor

    Directory of Open Access Journals (Sweden)

    Zhihuai Xiao

    2015-01-01

    Full Text Available The hydroturbine generator regulating system can be considered as one system synthetically integrating water, machine, and electricity. It is a complex and nonlinear system, and its configuration and parameters are time-dependent. A one-step-ahead predictive control based on on-line trained neural networks (NNs for hydroturbine governor with variation in gate position is described in this paper. The proposed control algorithm consists of a one-step-ahead neuropredictor that tracks the dynamic characteristics of the plant and predicts its output and a neurocontroller to generate the optimal control signal. The weights of two NNs, initially trained off-line, are updated on-line according to the scalar error. The proposed controller can thus track operating conditions in real-time and produce the optimal control signal over the wide operating range. Only the inputs and outputs of the generator are measured and there is no need to determine the other states of the generator. Simulations have been performed with varying operating conditions and different disturbances to compare the performance of the proposed controller with that of a conventional PID controller and validate the feasibility of the proposed approach.

  8. Economic Model Predictive Control for Spray Drying Plants

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert

    and a complexity reduced control model is used for state estimation and prediction in the controllers. These models facilitate development and comparison of control strategies. We develop two MPC strategies; a linear tracking MPC with a Real-Time Optimization layer (MPC with RTO) and an Economic Nonlinear MPC (E...... horizon, out of which only the first input is applied to the dryer. This procedure is repeated at each sample instant and is solved numerically in real-time. The MPC with RTO tracks a target that optimizes the cost of operation at steady-state. The E-MPC optimizes the cost of operation directly by having...... this objective directly in the controller. The need for the RTO layer is then eliminated. We demonstrate the application of the proposed MPC with RTO to control an industrial GEA MSDTM-1250 spray dryer, which produces approximately 7500 kg/hr of enriched milk powder. Compared to the conventional PI controller...

  9. Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.

    Science.gov (United States)

    Lee, Leng-Feng; Umberger, Brian R

    2016-01-01

    Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1-2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This

  10. Adaptive adjustment of interval predictive control based on combined model and application in shell brand petroleum distillation tower

    Science.gov (United States)

    Sun, Chao; Zhang, Chunran; Gu, Xinfeng; Liu, Bin

    2017-10-01

    Constraints of the optimization objective are often unable to be met when predictive control is applied to industrial production process. Then, online predictive controller will not find a feasible solution or a global optimal solution. To solve this problem, based on Back Propagation-Auto Regressive with exogenous inputs (BP-ARX) combined control model, nonlinear programming method is used to discuss the feasibility of constrained predictive control, feasibility decision theorem of the optimization objective is proposed, and the solution method of soft constraint slack variables is given when the optimization objective is not feasible. Based on this, for the interval control requirements of the controlled variables, the slack variables that have been solved are introduced, the adaptive weighted interval predictive control algorithm is proposed, achieving adaptive regulation of the optimization objective and automatically adjust of the infeasible interval range, expanding the scope of the feasible region, and ensuring the feasibility of the interval optimization objective. Finally, feasibility and effectiveness of the algorithm is validated through the simulation comparative experiments.

  11. Model Predictive Control for Load Frequency Control with Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2015-01-01

    Full Text Available Reliable load frequency (LFC control is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper presents a distributed model predictive control (DMPC based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The scheme incorporates the two critical nonlinear constraints, for example, the generation rate constraint (GRC and the valve limit, into convex optimization problems. Furthermore, the algorithm reduces the impact on the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and that without the participation of the wind turbines is carried out. Good performance is obtained in the presence of power system nonlinearities due to the governors and turbines constraints and load change disturbances.

  12. Optimal design criteria - prediction vs. parameter estimation

    Science.gov (United States)

    Waldl, Helmut

    2014-05-01

    G-optimality is a popular design criterion for optimal prediction, it tries to minimize the kriging variance over the whole design region. A G-optimal design minimizes the maximum variance of all predicted values. If we use kriging methods for prediction it is self-evident to use the kriging variance as a measure of uncertainty for the estimates. Though the computation of the kriging variance and even more the computation of the empirical kriging variance is computationally very costly and finding the maximum kriging variance in high-dimensional regions can be time demanding such that we cannot really find the G-optimal design with nowadays available computer equipment in practice. We cannot always avoid this problem by using space-filling designs because small designs that minimize the empirical kriging variance are often non-space-filling. D-optimality is the design criterion related to parameter estimation. A D-optimal design maximizes the determinant of the information matrix of the estimates. D-optimality in terms of trend parameter estimation and D-optimality in terms of covariance parameter estimation yield basically different designs. The Pareto frontier of these two competing determinant criteria corresponds with designs that perform well under both criteria. Under certain conditions searching the G-optimal design on the above Pareto frontier yields almost as good results as searching the G-optimal design in the whole design region. In doing so the maximum of the empirical kriging variance has to be computed only a few times though. The method is demonstrated by means of a computer simulation experiment based on data provided by the Belgian institute Management Unit of the North Sea Mathematical Models (MUMM) that describe the evolution of inorganic and organic carbon and nutrients, phytoplankton, bacteria and zooplankton in the Southern Bight of the North Sea.

  13. Prediction models and control algorithms for predictive applications of setback temperature in cooling systems

    International Nuclear Information System (INIS)

    Moon, Jin Woo; Yoon, Younju; Jeon, Young-Hoon; Kim, Sooyoung

    2017-01-01

    Highlights: • Initial ANN model was developed for predicting the time to the setback temperature. • Initial model was optimized for producing accurate output. • Optimized model proved its prediction accuracy. • ANN-based algorithms were developed and tested their performance. • ANN-based algorithms presented superior thermal comfort or energy efficiency. - Abstract: In this study, a temperature control algorithm was developed to apply a setback temperature predictively for the cooling system of a residential building during occupied periods by residents. An artificial neural network (ANN) model was developed to determine the required time for increasing the current indoor temperature to the setback temperature. This study involved three phases: development of the initial ANN-based prediction model, optimization and testing of the initial model, and development and testing of three control algorithms. The development and performance testing of the model and algorithm were conducted using TRNSYS and MATLAB. Through the development and optimization process, the final ANN model employed indoor temperature and the temperature difference between the current and target setback temperature as two input neurons. The optimal number of hidden layers, number of neurons, learning rate, and moment were determined to be 4, 9, 0.6, and 0.9, respectively. The tangent–sigmoid and pure-linear transfer function was used in the hidden and output neurons, respectively. The ANN model used 100 training data sets with sliding-window method for data management. Levenberg-Marquart training method was employed for model training. The optimized model had a prediction accuracy of 0.9097 root mean square errors when compared with the simulated results. Employing the ANN model, ANN-based algorithms maintained indoor temperatures better within target ranges. Compared to the conventional algorithm, the ANN-based algorithms reduced the duration of time, in which the indoor temperature

  14. Exploring quantum control landscapes: Topology, features, and optimization scaling

    International Nuclear Information System (INIS)

    Moore, Katharine W.; Rabitz, Herschel

    2011-01-01

    Quantum optimal control experiments and simulations have successfully manipulated the dynamics of systems ranging from atoms to biomolecules. Surprisingly, these collective works indicate that the effort (i.e., the number of algorithmic iterations) required to find an optimal control field appears to be essentially invariant to the complexity of the system. The present work explores this matter in a series of systematic optimizations of the state-to-state transition probability on model quantum systems with the number of states N ranging from 5 through 100. The optimizations occur over a landscape defined by the transition probability as a function of the control field. Previous theoretical studies on the topology of quantum control landscapes established that they should be free of suboptimal traps under reasonable physical conditions. The simulations in this work include nearly 5000 individual optimization test cases, all of which confirm this prediction by fully achieving optimal population transfer of at least 99.9% on careful attention to numerical procedures to ensure that the controls are free of constraints. Collectively, the simulation results additionally show invariance of required search effort to system dimension N. This behavior is rationalized in terms of the structural features of the underlying control landscape. The very attractive observed scaling with system complexity may be understood by considering the distance traveled on the control landscape during a search and the magnitude of the control landscape slope. Exceptions to this favorable scaling behavior can arise when the initial control field fluence is too large or when the target final state recedes from the initial state as N increases.

  15. Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus

    International Nuclear Information System (INIS)

    Li, Liang; Zhang, Yuanbo; Yang, Chao; Yan, Bingjie; Marina Martinez, C.

    2016-01-01

    Highlights: • A 7-degree-of-freedom model of hybrid electric vehicle with regenerative braking system is built. • A modified nonlinear model predictive control strategy is developed. • The particle swarm optimization algorithm is employed to solve the optimization problem. • The proposed control strategy is verified by simulation and hardware-in-loop tests. • Test results verify the effectiveness of the proposed control strategy. - Abstract: As one of the main working modes, the energy recovered with regenerative braking system provides an effective approach so as to greatly improve fuel economy of hybrid electric bus. However, it is still a challenging issue to ensure braking stability while maximizing braking energy recovery. To solve this problem, an efficient energy recovery control strategy is proposed based on the modified nonlinear model predictive control method. Firstly, combined with the characteristics of the compound braking process of single-shaft parallel hybrid electric bus, a 7 degrees of freedom model of the vehicle longitudinal dynamics is built. Secondly, considering nonlinear characteristic of the vehicle model and the efficiency of regenerative braking system, the particle swarm optimization algorithm within the modified nonlinear model predictive control is adopted to optimize the torque distribution between regenerative braking system and pneumatic braking system at the wheels. So as to reduce the computational time of modified nonlinear model predictive control, a nearest point method is employed during the braking process. Finally, the simulation and hardware-in-loop test are carried out on road conditions with different tire–road adhesion coefficients, and the proposed control strategy is verified by comparing it with the conventional control method employed in the baseline vehicle controller. The simulation and hardware-in-loop test results show that the proposed strategy can ensure vehicle safety during emergency braking

  16. Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty.

    Directory of Open Access Journals (Sweden)

    Arne J Nagengast

    2010-07-01

    Full Text Available Many aspects of human motor behavior can be understood using optimality principles such as optimal feedback control. However, these proposed optimal control models are risk-neutral; that is, they are indifferent to the variability of the movement cost. Here, we propose the use of a risk-sensitive optimal controller that incorporates movement cost variance either as an added cost (risk-averse controller or as an added value (risk-seeking controller to model human motor behavior in the face of uncertainty. We use a sensorimotor task to test the hypothesis that subjects are risk-sensitive. Subjects controlled a virtual ball undergoing Brownian motion towards a target. Subjects were required to minimize an explicit cost, in points, that was a combination of the final positional error of the ball and the integrated control cost. By testing subjects on different levels of Brownian motion noise and relative weighting of the position and control cost, we could distinguish between risk-sensitive and risk-neutral control. We show that subjects change their movement strategy pessimistically in the face of increased uncertainty in accord with the predictions of a risk-averse optimal controller. Our results suggest that risk-sensitivity is a fundamental attribute that needs to be incorporated into optimal feedback control models.

  17. Optimal parameters of the SVM for temperature prediction

    Directory of Open Access Journals (Sweden)

    X. Shi

    2015-05-01

    Full Text Available This paper established three different optimization models in order to predict the Foping station temperature value. The dimension was reduced to change multivariate climate factors into a few variables by principal component analysis (PCA. And the parameters of support vector machine (SVM were optimized with genetic algorithm (GA, particle swarm optimization (PSO and developed genetic algorithm. The most suitable method was applied for parameter optimization by comparing the results of three different models. The results are as follows: The developed genetic algorithm optimization parameters of the predicted values were closest to the measured value after the analog trend, and it is the most fitting measured value trends, and its homing speed is relatively fast.

  18. Optimal control for chemical engineers

    CERN Document Server

    Upreti, Simant Ranjan

    2013-01-01

    Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle.The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, de

  19. Optimal control of transitions between nonequilibrium steady states.

    Directory of Open Access Journals (Sweden)

    Patrick R Zulkowski

    Full Text Available Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines.

  20. Predictive control strategies for energy saving of hybrid electric vehicles based on traffic light information

    Directory of Open Access Journals (Sweden)

    Kaijiang YU

    2015-10-01

    Full Text Available As the conventional control method for hybrid electric vehicle doesn’t consider the effect of known traffic light information on the vehicle energy management, this paper proposes a model predictive control intelligent optimization strategies based on traffic light information for hybrid electric vehicles. By building the simplified model of the hybrid electric vehicle and adopting the continuation/generalized minimum residual method, the model prediction problem is solved. The simulation is conducted by using MATLAB/Simulink platform. The simulation results show the effectiveness of the proposed model of the traffic light information, and that the proposed model predictive control method can improve fuel economy and the real-time control performance significantly. The research conclusions show that the proposed control strategy can achieve optimal control of the vehicle trajectory, significantly improving fuel economy of the vehicle, and meet the system requirements for the real-time optimal control.

  1. Real Time Optimal Control of Supercapacitor Operation for Frequency Response

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yusheng; Panwar, Mayank; Mohanpurkar, Manish; Hovsapian, Rob

    2016-07-01

    Supercapacitors are gaining wider applications in power systems due to fast dynamic response. Utilizing supercapacitors by means of power electronics interfaces for power compensation is a proven effective technique. For applications such as requency restoration if the cost of supercapacitors maintenance as well as the energy loss on the power electronics interfaces are addressed. It is infeasible to use traditional optimization control methods to mitigate the impacts of frequent cycling. This paper proposes a Front End Controller (FEC) using Generalized Predictive Control featuring real time receding optimization. The optimization constraints are based on cost and thermal management to enhance to the utilization efficiency of supercapacitors. A rigorous mathematical derivation is conducted and test results acquired from Digital Real Time Simulator are provided to demonstrate effectiveness.

  2. Dynamics and control of quadcopter using linear model predictive control approach

    Science.gov (United States)

    Islam, M.; Okasha, M.; Idres, M. M.

    2017-12-01

    This paper investigates the dynamics and control of a quadcopter using the Model Predictive Control (MPC) approach. The dynamic model is of high fidelity and nonlinear, with six degrees of freedom that include disturbances and model uncertainties. The control approach is developed based on MPC to track different reference trajectories ranging from simple ones such as circular to complex helical trajectories. In this control technique, a linearized model is derived and the receding horizon method is applied to generate the optimal control sequence. Although MPC is computer expensive, it is highly effective to deal with the different types of nonlinearities and constraints such as actuators’ saturation and model uncertainties. The MPC parameters (control and prediction horizons) are selected by trial-and-error approach. Several simulation scenarios are performed to examine and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. Simulation results show that this control approach is highly effective to track a given reference trajectory.

  3. Using Chemicals to Optimize Conformance Control in Fractured Reservoirs; TOPICAL

    International Nuclear Information System (INIS)

    Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Ananad; Wavrik, Kathryn

    2001-01-01

    This report describes work performed during the third and final year of the project, Using Chemicals to Optimize Conformance Control in Fractured Reservoirs. This research project had three objectives. The first objective was to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective was to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective was to develop procedures to optimize blocking agent placement in naturally fractured reservoirs

  4. Distributed Model Predictive Control for Active Power Control of Wind Farm

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Rasmussen, Claus Nygaard

    2014-01-01

    This paper presents the active power control of a wind farm using the Distributed Model Predictive Controller (D- MPC) via dual decomposition. Different from the conventional centralized wind farm control, multiple objectives such as power reference tracking performance and wind turbine load can...... be considered to achieve a trade-off between them. Additionally, D- MPC is based on communication among the subsystems. Through the interaction among the neighboring subsystems, the global optimization could be achieved, which significantly reduces the computation burden. It is suitable for the modern large......-scale wind farm control....

  5. Optimal model-free prediction from multivariate time series

    Science.gov (United States)

    Runge, Jakob; Donner, Reik V.; Kurths, Jürgen

    2015-05-01

    Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited their application mostly to the univariate case. Therefore, selection strategies are needed that harness the available information as efficiently as possible. Since often the right combination of predictors matters, ideally all subsets of possible predictors should be tested for their predictive power, but the exponentially growing number of combinations makes such an approach computationally prohibitive. Here a prediction scheme that overcomes this strong limitation is introduced utilizing a causal preselection step which drastically reduces the number of possible predictors to the most predictive set of causal drivers making a globally optimal search scheme tractable. The information-theoretic optimality is derived and practical selection criteria are discussed. As demonstrated for multivariate nonlinear stochastic delay processes, the optimal scheme can even be less computationally expensive than commonly used suboptimal schemes like forward selection. The method suggests a general framework to apply the optimal model-free approach to select variables and subsequently fit a model to further improve a prediction or learn statistical dependencies. The performance of this framework is illustrated on a climatological index of El Niño Southern Oscillation.

  6. Neuro-fuzzy GMDH based particle swarm optimization for prediction of scour depth at downstream of grade control structures

    Directory of Open Access Journals (Sweden)

    Mohammad Najafzadeh

    2015-03-01

    Full Text Available In the present study, neuro-fuzzy based-group method of data handling (NF-GMDH as an adaptive learning network was utilized to predict the maximum scour depth at the downstream of grade-control structures. The NF-GMDH network was developed using particle swarm optimization (PSO. Effective parameters on the scour depth include sediment size, geometry of weir, and flow characteristics in the upstream and downstream of structure. Training and testing of performances were carried out using non-dimensional variables. Datasets were divided into three series of dataset (DS. The testing results of performances were compared with the gene-expression programming (GEP, evolutionary polynomial regression (EPR model, and conventional techniques. The NF-GMDH-PSO network produced lower error of the scour depth prediction than those obtained using the other models. Also, the effective input parameter on the maximum scour depth was determined through a sensitivity analysis.

  7. Chaos Time Series Prediction Based on Membrane Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Meng Li

    2015-01-01

    Full Text Available This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ,m and least squares support vector machine (LS-SVM (γ,σ by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE, root mean square error (RMSE, and mean absolute percentage error (MAPE.

  8. Applied predictive control

    CERN Document Server

    Sunan, Huang; Heng, Lee Tong

    2002-01-01

    The presence of considerable time delays in the dynamics of many industrial processes, leading to difficult problems in the associated closed-loop control systems, is a well-recognized phenomenon. The performance achievable in conventional feedback control systems can be significantly degraded if an industrial process has a relatively large time delay compared with the dominant time constant. Under these circumstances, advanced predictive control is necessary to improve the performance of the control system significantly. The book is a focused treatment of the subject matter, including the fundamentals and some state-of-the-art developments in the field of predictive control. Three main schemes for advanced predictive control are addressed in this book: • Smith Predictive Control; • Generalised Predictive Control; • a form of predictive control based on Finite Spectrum Assignment. A substantial part of the book addresses application issues in predictive control, providing several interesting case studie...

  9. Optimal control

    CERN Document Server

    Aschepkov, Leonid T; Kim, Taekyun; Agarwal, Ravi P

    2016-01-01

    This book is based on lectures from a one-year course at the Far Eastern Federal University (Vladivostok, Russia) as well as on workshops on optimal control offered to students at various mathematical departments at the university level. The main themes of the theory of linear and nonlinear systems are considered, including the basic problem of establishing the necessary and sufficient conditions of optimal processes. In the first part of the course, the theory of linear control systems is constructed on the basis of the separation theorem and the concept of a reachability set. The authors prove the closure of a reachability set in the class of piecewise continuous controls, and the problems of controllability, observability, identification, performance and terminal control are also considered. The second part of the course is devoted to nonlinear control systems. Using the method of variations and the Lagrange multipliers rule of nonlinear problems, the authors prove the Pontryagin maximum principle for prob...

  10. Enhanced Voltage Control of VSC-HVDC Connected Offshore Wind Farms Based on Model Predictive Control

    DEFF Research Database (Denmark)

    Guo, Yifei; Gao, Houlei; Wu, Qiuwei

    2018-01-01

    This paper proposes an enhanced voltage control strategy (EVCS) based on model predictive control (MPC) for voltage source converter based high voltage direct current (VSCHVDC) connected offshore wind farms (OWFs). In the proposed MPC based EVCS, all wind turbine generators (WTGs) as well...... as the wind farm side VSC are optimally coordinated to keep voltages within the feasible range and reduce system power losses. Considering the high ratio of the OWF collector system, the effects of active power outputs of WTGs on voltage control are also taken into consideration. The predictive model of VSC...

  11. Packetized Predictive Control for Rate-Limited Networks via Sparse Representation

    DEFF Research Database (Denmark)

    Nagahara, Masaaki; Quevedo, Daniel; Østergaard, Jan

    2012-01-01

    controller and the plant input. To achieve robustness with respect to dropouts, the controller transmits data packets containing plant input predictions, which minimize a finite horizon cost function. In our formulation, we design sparse packets for rate-limited networks, by adopting an an ℓ0 optimization...

  12. Optimal Control of Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Vadim Azhmyakov

    2007-01-01

    Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.

  13. Energy Coordinative Optimization of Wind-Storage-Load Microgrids Based on Short-Term Prediction

    Directory of Open Access Journals (Sweden)

    Changbin Hu

    2015-02-01

    Full Text Available According to the topological structure of wind-storage-load complementation microgrids, this paper proposes a method for energy coordinative optimization which focuses on improvement of the economic benefits of microgrids in the prediction framework. First of all, the external characteristic mathematical model of distributed generation (DG units including wind turbines and storage batteries are established according to the requirements of the actual constraints. Meanwhile, using the minimum consumption costs from the external grid as the objective function, a grey prediction model with residual modification is introduced to output the predictive wind turbine power and load at specific periods. Second, based on the basic framework of receding horizon optimization, an intelligent genetic algorithm (GA is applied to figure out the optimum solution in the predictive horizon for the complex non-linear coordination control model of microgrids. The optimum results of the GA are compared with the receding solution of mixed integer linear programming (MILP. The obtained results show that the method is a viable approach for energy coordinative optimization of microgrid systems for energy flow and reasonable schedule. The effectiveness and feasibility of the proposed method is verified by examples.

  14. Introduction to optimal control theory

    International Nuclear Information System (INIS)

    Agrachev, A.A.

    2002-01-01

    These are lecture notes of the introductory course in Optimal Control theory treated from the geometric point of view. Optimal Control Problem is reduced to the study of controls (and corresponding trajectories) leading to the boundary of attainable sets. We discuss Pontryagin Maximum Principle, basic existence results, and apply these tools to concrete simple optimal control problems. Special sections are devoted to the general theory of linear time-optimal problems and linear-quadratic problems. (author)

  15. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    International Nuclear Information System (INIS)

    Singh, Harinder J; Wereley, Norman M

    2014-01-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events. (paper)

  16. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    Science.gov (United States)

    Singh, Harinder J.; Wereley, Norman M.

    2014-05-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

  17. Neural-Fuzzy Digital Strategy of Continuous-Time Nonlinear Systems Using Adaptive Prediction and Random-Local-Optimization Design

    Directory of Open Access Journals (Sweden)

    Zhi-Ren Tsai

    2013-01-01

    Full Text Available A tracking problem, time-delay, uncertainty and stability analysis of a predictive control system are considered. The predictive control design is based on the input and output of neural plant model (NPM, and a recursive fuzzy predictive tracker has scaling factors which limit the value zone of measured data and cause the tuned parameters to converge to obtain a robust control performance. To improve the further control performance, the proposed random-local-optimization design (RLO for a model/controller uses offline initialization to obtain a near global optimal model/controller. Other issues are the considerations of modeling error, input-delay, sampling distortion, cost, greater flexibility, and highly reliable digital products of the model-based controller for the continuous-time (CT nonlinear system. They are solved by a recommended two-stage control design with the first-stage (offline RLO and second-stage (online adaptive steps. A theorizing method is then put forward to replace the sensitivity calculation, which reduces the calculation of Jacobin matrices of the back-propagation (BP method. Finally, the feedforward input of reference signals helps the digital fuzzy controller improve the control performance, and the technique works to control the CT systems precisely.

  18. Optimal Control and Optimization of Stochastic Supply Chain Systems

    CERN Document Server

    Song, Dong-Ping

    2013-01-01

    Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject in the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies.                 In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of ...

  19. Model Predictive Control for the acquisition queue and related queueing networks

    NARCIS (Netherlands)

    Leeuwaarden, van J.S.H.; Lefeber, A.A.J.; Nazarathy, J.; Rooda, J.E.

    2010-01-01

    Model Predictive Control (MPC) is a well established method in control theory and engineering practice. It is often the method of choice for systems that need to be controlled in view of constraints. The main idea of MPC is to solve an optimization problem over a given time horizon at each control

  20. Control parameter optimization for AP1000 reactor using Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Wang, Pengfei; Wan, Jiashuang; Luo, Run; Zhao, Fuyu; Wei, Xinyu

    2016-01-01

    Highlights: • The PSO algorithm is applied for control parameter optimization of AP1000 reactor. • Key parameters of the MSHIM control system are optimized. • Optimization results are evaluated though simulations and quantitative analysis. - Abstract: The advanced mechanical shim (MSHIM) core control strategy is implemented in the AP1000 reactor for core reactivity and axial power distribution control simultaneously. The MSHIM core control system can provide superior reactor control capabilities via automatic rod control only. This enables the AP1000 to perform power change operations automatically without the soluble boron concentration adjustments. In this paper, the Particle Swarm Optimization (PSO) algorithm has been applied for the parameter optimization of the MSHIM control system to acquire better reactor control performance for AP1000. System requirements such as power control performance, control bank movement and AO control constraints are reflected in the objective function. Dynamic simulations are performed based on an AP1000 reactor simulation platform in each iteration of the optimization process to calculate the fitness values of particles in the swarm. The simulation platform is developed in Matlab/Simulink environment with implementation of a nodal core model and the MSHIM control strategy. Based on the simulation platform, the typical 10% step load decrease transient from 100% to 90% full power is simulated and the objective function used for control parameter tuning is directly incorporated in the simulation results. With successful implementation of the PSO algorithm in the control parameter optimization of AP1000 reactor, four key parameters of the MSHIM control system are optimized. It has been demonstrated by the calculation results that the optimized MSHIM control system parameters can improve the reactor power control capability and reduce the control rod movement without compromising AO control. Therefore, the PSO based optimization

  1. Tools for Trustworthy Autonomy: Robust Predictions, Intuitive Control, and Optimized Interaction

    OpenAIRE

    Driggs Campbell, Katherine Rose

    2017-01-01

    In the near future, robotics will impact nearly every aspect of life. Yet for technology to smoothly integrate into society, we need interactive systems to be well modeled and predictable; have robust decision making and control; and be trustworthy to improve cooperation and interaction. To achieve these goals, we propose taking a human-centered approach to ease the transition into human-dominated fields. In this work, our modeling methods and control schemes are validated through user stu...

  2. Catalytic cracking models developed for predictive control purposes

    Directory of Open Access Journals (Sweden)

    Dag Ljungqvist

    1993-04-01

    Full Text Available The paper deals with state-space modeling issues in the context of model-predictive control, with application to catalytic cracking. Emphasis is placed on model establishment, verification and online adjustment. Both the Fluid Catalytic Cracking (FCC and the Residual Catalytic Cracking (RCC units are discussed. Catalytic cracking units involve complex interactive processes which are difficult to operate and control in an economically optimal way. The strong nonlinearities of the FCC process mean that the control calculation should be based on a nonlinear model with the relevant constraints included. However, the model can be simple compared to the complexity of the catalytic cracking plant. Model validity is ensured by a robust online model adjustment strategy. Model-predictive control schemes based on linear convolution models have been successfully applied to the supervisory dynamic control of catalytic cracking units, and the control can be further improved by the SSPC scheme.

  3. Nonlinear optimal control theory

    CERN Document Server

    Berkovitz, Leonard David

    2012-01-01

    Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also dis

  4. Neural networks for predictive control of the mechanism of ...

    African Journals Online (AJOL)

    In this paper, we are interested in the study of the control of orientation of a wind turbine like means of optimization of his output/input ratio (efficiency). The approach suggested is based on the neural predictive control which is justified by the randomness of the wind on the one hand, and on the other hand by the capacity of ...

  5. A stochastic optimal feedforward and feedback control methodology for superagility

    Science.gov (United States)

    Halyo, Nesim; Direskeneli, Haldun; Taylor, Deborah B.

    1992-01-01

    A new control design methodology is developed: Stochastic Optimal Feedforward and Feedback Technology (SOFFT). Traditional design techniques optimize a single cost function (which expresses the design objectives) to obtain both the feedforward and feedback control laws. This approach places conflicting demands on the control law such as fast tracking versus noise atttenuation/disturbance rejection. In the SOFFT approach, two cost functions are defined. The feedforward control law is designed to optimize one cost function, the feedback optimizes the other. By separating the design objectives and decoupling the feedforward and feedback design processes, both objectives can be achieved fully. A new measure of command tracking performance, Z-plots, is also developed. By analyzing these plots at off-nominal conditions, the sensitivity or robustness of the system in tracking commands can be predicted. Z-plots provide an important tool for designing robust control systems. The Variable-Gain SOFFT methodology was used to design a flight control system for the F/A-18 aircraft. It is shown that SOFFT can be used to expand the operating regime and provide greater performance (flying/handling qualities) throughout the extended flight regime. This work was performed under the NASA SBIR program. ICS plans to market the software developed as a new module in its commercial CACSD software package: ACET.

  6. Design of a new PID controller using predictive functional control optimization for chamber pressure in a coke furnace.

    Science.gov (United States)

    Zhang, Jianming

    2017-03-01

    An improved proportional-integral-derivative (PID) controller based on predictive functional control (PFC) is proposed and tested on the chamber pressure in an industrial coke furnace. The proposed design is motivated by the fact that PID controllers for industrial processes with time delay may not achieve the desired control performance because of the unavoidable model/plant mismatches, while model predictive control (MPC) is suitable for such situations. In this paper, PID control and PFC algorithm are combined to form a new PID controller that has the basic characteristic of PFC algorithm and at the same time, the simple structure of traditional PID controller. The proposed controller was tested in terms of set-point tracking and disturbance rejection, where the obtained results showed that the proposed controller had the better ensemble performance compared with traditional PID controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Optimal and Robust Switching Control Strategies : Theory, and Applications in Traffic Management

    NARCIS (Netherlands)

    Hajiahmadi, M.

    2015-01-01

    Macroscopic modeling, predictive and robust control and route guidance for large-scale freeway and urban traffic networks are the main focus of this thesis. In order to increase the efficiency of our control strategies, we propose several mathematical and optimization techniques. Moreover, in the

  8. Robust entry guidance using linear covariance-based model predictive control

    Directory of Open Access Journals (Sweden)

    Jianjun Luo

    2017-02-01

    Full Text Available For atmospheric entry vehicles, guidance design can be accomplished by solving an optimal issue using optimal control theories. However, traditional design methods generally focus on the nominal performance and do not include considerations of the robustness in the design process. This paper proposes a linear covariance-based model predictive control method for robust entry guidance design. Firstly, linear covariance analysis is employed to directly incorporate the robustness into the guidance design. The closed-loop covariance with the feedback updated control command is initially formulated to provide the expected errors of the nominal state variables in the presence of uncertainties. Then, the closed-loop covariance is innovatively used as a component of the cost function to guarantee the robustness to reduce its sensitivity to uncertainties. After that, the models predictive control is used to solve the optimal problem, and the control commands (bank angles are calculated. Finally, a series of simulations for different missions have been completed to demonstrate the high performance in precision and the robustness with respect to initial perturbations as well as uncertainties in the entry process. The 3σ confidence region results in the presence of uncertainties which show that the robustness of the guidance has been improved, and the errors of the state variables are decreased by approximately 35%.

  9. Nonlinear model predictive control of a wave energy converter based on differential flatness parameterisation

    Science.gov (United States)

    Li, Guang

    2017-01-01

    This paper presents a fast constrained optimization approach, which is tailored for nonlinear model predictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlinear programming problem (NLP) derived from the continuous constrained optimal control of WEC using pseudospectral method. The alleviation of computational burden using this approach helps to promote an economic implementation of nonlinear model predictive control strategy for WEC control problems. The method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints, which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy of this approach.

  10. Health-aware Model Predictive Control of Wind Turbines using Fatigue Prognosis

    DEFF Research Database (Denmark)

    Sardi, Hector Eloy Sanchez; Escobet, Teressa; Puig, Vicenc

    2015-01-01

    management module with the control provides a mechanism for the wind turbine to operate safely and optimize the trade-off between components life and energy production. The research presented in this paper explores the integration of model predictive control (MPC) with fatigue-based prognosis approach...

  11. A multicontroller structure for teaching and designing predictive control strategies

    International Nuclear Information System (INIS)

    Hodouin, D.; Desbiens, A.

    1999-01-01

    The paper deals with the unification of the existing linear control algorithms in order to facilitate their transfer to the engineering students and to industry's engineers. The resulting control algorithm is the Global Predictive Control (GlobPC), which is now taught at the graduate and continuing education levels. GlobPC is based on an internal model framework where three independent control criteria are minimized: one for tracking, one for regulation and one for feedforward. This structure allows to obtain desired tracking, regulation and feedforward behaviors in an optimal way while keeping them perfectly separated. It also cleanly separates the deterministic and stochastic predictions of the process model output. (author)

  12. Numerical optimization of circulation control airfoil at high subsonic speed

    Science.gov (United States)

    Tai, T. C.; Kidwell, G. H., Jr.

    1984-01-01

    A numerical procedure for optimizing the design of the circulation control airfoil for use at high subsonic speeds is presented. The procedure consists of an optimization scheme coupled with a viscous potential flow analysis for the blowing jet. The desired airfoil is defined by a combination of three baseline shapes (cambered ellipse and cambered ellipse with drooped and spiraled trailing edges). The coefficients of these shapes are used as design variables in the optimization process. Under the constraints of lift augmentation and lift-to-drag ratios, the airfoil, optimized at free-stream Mach 0.54 and alpha = -2 degrees can be characterized as a cambered ellipse with a drooped trailing edge. Experimental tests support the performance improvement predicted by numerical optimization.

  13. Generalized Predictive Control for Non-Stationary Systems

    DEFF Research Database (Denmark)

    Palsson, Olafur Petur; Madsen, Henrik; Søgaard, Henning Tangen

    1994-01-01

    This paper shows how the generalized predictive control (GPC) can be extended to non-stationary (time-varying) systems. If the time-variation is slow, then the classical GPC can be used in context with an adaptive estimation procedure of a time-invariant ARIMAX model. However, in this paper prior...... knowledge concerning the nature of the parameter variations is assumed available. The GPC is based on the assumption that the prediction of the system output can be expressed as a linear combination of present and future controls. Since the Diophantine equation cannot be used due to the time......-variation of the parameters, the optimal prediction is found as the general conditional expectation of the system output. The underlying model is of an ARMAX-type instead of an ARIMAX-type as in the original version of the GPC (Clarke, D. W., C. Mohtadi and P. S. Tuffs (1987). Automatica, 23, 137-148) and almost all later...

  14. Real-Time Optimization of Organic Rankine Cycle Systems by Extremum-Seeking Control

    Directory of Open Access Journals (Sweden)

    Andres Hernandez

    2016-05-01

    Full Text Available In this paper, the optimal operation of a stationary sub-critical 11 kW el organic Rankine cycle (ORC unit for waste heat recovery (WHR applications is investigated, both in terms of energy production and safety conditions. Simulation results of a validated dynamic model of the ORC power unit are used to derive a correlation for the evaporating temperature, which maximizes the power generation for a range of operating conditions. This idea is further extended using a perturbation-based extremum seeking (ES algorithm to identify online the optimal evaporating temperature. Regarding safety conditions, we propose the use of the extended prediction self-adaptive control (EPSAC approach to constrained model predictive control (MPC. Since it uses input/output models for prediction, it avoids the need for state estimators, making it a suitable tool for industrial applications. The performance of the proposed control strategy is compared to PID-like schemes. Results show that EPSAC-MPC is a more effective control strategy, as it allows a safer and more efficient operation of the ORC unit, as it can handle constraints in a natural way, operating close to the boundary conditions where power generation is maximized.

  15. Predictive control, with restrictions for the climate of a greenhouse

    International Nuclear Information System (INIS)

    Pinon, Sandra; Pena, Miguel; Kuchen, Benjamin

    2002-01-01

    A proposal for controlling nonlinear systems under constraints is presented. a combination of model predictive control and feedback linearization is used. An alternative that uses extended kalman filter as non-measured variable estimator is applied for performing the constrained optimization. Finally, an observability analysis is done in closed loop in order to demonstrate observer convergence

  16. NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    SILVA R. G.

    1999-01-01

    Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.

  17. A distributed model predictive control based load frequency control scheme for multi-area interconnected power system using discrete-time Laguerre functions.

    Science.gov (United States)

    Zheng, Yang; Zhou, Jianzhong; Xu, Yanhe; Zhang, Yuncheng; Qian, Zhongdong

    2017-05-01

    This paper proposes a distributed model predictive control based load frequency control (MPC-LFC) scheme to improve control performances in the frequency regulation of power system. In order to reduce the computational burden in the rolling optimization with a sufficiently large prediction horizon, the orthonormal Laguerre functions are utilized to approximate the predicted control trajectory. The closed-loop stability of the proposed MPC scheme is achieved by adding a terminal equality constraint to the online quadratic optimization and taking the cost function as the Lyapunov function. Furthermore, the treatments of some typical constraints in load frequency control have been studied based on the specific Laguerre-based formulations. Simulations have been conducted in two different interconnected power systems to validate the effectiveness of the proposed distributed MPC-LFC as well as its superiority over the comparative methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Model predictive control in light naphtha distillation column of gasoline hydrogenation process

    Directory of Open Access Journals (Sweden)

    Kornkrit Chiewchanchairat

    2015-03-01

    Full Text Available The main scope of this research is for designing and implementing of model predictive control (MPC on the light naphtha distillation column of gasoline hydrogenation process. This model is designed by using robust multivariable predictive control technology (RMPCT. The performance of MPC controller is better than PID controllers 32.1 % those are comparing by using as the same of objective function and also in the MPC controller can be used for steam optimization that is shown in this research, stream consumption is reduced 6.6 Kg/ m3 of fresh feed.

  19. Generalized perturbation theory error control within PWR core-loading pattern optimization

    International Nuclear Information System (INIS)

    Imbriani, J.S.; Turinsky, P.J.; Kropaczek, D.J.

    1995-01-01

    The fuel management optimization code FORMOSA-P has been developed to determine the family of near-optimum loading patterns for PWR reactors. The code couples the optimization technique of simulated annealing (SA) with a generalized perturbation theory (GPT) model for evaluating core physics characteristics. To ensure the accuracy of the GPT predictions, as well as to maximize the efficient of the SA search, a GPT error control method has been developed

  20. Model Predictive Control application for real time operation of controlled structures for the Water Authority Noorderzijlvest, The Netherlands

    Science.gov (United States)

    van Heeringen, Klaas-Jan; Gooijer, Jan; Knot, Floris; Talsma, Jan

    2015-04-01

    In the Netherlands, flood protection has always been a key issue to protect settlements against storm surges and riverine floods. Whereas flood protection traditionally focused on structural measures, nowadays the availability of meteorological and hydrological forecasts enable the application of more advanced real-time control techniques for operating the existing hydraulic infrastructure in an anticipatory and more efficient way. Model Predictive Control (MPC) is a powerful technique to derive optimal control variables with the help of model based predictions evaluated against a control objective. In a project for the regional water authority Noorderzijlvest in the north of the Netherlands, it has been shown that MPC can increase the safety level of the system during flood events by an anticipatory pre-release of water. Furthermore, energy costs of pumps can be reduced by making tactical use of the water storage and shifting pump activities during normal operating conditions to off-peak hours. In this way cheap energy is used in combination of gravity flow through gates during low tide periods. MPC has now been implemented for daily operational use of the whole water system of the water authority Noorderzijlvest. The system developed to a real time decision support system which not only supports the daily operation but is able to directly implement the optimal control settings at the structures. We explain how we set-up and calibrated a prediction model (RTC-Tools) that is accurate and fast enough for optimization purposes, and how we integrated it in the operational flood early warning system (Delft-FEWS). Beside the prediction model, the weights and the factors of the objective function are an important element of MPC, since they shape the control objective. We developed special features in Delft-FEWS to allow the operators to adjust the objective function in order to meet changing requirements and to evaluate different control strategies.

  1. Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems

    Directory of Open Access Journals (Sweden)

    Bambang Riyanto

    2005-11-01

    Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.

  2. Near-Optimal Tracking Control of Mobile Robots Via Receding-Horizon Dual Heuristic Programming.

    Science.gov (United States)

    Lian, Chuanqiang; Xu, Xin; Chen, Hong; He, Haibo

    2016-11-01

    Trajectory tracking control of wheeled mobile robots (WMRs) has been an important research topic in control theory and robotics. Although various tracking control methods with stability have been developed for WMRs, it is still difficult to design optimal or near-optimal tracking controller under uncertainties and disturbances. In this paper, a near-optimal tracking control method is presented for WMRs based on receding-horizon dual heuristic programming (RHDHP). In the proposed method, a backstepping kinematic controller is designed to generate desired velocity profiles and the receding horizon strategy is used to decompose the infinite-horizon optimal control problem into a series of finite-horizon optimal control problems. In each horizon, a closed-loop tracking control policy is successively updated using a class of approximate dynamic programming algorithms called finite-horizon dual heuristic programming (DHP). The convergence property of the proposed method is analyzed and it is shown that the tracking control system based on RHDHP is asymptotically stable by using the Lyapunov approach. Simulation results on three tracking control problems demonstrate that the proposed method has improved control performance when compared with conventional model predictive control (MPC) and DHP. It is also illustrated that the proposed method has lower computational burden than conventional MPC, which is very beneficial for real-time tracking control.

  3. Building Energy Modeling and Control Methods for Optimization and Renewables Integration

    Science.gov (United States)

    Burger, Eric M.

    dynamics within a building by learning from sensor data. Control techniques encompass the application of optimal control theory, model predictive control, and convex distributed optimization to TCLs. First, we present the alternative control trajectory (ACT) representation, a novel method for the approximate optimization of non-convex discrete systems. This approach enables the optimal control of a population of non-convex agents using distributed convex optimization techniques. Second, we present a distributed convex optimization algorithm for the control of a TCL population. Experimental results demonstrate the application of this algorithm to the problem of renewable energy generation following. This dissertation contributes to the development of intelligent energy management systems for buildings by presenting a suite of novel and adaptable modeling and control techniques. Applications focus on optimizing the performance of building operations and on facilitating the integration of renewable energy resources.

  4. Application of artificial neural network to predict the optimal start time for heating system in building

    International Nuclear Information System (INIS)

    Yang, In-Ho; Yeo, Myoung-Souk; Kim, Kwang-Woo

    2003-01-01

    The artificial neural network (ANN) approach is a generic technique for mapping non-linear relationships between inputs and outputs without knowing the details of these relationships. This paper presents an application of the ANN in a building control system. The objective of this study is to develop an optimized ANN model to determine the optimal start time for a heating system in a building. For this, programs for predicting the room air temperature and the learning of the ANN model based on back propagation learning were developed, and learning data for various building conditions were collected through program simulation for predicting the room air temperature using systems of experimental design. Then, the optimized ANN model was presented through learning of the ANN, and its performance to determine the optimal start time was evaluated

  5. Toward a Smart Car: Hybrid Nonlinear Predictive Controller With Adaptive Horizon

    Czech Academy of Sciences Publication Activity Database

    Pčolka, M.; Žáčeková, E.; Čelikovský, Sergej; Šebek, M.

    (2018), č. článku 08059760. ISSN 1063-6536 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : Autonomous vehicles * hybrid systems * nonlinear model predictive control (MPC) * optimization * vehicle control Subject RIV: BC - Control Systems Theory Impact factor: 3.882, year: 2016 http://ieeexplore.ieee.org/document/8059760/

  6. Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2014-01-01

    Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.

  7. Near optimal decentralized H_inf control

    DEFF Research Database (Denmark)

    Stoustrup, J.; Niemann, Hans Henrik

    It is shown that foir a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinity dimentional optimal controller. Using the insight of the line of proof of these results, a heuri......It is shown that foir a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinity dimentional optimal controller. Using the insight of the line of proof of these results...

  8. Optimal population prediction of sandhill crane recruitment based on climate-mediated habitat limitations

    Science.gov (United States)

    Gerber, Brian D.; Kendall, William L.; Hooten, Mevin B.; Dubovsky, James A.; Drewien, Roderick C.

    2015-01-01

    Prediction is fundamental to scientific enquiry and application; however, ecologists tend to favour explanatory modelling. We discuss a predictive modelling framework to evaluate ecological hypotheses and to explore novel/unobserved environmental scenarios to assist conservation and management decision-makers. We apply this framework to develop an optimal predictive model for juvenile (time-scales and spring/summer weather affects recruitment.Our predictive modelling framework focuses on developing a single model that includes all relevant predictor variables, regardless of collinearity. This model is then optimized for prediction by controlling model complexity using a data-driven approach that marginalizes or removes irrelevant predictors from the model. Specifically, we highlight two approaches of statistical regularization, Bayesian least absolute shrinkage and selection operator (LASSO) and ridge regression.Our optimal predictive Bayesian LASSO and ridge regression models were similar and on average 37% superior in predictive accuracy to an explanatory modelling approach. Our predictive models confirmed a priori hypotheses that drought and cold summers negatively affect juvenile recruitment in the RMP. The effects of long-term drought can be alleviated by short-term wet spring–summer months; however, the alleviation of long-term drought has a much greater positive effect on juvenile recruitment. The number of freezing days and snowpack during the summer months can also negatively affect recruitment, while spring snowpack has a positive effect.Breeding habitat, mediated through climate, is a limiting factor on population growth of sandhill cranes in the RMP, which could become more limiting with a changing climate (i.e. increased drought). These effects are likely not unique to cranes. The alteration of hydrological patterns and water levels by drought may impact many migratory, wetland nesting birds in the Rocky Mountains and beyond

  9. Robust stability in predictive control with soft constraints

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz; Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    In this paper we take advantage of the primary and dual Youla parameterizations for setting up a soft constrained model predictive control (MPC) scheme for which stability is guaranteed in face of norm-bounded uncertainties. Under special conditions guarantees are also given for hard input...... constraints. In more detail, we parameterize the MPC predictions in terms of the primary Youla parameter and use this parameter as the online optimization variable. The uncertainty is parameterized in terms of the dual Youla parameter. Stability can then be guaranteed through small gain arguments on the loop...

  10. Design an optimal controller for nuclear reactor using a digital computer

    International Nuclear Information System (INIS)

    Saleh, F.M.A.

    1986-01-01

    An attempt is carried out to design an optimal controller, for a model nuclear reactor at one hand, and a model nuclear power plant at another hand using a digital computer. The design philosophy adopted was to specify the system dynamics in terms of a desired system transfer function, and realizing the design synthesis through state-variable feedback technique, thus ensuring both stability and optimization in the state space sense. The control design was also tested by carrying out digital simulation transient response runs (step, ramp, impulse, etc.) and agreement between the predicted desirable response and actual response of the overall design was achieved. Furthermore the performance of the controller is verified against a reference non-linear model for purposes of assessing the accuracy of the linearized approximation model. The results show that state-variable feedback policy can rank as an effective optimal technique for designing control algorithm for an on-line computer of a nuclear power plant. 41 figs. 43 refs

  11. Predictive IP controller for robust position control of linear servo system.

    Science.gov (United States)

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Conceptualizing and measuring illness self-concept: a comparison with self-esteem and optimism in predicting fibromyalgia adjustment.

    Science.gov (United States)

    Morea, Jessica M; Friend, Ronald; Bennett, Robert M

    2008-12-01

    Illness self-concept (ISC), or the extent to which individuals are consumed by their illness, was theoretically described and evaluated with the Illness Self-Concept Scale (ISCS), a new 23-item scale, to predict adjustment in fibromyalgia. To establish convergent and discriminant validity, illness self-concept was compared to self-esteem and optimism in predicting health status, illness intrusiveness, depression, and life satisfaction. The ISCS demonstrated good reliability (alpha = .94; test-retest r = .80) and was a strong predictor of outcomes, even after controlling for optimism or self-esteem. The ISCS predicted unique variance in health-related outcomes; optimism and self-esteem did not, providing construct validation. Illness self-concept may play a significant role in coping with fibromyalgia and may prove useful in the evaluation of other chronic illnesses. (c) 2008 Wiley Periodicals, Inc.

  13. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    Science.gov (United States)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  14. Predictive Function Control for Communication-Based Train Control (CBTC Systems

    Directory of Open Access Journals (Sweden)

    Bing Bu

    2013-01-01

    Full Text Available In Communication-Based Train Control (CBTC systems, random transmission delays and packet drops are inevitable in the wireless networks, which could result in unnecessary traction, brakes or even emergency brakes of trains, losses of line capacity and passenger dissatisfaction. This paper applies predictive function control technology with a mixed H2/∞ control approach to improve the control performances. The controller is in the state feedback form and satisfies the requirement of quadratic input and state constraints. A linear matrix inequality (LMI approach is developed to solve the control problem. The proposed method attenuates disturbances by incorporating H2/∞ into the control scheme. The control command from the automatic train operation (ATO is included in the reward function to optimize the train's running profile. The influence of transmission delays and packet drops is alleviated through improving the performances of the controller. Simulation results show that the method is effective to improve the performances and robustness of CBTC systems.

  15. Robust Model Predictive Control of a Wind Turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2012-01-01

    In this work the problem of robust model predictive control (robust MPC) of a wind turbine in the full load region is considered. A minimax robust MPC approach is used to tackle the problem. Nonlinear dynamics of the wind turbine are derived by combining blade element momentum (BEM) theory...... of the uncertain system is employed and a norm-bounded uncertainty model is used to formulate a minimax model predictive control. The resulting optimization problem is simplified by semidefinite relaxation and the controller obtained is applied on a full complexity, high fidelity wind turbine model. Finally...... and first principle modeling of the turbine flexible structure. Thereafter the nonlinear model is linearized using Taylor series expansion around system operating points. Operating points are determined by effective wind speed and an extended Kalman filter (EKF) is employed to estimate this. In addition...

  16. Optimal control of batch emulsion polymerization of vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Damslora, Andre Johan

    1998-12-31

    The highly exothermic polymerization of vinyl chloride (VC) is carried out in large vessels where the heat removal represents a major limitation of the production rate. Many emulsion polymerization reactors are operated in such a way that a substantial part of the heat transfer capacity is left unused for a significant part of the total batch time. To increase the reaction rate so that it matches the heat removal capacity during the course of the reaction, this thesis proposes the use of a sufficiently flexible initiator system to obtain a reaction rate which is high throughout the reaction and real-time optimization to compute the addition policy for the initiator. This optimization based approach provides a basis for an interplay between design and control and between production and research. A simple model is developed for predicting the polymerization rate. The model is highly nonlinear and open-loop unstable and may serve as an interesting case for comparison of nonlinear control strategies. The model is fitted to data obtained in a laboratory scale reactor. Finally, the thesis discusses optimal control of the emulsion polymerization reactor. Reduction of the batch cycle time is of major economic importance, as long as the quality parameters are within their specifications. The control parameterization had a major influence on the performance. A differentiable spline parameterization was applied and the optimization is illustrated in a number of cases. The best performance is obtained when the reactor temperature is obtained when the optimization is combined with some form of closed-loop control of the reactor temperature. 112 refs., 48 figs., 4 tabs.

  17. Rovibrational controlled-NOT gates using optimized stimulated Raman adiabatic passage techniques and optimal control theory

    International Nuclear Information System (INIS)

    Sugny, D.; Bomble, L.; Ribeyre, T.; Dulieu, O.; Desouter-Lecomte, M.

    2009-01-01

    Implementation of quantum controlled-NOT (CNOT) gates in realistic molecular systems is studied using stimulated Raman adiabatic passage (STIRAP) techniques optimized in the time domain by genetic algorithms or coupled with optimal control theory. In the first case, with an adiabatic solution (a series of STIRAP processes) as starting point, we optimize in the time domain different parameters of the pulses to obtain a high fidelity in two realistic cases under consideration. A two-qubit CNOT gate constructed from different assignments in rovibrational states is considered in diatomic (NaCs) or polyatomic (SCCl 2 ) molecules. The difficulty of encoding logical states in pure rotational states with STIRAP processes is illustrated. In such circumstances, the gate can be implemented by optimal control theory and the STIRAP sequence can then be used as an interesting trial field. We discuss the relative merits of the two methods for rovibrational computing (structure of the control field, duration of the control, and efficiency of the optimization).

  18. Prediction Governors for Input-Affine Nonlinear Systems and Application to Automatic Driving Control

    Directory of Open Access Journals (Sweden)

    Yuki Minami

    2018-04-01

    Full Text Available In recent years, automatic driving control has attracted attention. To achieve a satisfactory driving control performance, the prediction accuracy of the traveling route is important. If a highly accurate prediction method can be used, an accurate traveling route can be obtained. Despite the considerable efforts that have been invested in improving prediction methods, prediction errors do occur in general. Thus, a method to minimize the influence of prediction errors on automatic driving control systems is required. This need motivated us to focus on the design of a mechanism for shaping prediction signals, which is called a prediction governor. In this study, we first extended our previous study to the input-affine nonlinear system case. Then, we analytically derived a solution to an optimal design problem of prediction governors. Finally, we applied the solution to an automatic driving control system, and demonstrated its usefulness through a numerical example and an experiment using a radio controlled car.

  19. Optimal Prediction of Moving Sound Source Direction in the Owl.

    Directory of Open Access Journals (Sweden)

    Weston Cox

    2015-07-01

    Full Text Available Capturing nature's statistical structure in behavioral responses is at the core of the ability to function adaptively in the environment. Bayesian statistical inference describes how sensory and prior information can be combined optimally to guide behavior. An outstanding open question of how neural coding supports Bayesian inference includes how sensory cues are optimally integrated over time. Here we address what neural response properties allow a neural system to perform Bayesian prediction, i.e., predicting where a source will be in the near future given sensory information and prior assumptions. The work here shows that the population vector decoder will perform Bayesian prediction when the receptive fields of the neurons encode the target dynamics with shifting receptive fields. We test the model using the system that underlies sound localization in barn owls. Neurons in the owl's midbrain show shifting receptive fields for moving sources that are consistent with the predictions of the model. We predict that neural populations can be specialized to represent the statistics of dynamic stimuli to allow for a vector read-out of Bayes-optimal predictions.

  20. Model predictive control system and method for integrated gasification combined cycle power generation

    Science.gov (United States)

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  1. Mathematical Modelling and Predictive Control of Permanent Magnet Synchronous Motor Drives

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav

    2013-01-01

    Roč. 2, č. 4 (2013), s. 114-120 ISSN 1805-3386 R&D Projects: GA ČR(CZ) GAP102/11/0437 Institutional support: RVO:67985556 Keywords : Permanent magnet synchronous motor * mathematical modelling * discrete predictive control * multistep explicit control law * square-root optimization Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2014/AS/belda-0422285.pdf

  2. Simulation and optimal control of wind-farm boundary layers

    Science.gov (United States)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a

  3. Optimal control in thermal engineering

    CERN Document Server

    Badescu, Viorel

    2017-01-01

    This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.

  4. Real-time distributed economic model predictive control for complete vehicle energy management

    NARCIS (Netherlands)

    Romijn, Constantijn; Donkers, Tijs; Kessels, John; Weiland, Siep

    2017-01-01

    In this paper, a real-time distributed economic model predictive control approach for complete vehicle energy management (CVEM) is presented using a receding control horizon in combination with a dual decomposition. The dual decomposition allows the CVEM optimization problem to be solved by solving

  5. Data-Based Predictive Control with Multirate Prediction Step

    Science.gov (United States)

    Barlow, Jonathan S.

    2010-01-01

    Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.

  6. Study on Air-cooled Self-humidifying PEMFC Control Method Based on Segmented Predict Negative Feedback Control

    International Nuclear Information System (INIS)

    Zhiyu, You; Tao, Xu; Zhixiang, Liu; Yun, Peng; Weirong, Cheng

    2014-01-01

    In order to obtain the optimal output performance of the air-cooled self-humidifying proton exchange membrane fuel cell (PEMFC), the operating temperature, the air flow, purge interval and some other parameters must be controlled strictly. As a key factor, the operating temperature mainly determines the optimal output performance of the fuel cell. However, some intrinsic issues such as long adjusting time, over-shoot still exist inevitably for the traditional PID temperature-controlled method in circumstances of the load variation. Consequently, output performance of PEMFC decreases because the operating temperature of the fuel cell fails to reach, and the corresponding lifetime of PEMFC is also reduced. In this study, a segmented predict negative feedback control method, based on the advance proportional control one, is proposed and verified by experiments to overcome the shortcomings of PID temperature control. The results demonstrate that the optimal output performance of PEMFC can be realized by utilizing the proposed method for temperature control due to its excellent properties, simple controlling and small over-shoot

  7. Protein structure prediction using bee colony optimization metaheuristic

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Paluszewski, Martin; Winter, Pawel

    2010-01-01

    of the proteins structure, an energy potential and some optimization algorithm that ¿nds the structure with minimal energy. Bee Colony Optimization (BCO) is a relatively new approach to solving opti- mization problems based on the foraging behaviour of bees. Several variants of BCO have been suggested......Predicting the native structure of proteins is one of the most challenging problems in molecular biology. The goal is to determine the three-dimensional struc- ture from the one-dimensional amino acid sequence. De novo prediction algorithms seek to do this by developing a representation...... our BCO method to generate good solutions to the protein structure prediction problem. The results show that BCO generally ¿nds better solutions than simulated annealing which so far has been the metaheuristic of choice for this problem....

  8. Constrained Optimization and Optimal Control for Partial Differential Equations

    CERN Document Server

    Leugering, Günter; Griewank, Andreas

    2012-01-01

    This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The cont

  9. Model Predictive Control for Connected Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Kaijiang Yu

    2015-01-01

    Full Text Available This paper presents a new model predictive control system for connected hybrid electric vehicles to improve fuel economy. The new features of this study are as follows. First, the battery charge and discharge profile and the driving velocity profile are simultaneously optimized. One is energy management for HEV for Pbatt; the other is for the energy consumption minimizing problem of acc control of two vehicles. Second, a system for connected hybrid electric vehicles has been developed considering varying drag coefficients and the road gradients. Third, the fuel model of a typical hybrid electric vehicle is developed using the maps of the engine efficiency characteristics. Fourth, simulations and analysis (under different parameters, i.e., road conditions, vehicle state of charge, etc. are conducted to verify the effectiveness of the method to achieve higher fuel efficiency. The model predictive control problem is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation results reveal improvements in fuel economy using the proposed control method.

  10. Web malware spread modelling and optimal control strategies

    Science.gov (United States)

    Liu, Wanping; Zhong, Shouming

    2017-02-01

    The popularity of the Web improves the growth of web threats. Formulating mathematical models for accurate prediction of malicious propagation over networks is of great importance. The aim of this paper is to understand the propagation mechanisms of web malware and the impact of human intervention on the spread of malicious hyperlinks. Considering the characteristics of web malware, a new differential epidemic model which extends the traditional SIR model by adding another delitescent compartment is proposed to address the spreading behavior of malicious links over networks. The spreading threshold of the model system is calculated, and the dynamics of the model is theoretically analyzed. Moreover, the optimal control theory is employed to study malware immunization strategies, aiming to keep the total economic loss of security investment and infection loss as low as possible. The existence and uniqueness of the results concerning the optimality system are confirmed. Finally, numerical simulations show that the spread of malware links can be controlled effectively with proper control strategy of specific parameter choice.

  11. Fuzzy logic control and optimization system

    Science.gov (United States)

    Lou, Xinsheng [West Hartford, CT

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  12. Power maximization of a point absorber wave energy converter using improved model predictive control

    Science.gov (United States)

    Milani, Farideh; Moghaddam, Reihaneh Kardehi

    2017-08-01

    This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.

  13. Efficiency Optimization Methods in Low-Power High-Frequency Digitally Controlled SMPS

    Directory of Open Access Journals (Sweden)

    Aleksandar Prodić

    2010-06-01

    Full Text Available This paper gives a review of several power efficiency optimization techniques that are utilizing advantages of emerging digital control in high frequency switch-mode power supplies (SMPS, processing power from a fraction of watt to several hundreds of watts. Loss mechanisms in semiconductor components are briefly reviewed and the related principles of online efficiency optimization through power stage segmentation and gate voltage variation presented. Practical implementations of such methods utilizing load prediction or data extraction from a digital control loop are shown. The benefits of the presented efficiency methods are verified through experimental results, showing efficiency improvements, ranging from 2% to 30%,depending on the load conditions.

  14. Distributed model predictive control for constrained nonlinear systems with decoupled local dynamics.

    Science.gov (United States)

    Zhao, Meng; Ding, Baocang

    2015-03-01

    This paper considers the distributed model predictive control (MPC) of nonlinear large-scale systems with dynamically decoupled subsystems. According to the coupled state in the overall cost function of centralized MPC, the neighbors are confirmed and fixed for each subsystem, and the overall objective function is disassembled into each local optimization. In order to guarantee the closed-loop stability of distributed MPC algorithm, the overall compatibility constraint for centralized MPC algorithm is decomposed into each local controller. The communication between each subsystem and its neighbors is relatively low, only the current states before optimization and the optimized input variables after optimization are being transferred. For each local controller, the quasi-infinite horizon MPC algorithm is adopted, and the global closed-loop system is proven to be exponentially stable. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. A Distributed Model Predictive Control approach for the integration of flexible loads, storage and renewables

    DEFF Research Database (Denmark)

    Ferrarini, Luca; Mantovani, Giancarlo; Costanzo, Giuseppe Tommaso

    2014-01-01

    This paper presents an innovative solution based on distributed model predictive controllers to integrate the control and management of energy consumption, energy storage, PV and wind generation at customer side. The overall goal is to enable an advanced prosumer to autoproduce part of the energy...... he needs with renewable sources and, at the same time, to optimally exploit the thermal and electrical storages, to trade off its comfort requirements with different pricing schemes (including real-time pricing), and apply optimal control techniques rather than sub-optimal heuristics....

  16. Correlations in state space can cause sub-optimal adaptation of optimal feedback control models

    OpenAIRE

    Aprasoff, Jonathan; Donchin, Opher

    2011-01-01

    Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedb...

  17. Robust self-triggered model predictive control for constrained discrete-time LTI systems based on homothetic tubes

    NARCIS (Netherlands)

    Aydiner, E.; Brunner, F.D.; Heemels, W.P.M.H.; Allgower, F.

    2015-01-01

    In this paper we present a robust self-triggered model predictive control (MPC) scheme for discrete-time linear time-invariant systems subject to input and state constraints and additive disturbances. In self-triggered model predictive control, at every sampling instant an optimization problem based

  18. The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management

    Directory of Open Access Journals (Sweden)

    César Hernández-Hernández

    2017-06-01

    Full Text Available Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation.

  19. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    Science.gov (United States)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  20. Improving Wind Farm Dispatchability Using Model Predictive Control for Optimal Operation of Grid-Scale Energy Storage

    Directory of Open Access Journals (Sweden)

    Douglas Halamay

    2014-09-01

    Full Text Available This paper demonstrates the use of model-based predictive control for energy storage systems to improve the dispatchability of wind power plants. Large-scale wind penetration increases the variability of power flow on the grid, thus increasing reserve requirements. Large energy storage systems collocated with wind farms can improve dispatchability of the wind plant by storing energy during generation over-the-schedule and sourcing energy during generation under-the-schedule, essentially providing on-site reserves. Model predictive control (MPC provides a natural framework for this application. By utilizing an accurate energy storage system model, control actions can be planned in the context of system power and state-of-charge limitations. MPC also enables the inclusion of predicted wind farm performance over a near-term horizon that allows control actions to be planned in anticipation of fast changes, such as wind ramps. This paper demonstrates that model-based predictive control can improve system performance compared with a standard non-predictive, non-model-based control approach. It is also demonstrated that secondary objectives, such as reducing the rate of change of the wind plant output (i.e., ramps, can be considered and successfully implemented within the MPC framework. Specifically, it is shown that scheduling error can be reduced by 81%, reserve requirements can be improved by up to 37%, and the number of ramp events can be reduced by 74%.

  1. Model predictive control technologies for efficient and flexible power consumption in refrigeration systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Edlund, Kristian

    2012-01-01

    . In this paper we describe a novel economic-optimizing Model Predictive Control (MPC) scheme that reduces operating costs by utilizing the thermal storage capabilities. A nonlinear optimization tool to handle a non-convex cost function is utilized for simulations with validated scenarios. In this way we...... explicitly address advantages from daily variations in outdoor temperature and electricity prices. Secondly, we formulate a new cost function that enables the refrigeration system to contribute with ancillary services to the balancing power market. This involvement can be economically beneficial...... of the system models allows us to describe and handle model as well as prediction uncertainties in this framework. This means we can demonstrate means for robustifying the performance of the controller....

  2. Modelling of Rabies Transmission Dynamics Using Optimal Control Analysis

    Directory of Open Access Journals (Sweden)

    Joshua Kiddy K. Asamoah

    2017-01-01

    Full Text Available We examine an optimal way of eradicating rabies transmission from dogs into the human population, using preexposure prophylaxis (vaccination and postexposure prophylaxis (treatment due to public education. We obtain the disease-free equilibrium, the endemic equilibrium, the stability, and the sensitivity analysis of the optimal control model. Using the Latin hypercube sampling (LHS, the forward-backward sweep scheme and the fourth-order Range-Kutta numerical method predict that the global alliance for rabies control’s aim of working to eliminate deaths from canine rabies by 2030 is attainable through mass vaccination of susceptible dogs and continuous use of pre- and postexposure prophylaxis in humans.

  3. Different Optimal Control Strategies for Exploitation of Demand Response in the Smart Grid

    DEFF Research Database (Denmark)

    Zong, Yi; Bindner, Henrik W.; Gehrke, Oliver

    2012-01-01

    To achieve a Danish energy supply based on 100% renewable energy from combinations of wind, biomass, wave and solar power in 2050 and to cover 50% of the Danish electricity consumption by wind power in 2025, it requires coordinated management of large numbers of distributed and demand response...... resources, intermittent renewable energy resources in the Smart Grid. This paper presents different optimal control (Genetic Algorithm-based and Model Predictive Control-based) algorithms that schedule controlled loads in the industrial and residential sectors, based on dynamic price and weather forecast......, considering users’ comfort settings to meet an optimization objective, such as maximum profit or minimum energy consumption. It is demonstrated in this work that the GA-based and MPC-based optimal control strategies are able to achieve load shifting for grid reliability and energy savings, including demand...

  4. Parallel Solution of Robust Nonlinear Model Predictive Control Problems in Batch Crystallization

    Directory of Open Access Journals (Sweden)

    Yankai Cao

    2016-06-01

    Full Text Available Representing the uncertainties with a set of scenarios, the optimization problem resulting from a robust nonlinear model predictive control (NMPC strategy at each sampling instance can be viewed as a large-scale stochastic program. This paper solves these optimization problems using the parallel Schur complement method developed to solve stochastic programs on distributed and shared memory machines. The control strategy is illustrated with a case study of a multidimensional unseeded batch crystallization process. For this application, a robust NMPC based on min–max optimization guarantees satisfaction of all state and input constraints for a set of uncertainty realizations, and also provides better robust performance compared with open-loop optimal control, nominal NMPC, and robust NMPC minimizing the expected performance at each sampling instance. The performance of robust NMPC can be improved by generating optimization scenarios using Bayesian inference. With the efficient parallel solver, the solution time of one optimization problem is reduced from 6.7 min to 0.5 min, allowing for real-time application.

  5. Time-optimal control with finite bandwidth

    Science.gov (United States)

    Hirose, M.; Cappellaro, P.

    2018-04-01

    Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.

  6. Convergence Guaranteed Nonlinear Constraint Model Predictive Control via I/O Linearization

    Directory of Open Access Journals (Sweden)

    Xiaobing Kong

    2013-01-01

    Full Text Available Constituting reliable optimal solution is a key issue for the nonlinear constrained model predictive control. Input-output feedback linearization is a popular method in nonlinear control. By using an input-output feedback linearizing controller, the original linear input constraints will change to nonlinear constraints and sometimes the constraints are state dependent. This paper presents an iterative quadratic program (IQP routine on the continuous-time system. To guarantee its convergence, another iterative approach is incorporated. The proposed algorithm can reach a feasible solution over the entire prediction horizon. Simulation results on both a numerical example and the continuous stirred tank reactors (CSTR demonstrate the effectiveness of the proposed method.

  7. Model Predictive Control for Distributed Microgrid Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Morstyn, Thomas; Hredzak, Branislav; Aguilera, Ricardo P.

    2018-01-01

    , and converter current constraints to be addressed. In addition, nonlinear variations in the charge and discharge efficiencies of lithium ion batteries are analyzed and included in the control strategy. Real-time digital simulations were carried out for an islanded microgrid based on the IEEE 13 bus prototypical......This brief proposes a new convex model predictive control (MPC) strategy for dynamic optimal power flow between battery energy storage (ES) systems distributed in an ac microgrid. The proposed control strategy uses a new problem formulation, based on a linear $d$ – $q$ reference frame voltage...... feeder, with distributed battery ES systems and intermittent photovoltaic generation. It is shown that the proposed control strategy approaches the performance of a strategy based on nonconvex optimization, while reducing the required computation time by a factor of 1000, making it suitable for a real...

  8. Optimization of accelerator control

    International Nuclear Information System (INIS)

    Vasiljev, N.D.; Mozin, I.V.; Shelekhov, V.A.; Efremov, D.V.

    1992-01-01

    Expensive exploitation of charged particle accelerators is inevitably concerned with requirements of effectively obtaining of the best characteristics of accelerated beams for physical experiments. One of these characteristics is intensity. Increase of intensity is hindered by a number of effects, concerned with the influence of the volume charge field on a particle motion dynamics in accelerator's chamber. However, ultimate intensity, determined by a volume charge, is almost not achieved for the most of the operating accelerators. This fact is caused by losses of particles during injection, at the initial stage of acceleration and during extraction. These losses are caused by deviations the optimal from real characteristics of the accelerating and magnetic system. This is due to a number of circumstances, including technological tolerances on structural elements of systems, influence of measuring and auxiliary equipment and beam consumers' installations, placed in the closed proximity to magnets, and instability in operation of technological systems of accelerator. Control task consists in compensation of deviations of characteristics of magnetic and electric fields by optimal selection of control actions. As for technical means, automatization of modern accelerators allows to solve optimal control problems in real time. Therefore, the report is devoted to optimal control methods and experimental results. (J.P.N.)

  9. Bayesian Optimization for Neuroimaging Pre-processing in Brain Age Classification and Prediction

    Directory of Open Access Journals (Sweden)

    Jenessa Lancaster

    2018-02-01

    Full Text Available Neuroimaging-based age prediction using machine learning is proposed as a biomarker of brain aging, relating to cognitive performance, health outcomes and progression of neurodegenerative disease. However, even leading age-prediction algorithms contain measurement error, motivating efforts to improve experimental pipelines. T1-weighted MRI is commonly used for age prediction, and the pre-processing of these scans involves normalization to a common template and resampling to a common voxel size, followed by spatial smoothing. Resampling parameters are often selected arbitrarily. Here, we sought to improve brain-age prediction accuracy by optimizing resampling parameters using Bayesian optimization. Using data on N = 2003 healthy individuals (aged 16–90 years we trained support vector machines to (i distinguish between young (<22 years and old (>50 years brains (classification and (ii predict chronological age (regression. We also evaluated generalisability of the age-regression model to an independent dataset (CamCAN, N = 648, aged 18–88 years. Bayesian optimization was used to identify optimal voxel size and smoothing kernel size for each task. This procedure adaptively samples the parameter space to evaluate accuracy across a range of possible parameters, using independent sub-samples to iteratively assess different parameter combinations to arrive at optimal values. When distinguishing between young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel size = 11.5 mm3, smoothing kernel = 2.3 mm. For predicting chronological age, a mean absolute error (MAE of 5.08 years was achieved, (optimal voxel size = 3.73 mm3, smoothing kernel = 3.68 mm. This was compared to performance using default values of 1.5 mm3 and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3% improvement was not statistically significant. When assessing generalisability, best performance was achieved when applying the entire Bayesian

  10. Prediction based active ramp metering control strategy with mobility and safety assessment

    Science.gov (United States)

    Fang, Jie; Tu, Lili

    2018-04-01

    Ramp metering is one of the most direct and efficient motorway traffic flow management measures so as to improve traffic conditions. However, owing to short of traffic conditions prediction, in earlier studies, the impact on traffic flow dynamics of the applied RM control was not quantitatively evaluated. In this study, a RM control algorithm adopting Model Predictive Control (MPC) framework to predict and assess future traffic conditions, which taking both the current traffic conditions and the RM-controlled future traffic states into consideration, was presented. The designed RM control algorithm targets at optimizing the network mobility and safety performance. The designed algorithm is evaluated in a field-data-based simulation. Through comparing the presented algorithm controlled scenario with the uncontrolled scenario, it was proved that the proposed RM control algorithm can effectively relieve the congestion of traffic network with no significant compromises in safety aspect.

  11. Gradient Optimization for Analytic conTrols - GOAT

    Science.gov (United States)

    Assémat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    Quantum optimal control becomes a necessary step in a number of studies in the quantum realm. Recent experimental advances showed that superconducting qubits can be controlled with an impressive accuracy. However, most of the standard optimal control algorithms are not designed to manage such high accuracy. To tackle this issue, a novel quantum optimal control algorithm have been introduced: the Gradient Optimization for Analytic conTrols (GOAT). It avoids the piecewise constant approximation of the control pulse used by standard algorithms. This allows an efficient implementation of very high accuracy optimization. It also includes a novel method to compute the gradient that provides many advantages, e.g. the absence of backpropagation or the natural route to optimize the robustness of the control pulses. This talk will present the GOAT algorithm and a few applications to transmons systems.

  12. Image-Based Visual Servoing for Manipulation Via Predictive Control – A Survey of Some Results

    Directory of Open Access Journals (Sweden)

    Corneliu Lazăr

    2016-09-01

    Full Text Available In this paper, a review of predictive control algorithms developed by the authors for visual servoing of robots in manipulation applications is presented. Using these algorithms, a control predictive framework was created for image-based visual servoing (IBVS systems. Firstly, considering the point features, in the year 2008 we introduced an internal model predictor based on the interaction matrix. Secondly, distinctly from the set-point trajectory, we introduced in 2011 the reference trajectory using the concept from predictive control. Finally, minimizing a sum of squares of predicted errors, the optimal input trajectory was obtained. The new concept of predictive control for IBVS systems was employed to develop a cascade structure for motion control of robot arms. Simulation results obtained with a simulator for predictive IBVS systems are also presented.

  13. Near Optimal Decentralized H-infinity Control: Bounded vs. Unbounded Controller Order

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.H.

    1997-01-01

    It is shown that for a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinite dimensional optimal controller. Using the insight of the line of proof of these results, a heuris......It is shown that for a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinite dimensional optimal controller. Using the insight of the line of proof of these results...

  14. Tuning SISO offset-free Model Predictive Control based on ARX models

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Poulsen, Niels Kjølstad; Jørgensen, Sten Bay

    2012-01-01

    , the proposed controller is simple to tune as it has only one free tuning parameter. These two features are advantageous in predictive process control as they simplify industrial commissioning of MPC. Disturbance rejection and offset-free control is important in industrial process control. To achieve offset......In this paper, we present a tuning methodology for a simple offset-free SISO Model Predictive Controller (MPC) based on autoregressive models with exogenous inputs (ARX models). ARX models simplify system identification as they can be identified from data using convex optimization. Furthermore......-free control in face of unknown disturbances or model-plant mismatch, integrators must be introduced in either the estimator or the regulator. Traditionally, offset-free control is achieved using Brownian disturbance models in the estimator. In this paper we achieve offset-free control by extending the noise...

  15. Water hammer prediction and control: the Green's function method

    Science.gov (United States)

    Xuan, Li-Jun; Mao, Feng; Wu, Jie-Zhi

    2012-04-01

    By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy viscosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and minimized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.

  16. Optimal Control of Hybrid Systems in Air Traffic Applications

    Science.gov (United States)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  17. Applied Distributed Model Predictive Control for Energy Efficient Buildings and Ramp Metering

    Science.gov (United States)

    Koehler, Sarah Muraoka

    Industrial large-scale control problems present an interesting algorithmic design challenge. A number of controllers must cooperate in real-time on a network of embedded hardware with limited computing power in order to maximize system efficiency while respecting constraints and despite communication delays. Model predictive control (MPC) can automatically synthesize a centralized controller which optimizes an objective function subject to a system model, constraints, and predictions of disturbance. Unfortunately, the computations required by model predictive controllers for large-scale systems often limit its industrial implementation only to medium-scale slow processes. Distributed model predictive control (DMPC) enters the picture as a way to decentralize a large-scale model predictive control problem. The main idea of DMPC is to split the computations required by the MPC problem amongst distributed processors that can compute in parallel and communicate iteratively to find a solution. Some popularly proposed solutions are distributed optimization algorithms such as dual decomposition and the alternating direction method of multipliers (ADMM). However, these algorithms ignore two practical challenges: substantial communication delays present in control systems and also problem non-convexity. This thesis presents two novel and practically effective DMPC algorithms. The first DMPC algorithm is based on a primal-dual active-set method which achieves fast convergence, making it suitable for large-scale control applications which have a large communication delay across its communication network. In particular, this algorithm is suited for MPC problems with a quadratic cost, linear dynamics, forecasted demand, and box constraints. We measure the performance of this algorithm and show that it significantly outperforms both dual decomposition and ADMM in the presence of communication delay. The second DMPC algorithm is based on an inexact interior point method which is

  18. Optimal control of helicopters following power failure. Helicopter no engine koshoji no saiteki hiko seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Y.

    1993-01-01

    In order to study the optimal control of helicopters, the control procedures following power failure were theoretically investigated by applying nonlinear optimal control theory to the following four optimization problems. The first was minimization of the touchdown speed following power failure. Comparisons between the calculated optimal solutions and the empirical flight test results showed that pilots used nonoptimal controls, especially in the timing and amplitude of the collective flare before touchdowns. The second was prediction of the height-velocity (H-V) boundaries. The calculated H-V boundaries showed good correlation with the flight test results. The third was optimization of the takeoff procedures for category A STOL operation following power failure. The results showed that the required takeoff distance using the normal takeoff procedure can be significantly reduced. The fourth was evaluation of the takeoff performance for category A VTOL operation. The calculating method of the maximum takeoff weight was confirmed, and possibility of allowing the payload to be increased was shown. 38 refs., 53 figs.

  19. A Decomposition Algorithm for Mean-Variance Economic Model Predictive Control of Stochastic Linear Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Dammann, Bernd; Madsen, Henrik

    2014-01-01

    This paper presents a decomposition algorithm for solving the optimal control problem (OCP) that arises in Mean-Variance Economic Model Predictive Control of stochastic linear systems. The algorithm applies the alternating direction method of multipliers to a reformulation of the OCP...

  20. Optimal control of a CSTR process

    Directory of Open Access Journals (Sweden)

    A. Soukkou

    2008-12-01

    Full Text Available Designing an effective criterion and learning algorithm for find the best structure is a major problem in the control design process. In this paper, the fuzzy optimal control methodology is applied to the design of the feedback loops of an Exothermic Continuous Stirred Tank Reactor system. The objective of design process is to find an optimal structure/gains of the Robust and Optimal Takagi Sugeno Fuzzy Controller (ROFLC. The control signal thus obtained will minimize a performance index, which is a function of the tracking/regulating errors, the quantity of the energy of the control signal applied to the system, and the number of fuzzy rules. The genetic learning is proposed for constructing the ROFLC. The chromosome genes are arranged into two parts, the binary-coded part contains the control genes and the real-coded part contains the genes parameters representing the fuzzy knowledge base. The effectiveness of this chromosome formulation enables the fuzzy sets and rules to be optimally reduced. The performances of the ROFLC are compared to these found by the traditional PD controller with Genetic Optimization (PD_GO. Simulations demonstrate that the proposed ROFLC and PD_GO has successfully met the design specifications.

  1. Robust nonlinear model predictive control for nuclear power plants in load following operations with bounded xenon oscillations

    International Nuclear Information System (INIS)

    Eliasi, H.; Menhaj, M.B.; Davilu, H.

    2011-01-01

    Research highlights: → In this work, a robust nonlinear model predictive control algorithm is developed. → This algorithm is applied to control the power level for load following. → The state constraints are imposed on the predicted trajectory during optimization. → The xenon oscillations are the main constraint for the load following problem. → In this algorithm, xenon oscillations are bounded within acceptable limits. - Abstract: One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, a robust nonlinear model predictive control for the load-following operation problem is proposed that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The controller imposes restricted state constraints on the predicted trajectory during optimization which guarantees robust satisfaction of state constraints without restoring to a min-max optimization problem. Simulation results show that the proposed controller for the load-following operation is so effective so that the xenon oscillations kept bounded in the given region.

  2. Optimal decoupling controllers revisited

    Czech Academy of Sciences Publication Activity Database

    Kučera, Vladimír

    2013-01-01

    Roč. 42, č. 1 (2013), s. 1-16 ISSN 0324-8569 R&D Projects: GA TA ČR(CZ) TE01020197 Institutional support: RVO:67985556 Keywords : linear systems * fractional representations * decoupling control lers * stabilizing control lers * optimal control lers Subject RIV: BC - Control Systems Theory

  3. Symposium on Optimal Control Theory

    CERN Document Server

    1987-01-01

    Control theory can be roughly classified as deterministic or stochastic. Each of these can further be subdivided into game theory and optimal control theory. The central problem of control theory is the so called constrained maximization (which-­ with slight modifications--is equivalent to minimization). One can then say, heuristically, that the major problem of control theory is to find the maximum of some performance criterion (or criteria), given a set of constraints. The starting point is, of course, a mathematical representation of the performance criterion (or criteria)-­ sometimes called the objective functional--along with the constraints. When the objective functional is single valued (Le. , when there is only one objective to be maximized), then one is dealing with optimal control theory. When more than one objective is involved, and the objectives are generally incompatible, then one is dealing with game theory. The first paper deals with stochastic optimal control, using the dynamic programming ...

  4. Selecting the minimum prediction base of historical data to perform 5-year predictions of the cancer burden: The GoF-optimal method.

    Science.gov (United States)

    Valls, Joan; Castellà, Gerard; Dyba, Tadeusz; Clèries, Ramon

    2015-06-01

    Predicting the future burden of cancer is a key issue for health services planning, where a method for selecting the predictive model and the prediction base is a challenge. A method, named here Goodness-of-Fit optimal (GoF-optimal), is presented to determine the minimum prediction base of historical data to perform 5-year predictions of the number of new cancer cases or deaths. An empirical ex-post evaluation exercise for cancer mortality data in Spain and cancer incidence in Finland using simple linear and log-linear Poisson models was performed. Prediction bases were considered within the time periods 1951-2006 in Spain and 1975-2007 in Finland, and then predictions were made for 37 and 33 single years in these periods, respectively. The performance of three fixed different prediction bases (last 5, 10, and 20 years of historical data) was compared to that of the prediction base determined by the GoF-optimal method. The coverage (COV) of the 95% prediction interval and the discrepancy ratio (DR) were calculated to assess the success of the prediction. The results showed that (i) models using the prediction base selected through GoF-optimal method reached the highest COV and the lowest DR and (ii) the best alternative strategy to GoF-optimal was the one using the base of prediction of 5-years. The GoF-optimal approach can be used as a selection criterion in order to find an adequate base of prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. An auxiliary optimization method for complex public transit route network based on link prediction

    Science.gov (United States)

    Zhang, Lin; Lu, Jian; Yue, Xianfei; Zhou, Jialin; Li, Yunxuan; Wan, Qian

    2018-02-01

    Inspired by the missing (new) link prediction and the spurious existing link identification in link prediction theory, this paper establishes an auxiliary optimization method for public transit route network (PTRN) based on link prediction. First, link prediction applied to PTRN is described, and based on reviewing the previous studies, the summary indices set and its algorithms set are collected for the link prediction experiment. Second, through analyzing the topological properties of Jinan’s PTRN established by the Space R method, we found that this is a typical small-world network with a relatively large average clustering coefficient. This phenomenon indicates that the structural similarity-based link prediction will show a good performance in this network. Then, based on the link prediction experiment of the summary indices set, three indices with maximum accuracy are selected for auxiliary optimization of Jinan’s PTRN. Furthermore, these link prediction results show that the overall layout of Jinan’s PTRN is stable and orderly, except for a partial area that requires optimization and reconstruction. The above pattern conforms to the general pattern of the optimal development stage of PTRN in China. Finally, based on the missing (new) link prediction and the spurious existing link identification, we propose optimization schemes that can be used not only to optimize current PTRN but also to evaluate PTRN planning.

  6. Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses

    International Nuclear Information System (INIS)

    Li, Liang; You, Sixiong; Yang, Chao; Yan, Bingjie; Song, Jian; Chen, Zheng

    2016-01-01

    Highlights: • The novel approximated global optimal energy management strategy has been proposed for hybrid powertrains. • Eight typical driving behaviors have been classified with K-means to deal with the multiplicative traffic conditions. • The stochastic driver models of different driving behaviors were established based on the Markov chains. • ECMS was used to modify the SMPC-based energy management strategy to improve its fuel economy. • The approximated global optimal energy management strategy for plug-in hybrid electric buses has been verified and analyzed. - Abstract: Driving cycles of a city bus is statistically characterized by some repetitive features, which makes the predictive energy management strategy very desirable to obtain approximate optimal fuel economy of a plug-in hybrid electric bus. But dealing with the complicated traffic conditions and finding an approximated global optimal strategy which is applicable to the plug-in hybrid electric bus still remains a challenging technique. To solve this problem, a novel driving-behavior-aware modified stochastic model predictive control method is proposed for the plug-in hybrid electric bus. Firstly, the K-means is employed to classify driving behaviors, and the driver models based on Markov chains is obtained under different kinds of driving behaviors. While the obtained driver behaviors are regarded as stochastic disturbance inputs, the local minimum fuel consumption might be obtained with a traditional stochastic model predictive control at each step, taking tracking the reference battery state of charge trajectory into consideration in the finite predictive horizons. However, this technique is still accompanied by some working points with reduced/worsened fuel economy. Thus, the stochastic model predictive control is modified with the equivalent consumption minimization strategy to eliminate these undesirable working points. The results in real-world city bus routines show that the

  7. Minimum energy control and optimal-satisfactory control of Boolean control network

    International Nuclear Information System (INIS)

    Li, Fangfei; Lu, Xiwen

    2013-01-01

    In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.

  8. Optimal control theory an introduction

    CERN Document Server

    Kirk, Donald E

    2004-01-01

    Optimal control theory is the science of maximizing the returns from and minimizing the costs of the operation of physical, social, and economic processes. Geared toward upper-level undergraduates, this text introduces three aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization.Chapters 1 and 2 focus on describing systems and evaluating their performances. Chapter 3 deals with dynamic programming. The calculus of variations and Pontryagin's minimum principle are the subjects of chapters 4 and 5, and chapter

  9. Prediction of pilot opinion ratings using an optimal pilot model. [of aircraft handling qualities in multiaxis tasks

    Science.gov (United States)

    Hess, R. A.

    1977-01-01

    A brief review of some of the more pertinent applications of analytical pilot models to the prediction of aircraft handling qualities is undertaken. The relative ease with which multiloop piloting tasks can be modeled via the optimal control formulation makes the use of optimal pilot models particularly attractive for handling qualities research. To this end, a rating hypothesis is introduced which relates the numerical pilot opinion rating assigned to a particular vehicle and task to the numerical value of the index of performance resulting from an optimal pilot modeling procedure as applied to that vehicle and task. This hypothesis is tested using data from piloted simulations and is shown to be reasonable. An example concerning a helicopter landing approach is introduced to outline the predictive capability of the rating hypothesis in multiaxis piloting tasks.

  10. Optimization and Control of Pressure Swing Adsorption Processes Under Uncertainty

    KAUST Repository

    Khajuria, Harish

    2012-03-21

    The real-time periodic performance of a pressure swing adsorption (PSA) system strongly depends on the choice of key decision variables and operational considerations such as processing steps and column pressure temporal profiles, making its design and operation a challenging task. This work presents a detailed optimization-based approach for simultaneously incorporating PSA design, operational, and control aspects under the effect of time variant and invariant disturbances. It is applied to a two-bed, six-step PSA system represented by a rigorous mathematical model, where the key optimization objective is to maximize the expected H2 recovery while achieving a closed loop product H2 purity of 99.99%, for separating 70% H2, 30% CH4 feed. The benefits over sequential design and control approach are shown in terms of closed-loop recovery improvement of more than 3%, while the incorporation of explicit/multiparametric model predictive controllers improves the closed loop performance. © 2012 American Institute of Chemical Engineers (AIChE).

  11. Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints

    Science.gov (United States)

    Kmet', Tibor; Kmet'ová, Mária

    2009-09-01

    A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  12. ANALYSIS OF THE PREDICTIVE DMC CONTROLLER PERFORMANCE APPLIED TO A FEED-BATCH BIOREACTOR

    Directory of Open Access Journals (Sweden)

    J. A. D. RODRIGUES

    1997-12-01

    Full Text Available Two control algorithms were implemented in the stabilization of the dissolved oxygen concentration of the penicillin process production phase. A deterministic and nonstructured mathematical model was used, where were considered the balances of cell, substrate, dissolved oxygen and product formation as well as kinetic of the growth, respiration, product inhibition due to excess of substrate, penicillin hydrolyze, yield factors among cell growth, substrate consumption and dissolved oxygen consumption. The bioreactor was operated in a feed-batch way using an optimal strategy for the operational policy. The agitation speed was used as manipulated variable in order to achieve the dissolved oxygen control because it was found to be the most sensitive one. Two types of control configurations were implemented. First, the PID feedback control with the parameters estimated through Modified Simplex optimization method using the IAE index, and second, the DMC predictive control that had as control parameters the model, prediction and control horizons as well as suppression factor and the trajectory parameter. A sensitivity analysis of these two control algorithms was performed using the sample time and dead time as the index to make stability evaluation. Both configurations showed stable performance, however, the predictive one was found to be more robust in relation to the sample time, as well as the dead time variations. This is a very important characteristic to be considered for the implementation of control scheme in real fermentative process

  13. Optimal, real-time control--colliders

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1991-05-01

    With reasonable definitions, optimal control is possible for both classical and quantal systems with new approaches called PISC(Parallel) and NISC(Neural) from analogy with RISC (Reduced Instruction Set Computing). If control equals interaction, observation and comparison to some figure of merit with interaction via external fields, then optimization comes from varying these fields to give design or operating goals. Structural stability can then give us tolerance and design constraints. But simulations use simplified models, are not in real-time and assume fixed or stationary conditions, so optimal control goes far beyond convergence rates of algorithms. It is inseparable from design and this has many implications for colliders. 12 refs., 3 figs

  14. Factors influencing the profitability of optimizing control systems

    International Nuclear Information System (INIS)

    Broussaud, A.; Guyot, O.

    1999-01-01

    Optimizing control systems supplement conventional Distributed Control Systems and Programmable Logic Controllers. They continuously implement set points, which aim at maximizing the profitability of plant operation. They are becoming an integral part of modern mineral processing plants. This trend is justified by economic considerations, optimizing control being among the most cost-effective methods of improving metallurgical plant performance. The paper successively analyzes three sets of factors, which influence the profitability of optimizing control systems, and provides guidelines for analyzing the potential value of an optimizing control system at a given operation: external factors, such as economic factors and factors related to plant feed; features of the optimizing control system; and subsequent maintenance of the optimizing control system. It is shown that pay back times for optimization control projects are typically measured in days. The OCS software used by the authors for their applications is described briefly. (author)

  15. Role of controllability in optimizing quantum dynamics

    International Nuclear Information System (INIS)

    Wu Rebing; Hsieh, Michael A.; Rabitz, Herschel

    2011-01-01

    This paper reveals an important role that controllability plays in the complexity of optimizing quantum control dynamics. We show that the loss of controllability generally leads to multiple locally suboptimal controls when gate fidelity in a quantum control system is maximized, which does not happen if the system is controllable. Such local suboptimal controls may attract an optimization algorithm into a local trap when a global optimal solution is sought, even if the target gate can be perfectly realized. This conclusion results from an analysis of the critical topology of the corresponding quantum control landscape, which refers to the gate fidelity objective as a functional of the control fields. For uncontrollable systems, due to SU(2) and SU(3) dynamical symmetries, the control landscape corresponding to an implementable target gate is proven to possess multiple locally optimal critical points, and its ruggedness can be further increased if the target gate is not realizable. These results imply that the optimization of quantum dynamics can be seriously impeded when operating with local search algorithms under these conditions, and thus full controllability is demanded.

  16. Integrating prediction, provenance, and optimization into high energy workflows

    Energy Technology Data Exchange (ETDEWEB)

    Schram, M.; Bansal, V.; Friese, R. D.; Tallent, N. R.; Yin, J.; Barker, K. J.; Stephan, E.; Halappanavar, M.; Kerbyson, D. J.

    2017-10-01

    We propose a novel approach for efficient execution of workflows on distributed resources. The key components of this framework include: performance modeling to quantitatively predict workflow component behavior; optimization-based scheduling such as choosing an optimal subset of resources to meet demand and assignment of tasks to resources; distributed I/O optimizations such as prefetching; and provenance methods for collecting performance data. In preliminary results, these techniques improve throughput on a small Belle II workflow by 20%.

  17. Time-optimal feedback control for linear systems

    International Nuclear Information System (INIS)

    Mirica, S.

    1976-01-01

    The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)

  18. Optimal control of compressible Navier-Stokes equations

    International Nuclear Information System (INIS)

    Ito, K.; Ravindran, S.S.

    1994-01-01

    Optimal control for the viscous incompressible flows, which are governed by incompressible Navier-Stokes equations, has been the subject of extensive study in recent years, see, e.g., [AT], [GHS], [IR], and [S]. In this paper we consider the optimal control of compressible isentropic Navier-Stokes equations. We develop the weak variational formulation and discuss the existence and necessary optimality condition characterizing the optimal control. A numerical method based on the mixed-finite element method is also discussed to compute the control and numerical results are presented

  19. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...... reference tracking and disturbance rejection in an economically optimal way. The performance function is chosen as a mixture of the `1-norm and a linear weighting to model the economics of the system. Simulations show a significant improvement of the performance of the MPC compared to the current...

  20. Optimal control of quantum measurement

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Daniel; Wilhelm, Frank [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany)

    2015-07-01

    Pulses to steer the time evolution of quantum systems can be designed with optimal control theory. In most cases it is the coherent processes that can be controlled and one optimizes the time evolution towards a target unitary process, sometimes also in the presence of non-controllable incoherent processes. Here we show how to extend the GRAPE algorithm in the case where the incoherent processes are controllable and the target time evolution is a non-unitary quantum channel. We perform a gradient search on a fidelity measure based on Choi matrices. We illustrate our algorithm by optimizing a measurement pulse for superconducting phase qubits. We show how this technique can lead to large measurement contrast close to 99%. We also show, within the validity of our model, that this algorithm can produce short 1.4 ns pulses with 98.2% contrast.

  1. Optimal control, investment and utilization schemes for energy storage under uncertainty

    Science.gov (United States)

    Mirhosseini, Niloufar Sadat

    Energy storage has the potential to offer new means for added flexibility on the electricity systems. This flexibility can be used in a number of ways, including adding value towards asset management, power quality and reliability, integration of renewable resources and energy bill savings for the end users. However, uncertainty about system states and volatility in system dynamics can complicate the question of when to invest in energy storage and how best to manage and utilize it. This work proposes models to address different problems associated with energy storage within a microgrid, including optimal control, investment, and utilization. Electric load, renewable resources output, storage technology cost and electricity day-ahead and spot prices are the factors that bring uncertainty to the problem. A number of analytical methodologies have been adopted to develop the aforementioned models. Model Predictive Control and discretized dynamic programming, along with a new decomposition algorithm are used to develop optimal control schemes for energy storage for two different levels of renewable penetration. Real option theory and Monte Carlo simulation, coupled with an optimal control approach, are used to obtain optimal incremental investment decisions, considering multiple sources of uncertainty. Two stage stochastic programming is used to develop a novel and holistic methodology, including utilization of energy storage within a microgrid, in order to optimally interact with energy market. Energy storage can contribute in terms of value generation and risk reduction for the microgrid. The integration of the models developed here are the basis for a framework which extends from long term investments in storage capacity to short term operational control (charge/discharge) of storage within a microgrid. In particular, the following practical goals are achieved: (i) optimal investment on storage capacity over time to maximize savings during normal and emergency

  2. Optimal control of hybrid vehicles

    CERN Document Server

    Jager, Bram; Kessels, John

    2013-01-01

    Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on Pontryagin’s maximum principle.   Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Two case studies are included in the book: ·        a control strategy for a micro-hybrid power train; and ·        experimental results obtained with a real-time strategy implemented in...

  3. An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Zeng

    2017-11-01

    Full Text Available As the penetration level of renewable distributed generations such as wind turbine generator and photovoltaic stations increases, the load frequency control issue of a multi-area interconnected power system becomes more challenging. This paper presents an adaptive model predictive load frequency control method for a multi-area interconnected power system with photovoltaic generation by considering some nonlinear features such as a dead band for governor and generation rate constraint for steam turbine. The dynamic characteristic of this system is formulated as a discrete-time state space model firstly. Then, the predictive dynamic model is obtained by introducing an expanded state vector, and rolling optimization of control signal is implemented based on a cost function by minimizing the weighted sum of square predicted errors and square future control values. The simulation results on a typical two-area power system consisting of photovoltaic and thermal generator have demonstrated the superiority of the proposed model predictive control method to these state-of-the-art control techniques such as firefly algorithm, genetic algorithm, and population extremal optimization-based proportional-integral control methods in cases of normal conditions, load disturbance and parameters uncertainty.

  4. Small Body GN&C Research Report: A Robust Model Predictive Control Algorithm with Guaranteed Resolvability

    Science.gov (United States)

    Acikmese, Behcet A.; Carson, John M., III

    2005-01-01

    A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees the resolvability of the associated finite-horizon optimal control problem in a receding-horizon implementation. The control consists of two components; (i) feedforward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives, and derivatives in polytopes. An illustrative numerical example is also provided.

  5. Direct Optimal Control of Duffing Dynamics

    Science.gov (United States)

    Oz, Hayrani; Ramsey, John K.

    2002-01-01

    The "direct control method" is a novel concept that is an attractive alternative and competitor to the differential-equation-based methods. The direct method is equally well applicable to nonlinear, linear, time-varying, and time-invariant systems. For all such systems, the method yields explicit closed-form control laws based on minimization of a quadratic control performance measure. We present an application of the direct method to the dynamics and optimal control of the Duffing system where the control performance measure is not restricted to a quadratic form and hence may include a quartic energy term. The results we present in this report also constitute further generalizations of our earlier work in "direct optimal control methodology." The approach is demonstrated for the optimal control of the Duffing equation with a softening nonlinear stiffness.

  6. Optimal Control Development System for Electrical Drives

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2008-08-01

    Full Text Available In this paper the optimal electrical drive development system is presented. It consists of both electrical drive types: DC and AC. In order to implement the optimal control for AC drive system an Altivar 71 inverter, a Frato magnetic particle brake (as load, three-phase induction machine, and dSpace 1104 controller have been used. The on-line solution of the matrix Riccati differential equation (MRDE is computed by dSpace 1104 controller, based on the corresponding feedback signals, generating the optimal speed reference for the AC drive system. The optimal speed reference is tracked by Altivar 71 inverter, conducting to energy reduction in AC drive. The classical control (consisting of rotor field oriented control with PI controllers and the optimal one have been implemented by designing an adequate ControlDesk interface. The three-phase induction machine (IM is controlled at constant flux. Therefore, the linear dynamic mathematical model of the IM has been obtained. The optimal control law provides transient regimes with minimal energy consumption. The obtained solution by integration of the MRDE is orientated towards the numerical implementation-by using a zero order hold. The development system is very useful for researchers, doctoral students or experts training in electrical drive. The experimental results are shown.

  7. Turnpike phenomenon and infinite horizon optimal control

    CERN Document Server

    Zaslavski, Alexander J

    2014-01-01

    This book is devoted to the study of the turnpike phenomenon and describes the existence of solutions for a large variety of infinite horizon optimal control classes of problems.  Chapter 1 provides introductory material on turnpike properties. Chapter 2 studies the turnpike phenomenon for discrete-time optimal control problems. The turnpike properties of autonomous problems with extended-value intergrands are studied in Chapter 3. Chapter 4 focuses on large classes of infinite horizon optimal control problems without convexity (concavity) assumptions. In Chapter 5, the turnpike results for a class of dynamic discrete-time two-player zero-sum game are proven. This thorough exposition will be very useful  for mathematicians working in the fields of optimal control, the calculus of variations, applied functional analysis, and infinite horizon optimization. It may also be used as a primary text in a graduate course in optimal control or as supplementary text for a variety of courses in other disciplines. Resea...

  8. Euler's fluid equations: Optimal control vs optimization

    International Nuclear Information System (INIS)

    Holm, Darryl D.

    2009-01-01

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  9. Elevated Ictal Brain Network Ictogenicity Enables Prediction of Optimal Seizure Control

    Directory of Open Access Journals (Sweden)

    Marinho A. Lopes

    2018-03-01

    Full Text Available Recent studies have shown that mathematical models can be used to analyze brain networks by quantifying how likely they are to generate seizures. In particular, we have introduced the quantity termed brain network ictogenicity (BNI, which was demonstrated to have the capability of differentiating between functional connectivity (FC of healthy individuals and those with epilepsy. Furthermore, BNI has also been used to quantify and predict the outcome of epilepsy surgery based on FC extracted from pre-operative ictal intracranial electroencephalography (iEEG. This modeling framework is based on the assumption that the inferred FC provides an appropriate representation of an ictogenic network, i.e., a brain network responsible for the generation of seizures. However, FC networks have been shown to change their topology depending on the state of the brain. For example, topologies during seizure are different to those pre- and post-seizure. We therefore sought to understand how these changes affect BNI. We studied peri-ictal iEEG recordings from a cohort of 16 epilepsy patients who underwent surgery and found that, on average, ictal FC yield higher BNI relative to pre- and post-ictal FC. However, elevated ictal BNI was not observed in every individual, rather it was typically observed in those who had good post-operative seizure control. We therefore hypothesize that elevated ictal BNI is indicative of an ictogenic network being appropriately represented in the FC. We evidence this by demonstrating superior model predictions for post-operative seizure control in patients with elevated ictal BNI.

  10. Economic model predictive control theory, formulations and chemical process applications

    CERN Document Server

    Ellis, Matthew; Christofides, Panagiotis D

    2017-01-01

    This book presents general methods for the design of economic model predictive control (EMPC) systems for broad classes of nonlinear systems that address key theoretical and practical considerations including recursive feasibility, closed-loop stability, closed-loop performance, and computational efficiency. Specifically, the book proposes: Lyapunov-based EMPC methods for nonlinear systems; two-tier EMPC architectures that are highly computationally efficient; and EMPC schemes handling explicitly uncertainty, time-varying cost functions, time-delays and multiple-time-scale dynamics. The proposed methods employ a variety of tools ranging from nonlinear systems analysis, through Lyapunov-based control techniques to nonlinear dynamic optimization. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples. The book presents state-of-the-art methods for the design of economic model predictive control systems for chemical processes. In addition to being...

  11. Hierarchical Model Predictive Control for Resource Distribution

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2010-01-01

    units. The approach is inspired by smart-grid electric power production and consumption systems, where the flexibility of a large number of power producing and/or power consuming units can be exploited in a smart-grid solution. The objective is to accommodate the load variation on the grid, arising......This paper deals with hierarchichal model predictive control (MPC) of distributed systems. A three level hierachical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level of autonomous...... on one hand from varying consumption, on the other hand by natural variations in power production e.g. from wind turbines. The approach presented is based on quadratic optimization and possess the properties of low algorithmic complexity and of scalability. In particular, the proposed design methodology...

  12. Optimal management strategies in variable environments: Stochastic optimal control methods

    Science.gov (United States)

    Williams, B.K.

    1985-01-01

    Dynamic optimization was used to investigate the optimal defoliation of salt desert shrubs in north-western Utah. Management was formulated in the context of optimal stochastic control theory, with objective functions composed of discounted or time-averaged biomass yields. Climatic variability and community patterns of salt desert shrublands make the application of stochastic optimal control both feasible and necessary. A primary production model was used to simulate shrub responses and harvest yields under a variety of climatic regimes and defoliation patterns. The simulation results then were used in an optimization model to determine optimal defoliation strategies. The latter model encodes an algorithm for finite state, finite action, infinite discrete time horizon Markov decision processes. Three questions were addressed: (i) What effect do changes in weather patterns have on optimal management strategies? (ii) What effect does the discounting of future returns have? (iii) How do the optimal strategies perform relative to certain fixed defoliation strategies? An analysis was performed for the three shrub species, winterfat (Ceratoides lanata), shadscale (Atriplex confertifolia) and big sagebrush (Artemisia tridentata). In general, the results indicate substantial differences among species in optimal control strategies, which are associated with differences in physiological and morphological characteristics. Optimal policies for big sagebrush varied less with variation in climate, reserve levels and discount rates than did either shadscale or winterfat. This was attributed primarily to the overwintering of photosynthetically active tissue and to metabolic activity early in the growing season. Optimal defoliation of shadscale and winterfat generally was more responsive to differences in plant vigor and climate, reflecting the sensitivity of these species to utilization and replenishment of carbohydrate reserves. Similarities could be seen in the influence of both

  13. Optimal control of motorsport differentials

    Science.gov (United States)

    Tremlett, A. J.; Massaro, M.; Purdy, D. J.; Velenis, E.; Assadian, F.; Moore, A. P.; Halley, M.

    2015-12-01

    Modern motorsport limited slip differentials (LSD) have evolved to become highly adjustable, allowing the torque bias that they generate to be tuned in the corner entry, apex and corner exit phases of typical on-track manoeuvres. The task of finding the optimal torque bias profile under such varied vehicle conditions is complex. This paper presents a nonlinear optimal control method which is used to find the minimum time optimal torque bias profile through a lane change manoeuvre. The results are compared to traditional open and fully locked differential strategies, in addition to considering related vehicle stability and agility metrics. An investigation into how the optimal torque bias profile changes with reduced track-tyre friction is also included in the analysis. The optimal LSD profile was shown to give a performance gain over its locked differential counterpart in key areas of the manoeuvre where a quick direction change is required. The methodology proposed can be used to find both optimal passive LSD characteristics and as the basis of a semi-active LSD control algorithm.

  14. Presentation of Malaria Epidemics Using Multiple Optimal Controls

    Directory of Open Access Journals (Sweden)

    Abid Ali Lashari

    2012-01-01

    Full Text Available An existing model is extended to assess the impact of some antimalaria control measures, by re-formulating the model as an optimal control problem. This paper investigates the fundamental role of three type of controls, personal protection, treatment, and mosquito reduction strategies in controlling the malaria. We work in the nonlinear optimal control framework. The existence and the uniqueness results of the solution are discussed. A characterization of the optimal control via adjoint variables is established. The optimality system is solved numerically by a competitive Gauss-Seidel-like implicit difference method. Finally, numerical simulations of the optimal control problem, using a set of reasonable parameter values, are carried out to investigate the effectiveness of the proposed control measures.

  15. Optimization analysis of propulsion motor control efficiency

    Directory of Open Access Journals (Sweden)

    CAI Qingnan

    2017-12-01

    Full Text Available [Objectives] This paper aims to strengthen the control effect of propulsion motors and decrease the energy used during actual control procedures.[Methods] Based on the traditional propulsion motor equivalence circuit, we increase the iron loss current component, introduce the definition of power matching ratio, calculate the highest efficiency of a motor at a given speed and discuss the flux corresponding to the power matching ratio with the highest efficiency. In the original motor vector efficiency optimization control module, an efficiency optimization control module is added so as to achieve motor efficiency optimization and energy conservation.[Results] MATLAB/Simulink simulation data shows that the efficiency optimization control method is suitable for most conditions. The operation efficiency of the improved motor model is significantly higher than that of the original motor model, and its dynamic performance is good.[Conclusions] Our motor efficiency optimization control method can be applied in engineering to achieve energy conservation.

  16. Combined Active and Reactive Power Control of Wind Farms based on Model Predictive Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Wang, Jianhui

    2017-01-01

    This paper proposes a combined wind farm controller based on Model Predictive Control (MPC). Compared with the conventional decoupled active and reactive power control, the proposed control scheme considers the significant impact of active power on voltage variations due to the low X=R ratio...... of wind farm collector systems. The voltage control is improved. Besides, by coordination of active and reactive power, the Var capacity is optimized to prevent potential failures due to Var shortage, especially when the wind farm operates close to its full load. An analytical method is used to calculate...... the sensitivity coefficients to improve the computation efficiency and overcome the convergence problem. Two control modes are designed for both normal and emergency conditions. A wind farm with 20 wind turbines was used to verify the proposed combined control scheme....

  17. Explicit model predictive control applications in power systems: an AGC study for an isolated industrial system

    DEFF Research Database (Denmark)

    Jiang, Hao; Lin, Jin; Song, Yonghua

    2016-01-01

    Model predictive control (MPC), that can consider system constraints, is one of the most advanced control technology used nowadays. In power systems, MPC is applied in a way that an optimal control sequence is given every step by an online MPC controller. The main drawback is that the control law...

  18. Improved hybrid optimization algorithm for 3D protein structure prediction.

    Science.gov (United States)

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  19. Optimizing Prediction Using Bayesian Model Averaging: Examples Using Large-Scale Educational Assessments.

    Science.gov (United States)

    Kaplan, David; Lee, Chansoon

    2018-01-01

    This article provides a review of Bayesian model averaging as a means of optimizing the predictive performance of common statistical models applied to large-scale educational assessments. The Bayesian framework recognizes that in addition to parameter uncertainty, there is uncertainty in the choice of models themselves. A Bayesian approach to addressing the problem of model uncertainty is the method of Bayesian model averaging. Bayesian model averaging searches the space of possible models for a set of submodels that satisfy certain scientific principles and then averages the coefficients across these submodels weighted by each model's posterior model probability (PMP). Using the weighted coefficients for prediction has been shown to yield optimal predictive performance according to certain scoring rules. We demonstrate the utility of Bayesian model averaging for prediction in education research with three examples: Bayesian regression analysis, Bayesian logistic regression, and a recently developed approach for Bayesian structural equation modeling. In each case, the model-averaged estimates are shown to yield better prediction of the outcome of interest than any submodel based on predictive coverage and the log-score rule. Implications for the design of large-scale assessments when the goal is optimal prediction in a policy context are discussed.

  20. Stress Exposure and Depression in Disadvantaged Women: The Protective Effects of Optimism and Perceived Control

    Science.gov (United States)

    Grote, Nancy K.; Bledsoe, Sarah E.; Larkin, Jill; Lemay, Edward P., Jr.; Brown, Charlotte

    2007-01-01

    In the present study, the authors predicted that the individual protective factors of optimism and perceived control over acute and chronic stressors would buffer the relations between acute and chronic stress exposure and severity of depression, controlling for household income, in a sample of financially disadvantaged women. Ninety-seven African…

  1. Optimal sensorimotor control in eye movement sequences.

    Science.gov (United States)

    Munuera, Jérôme; Morel, Pierre; Duhamel, Jean-René; Deneve, Sophie

    2009-03-11

    Fast and accurate motor behavior requires combining noisy and delayed sensory information with knowledge of self-generated body motion; much evidence indicates that humans do this in a near-optimal manner during arm movements. However, it is unclear whether this principle applies to eye movements. We measured the relative contributions of visual sensory feedback and the motor efference copy (and/or proprioceptive feedback) when humans perform two saccades in rapid succession, the first saccade to a visual target and the second to a memorized target. Unbeknownst to the subject, we introduced an artificial motor error by randomly "jumping" the visual target during the first saccade. The correction of the memory-guided saccade allowed us to measure the relative contributions of visual feedback and efferent copy (and/or proprioceptive feedback) to motor-plan updating. In a control experiment, we extinguished the target during the saccade rather than changing its location to measure the relative contribution of motor noise and target localization error to saccade variability without any visual feedback. The motor noise contribution increased with saccade amplitude, but remained <30% of the total variability. Subjects adjusted the gain of their visual feedback for different saccade amplitudes as a function of its reliability. Even during trials where subjects performed a corrective saccade to compensate for the target-jump, the correction by the visual feedback, while stronger, remained far below 100%. In all conditions, an optimal controller predicted the visual feedback gain well, suggesting that humans combine optimally their efferent copy and sensory feedback when performing eye movements.

  2. Modeling and Model Predictive Power and Rate Control of Wireless Communication Networks

    Directory of Open Access Journals (Sweden)

    Cunwu Han

    2014-01-01

    Full Text Available A novel power and rate control system model for wireless communication networks is presented, which includes uncertainties, input constraints, and time-varying delays in both state and control input. A robust delay-dependent model predictive power and rate control method is proposed, and the state feedback control law is obtained by solving an optimization problem that is derived by using linear matrix inequality (LMI techniques. Simulation results are given to illustrate the effectiveness of the proposed method.

  3. Optimization and real-time control for laser treatment of heterogeneous soft tissues.

    Science.gov (United States)

    Feng, Yusheng; Fuentes, David; Hawkins, Andrea; Bass, Jon M; Rylander, Marissa Nichole

    2009-01-01

    Predicting the outcome of thermotherapies in cancer treatment requires an accurate characterization of the bioheat transfer processes in soft tissues. Due to the biological and structural complexity of tumor (soft tissue) composition and vasculature, it is often very difficult to obtain reliable tissue properties that is one of the key factors for the accurate treatment outcome prediction. Efficient algorithms employing in vivo thermal measurements to determine heterogeneous thermal tissues properties in conjunction with a detailed sensitivity analysis can produce essential information for model development and optimal control. The goals of this paper are to present a general formulation of the bioheat transfer equation for heterogeneous soft tissues, review models and algorithms developed for cell damage, heat shock proteins, and soft tissues with nanoparticle inclusion, and demonstrate an overall computational strategy for developing a laser treatment framework with the ability to perform real-time robust calibrations and optimal control. This computational strategy can be applied to other thermotherapies using the heat source such as radio frequency or high intensity focused ultrasound.

  4. Mechanical design and optimal control of humanoid robot (TPinokio

    Directory of Open Access Journals (Sweden)

    Teck Chew Wee

    2014-04-01

    Full Text Available The mechanical structure and the control of the locomotion of bipedal humanoid is an important and challenging domain of research in bipedal robots. Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal locomotion. Toe-foot walking produces a more natural and faster walking speed and it is even possible to perform stretch knee walking. This study presents the mechanical design of a toe-feet bipedal, TPinokio and the implementation of some optimal walking gait generation methods. The optimality in the gait trajectory is achieved by applying augmented model predictive control method and the pole-zero cancellation method, taken into consideration of a trade-off between walking speed and stability. The mechanism of the TPinokio robot is designed in modular form, so that its kinematics can be modelled accurately into a multiple point-mass system, its dynamics is modelled using the single and double mass inverted pendulum model and zero-moment-point concept. The effectiveness of the design and control technique is validated by simulation testing with the robot walking on flat surface and climbing stairs.

  5. A Novel Optimal Control Method for Impulsive-Correction Projectile Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Ruisheng Sun

    2016-01-01

    Full Text Available This paper presents a new parametric optimization approach based on a modified particle swarm optimization (PSO to design a class of impulsive-correction projectiles with discrete, flexible-time interval, and finite-energy control. In terms of optimal control theory, the task is described as the formulation of minimum working number of impulses and minimum control error, which involves reference model linearization, boundary conditions, and discontinuous objective function. These result in difficulties in finding the global optimum solution by directly utilizing any other optimization approaches, for example, Hp-adaptive pseudospectral method. Consequently, PSO mechanism is employed for optimal setting of impulsive control by considering the time intervals between two neighboring lateral impulses as design variables, which makes the briefness of the optimization process. A modification on basic PSO algorithm is developed to improve the convergence speed of this optimization through linearly decreasing the inertial weight. In addition, a suboptimal control and guidance law based on PSO technique are put forward for the real-time consideration of the online design in practice. Finally, a simulation case coupled with a nonlinear flight dynamic model is applied to validate the modified PSO control algorithm. The results of comparative study illustrate that the proposed optimal control algorithm has a good performance in obtaining the optimal control efficiently and accurately and provides a reference approach to handling such impulsive-correction problem.

  6. Dynamic optimization and adaptive controller design

    Science.gov (United States)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  7. Model predictive controller-based multi-model control system for longitudinal stability of distributed drive electric vehicle.

    Science.gov (United States)

    Shi, Ke; Yuan, Xiaofang; Liu, Liang

    2018-01-01

    Distributed drive electric vehicle(DDEV) has been widely researched recently, its longitudinal stability is a very important research topic. Conventional wheel slip ratio control strategies are usually designed for one special operating mode and the optimal performance cannot be obtained as DDEV works under various operating modes. In this paper, a novel model predictive controller-based multi-model control system (MPC-MMCS) is proposed to solve the longitudinal stability problem of DDEV. Firstly, the operation state of DDEV is summarized as three kinds of typical operating modes. A submodel set is established to accurately represent the state value of the corresponding operating mode. Secondly, the matching degree between the state of actual DDEV and each submodel is analyzed. The matching degree is expressed as the weight coefficient and calculated by a modified recursive Bayes theorem. Thirdly, a nonlinear MPC is designed to achieve the optimal wheel slip ratio for each submodel. The optimal design of MPC is realized by parallel chaos optimization algorithm(PCOA)with computational accuracy and efficiency. Finally, the control output of MPC-MMCS is computed by the weighted output of each MPC to achieve smooth switching between operating modes. The proposed MPC-MMCS is evaluated on eight degrees of freedom(8DOF)DDEV model simulation platform and simulation results of different condition show the benefits of the proposed control system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Implementation of Chaotic Gaussian Particle Swarm Optimization for Optimize Learning-to-Rank Software Defect Prediction Model Construction

    Science.gov (United States)

    Buchari, M. A.; Mardiyanto, S.; Hendradjaya, B.

    2018-03-01

    Finding the existence of software defect as early as possible is the purpose of research about software defect prediction. Software defect prediction activity is required to not only state the existence of defects, but also to be able to give a list of priorities which modules require a more intensive test. Therefore, the allocation of test resources can be managed efficiently. Learning to rank is one of the approach that can provide defect module ranking data for the purposes of software testing. In this study, we propose a meta-heuristic chaotic Gaussian particle swarm optimization to improve the accuracy of learning to rank software defect prediction approach. We have used 11 public benchmark data sets as experimental data. Our overall results has demonstrated that the prediction models construct using Chaotic Gaussian Particle Swarm Optimization gets better accuracy on 5 data sets, ties in 5 data sets and gets worse in 1 data sets. Thus, we conclude that the application of Chaotic Gaussian Particle Swarm Optimization in Learning-to-Rank approach can improve the accuracy of the defect module ranking in data sets that have high-dimensional features.

  9. Optimization of boundary controls of string vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Il' in, V A; Moiseev, E I [Department of Computing Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2005-12-31

    For a large time interval T boundary controls of string vibrations are optimized in the following seven boundary-control problems: displacement control at one end (with the other end fixed or free); displacement control at both ends; elastic force control at one end (with the other end fixed or free); elastic force control at both ends; combined control (displacement control at one end and elastic force control at the other). Optimal boundary controls in each of these seven problems are sought as functions minimizing the corresponding boundary-energy integral under the constraints following from the initial and terminal conditions for the string at t=0 and t=T, respectively. For all seven problems, the optimal boundary controls are written out in closed analytic form.

  10. Economic Model Predictive Control for Hot Water Based Heating Systems in Smart Buildings

    DEFF Research Database (Denmark)

    Awadelrahman, M. A. Ahmed; Zong, Yi; Li, Hongwei

    2017-01-01

    This paper presents a study to optimize the heating energy costs in a residential building with varying electricity price signals based on an Economic Model Predictive Controller (EMPC). The investigated heating system consists of an air source heat pump (ASHP) incorporated with a hot water tank...... as active Thermal Energy Storage (TES), where two optimization problems are integrated together to optimize both the ASHP electricity consumption and the building heating consumption utilizing a heat dynamic model of the building. The results show that the proposed EMPC can save the energy cost by load...

  11. Model predictive control of a wind turbine modelled in Simpack

    International Nuclear Information System (INIS)

    Jassmann, U; Matzke, D; Reiter, M; Abel, D; Berroth, J; Schelenz, R; Jacobs, G

    2014-01-01

    Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine

  12. Model predictive control of a wind turbine modelled in Simpack

    Science.gov (United States)

    Jassmann, U.; Berroth, J.; Matzke, D.; Schelenz, R.; Reiter, M.; Jacobs, G.; Abel, D.

    2014-06-01

    Wind turbines (WT) are steadily growing in size to increase their power production, which also causes increasing loads acting on the turbine's components. At the same time large structures, such as the blades and the tower get more flexible. To minimize this impact, the classical control loops for keeping the power production in an optimum state are more and more extended by load alleviation strategies. These additional control loops can be unified by a multiple-input multiple-output (MIMO) controller to achieve better balancing of tuning parameters. An example for MIMO control, which has been paid more attention to recently by wind industry, is Model Predictive Control (MPC). In a MPC framework a simplified model of the WT is used to predict its controlled outputs. Based on a user-defined cost function an online optimization calculates the optimal control sequence. Thereby MPC can intrinsically incorporate constraints e.g. of actuators. Turbine models used for calculation within the MPC are typically simplified. For testing and verification usually multi body simulations, such as FAST, BLADED or FLEX5 are used to model system dynamics, but they are still limited in the number of degrees of freedom (DOF). Detailed information about load distribution (e.g. inside the gearbox) cannot be provided by such models. In this paper a Model Predictive Controller is presented and tested in a co-simulation with SlMPACK, a multi body system (MBS) simulation framework used for detailed load analysis. The analysis are performed on the basis of the IME6.0 MBS WT model, described in this paper. It is based on the rotor of the NREL 5MW WT and consists of a detailed representation of the drive train. This takes into account a flexible main shaft and its main bearings with a planetary gearbox, where all components are modelled flexible, as well as a supporting flexible main frame. The wind loads are simulated using the NREL AERODYN v13 code which has been implemented as a routine to

  13. Application of Neural Network Optimized by Mind Evolutionary Computation in Building Energy Prediction

    Science.gov (United States)

    Song, Chen; Zhong-Cheng, Wu; Hong, Lv

    2018-03-01

    Building Energy forecasting plays an important role in energy management and plan. Using mind evolutionary algorithm to find the optimal network weights and threshold, to optimize the BP neural network, can overcome the problem of the BP neural network into a local minimum point. The optimized network is used for time series prediction, and the same month forecast, to get two predictive values. Then two kinds of predictive values are put into neural network, to get the final forecast value. The effectiveness of the method was verified by experiment with the energy value of three buildings in Hefei.

  14. Modeling and control design of a stand alone wind energy conversion system based on functional model predictive control

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Ahmed M. [Beni-Suef University, Electrical Dept., Beni Suef (Egypt)

    2012-09-15

    This paper investigates the application of the model predictive control (MPC) approach to control the voltage and frequency of a stand alone wind generation system. This scheme consists of a wind turbine which drives an induction generator feeding an isolated load. A static VAR compensator is connected at the induction generator terminals to regulate the load voltage. The rotor speed, and thereby the load frequency are controlled via adjusting the mechanical power input using the blade pitch-angle. The MPC is used to calculate the optimal control actions including system constraints. To alleviate computational effort and to reduce numerical problems, particularly in large prediction horizon, an exponentially weighted functional model predictive control (FMPC) is employed. Digital simulations have been carried out in order to validate the effectiveness of the proposed scheme. The proposed controller has been tested through step changes in the wind speed and the load impedance. Simulation results show that adequate performance of the proposed wind energy scheme has been achieved. Moreover, this scheme is robust against the parameters variation and eliminates the influence of modeling and measurement errors. (orig.)

  15. Computationally efficient model predictive control algorithms a neural network approach

    CERN Document Server

    Ławryńczuk, Maciej

    2014-01-01

    This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: ·         A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. ·         Implementation details of the MPC algorithms for feedforward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. ·         The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). ·         The MPC algorithms with neural approximation with no on-line linearization. ·         The MPC algorithms with guaranteed stability and robustness. ·         Cooperation between the MPC algorithms and set-point optimization. Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require d...

  16. Optimal control and optimal trajectories of regional macroeconomic dynamics based on the Pontryagin maximum principle

    Science.gov (United States)

    Bulgakov, V. K.; Strigunov, V. V.

    2009-05-01

    The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.

  17. Optimal design of distributed control and embedded systems

    CERN Document Server

    Çela, Arben; Li, Xu-Guang; Niculescu, Silviu-Iulian

    2014-01-01

    Optimal Design of Distributed Control and Embedded Systems focuses on the design of special control and scheduling algorithms based on system structural properties as well as on analysis of the influence of induced time-delay on systems performances. It treats the optimal design of distributed and embedded control systems (DCESs) with respect to communication and calculation-resource constraints, quantization aspects, and potential time-delays induced by the associated  communication and calculation model. Particular emphasis is put on optimal control signal scheduling based on the system state. In order to render  this complex optimization problem feasible in real time, a time decomposition is based on periodicity induced by the static scheduling is operated. The authors present a co-design approach which subsumes the synthesis of the optimal control laws and the generation of an optimal schedule of control signals on real-time networks as well as the execution of control tasks on a single processor. The a...

  18. Multi-model predictive control method for nuclear steam generator water level

    International Nuclear Information System (INIS)

    Hu Ke; Yuan Jingqi

    2008-01-01

    The dynamics of a nuclear steam generator (SG) is very different according to the power levels and changes as time goes on. Therefore, it is an intractable as well as challenging task to improve the water level control system of the SG. In this paper, a robust model predictive control (RMPC) method is developed for the level control problem. Based on a multi-model framework, a combination of a local nominal model with a polytopic uncertain linear parameter varying (LPV) model is built to approximate the system's non-linear behavior. The optimization problem solved here is based on a receding horizon scheme involving the linear matrix inequality (LMI) technique. Closed loop stability and constraints satisfaction in the entire operating range are guaranteed by the feasibility of the optimization problem. Finally, simulation results show the effectiveness and the good performance of the proposed method

  19. Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms.

    Science.gov (United States)

    Asgharnia, Amirhossein; Shahnazi, Reza; Jamali, Ali

    2018-05-11

    The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Data-Driven Predictive Direct Load Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Knudsen, Torben; Wisniewski, Rafal

    2015-01-01

    A predictive control using subspace identification is applied for the smart grid integration of refrigeration systems under a direct load control scheme. A realistic demand response scenario based on regulation of the electrical power consumption is considered. A receding horizon optimal control...... is proposed to fulfil two important objectives: to secure high coefficient of performance and to participate in power consumption management. Moreover, a new method for design of input signals for system identification is put forward. The control method is fully data driven without an explicit use of model...... against real data. The performance improvement results in a 22% reduction in the energy consumption. A comparative simulation is accomplished showing the superiority of the method over the existing approaches in terms of the load following performance....

  1. Optimal control of hydroelectric facilities

    Science.gov (United States)

    Zhao, Guangzhi

    This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the

  2. Optimal control for Malaria disease through vaccination

    Science.gov (United States)

    Munzir, Said; Nasir, Muhammad; Ramli, Marwan

    2018-01-01

    Malaria is a disease caused by an amoeba (single-celled animal) type of plasmodium where anopheles mosquito serves as the carrier. This study examines the optimal control problem of malaria disease spread based on Aron and May (1982) SIR type models and seeks the optimal solution by minimizing the prevention of the spreading of malaria by vaccine. The aim is to investigate optimal control strategies on preventing the spread of malaria by vaccination. The problem in this research is solved using analytical approach. The analytical method uses the Pontryagin Minimum Principle with the symbolic help of MATLAB software to obtain optimal control result and to analyse the spread of malaria with vaccination control.

  3. Health-aware Model Predictive Control of Pasteurization Plant

    Science.gov (United States)

    Karimi Pour, Fatemeh; Puig, Vicenç; Ocampo-Martinez, Carlos

    2017-01-01

    In order to optimize the trade-off between components life and energy consumption, the integration of a system health management and control modules is required. This paper proposes the integration of model predictive control (MPC) with a fatigue estimation approach that minimizes the damage of the components of a pasteurization plant. The fatigue estimation is assessed with the rainflow counting algorithm. Using data from this algorithm, a simplified model that characterizes the health of the system is developed and integrated with MPC. The MPC controller objective is modified by adding an extra criterion that takes into account the accumulated damage. But, a steady-state offset is created by adding this extra criterion. Finally, by including an integral action in the MPC controller, the steady-state error for regulation purpose is eliminated. The proposed control scheme is validated in simulation using a simulator of a utility-scale pasteurization plant.

  4. Optimal Real-Time Scheduling for Hybrid Energy Storage Systems and Wind Farms Based on Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Meng Xiong

    2015-08-01

    Full Text Available Energy storage devices are expected to be more frequently implemented in wind farms in near future. In this paper, both pumped hydro and fly wheel storage systems are used to assist a wind farm to smooth the power fluctuations. Due to the significant difference in the response speeds of the two storages types, the wind farm coordination with two types of energy storage is a problem. This paper presents two methods for the coordination problem: a two-level hierarchical model predictive control (MPC method and a single-level MPC method. In the single-level MPC method, only one MPC controller coordinates the wind farm and the two storage systems to follow the grid scheduling. Alternatively, in the two-level MPC method, two MPC controllers are used to coordinate the wind farm and the two storage systems. The structure of two level MPC consists of outer level and inner level MPC. They run alternatively to perform real-time scheduling and then stop, thus obtaining long-term scheduling results and sending some results to the inner level as input. The single-level MPC method performs both long- and short-term scheduling tasks in each interval. The simulation results show that the methods proposed can improve the utilization of wind power and reduce wind power spillage. In addition, the single-level MPC and the two-level MPC are not interchangeable. The single-level MPC has the advantage of following the grid schedule while the two-level MPC can reduce the optimization time by 60%.

  5. ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining

    Science.gov (United States)

    Chandrasekaran, Muthumari; Tamang, Santosh

    2017-08-01

    Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.

  6. Delta-Domain Predictive Control and Identification for Control

    DEFF Research Database (Denmark)

    Lauritsen, Morten Bach

    1997-01-01

    The present thesis is concerned with different aspects of modelling, control and identification of linear systems. Traditionally, discrete-time sampled-data systems are represented using shift-operator parametrizations. Such parametrizations are not suitable at fast sampling rates. An alternative...... minimum-variance predictor as a special case and to have a well-defined continuous-time limit. By means of this new prediction method a unified framework for discrete-time and continuous-time predictive control algorithms is developed. This contains a continuous-time like discrete-time predictive...... controller which is insensitive to the choice of sampling period and has a well-defined limit in the continuous-time case. Also more conventional discrete-time predictive control methods may be described within the unified approach. The predictive control algorithms are extended to frequency weighted...

  7. Optimized Extreme Learning Machine for Power System Transient Stability Prediction Using Synchrophasors

    Directory of Open Access Journals (Sweden)

    Yanjun Zhang

    2015-01-01

    Full Text Available A new optimized extreme learning machine- (ELM- based method for power system transient stability prediction (TSP using synchrophasors is presented in this paper. First, the input features symbolizing the transient stability of power systems are extracted from synchronized measurements. Then, an ELM classifier is employed to build the TSP model. And finally, the optimal parameters of the model are optimized by using the improved particle swarm optimization (IPSO algorithm. The novelty of the proposal is in the fact that it improves the prediction performance of the ELM-based TSP model by using IPSO to optimize the parameters of the model with synchrophasors. And finally, based on the test results on both IEEE 39-bus system and a large-scale real power system, the correctness and validity of the presented approach are verified.

  8. The Prediction of the Gas Utilization Ratio based on TS Fuzzy Neural Network and Particle Swarm Optimization.

    Science.gov (United States)

    Zhang, Sen; Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong

    2018-02-20

    Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control.

  9. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  10. Optimal control of native predators

    Science.gov (United States)

    Martin, Julien; O'Connell, Allan F.; Kendall, William L.; Runge, Michael C.; Simons, Theodore R.; Waldstein, Arielle H.; Schulte, Shiloh A.; Converse, Sarah J.; Smith, Graham W.; Pinion, Timothy; Rikard, Michael; Zipkin, Elise F.

    2010-01-01

    We apply decision theory in a structured decision-making framework to evaluate how control of raccoons (Procyon lotor), a native predator, can promote the conservation of a declining population of American Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective was to maintain Oystercatcher productivity above a level deemed necessary for population recovery while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive optimization can be used to account for uncertainties about how raccoon control may affect Oystercatcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well suited for addressing controversial management issues such as native predator control. The case study also offers several insights that may be relevant to the optimal control of other native predators. First, we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most efficient if the reproductive values among stage classes were very different. Second, we found that the optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels recommended for this species. Third, we found that removing more raccoons initially minimized the total number of removals necessary to meet long term management objectives. Finally, if for logistical reasons managers cannot sustain a removal program by removing a minimum number of raccoons annually, managers may run the risk of creating an ecological trap for Oystercatchers.

  11. Optimization of condition-based asset management using a predictive health model

    NARCIS (Netherlands)

    Bajracharya, G.; Koltunowicz, T.; Negenborn, R.R.; Papp, Z.; Djairam, D.; De Schutter, B.; Smit, J.J.

    2009-01-01

    In this paper, a model predictive framework is used to optimize the operation and maintenance actions of power system equipment based on the predicted health sate of this equipment. In particular, this framework is used to predict the health state of transformers based on their usage. The health

  12. Optimal Predictions in Everyday Cognition: The Wisdom of Individuals or Crowds?

    Science.gov (United States)

    Mozer, Michael C.; Pashler, Harold; Homaei, Hadjar

    2008-01-01

    Griffiths and Tenenbaum (2006) asked individuals to make predictions about the duration or extent of everyday events (e.g., cake baking times), and reported that predictions were optimal, employing Bayesian inference based on veridical prior distributions. Although the predictions conformed strikingly to statistics of the world, they reflect…

  13. Input-constrained model predictive control via the alternating direction method of multipliers

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Frison, Gianluca; Andersen, Martin S.

    2014-01-01

    This paper presents an algorithm, based on the alternating direction method of multipliers, for the convex optimal control problem arising in input-constrained model predictive control. We develop an efficient implementation of the algorithm for the extended linear quadratic control problem (LQCP......) with input and input-rate limits. The algorithm alternates between solving an extended LQCP and a highly structured quadratic program. These quadratic programs are solved using a Riccati iteration procedure, and a structure-exploiting interior-point method, respectively. The computational cost per iteration...... is quadratic in the dimensions of the controlled system, and linear in the length of the prediction horizon. Simulations show that the approach proposed in this paper is more than an order of magnitude faster than several state-of-the-art quadratic programming algorithms, and that the difference in computation...

  14. Model Predictive Control Based on Kalman Filter for Constrained Hammerstein-Wiener Systems

    Directory of Open Access Journals (Sweden)

    Man Hong

    2013-01-01

    Full Text Available To precisely track the reactor temperature in the entire working condition, the constrained Hammerstein-Wiener model describing nonlinear chemical processes such as in the continuous stirred tank reactor (CSTR is proposed. A predictive control algorithm based on the Kalman filter for constrained Hammerstein-Wiener systems is designed. An output feedback control law regarding the linear subsystem is derived by state observation. The size of reaction heat produced and its influence on the output are evaluated by the Kalman filter. The observation and evaluation results are calculated by the multistep predictive approach. Actual control variables are computed while considering the constraints of the optimal control problem in a finite horizon through the receding horizon. The simulation example of the CSTR tester shows the effectiveness and feasibility of the proposed algorithm.

  15. Optimal Control for the Degenerate Elliptic Logistic Equation

    International Nuclear Information System (INIS)

    Delgado, M.; Montero, J.A.; Suarez, A.

    2002-01-01

    We consider the optimal control of harvesting the diffusive degenerate elliptic logistic equation. Under certain assumptions, we prove the existence and uniqueness of an optimal control. Moreover, the optimality system and a characterization of the optimal control are also derived. The sub-supersolution method, the singular eigenvalue problem and differentiability with respect to the positive cone are the techniques used to obtain our results

  16. Optimal control systems in hydro power plants

    International Nuclear Information System (INIS)

    Babunski, Darko L.

    2012-01-01

    The aim of the research done in this work is focused on obtaining the optimal models of hydro turbine including auxiliary equipment, analysis of governors for hydro power plants and analysis and design of optimal control laws that can be easily applicable in real hydro power plants. The methodology of the research and realization of the set goals consist of the following steps: scope of the models of hydro turbine, and their modification using experimental data; verification of analyzed models and comparison of advantages and disadvantages of analyzed models, with proposal of turbine model for design of control low; analysis of proportional-integral-derivative control with fixed parameters and gain scheduling and nonlinear control; analysis of dynamic characteristics of turbine model including control and comparison of parameters of simulated system with experimental data; design of optimal control of hydro power plant considering proposed cost function and verification of optimal control law with load rejection measured data. The hydro power plant models, including model of power grid are simulated in case of island ing and restoration after breakup and load rejection with consideration of real loading and unloading of hydro power plant. Finally, simulations provide optimal values of control parameters, stability boundaries and results easily applicable to real hydro power plants. (author)

  17. Optimal control with aerospace applications

    CERN Document Server

    Longuski, James M; Prussing, John E

    2014-01-01

    Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a...

  18. Genetic Algorithm Optimizes Q-LAW Control Parameters

    Science.gov (United States)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  19. Optimal Control Problems for Nonlinear Variational Evolution Inequalities

    Directory of Open Access Journals (Sweden)

    Eun-Young Ju

    2013-01-01

    Full Text Available We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux differentiability of solution mapping on control variables.

  20. Model Predictive Control of Offshore Power Stations With Waste Heat Recovery

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Chan, Richard; Li, Xiangan

    2016-01-01

    The implementation of waste heat recovery units on oil and gas offshore platforms demands advances in both design methods and control systems. Model-based control algorithms can play an important role in the operation of offshore power stations. A novel regulator based on a linear model predictive...... control (MPC) coupled with a steady-state performance optimizer has been developed in the SIMULINK language and is documented in the paper. The test case is the regulation of a power system serving an oil and gas platform in the Norwegian Sea. One of the three gas turbines is combined with an organic...... Rankine cycle (ORC) turbogenerator to increase the energy conversion efficiency. Results show a potential reduction of frequency drop up to 40%for a step in the load set-point of 4 MW, compared to proportional–integral control systems. Fuel savings in the range of 2–3% are also expected by optimizing on...

  1. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  2. Optimization-Based Approaches to Control of Probabilistic Boolean Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2017-02-01

    Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.

  3. Adaptive hybrid optimal quantum control for imprecisely characterized systems.

    Science.gov (United States)

    Egger, D J; Wilhelm, F K

    2014-06-20

    Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.

  4. Optimal combinations of control strategies and cost-effective analysis for visceral leishmaniasis disease transmission.

    Directory of Open Access Journals (Sweden)

    Santanu Biswas

    Full Text Available Visceral leishmaniasis (VL is a deadly neglected tropical disease that poses a serious problem in various countries all over the world. Implementation of various intervention strategies fail in controlling the spread of this disease due to issues of parasite drug resistance and resistance of sandfly vectors to insecticide sprays. Due to this, policy makers need to develop novel strategies or resort to a combination of multiple intervention strategies to control the spread of the disease. To address this issue, we propose an extensive SIR-type model for anthroponotic visceral leishmaniasis transmission with seasonal fluctuations modeled in the form of periodic sandfly biting rate. Fitting the model for real data reported in South Sudan, we estimate the model parameters and compare the model predictions with known VL cases. Using optimal control theory, we study the effects of popular control strategies namely, drug-based treatment of symptomatic and PKDL-infected individuals, insecticide treated bednets and spray of insecticides on the dynamics of infected human and vector populations. We propose that the strategies remain ineffective in curbing the disease individually, as opposed to the use of optimal combinations of the mentioned strategies. Testing the model for different optimal combinations while considering periodic seasonal fluctuations, we find that the optimal combination of treatment of individuals and insecticide sprays perform well in controlling the disease for the time period of intervention introduced. Performing a cost-effective analysis we identify that the same strategy also proves to be efficacious and cost-effective. Finally, we suggest that our model would be helpful for policy makers to predict the best intervention strategies for specific time periods and their appropriate implementation for elimination of visceral leishmaniasis.

  5. Time-optimal control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1987-01-01

    Control laws that permit adjustments in reactor power to be made in minimum time and without overshoot have been formulated and demonstrated. These control laws which are derived from the standard and alternate dynamic period equations, are closed-form expressions of general applicability. These laws were deduced by noting that if a system is subject to one or more operating constraints, then the time-optimal response is to move the system along these constraints. Given that nuclear reactors are subject to limitations on the allowed reactor period, a time-optimal control law would step the period from infinity to the minimum allowed value, hold the period at that value for the duration of the transient, and then step the period back to infinity. The change in reactor would therefore be accomplished in minimum time. The resulting control laws are superior to other forms of time-optimal control because they are general-purpose, closed-form expressions that are both mathematically tractable and readily implanted. Moreover, these laws include provisions for the use of feedback. The results of simulation studies and actual experiments on the 5 MWt MIT Research Reactor in which these time-optimal control laws were used successfully to adjust the reactor power are presented

  6. Optimal Model-Based Control in HVAC Systems

    DEFF Research Database (Denmark)

    Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik

    2008-01-01

    is developed. Then the optimal control structure is designed and implemented. The HVAC system is splitted into two subsystems. By selecting the right set-points and appropriate cost functions for each subsystem controller the optimal control strategy is respected to gaurantee the minimum thermal and electrical......This paper presents optimal model-based control of a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger (a rotary wheel heat recovery) and a water-to- air heat exchanger. First dynamic model of the HVAC system...... energy consumption. Finally, the controller is applied to control the mentioned HVAC system and the results show that the expected goals are fulfilled....

  7. Optimal coordination and control of posture and movements.

    Science.gov (United States)

    Johansson, Rolf; Fransson, Per-Anders; Magnusson, Måns

    2009-01-01

    This paper presents a theoretical model of stability and coordination of posture and locomotion, together with algorithms for continuous-time quadratic optimization of motion control. Explicit solutions to the Hamilton-Jacobi equation for optimal control of rigid-body motion are obtained by solving an algebraic matrix equation. The stability is investigated with Lyapunov function theory and it is shown that global asymptotic stability holds. It is also shown how optimal control and adaptive control may act in concert in the case of unknown or uncertain system parameters. The solution describes motion strategies of minimum effort and variance. The proposed optimal control is formulated to be suitable as a posture and movement model for experimental validation and verification. The combination of adaptive and optimal control makes this algorithm a candidate for coordination and control of functional neuromuscular stimulation as well as of prostheses. Validation examples with experimental data are provided.

  8. Adjoint-based model predictive control of wind farms : Beyond the quasi steady-state power maximization

    NARCIS (Netherlands)

    Vali, M.; Petrović, Vlaho; Boersma, S.; van Wingerden, J.W.; Kuhn, Martin; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    2017-01-01

    In this paper, we extend our closed-loop optimal control framework for wind farms to minimize wake-induced power losses. We develop an adjoint-based model predictive controller which employs a medium-fidelity 2D dynamic wind farm model. The wind turbine axial induction factors are considered here

  9. A Unified Statistical Rain-Attenuation Model for Communication Link Fade Predictions and Optimal Stochastic Fade Control Design Using a Location-Dependent Rain-Statistic Database

    Science.gov (United States)

    Manning, Robert M.

    1990-01-01

    A static and dynamic rain-attenuation model is presented which describes the statistics of attenuation on an arbitrarily specified satellite link for any location for which there are long-term rainfall statistics. The model may be used in the design of the optimal stochastic control algorithms to mitigate the effects of attenuation and maintain link reliability. A rain-statistics data base is compiled, which makes it possible to apply the model to any location in the continental U.S. with a resolution of 0-5 degrees in latitude and longitude. The model predictions are compared with experimental observations, showing good agreement.

  10. Optimally Controlled Flexible Fuel Powertrain System

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

    2010-12-31

    The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

  11. Distributed Model Predictive Control over Multiple Groups of Vehicles in Highway Intelligent Space for Large Scale System

    Directory of Open Access Journals (Sweden)

    Tang Xiaofeng

    2014-01-01

    Full Text Available The paper presents the three time warning distances for solving the large scale system of multiple groups of vehicles safety driving characteristics towards highway tunnel environment based on distributed model prediction control approach. Generally speaking, the system includes two parts. First, multiple vehicles are divided into multiple groups. Meanwhile, the distributed model predictive control approach is proposed to calculate the information framework of each group. Each group of optimization performance considers the local optimization and the neighboring subgroup of optimization characteristics, which could ensure the global optimization performance. Second, the three time warning distances are studied based on the basic principles used for highway intelligent space (HIS and the information framework concept is proposed according to the multiple groups of vehicles. The math model is built to avoid the chain avoidance of vehicles. The results demonstrate that the proposed highway intelligent space method could effectively ensure driving safety of multiple groups of vehicles under the environment of fog, rain, or snow.

  12. OPTIMAL CONTROL FOR ELECTRIC VEHICLE STABILIZATION

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2016-01-01

    Full Text Available This main objective of the paper is to stabilize an electric vehicle in optimal manner to a step lane change maneuver. To define the mathematical model of the vehicle, the rigid body moving on a plane is taken into account. An optimal lane keeping controller delivers the adequate angles in order to stabilize the vehicle’s trajectory in an optimal way. Two degree of freedom linear bicycle model is adopted as vehicle model, consisting of lateral and yaw motion equations. The proposed control maintains the lateral stability by taking the feedback information from the vehicle transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. Based on the obtained linear mathematical model the quadratic optimal control is designed in order to maintain the lateral stability of the electric vehicle. The numerical simulation results demonstrate the feasibility of the proposed solution.

  13. Linear and Non-linear Multi-Input Multi-Output Model Predictive Control of Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Muayad Al-Qaisy

    2015-02-01

    Full Text Available In this article, multi-input multi-output (MIMO linear model predictive controller (LMPC based on state space model and nonlinear model predictive controller based on neural network (NNMPC are applied on a continuous stirred tank reactor (CSTR. The idea is to have a good control system that will be able to give optimal performance, reject high load disturbance, and track set point change. In order to study the performance of the two model predictive controllers, MIMO Proportional-Integral-Derivative controller (PID strategy is used as benchmark. The LMPC, NNMPC, and PID strategies are used for controlling the residual concentration (CA and reactor temperature (T. NNMPC control shows a superior performance over the LMPC and PID controllers by presenting a smaller overshoot and shorter settling time.

  14. Infinite horizon optimal impulsive control with applications to Internet congestion control

    Science.gov (United States)

    Avrachenkov, Konstantin; Habachi, Oussama; Piunovskiy, Alexey; Zhang, Yi

    2015-04-01

    We investigate infinite-horizon deterministic optimal control problems with both gradual and impulsive controls, where any finitely many impulses are allowed simultaneously. Both discounted and long-run time-average criteria are considered. We establish very general and at the same time natural conditions, under which the dynamic programming approach results in an optimal feedback policy. The established theoretical results are applied to the Internet congestion control, and by solving analytically and nontrivially the underlying optimal control problems, we obtain a simple threshold-based active queue management scheme, which takes into account the main parameters of the transmission control protocols, and improves the fairness among the connections in a given network.

  15. Event-triggered decentralized robust model predictive control for constrained large-scale interconnected systems

    Directory of Open Access Journals (Sweden)

    Ling Lu

    2016-12-01

    Full Text Available This paper considers the problem of event-triggered decentralized model predictive control (MPC for constrained large-scale linear systems subject to additive bounded disturbances. The constraint tightening method is utilized to formulate the MPC optimization problem. The local predictive control law for each subsystem is determined aperiodically by relevant triggering rule which allows a considerable reduction of the computational load. And then, the robust feasibility and closed-loop stability are proved and it is shown that every subsystem state will be driven into a robust invariant set. Finally, the effectiveness of the proposed approach is illustrated via numerical simulations.

  16. Optimal Investment Control of Macroeconomic Systems

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ke-jie; LIU Chuan-zhe

    2006-01-01

    Economic growth is always accompanied by economic fluctuation. The target of macroeconomic control is to keep a basic balance of economic growth, accelerate the optimization of economic structures and to lead a rapid, sustainable and healthy development of national economies, in order to propel society forward. In order to realize the above goal, investment control must be regarded as the most important policy for economic stability. Readjustment and control of investment includes not only control of aggregate investment, but also structural control which depends on economic-technology relationships between various industries of a national economy. On the basis of the theory of a generalized system, an optimal investment control model for government has been developed. In order to provide a scientific basis for government to formulate a macroeconomic control policy, the model investigates the balance of total supply and aggregate demand through an adjustment in investment decisions realizes a sustainable and stable growth of the national economy. The optimal investment decision function proposed by this study has a unique and specific expression, high regulating precision and computable characteristics.

  17. Customer demand prediction of service-oriented manufacturing using the least square support vector machine optimized by particle swarm optimization algorithm

    Science.gov (United States)

    Cao, Jin; Jiang, Zhibin; Wang, Kangzhou

    2017-07-01

    Many nonlinear customer satisfaction-related factors significantly influence the future customer demand for service-oriented manufacturing (SOM). To address this issue and enhance the prediction accuracy, this article develops a novel customer demand prediction approach for SOM. The approach combines the phase space reconstruction (PSR) technique with the optimized least square support vector machine (LSSVM). First, the prediction sample space is reconstructed by the PSR to enrich the time-series dynamics of the limited data sample. Then, the generalization and learning ability of the LSSVM are improved by the hybrid polynomial and radial basis function kernel. Finally, the key parameters of the LSSVM are optimized by the particle swarm optimization algorithm. In a real case study, the customer demand prediction of an air conditioner compressor is implemented. Furthermore, the effectiveness and validity of the proposed approach are demonstrated by comparison with other classical predication approaches.

  18. Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty

    Science.gov (United States)

    Nguyen, Nhan T.

    2012-01-01

    This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.

  19. A model of optimal voluntary muscular control.

    Science.gov (United States)

    FitzHugh, R

    1977-07-19

    In the absence of detailed knowledge of how the CNS controls a muscle through its motor fibers, a reasonable hypothesis is that of optimal control. This hypothesis is studied using a simplified mathematical model of a single muscle, based on A.V. Hill's equations, with series elastic element omitted, and with the motor signal represented by a single input variable. Two cost functions were used. The first was total energy expended by the muscle (work plus heat). If the load is a constant force, with no inertia, Hill's optimal velocity of shortening results. If the load includes a mass, analysis by optimal control theory shows that the motor signal to the muscle consists of three phases: (1) maximal stimulation to accelerate the mass to the optimal velocity as quickly as possible, (2) an intermediate level of stimulation to hold the velocity at its optimal value, once reached, and (3) zero stimulation, to permit the mass to slow down, as quickly as possible, to zero velocity at the specified distance shortened. If the latter distance is too small, or the mass too large, the optimal velocity is not reached, and phase (2) is absent. For lengthening, there is no optimal velocity; there are only two phases, zero stimulation followed by maximal stimulation. The second cost function was total time. The optimal control for shortening consists of only phases (1) and (3) above, and is identical to the minimal energy control whenever phase (2) is absent from the latter. Generalization of this model to include viscous loads and a series elastic element are discussed.

  20. Automated beam steering using optimal control

    Energy Technology Data Exchange (ETDEWEB)

    Allen, C. K. (Christopher K.)

    2004-01-01

    We present a steering algorithm which, with the aid of a model, allows the user to specify beam behavior throughout a beamline, rather than just at specified beam position monitor (BPM) locations. The model is used primarily to compute the values of the beam phase vectors from BPM measurements, and to define cost functions that describe the steering objectives. The steering problem is formulated as constrained optimization problem; however, by applying optimal control theory we can reduce it to an unconstrained optimization whose dimension is the number of control signals.

  1. Modeling a multivariable reactor and on-line model predictive control.

    Science.gov (United States)

    Yu, D W; Yu, D L

    2005-10-01

    A nonlinear first principle model is developed for a laboratory-scaled multivariable chemical reactor rig in this paper and the on-line model predictive control (MPC) is implemented to the rig. The reactor has three variables-temperature, pH, and dissolved oxygen with nonlinear dynamics-and is therefore used as a pilot system for the biochemical industry. A nonlinear discrete-time model is derived for each of the three output variables and their model parameters are estimated from the real data using an adaptive optimization method. The developed model is used in a nonlinear MPC scheme. An accurate multistep-ahead prediction is obtained for MPC, where the extended Kalman filter is used to estimate system unknown states. The on-line control is implemented and a satisfactory tracking performance is achieved. The MPC is compared with three decentralized PID controllers and the advantage of the nonlinear MPC over the PID is clearly shown.

  2. Electric Vehicle Longitudinal Stability Control Based on a New Multimachine Nonlinear Model Predictive Direct Torque Control

    Directory of Open Access Journals (Sweden)

    M’hamed Sekour

    2017-01-01

    Full Text Available In order to improve the driving performance and the stability of electric vehicles (EVs, a new multimachine robust control, which realizes the acceleration slip regulation (ASR and antilock braking system (ABS functions, based on nonlinear model predictive (NMP direct torque control (DTC, is proposed for four permanent magnet synchronous in-wheel motors. The in-wheel motor provides more possibilities of wheel control. One of its advantages is that it has low response time and almost instantaneous torque generation. Moreover, it can be independently controlled, enhancing the limits of vehicular control. For an EV equipped with four in-wheel electric motors, an advanced control may be envisaged. Taking advantage of the fast and accurate torque of in-wheel electric motors which is directly transmitted to the wheels, a new approach for longitudinal control realized by ASR and ABS is presented in this paper. In order to achieve a high-performance torque control for EVs, the NMP-DTC strategy is proposed. It uses the fuzzy logic control technique that determines online the accurate values of the weighting factors and generates the optimal switching states that optimize the EV drives’ decision. The simulation results built in Matlab/Simulink indicate that the EV can achieve high-performance vehicle longitudinal stability control.

  3. In-flight performance optimization for rotorcraft with redundant controls

    Science.gov (United States)

    Ozdemir, Gurbuz Taha

    A conventional helicopter has limits on performance at high speeds because of the limitations of main rotor, such as compressibility issues on advancing side or stall issues on retreating side. Auxiliary lift and thrust components have been suggested to improve performance of the helicopter substantially by reducing the loading on the main rotor. Such a configuration is called the compound rotorcraft. Rotor speed can also be varied to improve helicopter performance. In addition to improved performance, compound rotorcraft and variable RPM can provide a much larger degree of control redundancy. This additional redundancy gives the opportunity to further enhance performance and handling qualities. A flight control system is designed to perform in-flight optimization of redundant control effectors on a compound rotorcraft in order to minimize power required and extend range. This "Fly to Optimal" (FTO) control law is tested in simulation using the GENHEL model. A model of the UH-60, a compound version of the UH-60A with lifting wing and vectored thrust ducted propeller (VTDP), and a generic compound version of the UH-60A with lifting wing and propeller were developed and tested in simulation. A model following dynamic inversion controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop controller regulates airspeed and flight path during optimization. A Golden Section search method was used to find optimal rotor RPM on a conventional helicopter, where the single redundant control effector is rotor RPM. The FTO builds off of the Adaptive Performance Optimization (APO) method of Gilyard by performing low frequency sweeps on a redundant control for a fixed wing aircraft. A method based on the APO method was used to optimize trim on a compound rotorcraft with several redundant control effectors. The controller can be used to optimize rotor RPM and compound control effectors through flight test or simulations in order to

  4. Pointwise second-order necessary optimality conditions and second-order sensitivity relations in optimal control

    Science.gov (United States)

    Frankowska, Hélène; Hoehener, Daniel

    2017-06-01

    This paper is devoted to pointwise second-order necessary optimality conditions for the Mayer problem arising in optimal control theory. We first show that with every optimal trajectory it is possible to associate a solution p (ṡ) of the adjoint system (as in the Pontryagin maximum principle) and a matrix solution W (ṡ) of an adjoint matrix differential equation that satisfy a second-order transversality condition and a second-order maximality condition. These conditions seem to be a natural second-order extension of the maximum principle. We then prove a Jacobson like necessary optimality condition for general control systems and measurable optimal controls that may be only ;partially singular; and may take values on the boundary of control constraints. Finally we investigate the second-order sensitivity relations along optimal trajectories involving both p (ṡ) and W (ṡ).

  5. Prediction and optimization of friction welding parameters for super duplex stainless steel (UNS S32760) joints

    International Nuclear Information System (INIS)

    Udayakumar, T.; Raja, K.; Afsal Husain, T.M.; Sathiya, P.

    2014-01-01

    Highlights: • Corrosion resistance and impact strength – predicted by response surface methodology. • Burn off length has highest significance on corrosion resistance. • Friction force is a strong determinant in changing impact strength. • Pareto front points generated by genetic algorithm aid to fix input control variable. • Pareto front will be a trade-off between corrosion resistance and impact strength. - Abstract: Friction welding finds widespread industrial use as a mass production process for joining materials. Friction welding process allows welding of several materials that are extremely difficult to fusion weld. Friction welding process parameters play a significant role in making good quality joints. To produce a good quality joint it is important to set up proper welding process parameters. This can be done by employing optimization techniques. This paper presents a multi objective optimization method for optimizing the process parameters during friction welding process. The proposed method combines the response surface methodology (RSM) with an intelligent optimization algorithm, i.e. genetic algorithm (GA). Corrosion resistance and impact strength of friction welded super duplex stainless steel (SDSS) (UNS S32760) joints were investigated considering three process parameters: friction force (F), upset force (U) and burn off length (B). Mathematical models were developed and the responses were adequately predicted. Direct and interaction effects of process parameters on responses were studied by plotting graphs. Burn off length has high significance on corrosion current followed by upset force and friction force. In the case of impact strength, friction force has high significance followed by upset force and burn off length. Multi objective optimization for maximizing the impact strength and minimizing the corrosion current (maximizing corrosion resistance) was carried out using GA with the RSM model. The optimization procedure resulted in

  6. Deterministic methods for multi-control fuel loading optimization

    Science.gov (United States)

    Rahman, Fariz B. Abdul

    We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.

  7. Optimal Control for Stochastic Delay Evolution Equations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn [Huzhou University, Department of Mathematical Sciences (China); Shen, Yang, E-mail: skyshen87@gmail.com [York University, Department of Mathematics and Statistics (Canada)

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we apply stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.

  8. Robust Distributed Model Predictive Load Frequency Control of Interconnected Power System

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2013-01-01

    Full Text Available Considering the load frequency control (LFC of large-scale power system, a robust distributed model predictive control (RDMPC is presented. The system uncertainty according to power system parameter variation alone with the generation rate constraints (GRC is included in the synthesis procedure. The entire power system is composed of several control areas, and the problem is formulated as convex optimization problem with linear matrix inequalities (LMI that can be solved efficiently. It minimizes an upper bound on a robust performance objective for each subsystem. Simulation results show good dynamic response and robustness in the presence of power system dynamic uncertainties.

  9. Optimal control linear quadratic methods

    CERN Document Server

    Anderson, Brian D O

    2007-01-01

    This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

  10. Optimizing Lidars for Wind Turbine Control Applications—Results from the IEA Wind Task 32 Workshop

    Directory of Open Access Journals (Sweden)

    Eric Simley

    2018-06-01

    Full Text Available IEA Wind Task 32 serves as an international platform for the research community and industry to identify and mitigate barriers to the use of lidars in wind energy applications. The workshop “Optimizing Lidar Design for Wind Energy Applications” was held in July 2016 to identify lidar system properties that are desirable for wind turbine control applications and help foster the widespread application of lidar-assisted control (LAC. One of the main barriers this workshop aimed to address is the multidisciplinary nature of LAC. Since lidar suppliers, wind turbine manufacturers, and researchers typically focus on their own areas of expertise, it is possible that current lidar systems are not optimal for control purposes. This paper summarizes the results of the workshop, addressing both practical and theoretical aspects, beginning with a review of the literature on lidar optimization for control applications. Next, barriers to the use of lidar for wind turbine control are identified, such as availability and reliability concerns, followed by practical suggestions for mitigating those barriers. From a theoretical perspective, the optimization of lidar scan patterns by minimizing the error between the measurements and the rotor effective wind speed of interest is discussed. Frequency domain methods for directly calculating measurement error using a stochastic wind field model are reviewed and applied to the optimization of several continuous wave and pulsed Doppler lidar scan patterns based on commercially-available systems. An overview of the design process for a lidar-assisted pitch controller for rotor speed regulation highlights design choices that can impact the usefulness of lidar measurements beyond scan pattern optimization. Finally, using measurements from an optimized scan pattern, it is shown that the rotor speed regulation achieved after optimizing the lidar-assisted control scenario via time domain simulations matches the performance

  11. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    Science.gov (United States)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  12. Engineering applications of discrete-time optimal control

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Ravn, Hans V.

    1990-01-01

    Many problems of design and operation of engineering systems can be formulated as optimal control problems where time has been discretisized. This is also true even if 'time' is not involved in the formulation of the problem, but rather another one-dimensional parameter. This paper gives a review...... of some well-known and new results in discrete time optimal control methods applicable to practical problem solving within engineering. Emphasis is placed on dynamic programming, the classical maximum principle and generalized versions of the maximum principle for optimal control of discrete time systems...

  13. Linear Model-Based Predictive Control of the LHC 1.8 K Cryogenic Loop

    CERN Document Server

    Blanco-Viñuela, E; De Prada-Moraga, C

    1999-01-01

    The LHC accelerator will employ 1800 superconducting magnets (for guidance and focusing of the particle beams) in a pressurized superfluid helium bath at 1.9 K. This temperature is a severely constrained control parameter in order to avoid the transition from the superconducting to the normal state. Cryogenic processes are difficult to regulate due to their highly non-linear physical parameters (heat capacity, thermal conductance, etc.) and undesirable peculiarities like non self-regulating process, inverse response and variable dead time. To reduce the requirements on either temperature sensor or cryogenic system performance, various control strategies have been investigated on a reduced-scale LHC prototype built at CERN (String Test). Model Based Predictive Control (MBPC) is a regulation algorithm based on the explicit use of a process model to forecast the plant output over a certain prediction horizon. This predicted controlled variable is used in an on-line optimization procedure that minimizes an approp...

  14. The design and optimization for light-algae bioreactor controller based on Artificial Neural Network-Model Predictive Control

    Science.gov (United States)

    Hu, Dawei; Liu, Hong; Yang, Chenliang; Hu, Enzhu

    As a subsystem of the bioregenerative life support system (BLSS), light-algae bioreactor (LABR) has properties of high reaction rate, efficiently synthesizing microalgal biomass, absorbing CO2 and releasing O2, so it is significant for BLSS to provide food and maintain gas balance. In order to manipulate the LABR properly, it has been designed as a closed-loop control system, and technology of Artificial Neural Network-Model Predictive Control (ANN-MPC) is applied to design the controller for LABR in which green microalgae, Spirulina platensis is cultivated continuously. The conclusion is drawn by computer simulation that ANN-MPC controller can intelligently learn the complicated dynamic performances of LABR, and automatically, robustly and self-adaptively regulate the light intensity illuminating on the LABR, hence make the growth of microalgae in the LABR be changed in line with the references, meanwhile provide appropriate damping to improve markedly the transient response performance of LABR.

  15. Increasing power generation in horizontal axis wind turbines using optimized flow control

    Science.gov (United States)

    Cooney, John A., Jr.

    In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a

  16. Controller tuning with evolutionary multiobjective optimization a holistic multiobjective optimization design procedure

    CERN Document Server

    Reynoso Meza, Gilberto; Sanchis Saez, Javier; Herrero Durá, Juan Manuel

    2017-01-01

    This book is devoted to Multiobjective Optimization Design (MOOD) procedures for controller tuning applications, by means of Evolutionary Multiobjective Optimization (EMO). It presents developments in tools, procedures and guidelines to facilitate this process, covering the three fundamental steps in the procedure: problem definition, optimization and decision-making. The book is divided into four parts. The first part, Fundamentals, focuses on the necessary theoretical background and provides specific tools for practitioners. The second part, Basics, examines a range of basic examples regarding the MOOD procedure for controller tuning, while the third part, Benchmarking, demonstrates how the MOOD procedure can be employed in several control engineering problems. The fourth part, Applications, is dedicated to implementing the MOOD procedure for controller tuning in real processes.

  17. A model predictive control approach combined unscented Kalman filter vehicle state estimation in intelligent vehicle trajectory tracking

    Directory of Open Access Journals (Sweden)

    Hongxiao Yu

    2015-05-01

    Full Text Available Trajectory tracking and state estimation are significant in the motion planning and intelligent vehicle control. This article focuses on the model predictive control approach for the trajectory tracking of the intelligent vehicles and state estimation of the nonlinear vehicle system. The constraints of the system states are considered when applying the model predictive control method to the practical problem, while 4-degree-of-freedom vehicle model and unscented Kalman filter are proposed to estimate the vehicle states. The estimated states of the vehicle are used to provide model predictive control with real-time control and judge vehicle stability. Furthermore, in order to decrease the cost of solving the nonlinear optimization, the linear time-varying model predictive control is used at each time step. The effectiveness of the proposed vehicle state estimation and model predictive control method is tested by driving simulator. The results of simulations and experiments show that great and robust performance is achieved for trajectory tracking and state estimation in different scenarios.

  18. Economic Model Predictive Control for Building Climate Control in a Smart Grid

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Poulsen, Niels Kjølstad; Madsen, Henrik

    2012-01-01

    Model Predictive Control (MPC) can be used to control a system of energy producers and consumers in a Smart Grid. In this paper, we use heat pumps for heating residential buildings with a floor heating system. We use the thermal capacity of the building to shift the electricity consumptions...... to periods with low energy prices. In this way the heating system of the house becomes a flexible power consumer in the Smart Grid. This scenario is relevant for systems with a significant share of stochastic energy producers, e.g. wind turbines, where the ability to shift power consumption according...... and electricity price. Simulation studies demonstrate the capabilities of the proposed model and algorithm. Compared to traditional operation of heat pumps with constant electricity prices, the optimized operating strategy saves 25-33% of the electricity cost....

  19. Optimal Bilinear Control of Gross--Pitaevskii Equations

    KAUST Repository

    Hintermü ller, Michael; Marahrens, Daniel; Markowich, Peter A.; Sparber, Christof

    2013-01-01

    A mathematical framework for optimal bilinear control of nonlinear Schrödinger equations of Gross--Pitaevskii type arising in the description of Bose--Einstein condensates is presented. The obtained results generalize earlier efforts found in the literature in several aspects. In particular, the cost induced by the physical workload over the control process is taken into account rather than the often used L^2- or H^1-norms for the cost of the control action. Well-posedness of the problem and existence of an optimal control are proved. In addition, the first order optimality system is rigorously derived. Also a numerical solution method is proposed, which is based on a Newton-type iteration, and used to solve several coherent quantum control problems.

  20. Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Gergely Takács

    2014-01-01

    Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

  1. Optimal Control of Diesel Engines: Numerical Methods, Applications, and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Jonas Asprion

    2014-01-01

    become complex systems. The exploitation of any leftover potential during transient operation is crucial. However, even an experienced calibration engineer cannot conceive all the dynamic cross couplings between the many actuators. Therefore, a highly iterative procedure is required to obtain a single engine calibration, which in turn causes a high demand for test-bench time. Physics-based mathematical models and a dynamic optimisation are the tools to alleviate this dilemma. This paper presents the methods required to implement such an approach. The optimisation-oriented modelling of diesel engines is summarised, and the numerical methods required to solve the corresponding large-scale optimal control problems are presented. The resulting optimal control input trajectories over long driving profiles are shown to provide enough information to allow conclusions to be drawn for causal control strategies. Ways of utilising this data are illustrated, which indicate that a fully automated dynamic calibration of the engine control unit is conceivable. An experimental validation demonstrates the meaningfulness of these results. The measurement results show that the optimisation predicts the reduction of the fuel consumption and the cumulative pollutant emissions with a relative error of around 10% on highly transient driving cycles.

  2. Optimal Control of Complex Systems Based on Improved Dual Heuristic Dynamic Programming Algorithm

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-01-01

    Full Text Available When applied to solving the data modeling and optimal control problems of complex systems, the dual heuristic dynamic programming (DHP technique, which is based on the BP neural network algorithm (BP-DHP, has difficulty in prediction accuracy, slow convergence speed, poor stability, and so forth. In this paper, a dual DHP technique based on Extreme Learning Machine (ELM algorithm (ELM-DHP was proposed. Through constructing three kinds of network structures, the paper gives the detailed realization process of the DHP technique in the ELM. The controller designed upon the ELM-DHP algorithm controlled a molecular distillation system with complex features, such as multivariability, strong coupling, and nonlinearity. Finally, the effectiveness of the algorithm is verified by the simulation that compares DHP and HDP algorithms based on ELM and BP neural network. The algorithm can also be applied to solve the data modeling and optimal control problems of similar complex systems.

  3. Optimal treatment interruptions control of TB transmission model

    Science.gov (United States)

    Nainggolan, Jonner; Suparwati, Titik; Kawuwung, Westy B.

    2018-03-01

    A tuberculosis model which incorporates treatment interruptions of infectives is established. Optimal control of individuals infected with active TB is given in the model. It is obtained that the control reproduction numbers is smaller than the reproduction number, this means treatment controls could optimize the decrease in the spread of active TB. For this model, controls on treatment of infection individuals to reduce the actively infected individual populations, by application the Pontryagins Maximum Principle for optimal control. The result further emphasized the importance of controlling disease relapse in reducing the number of actively infected and treatment interruptions individuals with tuberculosis.

  4. BANKRUPTCY PREDICTION MODEL WITH ZETAc OPTIMAL CUT-OFF SCORE TO CORRECT TYPE I ERRORS

    Directory of Open Access Journals (Sweden)

    Mohamad Iwan

    2005-06-01

    This research has successfully attained the following results: (1 type I error is in fact 59,83 times more costly compared to type II error, (2 22 ratios distinguish between bankrupt and non-bankrupt groups, (3 2 financial ratios proved to be effective in predicting bankruptcy, (4 prediction using ZETAc optimal cut-off score predicts more companies filing for bankruptcy within one year compared to prediction using Hair et al. optimum cutting score, (5 Although prediction using Hair et al. optimum cutting score is more accurate, prediction using ZETAc optimal cut-off score proved to be able to minimize cost incurred from classification errors.

  5. Optimal Control of a Surge-Mode WEC in Random Waves

    Energy Technology Data Exchange (ETDEWEB)

    Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Ceberio, Olivier [Resolute Marine Energy, Inc., Boston, MA (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Previsic, Mirko [Re Vision Consulting, Sacramento, CA (United States); Scruggs, Jeffrey [Univ. of Michigan, Ann Arbor, MI (United States); Van de Ven, James [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-08-30

    The objective of this project was to develop one or more real-time feedback and feed-forward (MPC) control algorithms for an Oscillating Surge Wave Converter (OSWC) developed by RME called SurgeWEC™ that leverages recent innovations in wave energy converter (WEC) control theory to maximize power production in random wave environments. The control algorithms synthesized innovations in dynamic programming and nonlinear wave dynamics using anticipatory wave sensors and localized sensor measurements; e.g. position and velocity of the WEC Power Take Off (PTO), with predictive wave forecasting data. The result was an advanced control system that uses feedback or feed-forward data from an array of sensor channels comprised of both localized and deployed sensors fused into a single decision process that optimally compensates for uncertainties in the system dynamics, wave forecasts, and sensor measurement errors.

  6. Mathematical Modelling, Simulation, and Optimal Control of the 2014 Ebola Outbreak in West Africa

    Directory of Open Access Journals (Sweden)

    Amira Rachah

    2015-01-01

    it is crucial to modelize the virus and simulate it. In this paper, we begin by studying a simple mathematical model that describes the 2014 Ebola outbreak in Liberia. Then, we use numerical simulations and available data provided by the World Health Organization to validate the obtained mathematical model. Moreover, we develop a new mathematical model including vaccination of individuals. We discuss different cases of vaccination in order to predict the effect of vaccination on the infected individuals over time. Finally, we apply optimal control to study the impact of vaccination on the spread of the Ebola virus. The optimal control problem is solved numerically by using a direct multiple shooting method.

  7. Control Methods Utilizing Energy Optimizing Schemes in Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, L.S; Thybo, C.; Stoustrup, Jakob

    2003-01-01

    The potential energy savings in refrigeration systems using energy optimal control has been proved to be substantial. This however requires an intelligent control that drives the refrigeration systems towards the energy optimal state. This paper proposes an approach for a control, which drives th...... the condenser pressure towards an optimal state. The objective of this is to present a feasible method that can be used for energy optimizing control. A simulation model of a simple refrigeration system will be used as basis for testing the control method....

  8. Scalable algorithms for optimal control of stochastic PDEs

    KAUST Repository

    Ghattas, Omar

    2016-01-07

    We present methods for the optimal control of systems governed by partial differential equations with infinite-dimensional uncertain parameters. We consider an objective function that involves the mean and variance of the control objective, leading to a risk-averse optimal control formulation. To make the optimal control problem computationally tractable, we employ a local quadratic approximation of the objective with respect to the uncertain parameter. This enables computation of the mean and variance of the control objective analytically. The resulting risk-averse optimization problem is formulated as a PDE-constrained optimization problem with constraints given by the forward and adjoint PDEs for the first and second-order derivatives of the quantity of interest with respect to the uncertain parameter, and with an objective that involves the trace of a covariance-preconditioned Hessian (of the objective with respect to the uncertain parameters) operator. A randomized trace estimator is used to make tractable the trace computation. Adjoint-based techniques are used to derive an expression for the infinite-dimensional gradient of the risk-averse objective function via the Lagrangian, leading to a quasi-Newton method for solution of the optimal control problem. A specific problem of optimal control of a linear elliptic PDE that describes flow of a fluid in a porous medium with uncertain permeability field is considered. We present numerical results to study the consequences of the local quadratic approximation and the efficiency of the method.

  9. Scalable algorithms for optimal control of stochastic PDEs

    KAUST Repository

    Ghattas, Omar; Alexanderian, Alen; Petra, Noemi; Stadler, Georg

    2016-01-01

    We present methods for the optimal control of systems governed by partial differential equations with infinite-dimensional uncertain parameters. We consider an objective function that involves the mean and variance of the control objective, leading to a risk-averse optimal control formulation. To make the optimal control problem computationally tractable, we employ a local quadratic approximation of the objective with respect to the uncertain parameter. This enables computation of the mean and variance of the control objective analytically. The resulting risk-averse optimization problem is formulated as a PDE-constrained optimization problem with constraints given by the forward and adjoint PDEs for the first and second-order derivatives of the quantity of interest with respect to the uncertain parameter, and with an objective that involves the trace of a covariance-preconditioned Hessian (of the objective with respect to the uncertain parameters) operator. A randomized trace estimator is used to make tractable the trace computation. Adjoint-based techniques are used to derive an expression for the infinite-dimensional gradient of the risk-averse objective function via the Lagrangian, leading to a quasi-Newton method for solution of the optimal control problem. A specific problem of optimal control of a linear elliptic PDE that describes flow of a fluid in a porous medium with uncertain permeability field is considered. We present numerical results to study the consequences of the local quadratic approximation and the efficiency of the method.

  10. Reference-shaping adaptive control by using gradient descent optimizers.

    Directory of Open Access Journals (Sweden)

    Baris Baykant Alagoz

    Full Text Available This study presents a model reference adaptive control scheme based on reference-shaping approach. The proposed adaptive control structure includes two optimizer processes that perform gradient descent optimization. The first process is the control optimizer that generates appropriate control signal for tracking of the controlled system output to a reference model output. The second process is the adaptation optimizer that performs for estimation of a time-varying adaptation gain, and it contributes to improvement of control signal generation. Numerical update equations derived for adaptation gain and control signal perform gradient descent optimization in order to decrease the model mismatch errors. To reduce noise sensitivity of the system, a dead zone rule is applied to the adaptation process. Simulation examples show the performance of the proposed Reference-Shaping Adaptive Control (RSAC method for several test scenarios. An experimental study demonstrates application of method for rotor control.

  11. Optimal control problem for the extended Fisher–Kolmogorov equation

    Indian Academy of Sciences (India)

    In this paper, the optimal control problem for the extended Fisher–Kolmogorov equation is studied. The optimal control under boundary condition is given, the existence of optimal solution to the equation is proved and the optimality system is established.

  12. Implementation of reactive and predictive real-time control strategies to optimize dry stormwater detention ponds

    Science.gov (United States)

    Gaborit, Étienne; Anctil, François; Vanrolleghem, Peter A.; Pelletier, Geneviève

    2013-04-01

    Dry detention ponds have been widely implemented in U.S.A (National Research Council, 1993) and Canada (Shammaa et al. 2002) to mitigate the impacts of urban runoff on receiving water bodies. The aim of such structures is to allow a temporary retention of the water during rainfall events, decreasing runoff velocities and volumes (by infiltration in the pond) as well as providing some water quality improvement from sedimentation. The management of dry detention ponds currently relies on static control through a fixed pre-designed limitation of their maximum outflow (Middleton and Barrett 2008), for example via a proper choice of their outlet pipe diameter. Because these ponds are designed for large storms, typically 1- or 2-hour duration rainfall events with return periods comprised between 5 and 100 years, one of their main drawbacks is that they generally offer almost no retention for smaller rainfall events (Middleton and Barrett 2008), which are by definition much more common. Real-Time Control (RTC) has a high potential for optimizing retention time (Marsalek 2005) because it allows adopting operating strategies that are flexible and hence more suitable to the prevailing fluctuating conditions than static control. For dry ponds, this would basically imply adapting the outlet opening percentage to maximize water retention time, while being able to open it completely for severe storms. This study developed several enhanced RTC scenarios of a dry detention pond located at the outlet of a small urban catchment near Québec City, Canada, following the previous work of Muschalla et al. (2009). The catchment's runoff quantity and TSS concentration were simulated by a SWMM5 model with an improved wash-off formulation. The control procedures rely on rainfall detection and measures of the pond's water height for the reactive schemes, and on rainfall forecasts in addition to these variables for the predictive schemes. The automatic reactive control schemes implemented

  13. Control and optimal control theories with applications

    CERN Document Server

    Burghes, D N

    2004-01-01

    This sound introduction to classical and modern control theory concentrates on fundamental concepts. Employing the minimum of mathematical elaboration, it investigates the many applications of control theory to varied and important present-day problems, e.g. economic growth, resource depletion, disease epidemics, exploited population, and rocket trajectories. An original feature is the amount of space devoted to the important and fascinating subject of optimal control. The work is divided into two parts. Part one deals with the control of linear time-continuous systems, using both transfer fun

  14. Optimal control of hydrogen production in a continuous anaerobic fermentation bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Aceves-Lara, Cesar-Arturo [INRA, UMR792, Ingenierie des Systemes Biologiques et des Procedes, Toulouse (France); CNRS, UMR5504, Toulouse, France 135 Avenue de Rangueil, Toulouse Cedex F-31077 (France); INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, Narbonne F-11100 (France); Latrille, Eric; Steyer, Jean-Philippe [INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2010-10-15

    This paper addresses the problem of optimization of hydrogen production in continuous anaerobic digesters using a model predictive control (MPC) strategy. The process is described by a dynamic nonlinear model. The influent concentration of molasses together with the effluent substrate and product concentrations of acetate, propionate, butyrate and biomass were estimated by an asymptotic online observer from measurements of gas composition in H{sub 2} and CO{sub 2} and gas flow rate. The observer was tested experimentally before to apply MPC online. The combined strategy (MPC and observer) was used in order to optimize a bioreactor of 2 L. The hydrogen production was increased by 75% up to 8.27mL{sub H{sub 2}} L{sup -1}min{sup -1}, using the influent flow rate as the main control variable while keeping the conversion of the influent concentration higher than 95% and maintaining the temperature at 37 C and pH at 5.5. (author)

  15. Optimal estimation and control in nuclear power plants

    International Nuclear Information System (INIS)

    Purviance, J.E.; Tylee, J.L.

    1982-08-01

    Optimal estimation and control theories offer the potential for more precise control and diagnosis of nuclear power plants. The important element of these theories is that a mathematical plant model is used in conjunction with the actual plant data to optimize some performance criteria. These criteria involve important plant variables and incorporate a sense of the desired plant performance. Several applications of optimal estimation and control to nuclear systems are discussed

  16. Predictive Control Based upon State Space Models

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1989-04-01

    Full Text Available Repetitive online computation of the control vector by solving the optimal control problem of a non-linear multivariable process with arbitrary performance indices is investigated. Two different methods are considered in the search for an optimal, parameterized control vector: Pontryagin's Maximum Principle and optimization by using the performance index and its gradient directly. Unfortunately, solving this optimization problem has turned out to be a rather time-consuming task which has resulted in a time delay that cannot be accepted when the actual process is exposed to rapidly-varying disturbances. However, an instantaneous feedback strategy operating in parallel with the original control aogorithm was found to be able to cope with this problem.

  17. Neural Network for Optimization of Existing Control Systems

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1995-01-01

    The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....

  18. Geometry optimization method versus predictive ability in QSPR modeling for ionic liquids

    Science.gov (United States)

    Rybinska, Anna; Sosnowska, Anita; Barycki, Maciej; Puzyn, Tomasz

    2016-02-01

    Computational techniques, such as Quantitative Structure-Property Relationship (QSPR) modeling, are very useful in predicting physicochemical properties of various chemicals. Building QSPR models requires calculating molecular descriptors and the proper choice of the geometry optimization method, which will be dedicated to specific structure of tested compounds. Herein, we examine the influence of the ionic liquids' (ILs) geometry optimization methods on the predictive ability of QSPR models by comparing three models. The models were developed based on the same experimental data on density collected for 66 ionic liquids, but with employing molecular descriptors calculated from molecular geometries optimized at three different levels of the theory, namely: (1) semi-empirical (PM7), (2) ab initio (HF/6-311+G*) and (3) density functional theory (B3LYP/6-311+G*). The model in which the descriptors were calculated by using ab initio HF/6-311+G* method indicated the best predictivity capabilities ({{Q}}_{{EXT}}2 = 0.87). However, PM7-based model has comparable values of quality parameters ({{Q}}_{{EXT}}2 = 0.84). Obtained results indicate that semi-empirical methods (faster and less expensive regarding CPU time) can be successfully employed to geometry optimization in QSPR studies for ionic liquids.

  19. Optimal control of a wave energy converter

    NARCIS (Netherlands)

    Hendrikx, R.W.M.; Leth, J.; Andersen, P; Heemels, W.P.M.H.

    2017-01-01

    The optimal control strategy for a wave energy converter (WEC) with constraints on the control torque is investigated. The goal is to optimize the total energy delivered to the electricity grid. Using Pontryagin's maximum principle, the solution is found to be singular-bang. Using higher order

  20. Optimization and control methods in industrial engineering and construction

    CERN Document Server

    Wang, Xiangyu

    2014-01-01

    This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering, and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P, and target contracts optimization.   The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and c...

  1. Optimal Sliding Mode Controllers for Attitude Stabilization of Flexible Spacecraft

    Directory of Open Access Journals (Sweden)

    Chutiphon Pukdeboon

    2011-01-01

    Full Text Available The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers.

  2. Explicit Nonlinear Model Predictive Control Theory and Applications

    CERN Document Server

    Grancharova, Alexandra

    2012-01-01

    Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø  Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...

  3. Industrial application of model predictive control to a milk powder spray drying plant

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2016-01-01

    In this paper, we present our first results from an industrial application of model predictive control (MPC) with real-time steady-state target optimization (RTO) for control of an industrial spray dryer that produces enriched milk powder. The MPC algorithm is based on a continuous-time transfer...... provides significantly better control of the residual moisture content, increases the throughput and decreases the energy consumption compared to conventional PI-control. The MPC operates the spray dryer closer to the residual moisture constraint of the powder product. Thus, the same amount of feed...

  4. New Results on Robust Model Predictive Control for Time-Delay Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Qing Lu

    2014-01-01

    Full Text Available This paper investigates the problem of model predictive control for a class of nonlinear systems subject to state delays and input constraints. The time-varying delay is considered with both upper and lower bounds. A new model is proposed to approximate the delay. And the uncertainty is polytopic type. For the state-feedback MPC design objective, we formulate an optimization problem. Under model transformation, a new model predictive controller is designed such that the robust asymptotical stability of the closed-loop system can be guaranteed. Finally, the applicability of the presented results are demonstrated by a practical example.

  5. Rapid Optimal Generation Algorithm for Terrain Following Trajectory Based on Optimal Control

    Institute of Scientific and Technical Information of China (English)

    杨剑影; 张海; 谢邦荣; 尹健

    2004-01-01

    Based on the optimal control theory, a 3-dimensionnal direct generation algorithm is proposed for anti-ground low altitude penetration tasks under complex terrain. By optimizing the terrain following(TF) objective function,terrain coordinate system, missile dynamic model and control vector, the TF issue is turning into the improved optimal control problem whose mathmatical model is simple and need not solve the second order terrain derivative. Simulation results prove that this method is reasonable and feasible. The TF precision is in the scope from 0.3 m to 3.0 m,and the planning time is less than 30 min. This method have the strongpionts such as rapidness, precision and has great application value.

  6. An optimal control problem for controlling the cell volume in dehydration and rehydration process

    Energy Technology Data Exchange (ETDEWEB)

    Chenghung Huang; Tetsung Chen [National Cheng Kung Univ., Dept. of Systems and Naval Mechatronic Engineering, Tainan (Taiwan)

    2004-08-01

    An optimal control algorithm utilizing the conjugate gradient method (CGM) of minimization is applied successfully in the present study in determining the optimal boundary control function for a diffusion-limited cell model based on the desired cell volume. The validity of the present optimal control analysis is examined by means of numerical experiments. Different desired cell volume for dehydration, rehydration and their combination are given in three test cases with different weighting coefficients and the corresponding optimal control functions are determined. The results show that the optimal boundary control functions can be obtained with an arbitrary initial guess within one second CPU time on a Pentium III-600 MHz PC. (Author)

  7. Optimal control of HIV/AIDS dynamic: Education and treatment

    Science.gov (United States)

    Sule, Amiru; Abdullah, Farah Aini

    2014-07-01

    A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.

  8. Depletion of forest resources in Sudan. Intervention options for optimal control

    International Nuclear Information System (INIS)

    Hassan, Rashid; Hertzler, Greg; Benhin, James K.A.

    2009-01-01

    Agricultural expansion and over-cutting of trees for fuelwood are important causes of deforestation in arid and semi-arid countries such as Sudan. The consequence is increased desertification and high erosion and loss of soil nutrients leading to declining agricultural productivity. However, the social costs of the deforestation externality are not taken into account in present forest management and land use planning in Sudan leading to under-pricing and over-exploitation of the country's forest resources. This study evaluated the suitability of approaches commonly used by most forest resource management agencies for prediction of the state and control of harvesting of forest resources against alternative empirical simulation models using relevant information about economic behaviour of trading agents in the fuelwood market. Results showed the clear superiority of models integrating market behaviour over current approaches in the ability to better simulate real trends of wood consumption and hence depletion rates. The study also adopted an optimal control model to derive socially optimal forest harvesting regimes. The results showed that current rates of forest resource rent recovery and reforestation efforts are very far from optimal. Results also suggest that, in addition to optimal pricing and higher reforestation efforts, promotion and availability of fuel substitutes and investment in wood energy conversion efficiencies have a strong potential for curbing the problem of deforestation in Sudan. (author)

  9. Depletion of forest resources in Sudan. Intervention options for optimal control

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Rashid [Centre for Environmental Economics and Policy in Africa (CEEPA), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria (South Africa); Hertzler, Greg [Agricultural and Resource Economics, Faculty of Agriculture, Food and Natural Resources, The University of Sydney, Sydney, NSW 2006 (Australia); Benhin, James K.A. [Marine and Coastal Environmental Economics, Business School, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA (United Kingdom)

    2009-04-15

    Agricultural expansion and over-cutting of trees for fuelwood are important causes of deforestation in arid and semi-arid countries such as Sudan. The consequence is increased desertification and high erosion and loss of soil nutrients leading to declining agricultural productivity. However, the social costs of the deforestation externality are not taken into account in present forest management and land use planning in Sudan leading to under-pricing and over-exploitation of the country's forest resources. This study evaluated the suitability of approaches commonly used by most forest resource management agencies for prediction of the state and control of harvesting of forest resources against alternative empirical simulation models using relevant information about economic behaviour of trading agents in the fuelwood market. Results showed the clear superiority of models integrating market behaviour over current approaches in the ability to better simulate real trends of wood consumption and hence depletion rates. The study also adopted an optimal control model to derive socially optimal forest harvesting regimes. The results showed that current rates of forest resource rent recovery and reforestation efforts are very far from optimal. Results also suggest that, in addition to optimal pricing and higher reforestation efforts, promotion and availability of fuel substitutes and investment in wood energy conversion efficiencies have a strong potential for curbing the problem of deforestation in Sudan. (author)

  10. Depletion of forest resources in Sudan: Intervention options for optimal control

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Rashid [Centre for Environmental Economics and Policy in Africa (CEEPA), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria (South Africa)], E-mail: rashid.hassan@up.ac.za; Hertzler, Greg [Agricultural and Resource Economics, Faculty of Agriculture, Food and Natural Resources, University of Sydney, Sydney, NSW 2006 (Australia); Benhin, James K.A. [Marine and Coastal Environmental Economics, Business School, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA (United Kingdom)

    2009-04-15

    Agricultural expansion and over-cutting of trees for fuelwood are important causes of deforestation in arid and semi-arid countries such as Sudan. The consequence is increased desertification and high erosion and loss of soil nutrients leading to declining agricultural productivity. However, the social costs of the deforestation externality are not taken into account in present forest management and land use planning in Sudan leading to under-pricing and over-exploitation of the country's forest resources. This study evaluated the suitability of approaches commonly used by most forest resource management agencies for prediction of the state and control of harvesting of forest resources against alternative empirical simulation models using relevant information about economic behaviour of trading agents in the fuelwood market. Results showed the clear superiority of models integrating market behaviour over current approaches in the ability to better simulate real trends of wood consumption and hence depletion rates. The study also adopted an optimal control model to derive socially optimal forest harvesting regimes. The results showed that current rates of forest resource rent recovery and reforestation efforts are very far from optimal. Results also suggest that, in addition to optimal pricing and higher reforestation efforts, promotion and availability of fuel substitutes and investment in wood energy conversion efficiencies have a strong potential for curbing the problem of deforestation in Sudan.

  11. Modeling length of stay as an optimized two-dass prediction problem

    NARCIS (Netherlands)

    Verduijn, M.; Peek, N.; Voorbraak, F.; de Jonge, E.; de Mol, B. A. J. M.

    2007-01-01

    Objectives. To develop a predictive model for the outcome length of stay at the Intensive Care Unit (ICU LOS), including the choice of an optimal dichotomization threshold for this outcome. Reduction of prediction problems of this type of outcome to a two-doss problem is a common strategy to

  12. Robust Model Predictive Control of a Nonlinear System with Known Scheduling Variable and Uncertain Gain

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2012-01-01

    Robust model predictive control (RMPC) of a class of nonlinear systems is considered in this paper. We will use Linear Parameter Varying (LPV) model of the nonlinear system. By taking the advantage of having future values of the scheduling variable, we will simplify state prediction. Because...... of the special structure of the problem, uncertainty is only in the B matrix (gain) of the state space model. Therefore by taking advantage of this structure, we formulate a tractable minimax optimization problem to solve robust model predictive control problem. Wind turbine is chosen as the case study and we...... choose wind speed as the scheduling variable. Wind speed is measurable ahead of the turbine, therefore the scheduling variable is known for the entire prediction horizon....

  13. Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies.

    Science.gov (United States)

    Dowd, J E; Weber, I; Rodriguez, B; Piret, J M; Kwok, K E

    1999-05-20

    The selection of medium feed rates for perfusion bioreactors represents a challenge for process optimization, particularly in bioreactors that are sampled infrequently. When the present and immediate future of a bioprocess can be adequately described, predictive control can minimize deviations from set points in a manner that can maximize process consistency. Predictive control of perfusion hollow-fiber bioreactors was investigated in a series of hybridoma cell cultures that compared operator control to computer estimation of feed rates. Adaptive software routines were developed to estimate the current and predict the future glucose uptake and lactate production of the bioprocess at each sampling interval. The current and future glucose uptake rates were used to select the perfusion feed rate in a designed response to deviations from the set point values. The routines presented a graphical user interface through which the operator was able to view the up-to-date culture performance and assess the model description of the immediate future culture performance. In addition, fewer samples were taken in the computer-estimated cultures, reducing labor and analytical expense. The use of these predictive controller routines and the graphical user interface decreased the glucose and lactate concentration variances up to sevenfold, and antibody yields increased by 10% to 43%. Copyright 1999 John Wiley & Sons, Inc.

  14. Optimal Control for a Class of Chaotic Systems

    Directory of Open Access Journals (Sweden)

    Jianxiong Zhang

    2012-01-01

    Full Text Available This paper proposes the optimal control methods for a class of chaotic systems via state feedback. By converting the chaotic systems to the form of uncertain piecewise linear systems, we can obtain the optimal controller minimizing the upper bound on cost function by virtue of the robust optimal control method of piecewise linear systems, which is cast as an optimization problem under constraints of bilinear matrix inequalities (BMIs. In addition, the lower bound on cost function can be achieved by solving a semidefinite programming (SDP. Finally, numerical examples are given to illustrate the results.

  15. Multiobjective Optimization Design of a Fractional Order PID Controller for a Gun Control System

    Directory of Open Access Journals (Sweden)

    Qiang Gao

    2013-01-01

    Full Text Available Motion control of gun barrels is an ongoing topic for the development of gun control equipments possessing excellent performances. In this paper, a typical fractional order PID control strategy is employed for the gun control system. To obtain optimal parameters of the controller, a multiobjective optimization scheme is developed from the loop-shaping perspective. To solve the specified nonlinear optimization problem, a novel Pareto optimal solution based multiobjective differential evolution algorithm is proposed. To enhance the convergent rate of the optimization process, an opposition based learning method is embedded in the chaotic population initialization process. To enhance the robustness of the algorithm for different problems, an adapting scheme of the mutation operation is further employed. With assistance of the evolutionary algorithm, the optimal solution for the specified problem is selected. The numerical simulation results show that the control system can rapidly follow the demand signal with high accuracy and high robustness, demonstrating the efficiency of the proposed controller parameter tuning method.

  16. Optimal Control Inventory Stochastic With Production Deteriorating

    Science.gov (United States)

    Affandi, Pardi

    2018-01-01

    In this paper, we are using optimal control approach to determine the optimal rate in production. Most of the inventory production models deal with a single item. First build the mathematical models inventory stochastic, in this model we also assume that the items are in the same store. The mathematical model of the problem inventory can be deterministic and stochastic models. In this research will be discussed how to model the stochastic as well as how to solve the inventory model using optimal control techniques. The main tool in the study problems for the necessary optimality conditions in the form of the Pontryagin maximum principle involves the Hamilton function. So we can have the optimal production rate in a production inventory system where items are subject deterioration.

  17. Explicit Nonlinear Model Predictive Control for a Saucer-Shaped Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Zhihui Xing

    2013-01-01

    Full Text Available A lifting body unmanned aerial vehicle (UAV generates lift by its body and shows many significant advantages due to the particular shape, such as huge loading space, small wetted area, high-strength fuselage structure, and large lifting area. However, designing the control law for a lifting body UAV is quite challenging because it has strong nonlinearity and coupling, and usually lacks it rudders. In this paper, an explicit nonlinear model predictive control (ENMPC strategy is employed to design a control law for a saucer-shaped UAV which can be adequately modeled with a rigid 6-degrees-of-freedom (DOF representation. In the ENMPC, control signal is calculated by approximation of the tracking error in the receding horizon by its Taylor-series expansion to any specified order. It enhances the advantages of the nonlinear model predictive control and eliminates the time-consuming online optimization. The simulation results show that ENMPC is a propriety strategy for controlling lifting body UAVs and can compensate the insufficient control surface area.

  18. Model predictive control for a thermostatic controlled system

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff temperat......This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff...

  19. Energy Optimal Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Abrahamsen, Flemming

    This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... demonstrated that energy optimal control will sometimes improve and sometimes deteriorate the stability. Comparison of small and medium-size induction motor drives with permanent magnet motor drives indicated why, and in which applications, PM motors are especially good. Calculations of economical aspects...... improvement by energy optimal control for any standard induction motor drive between 2.2 kW and 90 kW. A simple method to evaluate the robustness against load disturbances was developed and used to compare the robustness of different motor types and sizes. Calculation of the oscillatory behavior of a motor...

  20. Optimal Control Surface Layout for an Aeroservoelastic Wingbox

    Science.gov (United States)

    Stanford, Bret K.

    2017-01-01

    This paper demonstrates a technique for locating the optimal control surface layout of an aeroservoelastic Common Research Model wingbox, in the context of maneuver load alleviation and active utter suppression. The combinatorial actuator layout design is solved using ideas borrowed from topology optimization, where the effectiveness of a given control surface is tied to a layout design variable, which varies from zero (the actuator is removed) to one (the actuator is retained). These layout design variables are optimized concurrently with a large number of structural wingbox sizing variables and control surface actuation variables, in order to minimize the sum of structural weight and actuator weight. Results are presented that demonstrate interdependencies between structural sizing patterns and optimal control surface layouts, for both static and dynamic aeroelastic physics.

  1. Combined Optimal Control System for excavator electric drive

    Science.gov (United States)

    Kurochkin, N. S.; Kochetkov, V. P.; Platonova, E. V.; Glushkin, E. Y.; Dulesov, A. S.

    2018-03-01

    The article presents a synthesis of the combined optimal control algorithms of the AC drive rotation mechanism of the excavator. Synthesis of algorithms consists in the regulation of external coordinates - based on the theory of optimal systems and correction of the internal coordinates electric drive using the method "technical optimum". The research shows the advantage of optimal combined control systems for the electric rotary drive over classical systems of subordinate regulation. The paper presents a method for selecting the optimality criterion of coefficients to find the intersection of the range of permissible values of the coordinates of the control object. There is possibility of system settings by choosing the optimality criterion coefficients, which allows one to select the required characteristics of the drive: the dynamic moment (M) and the time of the transient process (tpp). Due to the use of combined optimal control systems, it was possible to significantly reduce the maximum value of the dynamic moment (M) and at the same time - reduce the transient time (tpp).

  2. Defending against the Advanced Persistent Threat: An Optimal Control Approach

    Directory of Open Access Journals (Sweden)

    Pengdeng Li

    2018-01-01

    Full Text Available The new cyberattack pattern of advanced persistent threat (APT has posed a serious threat to modern society. This paper addresses the APT defense problem, that is, the problem of how to effectively defend against an APT campaign. Based on a novel APT attack-defense model, the effectiveness of an APT defense strategy is quantified. Thereby, the APT defense problem is modeled as an optimal control problem, in which an optimal control stands for a most effective APT defense strategy. The existence of an optimal control is proved, and an optimality system is derived. Consequently, an optimal control can be figured out by solving the optimality system. Some examples of the optimal control are given. Finally, the influence of some factors on the effectiveness of an optimal control is examined through computer experiments. These findings help organizations to work out policies of defending against APTs.

  3. Practical synchronization on complex dynamical networks via optimal pinning control

    Science.gov (United States)

    Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu

    2015-07-01

    We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.

  4. A model-based approach to predict muscle synergies using optimization: application to feedback control

    Directory of Open Access Journals (Sweden)

    Reza eSharif Razavian

    2015-10-01

    Full Text Available This paper presents a new model-based method to define muscle synergies. Unlike the conventional factorization approach, which extracts synergies from electromyographic data, the proposed method employs a biomechanical model and formally defines the synergies as the solution of an optimal control problem. As a result, the number of required synergies is directly related to the dimensions of the operational space. The estimated synergies are posture-dependent, which correlate well with the results of standard factorization methods. Two examples are used to showcase this method: a two-dimensional forearm model, and a three-dimensional driver arm model. It has been shown here that the synergies need to be task-specific (i.e. they are defined for the specific operational spaces: the elbow angle and the steering wheel angle in the two systems. This functional definition of synergies results in a low-dimensional control space, in which every force in the operational space is accurately created by a unique combination of synergies. As such, there is no need for extra criteria (e.g., minimizing effort in the process of motion control. This approach is motivated by the need for fast and bio-plausible feedback control of musculoskeletal systems, and can have important implications in engineering, motor control, and biomechanics.

  5. A model-based approach to predict muscle synergies using optimization: application to feedback control.

    Science.gov (United States)

    Sharif Razavian, Reza; Mehrabi, Naser; McPhee, John

    2015-01-01

    This paper presents a new model-based method to define muscle synergies. Unlike the conventional factorization approach, which extracts synergies from electromyographic data, the proposed method employs a biomechanical model and formally defines the synergies as the solution of an optimal control problem. As a result, the number of required synergies is directly related to the dimensions of the operational space. The estimated synergies are posture-dependent, which correlate well with the results of standard factorization methods. Two examples are used to showcase this method: a two-dimensional forearm model, and a three-dimensional driver arm model. It has been shown here that the synergies need to be task-specific (i.e., they are defined for the specific operational spaces: the elbow angle and the steering wheel angle in the two systems). This functional definition of synergies results in a low-dimensional control space, in which every force in the operational space is accurately created by a unique combination of synergies. As such, there is no need for extra criteria (e.g., minimizing effort) in the process of motion control. This approach is motivated by the need for fast and bio-plausible feedback control of musculoskeletal systems, and can have important implications in engineering, motor control, and biomechanics.

  6. Passive motion paradigm: an alternative to optimal control.

    Science.gov (United States)

    Mohan, Vishwanathan; Morasso, Pietro

    2011-01-01

    IN THE LAST YEARS, OPTIMAL CONTROL THEORY (OCT) HAS EMERGED AS THE LEADING APPROACH FOR INVESTIGATING NEURAL CONTROL OF MOVEMENT AND MOTOR COGNITION FOR TWO COMPLEMENTARY RESEARCH LINES: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the "degrees of freedom (DoFs) problem," the common core of production, observation, reasoning, and learning of "actions." OCT, directly derived from engineering design techniques of control systems quantifies task goals as "cost functions" and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative "softer" approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that "animates" the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints "at runtime," hence solving the "DoFs problem" without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of "potential actions." In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it for designing

  7. Passive Motion Paradigm: an alternative to Optimal Control

    Directory of Open Access Journals (Sweden)

    Vishwanathan eMohan

    2011-12-01

    Full Text Available In the last years, optimal control theory (OCT has emerged as the leading approach for investigating neural control of movement and motor cognition for two complementary research lines: behavioural neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the ‘degrees of freedom problem’, the common core of production, observation, reasoning, and learning of ‘actions’. OCT, directly derived from engineering design techniques of control systems quantifies task goals as ‘cost functions’ and uses the sophisticated formal tools of optimal control to obtain desired behaviour (and predictions. We propose an alternative ‘softer’ approach (PMP: Passive Motion Paradigm that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt and overt are the consequences of an internal simulation process that ‘animates’ the body schema with the attractor dynamics of force fields induced by the goal and task specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task oriented constraints ‘at runtime’, hence solving the ‘degrees of freedom problem’ without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only to shape motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of ‘potential actions’. In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory, mirror neurons and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it

  8. Prediction of energy demands using neural network with model identification by global optimization

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Ryohei; Wakui, Tetsuya; Satake, Ryoichi [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan)

    2009-02-15

    To operate energy supply plants properly from the viewpoints of stable energy supply, and energy and cost savings, it is important to predict energy demands accurately as basic conditions. Several methods of predicting energy demands have been proposed, and one of them is to use neural networks. Although local optimization methods such as gradient ones have conventionally been adopted in the back propagation procedure to identify the values of model parameters, they have the significant drawback that they can derive only local optimal solutions. In this paper, a global optimization method called ''Modal Trimming Method'' proposed for non-linear programming problems is adopted to identify the values of model parameters. In addition, the trend and periodic change are first removed from time series data on energy demand, and the converted data is used as the main input to a neural network. Furthermore, predicted values of air temperature and relative humidity are considered as additional inputs to the neural network, and their effect on the prediction of energy demand is investigated. This approach is applied to the prediction of the cooling demand in a building used for a bench mark test of a variety of prediction methods, and its validity and effectiveness are clarified. (author)

  9. Optimal control of quantum systems: Origins of inherent robustness to control field fluctuations

    International Nuclear Information System (INIS)

    Rabitz, Herschel

    2002-01-01

    The impact of control field fluctuations on the optimal manipulation of quantum dynamics phenomena is investigated. The quantum system is driven by an optimal control field, with the physical focus on the evolving expectation value of an observable operator. A relationship is shown to exist between the system dynamics and the control field fluctuations, wherein the process of seeking optimal performance assures an inherent degree of system robustness to such fluctuations. The presence of significant field fluctuations breaks down the evolution of the observable expectation value into a sequence of partially coherent robust steps. Robustness occurs because the optimization process reduces sensitivity to noise-driven quantum system fluctuations by taking advantage of the observable expectation value being bilinear in the evolution operator and its adjoint. The consequences of this inherent robustness are discussed in the light of recent experiments and numerical simulations on the optimal control of quantum phenomena. The analysis in this paper bodes well for the future success of closed-loop quantum optimal control experiments, even in the presence of reasonable levels of field fluctuations

  10. Parameterized data-driven fuzzy model based optimal control of a semi-batch reactor.

    Science.gov (United States)

    Kamesh, Reddi; Rani, K Yamuna

    2016-09-01

    A parameterized data-driven fuzzy (PDDF) model structure is proposed for semi-batch processes, and its application for optimal control is illustrated. The orthonormally parameterized input trajectories, initial states and process parameters are the inputs to the model, which predicts the output trajectories in terms of Fourier coefficients. Fuzzy rules are formulated based on the signs of a linear data-driven model, while the defuzzification step incorporates a linear regression model to shift the domain from input to output domain. The fuzzy model is employed to formulate an optimal control problem for single rate as well as multi-rate systems. Simulation study on a multivariable semi-batch reactor system reveals that the proposed PDDF modeling approach is capable of capturing the nonlinear and time-varying behavior inherent in the semi-batch system fairly accurately, and the results of operating trajectory optimization using the proposed model are found to be comparable to the results obtained using the exact first principles model, and are also found to be comparable to or better than parameterized data-driven artificial neural network model based optimization results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Germinal Center Optimization Applied to Neural Inverse Optimal Control for an All-Terrain Tracked Robot

    Directory of Open Access Journals (Sweden)

    Carlos Villaseñor

    2017-12-01

    Full Text Available Nowadays, there are several meta-heuristics algorithms which offer solutions for multi-variate optimization problems. These algorithms use a population of candidate solutions which explore the search space, where the leadership plays a big role in the exploration-exploitation equilibrium. In this work, we propose to use a Germinal Center Optimization algorithm (GCO which implements temporal leadership through modeling a non-uniform competitive-based distribution for particle selection. GCO is used to find an optimal set of parameters for a neural inverse optimal control applied to all-terrain tracked robot. In the Neural Inverse Optimal Control (NIOC scheme, a neural identifier, based on Recurrent High Orden Neural Network (RHONN trained with an extended kalman filter algorithm, is used to obtain a model of the system, then, a control law is design using such model with the inverse optimal control approach. The RHONN identifier is developed without knowledge of the plant model or its parameters, on the other hand, the inverse optimal control is designed for tracking velocity references. Applicability of the proposed scheme is illustrated using simulations results as well as real-time experimental results with an all-terrain tracked robot.

  12. Optimization of microgrids based on controller designing for ...

    African Journals Online (AJOL)

    The power quality of microgrid during islanded operation is strongly related with the controller performance of DGs. Therefore a new optimal control strategy for distributed generation based inverter to connect to the generalized microgrid is proposed. This work shows developing optimal control algorithms for the DG ...

  13. SIP-Based Single Neuron Stochastic Predictive Control for Non-Gaussian Networked Control Systems with Uncertain Metrology Delays

    Directory of Open Access Journals (Sweden)

    Xinying Xu

    2018-06-01

    Full Text Available In this paper, a novel data-driven single neuron predictive control strategy is proposed for non-Gaussian networked control systems with metrology delays in the information theory framework. Firstly, survival information potential (SIP, instead of minimum entropy, is used to formulate the performance index to characterize the randomness of the considered systems, which is calculated by oversampling method. Then the minimum values can be computed by optimizing the SIP-based performance index. Finally, the proposed strategy, minimum entropy method and mean square error (MSE are applied to a networked motor control system, and results demonstrated the effectiveness of the proposed strategy.

  14. Advanced Process Control Application and Optimization in Industrial Facilities

    Directory of Open Access Journals (Sweden)

    Howes S.

    2015-01-01

    Full Text Available This paper describes application of the new method and tool for system identification and PID tuning/advanced process control (APC optimization using the new 3G (geometric, gradient, gravity optimization method. It helps to design and implement control schemes directly inside the distributed control system (DCS or programmable logic controller (PLC. Also, the algorithm helps to identify process dynamics in closed-loop mode, optimizes controller parameters, and helps to develop adaptive control and model-based control (MBC. Application of the new 3G algorithm for designing and implementing APC schemes is presented. Optimization of primary and advanced control schemes stabilizes the process and allows the plant to run closer to process, equipment and economic constraints. This increases production rates, minimizes operating costs and improves product quality.

  15. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    Science.gov (United States)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  16. Model predictive control for power flows in networks with limited capacity

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2012-01-01

    this problem can be formulated as an optimization problem, leading directly to the design of a model predictive controller. Using this scheme, we are able to incorporate predictions of future consumption and exploit knowledge of link limitations such that the intelligent consumers are utilized ahead of time......We consider an interconnected network of consumers powered through an electrical grid of limited capacity. A subset of the consumers are intelligent consumers and have the ability to store energy in a controllable fashion; they can be filled and emptied as desired under power and capacity...... limitations. We address the problem of maintaining power balance between production and consumption using the intelligent consumers to ensure smooth power consumption from the grid. Further, certain capacity limitations to the links interconnecting the consumers must be honored. In this paper, we show how...

  17. Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control

    International Nuclear Information System (INIS)

    Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel

    2014-01-01

    Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers. (paper)

  18. Multiple Model Predictive Hybrid Feedforward Control of Fuel Cell Power Generation System

    Directory of Open Access Journals (Sweden)

    Long Wu

    2018-02-01

    Full Text Available Solid oxide fuel cell (SOFC is widely considered as an alternative solution among the family of the sustainable distributed generation. Its load flexibility enables it adjusting the power output to meet the requirements from power grid balance. Although promising, its control is challenging when faced with load changes, during which the output voltage is required to be maintained as constant and fuel utilization rate kept within a safe range. Moreover, it makes the control even more intractable because of the multivariable coupling and strong nonlinearity within the wide-range operating conditions. To this end, this paper developed a multiple model predictive control strategy for reliable SOFC operation. The resistance load is regarded as a measurable disturbance, which is an input to the model predictive control as feedforward compensation. The coupling is accommodated by the receding horizon optimization. The nonlinearity is mitigated by the multiple linear models, the weighted sum of which serves as the final control execution. The merits of the proposed control structure are demonstrated by the simulation results.

  19. Total dissolved gas prediction and optimization in RiverWare

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Hadjerioua, Boualem [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Management and operation of dams within the Columbia River Basin (CRB) provides the region with irrigation, hydropower production, flood control, navigation, and fish passage. These various system-wide demands can require unique dam operations that may result in both voluntary and involuntary spill, thereby increasing tailrace levels of total dissolved gas (TDG) which can be fatal to fish. Appropriately managing TDG levels within the context of the systematic demands requires a predictive framework robust enough to capture the operationally related effects on TDG levels. Development of the TDG predictive methodology herein attempts to capture the different modes of hydro operation, thereby making it a viable tool to be used in conjunction with a real-time scheduling model such as RiverWare. The end result of the effort will allow hydro operators to minimize system-wide TDG while meeting hydropower operational targets and constraints. The physical parameters such as spill and hydropower flow proportions, accompanied by the characteristics of the dam such as plant head levels and tailrace depths, are used to develop the empirically-based prediction model. In the broader study, two different models are developed a simplified and comprehensive model. The latter model incorporates more specific bubble physics parameters for the prediction of tailrace TDG levels. The former model is presented herein and utilizes an empirically based approach to predict downstream TDG levels based on local saturation depth, spillway and powerhouse flow proportions, and entrainment effects. Representative data collected from each of the hydro projects is used to calibrate and validate model performance and the accuracy of predicted TDG uptake. ORNL, in conjunction with IIHR - Hydroscience & Engineering, The University of Iowa, carried out model adjustments to adequately capture TDG levels with respect to each plant while maintaining a generalized model configuration. Validation results

  20. Optimize the Coverage Probability of Prediction Interval for Anomaly Detection of Sensor-Based Monitoring Series

    Directory of Open Access Journals (Sweden)

    Jingyue Pang

    2018-03-01

    Full Text Available Effective anomaly detection of sensing data is essential for identifying potential system failures. Because they require no prior knowledge or accumulated labels, and provide uncertainty presentation, the probability prediction methods (e.g., Gaussian process regression (GPR and relevance vector machine (RVM are especially adaptable to perform anomaly detection for sensing series. Generally, one key parameter of prediction models is coverage probability (CP, which controls the judging threshold of the testing sample and is generally set to a default value (e.g., 90% or 95%. There are few criteria to determine the optimal CP for anomaly detection. Therefore, this paper designs a graphic indicator of the receiver operating characteristic curve of prediction interval (ROC-PI based on the definition of the ROC curve which can depict the trade-off between the PI width and PI coverage probability across a series of cut-off points. Furthermore, the Youden index is modified to assess the performance of different CPs, by the minimization of which the optimal CP is derived by the simulated annealing (SA algorithm. Experiments conducted on two simulation datasets demonstrate the validity of the proposed method. Especially, an actual case study on sensing series from an on-orbit satellite illustrates its significant performance in practical application.

  1. Passivity-based model predictive control for mobile vehicle motion planning

    CERN Document Server

    Tahirovic, Adnan

    2013-01-01

    Passivity-based Model Predictive Control for Mobile Vehicle Navigation represents a complete theoretical approach to the adoption of passivity-based model predictive control (MPC) for autonomous vehicle navigation in both indoor and outdoor environments. The brief also introduces analysis of the worst-case scenario that might occur during the task execution. Some of the questions answered in the text include: • how to use an MPC optimization framework for the mobile vehicle navigation approach; • how to guarantee safe task completion even in complex environments including obstacle avoidance and sideslip and rollover avoidance; and  • what to expect in the worst-case scenario in which the roughness of the terrain leads the algorithm to generate the longest possible path to the goal. The passivity-based MPC approach provides a framework in which a wide range of complex vehicles can be accommodated to obtain a safer and more realizable tool during the path-planning stage. During task execution, the optimi...

  2. A Mixed Logical Dynamical-Model Predictive Control (MLD-MPC Energy Management Control Strategy for Plug-in Hybrid Electric Vehicles (PHEVs

    Directory of Open Access Journals (Sweden)

    Jing Lian

    2017-01-01

    Full Text Available Plug-in hybrid electric vehicles (PHEVs can be considered as a hybrid system (HS which includes the continuous state variable, discrete event, and operation constraint. Thus, a model predictive control (MPC strategy for PHEVs based on the mixed logical dynamical (MLD model and short-term vehicle speed prediction is proposed in this paper. Firstly, the mathematical model of the controlled PHEV is set-up to evaluate the energy consumption using the linearized models of core power components. Then, based on the recognition of driving intention and the past vehicle speed data, a nonlinear auto-regressive (NAR neural network structure is designed to predict the vehicle speed for known driving profiles of city buses and the predicted vehicle speed is used to calculate the total required torque. Next, a MLD model is established with appropriate constraints for six possible driving modes. By solving the objective function with the Mixed Integer Linear Programming (MILP algorithm, the optimal motor torque and the corresponding driving mode sequence within the speed prediction horizon can be obtained. Finally, the proposed energy control strategy shows substantial improvement in fuel economy in the simulation results.

  3. Multiobjective optimization of low impact development stormwater controls

    Science.gov (United States)

    Eckart, Kyle; McPhee, Zach; Bolisetti, Tirupati

    2018-07-01

    Green infrastructure such as Low Impact Development (LID) controls are being employed to manage the urban stormwater and restore the predevelopment hydrological conditions besides improving the stormwater runoff water quality. Since runoff generation and infiltration processes are nonlinear, there is a need for identifying optimal combination of LID controls. A coupled optimization-simulation model was developed by linking the U.S. EPA Stormwater Management Model (SWMM) to the Borg Multiobjective Evolutionary Algorithm (Borg MOEA). The coupled model is capable of performing multiobjective optimization which uses SWMM simulations as a tool to evaluate potential solutions to the optimization problem. The optimization-simulation tool was used to evaluate low impact development (LID) stormwater controls. A SWMM model was developed, calibrated, and validated for a sewershed in Windsor, Ontario and LID stormwater controls were tested for three different return periods. LID implementation strategies were optimized using the optimization-simulation model for five different implementation scenarios for each of the three storm events with the objectives of minimizing peak flow in the stormsewers, reducing total runoff, and minimizing cost. For the sewershed in Windsor, Ontario, the peak run off and total volume of the runoff were found to reduce by 13% and 29%, respectively.

  4. Performance and robustness of hybrid model predictive control for controllable dampers in building models

    Science.gov (United States)

    Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.

    2016-04-01

    A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.

  5. Optimal Pid Controller Design Using Adaptive Vurpso Algorithm

    Science.gov (United States)

    Zirkohi, Majid Moradi

    2015-04-01

    The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.

  6. Online optimal control of variable refrigerant flow and variable air volume combined air conditioning system for energy saving

    International Nuclear Information System (INIS)

    Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing

    2015-01-01

    The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system

  7. Optimal Wentzell Boundary Control of Parabolic Equations

    International Nuclear Information System (INIS)

    Luo, Yousong

    2017-01-01

    This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.

  8. Optimal Wentzell Boundary Control of Parabolic Equations

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yousong, E-mail: yousong.luo@rmit.edu.au [RMIT University, School of Mathematical and Geospatial Sciences (Australia)

    2017-04-15

    This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.

  9. Wheel slip control with torque blending using linear and nonlinear model predictive control

    Science.gov (United States)

    Basrah, M. Sofian; Siampis, Efstathios; Velenis, Efstathios; Cao, Dongpu; Longo, Stefano

    2017-11-01

    Modern hybrid electric vehicles employ electric braking to recuperate energy during deceleration. However, currently anti-lock braking system (ABS) functionality is delivered solely by friction brakes. Hence regenerative braking is typically deactivated at a low deceleration threshold in case high slip develops at the wheels and ABS activation is required. If blending of friction and electric braking can be achieved during ABS events, there would be no need to impose conservative thresholds for deactivation of regenerative braking and the recuperation capacity of the vehicle would increase significantly. In addition, electric actuators are typically significantly faster responding and would deliver better control of wheel slip than friction brakes. In this work we present a control strategy for ABS on a fully electric vehicle with each wheel independently driven by an electric machine and friction brake independently applied at each wheel. In particular we develop linear and nonlinear model predictive control strategies for optimal performance and enforcement of critical control and state constraints. The capability for real-time implementation of these controllers is assessed and their performance is validated in high fidelity simulation.

  10. Short-Term Wave Forecasting with AR models in Real-Time Optimal Control of Wave Energy Converters

    OpenAIRE

    Fusco, Francesco; Ringwood, John

    2010-01-01

    Time domain control of wave energy converters requires knowledge of future incident wave elevation in order to approach conditions for optimal energy extraction. Autoregressive models revealed to be a promising approach to the prediction of future values of the wave elevation only from its past history. Results on real wave observations from different ocean locations show that AR models allow to achieve very good predictions for more than one wave period in the future if ...

  11. Optimal control of switched systems arising in fermentation processes

    CERN Document Server

    Liu, Chongyang

    2014-01-01

    The book presents, in a systematic manner, the optimal controls under different mathematical models in fermentation processes. Variant mathematical models – i.e., those for multistage systems; switched autonomous systems; time-dependent and state-dependent switched systems; multistage time-delay systems and switched time-delay systems – for fed-batch fermentation processes are proposed and the theories and algorithms of their optimal control problems are studied and discussed. By putting forward novel methods and innovative tools, the book provides a state-of-the-art and comprehensive systematic treatment of optimal control problems arising in fermentation processes. It not only develops nonlinear dynamical system, optimal control theory and optimization algorithms, but can also help to increase productivity and provide valuable reference material on commercial fermentation processes.

  12. Euler's fluid equations: Optimal control vs optimization

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Darryl D., E-mail: d.holm@ic.ac.u [Department of Mathematics, Imperial College London, SW7 2AZ (United Kingdom)

    2009-11-23

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  13. Robust output LQ optimal control via integral sliding modes

    CERN Document Server

    Fridman, Leonid; Bejarano, Francisco Javier

    2014-01-01

    Featuring original research from well-known experts in the field of sliding mode control, this monograph presents new design schemes for implementing LQ control solutions in situations where the output system is the only information provided about the state of the plant. This new design works under the restrictions of matched disturbances without losing its desirable features. On the cutting-edge of optimal control research, Robust Output LQ Optimal Control via Integral Sliding Modes is an excellent resource for both graduate students and professionals involved in linear systems, optimal control, observation of systems with unknown inputs, and automatization. In the theory of optimal control, the linear quadratic (LQ) optimal problem plays an important role due to its physical meaning, and its solution is easily given by an algebraic Riccati equation. This solution turns out to be restrictive, however, because of two assumptions: the system must be free from disturbances and the entire state vector must be kn...

  14. Pareto Optimization Identifies Diverse Set of Phosphorylation Signatures Predicting Response to Treatment with Dasatinib.

    Science.gov (United States)

    Klammer, Martin; Dybowski, J Nikolaj; Hoffmann, Daniel; Schaab, Christoph

    2015-01-01

    Multivariate biomarkers that can predict the effectiveness of targeted therapy in individual patients are highly desired. Previous biomarker discovery studies have largely focused on the identification of single biomarker signatures, aimed at maximizing prediction accuracy. Here, we present a different approach that identifies multiple biomarkers by simultaneously optimizing their predictive power, number of features, and proximity to the drug target in a protein-protein interaction network. To this end, we incorporated NSGA-II, a fast and elitist multi-objective optimization algorithm that is based on the principle of Pareto optimality, into the biomarker discovery workflow. The method was applied to quantitative phosphoproteome data of 19 non-small cell lung cancer (NSCLC) cell lines from a previous biomarker study. The algorithm successfully identified a total of 77 candidate biomarker signatures predicting response to treatment with dasatinib. Through filtering and similarity clustering, this set was trimmed to four final biomarker signatures, which then were validated on an independent set of breast cancer cell lines. All four candidates reached the same good prediction accuracy (83%) as the originally published biomarker. Although the newly discovered signatures were diverse in their composition and in their size, the central protein of the originally published signature - integrin β4 (ITGB4) - was also present in all four Pareto signatures, confirming its pivotal role in predicting dasatinib response in NSCLC cell lines. In summary, the method presented here allows for a robust and simultaneous identification of multiple multivariate biomarkers that are optimized for prediction performance, size, and relevance.

  15. Optimizing pipeline transportation using a fuzzy controller

    Energy Technology Data Exchange (ETDEWEB)

    Aramaki, Thiago L.; Correa, Joao L. L.; Montalvoa, Antonio F. F. [National Control and Operation Center Tranpetro, Rio de Janeiro, (Brazil)

    2010-07-01

    The optimization of pipeline transportation is a big concern for the transporter companies. This paper is the third of a series of three articles which investigated the application of a system to simulate the human ability to operate a pipeline in an optimized way. The present paper presents the development of a proportional integral (PI) fuzzy controller, in order to optimize pipeline transportation capacity. The fuzzy adaptive PI controller system was developed and tested with a hydraulic simulator. On-field data were used from the OSBRA pipeline. The preliminary tests showed that the performance of the software simulation was satisfactory. It varied the set-point of the conventional controller within the limits of flow meters. The transport capacity of the pipe was maximize without compromising the integrity of the commodities transported. The system developed proved that it can be easily deployed as a specialist optimizing system to be added to SCADA systems.

  16. Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R

    Science.gov (United States)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2016-12-01

    Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.

  17. Exploring the Optimal Strategy to Predict Essential Genes in Microbes

    Directory of Open Access Journals (Sweden)

    Yao Lu

    2011-12-01

    Full Text Available Accurately predicting essential genes is important in many aspects of biology, medicine and bioengineering. In previous research, we have developed a machine learning based integrative algorithm to predict essential genes in bacterial species. This algorithm lends itself to two approaches for predicting essential genes: learning the traits from known essential genes in the target organism, or transferring essential gene annotations from a closely related model organism. However, for an understudied microbe, each approach has its potential limitations. The first is constricted by the often small number of known essential genes. The second is limited by the availability of model organisms and by evolutionary distance. In this study, we aim to determine the optimal strategy for predicting essential genes by examining four microbes with well-characterized essential genes. Our results suggest that, unless the known essential genes are few, learning from the known essential genes in the target organism usually outperforms transferring essential gene annotations from a related model organism. In fact, the required number of known essential genes is surprisingly small to make accurate predictions. In prokaryotes, when the number of known essential genes is greater than 2% of total genes, this approach already comes close to its optimal performance. In eukaryotes, achieving the same best performance requires over 4% of total genes, reflecting the increased complexity of eukaryotic organisms. Combining the two approaches resulted in an increased performance when the known essential genes are few. Our investigation thus provides key information on accurately predicting essential genes and will greatly facilitate annotations of microbial genomes.

  18. Predicting recurrent aphthous ulceration using genetic algorithms-optimized neural networks

    Directory of Open Access Journals (Sweden)

    Najla S Dar-Odeh

    2010-05-01

    Full Text Available Najla S Dar-Odeh1, Othman M Alsmadi2, Faris Bakri3, Zaer Abu-Hammour2, Asem A Shehabi3, Mahmoud K Al-Omiri1, Shatha M K Abu-Hammad4, Hamzeh Al-Mashni4, Mohammad B Saeed4, Wael Muqbil4, Osama A Abu-Hammad1 1Faculty of Dentistry, 2Faculty of Engineering and Technology, 3Faculty of Medicine, University of Jordan, Amman, Jordan; 4Dental Department, University of Jordan Hospital, Amman, JordanObjective: To construct and optimize a neural network that is capable of predicting the occurrence of recurrent aphthous ulceration (RAU based on a set of appropriate input data.Participants and methods: Artificial neural networks (ANN software employing genetic algorithms to optimize the architecture neural networks was used. Input and output data of 86 participants (predisposing factors and status of the participants with regards to recurrent aphthous ulceration were used to construct and train the neural networks. The optimized neural networks were then tested using untrained data of a further 10 participants.Results: The optimized neural network, which produced the most accurate predictions for the presence or absence of recurrent aphthous ulceration was found to employ: gender, hematological (with or without ferritin and mycological data of the participants, frequency of tooth brushing, and consumption of vegetables and fruits.Conclusions: Factors appearing to be related to recurrent aphthous ulceration and appropriate for use as input data to construct ANNs that predict recurrent aphthous ulceration were found to include the following: gender, hemoglobin, serum vitamin B12, serum ferritin, red cell folate, salivary candidal colony count, frequency of tooth brushing, and the number of fruits or vegetables consumed daily.Keywords: artifical neural networks, recurrent, aphthous ulceration, ulcer

  19. Optimal control of stochastic difference Volterra equations an introduction

    CERN Document Server

    Shaikhet, Leonid

    2015-01-01

    This book showcases a subclass of hereditary systems, that is, systems with behaviour depending not only on their current state but also on their past history; it is an introduction to the mathematical theory of optimal control for stochastic difference Volterra equations of neutral type. As such, it will be of much interest to researchers interested in modelling processes in physics, mechanics, automatic regulation, economics and finance, biology, sociology and medicine for all of which such equations are very popular tools. The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral stochastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for stochastic integral Volterra equations with optimal solutions for corresponding problems in stochastic difference Volterra equations. Optimal Control of Stochastic Difference Volterra Equation...

  20. Model Predictive Controller for Active Demand Side Management with PV Self-consumption in an Intelligent Building

    DEFF Research Database (Denmark)

    Zong, Yi; Mihet-Popa, Lucian; Kullmann, Daniel

    2012-01-01

    This paper presents a Model Predictive Controller (MPC) for electrical heaters’ predictive power consumption including maximizing the use of local generation (e.g. solar power) in an intelligent building. The MPC is based on dynamic power price and weather forecast, considering users’ comfort...... settings to meet an optimization objective such as minimum cost and minimum reference temperature error. It demonstrates that this MPC strategy can realize load shifting, and maximize the PV self-consumption in the residential sector. With this demand side control study, it is expected that MPC strategy...

  1. Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei

    2016-02-01

    A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.

  2. Characteristic Model-Based Robust Model Predictive Control for Hypersonic Vehicles with Constraints

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-06-01

    Full Text Available Designing robust control for hypersonic vehicles in reentry is difficult, due to the features of the vehicles including strong coupling, non-linearity, and multiple constraints. This paper proposed a characteristic model-based robust model predictive control (MPC for hypersonic vehicles with reentry constraints. First, the hypersonic vehicle is modeled by a characteristic model composed of a linear time-varying system and a lumped disturbance. Then, the identification data are regenerated by the accumulative sum idea in the gray theory, which weakens effects of the random noises and strengthens regularity of the identification data. Based on the regenerated data, the time-varying parameters and the disturbance are online estimated according to the gray identification. At last, the mixed H2/H∞ robust predictive control law is proposed based on linear matrix inequalities (LMIs and receding horizon optimization techniques. Using active tackling system constraints of MPC, the input and state constraints are satisfied in the closed-loop control system. The validity of the proposed control is verified theoretically according to Lyapunov theory and illustrated by simulation results.

  3. Dynamic Heat Supply Prediction Using Support Vector Regression Optimized by Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Meiping Wang

    2016-01-01

    Full Text Available We developed an effective intelligent model to predict the dynamic heat supply of heat source. A hybrid forecasting method was proposed based on support vector regression (SVR model-optimized particle swarm optimization (PSO algorithms. Due to the interaction of meteorological conditions and the heating parameters of heating system, it is extremely difficult to forecast dynamic heat supply. Firstly, the correlations among heat supply and related influencing factors in the heating system were analyzed through the correlation analysis of statistical theory. Then, the SVR model was employed to forecast dynamic heat supply. In the model, the input variables were selected based on the correlation analysis and three crucial parameters, including the penalties factor, gamma of the kernel RBF, and insensitive loss function, were optimized by PSO algorithms. The optimized SVR model was compared with the basic SVR, optimized genetic algorithm-SVR (GA-SVR, and artificial neural network (ANN through six groups of experiment data from two heat sources. The results of the correlation coefficient analysis revealed the relationship between the influencing factors and the forecasted heat supply and determined the input variables. The performance of the PSO-SVR model is superior to those of the other three models. The PSO-SVR method is statistically robust and can be applied to practical heating system.

  4. Optimal Control and Forecasting of Complex Dynamical Systems

    CERN Document Server

    Grigorenko, Ilya

    2006-01-01

    This important book reviews applications of optimization and optimal control theory to modern problems in physics, nano-science and finance. The theory presented here can be efficiently applied to various problems, such as the determination of the optimal shape of a laser pulse to induce certain excitations in quantum systems, the optimal design of nanostructured materials and devices, or the control of chaotic systems and minimization of the forecast error for a given forecasting model (for example, artificial neural networks). Starting from a brief review of the history of variational calcul

  5. Discrete-time optimal control and games on large intervals

    CERN Document Server

    Zaslavski, Alexander J

    2017-01-01

    Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...

  6. Local Model Predictive Control for T-S Fuzzy Systems.

    Science.gov (United States)

    Lee, Donghwan; Hu, Jianghai

    2017-09-01

    In this paper, a new linear matrix inequality-based model predictive control (MPC) problem is studied for discrete-time nonlinear systems described as Takagi-Sugeno fuzzy systems. A recent local stability approach is applied to improve the performance of the proposed MPC scheme. At each time k , an optimal state-feedback gain that minimizes an objective function is obtained by solving a semidefinite programming problem. The local stability analysis, the estimation of the domain of attraction, and feasibility of the proposed MPC are proved. Examples are given to demonstrate the advantages of the suggested MPC over existing approaches.

  7. Robust and optimal control a two-port framework approach

    CERN Document Server

    Tsai, Mi-Ching

    2014-01-01

    A Two-port Framework for Robust and Optimal Control introduces an alternative approach to robust and optimal controller synthesis procedures for linear, time-invariant systems, based on the two-port system widespread in electrical engineering. The novel use of the two-port system in this context allows straightforward engineering-oriented solution-finding procedures to be developed, requiring no mathematics beyond linear algebra. A chain-scattering description provides a unified framework for constructing the stabilizing controller set and for synthesizing H2 optimal and H∞ sub-optimal controllers. Simple yet illustrative examples explain each step. A Two-port Framework for Robust and Optimal Control  features: ·         a hands-on, tutorial-style presentation giving the reader the opportunity to repeat the designs presented and easily to modify them for their own programs; ·         an abundance of examples illustrating the most important steps in robust and optimal design; and ·   �...

  8. Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R

    Science.gov (United States)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2015-10-01

    A model predictive control (MPC) method for stabilization of the resistive wall mode (RWM) in the EXTRAP T2R reversed-field pinch is presented. The system identification technique is used to obtain a linearized empirical model of EXTRAP T2R. MPC employs the model for prediction and computes optimal control inputs that satisfy performance criterion. The use of a linearized form of the model allows for compact formulation of MPC, implemented on a millisecond timescale, that can be used for real-time control. The design allows the user to arbitrarily suppress any selected Fourier mode. The experimental results from EXTRAP T2R show that the designed and implemented MPC successfully stabilizes the RWM.

  9. Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R

    International Nuclear Information System (INIS)

    Setiadi, A C; Brunsell, P R; Frassinetti, L

    2015-01-01

    A model predictive control (MPC) method for stabilization of the resistive wall mode (RWM) in the EXTRAP T2R reversed-field pinch is presented. The system identification technique is used to obtain a linearized empirical model of EXTRAP T2R. MPC employs the model for prediction and computes optimal control inputs that satisfy performance criterion. The use of a linearized form of the model allows for compact formulation of MPC, implemented on a millisecond timescale, that can be used for real-time control. The design allows the user to arbitrarily suppress any selected Fourier mode. The experimental results from EXTRAP T2R show that the designed and implemented MPC successfully stabilizes the RWM. (paper)

  10. A Predictive Framework to Elucidate Venous Stenosis: CFD & Shape Optimization.

    Science.gov (United States)

    Javid Mahmoudzadeh Akherat, S M; Cassel, Kevin; Boghosian, Michael; Hammes, Mary; Coe, Fredric

    2017-07-01

    The surgical creation of vascular accesses for renal failure patients provides an abnormally high flow rate conduit in the patient's upper arm vasculature that facilitates the hemodialysis treatment. These vascular accesses, however, are very often associated with complications that lead to access failure and thrombotic incidents, mainly due to excessive neointimal hyperplasia (NH) and subsequently stenosis. Development of a framework to monitor and predict the evolution of the venous system post access creation can greatly contribute to maintaining access patency. Computational fluid dynamics (CFD) has been exploited to inspect the non-homeostatic wall shear stress (WSS) distribution that is speculated to trigger NH in the patient cohort under investigation. Thereafter, CFD in liaison with a gradient-free shape optimization method has been employed to analyze the deformation modes of the venous system enduring non-physiological hemodynamics. It is observed that the optimally evolved shapes and their corresponding hemodynamics strive to restore the homeostatic state of the venous system to a normal, pre-surgery condition. It is concluded that a CFD-shape optimization coupling that seeks to regulate the WSS back to a well-defined physiological WSS target range can accurately predict the mode of patient-specific access failure.

  11. A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.

    Science.gov (United States)

    Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-10-01

    The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.

  12. Solution for state constrained optimal control problems applied to power split control for hybrid vehicles

    NARCIS (Netherlands)

    Keulen, van T.A.C.; Gillot, J.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    This paper presents a numerical solution for scalar state constrained optimal control problems. The algorithm rewrites the constrained optimal control problem as a sequence of unconstrained optimal control problems which can be solved recursively as a two point boundary value problem. The solution

  13. Optimization of reliability centered predictive maintenance scheme for inertial navigation system

    International Nuclear Information System (INIS)

    Jiang, Xiuhong; Duan, Fuhai; Tian, Heng; Wei, Xuedong

    2015-01-01

    The goal of this study is to propose a reliability centered predictive maintenance scheme for a complex structure Inertial Navigation System (INS) with several redundant components. GO Methodology is applied to build the INS reliability analysis model—GO chart. Components Remaining Useful Life (RUL) and system reliability are updated dynamically based on the combination of components lifetime distribution function, stress samples, and the system GO chart. Considering the redundant design in INS, maintenance time is based not only on components RUL, but also (and mainly) on the timing of when system reliability fails to meet the set threshold. The definition of components maintenance priority balances three factors: components importance to system, risk degree, and detection difficulty. Maintenance Priority Number (MPN) is introduced, which may provide quantitative maintenance priority results for all components. A maintenance unit time cost model is built based on components MPN, components RUL predictive model and maintenance intervals for the optimization of maintenance scope. The proposed scheme can be applied to serve as the reference for INS maintenance. Finally, three numerical examples prove the proposed predictive maintenance scheme is feasible and effective. - Highlights: • A dynamic PdM with a rolling horizon is proposed for INS with redundant components. • GO Methodology is applied to build the system reliability analysis model. • A concept of MPN is proposed to quantify the maintenance sequence of components. • An optimization model is built to select the optimal group of maintenance components. • The optimization goal is minimizing the cost of maintaining system reliability

  14. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT

    Science.gov (United States)

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia

    2018-05-01

    The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.

  15. Skinner-Rusk unified formalism for optimal control systems and applications

    International Nuclear Information System (INIS)

    Barbero-Linan, MarIa; EcheverrIa-EnrIquez, Arturo; Diego, David MartIn de; Munoz-Lecanda, Miguel C; Roman-Roy, Narciso

    2007-01-01

    A geometric approach to time-dependent optimal control problems is proposed. This formulation is based on the Skinner and Rusk formalism for Lagrangian and Hamiltonian systems. The corresponding unified formalism developed for optimal control systems allows us to formulate geometrically the necessary conditions given by a weak form of Pontryagin's maximum principle, provided that the differentiability with respect to controls is assumed and the space of controls is open. Furthermore, our method is also valid for implicit optimal control systems and, in particular, for the so-called descriptor systems (optimal control problems including both differential and algebraic equations)

  16. Discrete-time inverse optimal control for nonlinear systems

    CERN Document Server

    Sanchez, Edgar N

    2013-01-01

    Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th

  17. Centralized Stochastic Optimal Control of Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Malikopoulos, Andreas [ORNL

    2015-01-01

    In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain using the long-run expected average cost per unit time criterion, and we show that the control policy yielding the Pareto optimal solution minimizes the average cost criterion online. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.

  18. Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft

    Science.gov (United States)

    Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei

    2018-05-01

    Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).

  19. Stochastic optimal control of single neuron spike trains

    DEFF Research Database (Denmark)

    Iolov, Alexandre; Ditlevsen, Susanne; Longtin, Andrë

    2014-01-01

    stimulation of a neuron to achieve a target spike train under the physiological constraint to not damage tissue. Approach. We pose a stochastic optimal control problem to precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with noise assumed to be of intrinsic or synaptic...... origin. In particular, we allow for the noise to be of arbitrary intensity. The optimal control problem is solved using dynamic programming when the controller has access to the voltage (closed-loop control), and using a maximum principle for the transition density when the controller only has access...... to the spike times (open-loop control). Main results. We have developed a stochastic optimal control algorithm to obtain precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes, under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy...

  20. Control and Optimization Methods for Electric Smart Grids

    CERN Document Server

    Ilić, Marija

    2012-01-01

    Control and Optimization Methods for Electric Smart Grids brings together leading experts in power, control and communication systems,and consolidates some of the most promising recent research in smart grid modeling,control and optimization in hopes of laying the foundation for future advances in this critical field of study. The contents comprise eighteen essays addressing wide varieties of control-theoretic problems for tomorrow’s power grid. Topics covered include: Control architectures for power system networks with large-scale penetration of renewable energy and plug-in vehicles Optimal demand response New modeling methods for electricity markets Control strategies for data centers Cyber-security Wide-area monitoring and control using synchronized phasor measurements. The authors present theoretical results supported by illustrative examples and practical case studies, making the material comprehensible to a wide audience. The results reflect the exponential transformation that today’s grid is going...

  1. A problem of optimal control and observation for distributed homogeneous multi-agent system

    Science.gov (United States)

    Kruglikov, Sergey V.

    2017-12-01

    The paper considers the implementation of a algorithm for controlling a distributed complex of several mobile multi-robots. The concept of a unified information space of the controlling system is applied. The presented information and mathematical models of participants and obstacles, as real agents, and goals and scenarios, as virtual agents, create the base forming the algorithmic and software background for computer decision support system. The controlling scheme assumes the indirect management of the robotic team on the basis of optimal control and observation problem predicting intellectual behavior in a dynamic, hostile environment. A basic content problem is a compound cargo transportation by a group of participants in the case of a distributed control scheme in the terrain with multiple obstacles.

  2. Parametric optimal control of uncertain systems under an optimistic value criterion

    Science.gov (United States)

    Li, Bo; Zhu, Yuanguo

    2018-01-01

    It is well known that the optimal control of a linear quadratic model is characterized by the solution of a Riccati differential equation. In many cases, the corresponding Riccati differential equation cannot be solved exactly such that the optimal feedback control may be a complex time-oriented function. In this article, a parametric optimal control problem of an uncertain linear quadratic model under an optimistic value criterion is considered for simplifying the expression of optimal control. Based on the equation of optimality for the uncertain optimal control problem, an approximation method is presented to solve it. As an application, a two-spool turbofan engine optimal control problem is given to show the utility of the proposed model and the efficiency of the presented approximation method.

  3. Optimal Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PID Controller

    Directory of Open Access Journals (Sweden)

    Ameer L. Saleh

    2018-02-01

    Full Text Available This paper present an optimal Fractional Order PID (FOPID controller based on Particle Swarm Optimization (PSO for controlling the trajectory tracking of Wheeled Mobile Robot(WMR.The issue of trajectory tracking with given a desired reference velocity is minimized to get the distance and deviation angle equal to zero, to realize the objective of trajectory tracking a two FOPID controllers are used for velocity control and azimuth control to implement the trajectory tracking control. A path planning and path tracking methodologies are used to give different desired tracking trajectories.  PSO algorithm is using to find the optimal parameters of FOPID controllers. The kinematic and dynamic models of wheeled mobile robot for desired trajectory tracking with PSO algorithm are simulated in Simulink-Matlab. Simulation results show that the optimal FOPID controllers are more effective and has better dynamic performance than the conventional methods.

  4. Prediction of Aerodynamic Coefficient using Genetic Algorithm Optimized Neural Network for Sparse Data

    Science.gov (United States)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic

  5. Optimal control of a harmonic oscillator: Economic interpretations

    Science.gov (United States)

    Janová, Jitka; Hampel, David

    2013-10-01

    Optimal control is a popular technique for modelling and solving the dynamic decision problems in economics. A standard interpretation of the criteria function and Lagrange multipliers in the profit maximization problem is well known. On a particular example, we aim to a deeper understanding of the possible economic interpretations of further mathematical and solution features of the optimal control problem: we focus on the solution of the optimal control problem for harmonic oscillator serving as a model for Phillips business cycle. We discuss the economic interpretations of arising mathematical objects with respect to well known reasoning for these in other problems.

  6. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    Science.gov (United States)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  7. A homotopy algorithm for digital optimal projection control GASD-HADOC

    Science.gov (United States)

    Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.

    1993-01-01

    The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.

  8. Optimal control of raw timber production processes

    Science.gov (United States)

    Ivan Kolenka

    1978-01-01

    This paper demonstrates the possibility of optimal planning and control of timber harvesting activ-ities with mathematical optimization models. The separate phases of timber harvesting are represented by coordinated models which can be used to select the optimal decision for the execution of any given phase. The models form a system whose components are connected and...

  9. Optimal control of a qubit in an optical cavity

    International Nuclear Information System (INIS)

    Deffner, Sebastian

    2014-01-01

    We study quantum information processing by means of optimal control theory. To this end, we analyze the damped Jaynes–Cummings model, and derive optimal control protocols that minimize the heating or energy dispersion rates, and controls that drive the system at the quantum speed limit. Special emphasis is put on analyzing the subtleties of optimal control theory for our system. In particular, it is shown how two fundamentally different approaches to the quantum speed limit can be reconciled by carefully formulating the problem. (paper)

  10. Optimal control of quantum systems: a projection approach

    International Nuclear Information System (INIS)

    Cheng, C.-J.; Hwang, C.-C.; Liao, T.-L.; Chou, G.-L.

    2005-01-01

    This paper considers the optimal control of quantum systems. The controlled quantum systems are described by the probability-density-matrix-based Liouville-von Neumann equation. Using projection operators, the states of the quantum system are decomposed into two sub-spaces, namely the 'main state' space and the 'remaining state' space. Since the control energy is limited, a solution for optimizing the external control force is proposed in which the main state is brought to the desired main state at a certain target time, while the population of the remaining state is simultaneously suppressed in order to diminish its effects on the final population of the main state. The optimization problem is formulated by maximizing a general cost functional of states and control force. An efficient algorithm is developed to solve the optimization problem. Finally, using the hydrogen fluoride (HF) molecular population transfer problem as an illustrative example, the effectiveness of the proposed scheme for a quantum system initially in a mixed state or in a pure state is investigated through numerical simulations

  11. Transthoracic Doppler echocardiography to predict optimal tube pulsing window for coronary artery CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gang, E-mail: cjr.sungang@vip.163.com [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Li, Min, E-mail: limin22000@yahoo.com.cn [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Jiang, Xiang-sen, E-mail: jiangxiangsen123@126.com [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Li, Li, E-mail: leely1976@yahoo.com.cn [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Peng, Zhao-hui, E-mail: zhaohuipeng_R@163.com [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Mu, Nan-nan, E-mail: munannan22000@sohu.com [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China)

    2012-09-15

    Rationale and objective: To evaluate the feasibility of transthoracic Doppler echocardiography to determine the optimal pulsing windows for CT coronary angiography to narrow the pulsing windows further, especially in higher heart rate. Materials and methods: Doppler was performed on 135 patients before CT scanning. For Doppler, the intervals with minimal motion were evaluated during both systole and diastole integrating electrocardiogram (ECG) intervals. For CT scanning, the retrospective ECG-gating was applied and the optimal reconstruction intervals were determined. The accuracy of Doppler analysis to predict the optimal reconstruction intervals was tested. The predicted length of pulsing windows was compared between Doppler analysis and traditional prospective ECG-gating protocol (heart rate ≦ 65 bpm, 60–76%; 66–79 bpm, 30–77%; ≧80 bpm, 31–47%). Results: According to Doppler analysis, the mean length of intervals with minimal motion in systole was 106.4 ± 39.2 ms and 125.2 ± 92.0 ms in diastole. When the intervals with minimal motion during diastole > 90 ms, the optimal reconstruction intervals were located at diastole; otherwise, at systole (P < 0.001). The optimal reconstruction intervals in 93.8% (132/135) patients could be predicted accurately by Doppler analysis. If the optimal reconstruction intervals predicted by Doppler were applied as the exposure windows, the mean length of pulsing windows should has been 105.2 ± 69.4 ms (range: 26.9–510.3 ms), which was significantly shorter than that of traditional prospective ECG-gating protocol (232.0 ± 120.2 ms, range: 93.2–427.3 ms, P < 0.001). Conclusion: Doppler can help detecting the optimal pulsing windows accurately. Prospective ECG-gating incorporating Doppler analysis may narrow pulsing windows significantly while maintaining image quality.

  12. Transthoracic Doppler echocardiography to predict optimal tube pulsing window for coronary artery CT angiography

    International Nuclear Information System (INIS)

    Sun, Gang; Li, Min; Jiang, Xiang-sen; Li, Li; Peng, Zhao-hui; Mu, Nan-nan

    2012-01-01

    Rationale and objective: To evaluate the feasibility of transthoracic Doppler echocardiography to determine the optimal pulsing windows for CT coronary angiography to narrow the pulsing windows further, especially in higher heart rate. Materials and methods: Doppler was performed on 135 patients before CT scanning. For Doppler, the intervals with minimal motion were evaluated during both systole and diastole integrating electrocardiogram (ECG) intervals. For CT scanning, the retrospective ECG-gating was applied and the optimal reconstruction intervals were determined. The accuracy of Doppler analysis to predict the optimal reconstruction intervals was tested. The predicted length of pulsing windows was compared between Doppler analysis and traditional prospective ECG-gating protocol (heart rate ≦ 65 bpm, 60–76%; 66–79 bpm, 30–77%; ≧80 bpm, 31–47%). Results: According to Doppler analysis, the mean length of intervals with minimal motion in systole was 106.4 ± 39.2 ms and 125.2 ± 92.0 ms in diastole. When the intervals with minimal motion during diastole > 90 ms, the optimal reconstruction intervals were located at diastole; otherwise, at systole (P < 0.001). The optimal reconstruction intervals in 93.8% (132/135) patients could be predicted accurately by Doppler analysis. If the optimal reconstruction intervals predicted by Doppler were applied as the exposure windows, the mean length of pulsing windows should has been 105.2 ± 69.4 ms (range: 26.9–510.3 ms), which was significantly shorter than that of traditional prospective ECG-gating protocol (232.0 ± 120.2 ms, range: 93.2–427.3 ms, P < 0.001). Conclusion: Doppler can help detecting the optimal pulsing windows accurately. Prospective ECG-gating incorporating Doppler analysis may narrow pulsing windows significantly while maintaining image quality

  13. Numerical optimization of circulation control airfoils

    Science.gov (United States)

    Tai, T. C.; Kidwell, G. H., Jr.; Vanderplaats, G. N.

    1981-01-01

    A numerical procedure for optimizing circulation control airfoils, which consists of the coupling of an optimization scheme with a viscous potential flow analysis for blowing jet, is presented. The desired airfoil is defined by a combination of three baseline shapes (cambered ellipse, and cambered ellipse with drooped and spiralled trailing edges). The coefficients of these shapes are used as design variables in the optimization process. Under the constraints of lift augmentation and lift-to-drag ratios, the optimal airfoils are found to lie between those of cambered ellipse and the drooped trailing edge, towards the latter as the angle of attack increases. Results agree qualitatively with available experimental data.

  14. Optimal control of operation efficiency of belt conveyor systems

    International Nuclear Information System (INIS)

    Zhang, Shirong; Xia, Xiaohua

    2010-01-01

    The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study.

  15. Optimal control of operation efficiency of belt conveyor systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shirong [Department of Automation, Wuhan University, Wuhan 430072 (China); Xia, Xiaohua [Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002 (South Africa)

    2010-06-15

    The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study. (author)

  16. The Weighted Support Vector Machine Based on Hybrid Swarm Intelligence Optimization for Icing Prediction of Transmission Line

    Directory of Open Access Journals (Sweden)

    Xiaomin Xu

    2015-01-01

    Full Text Available Not only can the icing coat on transmission line cause the electrical fault of gap discharge and icing flashover but also it will lead to the mechanical failure of tower, conductor, insulators, and others. It will bring great harm to the people’s daily life and work. Thus, accurate prediction of ice thickness has important significance for power department to control the ice disaster effectively. Based on the analysis of standard support vector machine, this paper presents a weighted support vector machine regression model based on the similarity (WSVR. According to the different importance of samples, this paper introduces the weighted support vector machine and optimizes its parameters by hybrid swarm intelligence optimization algorithm with the particle swarm and ant colony (PSO-ACO, which improves the generalization ability of the model. In the case study, the actual data of ice thickness and climate in a certain area of Hunan province have been used to predict the icing thickness of the area, which verifies the validity and applicability of this proposed method. The predicted results show that the intelligent model proposed in this paper has higher precision and stronger generalization ability.

  17. Optimal Control of Wind Power Generation

    Directory of Open Access Journals (Sweden)

    Pawel Pijarski

    2018-03-01

    Full Text Available Power system control is a complex task, which is strongly related to the number and kind of generating units as well as to the applied technologies, such as conventional coal fired power plants or wind and photovoltaic farms. Fast development of wind generation that is considered as unstable generation sets new strong requirements concerning remote control and data hubs cooperating with SCADA systems. Considering specific nature of the wind power generation, the authors analyze the problem of optimal control for wind power generation in farms located over a selected remote-controlled part of the Operator grid under advantageous wind conditions. This article presents an original stepwise method for tracing power flows that makes possible to eliminate current (power overloading of power grid branches. Its core idea is to consider the discussed problem as an optimization task.

  18. Model predictive control using fuzzy decision functions

    NARCIS (Netherlands)

    Kaymak, U.; Costa Sousa, da J.M.

    2001-01-01

    Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the

  19. Pressure Prediction of Coal Slurry Transportation Pipeline Based on Particle Swarm Optimization Kernel Function Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xue-cun Yang

    2015-01-01

    Full Text Available For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM and kernel function extreme learning machine prediction model (KELM. The results prove that mean square error (MSE for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.

  20. Model Reduction Using Proper Orthogonal Decomposition and Predictive Control of Distributed Reactor System

    Directory of Open Access Journals (Sweden)

    Alejandro Marquez

    2013-01-01

    Full Text Available This paper studies the application of proper orthogonal decomposition (POD to reduce the order of distributed reactor models with axial and radial diffusion and the implementation of model predictive control (MPC based on discrete-time linear time invariant (LTI reduced-order models. In this paper, the control objective is to keep the operation of the reactor at a desired operating condition in spite of the disturbances in the feed flow. This operating condition is determined by means of an optimization algorithm that provides the optimal temperature and concentration profiles for the system. Around these optimal profiles, the nonlinear partial differential equations (PDEs, that model the reactor are linearized, and afterwards the linear PDEs are discretized in space giving as a result a high-order linear model. POD and Galerkin projection are used to derive the low-order linear model that captures the dominant dynamics of the PDEs, which are subsequently used for controller design. An MPC formulation is constructed on the basis of the low-order linear model. The proposed approach is tested through simulation, and it is shown that the results are good with regard to keep the operation of the reactor.

  1. Model Prediction Control For Water Management Using Adaptive Prediction Accuracy

    NARCIS (Netherlands)

    Tian, X.; Negenborn, R.R.; Van Overloop, P.J.A.T.M.; Mostert, E.

    2014-01-01

    In the field of operational water management, Model Predictive Control (MPC) has gained popularity owing to its versatility and flexibility. The MPC controller, which takes predictions, time delay and uncertainties into account, can be designed for multi-objective management problems and for

  2. DC microgrid power flow optimization by multi-layer supervision control. Design and experimental validation

    International Nuclear Information System (INIS)

    Sechilariu, Manuela; Wang, Bao Chao; Locment, Fabrice; Jouglet, Antoine

    2014-01-01

    Highlights: • DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control. • Power balancing following power flow optimization while providing interface for smart grid communication. • Optimization under constraints: storage capability, grid power limitations, grid time-of-use pricing. • Experimental validation of DC microgrid power flow optimization by multi-layer supervision control. • DC microgrid able to perform peak shaving, to avoid undesired injection, and to make full use of locally energy. - Abstract: Urban areas have great potential for photovoltaic (PV) generation, however, direct PV power injection has limitations for high level PV penetration. It induces additional regulations in grid power balancing because of lacking abilities of responding to grid issues such as reducing grid peak consumption or avoiding undesired injections. The smart grid implementation, which is designed to meet these requirements, is facilitated by microgrids development. This paper presents a DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control which handles instantaneous power balancing following the power flow optimization while providing interface for smart grid communication. The optimization takes into account forecast of PV power production and load power demand, while satisfying constraints such as storage capability, grid power limitations, grid time-of-use pricing and grid peak hour. Optimization, whose efficiency is related to the prediction accuracy, is carried out by mixed integer linear programming. Experimental results show that the proposed microgrid structure is able to control the power flow at near optimum cost and ensures self-correcting capability. It can respond to issues of performing peak shaving, avoiding undesired injection, and making full use of locally produced energy with respect to rigid element constraints

  3. Extremum-Seeking Control and Applications A Numerical Optimization-Based Approach

    CERN Document Server

    Zhang, Chunlei

    2012-01-01

    Extremum seeking control tracks a varying maximum or minimum in a performance function such as a cost. It attempts to determine the optimal performance of a control system as it operates, thereby reducing downtime and the need for system analysis. Extremum Seeking Control and Applications is divided into two parts. In the first, the authors review existing analog optimization based extremum seeking control including gradient, perturbation and sliding mode based control designs. They then propose a novel numerical optimization based extremum seeking control based on optimization algorithms and state regulation. This control design is developed for simple linear time-invariant systems and then extended for a class of feedback linearizable nonlinear systems. The two main optimization algorithms – line search and trust region methods – are analyzed for robustness. Finite-time and asymptotic state regulators are put forward for linear and nonlinear systems respectively. Further design flexibility is achieved u...

  4. Cooperative Rendezvous and Docking for Underwater Robots Using Model Predictive Control and Dual Decomposition

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Cornelius; Johansen, Tor Arne; Blanke, Mogens

    2018-01-01

    This paper considers the problem of rendezvous and docking with visual constraints in the context of underwater robots with camera-based navigation. The objective is the convergence of the vehicles to a common point while maintaining visual contact. The proposed solution includes the design of a ...... of a distributed model predictive controller based on dual decomposition, which allows for optimization in a decentralized fashion. The proposed distributed controller enables rendezvous and docking between vehicles while maintaining visual contact....

  5. Reducing usage of the computational resources by event driven approach to model predictive control

    Science.gov (United States)

    Misik, Stefan; Bradac, Zdenek; Cela, Arben

    2017-08-01

    This paper deals with a real-time and optimal control of dynamic systems while also considers the constraints which these systems might be subject to. Main objective of this work is to propose a simple modification of the existing Model Predictive Control approach to better suit needs of computational resource-constrained real-time systems. An example using model of a mechanical system is presented and the performance of the proposed method is evaluated in a simulated environment.

  6. A Model Predictive Control Approach for Fuel Economy Improvement of a Series Hydraulic Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Tri-Vien Vu

    2014-10-01

    Full Text Available This study applied a model predictive control (MPC framework to solve the cruising control problem of a series hydraulic hybrid vehicle (SHHV. The controller not only regulates vehicle velocity, but also engine torque, engine speed, and accumulator pressure to their corresponding reference values. At each time step, a quadratic programming problem is solved within a predictive horizon to obtain the optimal control inputs. The objective is to minimize the output error. This approach ensures that the components operate at high efficiency thereby improving the total efficiency of the system. The proposed SHHV control system was evaluated under urban and highway driving conditions. By handling constraints and input-output interactions, the MPC-based control system ensures that the system operates safely and efficiently. The fuel economy of the proposed control scheme shows a noticeable improvement in comparison with the PID-based system, in which three Proportional-Integral-Derivative (PID controllers are used for cruising control.

  7. Exploring the complexity of quantum control optimization trajectories.

    Science.gov (United States)

    Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel

    2015-01-07

    The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved.

  8. Design and analysis of a model predictive controller for active queue management.

    Science.gov (United States)

    Wang, Ping; Chen, Hong; Yang, Xiaoping; Ma, Yan

    2012-01-01

    Model predictive (MP) control as a novel active queue management (AQM) algorithm in dynamic computer networks is proposed. According to the predicted future queue length in the data buffer, early packets at the router are dropped reasonably by the MPAQM controller so that the queue length reaches the desired value with minimal tracking error. The drop probability is obtained by optimizing the network performance. Further, randomized algorithms are applied to analyze the robustness of MPAQM successfully, and also to provide the stability domain of systems with uncertain network parameters. The performances of MPAQM are evaluated through a series of simulations in NS2. The simulation results show that the MPAQM algorithm outperforms RED, PI, and REM algorithms in terms of stability, disturbance rejection, and robustness. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Optimal control methods for rapidly time-varying Hamiltonians

    International Nuclear Information System (INIS)

    Motzoi, F.; Merkel, S. T.; Wilhelm, F. K.; Gambetta, J. M.

    2011-01-01

    In this article, we develop a numerical method to find optimal control pulses that accounts for the separation of timescales between the variation of the input control fields and the applied Hamiltonian. In traditional numerical optimization methods, these timescales are treated as being the same. While this approximation has had much success, in applications where the input controls are filtered substantially or mixed with a fast carrier, the resulting optimized pulses have little relation to the applied physical fields. Our technique remains numerically efficient in that the dimension of our search space is only dependent on the variation of the input control fields, while our simulation of the quantum evolution is accurate on the timescale of the fast variation in the applied Hamiltonian.

  10. A Class of Prediction-Correction Methods for Time-Varying Convex Optimization

    Science.gov (United States)

    Simonetto, Andrea; Mokhtari, Aryan; Koppel, Alec; Leus, Geert; Ribeiro, Alejandro

    2016-09-01

    This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the length of the sampling interval. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O(h^2)$, and in some cases as $O(h^4)$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.

  11. An improved technique for the prediction of optimal image resolution ...

    African Journals Online (AJOL)

    Past studies to predict optimal image resolution required for generating spatial information for savannah ecosystems have yielded different outcomes, hence providing a knowledge gap that was investigated in the present study. The postulation, for the present study, was that by graphically solving two simultaneous ...

  12. Optimal control of stretching process of flexible solar arrays on spacecraft based on a hybrid optimization strategy

    Directory of Open Access Journals (Sweden)

    Qijia Yao

    2017-07-01

    Full Text Available The optimal control of multibody spacecraft during the stretching process of solar arrays is investigated, and a hybrid optimization strategy based on Gauss pseudospectral method (GPM and direct shooting method (DSM is presented. First, the elastic deformation of flexible solar arrays was described approximately by the assumed mode method, and a dynamic model was established by the second Lagrangian equation. Then, the nonholonomic motion planning problem is transformed into a nonlinear programming problem by using GPM. By giving fewer LG points, initial values of the state variables and control variables were obtained. A serial optimization framework was adopted to obtain the approximate optimal solution from a feasible solution. Finally, the control variables were discretized at LG points, and the precise optimal control inputs were obtained by DSM. The optimal trajectory of the system can be obtained through numerical integration. Through numerical simulation, the stretching process of solar arrays is stable with no detours, and the control inputs match the various constraints of actual conditions. The results indicate that the method is effective with good robustness. Keywords: Motion planning, Multibody spacecraft, Optimal control, Gauss pseudospectral method, Direct shooting method

  13. On a Highly Nonlinear Self-Obstacle Optimal Control Problem

    Energy Technology Data Exchange (ETDEWEB)

    Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)

    2015-10-15

    We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.

  14. 2016 Network Games, Control, and Optimization Conference

    CERN Document Server

    Jimenez, Tania; Solan, Eilon

    2017-01-01

    This contributed volume offers a collection of papers presented at the 2016 Network Games, Control, and Optimization conference (NETGCOOP), held at the University of Avignon in France, November 23-25, 2016. These papers highlight the increasing importance of network control and optimization in many networking application domains, such as mobile and fixed access networks, computer networks, social networks, transportation networks, and, more recently, electricity grids and biological networks. Covering a wide variety of both theoretical and applied topics in the areas listed above, the authors explore several conceptual and algorithmic tools that are needed for efficient and robust control operation, performance optimization, and better understanding the relationships between entities that may be acting cooperatively or selfishly in uncertain and possibly adversarial environments. As such, this volume will be of interest to applied mathematicians, computer scientists, engineers, and researchers in other relate...

  15. Dynamic optimization the calculus of variations and optimal control in economics and management

    CERN Document Server

    Kamien, Morton I

    2012-01-01

    Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.

  16. Applications of functional analysis to optimal control problems

    International Nuclear Information System (INIS)

    Mizukami, K.

    1976-01-01

    Some basic concepts in functional analysis, a general norm, the Hoelder inequality, functionals and the Hahn-Banach theorem are described; a mathematical formulation of two optimal control problems is introduced by the method of functional analysis. The problem of time-optimal control systems with both norm constraints on control inputs and on state variables at discrete intermediate times is formulated as an L-problem in the theory of moments. The simplex method is used for solving a non-linear minimizing problem inherent in the functional analysis solution to this problem. Numerical results are presented for a train operation. The second problem is that of optimal control of discrete linear systems with quadratic cost functionals. The problem is concerned with the case of unconstrained control and fixed endpoints. This problem is formulated in terms of norms of functionals on suitable Banach spaces. (author)

  17. Infinite-horizon optimal control problems in economics

    International Nuclear Information System (INIS)

    Aseev, Sergei M; Besov, Konstantin O; Kryazhimskii, Arkadii V

    2012-01-01

    This paper extends optimal control theory to a class of infinite-horizon problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of this sort the initial state is fixed, no constraints are imposed on the behaviour of the admissible trajectories at large times, and the objective functional is given by a discounted improper integral. We develop the method of finite-horizon approximations in a broad context and use it to derive complete versions of the Pontryagin maximum principle for such problems. We provide sufficient conditions for the normality of infinite-horizon optimal control problems and for the validity of the 'standard' limit transversality conditions with time going to infinity. As a meaningful example, we consider a new two-sector model of optimal economic growth subject to a random jump in prices. Bibliography: 53 titles.

  18. Control strategy optimization of HVAC plants

    Energy Technology Data Exchange (ETDEWEB)

    Facci, Andrea Luigi; Zanfardino, Antonella [Department of Engineering, University of Napoli “Parthenope” (Italy); Martini, Fabrizio [Green Energy Plus srl (Italy); Pirozzi, Salvatore [SIAT Installazioni spa (Italy); Ubertini, Stefano [School of Engineering (DEIM) University of Tuscia (Italy)

    2015-03-10

    In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting.

  19. Control strategy optimization of HVAC plants

    International Nuclear Information System (INIS)

    Facci, Andrea Luigi; Zanfardino, Antonella; Martini, Fabrizio; Pirozzi, Salvatore; Ubertini, Stefano

    2015-01-01

    In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting

  20. Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle

    Directory of Open Access Journals (Sweden)

    Huei Peng

    2012-11-01

    Full Text Available The optimal sizing and control of a hybrid tracked vehicle is presented and solved in this paper. A driving schedule obtained from field tests is used to represent typical tracked vehicle operations. Dynamics of the diesel engine-permanent magnetic AC synchronous generator set, the lithium-ion battery pack, and the power split between them are modeled and validated through experiments. Two coupled optimizations, one for the plant parameters, forming the outer optimization loop and one for the control strategy, forming the inner optimization loop, are used to achieve minimum fuel consumption under the selected driving schedule. The dynamic programming technique is applied to find the optimal controller in the inner loop while the component parameters are optimized iteratively in the outer loop. The results are analyzed, and the relationship between the key parameters is observed to keep the optimal sizing and control simultaneously.

  1. Existence and characterization of optimal control in mathematics model of diabetics population

    Science.gov (United States)

    Permatasari, A. H.; Tjahjana, R. H.; Udjiani, T.

    2018-03-01

    Diabetes is a chronic disease with a huge burden affecting individuals and the whole society. In this paper, we constructed the optimal control mathematical model by applying a strategy to control the development of diabetic population. The constructed mathematical model considers the dynamics of disabled people due to diabetes. Moreover, an optimal control approach is proposed in order to reduce the burden of pre-diabetes. Implementation of control is done by preventing the pre-diabetes develop into diabetics with and without complications. The existence of optimal control and characterization of optimal control is discussed in this paper. Optimal control is characterized by applying the Pontryagin minimum principle. The results indicate that there is an optimal control in optimization problem in mathematics model of diabetic population. The effect of the optimal control variable (prevention) is strongly affected by the number of healthy people.

  2. Reinforcement learning for optimal control of low exergy buildings

    International Nuclear Information System (INIS)

    Yang, Lei; Nagy, Zoltan; Goffin, Philippe; Schlueter, Arno

    2015-01-01

    Highlights: • Implementation of reinforcement learning control for LowEx Building systems. • Learning allows adaptation to local environment without prior knowledge. • Presentation of reinforcement learning control for real-life applications. • Discussion of the applicability for real-life situations. - Abstract: Over a third of the anthropogenic greenhouse gas (GHG) emissions stem from cooling and heating buildings, due to their fossil fuel based operation. Low exergy building systems are a promising approach to reduce energy consumption as well as GHG emissions. They consists of renewable energy technologies, such as PV, PV/T and heat pumps. Since careful tuning of parameters is required, a manual setup may result in sub-optimal operation. A model predictive control approach is unnecessarily complex due to the required model identification. Therefore, in this work we present a reinforcement learning control (RLC) approach. The studied building consists of a PV/T array for solar heat and electricity generation, as well as geothermal heat pumps. We present RLC for the PV/T array, and the full building model. Two methods, Tabular Q-learning and Batch Q-learning with Memory Replay, are implemented with real building settings and actual weather conditions in a Matlab/Simulink framework. The performance is evaluated against standard rule-based control (RBC). We investigated different neural network structures and find that some outperformed RBC already during the learning phase. Overall, every RLC strategy for PV/T outperformed RBC by over 10% after the third year. Likewise, for the full building, RLC outperforms RBC in terms of meeting the heating demand, maintaining the optimal operation temperature and compensating more effectively for ground heat. This allows to reduce engineering costs associated with the setup of these systems, as well as decrease the return-of-invest period, both of which are necessary to create a sustainable, zero-emission building

  3. Predictive powertrain control using powertrain history and GPS data

    Science.gov (United States)

    Weslati, Feisel; Krupadanam, Ashish A

    2015-03-03

    A method and powertrain apparatus that predicts a route of travel for a vehicle and uses historical powertrain loads and speeds for the predicted route of travel to optimize at least one powertrain operation for the vehicle.

  4. Existence of optimal controls for systems governed by mean-field ...

    African Journals Online (AJOL)

    In this paper, we study the existence of an optimal control for systems, governed by stochastic dierential equations of mean-eld type. For non linear systems, we prove the existence of an optimal relaxed control, by using tightness techniques and Skorokhod selection theorem. The optimal control is a measure valued process ...

  5. Parameter optimization via cuckoo optimization algorithm of fuzzy controller for energy management of a hybrid power system

    International Nuclear Information System (INIS)

    Berrazouane, S.; Mohammedi, K.

    2014-01-01

    Highlights: • Optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. • Comparison between optimized fuzzy logic controller based on cuckoo search and swarm intelligent. • Loss of power supply probability and levelized energy cost are introduced. - Abstract: This paper presents the development of an optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. The FLC inputs are batteries state of charge (SOC) and net power flow, FLC outputs are the power rate of batteries, photovoltaic and diesel generator. Data for weekly solar irradiation, ambient temperature and load profile are used to tune the proposed controller by using cuckoo search algorithm. The optimized FLC is able to minimize loss of power supply probability (LPSP), excess energy (EE) and levelized energy cost (LEC). Moreover, the results of CS optimization are better than of particle swarm optimization PSO for fuzzy system controller

  6. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    Science.gov (United States)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  7. Control of Warm Compression Stations Using Model Predictive Control: Simulation and Experimental Results

    Science.gov (United States)

    Bonne, F.; Alamir, M.; Bonnay, P.

    2017-02-01

    This paper deals with multivariable constrained model predictive control for Warm Compression Stations (WCS). WCSs are subject to numerous constraints (limits on pressures, actuators) that need to be satisfied using appropriate algorithms. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to achieve precise control of pressures in normal operation or to avoid reaching stopping criteria (such as excessive pressures) under high disturbances (such as a pulsed heat load expected to take place in future fusion reactors, expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details the simulator used to validate this new control scheme and the associated simulation results on the SBTs WCS. This work is partially supported through the French National Research Agency (ANR), task agreement ANR-13-SEED-0005.

  8. Optimal control theory applied to fusion plasma thermal stabilization

    International Nuclear Information System (INIS)

    Sager, G.; Miley, G.; Maya, I.

    1985-01-01

    Many authors have investigated stability characteristics and performance of various burn control schemes. The work presented here represents the first application of optimal control theory to the problem of fusion plasma thermal stabilization. The objectives of this initial investigation were to develop analysis methods, demonstrate tractability, and present some preliminary results of optimal control theory in burn control research

  9. Achieving Optimal Quantum Acceleration of Frequency Estimation Using Adaptive Coherent Control.

    Science.gov (United States)

    Naghiloo, M; Jordan, A N; Murch, K W

    2017-11-03

    Precision measurements of frequency are critical to accurate time keeping and are fundamentally limited by quantum measurement uncertainties. While for time-independent quantum Hamiltonians the uncertainty of any parameter scales at best as 1/T, where T is the duration of the experiment, recent theoretical works have predicted that explicitly time-dependent Hamiltonians can yield a 1/T^{2} scaling of the uncertainty for an oscillation frequency. This quantum acceleration in precision requires coherent control, which is generally adaptive. We experimentally realize this quantum improvement in frequency sensitivity with superconducting circuits, using a single transmon qubit. With optimal control pulses, the theoretically ideal frequency precision scaling is reached for times shorter than the decoherence time. This result demonstrates a fundamental quantum advantage for frequency estimation.

  10. Prediction on corrosion rate of pipe in nuclear power system based on optimized grey theory

    International Nuclear Information System (INIS)

    Chen Yonghong; Zhang Dafa; Chen Dengke; Jiang Wei

    2007-01-01

    For the prediction of corrosion rate of pipe in nuclear power system, the pre- diction error from the grey theory is greater, so a new method, optimized grey theory was presented in the paper. A comparison among predicted results from present and other methods was carried out, and it is seem that optimized grey theory is correct and effective for the prediction of corrosion rate of pipe in nuclear power system, and it provides a fundamental basis for the maintenance of pipe in nuclear power system. (authors)

  11. PID control for chaotic synchronization using particle swarm optimization

    International Nuclear Information System (INIS)

    Chang, W.-D.

    2009-01-01

    In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.

  12. PID control for chaotic synchronization using particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.-D. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)], E-mail: wdchang@mail.stu.edu.tw

    2009-01-30

    In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.

  13. An improved technique for the prediction of optimal image resolution ...

    African Journals Online (AJOL)

    user

    2010-10-04

    Oct 4, 2010 ... Available online at http://www.academicjournals.org/AJEST ... robust technique for predicting optimal image resolution for the mapping of savannah ecosystems was developed. .... whether to purchase multi-spectral imagery acquired by GeoEye-2 ..... Analysis of the spectral behaviour of the pasture class in.

  14. The Optimization of power reactor control system

    International Nuclear Information System (INIS)

    Danupoyo, S.D.

    1997-01-01

    A power reactor is an important part in nuclear powered electrical plant systems. Success in controlling the power reactor will establish safety of the whole power plant systems. Until now, the power reactor has been controlled by a classical control system that was designed based on output feedback method. To meet the safety requirements that are now more restricted, the recently used power reactor control system should be modified. this paper describes a power reactor control system that is designed based on a state feedback method optimized with LQG (Linear-quadrature-gaussian) method and equipped with a state estimator. A pressurized-water type reactor has been used as the model. by using a point kinetics method with one group delayed neutrons. the result of simulation testing shows that the optimized control system can control the power reactor more effective and efficient than the classical control system

  15. Neutron density optimal control of A-1 reactor analoque model

    International Nuclear Information System (INIS)

    Grof, V.

    1975-01-01

    Two applications are described of the optimal control of a reactor analog model. Both cases consider the control of neutron density. Control loops containing the on-line controlled process, the reactor of the first Czechoslovak nuclear power plant A-1, are simulated on an analog computer. Two versions of the optimal control algorithm are derived using modern control theory (Pontryagin's maximum principle, the calculus of variations, and Kalman's estimation theory), the minimum time performance index, and the quadratic performance index. The results of the optimal control analysis are compared with the A-1 reactor conventional control. (author)

  16. Optimal Sizing and Control Strategy Design for Heavy Hybrid Electric Truck

    Directory of Open Access Journals (Sweden)

    Yuan Zou

    2012-01-01

    Full Text Available Due to the complexity of the hybrid powertrain, the control is highly involved to improve the collaborations of the different components. For the specific powertrain, the components' sizing just gives the possibility to propel the vehicle and the control will realize the function of the propulsion. Definitely the components' sizing also gives the constraints to the control design, which cause a close coupling between the sizing and control strategy design. This paper presents a parametric study focused on sizing of the powertrain components and optimization of the power split between the engine and electric motor for minimizing the fuel consumption. A framework is put forward to accomplish the optimal sizing and control design for a heavy parallel pre-AMT hybrid truck under the natural driving schedule. The iterative plant-controller combined optimization methodology is adopted to optimize the key parameters of the plant and control strategy simultaneously. A scalable powertrain model based on a bilevel optimization framework is built. Dynamic programming is applied to find the optimal control in the inner loop with a prescribed cycle. The parameters are optimized in the outer loop. The results are analysed and the optimal sizing and control strategy are achieved simultaneously.

  17. Robust Optimal Adaptive Control Method with Large Adaptive Gain

    Science.gov (United States)

    Nguyen, Nhan T.

    2009-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

  18. Optimal control and quantum simulations in superconducting quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Daniel J.

    2014-10-31

    Quantum optimal control theory is the science of steering quantum systems. In this thesis we show how to overcome the obstacles in implementing optimal control for superconducting quantum bits, a promising candidate for the creation of a quantum computer. Building such a device will require the tools of optimal control. We develop pulse shapes to solve a frequency crowding problem and create controlled-Z gates. A methodology is developed for the optimisation towards a target non-unitary process. We show how to tune-up control pulses for a generic quantum system in an automated way using a combination of open- and closed-loop optimal control. This will help scaling of quantum technologies since algorithms can calibrate control pulses far more efficiently than humans. Additionally we show how circuit QED can be brought to the novel regime of multi-mode ultrastrong coupling using a left-handed transmission line coupled to a right-handed one. We then propose to use this system as an analogue quantum simulator for the Spin-Boson model to show how dissipation arises in quantum systems.

  19. Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control

    Science.gov (United States)

    Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.

    2016-02-01

    A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.

  20. Optimization and control of metal forming processes

    NARCIS (Netherlands)

    Havinga, Gosse Tjipke

    2016-01-01

    Inevitable variations in process and material properties limit the accuracy of metal forming processes. Robust optimization methods or control systems can be used to improve the production accuracy. Robust optimization methods are used to design production processes with low sensitivity to the