Applied optimal control theory of distributed systems
Lurie, K A
1993-01-01
This book represents an extended and substantially revised version of my earlierbook, Optimal Control in Problems ofMathematical Physics,originally published in Russian in 1975. About 60% of the text has been completely revised and major additions have been included which have produced a practically new text. My aim was to modernize the presentation but also to preserve the original results, some of which are little known to a Western reader. The idea of composites, which is the core of the modern theory of optimization, was initiated in the early seventies. The reader will find here its implementation in the problem of optimal conductivity distribution in an MHD-generatorchannel flow.Sincethen it has emergedinto an extensive theory which is undergoing a continuous development. The book does not pretend to be a textbook, neither does it offer a systematic presentation of the theory. Rather, it reflects a concept which I consider as fundamental in the modern approach to optimization of dis tributed systems. ...
Quaternion error-based optimal control applied to pinpoint landing
Ghiglino, Pablo
Accurate control techniques for pinpoint planetary landing - i.e., the goal of achieving landing errors in the order of 100m for unmanned missions - is a complex problem that have been tackled in different ways in the available literature. Among other challenges, this kind of control is also affected by the well known trade-off in UAV control that for complex underlying models the control is sub-optimal, while optimal control is applied to simplifed models. The goal of this research has been the development new control algorithms that would be able to tackle these challenges and the result are two novel optimal control algorithms namely: OQTAL and HEX2OQTAL. These controllers share three key properties that are thoroughly proven and shown in this thesis; stability, accuracy and adaptability. Stability is rigorously demonstrated for both controllers. Accuracy is shown in results of comparing these novel controllers with other industry standard algorithms in several different scenarios: there is a gain in accuracy of at least 15% for each controller, and in many cases much more than that. A new tuning algorithm based on swarm heuristics optimisation was developed as well as part of this research in order to tune in an online manner the standard Proportional-Integral-Derivative (PID) controllers used for benchmarking. Finally, adaptability of these controllers can be seen as a combination of four elements: mathematical model extensibility, cost matrices tuning, reduced computation time required and finally no prior knowledge of the navigation or guidance strategies needed. Further simulations in real planetary landing trajectories has shown that these controllers have the capacity of achieving landing errors in the order of pinpoint landing requirements, making them not only very precise UAV controllers, but also potential candidates for pinpoint landing unmanned missions.
Optimal control theory applied to fusion plasma thermal stabilization
International Nuclear Information System (INIS)
Sager, G.; Miley, G.; Maya, I.
1985-01-01
Many authors have investigated stability characteristics and performance of various burn control schemes. The work presented here represents the first application of optimal control theory to the problem of fusion plasma thermal stabilization. The objectives of this initial investigation were to develop analysis methods, demonstrate tractability, and present some preliminary results of optimal control theory in burn control research
Directory of Open Access Journals (Sweden)
Carlos Villaseñor
2017-12-01
Full Text Available Nowadays, there are several meta-heuristics algorithms which offer solutions for multi-variate optimization problems. These algorithms use a population of candidate solutions which explore the search space, where the leadership plays a big role in the exploration-exploitation equilibrium. In this work, we propose to use a Germinal Center Optimization algorithm (GCO which implements temporal leadership through modeling a non-uniform competitive-based distribution for particle selection. GCO is used to find an optimal set of parameters for a neural inverse optimal control applied to all-terrain tracked robot. In the Neural Inverse Optimal Control (NIOC scheme, a neural identifier, based on Recurrent High Orden Neural Network (RHONN trained with an extended kalman filter algorithm, is used to obtain a model of the system, then, a control law is design using such model with the inverse optimal control approach. The RHONN identifier is developed without knowledge of the plant model or its parameters, on the other hand, the inverse optimal control is designed for tracking velocity references. Applicability of the proposed scheme is illustrated using simulations results as well as real-time experimental results with an all-terrain tracked robot.
Keulen, van T.A.C.; Gillot, J.; Jager, de A.G.; Steinbuch, M.
2014-01-01
This paper presents a numerical solution for scalar state constrained optimal control problems. The algorithm rewrites the constrained optimal control problem as a sequence of unconstrained optimal control problems which can be solved recursively as a two point boundary value problem. The solution
An approach of optimal sensitivity applied in the tertiary loop of the automatic generation control
Energy Technology Data Exchange (ETDEWEB)
Belati, Edmarcio A. [CIMATEC - SENAI, Salvador, BA (Brazil); Alves, Dilson A. [Electrical Engineering Department, FEIS, UNESP - Sao Paulo State University (Brazil); da Costa, Geraldo R.M. [Electrical Engineering Department, EESC, USP - Sao Paulo University (Brazil)
2008-09-15
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (author)
Directory of Open Access Journals (Sweden)
Marcelo Perencin de Arruda Ribeiro
2005-06-01
Full Text Available In this work, optimal control techniques were used to optimize the feed of reactants during the enzymatic synthesis of ampicillin in a semi-batch reactor. Simulation results showed that a semi-batch integrated reactor (with product crystallization might achieve 88% 6-APA (6-aminepenicillanic acid conversion and 92% of PGME (phenylglycine methyl ester yield, with a productivity between 3.5 and 5.5 mM min-1.A síntese enzimática de ampicilina oferece menor impacto ambiental em relação ao processo utilizado atualmente pela indústria farmacêutica. Mas seu rendimento e produtividade devem ser melhorados para tornar essa rota competitiva. Alguns estudos empíricos para otimizar a rota enzimática de síntese de antibióticos beta-lactâmicos vêm sendo realizados. Entretanto, a utilização sistemática de métodos matemáticos de otimização nesse processo não é encontrada na literatura. Neste trabalho, utilizaram-se técnicas de controle ótimo para otimizar a alimentação de reagentes na síntese enzimática de ampicilina em reator operando em batelada alimentada. Resultados simulados mostram que, em reator integrado (com precipitação dos produtos operado em batelada alimentada, conversões de 6-APA e rendimento de EMFG de 88% a 92% são factíveis, assim como produtividades entre 3,5 e 5,5 mM.min-1.
International Nuclear Information System (INIS)
Asplund, Erik; Kluener, Thorsten
2012-01-01
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., (ℎ/2π)=m e =e=a 0 = 1, have been used unless otherwise stated.
Asplund, Erik; Klüner, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = m(e) = e = a(0) = 1, have been used unless otherwise stated.
Efficiency of particle swarm optimization applied on fuzzy logic DC motor speed control
Directory of Open Access Journals (Sweden)
Allaoua Boumediene
2008-01-01
Full Text Available This paper presents the application of Fuzzy Logic for DC motor speed control using Particle Swarm Optimization (PSO. Firstly, the controller designed according to Fuzzy Logic rules is such that the systems are fundamentally robust. Secondly, the Fuzzy Logic controller (FLC used earlier was optimized with PSO so as to obtain optimal adjustment of the membership functions only. Finally, the FLC is completely optimized by Swarm Intelligence Algorithms. Digital simulation results demonstrate that in comparison with the FLC the designed FLC-PSO speed controller obtains better dynamic behavior and superior performance of the DC motor, as well as perfect speed tracking with no overshoot.
Design strategy for optimal iterative learning control applied on a deep drawing process
DEFF Research Database (Denmark)
Endelt, Benny Ørtoft
2017-01-01
Metal forming processes in general can be characterised as repetitive processes; this work will take advantage of this characteristic by developing an algorithm or control system which transfers process information from part to part, reducing the impact of repetitive uncertainties, e.g. a gradual...... changes in the material properties. The process is highly non-linear and the system plant is modelled using a non-linear finite element and the gain factors for the iterative learning controller is identified solving a non-linear optimal control problem. The optimal control problem is formulated as a non...
Improved Broadband Liner Optimization Applied to the Advanced Noise Control Fan
Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.; Ayle, Earl; Ichihashi, Fumitaka
2014-01-01
The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more desirable. This paper describes improvements to a previously established broadband acoustic liner optimization process using the Advanced Noise Control Fan rig as a demonstrator. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom designs are carried through design, fabrication, and testing to validate the efficacy of the design process. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of these liner designs. This study also provides an application for demonstrating the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.
Optimal control applied to native-invasive species competition via a PDE model
Directory of Open Access Journals (Sweden)
Wandi Ding
2012-12-01
Full Text Available We consider an optimal control problem of a system of parabolic partial differential equations modelling the competition between an invasive and a native species. The motivating example is cottonwood-salt cedar competition, where the effect of disturbance in the system (such as flooding is taken to be a control variable. Flooding being detrimental at low and high levels, and advantageous at medium levels led us to consider the quadratic growth function of the control. The objective is to maximize the native species and minimize the invasive species while minimizing the cost of implementing the control. An existence result for an optimal control is given. Numerical examples are presented to illustrate the results.
On the use of PGD for optimal control applied to automated fibre placement
Bur, N.; Joyot, P.
2017-10-01
Automated Fibre Placement (AFP) is an incipient manufacturing process for composite structures. Despite its concep-tual simplicity it involves many complexities related to the necessity of melting the thermoplastic at the interface tape-substrate, ensuring the consolidation that needs the diffusion of molecules and control the residual stresses installation responsible of the residual deformations of the formed parts. The optimisation of the process and the determination of the process window cannot be achieved in a traditional way since it requires a plethora of trials/errors or numerical simulations, because there are many parameters involved in the characterisation of the material and the process. Using reduced order modelling such as the so called Proper Generalised Decomposition method, allows the construction of multi-parametric solution taking into account many parameters. This leads to virtual charts that can be explored on-line in real time in order to perform process optimisation or on-line simulation-based control. Thus, for a given set of parameters, determining the power leading to an optimal temperature becomes easy. However, instead of controlling the power knowing the temperature field by particularizing an abacus, we propose here an approach based on optimal control: we solve by PGD a dual problem from heat equation and optimality criteria. To circumvent numerical issue due to ill-conditioned system, we propose an algorithm based on Uzawa's method. That way, we are able to solve the dual problem, setting the desired state as an extra-coordinate in the PGD framework. In a single computation, we get both the temperature field and the required heat flux to reach a parametric optimal temperature on a given zone.
Optimization and Optimal Control
Chinchuluun, Altannar; Enkhbat, Rentsen; Tseveendorj, Ider
2010-01-01
During the last four decades there has been a remarkable development in optimization and optimal control. Due to its wide variety of applications, many scientists and researchers have paid attention to fields of optimization and optimal control. A huge number of new theoretical, algorithmic, and computational results have been observed in the last few years. This book gives the latest advances, and due to the rapid development of these fields, there are no other recent publications on the same topics. Key features: Provides a collection of selected contributions giving a state-of-the-art accou
DEFF Research Database (Denmark)
Codas, Andrés; Hanssen, Kristian G.; Foss, Bjarne
2017-01-01
The production life of oil reservoirs starts under significant uncertainty regarding the actual economical return of the recovery process due to the lack of oil field data. Consequently, investors and operators make management decisions based on a limited and uncertain description of the reservoir....... In this work, we propose a new formulation for robust optimization of reservoir well controls. It is inspired by the multiple shooting (MS) method which permits a broad range of parallelization opportunities and output constraint handling. This formulation exploits coherent risk measures, a concept...
International Nuclear Information System (INIS)
Castellini, P; Cecchini, S; Stroppa, L; Paone, N
2015-01-01
The paper presents an adaptive illumination system for image quality enhancement in vision-based quality control systems. In particular, a spatial modulation of illumination intensity is proposed in order to improve image quality, thus compensating for different target scattering properties, local reflections and fluctuations of ambient light. The desired spatial modulation of illumination is obtained by a digital light projector, used to illuminate the scene with an arbitrary spatial distribution of light intensity, designed to improve feature extraction in the region of interest. The spatial distribution of illumination is optimized by running a genetic algorithm. An image quality estimator is used to close the feedback loop and to stop iterations once the desired image quality is reached. The technique proves particularly valuable for optimizing the spatial illumination distribution in the region of interest, with the remarkable capability of the genetic algorithm to adapt the light distribution to very different target reflectivity and ambient conditions. The final objective of the proposed technique is the improvement of the matching score in the recognition of parts through matching algorithms, hence of the diagnosis of machine vision-based quality inspections. The procedure has been validated both by a numerical model and by an experimental test, referring to a significant problem of quality control for the washing machine manufacturing industry: the recognition of a metallic clamp. Its applicability to other domains is also presented, specifically for the visual inspection of shoes with retro-reflective tape and T-shirts with paillettes. (paper)
Applied Control Systems Design
Mahmoud, Magdi S
2012-01-01
Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...
Aschepkov, Leonid T; Kim, Taekyun; Agarwal, Ravi P
2016-01-01
This book is based on lectures from a one-year course at the Far Eastern Federal University (Vladivostok, Russia) as well as on workshops on optimal control offered to students at various mathematical departments at the university level. The main themes of the theory of linear and nonlinear systems are considered, including the basic problem of establishing the necessary and sufficient conditions of optimal processes. In the first part of the course, the theory of linear control systems is constructed on the basis of the separation theorem and the concept of a reachability set. The authors prove the closure of a reachability set in the class of piecewise continuous controls, and the problems of controllability, observability, identification, performance and terminal control are also considered. The second part of the course is devoted to nonlinear control systems. Using the method of variations and the Lagrange multipliers rule of nonlinear problems, the authors prove the Pontryagin maximum principle for prob...
Control vector parameterization with sensitivity based refinement applied to baking optimization
Hadiyanto, M.; Esveld, D.C.; Boom, R.M.; Straten, van G.; Boxtel, van A.J.B.
2008-01-01
In bakery production, product quality attributes as crispness, brownness, crumb and water content are developed by the transformations that occur during baking and which are initiated by heating. A quality driven procedure requires process optimization to improve bakery production and to find
Control vector parameterization with sensitivity based refinement applied to baking optimization
Hadiyanto, M.; Esveld, D.C.; Boom, R.M.; Straten, van G.; Boxtel, van A.J.B.
2007-01-01
Abstract In bakery production product quality attributes as crispness, brownness, crumb and water content are developed by the transformations that occur during baking and which are initiated by heating. A quality driven procedure requires process optimization to improve bakery production and to
Yamina BOUGHARI; Georges GHAZI; Ruxandra Mihaela BOTEZ; Florian THEEL
2017-01-01
Setting the appropriate controllers for aircraft stability and control augmentation systems are complicated and time consuming tasks. As in the Linear Quadratic Regulator method gains are found by selecting the appropriate weights or as in the Proportional Integrator Derivative control by tuning gains. A trial and error process is usually employed for the determination of weighting matrices, which is normally a time consuming procedure. Flight Control Law were optimized and designed by combin...
Applied Parallel Computing Industrial Computation and Optimization
DEFF Research Database (Denmark)
Madsen, Kaj; NA NA NA Olesen, Dorte
Proceedings and the Third International Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96)......Proceedings and the Third International Workshop on Applied Parallel Computing in Industrial Problems and Optimization (PARA96)...
Introduction to optimal control theory
International Nuclear Information System (INIS)
Agrachev, A.A.
2002-01-01
These are lecture notes of the introductory course in Optimal Control theory treated from the geometric point of view. Optimal Control Problem is reduced to the study of controls (and corresponding trajectories) leading to the boundary of attainable sets. We discuss Pontryagin Maximum Principle, basic existence results, and apply these tools to concrete simple optimal control problems. Special sections are devoted to the general theory of linear time-optimal problems and linear-quadratic problems. (author)
Directory of Open Access Journals (Sweden)
Yamina BOUGHARI
2017-06-01
Full Text Available Setting the appropriate controllers for aircraft stability and control augmentation systems are complicated and time consuming tasks. As in the Linear Quadratic Regulator method gains are found by selecting the appropriate weights or as in the Proportional Integrator Derivative control by tuning gains. A trial and error process is usually employed for the determination of weighting matrices, which is normally a time consuming procedure. Flight Control Law were optimized and designed by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augmentation systems’ handling qualities, and design requirements for different flight conditions. Furthermore the design and the clearance of the controllers over the flight envelope were automated using a Graphical User Interface, which offers to the designer, the flexibility to change the design requirements. In the aim of reducing time, and costs of the Flight Control Law design, one fitness function has been used for both optimizations, and using design requirements as constraints. Consequently the Flight Control Law design process complexity was reduced by using the meta-heuristic algorithm.
Optimal Control of Mechanical Systems
Directory of Open Access Journals (Sweden)
Vadim Azhmyakov
2007-01-01
Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.
Energy Technology Data Exchange (ETDEWEB)
Bhatt, Praghnesh [Department of Electrical Engineering, Charotar Institute of Technology, Changa 388 421, Gujarat (India); Roy, Ranjit [Department of Electrical Engineering, S.V. National Institute of Technology, Surat 395 007, Gujarat (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur 713 209, West Bengal (India)
2010-05-15
This paper presents the comparative performance analysis of the two specific varieties of controller devices for optimal transient performance of automatic generation control (AGC) of an interconnected two-area power system, having multiple thermal-hydro-diesels mixed generating units. The significant improvement of optimal transient performance is observed with the addition of a thyristor-controlled phase shifter (TCPS) in the tie-line or capacitive energy storage (CES) units fitted in both the areas. Three different optimization algorithms are adopted for the sake of comparison of optimal performances and obtaining the optimal values of the gain settings of the devices independently. Craziness based particle swarm optimization (CRPSO) proves to be moderately fast algorithm and yields true optimal gains and minimum overshoot, minimum undershoot and minimum settling time of the transient response for any system. Comparative studies of TCPS and CES by any algorithm reveals that the CES units fitted in both the areas improve the transient performance to a greater extent following small load disturbance(s) in both the areas. (author)
Energy Technology Data Exchange (ETDEWEB)
Delprat, S.; Guerra, T.M. [Universite de Valenciennes et du Hainaut-Cambresis, LAMIH UMR CNRS 8530, 59 - Valenciennes (France); Rimaux, J. [PSA Peugeot Citroen, DRIA/SARA/EEES, 78 - Velizy Villacoublay (France); Paganelli, G. [Center for Automotive Research, Ohio (United States)
2002-07-01
Control strategies are algorithms that calculate the power repartition between the engine and the motor of an hybrid vehicle in order to minimize the fuel consumption and/or emissions. Some algorithms are devoted to real time application whereas others are designed for global optimization in stimulation. The last ones provide solutions which can be used to evaluate the performances of a given hybrid vehicle or a given real time control strategy. The control strategy problem is firstly written into the form of an optimization under constraints problem. A solution based on optimal control is proposed. Results are given for the European Normalized Cycle and a parallel single shaft hybrid vehicle built at the LAMIH (France). (authors)
Sunan, Huang; Heng, Lee Tong
2002-01-01
The presence of considerable time delays in the dynamics of many industrial processes, leading to difficult problems in the associated closed-loop control systems, is a well-recognized phenomenon. The performance achievable in conventional feedback control systems can be significantly degraded if an industrial process has a relatively large time delay compared with the dominant time constant. Under these circumstances, advanced predictive control is necessary to improve the performance of the control system significantly. The book is a focused treatment of the subject matter, including the fundamentals and some state-of-the-art developments in the field of predictive control. Three main schemes for advanced predictive control are addressed in this book: • Smith Predictive Control; • Generalised Predictive Control; • a form of predictive control based on Finite Spectrum Assignment. A substantial part of the book addresses application issues in predictive control, providing several interesting case studie...
Optimal sampling schemes applied in geology
CSIR Research Space (South Africa)
Debba, Pravesh
2010-05-01
Full Text Available Methodology 6 Results 7 Background and Research Question for Study 2 8 Study Area and Data 9 Methodology 10 Results 11 Conclusions Debba (CSIR) Optimal Sampling Schemes applied in Geology UP 2010 2 / 47 Outline 1 Introduction to hyperspectral remote... sensing 2 Objective of Study 1 3 Study Area 4 Data used 5 Methodology 6 Results 7 Background and Research Question for Study 2 8 Study Area and Data 9 Methodology 10 Results 11 Conclusions Debba (CSIR) Optimal Sampling Schemes applied in Geology...
Applied probability models with optimization applications
Ross, Sheldon M
1992-01-01
Concise advanced-level introduction to stochastic processes that frequently arise in applied probability. Largely self-contained text covers Poisson process, renewal theory, Markov chains, inventory theory, Brownian motion and continuous time optimization models, much more. Problems and references at chapter ends. ""Excellent introduction."" - Journal of the American Statistical Association. Bibliography. 1970 edition.
Optimal decoupling controllers revisited
Czech Academy of Sciences Publication Activity Database
Kučera, Vladimír
2013-01-01
Roč. 42, č. 1 (2013), s. 1-16 ISSN 0324-8569 R&D Projects: GA TA ČR(CZ) TE01020197 Institutional support: RVO:67985556 Keywords : linear systems * fractional representations * decoupling control lers * stabilizing control lers * optimal control lers Subject RIV: BC - Control Systems Theory
Nonlinear optimal control theory
Berkovitz, Leonard David
2012-01-01
Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also dis
Computational optimization techniques applied to microgrids planning
DEFF Research Database (Denmark)
Gamarra, Carlos; Guerrero, Josep M.
2015-01-01
Microgrids are expected to become part of the next electric power system evolution, not only in rural and remote areas but also in urban communities. Since microgrids are expected to coexist with traditional power grids (such as district heating does with traditional heating systems......), their planning process must be addressed to economic feasibility, as a long-term stability guarantee. Planning a microgrid is a complex process due to existing alternatives, goals, constraints and uncertainties. Usually planning goals conflict each other and, as a consequence, different optimization problems...... appear along the planning process. In this context, technical literature about optimization techniques applied to microgrid planning have been reviewed and the guidelines for innovative planning methodologies focused on economic feasibility can be defined. Finally, some trending techniques and new...
Optimal control of native predators
Martin, Julien; O'Connell, Allan F.; Kendall, William L.; Runge, Michael C.; Simons, Theodore R.; Waldstein, Arielle H.; Schulte, Shiloh A.; Converse, Sarah J.; Smith, Graham W.; Pinion, Timothy; Rikard, Michael; Zipkin, Elise F.
2010-01-01
We apply decision theory in a structured decision-making framework to evaluate how control of raccoons (Procyon lotor), a native predator, can promote the conservation of a declining population of American Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective was to maintain Oystercatcher productivity above a level deemed necessary for population recovery while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive optimization can be used to account for uncertainties about how raccoon control may affect Oystercatcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well suited for addressing controversial management issues such as native predator control. The case study also offers several insights that may be relevant to the optimal control of other native predators. First, we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most efficient if the reproductive values among stage classes were very different. Second, we found that the optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels recommended for this species. Third, we found that removing more raccoons initially minimized the total number of removals necessary to meet long term management objectives. Finally, if for logistical reasons managers cannot sustain a removal program by removing a minimum number of raccoons annually, managers may run the risk of creating an ecological trap for Oystercatchers.
Optimization of accelerator control
International Nuclear Information System (INIS)
Vasiljev, N.D.; Mozin, I.V.; Shelekhov, V.A.; Efremov, D.V.
1992-01-01
Expensive exploitation of charged particle accelerators is inevitably concerned with requirements of effectively obtaining of the best characteristics of accelerated beams for physical experiments. One of these characteristics is intensity. Increase of intensity is hindered by a number of effects, concerned with the influence of the volume charge field on a particle motion dynamics in accelerator's chamber. However, ultimate intensity, determined by a volume charge, is almost not achieved for the most of the operating accelerators. This fact is caused by losses of particles during injection, at the initial stage of acceleration and during extraction. These losses are caused by deviations the optimal from real characteristics of the accelerating and magnetic system. This is due to a number of circumstances, including technological tolerances on structural elements of systems, influence of measuring and auxiliary equipment and beam consumers' installations, placed in the closed proximity to magnets, and instability in operation of technological systems of accelerator. Control task consists in compensation of deviations of characteristics of magnetic and electric fields by optimal selection of control actions. As for technical means, automatization of modern accelerators allows to solve optimal control problems in real time. Therefore, the report is devoted to optimal control methods and experimental results. (J.P.N.)
Alirezaei, M.; Kanarachos, S.A.; Scheepers, B.T.M.; Maurice, J.P.
2013-01-01
The Integrated Vehicle Safety Department of TNO (Dutch Organization for Applied Scientific Research) investigates the application of modern control methods in the Integrated Vehicle Dynamics Control (IVDC) field, as a strategic research topic of the Beyond Safe framework. The aim of IVDC is to
Directory of Open Access Journals (Sweden)
Chih-Hong Lin
2015-01-01
Full Text Available Because the V-belt continuously variable transmission (CVT system driven by permanent magnet synchronous motor (PMSM has much unknown nonlinear and time-varying characteristics, the better control performance design for the linear control design is a time consuming procedure. In order to overcome difficulties for design of the linear controllers, the hybrid recurrent Laguerre-orthogonal-polynomial neural network (NN control system which has online learning ability to respond to the system’s nonlinear and time-varying behaviors is proposed to control PMSM servo-driven V-belt CVT system under the occurrence of the lumped nonlinear load disturbances. The hybrid recurrent Laguerre-orthogonal-polynomial NN control system consists of an inspector control, a recurrent Laguerre-orthogonal-polynomial NN control with adaptive law, and a recouped control with estimated law. Moreover, the adaptive law of online parameters in the recurrent Laguerre-orthogonal-polynomial NN is derived using the Lyapunov stability theorem. Furthermore, the optimal learning rate of the parameters by means of modified particle swarm optimization (PSO is proposed to achieve fast convergence. Finally, to show the effectiveness of the proposed control scheme, comparative studies are demonstrated by experimental results.
Design optimization applied in structural dynamics
Akcay-Perdahcioglu, Didem; de Boer, Andries; van der Hoogt, Peter; Tiskarna, T
2007-01-01
This paper introduces the design optimization strategies, especially for structures which have dynamic constraints. Design optimization involves first the modeling and then the optimization of the problem. Utilizing the Finite Element (FE) model of a structure directly in an optimization process
Oil Reservoir Production Optimization using Optimal Control
DEFF Research Database (Denmark)
Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan
2011-01-01
Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%.......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...
Optimal control with aerospace applications
Longuski, James M; Prussing, John E
2014-01-01
Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a...
Optimization and optimal control in automotive systems
Kolmanovsky, Ilya; Steinbuch, Maarten; Re, Luigi
2014-01-01
This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier approaches, based on some degree of heuristics, to the use of more and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applie...
Optimal control for chemical engineers
Upreti, Simant Ranjan
2013-01-01
Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle.The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, de
Power, control and optimization
Vasant, Pandian; Barsoum, Nader
2013-01-01
The book consists of chapters based on selected papers of international conference „Power, Control and Optimization 2012”, held in Las Vegas, USA. Readers can find interesting chapters discussing various topics from the field of power control, its distribution and related fields. Book discusses topics like energy consumption impacted by climate, mathematical modeling of the influence of thermal power plant on the aquatic environment, investigation of cost reduction in residential electricity bill using electric vehicle at peak times or allocation and size evaluation of distributed generation using ANN model and others. Chapter authors are to the best of our knowledge the originators or closely related to the originators of presented ideas and its applications. Hence, this book certainly is one of the few books discussing the benefit from intersection of those modern and fruitful scientific fields of research with very tight and deep impact on real life and industry. This book is devoted to the studies o...
Applying research evidence to optimize telehomecare.
Bowles, Kathryn H; Baugh, Amy C
2007-01-01
Telemedicine is the use of technology to provide healthcare over a distance. Telehomecare, a form of telemedicine based in the patient's home, is a communication and clinical information system that enables the interaction of voice, video, and health-related data using ordinary telephone lines. Most home care agencies are adopting telehomecare to assist with the care of the growing population of chronically ill adults. This article presents a summary and critique of the published empirical evidence about the effects of telehomecare on older adult patients with chronic illness. The knowledge gained will be applied in a discussion regarding telehomecare optimization and areas for future research. The referenced literature in PubMed, MEDLINE, CDSR, ACP Journal Club, DARE, CCTR, and CINAHL databases was searched for the years 1995-2005 using the keywords "telehomecare" and "telemedicine," and limited to primary research and studies in English. Approximately 40 articles were reviewed. Articles were selected if telehealth technology with peripheral medical devices was used to deliver home care for adult patients with chronic illness. Studies where the intervention consisted of only telephone calls or did not involve video or in-person nurse contact in the home were excluded. Nineteen studies described the effects of telehomecare on adult patients, chronic illness outcomes, providers, and costs of care. Patients and providers were accepting of the technology and it appears to have positive effects on chronic illness outcomes such as self-management, rehospitalizations, and length of stay. Overall, due to savings from healthcare utilization and travel, telehomecare appears to reduce healthcare costs. Generally, studies have small sample sizes with diverse types and doses of telehomecare intervention for a select few chronic illnesses; most commonly heart failure. Very few published studies have explored the cost or quality implications since the change in home care
Euler's fluid equations: Optimal control vs optimization
International Nuclear Information System (INIS)
Holm, Darryl D.
2009-01-01
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
Optimization methods applied to hybrid vehicle design
Donoghue, J. F.; Burghart, J. H.
1983-01-01
The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.
Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.
2014-01-01
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013
Optimization analysis of propulsion motor control efficiency
Directory of Open Access Journals (Sweden)
CAI Qingnan
2017-12-01
Full Text Available [Objectives] This paper aims to strengthen the control effect of propulsion motors and decrease the energy used during actual control procedures.[Methods] Based on the traditional propulsion motor equivalence circuit, we increase the iron loss current component, introduce the definition of power matching ratio, calculate the highest efficiency of a motor at a given speed and discuss the flux corresponding to the power matching ratio with the highest efficiency. In the original motor vector efficiency optimization control module, an efficiency optimization control module is added so as to achieve motor efficiency optimization and energy conservation.[Results] MATLAB/Simulink simulation data shows that the efficiency optimization control method is suitable for most conditions. The operation efficiency of the improved motor model is significantly higher than that of the original motor model, and its dynamic performance is good.[Conclusions] Our motor efficiency optimization control method can be applied in engineering to achieve energy conservation.
HPC CLOUD APPLIED TO LATTICE OPTIMIZATION
Energy Technology Data Exchange (ETDEWEB)
Sun, Changchun; Nishimura, Hiroshi; James, Susan; Song, Kai; Muriki, Krishna; Qin, Yong
2011-03-18
As Cloud services gain in popularity for enterprise use, vendors are now turning their focus towards providing cloud services suitable for scientific computing. Recently, Amazon Elastic Compute Cloud (EC2) introduced the new Cluster Compute Instances (CCI), a new instance type specifically designed for High Performance Computing (HPC) applications. At Berkeley Lab, the physicists at the Advanced Light Source (ALS) have been running Lattice Optimization on a local cluster, but the queue wait time and the flexibility to request compute resources when needed are not ideal for rapid development work. To explore alternatives, for the first time we investigate running the Lattice Optimization application on Amazon's new CCI to demonstrate the feasibility and trade-offs of using public cloud services for science.
HPC Cloud Applied To Lattice Optimization
International Nuclear Information System (INIS)
Sun, Changchun; Nishimura, Hiroshi; James, Susan; Song, Kai; Muriki, Krishna; Qin, Yong
2011-01-01
As Cloud services gain in popularity for enterprise use, vendors are now turning their focus towards providing cloud services suitable for scientific computing. Recently, Amazon Elastic Compute Cloud (EC2) introduced the new Cluster Compute Instances (CCI), a new instance type specifically designed for High Performance Computing (HPC) applications. At Berkeley Lab, the physicists at the Advanced Light Source (ALS) have been running Lattice Optimization on a local cluster, but the queue wait time and the flexibility to request compute resources when needed are not ideal for rapid development work. To explore alternatives, for the first time we investigate running the Lattice Optimization application on Amazon's new CCI to demonstrate the feasibility and trade-offs of using public cloud services for science.
Optimal control problem for the extended Fisher–Kolmogorov equation
Indian Academy of Sciences (India)
by methods of optimal control, such as chemical engineering and vehicle ... ern optimal control theories and applied models are not only represented by .... Obviously, equation (2.5) is an ordinary differential equation and according to ODE.
Chemical optimization algorithm for fuzzy controller design
Astudillo, Leslie; Castillo, Oscar
2014-01-01
In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application
Optimal magnetic attitude control
DEFF Research Database (Denmark)
Wisniewski, Rafal; Markley, F.L.
1999-01-01
because control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis stabilization of a low earth orbit satellite. The problem of controlling the spacecraft attitude using only magnetic...
Automated beam steering using optimal control
Energy Technology Data Exchange (ETDEWEB)
Allen, C. K. (Christopher K.)
2004-01-01
We present a steering algorithm which, with the aid of a model, allows the user to specify beam behavior throughout a beamline, rather than just at specified beam position monitor (BPM) locations. The model is used primarily to compute the values of the beam phase vectors from BPM measurements, and to define cost functions that describe the steering objectives. The steering problem is formulated as constrained optimization problem; however, by applying optimal control theory we can reduce it to an unconstrained optimization whose dimension is the number of control signals.
Computer control applied to accelerators
Crowley-Milling, Michael C
1974-01-01
The differences that exist between control systems for accelerators and other types of control systems are outlined. It is further indicated that earlier accelerators had manual control systems to which computers were added, but that it is essential for the new, large accelerators to include computers in the control systems right from the beginning. Details of the computer control designed for the Super Proton Synchrotron are presented. The method of choosing the computers is described, as well as the reasons for CERN having to design the message transfer system. The items discussed include: CAMAC interface systems, a new multiplex system, operator-to-computer interaction (such as touch screen, computer-controlled knob, and non- linear track-ball), and high-level control languages. Brief mention is made of the contributions of other high-energy research laboratories as well as of some other computer control applications at CERN. (0 refs).
Optimal Wentzell Boundary Control of Parabolic Equations
International Nuclear Information System (INIS)
Luo, Yousong
2017-01-01
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
Optimal Wentzell Boundary Control of Parabolic Equations
Energy Technology Data Exchange (ETDEWEB)
Luo, Yousong, E-mail: yousong.luo@rmit.edu.au [RMIT University, School of Mathematical and Geospatial Sciences (Australia)
2017-04-15
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
Optimal control in thermal engineering
Badescu, Viorel
2017-01-01
This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.
Optimal control of a CSTR process
Directory of Open Access Journals (Sweden)
A. Soukkou
2008-12-01
Full Text Available Designing an effective criterion and learning algorithm for find the best structure is a major problem in the control design process. In this paper, the fuzzy optimal control methodology is applied to the design of the feedback loops of an Exothermic Continuous Stirred Tank Reactor system. The objective of design process is to find an optimal structure/gains of the Robust and Optimal Takagi Sugeno Fuzzy Controller (ROFLC. The control signal thus obtained will minimize a performance index, which is a function of the tracking/regulating errors, the quantity of the energy of the control signal applied to the system, and the number of fuzzy rules. The genetic learning is proposed for constructing the ROFLC. The chromosome genes are arranged into two parts, the binary-coded part contains the control genes and the real-coded part contains the genes parameters representing the fuzzy knowledge base. The effectiveness of this chromosome formulation enables the fuzzy sets and rules to be optimally reduced. The performances of the ROFLC are compared to these found by the traditional PD controller with Genetic Optimization (PD_GO. Simulations demonstrate that the proposed ROFLC and PD_GO has successfully met the design specifications.
Symposium on Optimal Control Theory
1987-01-01
Control theory can be roughly classified as deterministic or stochastic. Each of these can further be subdivided into game theory and optimal control theory. The central problem of control theory is the so called constrained maximization (which- with slight modifications--is equivalent to minimization). One can then say, heuristically, that the major problem of control theory is to find the maximum of some performance criterion (or criteria), given a set of constraints. The starting point is, of course, a mathematical representation of the performance criterion (or criteria)- sometimes called the objective functional--along with the constraints. When the objective functional is single valued (Le. , when there is only one objective to be maximized), then one is dealing with optimal control theory. When more than one objective is involved, and the objectives are generally incompatible, then one is dealing with game theory. The first paper deals with stochastic optimal control, using the dynamic programming ...
2016 Network Games, Control, and Optimization Conference
Jimenez, Tania; Solan, Eilon
2017-01-01
This contributed volume offers a collection of papers presented at the 2016 Network Games, Control, and Optimization conference (NETGCOOP), held at the University of Avignon in France, November 23-25, 2016. These papers highlight the increasing importance of network control and optimization in many networking application domains, such as mobile and fixed access networks, computer networks, social networks, transportation networks, and, more recently, electricity grids and biological networks. Covering a wide variety of both theoretical and applied topics in the areas listed above, the authors explore several conceptual and algorithmic tools that are needed for efficient and robust control operation, performance optimization, and better understanding the relationships between entities that may be acting cooperatively or selfishly in uncertain and possibly adversarial environments. As such, this volume will be of interest to applied mathematicians, computer scientists, engineers, and researchers in other relate...
Optimal control theory an introduction
Kirk, Donald E
2004-01-01
Optimal control theory is the science of maximizing the returns from and minimizing the costs of the operation of physical, social, and economic processes. Geared toward upper-level undergraduates, this text introduces three aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization.Chapters 1 and 2 focus on describing systems and evaluating their performances. Chapter 3 deals with dynamic programming. The calculus of variations and Pontryagin's minimum principle are the subjects of chapters 4 and 5, and chapter
Optimization and Development of Swellable Controlled Porosity ...
African Journals Online (AJOL)
Purpose: To develop swellable controlled porosity osmotic pump tablet of theophylline and to define the formulation and process variables responsible for drug release by applying statistical optimization technique. Methods: Formulations were prepared based on Taguchi Orthogonal Array design and Fraction Factorial ...
DEFF Research Database (Denmark)
Gaspar, Jozsef
the market in the coming decades. However, the growing focus on mitigation of anthropogenic CO2 requires integration of fossil-fuel fired power plant with CO2 capture units. Post-combustion capture is the most mature capture technology and it is suitable for various processes in power plants, steel industry......, cement production, and bio-chemical industry. However, to make CO2 capture economically attractive, design of innovative solvents, optimization of operation conditions/process configuration and operational flexibility are of crucial importance. This thesis aims to contribute to the development...
HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN
While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...
International Nuclear Information System (INIS)
Chotiyarnwong, Pojchong; Stewart-Jones, Guillaume B.; Tarry, Michael J.; Dejnirattisai, Wanwisa; Siebold, Christian; Koch, Michael; Stuart, David I.; Harlos, Karl; Malasit, Prida; Screaton, Gavin; Mongkolsapaya, Juthathip; Jones, E. Yvonne
2007-01-01
Crystals of an MHC class I molecule bound to naturally occurring peptide variants from the dengue virus NS3 protein contained high levels of solvent and required optimization of cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process facilitated by the use of a free-mounting system. T-cell recognition of the antigenic peptides presented by MHC class I molecules normally triggers protective immune responses, but can result in immune enhancement of disease. Cross-reactive T-cell responses may underlie immunopathology in dengue haemorrhagic fever. To analyze these effects at the molecular level, the functional MHC class I molecule HLA-A*1101 was crystallized bound to six naturally occurring peptide variants from the dengue virus NS3 protein. The crystals contained high levels of solvent and required optimization of the cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process that was facilitated by the use of a free-mounting system
Energy Technology Data Exchange (ETDEWEB)
Chotiyarnwong, Pojchong [Department of Immunology, Division of Medicine, Hammersmith Hospital, Imperial College, London (United Kingdom); Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University (Thailand); Stewart-Jones, Guillaume B.; Tarry, Michael J. [Division of Structural Biology and Oxford Protein Production Facility (OPPF), The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford OX3 7BN (United Kingdom); Dejnirattisai, Wanwisa [Department of Immunology, Division of Medicine, Hammersmith Hospital, Imperial College, London (United Kingdom); Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University (Thailand); Siebold, Christian; Koch, Michael; Stuart, David I.; Harlos, Karl [Division of Structural Biology and Oxford Protein Production Facility (OPPF), The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford OX3 7BN (United Kingdom); Malasit, Prida [Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Bangkok (Thailand); Screaton, Gavin [Department of Immunology, Division of Medicine, Hammersmith Hospital, Imperial College, London (United Kingdom); Mongkolsapaya, Juthathip, E-mail: j.mongkolsapaya@imperial.ac.uk [Department of Immunology, Division of Medicine, Hammersmith Hospital, Imperial College, London (United Kingdom); Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University (Thailand); Jones, E. Yvonne, E-mail: j.mongkolsapaya@imperial.ac.uk [Division of Structural Biology and Oxford Protein Production Facility (OPPF), The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford OX3 7BN (United Kingdom); Department of Immunology, Division of Medicine, Hammersmith Hospital, Imperial College, London (United Kingdom)
2007-05-01
Crystals of an MHC class I molecule bound to naturally occurring peptide variants from the dengue virus NS3 protein contained high levels of solvent and required optimization of cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process facilitated by the use of a free-mounting system. T-cell recognition of the antigenic peptides presented by MHC class I molecules normally triggers protective immune responses, but can result in immune enhancement of disease. Cross-reactive T-cell responses may underlie immunopathology in dengue haemorrhagic fever. To analyze these effects at the molecular level, the functional MHC class I molecule HLA-A*1101 was crystallized bound to six naturally occurring peptide variants from the dengue virus NS3 protein. The crystals contained high levels of solvent and required optimization of the cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process that was facilitated by the use of a free-mounting system.
Optimal control of quantum measurement
Energy Technology Data Exchange (ETDEWEB)
Egger, Daniel; Wilhelm, Frank [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany)
2015-07-01
Pulses to steer the time evolution of quantum systems can be designed with optimal control theory. In most cases it is the coherent processes that can be controlled and one optimizes the time evolution towards a target unitary process, sometimes also in the presence of non-controllable incoherent processes. Here we show how to extend the GRAPE algorithm in the case where the incoherent processes are controllable and the target time evolution is a non-unitary quantum channel. We perform a gradient search on a fidelity measure based on Choi matrices. We illustrate our algorithm by optimizing a measurement pulse for superconducting phase qubits. We show how this technique can lead to large measurement contrast close to 99%. We also show, within the validity of our model, that this algorithm can produce short 1.4 ns pulses with 98.2% contrast.
Turnpike phenomenon and infinite horizon optimal control
Zaslavski, Alexander J
2014-01-01
This book is devoted to the study of the turnpike phenomenon and describes the existence of solutions for a large variety of infinite horizon optimal control classes of problems. Chapter 1 provides introductory material on turnpike properties. Chapter 2 studies the turnpike phenomenon for discrete-time optimal control problems. The turnpike properties of autonomous problems with extended-value intergrands are studied in Chapter 3. Chapter 4 focuses on large classes of infinite horizon optimal control problems without convexity (concavity) assumptions. In Chapter 5, the turnpike results for a class of dynamic discrete-time two-player zero-sum game are proven. This thorough exposition will be very useful for mathematicians working in the fields of optimal control, the calculus of variations, applied functional analysis, and infinite horizon optimization. It may also be used as a primary text in a graduate course in optimal control or as supplementary text for a variety of courses in other disciplines. Resea...
Optimal control linear quadratic methods
Anderson, Brian D O
2007-01-01
This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the
Optimal control of motorsport differentials
Tremlett, A. J.; Massaro, M.; Purdy, D. J.; Velenis, E.; Assadian, F.; Moore, A. P.; Halley, M.
2015-12-01
Modern motorsport limited slip differentials (LSD) have evolved to become highly adjustable, allowing the torque bias that they generate to be tuned in the corner entry, apex and corner exit phases of typical on-track manoeuvres. The task of finding the optimal torque bias profile under such varied vehicle conditions is complex. This paper presents a nonlinear optimal control method which is used to find the minimum time optimal torque bias profile through a lane change manoeuvre. The results are compared to traditional open and fully locked differential strategies, in addition to considering related vehicle stability and agility metrics. An investigation into how the optimal torque bias profile changes with reduced track-tyre friction is also included in the analysis. The optimal LSD profile was shown to give a performance gain over its locked differential counterpart in key areas of the manoeuvre where a quick direction change is required. The methodology proposed can be used to find both optimal passive LSD characteristics and as the basis of a semi-active LSD control algorithm.
Optimal control applications in electric power systems
Christensen, G S; Soliman, S A
1987-01-01
Significant advances in the field of optimal control have been made over the past few decades. These advances have been well documented in numerous fine publications, and have motivated a number of innovations in electric power system engineering, but they have not yet been collected in book form. Our purpose in writing this book is to provide a description of some of the applications of optimal control techniques to practical power system problems. The book is designed for advanced undergraduate courses in electric power systems, as well as graduate courses in electrical engineering, applied mathematics, and industrial engineering. It is also intended as a self-study aid for practicing personnel involved in the planning and operation of electric power systems for utilities, manufacturers, and consulting and government regulatory agencies. The book consists of seven chapters. It begins with an introductory chapter that briefly reviews the history of optimal control and its power system applications and also p...
Control and optimal control theories with applications
Burghes, D N
2004-01-01
This sound introduction to classical and modern control theory concentrates on fundamental concepts. Employing the minimum of mathematical elaboration, it investigates the many applications of control theory to varied and important present-day problems, e.g. economic growth, resource depletion, disease epidemics, exploited population, and rocket trajectories. An original feature is the amount of space devoted to the important and fascinating subject of optimal control. The work is divided into two parts. Part one deals with the control of linear time-continuous systems, using both transfer fun
Yamina BOUGHARI; Georges GHAZI; Ruxandra Mihaela BOTEZ; Florian THEEL
2017-01-01
In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augme...
Optimal control of hybrid vehicles
Jager, Bram; Kessels, John
2013-01-01
Optimal Control of Hybrid Vehicles provides a description of power train control for hybrid vehicles. The background, environmental motivation and control challenges associated with hybrid vehicles are introduced. The text includes mathematical models for all relevant components in the hybrid power train. The power split problem in hybrid power trains is formally described and several numerical solutions detailed, including dynamic programming and a novel solution for state-constrained optimal control problems based on Pontryagin’s maximum principle. Real-time-implementable strategies that can approximate the optimal solution closely are dealt with in depth. Several approaches are discussed and compared, including a state-of-the-art strategy which is adaptive for vehicle conditions like velocity and mass. Two case studies are included in the book: · a control strategy for a micro-hybrid power train; and · experimental results obtained with a real-time strategy implemented in...
Optimal control of hydroelectric facilities
Zhao, Guangzhi
This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the
Genetic algorithms applied to nuclear reactor design optimization
International Nuclear Information System (INIS)
Pereira, C.M.N.A.; Schirru, R.; Martinez, A.S.
2000-01-01
A genetic algorithm is a powerful search technique that simulates natural evolution in order to fit a population of computational structures to the solution of an optimization problem. This technique presents several advantages over classical ones such as linear programming based techniques, often used in nuclear engineering optimization problems. However, genetic algorithms demand some extra computational cost. Nowadays, due to the fast computers available, the use of genetic algorithms has increased and its practical application has become a reality. In nuclear engineering there are many difficult optimization problems related to nuclear reactor design. Genetic algorithm is a suitable technique to face such kind of problems. This chapter presents applications of genetic algorithms for nuclear reactor core design optimization. A genetic algorithm has been designed to optimize the nuclear reactor cell parameters, such as array pitch, isotopic enrichment, dimensions and cells materials. Some advantages of this genetic algorithm implementation over a classical method based on linear programming are revealed through the application of both techniques to a simple optimization problem. In order to emphasize the suitability of genetic algorithms for design optimization, the technique was successfully applied to a more complex problem, where the classical method is not suitable. Results and comments about the applications are also presented. (orig.)
Optimal Sliding Mode Controllers for Attitude Stabilization of Flexible Spacecraft
Directory of Open Access Journals (Sweden)
Chutiphon Pukdeboon
2011-01-01
Full Text Available The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers.
Optimal Control of Wind Power Generation
Directory of Open Access Journals (Sweden)
Pawel Pijarski
2018-03-01
Full Text Available Power system control is a complex task, which is strongly related to the number and kind of generating units as well as to the applied technologies, such as conventional coal fired power plants or wind and photovoltaic farms. Fast development of wind generation that is considered as unstable generation sets new strong requirements concerning remote control and data hubs cooperating with SCADA systems. Considering specific nature of the wind power generation, the authors analyze the problem of optimal control for wind power generation in farms located over a selected remote-controlled part of the Operator grid under advantageous wind conditions. This article presents an original stepwise method for tracing power flows that makes possible to eliminate current (power overloading of power grid branches. Its core idea is to consider the discussed problem as an optimization task.
Directory of Open Access Journals (Sweden)
Pérez L.V.
2010-02-01
Full Text Available The optimization of the supervisory control of hybrid electric vehicles over predetermined driving cycles has been used as a previous study for determining on-line strategies and also for design and sizing purposes. This problem may be posed as an optimal control problem, in which the energy in the bank of batteries is often the state variable, and the power from any of the system sources is, the control action. As both of these quantities are bounded, the optimal control problem has control constraints or state constraints or both. Usually, the charge-sustaining mode of operation is ensured just by imposing a transversality condition, i.e. a fixed final energy, or including an additional term in the cost functional that penalizes the moving away of the state variable from the nominal value. We considered the problem where the state is allowed to move freely within a band. This led to an optimal control problem with control and state constraints. In this work we describe the difficulties that arise while solving the equations given by the Pontryagin’s Maximum Principle and how these difficulties can be overcome by using the so-called Direct Transcription approach that consists of a programming tool to solve the resultant large-scale finite dimensional optimization problem. L’optimisation de la commande au niveau superviseur de véhicules hybrides sur cycles d’usage prédéterminés a été utilisée comme une première étude pour déterminer des stratégies en ligne mais aussi avec des objectifs de conception et dimensionnement. Ce problème peut être posé comme un problème de commande optimale, où l’énergie dans les batteries est généralement la variable d’état et où la puissance de n’importe quelle source du système est l’action de commande. Comme ces deux quantités sont bornées, le problème de commande optimale a des restrictions sur la fonction de commande et sur l’état. Généralement, le fonctionnement
Discrete Event Supervisory Control Applied to Propulsion Systems
Litt, Jonathan S.; Shah, Neerav
2005-01-01
The theory of discrete event supervisory (DES) control was applied to the optimal control of a twin-engine aircraft propulsion system and demonstrated in a simulation. The supervisory control, which is implemented as a finite-state automaton, oversees the behavior of a system and manages it in such a way that it maximizes a performance criterion, similar to a traditional optimal control problem. DES controllers can be nested such that a high-level controller supervises multiple lower level controllers. This structure can be expanded to control huge, complex systems, providing optimal performance and increasing autonomy with each additional level. The DES control strategy for propulsion systems was validated using a distributed testbed consisting of multiple computers--each representing a module of the overall propulsion system--to simulate real-time hardware-in-the-loop testing. In the first experiment, DES control was applied to the operation of a nonlinear simulation of a turbofan engine (running in closed loop using its own feedback controller) to minimize engine structural damage caused by a combination of thermal and structural loads. This enables increased on-wing time for the engine through better management of the engine-component life usage. Thus, the engine-level DES acts as a life-extending controller through its interaction with and manipulation of the engine s operation.
Optimization and Optimal Control in Automotive Systems
Waschl, H.; Kolmanovsky, I.V.; Steinbuch, M.; Re, del L.
2014-01-01
This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier approaches, based on some degree of heuristics, to the use of more and
Optimal Control for Stochastic Delay Evolution Equations
Energy Technology Data Exchange (ETDEWEB)
Meng, Qingxin, E-mail: mqx@hutc.zj.cn [Huzhou University, Department of Mathematical Sciences (China); Shen, Yang, E-mail: skyshen87@gmail.com [York University, Department of Mathematics and Statistics (Canada)
2016-08-15
In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we apply stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.
Advanced Gradient Based Optimization Techniques Applied on Sheet Metal Forming
International Nuclear Information System (INIS)
Endelt, Benny; Nielsen, Karl Brian
2005-01-01
The computational-costs for finite element simulations of general sheet metal forming processes are considerable, especially measured in time. In combination with optimization, the performance of the optimization algorithm is crucial for the overall performance of the system, i.e. the optimization algorithm should gain as much information about the system in each iteration as possible. Least-square formulation of the object function is widely applied for solution of inverse problems, due to the superior performance of this formulation.In this work focus will be on small problems which are defined as problems with less than 1000 design parameters; as the majority of real life optimization and inverse problems, represented in literature, can be characterized as small problems, typically with less than 20 design parameters.We will show that the least square formulation is well suited for two classes of inverse problems; identification of constitutive parameters and process optimization.The scalability and robustness of the approach are illustrated through a number of process optimizations and inverse material characterization problems; tube hydro forming, two step hydro forming, flexible aluminum tubes, inverse identification of material parameters
Applied Behavior Analysis and Statistical Process Control?
Hopkins, B. L.
1995-01-01
Incorporating statistical process control (SPC) methods into applied behavior analysis is discussed. It is claimed that SPC methods would likely reduce applied behavior analysts' intimate contacts with problems and would likely yield poor treatment and research decisions. Cases and data presented by Pfadt and Wheeler (1995) are cited as examples.…
Control parameter optimization for AP1000 reactor using Particle Swarm Optimization
International Nuclear Information System (INIS)
Wang, Pengfei; Wan, Jiashuang; Luo, Run; Zhao, Fuyu; Wei, Xinyu
2016-01-01
Highlights: • The PSO algorithm is applied for control parameter optimization of AP1000 reactor. • Key parameters of the MSHIM control system are optimized. • Optimization results are evaluated though simulations and quantitative analysis. - Abstract: The advanced mechanical shim (MSHIM) core control strategy is implemented in the AP1000 reactor for core reactivity and axial power distribution control simultaneously. The MSHIM core control system can provide superior reactor control capabilities via automatic rod control only. This enables the AP1000 to perform power change operations automatically without the soluble boron concentration adjustments. In this paper, the Particle Swarm Optimization (PSO) algorithm has been applied for the parameter optimization of the MSHIM control system to acquire better reactor control performance for AP1000. System requirements such as power control performance, control bank movement and AO control constraints are reflected in the objective function. Dynamic simulations are performed based on an AP1000 reactor simulation platform in each iteration of the optimization process to calculate the fitness values of particles in the swarm. The simulation platform is developed in Matlab/Simulink environment with implementation of a nodal core model and the MSHIM control strategy. Based on the simulation platform, the typical 10% step load decrease transient from 100% to 90% full power is simulated and the objective function used for control parameter tuning is directly incorporated in the simulation results. With successful implementation of the PSO algorithm in the control parameter optimization of AP1000 reactor, four key parameters of the MSHIM control system are optimized. It has been demonstrated by the calculation results that the optimized MSHIM control system parameters can improve the reactor power control capability and reduce the control rod movement without compromising AO control. Therefore, the PSO based optimization
Digital linear control theory applied to automatic stepsize control in electrical circuit simulation
Verhoeven, A.; Beelen, T.G.J.; Hautus, M.L.J.; Maten, ter E.J.W.; Di Bucchianico, A.; Mattheij, R.M.M.; Peletier, M.A.
2006-01-01
Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes smoother stepsize controllers are wanted, such that the errors and stepsizes also behave smoothly. We consider approaches from digital linear control theory applied to multistep
Digital linear control theory applied to automatic stepsize control in electrical circuit simulation
Verhoeven, A.; Beelen, T.G.J.; Hautus, M.L.J.; Maten, ter E.J.W.
2005-01-01
Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes smoother stepsize controllers are wanted, such that the errors and stepsizes also behave smoothly. We consider approaches from digital linear control theory applied to multistep
Multi-Objective Optimization of Grillages Applying the Genetic Algorithm
Directory of Open Access Journals (Sweden)
Darius Mačiūnas
2012-01-01
Full Text Available The article analyzes the optimization of grillage-type foundations seeking for the least possible reactive forces in the poles for a given number of poles and for the least possible bending moments of absolute values in the connecting beams of the grillage. Therefore, we suggest using a compromise objective function (to be minimized that consists of the maximum reactive force arising in all poles and the maximum bending moment of the absolute value in connecting beams; both components include the given weights. The variables of task design are pole positions under connecting beams. The optimization task is solved applying the algorithm containing all the initial data of the problem. Reactive forces and bending moments are calculated using an original program (finite element method is applied. This program is integrated into the optimization algorithm using the “black-box” principle. The “black-box” finite element program sends back the corresponding value of the objective function. Numerical experiments revealed the optimal quantity of points to compute bending moments. The obtained results show a certain ratio of weights in the objective function where the contribution of reactive forces and bending moments to the objective function are equivalent. This solution can serve as a pilot project for more detailed design.Article in Lithuanian
Automatic Synthesis of Robust and Optimal Controllers
DEFF Research Database (Denmark)
Cassez, Franck; Jessen, Jan Jacob; Larsen, Kim Guldstrand
2009-01-01
In this paper, we show how to apply recent tools for the automatic synthesis of robust and near-optimal controllers for a real industrial case study. We show how to use three different classes of models and their supporting existing tools, Uppaal-TiGA for synthesis, phaver for verification......, and Simulink for simulation, in a complementary way. We believe that this case study shows that our tools have reached a level of maturity that allows us to tackle interesting and relevant industrial control problems....
Gradient algorithm applied to laboratory quantum control
International Nuclear Information System (INIS)
Roslund, Jonathan; Rabitz, Herschel
2009-01-01
The exploration of a quantum control landscape, which is the physical observable as a function of the control variables, is fundamental for understanding the ability to perform observable optimization in the laboratory. For high control variable dimensions, trajectory-based methods provide a means for performing such systematic explorations by exploiting the measured gradient of the observable with respect to the control variables. This paper presents a practical, robust, easily implemented statistical method for obtaining the gradient on a general quantum control landscape in the presence of noise. In order to demonstrate the method's utility, the experimentally measured gradient is utilized as input in steepest-ascent trajectories on the landscapes of three model quantum control problems: spectrally filtered and integrated second harmonic generation as well as excitation of atomic rubidium. The gradient algorithm achieves efficiency gains of up to approximately three times that of the standard genetic algorithm and, as such, is a promising tool for meeting quantum control optimization goals as well as landscape analyses. The landscape trajectories directed by the gradient should aid in the continued investigation and understanding of controlled quantum phenomena.
Evolutionary design optimization of traffic signals applied to Quito city.
Armas, Rolando; Aguirre, Hernán; Daolio, Fabio; Tanaka, Kiyoshi
2017-01-01
This work applies evolutionary computation and machine learning methods to study the transportation system of Quito from a design optimization perspective. It couples an evolutionary algorithm with a microscopic transport simulator and uses the outcome of the optimization process to deepen our understanding of the problem and gain knowledge about the system. The work focuses on the optimization of a large number of traffic lights deployed on a wide area of the city and studies their impact on travel time, emissions and fuel consumption. An evolutionary algorithm with specialized mutation operators is proposed to search effectively in large decision spaces, evolving small populations for a short number of generations. The effects of the operators combined with a varying mutation schedule are studied, and an analysis of the parameters of the algorithm is also included. In addition, hierarchical clustering is performed on the best solutions found in several runs of the algorithm. An analysis of signal clusters and their geolocation, estimation of fuel consumption, spatial analysis of emissions, and an analysis of signal coordination provide an overall picture of the systemic effects of the optimization process.
Controller modification applied for active fault detection
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Stoustrup, Jakob; Poulsen, Niels Kjølstad
2014-01-01
This paper is focusing on active fault detection (AFD) for parametric faults in closed-loop systems. This auxiliary input applied for the fault detection will also disturb the external output and consequently reduce the performance of the controller. Therefore, only small auxiliary inputs are used...... with the result that the detection and isolation time can be long. In this paper it will be shown, that this problem can be handled by using a modification of the feedback controller. By applying the YJBK-parameterization (after Youla, Jabr, Bongiorno and Kucera) for the controller, it is possible to modify...... the frequency for the auxiliary input is selected. This gives that it is possible to apply an auxiliary input with a reduced amplitude. An example is included to show the results....
HCCI Engine Optimization and Control
Energy Technology Data Exchange (ETDEWEB)
Rolf D. Reitz
2005-09-30
The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.
Reference-shaping adaptive control by using gradient descent optimizers.
Directory of Open Access Journals (Sweden)
Baris Baykant Alagoz
Full Text Available This study presents a model reference adaptive control scheme based on reference-shaping approach. The proposed adaptive control structure includes two optimizer processes that perform gradient descent optimization. The first process is the control optimizer that generates appropriate control signal for tracking of the controlled system output to a reference model output. The second process is the adaptation optimizer that performs for estimation of a time-varying adaptation gain, and it contributes to improvement of control signal generation. Numerical update equations derived for adaptation gain and control signal perform gradient descent optimization in order to decrease the model mismatch errors. To reduce noise sensitivity of the system, a dead zone rule is applied to the adaptation process. Simulation examples show the performance of the proposed Reference-Shaping Adaptive Control (RSAC method for several test scenarios. An experimental study demonstrates application of method for rotor control.
Directory of Open Access Journals (Sweden)
Yamina BOUGHARI
2017-06-01
Full Text Available In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augmentation systems’ handling qualities, and design requirements. Furthermore the number of controllers used to control the aircraft in its flight envelope was optimized using the Linear Fractional Representations features. To validate the controller over the whole aircraft flight envelope, the linear stability, eigenvalue, and handling qualities criteria in addition of the nonlinear analysis criteria were investigated during this research to assess the business aircraft for flight control clearance and certification. The optimized gains provide a very good stability margins as the eigenvalue analysis shows that the aircraft has a high stability, and a very good flying qualities of the linear aircraft models are ensured in its entire flight envelope, its robustness is demonstrated with respect to uncertainties due to its mass and center of gravity variations.
Applying simulation to optimize plastic molded optical parts
Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris
2012-10-01
Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.
Fuzzy model predictive control algorithm applied in nuclear power plant
International Nuclear Information System (INIS)
Zuheir, Ahmad
2006-01-01
The aim of this paper is to design a predictive controller based on a fuzzy model. The Takagi-Sugeno fuzzy model with an Adaptive B-splines neuro-fuzzy implementation is used and incorporated as a predictor in a predictive controller. An optimization approach with a simplified gradient technique is used to calculate predictions of the future control actions. In this approach, adaptation of the fuzzy model using dynamic process information is carried out to build the predictive controller. The easy description of the fuzzy model and the easy computation of the gradient sector during the optimization procedure are the main advantages of the computation algorithm. The algorithm is applied to the control of a U-tube steam generation unit (UTSG) used for electricity generation. (author)
Near optimal decentralized H_inf control
DEFF Research Database (Denmark)
Stoustrup, J.; Niemann, Hans Henrik
It is shown that foir a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinity dimentional optimal controller. Using the insight of the line of proof of these results, a heuri......It is shown that foir a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinity dimentional optimal controller. Using the insight of the line of proof of these results...
Combined Optimal Sizing and Control for a Hybrid Tracked Vehicle
Directory of Open Access Journals (Sweden)
Huei Peng
2012-11-01
Full Text Available The optimal sizing and control of a hybrid tracked vehicle is presented and solved in this paper. A driving schedule obtained from field tests is used to represent typical tracked vehicle operations. Dynamics of the diesel engine-permanent magnetic AC synchronous generator set, the lithium-ion battery pack, and the power split between them are modeled and validated through experiments. Two coupled optimizations, one for the plant parameters, forming the outer optimization loop and one for the control strategy, forming the inner optimization loop, are used to achieve minimum fuel consumption under the selected driving schedule. The dynamic programming technique is applied to find the optimal controller in the inner loop while the component parameters are optimized iteratively in the outer loop. The results are analyzed, and the relationship between the key parameters is observed to keep the optimal sizing and control simultaneously.
Quantum optimal control of ozone isomerization
International Nuclear Information System (INIS)
Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel
2004-01-01
We present a feasibility study of ozone isomerization based on a recent ab initio potential energy surface and a model Hamiltonian constructed by holding the bond lengths constant and using the valence angle as the isomerization coordinate. Optimal control theory is used to find an electric field that drives isomerization with a yield of 95% to the symmetric metastable triangular form of ozone. A frequency filter is applied as an additional spectral constraint limiting the field bandwidth. A post-facto analysis is performed showing a degree of inherent robustness of the isomerization yield to field noise
Derivative-free optimization under uncertainty applied to costly simulators
International Nuclear Information System (INIS)
Pauwels, Benoit
2016-01-01
The modeling of complex phenomena encountered in industrial issues can lead to the study of numerical simulation codes. These simulators may require extensive execution time (from hours to days), involve uncertain parameters and even be intrinsically stochastic. Importantly within the context of simulation-based optimization, the derivatives of the outputs with respect to the inputs may be inexistent, inaccessible or too costly to approximate reasonably. This thesis is organized in four chapters. The first chapter discusses the state of the art in derivative-free optimization and uncertainty modeling. The next three chapters introduce three independent - although connected - contributions to the field of derivative-free optimization in the presence of uncertainty. The second chapter addresses the emulation of costly stochastic simulation codes - stochastic in the sense simulations run with the same input parameters may lead to distinct outputs. Such was the matter of the CODESTOCH project carried out at the Summer mathematical research center on scientific computing and its applications (CEMRACS) during the summer of 2013, together with two Ph.D. students from Electricity of France (EDF) and the Atomic Energy and Alternative Energies Commission (CEA). We designed four methods to build emulators for functions whose values are probability density functions. These methods were tested on two toy functions and applied to industrial simulation codes concerned with three complex phenomena: the spatial distribution of molecules in a hydrocarbon system (IFPEN), the life cycle of large electric transformers (EDF) and the repercussions of a hypothetical accidental in a nuclear plant (CEA). Emulation was a preliminary process towards optimization in the first two cases. In the third chapter we consider the influence of inaccurate objective function evaluations on direct search - a classical derivative-free optimization method. In real settings inaccuracy may never vanish
An optimal control problem for controlling the cell volume in dehydration and rehydration process
Energy Technology Data Exchange (ETDEWEB)
Chenghung Huang; Tetsung Chen [National Cheng Kung Univ., Dept. of Systems and Naval Mechatronic Engineering, Tainan (Taiwan)
2004-08-01
An optimal control algorithm utilizing the conjugate gradient method (CGM) of minimization is applied successfully in the present study in determining the optimal boundary control function for a diffusion-limited cell model based on the desired cell volume. The validity of the present optimal control analysis is examined by means of numerical experiments. Different desired cell volume for dehydration, rehydration and their combination are given in three test cases with different weighting coefficients and the corresponding optimal control functions are determined. The results show that the optimal boundary control functions can be obtained with an arbitrary initial guess within one second CPU time on a Pentium III-600 MHz PC. (Author)
Multiobjective Genetic Algorithm applied to dengue control.
Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F
2014-12-01
Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique. Copyright © 2014 Elsevier Inc. All rights reserved.
Constrained Optimization and Optimal Control for Partial Differential Equations
Leugering, Günter; Griewank, Andreas
2012-01-01
This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The cont
Two optimal control methods for PWR core control
International Nuclear Information System (INIS)
Karppinen, J.; Blomsnes, B.; Versluis, R.M.
1976-01-01
The Multistage Mathematical Programming (MMP) and State Variable Feedback (SVF) methods for PWR core control are presented in this paper. The MMP method is primarily intended for optimization of the core behaviour with respect to xenon induced power distribution effects in load cycle operation. The SVF method is most suited for xenon oscillation damping in situations where the core load is unpredictable or expected to stay constant. Results from simulation studies in which the two methods have been applied for control of simple PWR core models are presented. (orig./RW) [de
Desiccant wheel thermal performance modeling for indoor humidity optimal control
International Nuclear Information System (INIS)
Wang, Nan; Zhang, Jiangfeng; Xia, Xiaohua
2013-01-01
Highlights: • An optimal humidity control model is formulated to control the indoor humidity. • MPC strategy is used to implement the optimal operation solution. • Practical applications of the MPC strategy is illustrated by the case study. - Abstract: Thermal comfort is an important concern in the energy efficiency improvement of commercial buildings. Thermal comfort research focuses mostly on temperature control, but humidity control is an important aspect to maintain indoor comfort too. In this paper, an optimal humidity control model (OHCM) is presented. Model predictive control (MPC) strategy is applied to implement the optimal operation of the desiccant wheel during working hours of a commercial building. The OHCM is revised to apply the MPC strategy. A case is studied to illustrate the practical applications of the MPC strategy
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Chaos control applied to heart rhythm dynamics
Energy Technology Data Exchange (ETDEWEB)
Borem Ferreira, Bianca, E-mail: biaborem@gmail.com [Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, P.O. Box 68.503, 21.941.972 Rio de Janeiro, RJ (Brazil); Souza de Paula, Aline, E-mail: alinedepaula@unb.br [Universidade de Brasi' lia, Department of Mechanical Engineering, 70.910.900 Brasilia, DF (Brazil); Amorim Savi, Marcelo, E-mail: savi@mecanica.ufrj.br [Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, P.O. Box 68.503, 21.941.972 Rio de Janeiro, RJ (Brazil)
2011-08-15
Highlights: > A natural cardiac pacemaker is modeled by a modified Van der Pol oscillator. > Responses related to normal and chaotic, pathological functioning of the heart are investigated. > Chaos control methods are applied to avoid pathological behaviors of heart dynamics. > Different approaches are treated: stabilization of unstable periodic orbits and chaos suppression. - Abstract: The dynamics of cardiovascular rhythms have been widely studied due to the key aspects of the heart in the physiology of living beings. Cardiac rhythms can be either periodic or chaotic, being respectively related to normal and pathological physiological functioning. In this regard, chaos control methods may be useful to promote the stabilization of unstable periodic orbits using small perturbations. In this article, the extended time-delayed feedback control method is applied to a natural cardiac pacemaker described by a mathematical model. The model consists of a modified Van der Pol equation that reproduces the behavior of this pacemaker. Results show the ability of the chaos control strategy to control the system response performing either the stabilization of unstable periodic orbits or the suppression of chaotic response, avoiding behaviors associated with critical cardiac pathologies.
Applying Data Clustering Feature to Speed Up Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Chao-Yang Pang
2014-01-01
Full Text Available Ant colony optimization (ACO is often used to solve optimization problems, such as traveling salesman problem (TSP. When it is applied to TSP, its runtime is proportional to the squared size of problem N so as to look less efficient. The following statistical feature is observed during the authors’ long-term gene data analysis using ACO: when the data size N becomes big, local clustering appears frequently. That is, some data cluster tightly in a small area and form a class, and the correlation between different classes is weak. And this feature makes the idea of divide and rule feasible for the estimate of solution of TSP. In this paper an improved ACO algorithm is presented, which firstly divided all data into local clusters and calculated small TSP routes and then assembled a big TSP route with them. Simulation shows that the presented method improves the running speed of ACO by 200 factors under the condition that data set holds feature of local clustering.
Optimal Excitation Controller Design for Wind Turbine Generator
Directory of Open Access Journals (Sweden)
A. K. Boglou
2011-01-01
Full Text Available An optimal excitation controller design based on multirate-output controllers (MROCs having a multirate sampling mechanismwith different sampling period in each measured output of the system is presented. The proposed H∞ -control techniqueis applied to the discrete linear open-loop system model which represents a wind turbine generator supplying an infinite busthrough a transmission line.
Galerkin approximations of nonlinear optimal control problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Mickael D. Chekroun
2017-07-01
Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.
Optimization of Inventories for Multiple Companies by Fuzzy Control Method
Kawase, Koichi; Konishi, Masami; Imai, Jun
2008-01-01
In this research, Fuzzy control theory is applied to the inventory control of the supply chain between multiple companies. The proposed control method deals with the amountof inventories expressing supply chain between multiple companies. Referring past demand and tardiness, inventory amounts of raw materials are determined by Fuzzy inference. The method that an appropriate inventory control becomes possible optimizing fuzzy control gain by using SA method for Fuzzy control. The variation of ...
Directory of Open Access Journals (Sweden)
Ruisheng Sun
2016-01-01
Full Text Available This paper presents a new parametric optimization approach based on a modified particle swarm optimization (PSO to design a class of impulsive-correction projectiles with discrete, flexible-time interval, and finite-energy control. In terms of optimal control theory, the task is described as the formulation of minimum working number of impulses and minimum control error, which involves reference model linearization, boundary conditions, and discontinuous objective function. These result in difficulties in finding the global optimum solution by directly utilizing any other optimization approaches, for example, Hp-adaptive pseudospectral method. Consequently, PSO mechanism is employed for optimal setting of impulsive control by considering the time intervals between two neighboring lateral impulses as design variables, which makes the briefness of the optimization process. A modification on basic PSO algorithm is developed to improve the convergence speed of this optimization through linearly decreasing the inertial weight. In addition, a suboptimal control and guidance law based on PSO technique are put forward for the real-time consideration of the online design in practice. Finally, a simulation case coupled with a nonlinear flight dynamic model is applied to validate the modified PSO control algorithm. The results of comparative study illustrate that the proposed optimal control algorithm has a good performance in obtaining the optimal control efficiently and accurately and provides a reference approach to handling such impulsive-correction problem.
Applying model predictive control to power system frequency control
Ersdal, AM; Imsland, L; Cecilio, IM; Fabozzi, D; Thornhill, NF
2013-01-01
16.07.14 KB Ok to add accepted version to Spiral Model predictive control (MPC) is investigated as a control method which may offer advantages in frequency control of power systems than the control methods applied today, especially in presence of increased renewable energy penetration. The MPC includes constraints on both generation amount and generation rate of change, and it is tested on a one-area system. The proposed MPC is tested against a conventional proportional-integral (PI) cont...
Optimal Control and Forecasting of Complex Dynamical Systems
Grigorenko, Ilya
2006-01-01
This important book reviews applications of optimization and optimal control theory to modern problems in physics, nano-science and finance. The theory presented here can be efficiently applied to various problems, such as the determination of the optimal shape of a laser pulse to induce certain excitations in quantum systems, the optimal design of nanostructured materials and devices, or the control of chaotic systems and minimization of the forecast error for a given forecasting model (for example, artificial neural networks). Starting from a brief review of the history of variational calcul
Hopmann, Ch.; Windeck, C.; Kurth, K.; Behr, M.; Siegbert, R.; Elgeti, S.
2014-05-01
The rheological design of profile extrusion dies is one of the most challenging tasks in die design. As no analytical solution is available, the quality and the development time for a new design highly depend on the empirical knowledge of the die manufacturer. Usually, prior to start production several time-consuming, iterative running-in trials need to be performed to check the profile accuracy and the die geometry is reworked. An alternative are numerical flow simulations. These simulations enable to calculate the melt flow through a die so that the quality of the flow distribution can be analyzed. The objective of a current research project is to improve the automated optimization of profile extrusion dies. Special emphasis is put on choosing a convenient starting geometry and parameterization, which enable for possible deformations. In this work, three commonly used design features are examined with regard to their influence on the optimization results. Based on the results, a strategy is derived to select the most relevant areas of the flow channels for the optimization. For these characteristic areas recommendations are given concerning an efficient parameterization setup that still enables adequate deformations of the flow channel geometry. Exemplarily, this approach is applied to a L-shaped profile with different wall thicknesses. The die is optimized automatically and simulation results are qualitatively compared with experimental results. Furthermore, the strategy is applied to a complex extrusion die of a floor skirting profile to prove the universal adaptability.
Optimal management strategies in variable environments: Stochastic optimal control methods
Williams, B.K.
1985-01-01
Dynamic optimization was used to investigate the optimal defoliation of salt desert shrubs in north-western Utah. Management was formulated in the context of optimal stochastic control theory, with objective functions composed of discounted or time-averaged biomass yields. Climatic variability and community patterns of salt desert shrublands make the application of stochastic optimal control both feasible and necessary. A primary production model was used to simulate shrub responses and harvest yields under a variety of climatic regimes and defoliation patterns. The simulation results then were used in an optimization model to determine optimal defoliation strategies. The latter model encodes an algorithm for finite state, finite action, infinite discrete time horizon Markov decision processes. Three questions were addressed: (i) What effect do changes in weather patterns have on optimal management strategies? (ii) What effect does the discounting of future returns have? (iii) How do the optimal strategies perform relative to certain fixed defoliation strategies? An analysis was performed for the three shrub species, winterfat (Ceratoides lanata), shadscale (Atriplex confertifolia) and big sagebrush (Artemisia tridentata). In general, the results indicate substantial differences among species in optimal control strategies, which are associated with differences in physiological and morphological characteristics. Optimal policies for big sagebrush varied less with variation in climate, reserve levels and discount rates than did either shadscale or winterfat. This was attributed primarily to the overwintering of photosynthetically active tissue and to metabolic activity early in the growing season. Optimal defoliation of shadscale and winterfat generally was more responsive to differences in plant vigor and climate, reflecting the sensitivity of these species to utilization and replenishment of carbohydrate reserves. Similarities could be seen in the influence of both
Optimal control of raw timber production processes
Ivan Kolenka
1978-01-01
This paper demonstrates the possibility of optimal planning and control of timber harvesting activ-ities with mathematical optimization models. The separate phases of timber harvesting are represented by coordinated models which can be used to select the optimal decision for the execution of any given phase. The models form a system whose components are connected and...
Adaptive optimization and control using neural networks
Energy Technology Data Exchange (ETDEWEB)
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Optimal Control and Optimization of Stochastic Supply Chain Systems
Song, Dong-Ping
2013-01-01
Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject in the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies. In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of ...
Optimal control methods for rapidly time-varying Hamiltonians
International Nuclear Information System (INIS)
Motzoi, F.; Merkel, S. T.; Wilhelm, F. K.; Gambetta, J. M.
2011-01-01
In this article, we develop a numerical method to find optimal control pulses that accounts for the separation of timescales between the variation of the input control fields and the applied Hamiltonian. In traditional numerical optimization methods, these timescales are treated as being the same. While this approximation has had much success, in applications where the input controls are filtered substantially or mixed with a fast carrier, the resulting optimized pulses have little relation to the applied physical fields. Our technique remains numerically efficient in that the dimension of our search space is only dependent on the variation of the input control fields, while our simulation of the quantum evolution is accurate on the timescale of the fast variation in the applied Hamiltonian.
An optimal control model of crop thinning in viticulture
Schamel Guenter H.; Schubert Stefan F.
2016-01-01
We develop an economic model of cluster thinning in viticulture to control for grape quantity harvested and grape quality, applying a simple optimal control model with the aim to raise grape quality and related economic profits. The model maximizes vineyard owner profits and allows to discuss two relevant scenarios using a phase diagram analysis: (1) when the initial grape quantity is sufficiently small, thinning grapes will not be optimal and (2) when the initial grape quantity is high enoug...
ON THE OPTIMAL CONTROL OF A PROBLEM OF ENVIRONMENTAL POLLUTION
Directory of Open Access Journals (Sweden)
José Dávalos Chuquipoma
2016-06-01
Full Text Available This article is studied the optimal control of distributed parameter systems applied to an environmental pollution problem. The model consists of a differential equation partial parabolic modeling of a pollutant transport in a fluid. The model is considered the speed with which the pollutant spreads in the environment and degradation that suffers the contaminant by the presence of a factor biological inhibitor, which breaks the contaminant at a rate that is not dependent on space and time. Using the method of Lagrange multipliers is possible to prove the existence solving the problem of control and obtaining optimality conditions for optimal control.
Optimization of a Solar Photovoltaic Applied to Greenhouses
Nakoul, Z.; Bibi-Triki, N.; Kherrous, A.; Bessenouci, M. Z.; Khelladi, S.
The global energy consumption and in our country is increasing. The bulk of world energy comes from fossil fuels, whose reserves are doomed to exhaustion and are the leading cause of pollution and global warming through the greenhouse effect. This is not the case of renewable energy that are inexhaustible and from natural phenomena. For years, unanimously, solar energy is in the first rank of renewable energies .The study of energetic aspect of a solar power plant is the best way to find the optimum of its performances. The study on land with real dimensions requires a long time and therefore is very costly, and more results are not always generalizable. To avoid these drawbacks we opted for a planned study on computer only, using the software 'Matlab' by modeling different components for a better sizing and simulating all energies to optimize profitability taking into account the cost. The result of our work applied to sites of Tlemcen and Bouzareah led us to conclude that the energy required is a determining factor in the choice of components of a PV solar power plant.
Optimal control of evaporator and washer plants
International Nuclear Information System (INIS)
Niemi, A.J.
1989-01-01
Tests with radioactive tracers were used for experimental analysis of a multiple-effect evaporator plant. The residence time distribution of the liquor in each evaporator was described by one or two perfect mixers with time delay and by-pass flow terms. The theoretical model of a single evaporator unit was set up on the basis of its instantaneous heat and mass balances and such models were fitted to the test data. The results were interpreted in terms of physical structures of the evaporators. Further model parameters were evaluated by conventional step tests and by measurements of process variables at one or more steady states. Computer simulation and comparison with the experimental results showed that the model produces a satisfactory response to solids concentration input and could be extended to cover the steam feed and liquor flow inputs. An optimal feedforward control algorithm was developed for a two unit, co-current evaporator plant. The control criterion comprised the deviations of the final solids content of liquor and the consumption of fresh steam, from their optimal steady-state values. In order to apply the algorithm, the model of the solids in liquor was reduced to two nonlinear differential equations. (author)
Time-optimal control with finite bandwidth
Hirose, M.; Cappellaro, P.
2018-04-01
Time-optimal control theory provides recipes to achieve quantum operations with high fidelity and speed, as required in quantum technologies such as quantum sensing and computation. While technical advances have achieved the ultrastrong driving regime in many physical systems, these capabilities have yet to be fully exploited for the precise control of quantum systems, as other limitations, such as the generation of higher harmonics or the finite response time of the control apparatus, prevent the implementation of theoretical time-optimal control. Here we present a method to achieve time-optimal control of qubit systems that can take advantage of fast driving beyond the rotating wave approximation. We exploit results from time-optimal control theory to design driving protocols that can be implemented with realistic, finite-bandwidth control fields, and we find a relationship between bandwidth limitations and achievable control fidelity.
Optimization of boundary controls of string vibrations
Energy Technology Data Exchange (ETDEWEB)
Il' in, V A; Moiseev, E I [Department of Computing Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)
2005-12-31
For a large time interval T boundary controls of string vibrations are optimized in the following seven boundary-control problems: displacement control at one end (with the other end fixed or free); displacement control at both ends; elastic force control at one end (with the other end fixed or free); elastic force control at both ends; combined control (displacement control at one end and elastic force control at the other). Optimal boundary controls in each of these seven problems are sought as functions minimizing the corresponding boundary-energy integral under the constraints following from the initial and terminal conditions for the string at t=0 and t=T, respectively. For all seven problems, the optimal boundary controls are written out in closed analytic form.
Optimal control of a wave energy converter
Hendrikx, R.W.M.; Leth, J.; Andersen, P; Heemels, W.P.M.H.
2017-01-01
The optimal control strategy for a wave energy converter (WEC) with constraints on the control torque is investigated. The goal is to optimize the total energy delivered to the electricity grid. Using Pontryagin's maximum principle, the solution is found to be singular-bang. Using higher order
Semilinear Kolmogorov Equations and Applications to Stochastic Optimal Control
International Nuclear Information System (INIS)
Masiero, Federica
2005-01-01
Semilinear parabolic differential equations are solved in a mild sense in an infinite-dimensional Hilbert space. Applications to stochastic optimal control problems are studied by solving the associated Hamilton-Jacobi-Bellman equation. These results are applied to some controlled stochastic partial differential equations
Optimal sensorimotor control in eye movement sequences.
Munuera, Jérôme; Morel, Pierre; Duhamel, Jean-René; Deneve, Sophie
2009-03-11
Fast and accurate motor behavior requires combining noisy and delayed sensory information with knowledge of self-generated body motion; much evidence indicates that humans do this in a near-optimal manner during arm movements. However, it is unclear whether this principle applies to eye movements. We measured the relative contributions of visual sensory feedback and the motor efference copy (and/or proprioceptive feedback) when humans perform two saccades in rapid succession, the first saccade to a visual target and the second to a memorized target. Unbeknownst to the subject, we introduced an artificial motor error by randomly "jumping" the visual target during the first saccade. The correction of the memory-guided saccade allowed us to measure the relative contributions of visual feedback and efferent copy (and/or proprioceptive feedback) to motor-plan updating. In a control experiment, we extinguished the target during the saccade rather than changing its location to measure the relative contribution of motor noise and target localization error to saccade variability without any visual feedback. The motor noise contribution increased with saccade amplitude, but remained <30% of the total variability. Subjects adjusted the gain of their visual feedback for different saccade amplitudes as a function of its reliability. Even during trials where subjects performed a corrective saccade to compensate for the target-jump, the correction by the visual feedback, while stronger, remained far below 100%. In all conditions, an optimal controller predicted the visual feedback gain well, suggesting that humans combine optimally their efferent copy and sensory feedback when performing eye movements.
Neural Networks for Optimal Control
DEFF Research Database (Denmark)
Sørensen, O.
1995-01-01
Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....
Optimal switching using coherent control
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper
2013-01-01
that the switching time, in general, is not limited by the cavity lifetime. Therefore, the total energy required for switching is a more relevant figure of merit than the switching speed, and for a particular two-pulse switching scheme we use calculus of variations to optimize the switching in terms of input energy....
Hierarchical Control for Optimal and Distributed Operation of Microgrid Systems
DEFF Research Database (Denmark)
Meng, Lexuan
manages the power flow with external grids, while the economic and optimal operation of MGs is not guaranteed by applying the existing schemes. Accordingly, this project dedicates to the study of real-time optimization methods for MGs, including the review of optimization algorithms, system level...... mathematical modeling, and the implementation of real-time optimization into existing hierarchical control schemes. Efficiency enhancement in DC MGs and optimal unbalance compensation in AC MGs are taken as the optimization objectives in this project. Necessary system dynamic modeling and stability analysis......, a discrete-time domain modeling method is proposed to establish an accurate system level model. Taking into account the different sampling times of real world plant, digital controller and communication devices, the system is modeled with these three parts separately, and with full consideration...
Parameter Optimization of MIMO Fuzzy Optimal Model Predictive Control By APSO
Directory of Open Access Journals (Sweden)
Adel Taieb
2017-01-01
Full Text Available This paper introduces a new development for designing a Multi-Input Multi-Output (MIMO Fuzzy Optimal Model Predictive Control (FOMPC using the Adaptive Particle Swarm Optimization (APSO algorithm. The aim of this proposed control, called FOMPC-APSO, is to develop an efficient algorithm that is able to have good performance by guaranteeing a minimal control. This is done by determining the optimal weights of the objective function. Our method is considered an optimization problem based on the APSO algorithm. The MIMO system to be controlled is modeled by a Takagi-Sugeno (TS fuzzy system whose parameters are identified using weighted recursive least squares method. The utility of the proposed controller is demonstrated by applying it to two nonlinear processes, Continuous Stirred Tank Reactor (CSTR and Tank system, where the proposed approach provides better performances compared with other methods.
Calculus of variations and optimal control theory a concise introduction
Liberzon, Daniel
2011-01-01
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the h...
Asgharnia, Amirhossein; Shahnazi, Reza; Jamali, Ali
2018-05-11
The most studied controller for pitch control of wind turbines is proportional-integral-derivative (PID) controller. However, due to uncertainties in wind turbine modeling and wind speed profiles, the need for more effective controllers is inevitable. On the other hand, the parameters of PID controller usually are unknown and should be selected by the designer which is neither a straightforward task nor optimal. To cope with these drawbacks, in this paper, two advanced controllers called fuzzy PID (FPID) and fractional-order fuzzy PID (FOFPID) are proposed to improve the pitch control performance. Meanwhile, to find the parameters of the controllers the chaotic evolutionary optimization methods are used. Using evolutionary optimization methods not only gives us the unknown parameters of the controllers but also guarantees the optimality based on the chosen objective function. To improve the performance of the evolutionary algorithms chaotic maps are used. All the optimization procedures are applied to the 2-mass model of 5-MW wind turbine model. The proposed optimal controllers are validated using simulator FAST developed by NREL. Simulation results demonstrate that the FOFPID controller can reach to better performance and robustness while guaranteeing fewer fatigue damages in different wind speeds in comparison to FPID, fractional-order PID (FOPID) and gain-scheduling PID (GSPID) controllers. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Statistical process control applied to the manufacturing of beryllia ceramics
International Nuclear Information System (INIS)
Ferguson, G.P.; Jech, D.E.; Sepulveda, J.L.
1991-01-01
To compete effectively in an international market, scrap and re-work costs must be minimized. Statistical Process Control (SPC) provides powerful tools to optimize production performance. These techniques are currently being applied to the forming, metallizing, and brazing of beryllia ceramic components. This paper describes specific examples of applications of SPC to dry-pressing of beryllium oxide 2x2 substrates, to Mo-Mn refractory metallization, and to metallization and brazing of plasma tubes used in lasers where adhesion strength is critical
Existence theory in optimal control
International Nuclear Information System (INIS)
Olech, C.
1976-01-01
This paper treats the existence problem in two main cases. One case is that of linear systems when existence is based on closedness or compactness of the reachable set and the other, non-linear case refers to a situation where for the existence of optimal solutions closedness of the set of admissible solutions is needed. Some results from convex analysis are included in the paper. (author)
PSO Algorithm for an Optimal Power Controller in a Microgrid
Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.
2017-07-01
This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.
Optimal Control Development System for Electrical Drives
Directory of Open Access Journals (Sweden)
Marian GAICEANU
2008-08-01
Full Text Available In this paper the optimal electrical drive development system is presented. It consists of both electrical drive types: DC and AC. In order to implement the optimal control for AC drive system an Altivar 71 inverter, a Frato magnetic particle brake (as load, three-phase induction machine, and dSpace 1104 controller have been used. The on-line solution of the matrix Riccati differential equation (MRDE is computed by dSpace 1104 controller, based on the corresponding feedback signals, generating the optimal speed reference for the AC drive system. The optimal speed reference is tracked by Altivar 71 inverter, conducting to energy reduction in AC drive. The classical control (consisting of rotor field oriented control with PI controllers and the optimal one have been implemented by designing an adequate ControlDesk interface. The three-phase induction machine (IM is controlled at constant flux. Therefore, the linear dynamic mathematical model of the IM has been obtained. The optimal control law provides transient regimes with minimal energy consumption. The obtained solution by integration of the MRDE is orientated towards the numerical implementation-by using a zero order hold. The development system is very useful for researchers, doctoral students or experts training in electrical drive. The experimental results are shown.
Dynamic optimization and adaptive controller design
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
The PBIL algorithm applied to a nuclear reactor design optimization
Energy Technology Data Exchange (ETDEWEB)
Machado, Marcelo D.; Medeiros, Jose A.C.C.; Lima, Alan M.M. de; Schirru, Roberto [Instituto Alberto Luiz Coimbra de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ-RJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear. Lab. de Monitoracao de Processos]. E-mails: marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; alan@lmp.ufrj.br; schirru@lmp.ufrj.br
2007-07-01
The Population-Based Incremental Learning (PBIL) algorithm is a method that combines the mechanism of genetic algorithm with the simple competitive learning, creating an important tool to be used in the optimization of numeric functions and combinatory problems. PBIL works with a set of solutions to the problems, called population, whose objective is create a probability vector, containing real values in each position, that when used in a decoding procedure gives subjects that present the best solutions for the function to be optimized. In this work a new form of learning for algorithm PBIL is developed, having aimed at to reduce the necessary time for the optimization process. This new algorithm will be used in the nuclear reactor design optimization. The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment zone reactor, considering some restrictions. In this optimization is used the computational code HAMMER, and the results compared with other methods of optimization by artificial intelligence. (author)
The PBIL algorithm applied to a nuclear reactor design optimization
International Nuclear Information System (INIS)
Machado, Marcelo D.; Medeiros, Jose A.C.C.; Lima, Alan M.M. de; Schirru, Roberto
2007-01-01
The Population-Based Incremental Learning (PBIL) algorithm is a method that combines the mechanism of genetic algorithm with the simple competitive learning, creating an important tool to be used in the optimization of numeric functions and combinatory problems. PBIL works with a set of solutions to the problems, called population, whose objective is create a probability vector, containing real values in each position, that when used in a decoding procedure gives subjects that present the best solutions for the function to be optimized. In this work a new form of learning for algorithm PBIL is developed, having aimed at to reduce the necessary time for the optimization process. This new algorithm will be used in the nuclear reactor design optimization. The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment zone reactor, considering some restrictions. In this optimization is used the computational code HAMMER, and the results compared with other methods of optimization by artificial intelligence. (author)
Noise tolerant illumination optimization applied to display devices
Cassarly, William J.; Irving, Bruce
2005-02-01
Display devices have historically been designed through an iterative process using numerous hardware prototypes. This process is effective but the number of iterations is limited by the time and cost to make the prototypes. In recent years, virtual prototyping using illumination software modeling tools has replaced many of the hardware prototypes. Typically, the designer specifies the design parameters, builds the software model, predicts the performance using a Monte Carlo simulation, and uses the performance results to repeat this process until an acceptable design is obtained. What is highly desired, and now possible, is to use illumination optimization to automate the design process. Illumination optimization provides the ability to explore a wider range of design options while also providing improved performance. Since Monte Carlo simulations are often used to calculate the system performance but those predictions have statistical uncertainty, the use of noise tolerant optimization algorithms is important. The use of noise tolerant illumination optimization is demonstrated by considering display device designs that extract light using 2D paint patterns as well as 3D textured surfaces. A hybrid optimization approach that combines a mesh feedback optimization with a classical optimizer is demonstrated. Displays with LED sources and cold cathode fluorescent lamps are considered.
Optimal Control of Evolution Mixed Variational Inclusions
Energy Technology Data Exchange (ETDEWEB)
Alduncin, Gonzalo, E-mail: alduncin@geofisica.unam.mx [Universidad Nacional Autónoma de México, Departamento de Recursos Naturales, Instituto de Geofísica (Mexico)
2013-12-15
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory.
Optimal Control of Evolution Mixed Variational Inclusions
International Nuclear Information System (INIS)
Alduncin, Gonzalo
2013-01-01
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory
Role of controllability in optimizing quantum dynamics
International Nuclear Information System (INIS)
Wu Rebing; Hsieh, Michael A.; Rabitz, Herschel
2011-01-01
This paper reveals an important role that controllability plays in the complexity of optimizing quantum control dynamics. We show that the loss of controllability generally leads to multiple locally suboptimal controls when gate fidelity in a quantum control system is maximized, which does not happen if the system is controllable. Such local suboptimal controls may attract an optimization algorithm into a local trap when a global optimal solution is sought, even if the target gate can be perfectly realized. This conclusion results from an analysis of the critical topology of the corresponding quantum control landscape, which refers to the gate fidelity objective as a functional of the control fields. For uncontrollable systems, due to SU(2) and SU(3) dynamical symmetries, the control landscape corresponding to an implementable target gate is proven to possess multiple locally optimal critical points, and its ruggedness can be further increased if the target gate is not realizable. These results imply that the optimization of quantum dynamics can be seriously impeded when operating with local search algorithms under these conditions, and thus full controllability is demanded.
Maintenance resources optimization applied to a manufacturing system
International Nuclear Information System (INIS)
Fiori de Castro, Helio; Lucchesi Cavalca, Katia
2006-01-01
This paper presents an availability optimization of an engineering system assembled in a series configuration, with redundancy of units and corrective maintenance resources as optimization parameters. The aim is to reach maximum availability, considering as constraints installation and corrective maintenance costs, weight and volume. The optimization method uses a Genetic Algorithm based on biological concepts of species evolution. It is a robust method, as it does not converge to a local optimum. It does not require the use of differential calculus, thus facilitating computational implementation. Results indicate that the methodology is suitable to solve a wide range of engineering design problems involving allocation of redundancies and maintenance resources
Optimal Speed Control for Cruising
DEFF Research Database (Denmark)
Blanke, M.
1994-01-01
With small profit margins in merchant shipping and more than eighty percent of sailing time being cross ocean voyages, speed control is crucial for vessel profitability......With small profit margins in merchant shipping and more than eighty percent of sailing time being cross ocean voyages, speed control is crucial for vessel profitability...
Applied simulation and optimization : in logistics, industrial and aeronautical practice
Mujica Mota, Miguel; De la Mota, Idalia Flores; Guimarans Serrano, Daniel
2015-01-01
Presenting techniques, case-studies and methodologies that combine the use of simulation approaches with optimization techniques for facing problems in manufacturing, logistics, or aeronautical problems, this book provides solutions to common industrial problems in several fields, which range from
In-flight performance optimization for rotorcraft with redundant controls
Ozdemir, Gurbuz Taha
establish a schedule. The method has been expanded to search a two-dimensional control space. Simulation results demonstrate the ability to maximize range by optimizing stabilator deflection and an airspeed set point. Another set of results minimize power required in high speed flight by optimizing collective pitch and stabilator deflection. Results show that the control laws effectively hold the flight condition while the FTO method is effective at improving performance. Optimizations show there can be issues when the control laws regulating altitude push the collective control towards it limits. So a modification was made to the control law to regulate airspeed and altitude using propeller pitch and angle of attack while the collective is held fixed or used as an optimization variable. A dynamic trim limit avoidance algorithm is applied to avoid control saturation in other axes during optimization maneuvers. Range and power optimization FTO simulations are compared with comprehensive sweeps of trim solutions and FTO optimization shown to be effective and reliable in reaching an optimal when optimizing up to two redundant controls. Use of redundant controls is shown to be beneficial for improving performance. The search method takes almost 25 minutes of simulated flight for optimization to be complete. The optimization maneuver itself can sometimes drive the power required to high values, so a power limit is imposed to restrict the search to avoid conditions where power is more than5% higher than that of the initial trim state. With this modification, the time the optimization maneuver takes to complete is reduced down to 21 minutes without any significant change in the optimal power value.
Parameters control in GAs for dynamic optimization
Directory of Open Access Journals (Sweden)
Khalid Jebari
2013-02-01
Full Text Available The Control of Genetic Algorithms parameters allows to optimize the search process and improves the performance of the algorithm. Moreover it releases the user to dive into a game process of trial and failure to find the optimal parameters.
Optimal Control Design for a Solar Greenhouse
Ooteghem, van R.J.C.
2010-01-01
Abstract: An optimal climate control has been designed for a solar greenhouse to achieve optimal crop production with sustainable instead of fossil energy. The solar greenhouse extends a conventional greenhouse with an improved roof cover, ventilation with heat recovery, a heat pump, a heat
Optimization and control of metal forming processes
Havinga, Gosse Tjipke
2016-01-01
Inevitable variations in process and material properties limit the accuracy of metal forming processes. Robust optimization methods or control systems can be used to improve the production accuracy. Robust optimization methods are used to design production processes with low sensitivity to the
Optimal control and the calculus of variations
Pinch, Enid R
1993-01-01
This introduction to optimal control theory is intended for undergraduate mathematicians and for engineers and scientists with some knowledge of classical analysis. It includes sections on classical optimization and the calculus of variations. All the important theorems are carefully proved. There are many worked examples and exercises for the reader to attempt.
Direct Optimal Control of Duffing Dynamics
Oz, Hayrani; Ramsey, John K.
2002-01-01
The "direct control method" is a novel concept that is an attractive alternative and competitor to the differential-equation-based methods. The direct method is equally well applicable to nonlinear, linear, time-varying, and time-invariant systems. For all such systems, the method yields explicit closed-form control laws based on minimization of a quadratic control performance measure. We present an application of the direct method to the dynamics and optimal control of the Duffing system where the control performance measure is not restricted to a quadratic form and hence may include a quartic energy term. The results we present in this report also constitute further generalizations of our earlier work in "direct optimal control methodology." The approach is demonstrated for the optimal control of the Duffing equation with a softening nonlinear stiffness.
A Feedback Optimal Control Algorithm with Optimal Measurement Time Points
Directory of Open Access Journals (Sweden)
Felix Jost
2017-02-01
Full Text Available Nonlinear model predictive control has been established as a powerful methodology to provide feedback for dynamic processes over the last decades. In practice it is usually combined with parameter and state estimation techniques, which allows to cope with uncertainty on many levels. To reduce the uncertainty it has also been suggested to include optimal experimental design into the sequential process of estimation and control calculation. Most of the focus so far was on dual control approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning as well as minimizing a given objective (performing. We propose a new algorithm, which sequentially solves robust optimal control, optimal experimental design, state and parameter estimation problems. Thus, we decouple the control and the experimental design problems. This has the advantages that we can analyze the impact of measurement timing (sampling independently, and is practically relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy treatment or the need for fast feedback. The algorithm shows promising results with a 36% reduction of parameter uncertainties for the Lotka-Volterra fishing benchmark example.
Optimal Model-Based Control in HVAC Systems
DEFF Research Database (Denmark)
Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik
2008-01-01
is developed. Then the optimal control structure is designed and implemented. The HVAC system is splitted into two subsystems. By selecting the right set-points and appropriate cost functions for each subsystem controller the optimal control strategy is respected to gaurantee the minimum thermal and electrical......This paper presents optimal model-based control of a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger (a rotary wheel heat recovery) and a water-to- air heat exchanger. First dynamic model of the HVAC system...... energy consumption. Finally, the controller is applied to control the mentioned HVAC system and the results show that the expected goals are fulfilled....
HCCI engine control and optimization
Killingsworth, Nicholas J.
2007-01-01
Homogeneous charge compression ignition (HCCI) engines have the benefit of high efficiency with low emissions of nitrogen oxides and particulates. These benefits are due to the autoignition process of the dilute mixture of fuel and air during compression. However, because there is no direct ignition trigger, control of ignition is inherently more difficult than in standard internal combustion engines. This difficulty necessitates that a feedback controller be used to keep the engine at a desi...
Existence and characterization of optimal control in mathematics model of diabetics population
Permatasari, A. H.; Tjahjana, R. H.; Udjiani, T.
2018-03-01
Diabetes is a chronic disease with a huge burden affecting individuals and the whole society. In this paper, we constructed the optimal control mathematical model by applying a strategy to control the development of diabetic population. The constructed mathematical model considers the dynamics of disabled people due to diabetes. Moreover, an optimal control approach is proposed in order to reduce the burden of pre-diabetes. Implementation of control is done by preventing the pre-diabetes develop into diabetics with and without complications. The existence of optimal control and characterization of optimal control is discussed in this paper. Optimal control is characterized by applying the Pontryagin minimum principle. The results indicate that there is an optimal control in optimization problem in mathematics model of diabetic population. The effect of the optimal control variable (prevention) is strongly affected by the number of healthy people.
Optimal control for Malaria disease through vaccination
Munzir, Said; Nasir, Muhammad; Ramli, Marwan
2018-01-01
Malaria is a disease caused by an amoeba (single-celled animal) type of plasmodium where anopheles mosquito serves as the carrier. This study examines the optimal control problem of malaria disease spread based on Aron and May (1982) SIR type models and seeks the optimal solution by minimizing the prevention of the spreading of malaria by vaccine. The aim is to investigate optimal control strategies on preventing the spread of malaria by vaccination. The problem in this research is solved using analytical approach. The analytical method uses the Pontryagin Minimum Principle with the symbolic help of MATLAB software to obtain optimal control result and to analyse the spread of malaria with vaccination control.
Numerical optimization of circulation control airfoils
Tai, T. C.; Kidwell, G. H., Jr.; Vanderplaats, G. N.
1981-01-01
A numerical procedure for optimizing circulation control airfoils, which consists of the coupling of an optimization scheme with a viscous potential flow analysis for blowing jet, is presented. The desired airfoil is defined by a combination of three baseline shapes (cambered ellipse, and cambered ellipse with drooped and spiralled trailing edges). The coefficients of these shapes are used as design variables in the optimization process. Under the constraints of lift augmentation and lift-to-drag ratios, the optimal airfoils are found to lie between those of cambered ellipse and the drooped trailing edge, towards the latter as the angle of attack increases. Results agree qualitatively with available experimental data.
Development and Optimization of controlled drug release ...
African Journals Online (AJOL)
The aim of this study is to develop and optimize an osmotically controlled drug delivery system of diclofenac sodium. Osmotically controlled oral drug delivery systems utilize osmotic pressure for controlled delivery of active drugs. Drug delivery from these systems, to a large extent, is independent of the physiological factors ...
Optimal Control Inventory Stochastic With Production Deteriorating
Affandi, Pardi
2018-01-01
In this paper, we are using optimal control approach to determine the optimal rate in production. Most of the inventory production models deal with a single item. First build the mathematical models inventory stochastic, in this model we also assume that the items are in the same store. The mathematical model of the problem inventory can be deterministic and stochastic models. In this research will be discussed how to model the stochastic as well as how to solve the inventory model using optimal control techniques. The main tool in the study problems for the necessary optimality conditions in the form of the Pontryagin maximum principle involves the Hamilton function. So we can have the optimal production rate in a production inventory system where items are subject deterioration.
Applied simulation and optimization in logistics, industrial and aeronautical practice
Mota, Idalia; Serrano, Daniel
2015-01-01
Presenting techniques, case-studies and methodologies that combine the use of simulation approaches with optimization techniques for facing problems in manufacturing, logistics, or aeronautical problems, this book provides solutions to common industrial problems in several fields, which range from manufacturing to aviation problems, where the common denominator is the combination of simulation’s flexibility with optimization techniques’ robustness. Providing readers with a comprehensive guide to tackle similar issues in industrial environments, this text explores novel ways to face industrial problems through hybrid approaches (simulation-optimization) that benefit from the advantages of both paradigms, in order to give solutions to important problems in service industry, production processes, or supply chains, such as scheduling, routing problems and resource allocations, among others.
Quantitative Portfolio Optimization Techniques Applied to the Brazilian Stock Market
Directory of Open Access Journals (Sweden)
André Alves Portela Santos
2012-09-01
Full Text Available In this paper we assess the out-of-sample performance of two alternative quantitative portfolio optimization techniques - mean-variance and minimum variance optimization – and compare their performance with respect to a naive 1/N (or equally-weighted portfolio and also to the market portfolio given by the Ibovespa. We focus on short selling-constrained portfolios and consider alternative estimators for the covariance matrices: sample covariance matrix, RiskMetrics, and three covariance estimators proposed by Ledoit and Wolf (2003, Ledoit and Wolf (2004a and Ledoit and Wolf (2004b. Taking into account alternative portfolio re-balancing frequencies, we compute out-of-sample performance statistics which indicate that the quantitative approaches delivered improved results in terms of lower portfolio volatility and better risk-adjusted returns. Moreover, the use of more sophisticated estimators for the covariance matrix generated optimal portfolios with lower turnover over time.
Optimal control systems in hydro power plants
International Nuclear Information System (INIS)
Babunski, Darko L.
2012-01-01
The aim of the research done in this work is focused on obtaining the optimal models of hydro turbine including auxiliary equipment, analysis of governors for hydro power plants and analysis and design of optimal control laws that can be easily applicable in real hydro power plants. The methodology of the research and realization of the set goals consist of the following steps: scope of the models of hydro turbine, and their modification using experimental data; verification of analyzed models and comparison of advantages and disadvantages of analyzed models, with proposal of turbine model for design of control low; analysis of proportional-integral-derivative control with fixed parameters and gain scheduling and nonlinear control; analysis of dynamic characteristics of turbine model including control and comparison of parameters of simulated system with experimental data; design of optimal control of hydro power plant considering proposed cost function and verification of optimal control law with load rejection measured data. The hydro power plant models, including model of power grid are simulated in case of island ing and restoration after breakup and load rejection with consideration of real loading and unloading of hydro power plant. Finally, simulations provide optimal values of control parameters, stability boundaries and results easily applicable to real hydro power plants. (author)
Optimal control theory applications to management science and economics
Sethi, Suresh P
2006-01-01
Optimal control methods are used to determine the best ways to control a dynamic system. This book applies theoretical work to business management problems developed from the authors' research and classroom instruction. The thoroughly revised new edition has been refined with careful attention to the text and graphic material presentation. Chapters cover a range of topics including finance, production and inventory problems, marketing problems, machine maintenance and replacement, problems of optimal consumption of natural resources, and applications of control theory to economics. The book in
Hardware Transactional Memory Optimization Guidelines, Applied to Ordered Maps
DEFF Research Database (Denmark)
Bonnichsen, Lars Frydendal; Probst, Christian W.; Karlsson, Sven
2015-01-01
efficiently requires reasoning about those differences. In this paper we present 5 guidelines for applying hardware transactional memory efficiently, and apply the guidelines to BT-trees, a concurrent ordered map. Evaluating BT-trees on standard benchmarks shows that they are up to 5.3 times faster than...
Euler's fluid equations: Optimal control vs optimization
Energy Technology Data Exchange (ETDEWEB)
Holm, Darryl D., E-mail: d.holm@ic.ac.u [Department of Mathematics, Imperial College London, SW7 2AZ (United Kingdom)
2009-11-23
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
Optimal control problem for the extended Fisher–Kolmogorov equation
Indian Academy of Sciences (India)
In this paper, the optimal control problem for the extended Fisher–Kolmogorov equation is studied. The optimal control under boundary condition is given, the existence of optimal solution to the equation is proved and the optimality system is established.
Experimental design applied to the optimization and partial ...
African Journals Online (AJOL)
The objective of this work was to optimize the medium composition for maximum pectin-methylesterase (PME) production from a newly isolated strain of Penicillium brasilianum by submerged fermentation. A Plackett-Burman design was first used for the screening of most important factors, followed by a 23 full ...
OPTIMAL CONTROL FOR ELECTRIC VEHICLE STABILIZATION
Directory of Open Access Journals (Sweden)
MARIAN GAICEANU
2016-01-01
Full Text Available This main objective of the paper is to stabilize an electric vehicle in optimal manner to a step lane change maneuver. To define the mathematical model of the vehicle, the rigid body moving on a plane is taken into account. An optimal lane keeping controller delivers the adequate angles in order to stabilize the vehicle’s trajectory in an optimal way. Two degree of freedom linear bicycle model is adopted as vehicle model, consisting of lateral and yaw motion equations. The proposed control maintains the lateral stability by taking the feedback information from the vehicle transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. Based on the obtained linear mathematical model the quadratic optimal control is designed in order to maintain the lateral stability of the electric vehicle. The numerical simulation results demonstrate the feasibility of the proposed solution.
Energy Optimal Control of Induction Motor Drives
DEFF Research Database (Denmark)
Abrahamsen, Flemming
This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... demonstrated that energy optimal control will sometimes improve and sometimes deteriorate the stability. Comparison of small and medium-size induction motor drives with permanent magnet motor drives indicated why, and in which applications, PM motors are especially good. Calculations of economical aspects...... improvement by energy optimal control for any standard induction motor drive between 2.2 kW and 90 kW. A simple method to evaluate the robustness against load disturbances was developed and used to compare the robustness of different motor types and sizes. Calculation of the oscillatory behavior of a motor...
Optimal control novel directions and applications
Aronna, Maria; Kalise, Dante
2017-01-01
Focusing on applications to science and engineering, this book presents the results of the ITN-FP7 SADCO network’s innovative research in optimization and control in the following interconnected topics: optimality conditions in optimal control, dynamic programming approaches to optimal feedback synthesis and reachability analysis, and computational developments in model predictive control. The novelty of the book resides in the fact that it has been developed by early career researchers, providing a good balance between clarity and scientific rigor. Each chapter features an introduction addressed to PhD students and some original contributions aimed at specialist researchers. Requiring only a graduate mathematical background, the book is self-contained. It will be of particular interest to graduate and advanced undergraduate students, industrial practitioners and to senior scientists wishing to update their knowledge.
Optimizing pipeline transportation using a fuzzy controller
Energy Technology Data Exchange (ETDEWEB)
Aramaki, Thiago L.; Correa, Joao L. L.; Montalvoa, Antonio F. F. [National Control and Operation Center Tranpetro, Rio de Janeiro, (Brazil)
2010-07-01
The optimization of pipeline transportation is a big concern for the transporter companies. This paper is the third of a series of three articles which investigated the application of a system to simulate the human ability to operate a pipeline in an optimized way. The present paper presents the development of a proportional integral (PI) fuzzy controller, in order to optimize pipeline transportation capacity. The fuzzy adaptive PI controller system was developed and tested with a hydraulic simulator. On-field data were used from the OSBRA pipeline. The preliminary tests showed that the performance of the software simulation was satisfactory. It varied the set-point of the conventional controller within the limits of flow meters. The transport capacity of the pipe was maximize without compromising the integrity of the commodities transported. The system developed proved that it can be easily deployed as a specialist optimizing system to be added to SCADA systems.
Optimal Control of Beer Fermentation Process Using Differential ...
African Journals Online (AJOL)
Optimal Control of Beer Fermentation Process Using Differential Transform Method. ... Journal of Applied Sciences and Environmental Management ... The method of differential transform was used to obtain the solution governing the fermentation process; the system of equation was transformed using the differential ...
Charting the circuit QED design landscape using optimal control theory
DEFF Research Database (Denmark)
Goerz, Michael H.; Motzoi, Felix; Whaley, K. Birgitta
2017-01-01
, which we name the quasi-dispersive straddling qutrits regime. At a chosen point in this region, a universal gate set is realized by applying microwave fields for gate durations of 50 ns, with errors approaching the limit of intrinsic transmon coherence. Our systematic quantum optimal control approach...
Optimization of a radiodiagnostic service by means of quality control
International Nuclear Information System (INIS)
Carrizales, L.; Gamez, L.; Reggio, F.; Gamboa, M.; Quintero, A.; Almeida, J.
2001-01-01
Most of the radio diagnosis institutions (public and private) in Venezuela have a lack quality control applied to radiological equipment, as well as capable staff to implement it. It is intended to implant training programs and corrective policies to optimize their services [es
International Nuclear Information System (INIS)
Medeiros, Jose Antonio Carlos Canedo; Machado, Marcelo Dornellas; Lima, Alan Miranda M. de; Schirru, Roberto
2007-01-01
Predictive control systems are control systems that use a model of the controlled system (plant), used to predict the future behavior of the plant allowing the establishment of an anticipative control based on a future condition of the plant, and an optimizer that, considering a future time horizon of the plant output and a recent horizon of the control action, determines the controller's outputs to optimize a performance index of the controlled plant. The predictive control system does not require analytical models of the plant; the model of predictor of the plant can be learned from historical data of operation of the plant. The optimizer of the predictive controller establishes the strategy of the control: the minimization of a performance index (objective function) is done so that the present and future control actions are computed in such a way to minimize the objective function. The control strategy, implemented by the optimizer, induces the formation of an optimal control mechanism whose effect is to reduce the stabilization time, the 'overshoot' and 'undershoot', minimize the control actuation so that a compromise among those objectives is attained. The optimizer of the predictive controller is usually implemented using gradient-based algorithms. In this work we use the Particle Swarm Optimization algorithm (PSO) in the optimizer component of a predictive controller applied in the control of the xenon oscillation of a pressurized water reactor (PWR). The PSO is a stochastic optimization technique applied in several disciplines, simple and capable of providing a global optimal for high complexity problems and difficult to be optimized, providing in many cases better results than those obtained by other conventional and/or other artificial optimization techniques. (author)
The Optimization of power reactor control system
International Nuclear Information System (INIS)
Danupoyo, S.D.
1997-01-01
A power reactor is an important part in nuclear powered electrical plant systems. Success in controlling the power reactor will establish safety of the whole power plant systems. Until now, the power reactor has been controlled by a classical control system that was designed based on output feedback method. To meet the safety requirements that are now more restricted, the recently used power reactor control system should be modified. this paper describes a power reactor control system that is designed based on a state feedback method optimized with LQG (Linear-quadrature-gaussian) method and equipped with a state estimator. A pressurized-water type reactor has been used as the model. by using a point kinetics method with one group delayed neutrons. the result of simulation testing shows that the optimized control system can control the power reactor more effective and efficient than the classical control system
Optimal Material Layout - Applied on Reinforced Concrete Slabs
DEFF Research Database (Denmark)
Dollerup, Niels; Jepsen, Michael S.; Damkilde, Lars
2015-01-01
This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible to deter......This paper introduces a general, finite-element-based optimisation tool for improving the material layout of concrete structures. The application presented is general and exemplified by material optimisation of reinforced concrete slabs. By utilising the optimisation tool, it is possible...... to determine the optimal material layout of a slab in the ultimate load state, based on simple inputs such as outer geometry, boundary conditions, multiple load cases and design domains. The material layout of the optimal design can either be fully orthotropic or isotropic, or a combination with a predefined...
Geometry Based Design Automation : Applied to Aircraft Modelling and Optimization
Amadori, Kristian
2012-01-01
Product development processes are continuously challenged by demands for increased efficiency. As engineering products become more and more complex, efficient tools and methods for integrated and automated design are needed throughout the development process. Multidisciplinary Design Optimization (MDO) is one promising technique that has the potential to drastically improve concurrent design. MDO frameworks combine several disciplinary models with the aim of gaining a holistic perspective of ...
Optimization of the multilinear compression function applied to calorimetry
International Nuclear Information System (INIS)
Cattaneo, P.W.Paolo Walter
2002-01-01
The energy dynamic range required by a calorimeter with high speed readout may exceed existing ADC capability. A solution may be a dynamic compressor matching the energy span to the ADC range, such as to contribute at most a predefinite amount to the calorimeter resolution. A multilinear compression function is the easiest to implement, therefore it is interesting to optimize the input to output relation and fix the break points
A model of optimal voluntary muscular control.
FitzHugh, R
1977-07-19
In the absence of detailed knowledge of how the CNS controls a muscle through its motor fibers, a reasonable hypothesis is that of optimal control. This hypothesis is studied using a simplified mathematical model of a single muscle, based on A.V. Hill's equations, with series elastic element omitted, and with the motor signal represented by a single input variable. Two cost functions were used. The first was total energy expended by the muscle (work plus heat). If the load is a constant force, with no inertia, Hill's optimal velocity of shortening results. If the load includes a mass, analysis by optimal control theory shows that the motor signal to the muscle consists of three phases: (1) maximal stimulation to accelerate the mass to the optimal velocity as quickly as possible, (2) an intermediate level of stimulation to hold the velocity at its optimal value, once reached, and (3) zero stimulation, to permit the mass to slow down, as quickly as possible, to zero velocity at the specified distance shortened. If the latter distance is too small, or the mass too large, the optimal velocity is not reached, and phase (2) is absent. For lengthening, there is no optimal velocity; there are only two phases, zero stimulation followed by maximal stimulation. The second cost function was total time. The optimal control for shortening consists of only phases (1) and (3) above, and is identical to the minimal energy control whenever phase (2) is absent from the latter. Generalization of this model to include viscous loads and a series elastic element are discussed.
Centralized Stochastic Optimal Control of Complex Systems
Energy Technology Data Exchange (ETDEWEB)
Malikopoulos, Andreas [ORNL
2015-01-01
In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain using the long-run expected average cost per unit time criterion, and we show that the control policy yielding the Pareto optimal solution minimizes the average cost criterion online. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.
An example in linear quadratic optimal control
Weiss, George; Zwart, Heiko J.
1998-01-01
We construct a simple example of a quadratic optimal control problem for an infinite-dimensional linear system based on a shift semigroup. This system has an unbounded control operator. The cost is quadratic in the input and the state, and the weighting operators are bounded. Despite its extreme
Optimal control of transitions between nonequilibrium steady states.
Directory of Open Access Journals (Sweden)
Patrick R Zulkowski
Full Text Available Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines.
Optimal state estimation theory applied to safeguards accounting
International Nuclear Information System (INIS)
Pike, D.H.; Morrison, G.W.
1977-01-01
This paper presents a unified theory for the application of modern state estimation techniques to nuclear material accountability. First a summary of the current MUF/LEMUF approach is detailed. It is shown that when inventory measurement error is large in comparison to transfer measurement error, improved estimates of the losses can be achieved using the cumulative summation technique. However, the optimal estimator is shown to be the Kalman filter. An enhancement of the retrospective estimation of losses can be achieved using linear smoothing. State space models are developed for a mixed oxide fuel fabrication facility and examples are presented
Particle swarm optimization applied to automatic lens design
Qin, Hua
2011-06-01
This paper describes a novel application of Particle Swarm Optimization (PSO) technique to lens design. A mathematical model is constructed, and merit functions in an optical system are employed as fitness functions, which combined radiuses of curvature, thicknesses among lens surfaces and refractive indices regarding an optical system. By using this function, the aberration correction is carried out. A design example using PSO is given. Results show that PSO as optical design tools is practical and powerful, and this method is no longer dependent on the lens initial structure and can arbitrarily create search ranges of structural parameters of a lens system, which is an important step towards automatic design with artificial intelligence.
Applying the Taguchi method for optimized fabrication of bovine ...
African Journals Online (AJOL)
SERVER
2008-02-19
Feb 19, 2008 ... Nanobiotechnology Research Lab., School of Chemical Engineering, Babol University of Technology, Po.Box: 484, ... nanoparticle by applying the Taguchi method with characterization of the ... of BSA/ethanol and organic solvent adding rate. ... Sodium aside and all other chemicals were purchased from.
Multidimensional optimal droop control for wind resources in DC microgrids
Bunker, Kaitlyn J.
Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.
Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control
International Nuclear Information System (INIS)
Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel
2014-01-01
Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers. (paper)
Optimal Control Problems for Partial Differential Equations on Reticulated Domains
Kogut, Peter I
2011-01-01
In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for gradu
Optimal, real-time control--colliders
International Nuclear Information System (INIS)
Spencer, J.E.
1991-05-01
With reasonable definitions, optimal control is possible for both classical and quantal systems with new approaches called PISC(Parallel) and NISC(Neural) from analogy with RISC (Reduced Instruction Set Computing). If control equals interaction, observation and comparison to some figure of merit with interaction via external fields, then optimization comes from varying these fields to give design or operating goals. Structural stability can then give us tolerance and design constraints. But simulations use simplified models, are not in real-time and assume fixed or stationary conditions, so optimal control goes far beyond convergence rates of algorithms. It is inseparable from design and this has many implications for colliders. 12 refs., 3 figs
Implementation of an optimal control energy management strategy in a hybrid truck
Mullem, D. van; Keulen, T. van; Kessels, J.T.B.A.; Jager, B. de; Steinbuch, M.
2010-01-01
Energy Management Strategies for hybrid powertrains control the power split, between the engine and electric motor, of a hybrid vehicle, with fuel consumption or emission minimization as objective. Optimal control theory can be applied to rewrite the optimization problem to an optimization
Time-optimal control of reactor power
International Nuclear Information System (INIS)
Bernard, J.A.
1987-01-01
Control laws that permit adjustments in reactor power to be made in minimum time and without overshoot have been formulated and demonstrated. These control laws which are derived from the standard and alternate dynamic period equations, are closed-form expressions of general applicability. These laws were deduced by noting that if a system is subject to one or more operating constraints, then the time-optimal response is to move the system along these constraints. Given that nuclear reactors are subject to limitations on the allowed reactor period, a time-optimal control law would step the period from infinity to the minimum allowed value, hold the period at that value for the duration of the transient, and then step the period back to infinity. The change in reactor would therefore be accomplished in minimum time. The resulting control laws are superior to other forms of time-optimal control because they are general-purpose, closed-form expressions that are both mathematically tractable and readily implanted. Moreover, these laws include provisions for the use of feedback. The results of simulation studies and actual experiments on the 5 MWt MIT Research Reactor in which these time-optimal control laws were used successfully to adjust the reactor power are presented
Global optimization applied to GPS positioning by ambiguity functions
International Nuclear Information System (INIS)
Baselga, Sergio
2010-01-01
Differential GPS positioning with carrier-phase observables is commonly done in a process that involves determination of the unknown integer ambiguity values. An alternative approach, named the ambiguity function method, was already proposed in the early days of GPS positioning. By making use of a trigonometric function ambiguity unknowns are eliminated from the functional model before the estimation process. This approach has significant advantages, such as ease of use and insensitivity to cycle slips, but requires such high accuracy in the initial approximate coordinates that its use has been practically dismissed from consideration. In this paper a novel strategy is proposed so that the need for highly accurate initial coordinates disappears: the application of a global optimization method to the ambiguity functions model. The use of this strategy enables the ambiguity function method to compete with the present prevailing approach of ambiguity resolution
Neoliberal Optimism: Applying Market Techniques to Global Health.
Mei, Yuyang
2017-01-01
Global health and neoliberalism are becoming increasingly intertwined as organizations utilize markets and profit motives to solve the traditional problems of poverty and population health. I use field work conducted over 14 months in a global health technology company to explore how the promise of neoliberalism re-envisions humanitarian efforts. In this company's vaccine refrigerator project, staff members expect their investors and their market to allow them to achieve scale and develop accountability to their users in developing countries. However, the translation of neoliberal techniques to the global health sphere falls short of the ideal, as profits are meager and purchasing power remains with donor organizations. The continued optimism in market principles amidst such a non-ideal market reveals the tenacious ideological commitment to neoliberalism in these global health projects.
Applying interactive control to waste processing operations
International Nuclear Information System (INIS)
Grasz, E.L.; Merrill, R.D.; Couture, S.A.
1992-08-01
At present waste and residue processing includes steps that require human interaction. The risk of exposure to unknown hazardous materials and the potential for radiation contamination motivates the desire to remove operators from these processes. Technologies that facilitate this include glove box robotics, modular systems for remote and automated servicing, and interactive controls that minimize human intervention. LLNL is developing an automated system which is designed to supplant the operator for glove box tasks, thus protecting the operator from the risk of radiation exposure and minimizing operator-associated waste. Although most of the processing can be automated with minimal human interaction, there are some tasks where intelligent intervention is both desirable and necessary to adapt to Enexpected circumstances and events. These activities require that the operator interact with the process using a remote manipulator which provides or reflects a natural feel to the operator. The remote manipulation system which was developed incorporates sensor fusion and interactive control, and provides the operator with an effective means of controlling the robot in a potentially unknown environment. This paper describes recent accomplishments in technology development and integration, and outlines the future goals of Lawrence Livermore National Laboratory for achieving this integrated interactive control capability
Hierarchy of controls applied to dangerous substances
Terwoert, J.
2014-01-01
Too often, measures to control workers’ exposure to dangerous substances are taken on an ‘ad-hoc’ basis. Existing processes, procedures and routines are taken for granted, and ‘end-of-pipe’ solutions are installed. In many cases, one relies on the use of personal protective equipment. This may lead
Applying GA for Optimizing the User Query in Image and Video Retrieval
Ehsan Lotfi
2014-01-01
In an information retrieval system, the query can be made by user sketch. The new method presented here, optimizes the user sketch and applies the optimized query to retrieval the information. This optimization may be used in Content-Based Image Retrieval (CBIR) and Content-Based Video Retrieval (CBVR) which is based on trajectory extraction. To optimize the retrieval process, one stage of retrieval is performed by the user sketch. The retrieval criterion is based on the proposed distance met...
Optimal control of anthracnose using mixed strategies.
Fotsa Mbogne, David Jaures; Thron, Christopher
2015-11-01
In this paper we propose and study a spatial diffusion model for the control of anthracnose disease in a bounded domain. The model is a generalization of the one previously developed in [15]. We use the model to simulate two different types of control strategies against anthracnose disease. Strategies that employ chemical fungicides are modeled using a continuous control function; while strategies that rely on cultivational practices (such as pruning and removal of mummified fruits) are modeled with a control function which is discrete in time (though not in space). For comparative purposes, we perform our analyses for a spatially-averaged model as well as the space-dependent diffusion model. Under weak smoothness conditions on parameters we demonstrate the well-posedness of both models by verifying existence and uniqueness of the solution for the growth inhibition rate for given initial conditions. We also show that the set [0, 1] is positively invariant. We first study control by impulsive strategies, then analyze the simultaneous use of mixed continuous and pulse strategies. In each case we specify a cost functional to be minimized, and we demonstrate the existence of optimal control strategies. In the case of pulse-only strategies, we provide explicit algorithms for finding the optimal control strategies for both the spatially-averaged model and the space-dependent model. We verify the algorithms for both models via simulation, and discuss properties of the optimal solutions. Copyright © 2015 Elsevier Inc. All rights reserved.
Optimal Investment Control of Macroeconomic Systems
Institute of Scientific and Technical Information of China (English)
ZHAO Ke-jie; LIU Chuan-zhe
2006-01-01
Economic growth is always accompanied by economic fluctuation. The target of macroeconomic control is to keep a basic balance of economic growth, accelerate the optimization of economic structures and to lead a rapid, sustainable and healthy development of national economies, in order to propel society forward. In order to realize the above goal, investment control must be regarded as the most important policy for economic stability. Readjustment and control of investment includes not only control of aggregate investment, but also structural control which depends on economic-technology relationships between various industries of a national economy. On the basis of the theory of a generalized system, an optimal investment control model for government has been developed. In order to provide a scientific basis for government to formulate a macroeconomic control policy, the model investigates the balance of total supply and aggregate demand through an adjustment in investment decisions realizes a sustainable and stable growth of the national economy. The optimal investment decision function proposed by this study has a unique and specific expression, high regulating precision and computable characteristics.
Robust Bayesian decision theory applied to optimal dosage.
Abraham, Christophe; Daurès, Jean-Pierre
2004-04-15
We give a model for constructing an utility function u(theta,d) in a dose prescription problem. theta and d denote respectively the patient state of health and the dose. The construction of u is based on the conditional probabilities of several variables. These probabilities are described by logistic models. Obviously, u is only an approximation of the true utility function and that is why we investigate the sensitivity of the final decision with respect to the utility function. We construct a class of utility functions from u and approximate the set of all Bayes actions associated to that class. Then, we measure the sensitivity as the greatest difference between the expected utilities of two Bayes actions. Finally, we apply these results to weighing up a chemotherapy treatment of lung cancer. This application emphasizes the importance of measuring robustness through the utility of decisions rather than the decisions themselves. Copyright 2004 John Wiley & Sons, Ltd.
Augmented Lagrangian Method For Discretized Optimal Control ...
African Journals Online (AJOL)
In this paper, we are concerned with one-dimensional time invariant optimal control problem, whose objective function is quadratic and the dynamical system is a differential equation with initial condition .Since most real life problems are nonlinear and their analytical solutions are not readily available, we resolve to ...
Optimally Controlled Flexible Fuel Powertrain System
Energy Technology Data Exchange (ETDEWEB)
Hakan Yilmaz; Mark Christie; Anna Stefanopoulou
2010-12-31
The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.
Hybrid vehicle energy management: singular optimal control
Delprat, S.; Hofman, T.; Paganelli, S.
2017-01-01
Hybrid vehicle energymanagement is often studied in simulation as an optimal control problem. Under strict convexity assumptions, a solution can be developed using Pontryagin’s minimum principle. In practice, however, many engineers do not formally check these assumptions resulting in the possible
Optimal control design for a solar greenhouse
Ooteghem, van R.J.C.
2007-01-01
The research of this thesis was part of a larger project aiming at the design of a greenhouse and an associated climate control that achieves optimal crop production with sustainable instead of fossil energy. This so called solar greenhouse design extends a conventional greenhouse with an improved
Efficient evolutionary algorithms for optimal control
López Cruz, I.L.
2002-01-01
If optimal control problems are solved by means of gradient based local search methods, convergence to local solutions is likely. Recently, there has been an increasing interest in the use
Selecting Optimal Subset of Security Controls
Yevseyeva, I.; Basto-Fernandes, V.; Michael, Emmerich, T. M.; Moorsel, van, A.
2015-01-01
Open Access journal Choosing an optimal investment in information security is an issue most companies face these days. Which security controls to buy to protect the IT system of a company in the best way? Selecting a subset of security controls among many available ones can be seen as a resource allocation problem that should take into account conflicting objectives and constraints of the problem. In particular, the security of the system should be improved without hindering productivity, ...
Stochastic Linear Quadratic Optimal Control Problems
International Nuclear Information System (INIS)
Chen, S.; Yong, J.
2001-01-01
This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well
Optimal control of information epidemics modeled as Maki Thompson rumors
Kandhway, Kundan; Kuri, Joy
2014-12-01
We model the spread of information in a homogeneously mixed population using the Maki Thompson rumor model. We formulate an optimal control problem, from the perspective of single campaigner, to maximize the spread of information when the campaign budget is fixed. Control signals, such as advertising in the mass media, attempt to convert ignorants and stiflers into spreaders. We show the existence of a solution to the optimal control problem when the campaigning incurs non-linear costs under the isoperimetric budget constraint. The solution employs Pontryagin's Minimum Principle and a modified version of forward backward sweep technique for numerical computation to accommodate the isoperimetric budget constraint. The techniques developed in this paper are general and can be applied to similar optimal control problems in other areas. We have allowed the spreading rate of the information epidemic to vary over the campaign duration to model practical situations when the interest level of the population in the subject of the campaign changes with time. The shape of the optimal control signal is studied for different model parameters and spreading rate profiles. We have also studied the variation of the optimal campaigning costs with respect to various model parameters. Results indicate that, for some model parameters, significant improvements can be achieved by the optimal strategy compared to the static control strategy. The static strategy respects the same budget constraint as the optimal strategy and has a constant value throughout the campaign horizon. This work finds application in election and social awareness campaigns, product advertising, movie promotion and crowdfunding campaigns.
Helicopter trajectory planning using optimal control theory
Menon, P. K. A.; Cheng, V. H. L.; Kim, E.
1988-01-01
A methodology for optimal trajectory planning, useful in the nap-of-the-earth guidance of helicopters, is presented. This approach uses an adjoint-control transformation along with a one-dimensional search scheme for generating the optimal trajectories. In addition to being useful for helicopter nap-of-the-earth guidance, the trajectory planning solution is of interest in several other contexts, such as robotic vehicle guidance and terrain-following guidance for cruise missiles and aircraft. A distinguishing feature of the present research is that the terrain constraint and the threat envelopes are incorporated in the equations of motion. Second-order necessary conditions are examined.
Recent developments in cooperative control and optimization
Murphey, Robert; Pardalos, Panos
2004-01-01
Over the past several years, cooperative control and optimization has un questionably been established as one of the most important areas of research in the military sciences. Even so, cooperative control and optimization tran scends the military in its scope -having become quite relevant to a broad class of systems with many exciting, commercial, applications. One reason for all the excitement is that research has been so incredibly diverse -spanning many scientific and engineering disciplines. This latest volume in the Cooperative Systems book series clearly illustrates this trend towards diversity and creative thought. And no wonder, cooperative systems are among the hardest systems control science has endeavored to study, hence creative approaches to model ing, analysis, and synthesis are a must! The definition of cooperation itself is a slippery issue. As you will see in this and previous volumes, cooperation has been cast into many different roles and therefore has assumed many diverse meanings. P...
Exploring the complexity of quantum control optimization trajectories.
Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel
2015-01-07
The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved.
PSO-Based Algorithm Applied to Quadcopter Micro Air Vehicle Controller Design
Directory of Open Access Journals (Sweden)
Huu-Khoa Tran
2016-09-01
Full Text Available Due to the rapid development of science and technology in recent times, many effective controllers are designed and applied successfully to complicated systems. The significant task of controller design is to determine optimized control gains in a short period of time. With this purpose in mind, a combination of the particle swarm optimization (PSO-based algorithm and the evolutionary programming (EP algorithm is introduced in this article. The benefit of this integration algorithm is the creation of new best-parameters for control design schemes. The proposed controller designs are then demonstrated to have the best performance for nonlinear micro air vehicle models.
An optimal control model of crop thinning in viticulture
Directory of Open Access Journals (Sweden)
Schamel Guenter H.
2016-01-01
Full Text Available We develop an economic model of cluster thinning in viticulture to control for grape quantity harvested and grape quality, applying a simple optimal control model with the aim to raise grape quality and related economic profits. The model maximizes vineyard owner profits and allows to discuss two relevant scenarios using a phase diagram analysis: (1 when the initial grape quantity is sufficiently small, thinning grapes will not be optimal and (2 when the initial grape quantity is high enough, it is optimal to thin grapes from the beginning of the relevant planning horizon and to reduce the quantity over time until the stock of grapes arrives at its optimum. Depending on the model's parameters, the “stopping time” for thinning grapes is reached sooner or later. After the stopping time, grape quantity evolves solely according to natural decay. The results relate to observed dynamics in viticulture and for other horticultural crops.
Time Optimal Control Laws for Bilinear Systems
Directory of Open Access Journals (Sweden)
Salim Bichiou
2018-01-01
Full Text Available The aim of this paper is to determine the feedforward and state feedback suboptimal time control for a subset of bilinear systems, namely, the control sequence and reaching time. This paper proposes a method that uses Block pulse functions as an orthogonal base. The bilinear system is projected along that base. The mathematical integration is transformed into a product of matrices. An algebraic system of equations is obtained. This system together with specified constraints is treated as an optimization problem. The parameters to determine are the final time, the control sequence, and the states trajectories. The obtained results via the newly proposed method are compared to known analytical solutions.
Robust Structured Control Design via LMI Optimization
DEFF Research Database (Denmark)
Adegas, Fabiano Daher; Stoustrup, Jakob
2011-01-01
This paper presents a new procedure for discrete-time robust structured control design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization. A wide class of controller...... structures including decentralized of any order, ﬁxed-order dynamic output feedback, static output feedback can be designed robust to polytopic uncertainties. Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust stability margins shows that the proposed procedure can...
An optimal control model for load shifting - With application in the energy management of a colliery
International Nuclear Information System (INIS)
Middelberg, Arno; Zhang Jiangfeng; Xia Xiaohua
2009-01-01
This paper presents an optimal control model for the load shifting problem in energy management and its application in a South African colliery. It is illustrated in the colliery scenario that how the optimal control model can be applied to optimize load shifting and improve energy efficiency through the control of conveyor belts. The time-of-use electricity tariff is used as an input to the objective function in order to obtain a solution that minimizes electricity costs and thus maximizes load shifting. The case study yields promising results that show the potential of applying this optimal control model to other industrial Demand Side Management initiatives
Dynamic control of biped locomotion robot using optimal regulator
International Nuclear Information System (INIS)
Sano, Akihito; Furusho, Junji
1988-01-01
For moving in indoor space, it is generally recognized that biped locomotion is suitable. This paper proposes a hierarchical control strategy for the lower level where the position control or the force control at each joint is implemented. In the upper level control, the robot motion is divided into a sagittal plane and a lateral plane. We applied the optimal control algorithm to the motion control in the lateral plane in order to improve the robustness of the control system. The effects of these control schemes are shown by the experiments using the new walking robot BLR-G 1 and the parallel calculation system. BLR-G 1 has 9 degrees of freedom and equips the foot-pressure-sensors and a rate gyroscope. Complete dynamic walking is realized, in which the cycle for each step is about 1.0 second. (author)
Turnpike theory of continuous-time linear optimal control problems
Zaslavski, Alexander J
2015-01-01
Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems. The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control, and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous nonconvex and nonsmooth integrands. Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integran...
Keulen, T. van; Mullem, D. van; Jager, B. van; Kessels, J.T.B.A.; Steinbuch, M.
2012-01-01
Hybrid electric vehicles require an algorithm that controls the power split between the internal combustion engine and electric machine(s), and the opening and closing of the clutch. Optimal control theory is applied to derive a methodology for a real-time optimal-control-based power split
The Great Deluge Algorithm applied to a nuclear reactor core design optimization problem
International Nuclear Information System (INIS)
Sacco, Wagner F.; Oliveira, Cassiano R.E. de
2005-01-01
The Great Deluge Algorithm (GDA) is a local search algorithm introduced by Dueck. It is an analogy with a flood: the 'water level' rises continuously and the proposed solution must lie above the 'surface' in order to survive. The crucial parameter is the 'rain speed', which controls convergence of the algorithm similarly to Simulated Annealing's annealing schedule. This algorithm is applied to the reactor core design optimization problem, which consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment-zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. This problem was previously attacked by the canonical genetic algorithm (GA) and by a Niching Genetic Algorithm (NGA). NGAs were designed to force the genetic algorithm to maintain a heterogeneous population throughout the evolutionary process, avoiding the phenomenon known as genetic drift, where all the individuals converge to a single solution. The results obtained by the Great Deluge Algorithm are compared to those obtained by both algorithms mentioned above. The three algorithms are submitted to the same computational effort and GDA reaches the best results, showing its potential for other applications in the nuclear engineering field as, for instance, the nuclear core reload optimization problem. One of the great advantages of this algorithm over the GA is that it does not require special operators for discrete optimization. (author)
Optimal Stochastic Modeling and Control of Flexible Structures
1988-09-01
1.37] and McLane [1.18] considered multivariable systems and derived their optimal control characteristics. Kleinman, Gorman and Zaborsky considered...Leondes [1.72,1.73] studied various aspects of multivariable linear stochastic, discrete-time systems that are partly deterministic, and partly stochastic...June 1966. 1.8. A.V. Balaknishnan, Applied Functional Analaysis , 2nd ed., New York, N.Y.: Springer-Verlag, 1981 1.9. Peter S. Maybeck, Stochastic
Bulgakov, V. K.; Strigunov, V. V.
2009-05-01
The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.
SCADA system with predictive controller applied to irrigation canals
Figueiredo, João; Botto, Miguel; Rijo, Manuel
2013-01-01
This paper applies a model predictive controller (MPC) to an automatic water canal with sensors and actuators controlled by a network (programmable logic controller), and supervised by a SCADA system (supervisory control and a data acquisition). This canal is composed by a set of distributed sub-systems that control the water level in each canal pool, constrained by discharge gates (control variables) and water off-takes (disturbances). All local controllers are available through an industria...
Linear systems optimal and robust control
Sinha, Alok
2007-01-01
Introduction Overview Contents of the Book State Space Description of a Linear System Transfer Function of a Single Input/Single Output (SISO) System State Space Realizations of a SISO System SISO Transfer Function from a State Space Realization Solution of State Space Equations Observability and Controllability of a SISO System Some Important Similarity Transformations Simultaneous Controllability and Observability Multiinput/Multioutput (MIMO) Systems State Space Realizations of a Transfer Function Matrix Controllability and Observability of a MIMO System Matrix-Fraction Description (MFD) MFD of a Transfer Function Matrix for the Minimal Order of a State Space Realization Controller Form Realization from a Right MFD Poles and Zeros of a MIMO Transfer Function Matrix Stability Analysis State Feedback Control and Optimization State Variable Feedback for a Single Input System Computation of State Feedback Gain Matrix for a Multiinput System State Feedback Gain Matrix for a Multi...
Optimal Control of Switching Linear Systems
Directory of Open Access Journals (Sweden)
Ali Benmerzouga
2004-06-01
Full Text Available A solution to the control of switching linear systems with input constraints was given in Benmerzouga (1997 for both the conventional enumeration approach and the new approach. The solution given there turned out to be not unique. The main objective in this work is to determine the optimal control sequences {Ui(k , i = 1,..., M ; k = 0, 1, ..., N -1} which transfer the system from a given initial state X0 to a specific target state XT (or to be as close as possible by using the same discrete time solution obtained in Benmerzouga (1997 and minimizing a running cost-to-go function. By using the dynamic programming technique, the optimal solution is found for both approaches given in Benmerzouga (1997. The computational complexity of the modified algorithm is also given.
Wind turbine optimal control during storms
International Nuclear Information System (INIS)
Petrović, V; Bottasso, C L
2014-01-01
This paper proposes a control algorithm that enables wind turbine operation in high winds. With this objective, an online optimization procedure is formulated that, based on the wind turbine state, estimates those extremal wind speed variations that would produce maximal allowable wind turbine loads. Optimization results are compared to the actual wind speed and, if there is a danger of excessive loading, the wind turbine power reference is adjusted to ensure that loads stay within allowed limits. This way, the machine can operate safely even above the cut-out wind speed, thereby realizing a soft envelope-protecting cut-out. The proposed control strategy is tested and verified using a high-fidelity aeroservoelastic simulation model
Iterative learning control an optimization paradigm
Owens, David H
2016-01-01
This book develops a coherent theoretical approach to algorithm design for iterative learning control based on the use of optimization concepts. Concentrating initially on linear, discrete-time systems, the author gives the reader access to theories based on either signal or parameter optimization. Although the two approaches are shown to be related in a formal mathematical sense, the text presents them separately because their relevant algorithm design issues are distinct and give rise to different performance capabilities. Together with algorithm design, the text demonstrates that there are new algorithms that are capable of incorporating input and output constraints, enable the algorithm to reconfigure systematically in order to meet the requirements of different reference signals and also to support new algorithms for local convergence of nonlinear iterative control. Simulation and application studies are used to illustrate algorithm properties and performance in systems like gantry robots and other elect...
R. A. Swief; T. S. Abdel-Salam; Noha H. El-Amary
2018-01-01
This paper presents an efficient Cuckoo Search Optimization technique to improve the reliability of electrical power systems. Various reliability objective indices such as Energy Not Supplied, System Average Interruption Frequency Index, System Average Interruption, and Duration Index are the main indices indicating reliability. The Cuckoo Search Optimization (CSO) technique is applied to optimally place the protection devices, install the distributed generators, and to determine the size of ...
Optimal control of complex atomic quantum systems.
van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S
2016-10-11
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
A hybrid iterative scheme for optimal control problems governed by ...
African Journals Online (AJOL)
MRT
KEY WORDS: Optimal control problem; Fredholm integral equation; ... control problems governed by Fredholm integral and integro-differential equations is given in (Brunner and Yan, ..... The exact optimal trajectory and control functions are. 2.
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
Optimal resonant control of flexible structures
DEFF Research Database (Denmark)
Krenk, Steen; Høgsberg, Jan Becker
2009-01-01
When introducing a resonant controller for a particular vibration mode in a structure this mode splits into two. A design principle is developed for resonant control based oil equal damping of these two modes. First the design principle is developed for control of a system with a single degree...... of freedom, and then it is extended to multi-mode structures. A root locus analysis of the controlled single-mode structure identifies the equal modal damping property as a condition oil the linear and Cubic terms of the characteristic equation. Particular solutions for filtered displacement feedback...... and filtered acceleration feedback are developed by combining the root locus analysis with optimal properties of the displacement amplification frequency curve. The results are then extended to multi-mode structures by including a quasi-static representation of the background modes in the equations...
Optimal Control of Hybrid Systems in Air Traffic Applications
Kamgarpour, Maryam
Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient
Infinite horizon optimal impulsive control with applications to Internet congestion control
Avrachenkov, Konstantin; Habachi, Oussama; Piunovskiy, Alexey; Zhang, Yi
2015-04-01
We investigate infinite-horizon deterministic optimal control problems with both gradual and impulsive controls, where any finitely many impulses are allowed simultaneously. Both discounted and long-run time-average criteria are considered. We establish very general and at the same time natural conditions, under which the dynamic programming approach results in an optimal feedback policy. The established theoretical results are applied to the Internet congestion control, and by solving analytically and nontrivially the underlying optimal control problems, we obtain a simple threshold-based active queue management scheme, which takes into account the main parameters of the transmission control protocols, and improves the fairness among the connections in a given network.
Laboratory transferability of optimally shaped laser pulses for quantum control
International Nuclear Information System (INIS)
Moore Tibbetts, Katharine; Xing, Xi; Rabitz, Herschel
2014-01-01
Optimal control experiments can readily identify effective shaped laser pulses, or “photonic reagents,” that achieve a wide variety of objectives. An important additional practical desire is for photonic reagent prescriptions to produce good, if not optimal, objective yields when transferred to a different system or laboratory. Building on general experience in chemistry, the hope is that transferred photonic reagent prescriptions may remain functional even though all features of a shaped pulse profile at the sample typically cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments. First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found to still produce near optimal yields on the second laser system. Third, transferring a collection of photonic reagents optimized on the first laser system to the second laser system reproduced systematic trends in photoproduct yields upon interaction with the homologous chemical family. These three transfers of photonic reagents are demonstrated to be successful upon paying reasonable attention to overall laser system characteristics. The ability to transfer photonic reagents from one laser system to another is analogous to well-established utilitarian operating procedures with traditional chemical reagents. The practical implications of the present results for experimental quantum control are discussed
DEFF Research Database (Denmark)
Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard
2015-01-01
optimization problems where the environment does not change dynamically. For that reason, the requirement for convergence in static optimization problems is not as timecritical as for dynamic optimization problems. Most MOEAs use generic variables and operators that scale to static multi-objective optimization...... problem. The domain specific operators only encode existing knowledge about the environment. A comprehensive comparative study is provided to evaluate the results of applying the CONTROLEUM-GA compared to NSGAII, e-NSGAII and e- MOEA. Experimental results demonstrate clear improvements in convergence time...
Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.
Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V
2016-01-01
Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.
Hybrid vehicle optimal control : Linear interpolation and singular control
Delprat, S.; Hofman, T.
2015-01-01
Hybrid vehicle energy management can be formulated as an optimal control problem. Considering that the fuel consumption is often computed using linear interpolation over lookup table data, a rigorous analysis of the necessary conditions provided by the Pontryagin Minimum Principle is conducted. For
Intelligent control schemes applied to Automatic Generation Control
Directory of Open Access Journals (Sweden)
Dingguo Chen
2016-04-01
Full Text Available Integrating ever increasing amount of renewable generating resources to interconnected power systems has created new challenges to the safety and reliability of today‟s power grids and posed new questions to be answered in the power system modeling, analysis and control. Automatic Generation Control (AGC must be extended to be able to accommodate the control of renewable generating assets. In addition, AGC is mandated to operate in accordance with the NERC‟s Control Performance Standard (CPS criteria, which represent a greater flexibility in relaxing the control of generating resources and yet assuring the stability and reliability of interconnected power systems when each balancing authority operates in full compliance. Enhancements in several aspects to the traditional AGC must be made in order to meet the aforementioned challenges. It is the intention of this paper to provide a systematic, mathematical formulation for AGC as a first attempt in the context of meeting the NERC CPS requirements and integrating renewable generating assets, which has not been seen reported in the literature to the best knowledge of the authors. Furthermore, this paper proposes neural network based predictive control schemes for AGC. The proposed controller is capable of handling complicated nonlinear dynamics in comparison with the conventional Proportional Integral (PI controller which is typically most effective to handle linear dynamics. The neural controller is designed in such a way that it has the capability of controlling the system generation in the relaxed manner so the ACE is controlled to a desired range instead of driving it to zero which would otherwise increase the control effort and cost; and most importantly the resulting system control performance meets the NERC CPS requirements and/or the NERC Balancing Authority’s ACE Limit (BAAL compliance requirements whichever are applicable.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.
Optimization-Based Approaches to Control of Probabilistic Boolean Networks
Directory of Open Access Journals (Sweden)
Koichi Kobayashi
2017-02-01
Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.
Stochastic control applied to the ISWEC Wave Energy System
International Nuclear Information System (INIS)
Bracco, Giovanni; Casassa, Maria; Giorcelli, Ermanno; Mattiazzo, Giuliana; Passione, Biagio; Raffero, Mattia; Vissio, Giacomo; Martini, Michele
2015-01-01
ISWEC (Inertial Sea Wave Energy Converter) is a floating marine device able to harvest sea waves energy by the interaction between the pitching motion of a floater and a spinning flywheel which can drive an electric PTO. In the ISWEC the hull dynamics is governed and controlled by the gyroscopic torque. The optimal control logic results in tuning the floater dynamics to the incoming waves in order to maximize the power transfer from the waves to the floater. In this paper the control problems of the ISWEC are stated and a control scheme based on the sub-optimal stochastic control logic is presented. The control scheme here presented has been tested using real wave records acquired at the deployment location in Pantelleria Island, which is one of the most energetic sites of the Mediterranean Sea.
Optimization control of LNG regasification plant using Model Predictive Control
Wahid, A.; Adicandra, F. F.
2018-03-01
Optimization of liquified natural gas (LNG) regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to choose optimum LNG regasification plant design and maintaining the optimum operating conditions through the implementation of model predictive control (MPC). Optimal tuning parameter for MPC such as P (prediction horizon), M (control of the horizon) and T (sampling time) are achieved by using fine-tuning method. The optimal criterion for design is the minimum amount of energy used and for control is integral of square error (ISE). As a result, the optimum design is scheme 2 which is developed by Devold with an energy savings of 40%. To maintain the optimum conditions, required MPC with P, M and T as follows: tank storage pressure: 90, 2, 1; product pressure: 95, 2, 1; temperature vaporizer: 65, 2, 2; and temperature heater: 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6%, 63.5%, 3.1% and 58.2% compared to PI controller performance. The energy savings that MPC controllers can make when there is a disturbance in temperature rise 1°C of sea water is 0.02 MW.
Optimal control of tokamak and stellarator plasma behaviour
International Nuclear Information System (INIS)
Rastovic, Danilo
2007-01-01
The control of plasma transport, laminar and turbulent, is investigated, using the methods of scaling, optimal control and adaptive Monte Carlo simulations. For this purpose, the asymptotic behaviour of kinetic equation is considered in order to obtain finite-dimensional invariant manifolds, and in this way the finite-dimensional theory of control can be applied. We imagine the labyrinth of open doors and after applying self-similarity, the motion moved through all the desired doors in repeatable ways as Brownian motions. We take local actions for each piece of contractive ergodic motion, and, after self-organization in adaptive invariant measures, the optimum movement of particles is obtained according to the principle of maximum entropy. This is true for deterministic and stochastic cases that serve as models for plasma dynamics
International Nuclear Information System (INIS)
Jamalipour, Mostafa; Sayareh, Reza; Gharib, Morteza; Khoshahval, Farrokh; Karimi, Mahmood Reza
2013-01-01
Highlights: ► A new method called QPSO-DM is applied to BNPP in-core fuel management optimization. ► It is found that QPSO-DM performs better than PSO and QPSO. ► This method provides a permissible arrangement for optimum loading pattern. - Abstract: This paper presents a new method using Quantum Particle Swarm Optimization with Differential Mutation operator (QPSO-DM) for optimizing WWER-1000 core fuel management. Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have shown good performance on in-core fuel management optimization (ICFMO). The objective of this paper is to show that QPSO-DM performs very well and is comparable to PSO and Quantum Particle Swarm Optimization (QPSO). Most of the strategies for ICFMO are based on maximizing multiplication factor (k eff ) to increase cycle length and minimizing power peaking factor (P q ) in order to improve fuel integrity. PSO, QPSO and QPSO-DM have been implemented to fulfill these requirements for the first operating cycle of WWER-1000 Bushehr Nuclear Power Plant (BNPP). The results show that QPSO-DM performs better than the others. A program has been written in MATLAB to map PSO, QPSO and QPSO-DM for loading pattern optimization. WIMS and CITATION have been used to simulate reactor core for neutronic calculations
Optimal control of HIV/AIDS dynamic: Education and treatment
Sule, Amiru; Abdullah, Farah Aini
2014-07-01
A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.
Applied research into direct numerical control of A-1 reactor temperature
International Nuclear Information System (INIS)
Karpeta, C.; Volf, K.
1974-01-01
Partial results of research efforts aimed at applying modern control theory in the control of the reactor of the A-1 nuclear power station are presented. A mathematical model of the process dynamics was developed. Some parameters of the model were determined using the results of an experimentally performed reactor scram. The optimal stochastic discrete regulator was determined and closed-loop transients were studied. The possibilities of implementing control routines were investigated using the RPP-16 computer. (author)
Kinematically Optimal Robust Control of Redundant Manipulators
Galicki, M.
2017-12-01
This work deals with the problem of the robust optimal task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the endeffector. Furthermore, the movement is to be accomplished in such a way as to minimize both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we derive a class of chattering-free robust kinematically optimal controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
International Nuclear Information System (INIS)
Sugny, D.; Bomble, L.; Ribeyre, T.; Dulieu, O.; Desouter-Lecomte, M.
2009-01-01
Implementation of quantum controlled-NOT (CNOT) gates in realistic molecular systems is studied using stimulated Raman adiabatic passage (STIRAP) techniques optimized in the time domain by genetic algorithms or coupled with optimal control theory. In the first case, with an adiabatic solution (a series of STIRAP processes) as starting point, we optimize in the time domain different parameters of the pulses to obtain a high fidelity in two realistic cases under consideration. A two-qubit CNOT gate constructed from different assignments in rovibrational states is considered in diatomic (NaCs) or polyatomic (SCCl 2 ) molecules. The difficulty of encoding logical states in pure rotational states with STIRAP processes is illustrated. In such circumstances, the gate can be implemented by optimal control theory and the STIRAP sequence can then be used as an interesting trial field. We discuss the relative merits of the two methods for rovibrational computing (structure of the control field, duration of the control, and efficiency of the optimization).
Applying Statistical Process Control to Clinical Data: An Illustration.
Pfadt, Al; And Others
1992-01-01
Principles of statistical process control are applied to a clinical setting through the use of control charts to detect changes, as part of treatment planning and clinical decision-making processes. The logic of control chart analysis is derived from principles of statistical inference. Sample charts offer examples of evaluating baselines and…
Optimal control of Rydberg lattice gases
Cui, Jian; van Bijnen, Rick; Pohl, Thomas; Montangero, Simone; Calarco, Tommaso
2017-09-01
We present optimal control protocols to prepare different many-body quantum states of Rydberg atoms in optical lattices. Specifically, we show how to prepare highly ordered many-body ground states, GHZ states as well as some superposition of symmetric excitation number Fock states, that inherit the translational symmetry from the Hamiltonian, within sufficiently short excitation times minimising detrimental decoherence effects. For the GHZ states, we propose a two-step detection protocol to experimentally verify the optimised preparation of the target state based only on standard measurement techniques. Realistic experimental constraints and imperfections are taken into account by our optimisation procedure making it applicable to ongoing experiments.
Optimal control of Rydberg lattice gases
DEFF Research Database (Denmark)
Cui, Jian; Bijnen, Rick van; Pohl, Thomas
2017-01-01
the translational symmetry from the Hamiltonian, within sufficiently short excitation times minimising detrimental decoherence effects. For the GHZ states, we propose a two-step detection protocol to experimentally verify the optimised preparation of the target state based only on standard measurement techniques....... Realistic experimental constraints and imperfections are taken into account by our optimisation procedure making it applicable to ongoing experiments.......We present optimal control protocols to prepare different many-body quantum states of Rydberg atoms in optical lattices. Specifically, we show how to prepare highly ordered many-body ground states, GHZ states as well as some superposition of symmetric excitation number Fock states, that inherit...
Optimal control of batch emulsion polymerization of vinyl chloride
Energy Technology Data Exchange (ETDEWEB)
Damslora, Andre Johan
1998-12-31
The highly exothermic polymerization of vinyl chloride (VC) is carried out in large vessels where the heat removal represents a major limitation of the production rate. Many emulsion polymerization reactors are operated in such a way that a substantial part of the heat transfer capacity is left unused for a significant part of the total batch time. To increase the reaction rate so that it matches the heat removal capacity during the course of the reaction, this thesis proposes the use of a sufficiently flexible initiator system to obtain a reaction rate which is high throughout the reaction and real-time optimization to compute the addition policy for the initiator. This optimization based approach provides a basis for an interplay between design and control and between production and research. A simple model is developed for predicting the polymerization rate. The model is highly nonlinear and open-loop unstable and may serve as an interesting case for comparison of nonlinear control strategies. The model is fitted to data obtained in a laboratory scale reactor. Finally, the thesis discusses optimal control of the emulsion polymerization reactor. Reduction of the batch cycle time is of major economic importance, as long as the quality parameters are within their specifications. The control parameterization had a major influence on the performance. A differentiable spline parameterization was applied and the optimization is illustrated in a number of cases. The best performance is obtained when the reactor temperature is obtained when the optimization is combined with some form of closed-loop control of the reactor temperature. 112 refs., 48 figs., 4 tabs.
Optimal control penalty finite elements - Applications to integrodifferential equations
Chung, T. J.
The application of the optimal-control/penalty finite-element method to the solution of integrodifferential equations in radiative-heat-transfer problems (Chung et al.; Chung and Kim, 1982) is discussed and illustrated. The nonself-adjointness of the convective terms in the governing equations is treated by utilizing optimal-control cost functions and employing penalty functions to constrain auxiliary equations which permit the reduction of second-order derivatives to first order. The OCPFE method is applied to combined-mode heat transfer by conduction, convection, and radiation, both without and with scattering and viscous dissipation; the results are presented graphically and compared to those obtained by other methods. The OCPFE method is shown to give good results in cases where standard Galerkin FE fail, and to facilitate the investigation of scattering and dissipation effects.
International Nuclear Information System (INIS)
Migliavacca, Elder; Andrade, Delvonei Alves de
2004-01-01
In this work, the least-squares methodology with covariance matrix is applied to determine a data curve fitting in order to obtain a performance function for the separative power δU of a ultracentrifuge as a function of variables that are experimentally controlled. The experimental data refer to 173 experiments on the ultracentrifugation process for uranium isotope separation. The experimental uncertainties related with these independent variables are considered in the calculation of the experimental separative power values, determining an experimental data input covariance matrix. The process control variables, which significantly influence the δU values, are chosen in order to give information on the ultracentrifuge behaviour when submitted to several levels of feed flow F and cut θ . After the model goodness-of-fit validation, a residual analysis is carried out to verify the assumed basis concerning its randomness and independence and mainly the existence of residual heterocedasticity with any regression model variable. The response curves are made relating the separative power with the control variables F and θ, to compare the fitted model with the experimental data and finally to calculate their optimized values. (author)
Development of adaptive control applied to chaotic systems
Rhode, Martin Andreas
1997-12-01
Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.
Energy Technology Data Exchange (ETDEWEB)
Jammes, B; Marpinard, J C
1996-12-31
Neural networks are scarcely applied to power electronics. This attempt includes two different topics: optimal control and computerized simulation. The learning has been performed through output error feedback. For implementation, a buck converter has been used as a voltage pulse generator. (D.L.) 7 refs.
Relaxed error control in shape optimization that utilizes remeshing
CSIR Research Space (South Africa)
Wilke, DN
2013-02-01
Full Text Available Shape optimization strategies based on error indicators usually require strict error control for every computed design during the optimization run. The strict error control serves two purposes. Firstly, it allows for the accurate computation...
Reproducibility, controllability, and optimization of LENR experiments
Energy Technology Data Exchange (ETDEWEB)
Nagel, David J. [The George Washington University, Washington DC 20052 (United States)
2006-07-01
Low-energy nuclear reaction (LENR) measurements are significantly, and increasingly reproducible. Practical control of the production of energy or materials by LENR has yet to be demonstrated. Minimization of costly inputs and maximization of desired outputs of LENR remain for future developments. The paper concludes by underlying that it is now clearly that demands for reproducible experiments in the early years of LENR experiments were premature. In fact, one can argue that irreproducibility should be expected for early experiments in a complex new field. As emphasized in the paper and as often happened in the history of science, experimental and theoretical progress can take even decades. It is likely to be many years before investments in LENR experiments will yield significant returns, even for successful research programs. However, it is clearly that a fundamental understanding of the anomalous effects observed in numerous experiments will significantly increase reproducibility, improve controllability, enable optimization of processes, and accelerate the economic viability of LENR.
Reproducibility, controllability, and optimization of LENR experiments
International Nuclear Information System (INIS)
Nagel, David J.
2006-01-01
Low-energy nuclear reaction (LENR) measurements are significantly, and increasingly reproducible. Practical control of the production of energy or materials by LENR has yet to be demonstrated. Minimization of costly inputs and maximization of desired outputs of LENR remain for future developments. The paper concludes by underlying that it is now clearly that demands for reproducible experiments in the early years of LENR experiments were premature. In fact, one can argue that irreproducibility should be expected for early experiments in a complex new field. As emphasized in the paper and as often happened in the history of science, experimental and theoretical progress can take even decades. It is likely to be many years before investments in LENR experiments will yield significant returns, even for successful research programs. However, it is clearly that a fundamental understanding of the anomalous effects observed in numerous experiments will significantly increase reproducibility, improve controllability, enable optimization of processes, and accelerate the economic viability of LENR
Optimal Control of Solar Heating System
Huang, Bin-Juine
2017-02-21
Forced-circulation solar heating system has been widely used in process and domestic heating applications. Additional pumping power is required to circulate the water through the collectors to absorb the solar energy. The present study intends to develop a maximum-power point tracking control (MPPT) to obtain the minimum pumping power consumption at an optimal heat collection. The net heat energy gain Qnet (= Qs − Wp/ηe) was found to be the cost function for MPPT. The step-up-step-down controller was used in the feedback design of MPPT. The field test results show that the pumping power is 89 W at Qs = 13.7 kW and IT = 892 W/m2. A very high electrical COP of the solar heating system (Qs/Wp = 153.8) is obtained.
Simplified ejector model for control and optimization
International Nuclear Information System (INIS)
Zhu Yinhai; Cai Wenjian; Wen Changyun; Li Yanzhong
2008-01-01
In this paper, a simple yet effective ejector model for a real time control and optimization of an ejector system is proposed. Firstly, a fundamental model for calculation of ejector entrainment ratio at critical working conditions is derived by one-dimensional analysis and the shock circle model. Then, based on thermodynamic principles and the lumped parameter method, the fundamental ejector model is simplified to result in a hybrid ejector model. The model is very simple, which only requires two or three parameters and measurement of two variables to determine the ejector performance. Furthermore, the procedures for on line identification of the model parameters using linear and non-linear least squares methods are also presented. Compared with existing ejector models, the solution of the proposed model is much easier without coupled equations and iterative computations. Finally, the effectiveness of the proposed model is validated by published experimental data. Results show that the model is accurate and robust and gives a better match to the real performances of ejectors over the entire operating range than the existing models. This model is expected to have wide applications in real time control and optimization of ejector systems
Evaluation of Controller Tuning Methods Applied to Distillation Column Control
DEFF Research Database (Denmark)
Nielsen, Kim; W. Andersen, Henrik; Kümmel, Professor Mogens
A frequency domain approach is used to compare the nominal performance and robustness of dual composition distillation column control tuned according to Ziegler-Nichols (ZN) and Biggest Log Modulus Tuning (BLT) for three binary distillation columns, WOBE, LUVI and TOFA. The scope of this is to ex......A frequency domain approach is used to compare the nominal performance and robustness of dual composition distillation column control tuned according to Ziegler-Nichols (ZN) and Biggest Log Modulus Tuning (BLT) for three binary distillation columns, WOBE, LUVI and TOFA. The scope...
fuzzy control technique fuzzy control technique applied to modified
African Journals Online (AJOL)
eobe
epidemiological parameters) to the malaria model simulated by 9 fully ... The Mamdani controllers use a standard max-min inference process and a fast centre of min inference process and a ... Numerical results obtained using Matlab 2008a software software .... simulation environment using the 9 ODE Simulators. The test ...
Optimal Control Problems for Nonlinear Variational Evolution Inequalities
Directory of Open Access Journals (Sweden)
Eun-Young Ju
2013-01-01
Full Text Available We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux differentiability of solution mapping on control variables.
Distributed computer control system for reactor optimization
International Nuclear Information System (INIS)
Williams, A.H.
1983-01-01
At the Oldbury power station a prototype distributed computer control system has been installed. This system is designed to support research and development into improved reactor temperature control methods. This work will lead to the development and demonstration of new optimal control systems for improvement of plant efficiency and increase of generated output. The system can collect plant data from special test instrumentation connected to dedicated scanners and from the station's existing data processing system. The system can also, via distributed microprocessor-based interface units, make adjustments to the desired reactor channel gas exit temperatures. The existing control equipment will then adjust the height of control rods to maintain operation at these temperatures. The design of the distributed system is based on extensive experience with distributed systems for direct digital control, operator display and plant monitoring. The paper describes various aspects of this system, with particular emphasis on: (1) the hierarchal system structure; (2) the modular construction of the system to facilitate installation, commissioning and testing, and to reduce maintenance to module replacement; (3) the integration of the system into the station's existing data processing system; (4) distributed microprocessor-based interfaces to the reactor controls, with extensive security facilities implemented by hardware and software; (5) data transfer using point-to-point and bussed data links; (6) man-machine communication based on VDUs with computer input push-buttons and touch-sensitive screens; and (7) the use of a software system supporting a high-level engineer-orientated programming language, at all levels in the system, together with comprehensive data link management
Factors influencing the profitability of optimizing control systems
International Nuclear Information System (INIS)
Broussaud, A.; Guyot, O.
1999-01-01
Optimizing control systems supplement conventional Distributed Control Systems and Programmable Logic Controllers. They continuously implement set points, which aim at maximizing the profitability of plant operation. They are becoming an integral part of modern mineral processing plants. This trend is justified by economic considerations, optimizing control being among the most cost-effective methods of improving metallurgical plant performance. The paper successively analyzes three sets of factors, which influence the profitability of optimizing control systems, and provides guidelines for analyzing the potential value of an optimizing control system at a given operation: external factors, such as economic factors and factors related to plant feed; features of the optimizing control system; and subsequent maintenance of the optimizing control system. It is shown that pay back times for optimization control projects are typically measured in days. The OCS software used by the authors for their applications is described briefly. (author)
Complex Method Mixed with PSO Applying to Optimization Design of Bridge Crane Girder
Directory of Open Access Journals (Sweden)
He Yan
2017-01-01
Full Text Available In engineer design, basic complex method has not enough global search ability for the nonlinear optimization problem, so it mixed with particle swarm optimization (PSO has been presented in the paper,that is the optimal particle evaluated from fitness function of particle swarm displacement complex vertex in order to realize optimal principle of the largest complex central distance.This method is applied to optimization design problems of box girder of bridge crane with constraint conditions.At first a mathematical model of the girder optimization has been set up,in which box girder cross section area of bridge crane is taken as the objective function, and its four sizes parameters as design variables, girder mechanics performance, manufacturing process, border sizes and so on requirements as constraint conditions. Then complex method mixed with PSO is used to solve optimization design problem of cane box girder from constrained optimization studying approach, and its optimal results have achieved the goal of lightweight design and reducing the crane manufacturing cost . The method is reliable, practical and efficient by the practical engineer calculation and comparative analysis with basic complex method.
Aida-CMK multi-algorithm optimization kernel applied to analog IC sizing
Lourenço, Ricardo; Horta, Nuno
2015-01-01
This work addresses the research and development of an innovative optimization kernel applied to analog integrated circuit (IC) design. Particularly, this works describes the modifications inside the AIDA Framework, an electronic design automation framework fully developed by at the Integrated Circuits Group-LX of the Instituto de Telecomunicações, Lisbon. It focusses on AIDA-CMK, by enhancing AIDA-C, which is the circuit optimizer component of AIDA, with a new multi-objective multi-constraint optimization module that constructs a base for multiple algorithm implementations. The proposed solution implements three approaches to multi-objective multi-constraint optimization, namely, an evolutionary approach with NSGAII, a swarm intelligence approach with MOPSO and stochastic hill climbing approach with MOSA. Moreover, the implemented structure allows the easy hybridization between kernels transforming the previous simple NSGAII optimization module into a more evolved and versatile module supporting multiple s...
Mota, Idalia
2017-01-01
Building on the author’s earlier Applied Simulation and Optimization, this book presents novel methods for solving problems in industry, based on hybrid simulation-optimization approaches that combine the advantages of both paradigms. The book serves as a comprehensive guide to tackling scheduling, routing problems, resource allocations and other issues in industrial environments, the service industry, production processes, or supply chains and aviation. Logistics, manufacturing and operational problems can either be modelled using optimization techniques or approaches based on simulation methodologies. Optimization techniques have the advantage of performing efficiently when the problems are properly defined, but they are often developed through rigid representations that do not include or accurately represent the stochasticity inherent in real systems. Furthermore, important information is lost during the abstraction process to fit each problem into the optimization technique. On the other hand, simulatio...
Optimal treatment cost allocation methods in pollution control
International Nuclear Information System (INIS)
Chen Wenying; Fang Dong; Xue Dazhi
1999-01-01
Total emission control is an effective pollution control strategy. However, Chinese application of total emission control lacks reasonable and fair methods for optimal treatment cost allocation, a critical issue in total emission control. The author considers four approaches to allocate treatment costs. The first approach is to set up a multiple-objective planning model and to solve the model using the shortest distance ideal point method. The second approach is to define degree of satisfaction for cost allocation results for each polluter and to establish a method based on this concept. The third is to apply bargaining and arbitration theory to develop a model. The fourth is to establish a cooperative N-person game model which can be solved using the Shapley value method, the core method, the Cost Gap Allocation method or the Minimum Costs-Remaining Savings method. These approaches are compared using a practicable case study
Optimal control of gene mutation in DNA replication.
Yu, Juanyi; Li, Jr-Shin; Tarn, Tzyh-Jong
2012-01-01
We propose a molecular-level control system view of the gene mutations in DNA replication from the finite field concept. By treating DNA sequences as state variables, chemical mutagens and radiation as control inputs, one cell cycle as a step increment, and the measurements of the resulting DNA sequence as outputs, we derive system equations for both deterministic and stochastic discrete-time, finite-state systems of different scales. Defining the cost function as a summation of the costs of applying mutagens and the off-trajectory penalty, we solve the deterministic and stochastic optimal control problems by dynamic programming algorithm. In addition, given that the system is completely controllable, we find that the global optimum of both base-to-base and codon-to-codon deterministic mutations can always be achieved within a finite number of steps.
Self-adaptive multimethod optimization applied to a tailored heating forging process
Baldan, M.; Steinberg, T.; Baake, E.
2018-05-01
The presented paper describes an innovative self-adaptive multi-objective optimization code. Investigation goals concern proving the superiority of this code compared to NGSA-II and applying it to an inductor’s design case study addressed to a “tailored” heating forging application. The choice of the frequency and the heating time are followed by the determination of the turns number and their positions. Finally, a straightforward optimization is performed in order to minimize energy consumption using “optimal control”.
Conference on Optimization and Its Applications in Control and Data Science
2016-01-01
This book focuses on recent research in modern optimization and its implications in control and data analysis. This book is a collection of papers from the conference “Optimization and Its Applications in Control and Data Science” dedicated to Professor Boris T. Polyak, which was held in Moscow, Russia on May 13-15, 2015. This book reflects developments in theory and applications rooted by Professor Polyak’s fundamental contributions to constrained and unconstrained optimization, differentiable and nonsmooth functions, control theory and approximation. Each paper focuses on techniques for solving complex optimization problems in different application areas and recent developments in optimization theory and methods. Open problems in optimization, game theory and control theory are included in this collection which will interest engineers and researchers working with efficient algorithms and software for solving optimization problems in market and data analysis. Theoreticians in operations research, appli...
Defending against the Advanced Persistent Threat: An Optimal Control Approach
Directory of Open Access Journals (Sweden)
Pengdeng Li
2018-01-01
Full Text Available The new cyberattack pattern of advanced persistent threat (APT has posed a serious threat to modern society. This paper addresses the APT defense problem, that is, the problem of how to effectively defend against an APT campaign. Based on a novel APT attack-defense model, the effectiveness of an APT defense strategy is quantified. Thereby, the APT defense problem is modeled as an optimal control problem, in which an optimal control stands for a most effective APT defense strategy. The existence of an optimal control is proved, and an optimality system is derived. Consequently, an optimal control can be figured out by solving the optimality system. Some examples of the optimal control are given. Finally, the influence of some factors on the effectiveness of an optimal control is examined through computer experiments. These findings help organizations to work out policies of defending against APTs.
The neural optimal control hierarchy for motor control
DeWolf, T.; Eliasmith, C.
2011-10-01
Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.
Optimal Control for the Degenerate Elliptic Logistic Equation
International Nuclear Information System (INIS)
Delgado, M.; Montero, J.A.; Suarez, A.
2002-01-01
We consider the optimal control of harvesting the diffusive degenerate elliptic logistic equation. Under certain assumptions, we prove the existence and uniqueness of an optimal control. Moreover, the optimality system and a characterization of the optimal control are also derived. The sub-supersolution method, the singular eigenvalue problem and differentiability with respect to the positive cone are the techniques used to obtain our results
An hp symplectic pseudospectral method for nonlinear optimal control
Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong
2017-01-01
An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.
International Nuclear Information System (INIS)
Bedford, J L; Webb, S
2007-01-01
Direct-aperture optimization (DAO) was applied to iterative beam-orientation selection in intensity-modulated radiation therapy (IMRT), so as to ensure a realistic segmental treatment plan at each iteration. Nested optimization engines dealt separately with gantry angles, couch angles, collimator angles, segment shapes, segment weights and wedge angles. Each optimization engine performed a random search with successively narrowing step sizes. For optimization of segment shapes, the filtered backprojection (FBP) method was first used to determine desired fluence, the fluence map was segmented, and then constrained direct-aperture optimization was used thereafter. Segment shapes were fully optimized when a beam angle was perturbed, and minimally re-optimized otherwise. The algorithm was compared with a previously reported method using FBP alone at each orientation iteration. An example case consisting of a cylindrical phantom with a hemi-annular planning target volume (PTV) showed that for three-field plans, the method performed better than when using FBP alone, but for five or more fields, neither method provided much benefit over equally spaced beams. For a prostate case, improved bladder sparing was achieved through the use of the new algorithm. A plan for partial scalp treatment showed slightly improved PTV coverage and lower irradiated volume of brain with the new method compared to FBP alone. It is concluded that, although the method is computationally intensive and not suitable for searching large unconstrained regions of beam space, it can be used effectively in conjunction with prior class solutions to provide individually optimized IMRT treatment plans
The optimal location of piezoelectric actuators and sensors for vibration control of plates
Kumar, K. Ramesh; Narayanan, S.
2007-12-01
This paper considers the optimal placement of collocated piezoelectric actuator-sensor pairs on a thin plate using a model-based linear quadratic regulator (LQR) controller. LQR performance is taken as objective for finding the optimal location of sensor-actuator pairs. The problem is formulated using the finite element method (FEM) as multi-input-multi-output (MIMO) model control. The discrete optimal sensor and actuator location problem is formulated in the framework of a zero-one optimization problem. A genetic algorithm (GA) is used to solve the zero-one optimization problem. Different classical control strategies like direct proportional feedback, constant-gain negative velocity feedback and the LQR optimal control scheme are applied to study the control effectiveness.
Optimization of radiation protection for the control of occupational exposure
International Nuclear Information System (INIS)
Esseyin, S.S.
2012-04-01
This project work provides practical information on how to apply the optimization of protection in the workplace. The principle of optimization states that, all reasonable efforts be made to reduce doses, social and economic factors being taken into account. The main objectives of this project work is to limit the risk to health arising from exposure to ionizing radiation in the workplace and to optimize radiation protection was achieved by setting common essential requirements for the control of exposure to radiation, including the specification of employer and employee duties. The acronym ALARA has been used in this project work as it brings to mind the twin concepts of dose reduction and reasonableness. The other main component of this project work is a general review of the means that are likely to be available in most workplaces to reduce exposure. These are divided into global means, which can be applied throughout an organization and those that are more jobs specific. Some of these global means are no more than would be expected in any well managed organization, such as an application of effective and efficient procedures for the management of work and provision for the education and training of workers. (author)
International Nuclear Information System (INIS)
Huang, C.-H.; Li, J.-X.
2006-01-01
A non-linear optimal control algorithm is examined in this study for the diffusion process of semiconductor materials. The purpose of this algorithm is to estimate an optimal control function such that the homogeneity of the concentration can be controlled during the diffusion process and the diffusion-induced stresses for the semiconductor materials can thus be reduced. The validation of this optimal control analysis utilizing the conjugate gradient method of minimization is analysed by using numerical experiments. Three different diffusion processing times are given and the corresponding optimal control functions are to be determined. Results show that the diffusion time can be shortened significantly by applying the optimal control function at the boundary and the homogeneity of the concentration is also guaranteed. This control function can be obtained within a very short CPU time on a Pentium III 600 MHz PC
On a Highly Nonlinear Self-Obstacle Optimal Control Problem
Energy Technology Data Exchange (ETDEWEB)
Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)
2015-10-15
We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.
An effective model for ergonomic optimization applied to a new automotive assembly line
Energy Technology Data Exchange (ETDEWEB)
Duraccio, Vincenzo [University Niccolò Cusano, Rome Via Don Gnocchi,00166, Roma Italy (Italy); Elia, Valerio [Dept. of Innovation Engineering - University of Salento Via Monteroni, 73100, Lecce (Italy); Forcina, Antonio [University Parthenope, Dep. of Engineering Centro Direzionale - Isola C4 80143 - Naples - Italy (Italy)
2016-06-08
An efficient ergonomic optimization can lead to a significant improvement in production performance and a considerable reduction of costs. In the present paper new model for ergonomic optimization is proposed. The new approach is based on the criteria defined by National Institute of Occupational Safety and Health and, adapted to Italian legislation. The proposed model provides an ergonomic optimization, by analyzing ergonomic relations between manual work in correct conditions. The model includes a schematic and systematic analysis method of the operations, and identifies all possible ergonomic aspects to be evaluated. The proposed approach has been applied to an automotive assembly line, where the operation repeatability makes the optimization fundamental. The proposed application clearly demonstrates the effectiveness of the new approach.
An effective model for ergonomic optimization applied to a new automotive assembly line
International Nuclear Information System (INIS)
Duraccio, Vincenzo; Elia, Valerio; Forcina, Antonio
2016-01-01
An efficient ergonomic optimization can lead to a significant improvement in production performance and a considerable reduction of costs. In the present paper new model for ergonomic optimization is proposed. The new approach is based on the criteria defined by National Institute of Occupational Safety and Health and, adapted to Italian legislation. The proposed model provides an ergonomic optimization, by analyzing ergonomic relations between manual work in correct conditions. The model includes a schematic and systematic analysis method of the operations, and identifies all possible ergonomic aspects to be evaluated. The proposed approach has been applied to an automotive assembly line, where the operation repeatability makes the optimization fundamental. The proposed application clearly demonstrates the effectiveness of the new approach.
An effective model for ergonomic optimization applied to a new automotive assembly line
Duraccio, Vincenzo; Elia, Valerio; Forcina, Antonio
2016-06-01
An efficient ergonomic optimization can lead to a significant improvement in production performance and a considerable reduction of costs. In the present paper new model for ergonomic optimization is proposed. The new approach is based on the criteria defined by National Institute of Occupational Safety and Health and, adapted to Italian legislation. The proposed model provides an ergonomic optimization, by analyzing ergonomic relations between manual work in correct conditions. The model includes a schematic and systematic analysis method of the operations, and identifies all possible ergonomic aspects to be evaluated. The proposed approach has been applied to an automotive assembly line, where the operation repeatability makes the optimization fundamental. The proposed application clearly demonstrates the effectiveness of the new approach.
Conceptual shape optimization of entry vehicles applied to capsules and winged fuselage vehicles
Dirkx, Dominic
2017-01-01
This book covers the parameterization of entry capsules, including Apollo capsules and planetary probes, and winged entry vehicles such as the Space Shuttle and lifting bodies. The aerodynamic modelling is based on a variety of panel methods that take shadowing into account, and it has been validated with flight and wind tunnel data of Apollo and the Space Shuttle. The shape optimization is combined with constrained trajectory analysis, and the multi-objective approach provides the engineer with a Pareto front of optimal shapes. The method detailed in Conceptual Shape Optimization of Entry Vehicles is straightforward, and the output gives the engineer insight in the effect of shape variations on trajectory performance. All applied models and algorithms used are explained in detail, allowing for reconstructing the design tool to the researcher’s requirements. Conceptual Shape Optimization of Entry Vehicles will be of interest to both researchers and graduate students in the field of aerospace engineering, an...
Neural Network for Optimization of Existing Control Systems
DEFF Research Database (Denmark)
Madsen, Per Printz
1995-01-01
The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems.......The purpose of this paper is to develop methods to use Neural Network based Controllers (NNC) as an optimization tool for existing control systems....
Dynamic optimization the calculus of variations and optimal control in economics and management
Kamien, Morton I
2012-01-01
Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.
A genetic algorithm applied to a PWR turbine extraction optimization to increase cycle efficiency
International Nuclear Information System (INIS)
Sacco, Wagner F.; Schirru, Roberto
2002-01-01
In nuclear power plants feedwater heaters are used to heat feedwater from its temperature leaving the condenser to final feedwater temperature using steam extracted from various stages of the turbines. The purpose of this process is to increase cycle efficiency. The determination of the optimal fraction of mass flow rate to be extracted from each stage of the turbines is a complex optimization problem. This kind of problem has been efficiently solved by means of evolutionary computation techniques, such as Genetic Algorithms (GAs). GAs, which are systems based upon principles from biological genetics, have been successfully applied to several combinatorial optimization problems in nuclear engineering, as the nuclear fuel reload optimization problem. We introduce the use of GAs in cycle efficiency optimization by finding an optimal combination of turbine extractions. In order to demonstrate the effectiveness of our approach, we have chosen a typical PWR as case study. The secondary side of the PWR was simulated using PEPSE, which is a modeling tool used to perform integrated heat balances for power plants. The results indicate that the GA is a quite promising tool for cycle efficiency optimization. (author)
Applying Trusted Network Technology To Process Control Systems
Okhravi, Hamed; Nicol, David
Interconnections between process control networks and enterprise networks expose instrumentation and control systems and the critical infrastructure components they operate to a variety of cyber attacks. Several architectural standards and security best practices have been proposed for industrial control systems. However, they are based on older architectures and do not leverage the latest hardware and software technologies. This paper describes new technologies that can be applied to the design of next generation security architectures for industrial control systems. The technologies are discussed along with their security benefits and design trade-offs.
Applying Distributed Object Technology to Distributed Embedded Control Systems
DEFF Research Database (Denmark)
Jørgensen, Bo Nørregaard; Dalgaard, Lars
2012-01-01
In this paper, we describe our Java RMI inspired Object Request Broker architecture MicroRMI for use with networked embedded devices. MicroRMI relieves the software developer from the tedious and error-prone job of writing communication protocols for interacting with such embedded devices. MicroR...... in developing control systems for distributed embedded platforms possessing severe resource restrictions.......RMI supports easy integration of high-level application specific control logic with low-level device specific control logic. Our experience from applying MicroRMI in the context of a distributed robotics control application, clearly demonstrates that it is feasible to use distributed object technology...
Optimal Power Flow Control by Rotary Power Flow Controller
Directory of Open Access Journals (Sweden)
KAZEMI, A.
2011-05-01
Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.
Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints
Kmet', Tibor; Kmet'ová, Mária
2009-09-01
A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
Adaptive Control Using Residual Mode Filters Applied to Wind Turbines
Frost, Susan A.; Balas, Mark J.
2011-01-01
Many dynamic systems containing a large number of modes can benefit from adaptive control techniques, which are well suited to applications that have unknown parameters and poorly known operating conditions. In this paper, we focus on a model reference direct adaptive control approach that has been extended to handle adaptive rejection of persistent disturbances. We extend this adaptive control theory to accommodate problematic modal subsystems of a plant that inhibit the adaptive controller by causing the open-loop plant to be non-minimum phase. We will augment the adaptive controller using a Residual Mode Filter (RMF) to compensate for problematic modal subsystems, thereby allowing the system to satisfy the requirements for the adaptive controller to have guaranteed convergence and bounded gains. We apply these theoretical results to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine that has minimum phase zeros.
Practical synchronization on complex dynamical networks via optimal pinning control
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.
Controllable unit concept as applied to a hypothetical tritium process
International Nuclear Information System (INIS)
Seabaugh, P.W.; Sellers, D.E.; Woltermann, H.A.; Boh, D.R.; Miles, J.C.; Fushimi, F.C.
1976-01-01
A methodology (controllable unit accountability) is described that identifies controlling errors for corrective action, locates areas and time frames of suspected diversions, defines time and sensitivity limits of diversion flags, defines the time frame in which pass-through quantities of accountable material and by inference SNM remain controllable and provides a basis for identification of incremental cost associated with purely safeguards considerations. The concept provides a rationale from which measurement variability and specific safeguard criteria can be converted into a numerical value that represents the degree of control or improvement attainable with a specific measurement system or combination of systems. Currently the methodology is being applied to a high-throughput, mixed-oxide fuel fabrication process. The process described is merely used to illustrate a procedure that can be applied to other more pertinent processes
Czech Academy of Sciences Publication Activity Database
Axelsson, Owe; Farouq, S.; Neytcheva, M.
2017-01-01
Roč. 310, January 2017 (2017), s. 5-18 ISSN 0377-0427 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : optimal control * time-harmonic Stokes problem * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.357, year: 2016 http://www. science direct.com/ science /article/pii/S0377042716302631?via%3Dihub
Czech Academy of Sciences Publication Activity Database
Axelsson, Owe; Farouq, S.; Neytcheva, M.
2017-01-01
Roč. 310, January 2017 (2017), s. 5-18 ISSN 0377-0427 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : optimal control * time-harmonic Stokes problem * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.357, year: 2016 http://www.sciencedirect.com/science/article/pii/S0377042716302631?via%3Dihub
Golinko, I. M.; Kovrigo, Yu. M.; Kubrak, A. I.
2014-03-01
An express method for optimally tuning analog PI and PID controllers is considered. An integral quality criterion with minimizing the control output is proposed for optimizing control systems. The suggested criterion differs from existing ones in that the control output applied to the technological process is taken into account in a correct manner, due to which it becomes possible to maximally reduce the expenditure of material and/or energy resources in performing control of industrial equipment sets. With control organized in such manner, smaller wear and longer service life of control devices are achieved. A unimodal nature of the proposed criterion for optimally tuning a controller is numerically demonstrated using the methods of optimization theory. A functional interrelation between the optimal controller parameters and dynamic properties of a controlled plant is numerically determined for a single-loop control system. The results obtained from simulation of transients in a control system carried out using the proposed and existing functional dependences are compared with each other. The proposed calculation formulas differ from the existing ones by a simple structure and highly accurate search for the optimal controller tuning parameters. The obtained calculation formulas are recommended for being used by specialists in automation for design and optimization of control systems.
Neutron density optimal control of A-1 reactor analoque model
International Nuclear Information System (INIS)
Grof, V.
1975-01-01
Two applications are described of the optimal control of a reactor analog model. Both cases consider the control of neutron density. Control loops containing the on-line controlled process, the reactor of the first Czechoslovak nuclear power plant A-1, are simulated on an analog computer. Two versions of the optimal control algorithm are derived using modern control theory (Pontryagin's maximum principle, the calculus of variations, and Kalman's estimation theory), the minimum time performance index, and the quadratic performance index. The results of the optimal control analysis are compared with the A-1 reactor conventional control. (author)
Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.
Directory of Open Access Journals (Sweden)
Nadia Said
Full Text Available Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.
Gradient Optimization for Analytic conTrols - GOAT
Assémat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank
Quantum optimal control becomes a necessary step in a number of studies in the quantum realm. Recent experimental advances showed that superconducting qubits can be controlled with an impressive accuracy. However, most of the standard optimal control algorithms are not designed to manage such high accuracy. To tackle this issue, a novel quantum optimal control algorithm have been introduced: the Gradient Optimization for Analytic conTrols (GOAT). It avoids the piecewise constant approximation of the control pulse used by standard algorithms. This allows an efficient implementation of very high accuracy optimization. It also includes a novel method to compute the gradient that provides many advantages, e.g. the absence of backpropagation or the natural route to optimize the robustness of the control pulses. This talk will present the GOAT algorithm and a few applications to transmons systems.
International Nuclear Information System (INIS)
Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.; Valavi, K.
2013-01-01
Highlights: • SGHS enhanced the convergence rate of LPO using some improvements in comparison to basic HS and GHS. • SGHS optimization algorithm obtained averagely better fitness relative to basic HS and GHS algorithms. • Upshot of the SGHS implementation in the LPO reveals its flexibility, efficiency and reliability. - Abstract: The aim of this work is to apply the new developed optimization algorithm, Self-adaptive Global best Harmony Search (SGHS), for PWRs fuel management optimization. SGHS algorithm has some modifications in comparison with basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms such as dynamically change of parameters. For the demonstration of SGHS ability to find an optimal configuration of fuel assemblies, basic Harmony Search (HS) and Global-best Harmony Search (GHS) algorithms also have been developed and investigated. For this purpose, Self-adaptive Global best Harmony Search Nodal Expansion package (SGHSNE) has been developed implementing HS, GHS and SGHS optimization algorithms for the fuel management operation of nuclear reactor cores. This package uses developed average current nodal expansion code which solves the multi group diffusion equation by employment of first and second orders of Nodal Expansion Method (NEM) for two dimensional, hexagonal and rectangular geometries, respectively, by one node per a FA. Loading pattern optimization was performed using SGHSNE package for some test cases to present the SGHS algorithm capability in converging to near optimal loading pattern. Results indicate that the convergence rate and reliability of the SGHS method are quite promising and practically, SGHS improves the quality of loading pattern optimization results relative to HS and GHS algorithms. As a result, it has the potential to be used in the other nuclear engineering optimization problems
Control Methods Utilizing Energy Optimizing Schemes in Refrigeration Systems
DEFF Research Database (Denmark)
Larsen, L.S; Thybo, C.; Stoustrup, Jakob
2003-01-01
The potential energy savings in refrigeration systems using energy optimal control has been proved to be substantial. This however requires an intelligent control that drives the refrigeration systems towards the energy optimal state. This paper proposes an approach for a control, which drives th...... the condenser pressure towards an optimal state. The objective of this is to present a feasible method that can be used for energy optimizing control. A simulation model of a simple refrigeration system will be used as basis for testing the control method....
Xia, Yaping; Yin, Minghui; Zou, Yun
2018-01-01
In this paper, the relationship between the degree of controllability (DOC) of controlled plants and the corresponding quadratic optimal performance index in LQR control is investigated for the electro-hydraulic synchronising servo control systems and wind turbine systems, respectively. It is shown that for these two types of systems, the higher the DOC of a controlled plant is, the better the quadratic optimal performance index is. It implies that in some LQR controller designs, the measure of the DOC of a controlled plant can be used as an index for the optimisation of adjustable plant parameters, by which the plant can be controlled more effectively.
The Bayesian statistical decision theory applied to the optimization of generating set maintenance
International Nuclear Information System (INIS)
Procaccia, H.; Cordier, R.; Muller, S.
1994-11-01
The difficulty in RCM methodology is the allocation of a new periodicity of preventive maintenance on one equipment when a critical failure has been identified: until now this new allocation has been based on the engineer's judgment, and one must wait for a full cycle of feedback experience before to validate it. Statistical decision theory could be a more rational alternative for the optimization of preventive maintenance periodicity. This methodology has been applied to inspection and maintenance optimization of cylinders of diesel generator engines of 900 MW nuclear plants, and has shown that previous preventive maintenance periodicity can be extended. (authors). 8 refs., 5 figs
Equilibrium optimization code OPEQ and results of applying it to HT-7U
International Nuclear Information System (INIS)
Zha Xuejun; Zhu Sizheng; Yu Qingquan
2003-01-01
The plasma equilibrium configuration has a strong impact on the confinement and MHD stability in tokamaks. For designing a tokamak device, it is an important issue to determine the sites and currents of poloidal coils which have some constraint conditions from physics and engineering with a prescribed equilibrium shape of the plasma. In this paper, an effective method based on multi-variables equilibrium optimization is given. The method can optimize poloidal coils when the previously prescribed plasma parameters are treated as an object function. We apply it to HT-7U equilibrium calculation, and obtain good results
Decentralized Control Using Global Optimization (DCGO) (Preprint)
National Research Council Canada - National Science Library
Flint, Matthew; Khovanova, Tanya; Curry, Michael
2007-01-01
The coordination of a team of distributed air vehicles requires a complex optimization, balancing limited communication bandwidths, non-instantaneous planning times and network delays, while at the...
DEFF Research Database (Denmark)
Barlas, Athanasios
The report describes the development of flap controllers applied on the OffshoreWindChina (OWC) 5MW reference wind turbine for Chinese typhoon conditions. Optimal flap controllers are designed and tuned based on linear aeroelastic models from HawcStab2. The controllers are evaluated in normal......, parked and storm conditions, targeting the alleviation of fatigue and extreme loads....
Design and optimization of fuzzy-PID controller for the nuclear reactor power control
International Nuclear Information System (INIS)
Liu Cheng; Peng Jinfeng; Zhao Fuyu; Li Chong
2009-01-01
This paper introduces a fuzzy proportional-integral-derivative (fuzzy-PID) control strategy, and applies it to the nuclear reactor power control system. At the fuzzy-PID control strategy, the fuzzy logic controller (FLC) is exploited to extend the finite sets of PID gains to the possible combinations of PID gains in stable region and the genetic algorithm to improve the 'extending' precision through quadratic optimization for the membership function (MF) of the FLC. Thus the FLC tunes the gains of PID controller to adapt the model changing with the power. The fuzzy-PID has been designed and simulated to control the reactor power. The simulation results show the favorable performance of the fuzzy-PID controller.
Application of Minimum-time Optimal Control System in Buck-Boost Bi-linear Converters
Directory of Open Access Journals (Sweden)
S. M. M. Shariatmadar
2017-08-01
Full Text Available In this study, the theory of minimum-time optimal control system in buck-boost bi-linear converters is described, so that output voltage regulation is carried out within minimum time. For this purpose, the Pontryagin's Minimum Principle is applied to find optimal switching level applying minimum-time optimal control rules. The results revealed that by utilizing an optimal switching level instead of classical switching patterns, output voltage regulation will be carried out within minimum time. However, transient energy index of increased overvoltage significantly reduces in order to attain minimum time optimal control in reduced output load. The laboratory results were used in order to verify numerical simulations.
Particle swarm optimization with random keys applied to the nuclear reactor reload problem
Energy Technology Data Exchange (ETDEWEB)
Meneses, Anderson Alvarenga de Moura [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear; Fundacao Educacional de Macae (FUNEMAC), RJ (Brazil). Faculdade Professor Miguel Angelo da Silva Santos; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: ameneses@con.ufrj.br; marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; schirru@lmp.ufrj.br
2007-07-01
In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)
Particle swarm optimization with random keys applied to the nuclear reactor reload problem
International Nuclear Information System (INIS)
Meneses, Anderson Alvarenga de Moura; Fundacao Educacional de Macae; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto
2007-01-01
In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)
Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro
2018-06-01
A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.
Human-Machine Systems concepts applied to Control Engineering Education
Marangé , Pascale; Gellot , François; Riera , Bernard
2008-01-01
International audience; In this paper, we interest us to Human-Machine Systems (HMS) concepts applied to Education. It is shown how the HMS framework enables to propose original solution in matter of education in the field of control engineering. We focus on practical courses on control of manufacturing systems. The proposed solution is based on an original use of real and large-scale systems instead of simulation. The main idea is to enable the student, whatever his/her level to control the ...
A Study on the Analysis and Optimal Control of Nonlinear Systems via Walsh Function
Energy Technology Data Exchange (ETDEWEB)
Kim, Jin Tae; Kim, Tai Hoon; Ahn, Doo Soo [Sungkyunkwan University (Korea); Lee, Myung Kyu [Kyungsung University (Korea)
2000-07-01
This paper presents the new adaptive optimal scheme for the nonlinear systems, which is based on the Picard's iterative approximation and fast Walsh transform. It is well known that the Walsh function approach method is very difficult to apply for the analysis and optimal control of nonlinear systems. However, these problems can be easily solved by the improvement of the previous adaptive optimal scheme. The proposes method is easily applicable to the analysis and optimal control of nonlinear systems. (author). 15 refs., 6 figs., 1 tab.
Directory of Open Access Journals (Sweden)
Weifeng Wang
2014-01-01
Full Text Available We study an optimal control problem governed by a semilinear parabolic equation, whose control variable is contained only in the boundary condition. An existence theorem for the optimal control is obtained.
Presentation of Malaria Epidemics Using Multiple Optimal Controls
Directory of Open Access Journals (Sweden)
Abid Ali Lashari
2012-01-01
Full Text Available An existing model is extended to assess the impact of some antimalaria control measures, by re-formulating the model as an optimal control problem. This paper investigates the fundamental role of three type of controls, personal protection, treatment, and mosquito reduction strategies in controlling the malaria. We work in the nonlinear optimal control framework. The existence and the uniqueness results of the solution are discussed. A characterization of the optimal control via adjoint variables is established. The optimality system is solved numerically by a competitive Gauss-Seidel-like implicit difference method. Finally, numerical simulations of the optimal control problem, using a set of reasonable parameter values, are carried out to investigate the effectiveness of the proposed control measures.
Optimization of microgrids based on controller designing for ...
African Journals Online (AJOL)
The power quality of microgrid during islanded operation is strongly related with the controller performance of DGs. Therefore a new optimal control strategy for distributed generation based inverter to connect to the generalized microgrid is proposed. This work shows developing optimal control algorithms for the DG ...
Multi-Objective Optimization for Smart House Applied Real Time Pricing Systems
Directory of Open Access Journals (Sweden)
Yasuaki Miyazato
2016-12-01
Full Text Available A smart house generally has a Photovoltaic panel (PV, a Heat Pump (HP, a Solar Collector (SC and a fixed battery. Since the fixed battery can buy and store inexpensive electricity during the night, the electricity bill can be reduced. However, a large capacity fixed battery is very expensive. Therefore, there is a need to determine the economic capacity of fixed battery. Furthermore, surplus electric power can be sold using a buyback program. By this program, PV can be effectively utilized and contribute to the reduction of the electricity bill. With this in mind, this research proposes a multi-objective optimization, the purpose of which is electric demand control and reduction of the electricity bill in the smart house. In this optimal problem, the Pareto optimal solutions are searched depending on the fixed battery capacity. Additionally, it is shown that consumers can choose what suits them by comparing the Pareto optimal solutions.
Optimization and control methods in industrial engineering and construction
Wang, Xiangyu
2014-01-01
This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering, and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P, and target contracts optimization. The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and c...
Optimal estimation and control in nuclear power plants
International Nuclear Information System (INIS)
Purviance, J.E.; Tylee, J.L.
1982-08-01
Optimal estimation and control theories offer the potential for more precise control and diagnosis of nuclear power plants. The important element of these theories is that a mathematical plant model is used in conjunction with the actual plant data to optimize some performance criteria. These criteria involve important plant variables and incorporate a sense of the desired plant performance. Several applications of optimal estimation and control to nuclear systems are discussed
Optimal control of a variable spin speed CMG system for space vehicles. [Control Moment Gyros
Liu, T. C.; Chubb, W. B.; Seltzer, S. M.; Thompson, Z.
1973-01-01
Many future NASA programs require very high accurate pointing stability. These pointing requirements are well beyond anything attempted to date. This paper suggests a control system which has the capability of meeting these requirements. An optimal control law for the suggested system is specified. However, since no direct method of solution is known for this complicated system, a computation technique using successive approximations is used to develop the required solution. The method of calculus of variations is applied for estimating the changes of index of performance as well as those constraints of inequality of state variables and terminal conditions. Thus, an algorithm is obtained by the steepest descent method and/or conjugate gradient method. Numerical examples are given to show the optimal controls.
Optimization and Control of Pressure Swing Adsorption Processes Under Uncertainty
Khajuria, Harish
2012-03-21
The real-time periodic performance of a pressure swing adsorption (PSA) system strongly depends on the choice of key decision variables and operational considerations such as processing steps and column pressure temporal profiles, making its design and operation a challenging task. This work presents a detailed optimization-based approach for simultaneously incorporating PSA design, operational, and control aspects under the effect of time variant and invariant disturbances. It is applied to a two-bed, six-step PSA system represented by a rigorous mathematical model, where the key optimization objective is to maximize the expected H2 recovery while achieving a closed loop product H2 purity of 99.99%, for separating 70% H2, 30% CH4 feed. The benefits over sequential design and control approach are shown in terms of closed-loop recovery improvement of more than 3%, while the incorporation of explicit/multiparametric model predictive controllers improves the closed loop performance. © 2012 American Institute of Chemical Engineers (AIChE).
Mechanical design and optimal control of humanoid robot (TPinokio
Directory of Open Access Journals (Sweden)
Teck Chew Wee
2014-04-01
Full Text Available The mechanical structure and the control of the locomotion of bipedal humanoid is an important and challenging domain of research in bipedal robots. Accurate models of the kinematics and dynamics of the robot are essential to achieve bipedal locomotion. Toe-foot walking produces a more natural and faster walking speed and it is even possible to perform stretch knee walking. This study presents the mechanical design of a toe-feet bipedal, TPinokio and the implementation of some optimal walking gait generation methods. The optimality in the gait trajectory is achieved by applying augmented model predictive control method and the pole-zero cancellation method, taken into consideration of a trade-off between walking speed and stability. The mechanism of the TPinokio robot is designed in modular form, so that its kinematics can be modelled accurately into a multiple point-mass system, its dynamics is modelled using the single and double mass inverted pendulum model and zero-moment-point concept. The effectiveness of the design and control technique is validated by simulation testing with the robot walking on flat surface and climbing stairs.
Enhanced pid vs model predictive control applied to bldc motor
Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.
2018-01-01
BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.
Tsai, Cheng-Mu; Fang, Yi-Chin; Chen, Zhen Hsiang
2011-10-01
This study used the aspheric lens to realize the laser flat-top optimization, and applied the genetic algorithm (GA) to find the optimal results. Using the characteristics of aspheric lens to obtain the optimized high quality Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using two aspheric lenses in the aspheric surface optical system to complete 80% spot narrowing under standard deviation of 0.6142.
Particle swarm optimization applied to data reconciliation in nuclear power plant
International Nuclear Information System (INIS)
Valdetaro, Eduardo Damianik; Schirru, Roberto
2009-01-01
Mass and energy balance are important issues that needs to keep into account in nuclear power plants. Data Reconciliation and Parameter Estimation (DRPE) and gross errors detection are techniques of increasing interest. Works using Genetic Algorithm (GA) have been successfully used in the Data Reconciliation (DR) nonlinear optimization problem, and it seems that evolutionary algorithms performs well without the complex calculations used by the conventional methods. The aim of this paper is to present the Particle Swarm Optimization Algorithm (PSO) as an alternative to the use of modified GA, which was applied to data reconciliation with simultaneous gross errors detection. In this paper, the DR formulation uses a redescending estimator as objective function and simulation results show that PSO applied to DRPE problem is faster than modified GA presented in literature, do not involve complex calculations and do not need complex parameters to adjust. The PSO algorithm is also able to handle the non-differentiable characteristics of the redescending estimator. (author)
International Nuclear Information System (INIS)
Rancruel, Diego F.; Spakovsky, Michael R. von
2006-01-01
A decomposition methodology based on the concept of 'thermoeconomic isolation' and applied to the synthesis/design and operational optimization of an advanced tactical fighter aircraft is the focus of this paper. The total system is composed of six sub-systems of which five participate with degrees of freedom (493) in the optimization. They are the propulsion sub-system (PS), the environmental control sub-system (ECS), the fuel loop subsystem (FLS), the vapor compression and Polyalphaolefin (PAO) loops sub-system (VC/PAOS), and the airframe sub-system (AFS). The sixth subsystem comprises the expendable and permanent payloads as well as the equipment group. For each of the first five, detailed thermodynamic, geometric, physical, and aerodynamic models at both design and off-design were formulated and implemented. The most promising set of aircraft sub-system and system configurations were then determined based on both an energy integration and aerodynamic performance analysis at each stage of the mission (including the transient ones). Conceptual, time, and physical decomposition were subsequently applied to the synthesis/design and operational optimization of these aircraft configurations as well as to the highly dynamic process of heat generation and dissipation internal to the subsystems. The physical decomposition strategy used (i.e. Iterative Local-Global Optimization-ILGO) is the first to successfully closely approach the theoretical condition of 'thermoeconomic isolation' when applied to highly complex, highly dynamic non-linear systems. Developed at our Center for Energy Systems research, it has been effectively applied to a number of complex stationary and transportation applications
Energy Technology Data Exchange (ETDEWEB)
Rancruel, Diego F. [Center for Energy Systems Research, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060 (United States); Spakovsky, Michael R. von [Center for Energy Systems Research, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060 (United States)]. E-mail: vonspako@vt.edu
2006-12-15
A decomposition methodology based on the concept of 'thermoeconomic isolation' and applied to the synthesis/design and operational optimization of an advanced tactical fighter aircraft is the focus of this paper. The total system is composed of six sub-systems of which five participate with degrees of freedom (493) in the optimization. They are the propulsion sub-system (PS), the environmental control sub-system (ECS), the fuel loop subsystem (FLS), the vapor compression and Polyalphaolefin (PAO) loops sub-system (VC/PAOS), and the airframe sub-system (AFS). The sixth subsystem comprises the expendable and permanent payloads as well as the equipment group. For each of the first five, detailed thermodynamic, geometric, physical, and aerodynamic models at both design and off-design were formulated and implemented. The most promising set of aircraft sub-system and system configurations were then determined based on both an energy integration and aerodynamic performance analysis at each stage of the mission (including the transient ones). Conceptual, time, and physical decomposition were subsequently applied to the synthesis/design and operational optimization of these aircraft configurations as well as to the highly dynamic process of heat generation and dissipation internal to the subsystems. The physical decomposition strategy used (i.e. Iterative Local-Global Optimization-ILGO) is the first to successfully closely approach the theoretical condition of 'thermoeconomic isolation' when applied to highly complex, highly dynamic non-linear systems. Developed at our Center for Energy Systems research, it has been effectively applied to a number of complex stationary and transportation applications.
Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.
2014-01-01
Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.
Optimal control of compressible Navier-Stokes equations
International Nuclear Information System (INIS)
Ito, K.; Ravindran, S.S.
1994-01-01
Optimal control for the viscous incompressible flows, which are governed by incompressible Navier-Stokes equations, has been the subject of extensive study in recent years, see, e.g., [AT], [GHS], [IR], and [S]. In this paper we consider the optimal control of compressible isentropic Navier-Stokes equations. We develop the weak variational formulation and discuss the existence and necessary optimality condition characterizing the optimal control. A numerical method based on the mixed-finite element method is also discussed to compute the control and numerical results are presented
SU-F-BRD-13: Quantum Annealing Applied to IMRT Beamlet Intensity Optimization
Energy Technology Data Exchange (ETDEWEB)
Nazareth, D [Roswell Park Cancer Institute, Buffalo, NY (United States); Spaans, J [Hawarden, IA (United States)
2014-06-15
Purpose: We report on the first application of quantum annealing (QA) to the process of beamlet intensity optimization for IMRT. QA is a new technology, which employs novel hardware and software techniques to address various discrete optimization problems in many fields. Methods: We apply the D-Wave Inc. proprietary hardware, which natively exploits quantum mechanical effects for improved optimization. The new QA algorithm, running on this hardware, is most similar to simulated annealing, but relies on natural processes to directly minimize the free energy of a system. A simple quantum system is slowly evolved into a classical system, representing the objective function. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitation of ∼500 binary variables. The beamlet dose matrices were computed using CERR, and an objective function was defined based on typical clinical constraints, including dose-volume objectives. The objective function was discretized, and the QA method was compared to two standard optimization Methods: simulated annealing and Tabu search, run on a conventional computing cluster. Results: Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the SA. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu, and 22.9 for the SA. The QA algorithm required 27–38% of the time required by the other two methods. Conclusion: In terms of objective function value, the QA performance was similar to Tabu but less effective than the SA. However, its speed was 3–4 times faster than the other two methods. This initial experiment suggests that QA-based heuristics may offer significant speedup over conventional clinical optimization methods, as quantum annealing hardware scales to larger sizes.
SU-F-BRD-13: Quantum Annealing Applied to IMRT Beamlet Intensity Optimization
International Nuclear Information System (INIS)
Nazareth, D; Spaans, J
2014-01-01
Purpose: We report on the first application of quantum annealing (QA) to the process of beamlet intensity optimization for IMRT. QA is a new technology, which employs novel hardware and software techniques to address various discrete optimization problems in many fields. Methods: We apply the D-Wave Inc. proprietary hardware, which natively exploits quantum mechanical effects for improved optimization. The new QA algorithm, running on this hardware, is most similar to simulated annealing, but relies on natural processes to directly minimize the free energy of a system. A simple quantum system is slowly evolved into a classical system, representing the objective function. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitation of ∼500 binary variables. The beamlet dose matrices were computed using CERR, and an objective function was defined based on typical clinical constraints, including dose-volume objectives. The objective function was discretized, and the QA method was compared to two standard optimization Methods: simulated annealing and Tabu search, run on a conventional computing cluster. Results: Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the SA. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu, and 22.9 for the SA. The QA algorithm required 27–38% of the time required by the other two methods. Conclusion: In terms of objective function value, the QA performance was similar to Tabu but less effective than the SA. However, its speed was 3–4 times faster than the other two methods. This initial experiment suggests that QA-based heuristics may offer significant speedup over conventional clinical optimization methods, as quantum annealing hardware scales to larger sizes
Optimal Sizing and Control Strategy Design for Heavy Hybrid Electric Truck
Directory of Open Access Journals (Sweden)
Yuan Zou
2012-01-01
Full Text Available Due to the complexity of the hybrid powertrain, the control is highly involved to improve the collaborations of the different components. For the specific powertrain, the components' sizing just gives the possibility to propel the vehicle and the control will realize the function of the propulsion. Definitely the components' sizing also gives the constraints to the control design, which cause a close coupling between the sizing and control strategy design. This paper presents a parametric study focused on sizing of the powertrain components and optimization of the power split between the engine and electric motor for minimizing the fuel consumption. A framework is put forward to accomplish the optimal sizing and control design for a heavy parallel pre-AMT hybrid truck under the natural driving schedule. The iterative plant-controller combined optimization methodology is adopted to optimize the key parameters of the plant and control strategy simultaneously. A scalable powertrain model based on a bilevel optimization framework is built. Dynamic programming is applied to find the optimal control in the inner loop with a prescribed cycle. The parameters are optimized in the outer loop. The results are analysed and the optimal sizing and control strategy are achieved simultaneously.
Optimal coordination and control of posture and movements.
Johansson, Rolf; Fransson, Per-Anders; Magnusson, Måns
2009-01-01
This paper presents a theoretical model of stability and coordination of posture and locomotion, together with algorithms for continuous-time quadratic optimization of motion control. Explicit solutions to the Hamilton-Jacobi equation for optimal control of rigid-body motion are obtained by solving an algebraic matrix equation. The stability is investigated with Lyapunov function theory and it is shown that global asymptotic stability holds. It is also shown how optimal control and adaptive control may act in concert in the case of unknown or uncertain system parameters. The solution describes motion strategies of minimum effort and variance. The proposed optimal control is formulated to be suitable as a posture and movement model for experimental validation and verification. The combination of adaptive and optimal control makes this algorithm a candidate for coordination and control of functional neuromuscular stimulation as well as of prostheses. Validation examples with experimental data are provided.
Optimal treatment interruptions control of TB transmission model
Nainggolan, Jonner; Suparwati, Titik; Kawuwung, Westy B.
2018-03-01
A tuberculosis model which incorporates treatment interruptions of infectives is established. Optimal control of individuals infected with active TB is given in the model. It is obtained that the control reproduction numbers is smaller than the reproduction number, this means treatment controls could optimize the decrease in the spread of active TB. For this model, controls on treatment of infection individuals to reduce the actively infected individual populations, by application the Pontryagins Maximum Principle for optimal control. The result further emphasized the importance of controlling disease relapse in reducing the number of actively infected and treatment interruptions individuals with tuberculosis.
A primer on the calculus of variations and optimal control theory
Mesterton-Gibbons, Mike
2009-01-01
The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical softwa...
Optimal dynamic control of resources in a distributed system
Shin, Kang G.; Krishna, C. M.; Lee, Yann-Hang
1989-01-01
The authors quantitatively formulate the problem of controlling resources in a distributed system so as to optimize a reward function and derive optimal control strategies using Markov decision theory. The control variables treated are quite general; they could be control decisions related to system configuration, repair, diagnostics, files, or data. Two algorithms for resource control in distributed systems are derived for time-invariant and periodic environments, respectively. A detailed example to demonstrate the power and usefulness of the approach is provided.
Seldner, K.
1977-01-01
An algorithm was developed to optimally control the traffic signals at each intersection using a discrete time traffic model applicable to heavy or peak traffic. Off line optimization procedures were applied to compute the cycle splits required to minimize the lengths of the vehicle queues and delay at each intersection. The method was applied to an extensive traffic network in Toledo, Ohio. Results obtained with the derived optimal settings are compared with the control settings presently in use.
Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data
Martins, Fabio J. W. A.; Foucaut, Jean-Marc; Thomas, Lionel; Azevedo, Luis F. A.; Stanislas, Michel
2015-08-01
Tomographic PIV is a three-component volumetric velocity measurement technique based on the tomographic reconstruction of a particle distribution imaged by multiple camera views. In essence, the performance and accuracy of this technique is highly dependent on the parametric adjustment and the reconstruction algorithm used. Although synthetic data have been widely employed to optimize experiments, the resulting reconstructed volumes might not have optimal quality. The purpose of the present study is to offer quality indicators that can be applied to data samples in order to improve the quality of velocity results obtained by the tomo-PIV technique. The methodology proposed can potentially lead to significantly reduction in the time required to optimize a tomo-PIV reconstruction, also leading to better quality velocity results. Tomo-PIV data provided by a six-camera turbulent boundary-layer experiment were used to optimize the reconstruction algorithms according to this methodology. Velocity statistics measurements obtained by optimized BIMART, SMART and MART algorithms were compared with hot-wire anemometer data and velocity measurement uncertainties were computed. Results indicated that BIMART and SMART algorithms produced reconstructed volumes with equivalent quality as the standard MART with the benefit of reduced computational time.
Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data
International Nuclear Information System (INIS)
Martins, Fabio J W A; Foucaut, Jean-Marc; Stanislas, Michel; Thomas, Lionel; Azevedo, Luis F A
2015-01-01
Tomographic PIV is a three-component volumetric velocity measurement technique based on the tomographic reconstruction of a particle distribution imaged by multiple camera views. In essence, the performance and accuracy of this technique is highly dependent on the parametric adjustment and the reconstruction algorithm used. Although synthetic data have been widely employed to optimize experiments, the resulting reconstructed volumes might not have optimal quality. The purpose of the present study is to offer quality indicators that can be applied to data samples in order to improve the quality of velocity results obtained by the tomo-PIV technique. The methodology proposed can potentially lead to significantly reduction in the time required to optimize a tomo-PIV reconstruction, also leading to better quality velocity results. Tomo-PIV data provided by a six-camera turbulent boundary-layer experiment were used to optimize the reconstruction algorithms according to this methodology. Velocity statistics measurements obtained by optimized BIMART, SMART and MART algorithms were compared with hot-wire anemometer data and velocity measurement uncertainties were computed. Results indicated that BIMART and SMART algorithms produced reconstructed volumes with equivalent quality as the standard MART with the benefit of reduced computational time. (paper)
Peak-Seeking Control for Trim Optimization
National Aeronautics and Space Administration — Innovators have developed a peak-seeking algorithm that can reduce drag and improve performance and fuel efficiency by optimizing aircraft trim in real time. The...
Minimum energy control and optimal-satisfactory control of Boolean control network
International Nuclear Information System (INIS)
Li, Fangfei; Lu, Xiwen
2013-01-01
In the literatures, to transfer the Boolean control network from the initial state to the desired state, the expenditure of energy has been rarely considered. Motivated by this, this Letter investigates the minimum energy control and optimal-satisfactory control of Boolean control network. Based on the semi-tensor product of matrices and Floyd's algorithm, minimum energy, constrained minimum energy and optimal-satisfactory control design for Boolean control network are given respectively. A numerical example is presented to illustrate the efficiency of the obtained results.
Mardlijah; Jamil, Ahmad; Hanafi, Lukman; Sanjaya, Suharmadi
2017-09-01
There are so many benefit of algae. One of them is using for renewable energy and sustainable in the future. The greater growth of algae will increasing biodiesel production and the increase of algae growth is influenced by glucose, nutrients and photosynthesis process. In this paper, the optimal control problem of the growth of algae is discussed. The objective function is to maximize the concentration of dry algae while the control is the flow of carbon dioxide and the nutrition. The solution is obtained by applying the Pontryagin Maximum Principle. and the result show that the concentration of algae increased more than 15 %.
Swarm intelligence of artificial bees applied to In-Core Fuel Management Optimization
Energy Technology Data Exchange (ETDEWEB)
Santos de Oliveira, Iona Maghali, E-mail: ioliveira@con.ufrj.br [Nuclear Engineering Program, Federal University of Rio de Janeiro, P.O. Box 68509, Zip Code 21945-970, Rio de Janeiro, RJ (Brazil); Schirru, Roberto, E-mail: schirru@lmp.ufrj.br [Nuclear Engineering Program, Federal University of Rio de Janeiro, P.O. Box 68509, Zip Code 21945-970, Rio de Janeiro, RJ (Brazil)
2011-05-15
Research highlights: > We present Artificial Bee Colony with Random Keys (ABCRK) for In-Core Fuel Management Optimization. > Its performance is examined through the optimization of a Brazilian '2-loop' PWR. > Feasibility of using ABCRK is shown against some well known population-based algorithms. > Additional advantage includes the utilization of fewer control parameters. - Abstract: Artificial Bee Colony (ABC) algorithm is a relatively new member of swarm intelligence. ABC tries to simulate the intelligent behavior of real honey bees in food foraging and can be used for solving continuous optimization and multi-dimensional numeric problems. This paper introduces the Artificial Bee Colony with Random Keys (ABCRK), a modified ABC algorithm for solving combinatorial problems such as the In-Core Fuel Management Optimization (ICFMO). The ICFMO is a hard combinatorial optimization problem in Nuclear Engineering which during many years has been solved by expert knowledge. It aims at getting the best arrangement of fuel in the nuclear reactor core that leads to a maximization of the operating time. As a consequence, the operation cost decreases and money is saved. In this study, ABCRK is used for optimizing the ICFMO problem of a Brazilian '2-loop' Pressurized Water Reactor (PWR) Nuclear Power Plant (NPP) and the results obtained with the proposed algorithm are compared with those obtained by Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The results show that the performance of the ABCRK algorithm is better than or similar to that of other population-based algorithms, with the advantage of employing fewer control parameters.
Swarm intelligence of artificial bees applied to In-Core Fuel Management Optimization
International Nuclear Information System (INIS)
Santos de Oliveira, Iona Maghali; Schirru, Roberto
2011-01-01
Research highlights: → We present Artificial Bee Colony with Random Keys (ABCRK) for In-Core Fuel Management Optimization. → Its performance is examined through the optimization of a Brazilian '2-loop' PWR. → Feasibility of using ABCRK is shown against some well known population-based algorithms. → Additional advantage includes the utilization of fewer control parameters. - Abstract: Artificial Bee Colony (ABC) algorithm is a relatively new member of swarm intelligence. ABC tries to simulate the intelligent behavior of real honey bees in food foraging and can be used for solving continuous optimization and multi-dimensional numeric problems. This paper introduces the Artificial Bee Colony with Random Keys (ABCRK), a modified ABC algorithm for solving combinatorial problems such as the In-Core Fuel Management Optimization (ICFMO). The ICFMO is a hard combinatorial optimization problem in Nuclear Engineering which during many years has been solved by expert knowledge. It aims at getting the best arrangement of fuel in the nuclear reactor core that leads to a maximization of the operating time. As a consequence, the operation cost decreases and money is saved. In this study, ABCRK is used for optimizing the ICFMO problem of a Brazilian '2-loop' Pressurized Water Reactor (PWR) Nuclear Power Plant (NPP) and the results obtained with the proposed algorithm are compared with those obtained by Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The results show that the performance of the ABCRK algorithm is better than or similar to that of other population-based algorithms, with the advantage of employing fewer control parameters.
Frankowska, Hélène; Hoehener, Daniel
2017-06-01
This paper is devoted to pointwise second-order necessary optimality conditions for the Mayer problem arising in optimal control theory. We first show that with every optimal trajectory it is possible to associate a solution p (ṡ) of the adjoint system (as in the Pontryagin maximum principle) and a matrix solution W (ṡ) of an adjoint matrix differential equation that satisfy a second-order transversality condition and a second-order maximality condition. These conditions seem to be a natural second-order extension of the maximum principle. We then prove a Jacobson like necessary optimality condition for general control systems and measurable optimal controls that may be only ;partially singular; and may take values on the boundary of control constraints. Finally we investigate the second-order sensitivity relations along optimal trajectories involving both p (ṡ) and W (ṡ).
Robust output LQ optimal control via integral sliding modes
Fridman, Leonid; Bejarano, Francisco Javier
2014-01-01
Featuring original research from well-known experts in the field of sliding mode control, this monograph presents new design schemes for implementing LQ control solutions in situations where the output system is the only information provided about the state of the plant. This new design works under the restrictions of matched disturbances without losing its desirable features. On the cutting-edge of optimal control research, Robust Output LQ Optimal Control via Integral Sliding Modes is an excellent resource for both graduate students and professionals involved in linear systems, optimal control, observation of systems with unknown inputs, and automatization. In the theory of optimal control, the linear quadratic (LQ) optimal problem plays an important role due to its physical meaning, and its solution is easily given by an algebraic Riccati equation. This solution turns out to be restrictive, however, because of two assumptions: the system must be free from disturbances and the entire state vector must be kn...
Applied Research of Enterprise Cost Control Based on Linear Programming
Directory of Open Access Journals (Sweden)
Yu Shuo
2015-01-01
This paper researches the enterprise cost control through the linear programming model, and analyzes the restriction factors of the labor of enterprise production, raw materials, processing equipment, sales price, and other factors affecting the enterprise income, so as to obtain an enterprise cost control model based on the linear programming. This model can calculate rational production mode in the case of limited resources, and acquire optimal enterprise income. The production guiding program and scheduling arrangement of the enterprise can be obtained through calculation results, so as to provide scientific and effective guidance for the enterprise production. This paper adds the sensitivity analysis in the linear programming model, so as to learn about the stability of the enterprise cost control model based on linear programming through the sensitivity analysis, and verify the rationality of the model, and indicate the direction for the enterprise cost control. The calculation results of the model can provide a certain reference for the enterprise planning in the market economy environment, which have strong reference and practical significance in terms of the enterprise cost control.
Optimal control of stochastic difference Volterra equations an introduction
Shaikhet, Leonid
2015-01-01
This book showcases a subclass of hereditary systems, that is, systems with behaviour depending not only on their current state but also on their past history; it is an introduction to the mathematical theory of optimal control for stochastic difference Volterra equations of neutral type. As such, it will be of much interest to researchers interested in modelling processes in physics, mechanics, automatic regulation, economics and finance, biology, sociology and medicine for all of which such equations are very popular tools. The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral stochastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for stochastic integral Volterra equations with optimal solutions for corresponding problems in stochastic difference Volterra equations. Optimal Control of Stochastic Difference Volterra Equation...
Optimal Control for a Class of Chaotic Systems
Directory of Open Access Journals (Sweden)
Jianxiong Zhang
2012-01-01
Full Text Available This paper proposes the optimal control methods for a class of chaotic systems via state feedback. By converting the chaotic systems to the form of uncertain piecewise linear systems, we can obtain the optimal controller minimizing the upper bound on cost function by virtue of the robust optimal control method of piecewise linear systems, which is cast as an optimization problem under constraints of bilinear matrix inequalities (BMIs. In addition, the lower bound on cost function can be achieved by solving a semidefinite programming (SDP. Finally, numerical examples are given to illustrate the results.
PID control for chaotic synchronization using particle swarm optimization
Energy Technology Data Exchange (ETDEWEB)
Chang, W.-D. [Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan (China)], E-mail: wdchang@mail.stu.edu.tw
2009-01-30
In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.
PID control for chaotic synchronization using particle swarm optimization
International Nuclear Information System (INIS)
Chang, W.-D.
2009-01-01
In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.
Applying Sequential Particle Swarm Optimization Algorithm to Improve Power Generation Quality
Directory of Open Access Journals (Sweden)
Abdulhafid Sallama
2014-10-01
Full Text Available Swarm Optimization approach is a heuristic search method whose mechanics are inspired by the swarming or collaborative behaviour of biological populations. It is used to solve constrained, unconstrained, continuous and discrete problems. Swarm intelligence systems are widely used and very effective in solving standard and large-scale optimization, provided that the problem does not require multi solutions. In this paper, particle swarm optimisation technique is used to optimise fuzzy logic controller (FLC for stabilising a power generation and distribution network that consists of four generators. The system is subject to different types of faults (single and multi-phase. Simulation studies show that the optimised FLC performs well in stabilising the network after it recovers from a fault. The controller is compared to multi-band and standard controllers.
An optimized resistor pattern for temperature gradient control in microfluidics
Selva, Bertrand; Marchalot, Julien; Jullien, Marie-Caroline
2009-06-01
In this paper, we demonstrate the possibility of generating high-temperature gradients with a linear temperature profile when heating is provided in situ. Thanks to improved optimization algorithms, the shape of resistors, which constitute the heating source, is optimized by applying the genetic algorithm NSGA-II (acronym for the non-dominated sorting genetic algorithm) (Deb et al 2002 IEEE Trans. Evol. Comput. 6 2). Experimental validation of the linear temperature profile within the cavity is carried out using a thermally sensitive fluorophore, called Rhodamine B (Ross et al 2001 Anal. Chem. 73 4117-23, Erickson et al 2003 Lab Chip 3 141-9). The high level of agreement obtained between experimental and numerical results serves to validate the accuracy of this method for generating highly controlled temperature profiles. In the field of actuation, such a device is of potential interest since it allows for controlling bubbles or droplets moving by means of thermocapillary effects (Baroud et al 2007 Phys. Rev. E 75 046302). Digital microfluidics is a critical area in the field of microfluidics (Dreyfus et al 2003 Phys. Rev. Lett. 90 14) as well as in the so-called lab-on-a-chip technology. Through an example, the large application potential of such a technique is demonstrated, which entails handling a single bubble driven along a cavity using simple and tunable embedded resistors.
An optimized resistor pattern for temperature gradient control in microfluidics
International Nuclear Information System (INIS)
Selva, Bertrand; Marchalot, Julien; Jullien, Marie-Caroline
2009-01-01
In this paper, we demonstrate the possibility of generating high-temperature gradients with a linear temperature profile when heating is provided in situ. Thanks to improved optimization algorithms, the shape of resistors, which constitute the heating source, is optimized by applying the genetic algorithm NSGA-II (acronym for the non-dominated sorting genetic algorithm) (Deb et al 2002 IEEE Trans. Evol. Comput. 6 2). Experimental validation of the linear temperature profile within the cavity is carried out using a thermally sensitive fluorophore, called Rhodamine B (Ross et al 2001 Anal. Chem. 73 4117–23, Erickson et al 2003 Lab Chip 3 141–9). The high level of agreement obtained between experimental and numerical results serves to validate the accuracy of this method for generating highly controlled temperature profiles. In the field of actuation, such a device is of potential interest since it allows for controlling bubbles or droplets moving by means of thermocapillary effects (Baroud et al 2007 Phys. Rev. E 75 046302). Digital microfluidics is a critical area in the field of microfluidics (Dreyfus et al 2003 Phys. Rev. Lett. 90 14) as well as in the so-called lab-on-a-chip technology. Through an example, the large application potential of such a technique is demonstrated, which entails handling a single bubble driven along a cavity using simple and tunable embedded resistors
Isolation strategy of a two-strain avian influenza model using optimal control
Mardlijah, Ariani, Tika Desi; Asfihani, Tahiyatul
2017-08-01
Avian influenza has killed many victims of both birds and humans. Most cases of avian influenza infection in humans have resulted transmission from poultry to humans. To prevent or minimize the patients of avian influenza can be done by pharmaceutical and non-pharmaceutical measures such as the use of masks, isolation, etc. We will be analyzed two strains of avian influenza models that focus on treatment of symptoms with insulation, then investigate the stability of the equilibrium point by using Routh-Hurwitz criteria. We also used optimal control to reduce the number of humans infected by making the isolation level as the control then proceeds optimal control will be simulated. The completion of optimal control used in this study is the Pontryagin Minimum Principle and for simulation we are using Runge Kutta method. The results obtained showed that the application of two control is more optimal compared to apply one control only.
Attitude Control Optimization for ROCSAT-2 Operation
Chern, Jeng-Shing; Wu, A.-M.
one revolution. The purpose of this paper is to present the attitude control design optimization such that the maximum solar energy is ingested while minimum maneuvering energy is dissipated. The strategy includes the maneuvering sequence design, the minimization of angular path, the sizing of three magnetic torquers, and the trade-off of the size, number and orientations arrangement of momentum wheels.
Disturbance Error Reduction in Multivariable Optimal Control Systems
Directory of Open Access Journals (Sweden)
Ole A. Solheim
1983-01-01
Full Text Available The paper deals with the design of optimal multivariable controllers, using a modified LQR approach. All controllers discussed contain proportional feedback and, in addition, there may be feedforward, integral action or state estimation.
Advanced Process Control Application and Optimization in Industrial Facilities
Directory of Open Access Journals (Sweden)
Howes S.
2015-01-01
Full Text Available This paper describes application of the new method and tool for system identification and PID tuning/advanced process control (APC optimization using the new 3G (geometric, gradient, gravity optimization method. It helps to design and implement control schemes directly inside the distributed control system (DCS or programmable logic controller (PLC. Also, the algorithm helps to identify process dynamics in closed-loop mode, optimizes controller parameters, and helps to develop adaptive control and model-based control (MBC. Application of the new 3G algorithm for designing and implementing APC schemes is presented. Optimization of primary and advanced control schemes stabilizes the process and allows the plant to run closer to process, equipment and economic constraints. This increases production rates, minimizes operating costs and improves product quality.
Optimal Vibration Control for Tracked Vehicle Suspension Systems
Directory of Open Access Journals (Sweden)
Yan-Jun Liang
2013-01-01
Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.
On the application of Discrete Time Optimal Control Concepts to ...
African Journals Online (AJOL)
On the application of Discrete Time Optimal Control Concepts to Economic Problems. ... Journal of the Nigerian Association of Mathematical Physics ... Abstract. An extension of the use of the maximum principle to solve Discrete-time Optimal Control Problems (DTOCP), in which the state equations are in the form of general ...
Optimization of feed water control for auxiliary boiler
International Nuclear Information System (INIS)
Li Lingmao
2004-01-01
This paper described the feed water control system of the auxiliary boiler steam drum in Qinshan Phase III Nuclear Power Plant, analyzed the deficiency of the original configuration, and proposed the optimized configuration. The optimized feed water control system can ensure the stable and safe operation of the auxiliary boiler, and the normal operation of the users. (author)
Optimization and Control of Electric Power Systems
Energy Technology Data Exchange (ETDEWEB)
Lesieutre, Bernard C. [Univ. of Wisconsin, Madison, WI (United States); Molzahn, Daniel K. [Univ. of Wisconsin, Madison, WI (United States)
2014-10-17
The analysis and optimization needs for planning and operation of the electric power system are challenging due to the scale and the form of model representations. The connected network spans the continent and the mathematical models are inherently nonlinear. Traditionally, computational limits have necessitated the use of very simplified models for grid analysis, and this has resulted in either less secure operation, or less efficient operation, or both. The research conducted in this project advances techniques for power system optimization problems that will enhance reliable and efficient operation. The results of this work appear in numerous publications and address different application problems include optimal power flow (OPF), unit commitment, demand response, reliability margins, planning, transmission expansion, as well as general tools and algorithms.
DEFF Research Database (Denmark)
Mørkholt, Jakob
1997-01-01
Optimal feedback control of broadband sound radiation from a rectangular baffled panel has been investigated through computer simulations. Special emphasis has been put on the sensitivity of the optimal feedback control to uncertainties in the modelling of the system under control.A model...... in terms of a set of radiation filters modelling the radiation dynamics.Linear quadratic feedback control applied to the panel in order to minimise the radiated sound power has then been simulated. The sensitivity of the model based controller to modelling uncertainties when using feedback from actual...
Optimization programs of radiation protection applied to post-graduation and encouraging research
International Nuclear Information System (INIS)
Levy, Denise S.; Sordi, Gian Maria A.A.
2013-01-01
In 2011 we started the automation and integration of radiological protection optimization programs, in order to offer unified programs and inter-related information in Portuguese, providing Brazilian radioactive facilities a complete repository for research, consultation and information. The authors of this project extended it to postgraduate education, in order to encourage postgraduate students researches, expanding methods for enhancing student learning through the use of different combined resources, such as educational technology, information technology and group dynamics. This new methodology was applied in a postgraduate discipline at Instituto de Pesquisas Energeticas e Nucleares (IPEN), Brazil, in the postgraduate discipline entitled Fundamental Elements of Radiological Protection (TNA-5732). Students have six weeks to assimilate a complex content of optimization, considering national and international standards, guidelines and recommendations published by different organizations over the past decades. Unlike traditional classes, in which students receive prompt responses, this new methodology stimulates discussion, encouraging collective thinking processes and promoting ongoing personal reflection and researches. Case-oriented problem-solving permitted students to play different roles, promoting whole-group discussions and cooperative learning, approaching theory and practical applications. Students discussed different papers, published in international conferences, and their implications according to current standards. The automation of optimization programs was essential as a research tool during the course. The results of this experience were evaluated in two consecutive years. We had excellent results compared to the previous 14 years. The methodology has exceeded expectations and will be also applied in 2013 to ionizing radiation monitoring postgraduate classes. (author)
Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing
2015-07-01
In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.
Real-time sail and heading optimization for a surface sailing vessel by extremum seeking control
DEFF Research Database (Denmark)
Treichel, Kai; Jouffroy, Jerome
2010-01-01
In this paper we develop a simplified mathematical model representing the main elements of the behaviour of sailing vessels as a basis for simulation and controller design. For adaptive real-time optimization of the sail and heading angle we then apply extremum seeking control (which is a gradient...
Optimal Operation and Stabilising Control of the Concentric Heat-Integrated Distillation Column
DEFF Research Database (Denmark)
Bisgaard, Thomas; Skogestad, Sigurd; Huusom, Jakob Kjøbsted
2016-01-01
A systematic control structure design method is applied on the concentric heat integrated distillation column (HIDiC) separating benzene and toluene. A degrees of freedom analysis is provided for identifying potential manipulated and controlled variables. Optimal operation is mapped and active...
Discrete-time optimal control and games on large intervals
Zaslavski, Alexander J
2017-01-01
Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...
International Nuclear Information System (INIS)
Huh, Jae Sung; Kwak, Byung Man
2011-01-01
Robust optimization or reliability-based design optimization are some of the methodologies that are employed to take into account the uncertainties of a system at the design stage. For applying such methodologies to solve industrial problems, accurate and efficient methods for estimating statistical moments and failure probability are required, and further, the results of sensitivity analysis, which is needed for searching direction during the optimization process, should also be accurate. The aim of this study is to employ the function approximation moment method into the sensitivity analysis formulation, which is expressed as an integral form, to verify the accuracy of the sensitivity results, and to solve a typical problem of reliability-based design optimization. These results are compared with those of other moment methods, and the feasibility of the function approximation moment method is verified. The sensitivity analysis formula with integral form is the efficient formulation for evaluating sensitivity because any additional function calculation is not needed provided the failure probability or statistical moments are calculated
Comparison of Heuristic Methods Applied for Optimal Operation of Water Resources
Directory of Open Access Journals (Sweden)
Alireza Borhani Dariane
2009-01-01
Full Text Available Water resources optimization problems are usually complex and hard to solve using the ordinary optimization methods, or they are at least not economically efficient. A great number of studies have been conducted in quest of suitable methods capable of handling such problems. In recent years, some new heuristic methods such as genetic and ant algorithms have been introduced in systems engineering. Preliminary applications of these methods in water resources problems have shown that some of them are powerful tools, capable of solving complex problems. In this paper, the application of such heuristic methods as Genetic Algorithm (GA and Ant Colony Optimization (ACO have been studied for optimizing reservoir operation. The Dez Dam reservoir inIranwas chosen for a case study. The methods were applied and compared using short-term (one year and long-term models. Comparison of the results showed that GA outperforms both DP and ACO in finding true global optimum solutions and operating rules.
Energy loss optimization of run-off-road wheels applying imperialist competitive algorithm
Directory of Open Access Journals (Sweden)
Hamid Taghavifar
2014-08-01
Full Text Available The novel imperialist competitive algorithm (ICA has presented outstanding fitness on various optimization problems. Application of meta-heuristics has been a dynamic studying interest of the reliability optimization to determine idleness and reliability constituents. The application of a meta-heuristic evolutionary optimization method, imperialist competitive algorithm (ICA, for minimization of energy loss due to wheel rolling resistance in a soil bin facility equipped with single-wheel tester is discussed. The required data were collected thorough various designed experiments in the controlled soil bin environment. Local and global searching of the search space proposed that the energy loss could be reduced to the minimum amount of 15.46 J at the optimized input variable configuration of wheel load at 1.2 kN, tire inflation pressure of 296 kPa and velocity of 2 m/s. Meanwhile, genetic algorithm (GA, particle swarm optimization (PSO and hybridized GA–PSO approaches were benchmarked among the broad spectrum of meta-heuristics to find the outperforming approach. It was deduced that, on account of the obtained results, ICA can achieve optimum configuration with superior accuracy in less required computational time.
Pinto Mariano, Adriano; Bastos Borba Costa, Caliane; de Franceschi de Angelis, Dejanira; Maugeri Filho, Francisco; Pires Atala, Daniel Ibraim; Wolf Maciel, Maria Regina; Maciel Filho, Rubens
2009-11-01
In this work, the mathematical optimization of a continuous flash fermentation process for the production of biobutanol was studied. The process consists of three interconnected units, as follows: fermentor, cell-retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The objective of the optimization was to maximize butanol productivity for a desired substrate conversion. Two strategies were compared for the optimization of the process. In one of them, the process was represented by a deterministic model with kinetic parameters determined experimentally and, in the other, by a statistical model obtained using the factorial design technique combined with simulation. For both strategies, the problem was written as a nonlinear programming problem and was solved with the sequential quadratic programming technique. The results showed that despite the very similar solutions obtained with both strategies, the problems found with the strategy using the deterministic model, such as lack of convergence and high computational time, make the use of the optimization strategy with the statistical model, which showed to be robust and fast, more suitable for the flash fermentation process, being recommended for real-time applications coupling optimization and control.
Optimal control of wind power plants
Steinbuch, M.; Boer, de W.W.; Bosgra, O.H.; Peeters, S.A.W.M.; Ploeg, J.
1988-01-01
The control system design for a wind power plant is investigated. Both theoverall wind farm control and the individual wind turbine control effect thewind farm dynamic performance.For a wind turbine with a synchronous generator and rectifier/invertersystem a multivariable controller is designed.
Optimal control of operation efficiency of belt conveyor systems
International Nuclear Information System (INIS)
Zhang, Shirong; Xia, Xiaohua
2010-01-01
The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study.
Optimal control of operation efficiency of belt conveyor systems
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shirong [Department of Automation, Wuhan University, Wuhan 430072 (China); Xia, Xiaohua [Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002 (South Africa)
2010-06-15
The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study. (author)
Ant colony optimization and neural networks applied to nuclear power plant monitoring
Energy Technology Data Exchange (ETDEWEB)
Santos, Gean Ribeiro dos; Andrade, Delvonei Alves de; Pereira, Iraci Martinez, E-mail: gean@usp.br, E-mail: delvonei@ipen.br, E-mail: martinez@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the ANNs created to solve this kind of problem are created by taking into account only parameters as the number of inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research reactor at IPEN. (author)
Ant colony optimization and neural networks applied to nuclear power plant monitoring
International Nuclear Information System (INIS)
Santos, Gean Ribeiro dos; Andrade, Delvonei Alves de; Pereira, Iraci Martinez
2015-01-01
A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the ANNs created to solve this kind of problem are created by taking into account only parameters as the number of inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research reactor at IPEN. (author)
Optimal control of a qubit in an optical cavity
International Nuclear Information System (INIS)
Deffner, Sebastian
2014-01-01
We study quantum information processing by means of optimal control theory. To this end, we analyze the damped Jaynes–Cummings model, and derive optimal control protocols that minimize the heating or energy dispersion rates, and controls that drive the system at the quantum speed limit. Special emphasis is put on analyzing the subtleties of optimal control theory for our system. In particular, it is shown how two fundamentally different approaches to the quantum speed limit can be reconciled by carefully formulating the problem. (paper)
A General Multidisciplinary Turbomachinery Design Optimization system Applied to a Transonic Fan
Nemnem, Ahmed Mohamed Farid
The blade geometry design process is integral to the development and advancement of compressors and turbines in gas generators or aeroengines. A new airfoil section design capability has been added to an open source parametric 3D blade design tool. Curvature of the meanline is controlled using B-splines to create the airfoils. The curvature is analytically integrated to derive the angles and the meanline is obtained by integrating the angles. A smooth thickness distribution is then added to the airfoil to guarantee a smooth shape while maintaining a prescribed thickness distribution. A leading edge B-spline definition has also been implemented to achieve customized airfoil leading edges which guarantees smoothness with parametric eccentricity and droop. An automated turbomachinery design and optimization system has been created. An existing splittered transonic fan is used as a test and reference case. This design was more general than a conventional design to have access to the other design methodology. The whole mechanical and aerodynamic design loops are automated for the optimization process. The flow path and the geometrical properties of the rotor are initially created using the axi-symmetric design and analysis code (T-AXI). The main and splitter blades are parametrically designed with the created geometry builder (3DBGB) using the new added features (curvature technique). The solid model creation of the rotor sector with a periodic boundaries combining the main blade and splitter is done using MATLAB code directly connected to SolidWorks including the hub, fillets and tip clearance. A mechanical optimization is performed with DAKOTA (developed by DOE) to reduce the mass of the blades while keeping maximum stress as a constraint with a safety factor. A Genetic algorithm followed by Numerical Gradient optimization strategies are used in the mechanical optimization. The splittered transonic fan blades mass is reduced by 2.6% while constraining the maximum
Design of Optimal Hybrid Position/Force Controller for a Robot Manipulator Using Neural Networks
Directory of Open Access Journals (Sweden)
Vikas Panwar
2007-01-01
Full Text Available The application of quadratic optimization and sliding-mode approach is considered for hybrid position and force control of a robot manipulator. The dynamic model of the manipulator is transformed into a state-space model to contain two sets of state variables, where one describes the constrained motion and the other describes the unconstrained motion. The optimal feedback control law is derived solving matrix differential Riccati equation, which is obtained using Hamilton Jacobi Bellman optimization. The optimal feedback control law is shown to be globally exponentially stable using Lyapunov function approach. The dynamic model uncertainties are compensated with a feedforward neural network. The neural network requires no preliminary offline training and is trained with online weight tuning algorithms that guarantee small errors and bounded control signals. The application of the derived control law is demonstrated through simulation with a 4-DOF robot manipulator to track an elliptical planar constrained surface while applying the desired force on the surface.
Fate of trace element haps when applying mercury control technologies
Energy Technology Data Exchange (ETDEWEB)
Nyberg, Carolyn M.; Thompson, Jeffrey S.; Zhuang, Ye; Pavlish, John H. [University of North Dakota Energy and Environmental Research Center 15 North 23rd Street, Stop 9018, Grand Forks, North Dakota 58202-9018 (United States); Brickett, Lynn; Pletcher, Sara [U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road, PO Box 10940, MS 922-273C, Pittsburgh, PA 15236-0940 (United States)
2009-11-15
During the past several years, and particularly since the Clean Air Mercury Rule (CAMR) was promulgated in June of 2005, the electric utility industry, product vendors, and the research community have been working diligently to develop and test Hg control strategies for a variety of coal types and plant configurations. Some of these strategies include sorbent injection and chemical additives designed to increase mercury capture efficiency in particulate control devices. These strategies have the potential to impact the fate of other inorganic hazardous air pollutants (HAPs), which typically include As, Be, Cd, Cr, Co, Mn, Ni, Pb, Se, and Sb. To evaluate this impact, flue gas samples using EPA Method 29, along with representative coal and ash samples, were collected during recent pilot-scale and field test projects that were evaluating Hg control technologies. These test programs included a range of fuel types with varying trace element concentrations, along with different combustion systems and particulate control devices. The results show that the majority of the trace element HAPs are associated with the particulate matter in the flue gas, except for Se. However, for five of the six projects, Se partitioning was shifted to the particulate phase and total emissions reduced when Hg control technologies were applied. (author)
Optimization of nonlinear controller with an enhanced biogeography approach
Directory of Open Access Journals (Sweden)
Mohammed Salem
2014-07-01
Full Text Available This paper is dedicated to the optimization of nonlinear controllers basing of an enhanced Biogeography Based Optimization (BBO approach. Indeed, The BBO is combined to a predator and prey model where several predators are used with introduction of a modified migration operator to increase the diversification along the optimization process so as to avoid local optima and reach the optimal solution quickly. The proposed approach is used in tuning the gains of PID controller for nonlinear systems. Simulations are carried out over a Mass spring damper and an inverted pendulum and has given remarkable results when compared to genetic algorithm and BBO.
Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.
Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon
2017-01-01
In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach. Copyright © 2016. Published by Elsevier Ltd.
CRM Failure to Apply Optimal Management Information Systems: Case of Lebanese Financial Sector
Directory of Open Access Journals (Sweden)
Charbel Salloum
2013-12-01
Full Text Available Financial markets in Lebanon are constrained by government influence, Islamic financial principles, and some barriers to foreign participation. Productivity in the Lebanese financial sector ranks below its occidental counterpart in spite the fact that regulatory, supervisory, and accounting standards are generally consistent with international norms. This paper aims to give the reasons and recommendations of the failure of applying the optimal management information system in the Lebanese Financial Sector. Our results show that the reasons include among others the systems by it selves, their functionalities, but also, companies’ strategy and human capital issues.
APPLYING ARTIFICIAL NEURAL NETWORK OPTIMIZED BY FIREWORKS ALGORITHM FOR STOCK PRICE ESTIMATION
Directory of Open Access Journals (Sweden)
Khuat Thanh Tung
2016-04-01
Full Text Available Stock prediction is to determine the future value of a company stock dealt on an exchange. It plays a crucial role to raise the profit gained by firms and investors. Over the past few years, many methods have been developed in which plenty of efforts focus on the machine learning framework achieving the promising results. In this paper, an approach based on Artificial Neural Network (ANN optimized by Fireworks algorithm and data preprocessing by Haar Wavelet is applied to estimate the stock prices. The system was trained and tested with real data of various companies collected from Yahoo Finance. The obtained results are encouraging.
Optimal control of switched systems arising in fermentation processes
Liu, Chongyang
2014-01-01
The book presents, in a systematic manner, the optimal controls under different mathematical models in fermentation processes. Variant mathematical models – i.e., those for multistage systems; switched autonomous systems; time-dependent and state-dependent switched systems; multistage time-delay systems and switched time-delay systems – for fed-batch fermentation processes are proposed and the theories and algorithms of their optimal control problems are studied and discussed. By putting forward novel methods and innovative tools, the book provides a state-of-the-art and comprehensive systematic treatment of optimal control problems arising in fermentation processes. It not only develops nonlinear dynamical system, optimal control theory and optimization algorithms, but can also help to increase productivity and provide valuable reference material on commercial fermentation processes.
5th International Conference on Optimization and Control with Applications
Teo, Kok; Zhang, Yi
2014-01-01
This book presents advances in state-of-the-art solution methods and their applications to real life practical problems in optimization, control and operations research. Contributions from world-class experts in the field are collated here in two parts, dealing first with optimization and control theory and then with techniques and applications. Topics covered in the first part include control theory on infinite dimensional Banach spaces, history-dependent inclusion and linear programming complexity theory. Chapters also explore the use of approximations of Hamilton-Jacobi-Bellman inequality for solving periodic optimization problems and look at multi-objective semi-infinite optimization problems, and production planning problems. In the second part, the authors address techniques and applications of optimization and control in a variety of disciplines, such as chaos synchronization, facial expression recognition and dynamic input-output economic models. Other applications considered here include image retr...
Control strategy optimization of HVAC plants
Energy Technology Data Exchange (ETDEWEB)
Facci, Andrea Luigi; Zanfardino, Antonella [Department of Engineering, University of Napoli “Parthenope” (Italy); Martini, Fabrizio [Green Energy Plus srl (Italy); Pirozzi, Salvatore [SIAT Installazioni spa (Italy); Ubertini, Stefano [School of Engineering (DEIM) University of Tuscia (Italy)
2015-03-10
In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting.
Control strategy optimization of HVAC plants
International Nuclear Information System (INIS)
Facci, Andrea Luigi; Zanfardino, Antonella; Martini, Fabrizio; Pirozzi, Salvatore; Ubertini, Stefano
2015-01-01
In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting
Symbolic approximate time-optimal control
Mazo, Manuel; Tabuada, Paulo
There is an increasing demand for controller design techniques capable of addressing the complex requirements of today's embedded applications. This demand has sparked the interest in symbolic control where lower complexity models of control systems are used to cater for complex specifications given
Optimization and Control of Communication Networks
Chiang, Mung; Low, Steven
2005-01-01
Recently, there has been a surge in research activities that utilize the power of recent developments in nonlinear optimization to tackle a wide scope of work in the analysis and design of communication systems, touching every layer of the layered network architecture, and resulting in both intellectual and practical impacts significantly beyond the earlier frameworks. These research activities are driven by both new demands in the areas of communications and networking, and n...
Quality control tools applied to a PV microgrid in Ecuador
Energy Technology Data Exchange (ETDEWEB)
Camino-Villacorta, M.; Egido-Aguilera, M.A. [Ciudad Univ., Madrid (Spain). Inst. de Energia Solar - UPM; Gamez, J.; Arranz-Piera, P. [Trama Tecnoambiental (TTA), Barcelona (Spain)
2010-07-01
The Instituto de Energia Solar has been dealing with quality control issues for rural electrification for many years. In the framework of project DOSBE (Development of Electricity Service Operators for Poverty Alleviation in Ecuador and Peru), a technical toolkit has been developed to implement adapted integral quality control procedures for photovoltaic systems (covering all components and equipment, installation and servicing), applicable at a local and regional scale, with the overall aim of increasing the confidence in photovoltaic systems. This toolkit was applied in the evaluation of an existing microgrid in Ecuador, which is described in this paper. The toolkit and the detailed results of its application are presented in a published document which is being widely distributed among the stakeholders of rural electrification in Ecuador and Peru. It can be downloaded from the web page of the DOSBE project: www.dosbe.org (orig.)
An approach using quantum ant colony optimization applied to the problem of nuclear reactors reload
International Nuclear Information System (INIS)
Silva, Marcio H.; Lima, Alan M.M. de; Schirru, Roberto; Medeiros, J.A.C.C.
2009-01-01
The basic concept behind the nuclear reactor fuel reloading problem is to find a configuration of new and used fuel elements, to keep the plant working at full power by the largest possible duration, within the safety restrictions. The main restriction is the power peaking factor, which is the limit value for the preservation of the fuel assembly. The QACO A lfa algorithm is a modified version of Quantum Ant Colony Optimization (QACO) proposed by Wang et al, which uses a new actualization method and a pseudo evaporation step. We examined the QACO A lfa behavior associated to physics of reactors code RECNOD when applied to this problem. Although the QACO have been developed for continuous functions, the binary model used in this work allows applying it to discrete problems, such as the mentioned above. (author)
Near Optimal Decentralized H-infinity Control: Bounded vs. Unbounded Controller Order
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, H.H.
1997-01-01
It is shown that for a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinite dimensional optimal controller. Using the insight of the line of proof of these results, a heuris......It is shown that for a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinite dimensional optimal controller. Using the insight of the line of proof of these results...
Optimal Control of Interdependent Epidemics in Complex Networks
Chen, Juntao; Zhang, Rui; Zhu, Quanyan
2017-01-01
Optimal control of interdependent epidemics spreading over complex networks is a critical issue. We first establish a framework to capture the coupling between two epidemics, and then analyze the system's equilibrium states by categorizing them into three classes, and deriving their stability conditions. The designed control strategy globally optimizes the trade-off between the control cost and the severity of epidemics in the network. A gradient descent algorithm based on a fixed point itera...
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Scalable algorithms for optimal control of stochastic PDEs
Ghattas, Omar
2016-01-07
We present methods for the optimal control of systems governed by partial differential equations with infinite-dimensional uncertain parameters. We consider an objective function that involves the mean and variance of the control objective, leading to a risk-averse optimal control formulation. To make the optimal control problem computationally tractable, we employ a local quadratic approximation of the objective with respect to the uncertain parameter. This enables computation of the mean and variance of the control objective analytically. The resulting risk-averse optimization problem is formulated as a PDE-constrained optimization problem with constraints given by the forward and adjoint PDEs for the first and second-order derivatives of the quantity of interest with respect to the uncertain parameter, and with an objective that involves the trace of a covariance-preconditioned Hessian (of the objective with respect to the uncertain parameters) operator. A randomized trace estimator is used to make tractable the trace computation. Adjoint-based techniques are used to derive an expression for the infinite-dimensional gradient of the risk-averse objective function via the Lagrangian, leading to a quasi-Newton method for solution of the optimal control problem. A specific problem of optimal control of a linear elliptic PDE that describes flow of a fluid in a porous medium with uncertain permeability field is considered. We present numerical results to study the consequences of the local quadratic approximation and the efficiency of the method.
Scalable algorithms for optimal control of stochastic PDEs
Ghattas, Omar; Alexanderian, Alen; Petra, Noemi; Stadler, Georg
2016-01-01
We present methods for the optimal control of systems governed by partial differential equations with infinite-dimensional uncertain parameters. We consider an objective function that involves the mean and variance of the control objective, leading to a risk-averse optimal control formulation. To make the optimal control problem computationally tractable, we employ a local quadratic approximation of the objective with respect to the uncertain parameter. This enables computation of the mean and variance of the control objective analytically. The resulting risk-averse optimization problem is formulated as a PDE-constrained optimization problem with constraints given by the forward and adjoint PDEs for the first and second-order derivatives of the quantity of interest with respect to the uncertain parameter, and with an objective that involves the trace of a covariance-preconditioned Hessian (of the objective with respect to the uncertain parameters) operator. A randomized trace estimator is used to make tractable the trace computation. Adjoint-based techniques are used to derive an expression for the infinite-dimensional gradient of the risk-averse objective function via the Lagrangian, leading to a quasi-Newton method for solution of the optimal control problem. A specific problem of optimal control of a linear elliptic PDE that describes flow of a fluid in a porous medium with uncertain permeability field is considered. We present numerical results to study the consequences of the local quadratic approximation and the efficiency of the method.
Discrete-time inverse optimal control for nonlinear systems
Sanchez, Edgar N
2013-01-01
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th
Control Theory Concepts Applied to Retail Supply Chain: A System Dynamics Modeling Environment Study
Directory of Open Access Journals (Sweden)
Balaji Janamanchi
2013-01-01
Full Text Available Control theory concepts have been long used to successfully manage and optimize complex systems. Using system dynamics (SD modeling methodology, which is continuous deterministic simulation modeling methodology, we apply control theory concepts to develop a suitable performance functional (or objective function that optimizes the performance of a retail supply chain. The focus is to develop insights for inventory management to prevent stock-outs and unfilled orders and to fill customer orders at the lowest possible cost to supply chain partners under different scenarios, in a two-player supplier-retailer supply chain. Moderate levels of inventory, defining appropriate performance functional, appear to be crucial in choosing the right policies for managing retail supply chain systems. The study also demonstrated how multiple objectives can be combined in a single performance functional (or objective function by carefully assigning suitable weights to the components of objectives based on their priority and the existence of possible trade off opportunities.
Multi-model Simulation for Optimal Control of Aeroacoustics.
Energy Technology Data Exchange (ETDEWEB)
Collis, Samuel Scott; Chen, Guoquan
2005-05-01
functional to changes in control are also solved with same ap-proach by weakly enforcing continuity ofnormal fluxes across a coupling surface.Such formulations have been validated extensively for several aeroacoustics state andcontrol problems.A multi-model based optimal control framework has been constructed and ap-plied to our interested BVI noise control problem. This model problem consists ofthe interaction of a compressible vortex with Bell AH-1 rotor blade with wall-normal3 velocity used as control on the rotor blade surface. The computational domain isdecomposed into the near-field and far-field. The near-field is obtained by numericalsolution of the Navier-Stokes equations while far away from the noise source, wherethe effect of nonlinearities is negligible, the linearized Euler equations are used tomodel the acoustic wave propagation. The BVI wave packet is targeted by definingan objective function that measures the square amplitude of pressure fluctuations inan observation region, at a time interval encompassing the dominant leading edgecompressibility waves. Our control results show that a 12dB reduction in the ob-servation region is obtained. Interestingly, the control mechanism focuses on theobservation region and only minimize the sound level in that region at the expense ofother regions. The vortex strength and trajectory get barely changed. However, theoptimal control does alter the interaction of the vortical and potential fields, whichis the source of BVI noise. While this results in a slight increase in drag, there is asignificant reduction in the temporal gradient of lift leading to a reduction in BVIsound levels.4
International Nuclear Information System (INIS)
Machado, Marcelo D.; Dchirru, Roberto
2005-01-01
The nuclear reactor core reload optimization problem consists in finding a pattern of partially burned-up and fresh fuels that optimizes the plant's next operation cycle. This optimization problem has been traditionally solved using an expert's knowledge, but recently artificial intelligence techniques have also been applied successfully. The artificial intelligence optimization techniques generally have a single objective. However, most real-world engineering problems, including nuclear core reload optimization, have more than one objective (multi-objective) and these objectives are usually conflicting. The aim of this work is to develop a tool to solve multi-objective problems based on the Population-Based Incremental Learning (PBIL) algorithm. The new tool is applied to solve the Angra 1 PWR core reload optimization problem with the purpose of creating a Pareto surface, so that a pattern selected from this surface can be applied for the plant's next operation cycle. (author)
Stochastic optimal control in a danger zone
Lefebvre, Mario
2011-04-01
Let X(t) be a one-dimensional controlled Wiener process, and let τ(x) be the first time X(t) takes on the value A, given that X(0) = x. The problem of finding the control that minimises the expected value of a cost function with quadratic control costs on the way and an instantaneous reward (or penalty) given for survival in the continuation region is solved explicitly in the case when A is a random variable.
Optimization in the design and control of robotic manipulators: A survey
International Nuclear Information System (INIS)
Rao, S.S.; Bhatti, P.K.
1989-01-01
Robotics is a relatively new and evolving technology being applied to manufacturing automation and is fast replacing the special-purpose machines or hard automation as it is often called. Demands for higher productivity, better and uniform quality products, and better working environments are primary reasons for its development. An industrial robot is a multifunctional and computer-controlled mechanical manipulator exhibiting a complex and highly nonlinear behavior. Even though most current robots have anthropomorphic configurations, they have far inferior manipulating abilities compared to humans. A great deal of research effort is presently being directed toward improving their overall performance by using optimal mechanical structures and control strategies. The optimal design of robot manipulators can include kinematic performance characteristics such as workspace, accuracy, repeatability, and redundancy. The static load capacity as well as dynamic criteria such as generalized inertia ellipsoid, dynamic manipulability, and vibratory response have also been considered in the design stages. The optimal control problems typically involve trajectory planning, time-optimal control, energy-optimal control, and mixed-optimal control. The constraints in a robot manipulator design problem usually involve link stresses, actuator torques, elastic deformation of links, and collision avoidance. This paper presents a review of the literature on the issues of optimum design and control of robotic manipulators and also the various optimization techniques currently available for application to robotics
Applied Distributed Model Predictive Control for Energy Efficient Buildings and Ramp Metering
Koehler, Sarah Muraoka
suited for nonlinear optimization problems. The parallel computation of the algorithm exploits iterative linear algebra methods for the main linear algebra computations in the algorithm. We show that the splitting of the algorithm is flexible and can thus be applied to various distributed platform configurations. The two proposed algorithms are applied to two main energy and transportation control problems. The first application is energy efficient building control. Buildings represent 40% of energy consumption in the United States. Thus, it is significant to improve the energy efficiency of buildings. The goal is to minimize energy consumption subject to the physics of the building (e.g. heat transfer laws), the constraints of the actuators as well as the desired operating constraints (thermal comfort of the occupants), and heat load on the system. In this thesis, we describe the control systems of forced air building systems in practice. We discuss the "Trim and Respond" algorithm which is a distributed control algorithm that is used in practice, and show that it performs similarly to a one-step explicit DMPC algorithm. Then, we apply the novel distributed primal-dual active-set method and provide extensive numerical results for the building MPC problem. The second main application is the control of ramp metering signals to optimize traffic flow through a freeway system. This application is particularly important since urban congestion has more than doubled in the past few decades. The ramp metering problem is to maximize freeway throughput subject to freeway dynamics (derived from mass conservation), actuation constraints, freeway capacity constraints, and predicted traffic demand. In this thesis, we develop a hybrid model predictive controller for ramp metering that is guaranteed to be persistently feasible and stable. This contrasts to previous work on MPC for ramp metering where such guarantees are absent. We apply a smoothing method to the hybrid model predictive
Directory of Open Access Journals (Sweden)
R. A. Swief
2018-01-01
Full Text Available This paper presents an efficient Cuckoo Search Optimization technique to improve the reliability of electrical power systems. Various reliability objective indices such as Energy Not Supplied, System Average Interruption Frequency Index, System Average Interruption, and Duration Index are the main indices indicating reliability. The Cuckoo Search Optimization (CSO technique is applied to optimally place the protection devices, install the distributed generators, and to determine the size of distributed generators in radial feeders for reliability improvement. Distributed generator affects reliability and system power losses and voltage profile. The volatility behaviour for both photovoltaic cells and the wind turbine farms affect the values and the selection of protection devices and distributed generators allocation. To improve reliability, the reconfiguration will take place before installing both protection devices and distributed generators. Assessment of consumer power system reliability is a vital part of distribution system behaviour and development. Distribution system reliability calculation will be relayed on probabilistic reliability indices, which can expect the disruption profile of a distribution system based on the volatility behaviour of added generators and load behaviour. The validity of the anticipated algorithm has been tested using a standard IEEE 69 bus system.
IMPORTANCE OF KINETIC MEASURES IN TRAJECTORY PREDICTION WITH OPTIMAL CONTROL
Directory of Open Access Journals (Sweden)
Ömer GÜNDOĞDU
2001-02-01
Full Text Available A two-dimensional sagittally symmetric human-body model was established to simulate an optimal trajectory for manual material handling tasks. Nonlinear control techniques and genetic algorithms were utilized in the optimizations to explore optimal lifting patterns. The simulation results were then compared with the experimental data. Since the kinetic measures such as joint reactions and moments are vital parameters in injury determination, the importance of comparing kinetic measures rather than kinematical ones was emphasized.
Brown, Jonathan M.; Petersen, Jeremy D.
2014-01-01
NASA's WIND mission has been operating in a large amplitude Lissajous orbit in the vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular stationkeeping maneuvers are required to maintain the orbit due to the instability around the collinear libration points. Historically these stationkeeping maneuvers have been performed by applying an incremental change in velocity, or (delta)v along the spacecraft-Sun vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of libration point stationkeeping maneuvers can be minimized by applying the (delta)v in the direction of the local stable manifold found using dynamical systems theory. This paper presents the analysis of this new maneuver strategy which shows that the magnitude of stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in the orbit where the maneuver is performed. The implementation of the optimized maneuver method into operations is discussed and results are presented for the first two optimized stationkeeping maneuvers executed by WIND.
Optimal control of a harmonic oscillator: Economic interpretations
Janová, Jitka; Hampel, David
2013-10-01
Optimal control is a popular technique for modelling and solving the dynamic decision problems in economics. A standard interpretation of the criteria function and Lagrange multipliers in the profit maximization problem is well known. On a particular example, we aim to a deeper understanding of the possible economic interpretations of further mathematical and solution features of the optimal control problem: we focus on the solution of the optimal control problem for harmonic oscillator serving as a model for Phillips business cycle. We discuss the economic interpretations of arising mathematical objects with respect to well known reasoning for these in other problems.
Optimal and Autonomous Control Using Reinforcement Learning: A Survey.
Kiumarsi, Bahare; Vamvoudakis, Kyriakos G; Modares, Hamidreza; Lewis, Frank L
2018-06-01
This paper reviews the current state of the art on reinforcement learning (RL)-based feedback control solutions to optimal regulation and tracking of single and multiagent systems. Existing RL solutions to both optimal and control problems, as well as graphical games, will be reviewed. RL methods learn the solution to optimal control and game problems online and using measured data along the system trajectories. We discuss Q-learning and the integral RL algorithm as core algorithms for discrete-time (DT) and continuous-time (CT) systems, respectively. Moreover, we discuss a new direction of off-policy RL for both CT and DT systems. Finally, we review several applications.
Time dependent optimal switching controls in online selling models
Energy Technology Data Exchange (ETDEWEB)
Bradonjic, Milan [Los Alamos National Laboratory; Cohen, Albert [MICHIGAN STATE UNIV
2010-01-01
We present a method to incorporate dishonesty in online selling via a stochastic optimal control problem. In our framework, the seller wishes to maximize her average wealth level W at a fixed time T of her choosing. The corresponding Hamilton-Jacobi-Bellmann (HJB) equation is analyzed for a basic case. For more general models, the admissible control set is restricted to a jump process that switches between extreme values. We propose a new approach, where the optimal control problem is reduced to a multivariable optimization problem.
Engineering applications of discrete-time optimal control
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui; Ravn, Hans V.
1990-01-01
Many problems of design and operation of engineering systems can be formulated as optimal control problems where time has been discretisized. This is also true even if 'time' is not involved in the formulation of the problem, but rather another one-dimensional parameter. This paper gives a review...... of some well-known and new results in discrete time optimal control methods applicable to practical problem solving within engineering. Emphasis is placed on dynamic programming, the classical maximum principle and generalized versions of the maximum principle for optimal control of discrete time systems...
Assuring robustness to noise in optimal quantum control experiments
International Nuclear Information System (INIS)
Bartelt, A.F.; Roth, M.; Mehendale, M.; Rabitz, H.
2005-01-01
Closed-loop optimal quantum control experiments operate in the inherent presence of laser noise. In many applications, attaining high quality results [i.e., a high signal-to-noise (S/N) ratio for the optimized objective] is as important as producing a high control yield. Enhancement of the S/N ratio will typically be in competition with the mean signal, however, the latter competition can be balanced by biasing the optimization experiments towards higher mean yields while retaining a good S/N ratio. Other strategies can also direct the optimization to reduce the standard deviation of the statistical signal distribution. The ability to enhance the S/N ratio through an optimized choice of the control is demonstrated for two condensed phase model systems: second harmonic generation in a nonlinear optical crystal and stimulated emission pumping in a dye solution
Directory of Open Access Journals (Sweden)
Heba-Allah I. ElAzab
2018-05-01
Full Text Available This paper presents a trustworthy unit commitment study to schedule both Renewable Energy Resources (RERs with conventional power plants to potentially decarbonize the electrical network. The study has employed a system with three IEEE thermal (coal-fired power plants as dispatchable distributed generators, one wind plant, one solar plant as stochastic distributed generators, and Plug-in Electric Vehicles (PEVs which can work either loads or generators based on their charging schedule. This paper investigates the unit commitment scheduling objective to minimize the Combined Economic Emission Dispatch (CEED. To reduce combined emission costs, integrating more renewable energy resources (RER and PEVs, there is an essential need to decarbonize the existing system. Decarbonizing the system means reducing the percentage of CO2 emissions. The uncertain behavior of wind and solar energies causes imbalance penalty costs. PEVs are proposed to overcome the intermittent nature of wind and solar energies. It is important to optimally integrate and schedule stochastic resources including the wind and solar energies, and PEVs charge and discharge processes with dispatched resources; the three IEEE thermal (coal-fired power plants. The Water Cycle Optimization Algorithm (WCOA is an efficient and intelligent meta-heuristic technique employed to solve the economically emission dispatch problem for both scheduling dispatchable and stochastic resources. The goal of this study is to obtain the solution for unit commitment to minimize the combined cost function including CO2 emission costs applying the Water Cycle Optimization Algorithm (WCOA. To validate the WCOA technique, the results are compared with the results obtained from applying the Dynamic Programming (DP algorithm, which is considered as a conventional numerical technique, and with the Genetic Algorithm (GA as a meta-heuristic technique.
Directory of Open Access Journals (Sweden)
Ziyang Zhen
2013-01-01
Full Text Available Attitude control is the inner-loop and the most important part of the automatic flight control system of an unmanned aerial vehicle (UAV. The information fusion-based optimal control method is applied in a UAV flight control system in this work. Firstly, a nonlinear model of alterable thrust direction UAV (ATD-UAV is established and linearized for controller design. The longitudinal controller and lateral controller are respectively designed based on information fusion-based optimal control, and then the information fusion flight control system is built up. Finally, the simulation of a nonlinear model described as ATD-UAV is carried out, the results of which show the superiority of the information fusion-based control strategy when compared to the single-loop design method. We also show that the ATD technique improves the anti-disturbance capacity of the UAV.
Conflicting Multi-Objective Compatible Optimization Control
Xu, Lihong; Hu, Qingsong; Hu, Haigen; Goodman, Erik
2010-01-01
Based on ideas developed in addressing practical greenhouse environmental control, we propose a new multi-objective compatible control method. Several detailed algorithms are proposed to meet the requirements of different kinds of problem: 1) A two-layer MOCC framework is presented for problems with a precise model; 2) To deal with situations
Optimization of control bank overlap for SMART
International Nuclear Information System (INIS)
Song, Jae Seung; Cho, Byung Oh; Zee, Sung Quun
1998-07-01
In the pressurized water reactor, control banks are operated by 40% effective core height overlap to avoid decrease of differential rod worth. This overlap does not effect on the core depletion history because the pressurized water reactor core operated at all rod out condition for the most of the operation time. For the boron free reactor SMART, however, one or more control banks are always inserted in the core to maintain critical condition, and the control bank overlap effects on the core depletion history. Since the cycle length of SMART is limited by three-dimensional core peaking factor at EOC, at which the control bank located at the core center is withdrawn, the cycle length of SMART is affected by the control bank overlap. In this report, the effect of control bank overlap on the core depletion history was evaluated. It is concluded that 60 cm control bank overlap corresponding to 30% effective core height was selected not to increase maximum peaking factor at EOC so that the control bank overlap does not affect the cycle length of the core. (author). 8 refs., 2 tabs., 19 figs
Deterministic methods for multi-control fuel loading optimization
Rahman, Fariz B. Abdul
We have developed a multi-control fuel loading optimization code for pressurized water reactors based on deterministic methods. The objective is to flatten the fuel burnup profile, which maximizes overall energy production. The optimal control problem is formulated using the method of Lagrange multipliers and the direct adjoining approach for treatment of the inequality power peaking constraint. The optimality conditions are derived for a multi-dimensional multi-group optimal control problem via calculus of variations. Due to the Hamiltonian having a linear control, our optimal control problem is solved using the gradient method to minimize the Hamiltonian and a Newton step formulation to obtain the optimal control. We are able to satisfy the power peaking constraint during depletion with the control at beginning of cycle (BOC) by building the proper burnup path forward in time and utilizing the adjoint burnup to propagate the information back to the BOC. Our test results show that we are able to achieve our objective and satisfy the power peaking constraint during depletion using either the fissile enrichment or burnable poison as the control. Our fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in cycle length compared with 517.4 EFPDs for the AP600 first cycle.
Directory of Open Access Journals (Sweden)
Arnaud Chapon
Full Text Available Search for low-energy β contaminations in industrial environments requires using Liquid Scintillation Counting. This indirect measurement method supposes a fine control from sampling to measurement itself. Thus, in this paper, we focus on the definition of a measurement method, as generic as possible, for both smears and aqueous samples’ characterization. That includes choice of consumables, sampling methods, optimization of counting parameters and definition of energy windows, using the maximization of a Figure of Merit. Detection limits are then calculated considering these optimized parameters. For this purpose, we used PerkinElmer Tri-Carb counters. Nevertheless, except those relative to some parameters specific to PerkinElmer, most of the results presented here can be extended to other counters. Keywords: Liquid Scintillation Counting (LSC, PerkinElmer, Tri-Carb, Smear, Swipe
Directory of Open Access Journals (Sweden)
Ying-Yi Hong
2014-01-01
Full Text Available Particle swarm optimization (PSO has been successfully applied to solve many practical engineering problems. However, more efficient strategies are needed to coordinate global and local searches in the solution space when the studied problem is extremely nonlinear and highly dimensional. This work proposes a novel adaptive elite-based PSO approach. The adaptive elite strategies involve the following two tasks: (1 appending the mean search to the original approach and (2 pruning/cloning particles. The mean search, leading to stable convergence, helps the iterative process coordinate between the global and local searches. The mean of the particles and standard deviation of the distances between pairs of particles are utilized to prune distant particles. The best particle is cloned and it replaces the pruned distant particles in the elite strategy. To evaluate the performance and generality of the proposed method, four benchmark functions were tested by traditional PSO, chaotic PSO, differential evolution, and genetic algorithm. Finally, a realistic loss minimization problem in an electric power system is studied to show the robustness of the proposed method.
Evolutionary Computing for Intelligent Power System Optimization and Control
DEFF Research Database (Denmark)
This new book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization the...... theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems....
Optimal Selective Harmonic Control for Power Harmonics Mitigation
DEFF Research Database (Denmark)
Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede
2015-01-01
of power harmonics. The proposed optimal SHC is of hybrid structure: all recursive SHC modules with weighted gains are connected in parallel. It bridges the real “nk+-m order RC” and the complex “parallel structure RC”. Compared to other IMP based control solutions, it offers an optimal trade-off among...
Self-optimizing robust nonlinear model predictive control
Lazar, M.; Heemels, W.P.M.H.; Jokic, A.; Thoma, M.; Allgöwer, F.; Morari, M.
2009-01-01
This paper presents a novel method for designing robust MPC schemes that are self-optimizing in terms of disturbance attenuation. The method employs convex control Lyapunov functions and disturbance bounds to optimize robustness of the closed-loop system on-line, at each sampling instant - a unique
Stochastic optimal control of single neuron spike trains
DEFF Research Database (Denmark)
Iolov, Alexandre; Ditlevsen, Susanne; Longtin, Andrë
2014-01-01
stimulation of a neuron to achieve a target spike train under the physiological constraint to not damage tissue. Approach. We pose a stochastic optimal control problem to precisely specify the spike times in a leaky integrate-and-fire (LIF) model of a neuron with noise assumed to be of intrinsic or synaptic...... origin. In particular, we allow for the noise to be of arbitrary intensity. The optimal control problem is solved using dynamic programming when the controller has access to the voltage (closed-loop control), and using a maximum principle for the transition density when the controller only has access...... to the spike times (open-loop control). Main results. We have developed a stochastic optimal control algorithm to obtain precise spike times. It is applicable in both the supra-threshold and sub-threshold regimes, under open-loop and closed-loop conditions and with an arbitrary noise intensity; the accuracy...
Control and Optimization Methods for Electric Smart Grids
Ilić, Marija
2012-01-01
Control and Optimization Methods for Electric Smart Grids brings together leading experts in power, control and communication systems,and consolidates some of the most promising recent research in smart grid modeling,control and optimization in hopes of laying the foundation for future advances in this critical field of study. The contents comprise eighteen essays addressing wide varieties of control-theoretic problems for tomorrow’s power grid. Topics covered include: Control architectures for power system networks with large-scale penetration of renewable energy and plug-in vehicles Optimal demand response New modeling methods for electricity markets Control strategies for data centers Cyber-security Wide-area monitoring and control using synchronized phasor measurements. The authors present theoretical results supported by illustrative examples and practical case studies, making the material comprehensible to a wide audience. The results reflect the exponential transformation that today’s grid is going...
Cellier , Loïc; Cafieri , Sonia; Messine , Frederic
2013-01-01
International audience; In this paper a numerical study is provided to solve the aircraft conflict avoidance problem through velocity regulation maneuvers. Starting from optimal controlbased model and approaches in which aircraft accelerations are the controls, and by applying the direct shooting technique, we propose to study two different largescale nonlinear optimization problems. In order to compare different possibilities of implementation, two environments (AMPL and MATLAB) and determin...
Altman, Michael B.
The increasing prevalence of intensity modulated radiation therapy (IMRT) as a treatment modality has led to a renewed interest in the potential for interaction between prolonged treatment time, as frequently associated with IMRT, and the underlying radiobiology of the irradiated tissue. A particularly relevant aspect of radiobiology is cell repair capacity, which influences cell survival, and thus directly relates to the ability to control tumors and spare normal tissues. For a single fraction of radiation, the linear quadratic (LQ) model is commonly used to relate the radiation dose to the fraction of cells surviving. The LQ model implies a dependence on two time-related factors which correlate to radiobiological effects: the duration of radiation application, and the functional form of how the dose is applied over that time (the "temporal pattern of applied dose"). Although the former has been well studied, the latter has not. Thus, the goal of this research is to investigate the impact of the temporal pattern of applied dose on the survival of human cells and to explore how the manipulation of this temporal dose pattern may be incorporated into an IMRT-based radiation therapy treatment planning scheme. The hypothesis is that the temporal pattern of applied dose in a single fraction of radiation can be optimized to maximize or minimize cell kill. Furthermore, techniques which utilize this effect could have clinical ramifications. In situations where increased cell kill is desirable, such as tumor control, or limiting the degree of cell kill is important, such as the sparing of normal tissue, temporal sequences of dose which maximize or minimize cell kill (temporally "optimized" sequences) may provide greater benefit than current clinically used radiation patterns. In the first part of this work, an LQ-based modeling analysis of effects of the temporal pattern of dose on cell kill is performed. Through this, patterns are identified for maximizing cell kill for a
Modeling, Optimization & Control of Hydraulic Networks
DEFF Research Database (Denmark)
Tahavori, Maryamsadat
2014-01-01
. The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used......Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...
Optimal design of distributed control and embedded systems
Çela, Arben; Li, Xu-Guang; Niculescu, Silviu-Iulian
2014-01-01
Optimal Design of Distributed Control and Embedded Systems focuses on the design of special control and scheduling algorithms based on system structural properties as well as on analysis of the influence of induced time-delay on systems performances. It treats the optimal design of distributed and embedded control systems (DCESs) with respect to communication and calculation-resource constraints, quantization aspects, and potential time-delays induced by the associated communication and calculation model. Particular emphasis is put on optimal control signal scheduling based on the system state. In order to render this complex optimization problem feasible in real time, a time decomposition is based on periodicity induced by the static scheduling is operated. The authors present a co-design approach which subsumes the synthesis of the optimal control laws and the generation of an optimal schedule of control signals on real-time networks as well as the execution of control tasks on a single processor. The a...
Time-optimal feedback control for linear systems
International Nuclear Information System (INIS)
Mirica, S.
1976-01-01
The paper deals with the results of qualitative investigations of the time-optimal feedback control for linear systems with constant coefficients. In the first section, after some definitions and notations, two examples are given and it is shown that even the time-optimal control problem for linear systems with constant coefficients which looked like ''completely solved'' requires a further qualitative investigation of the stability to ''permanent perturbations'' of optimal feedback control. In the second section some basic results of the linear time-optimal control problem are reviewed. The third section deals with the definition of Boltyanskii's ''regular synthesis'' and its connection to Filippov's theory of right-hand side discontinuous differential equations. In the fourth section a theorem is proved concerning the stability to perturbations of time-optimal feedback control for linear systems with scalar control. In the last two sections it is proved that, if the matrix which defines the system has only real eigenvalues or is three-dimensional, the time-optimal feedback control defines a regular synthesis and therefore is stable to perturbations. (author)
Optimal Inventory Control with Advance Supply Information
Directory of Open Access Journals (Sweden)
Marko Jaksic
2016-09-01
Full Text Available It has been shown in numerous situations that sharing information between the companies leads to improved performance of the supply chain. We study a positive lead time periodic-review inventory system of a retailer facing stochastic demand from his customer and stochastic limited supply capacity of the manufacturer supplying the products to him. The consequence of stochastic supply capacity is that the orders might not be delivered in full, and the exact size of the replenishment might not be known to the retailer. The manufacturer is willing to share the so-called advance supply information (ASI about the actual replenishment of the retailer's pipeline order with the retailer. ASI is provided at a certain time after the orders have been placed and the retailer can now use this information to decrease the uncertainty of the supply, and thus improve its inventory policy. For this model, we develop a dynamic programming formulation, and characterize the optimal ordering policy as a state-dependent base-stock policy. In addition, we show some properties of the base-stock level. While the optimal policy is highly complex, we obtain some additional insights by comparing it to the state-dependent myopic inventory policy. We conduct the numerical analysis to estimate the in uence of the system parameters on the value of ASI. While we show that the interaction between the parameters is relatively complex, the general insight is that due to increasing marginal returns, the majority of the benets are gained only in the case of full, or close to full, ASI visibility.
Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine
Directory of Open Access Journals (Sweden)
Bambang Wahono
2014-01-01
Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.
Optimal Control Surface Layout for an Aeroservoelastic Wingbox
Stanford, Bret K.
2017-01-01
This paper demonstrates a technique for locating the optimal control surface layout of an aeroservoelastic Common Research Model wingbox, in the context of maneuver load alleviation and active utter suppression. The combinatorial actuator layout design is solved using ideas borrowed from topology optimization, where the effectiveness of a given control surface is tied to a layout design variable, which varies from zero (the actuator is removed) to one (the actuator is retained). These layout design variables are optimized concurrently with a large number of structural wingbox sizing variables and control surface actuation variables, in order to minimize the sum of structural weight and actuator weight. Results are presented that demonstrate interdependencies between structural sizing patterns and optimal control surface layouts, for both static and dynamic aeroelastic physics.
The Air Force Center for Optimal Design and Control
National Research Council Canada - National Science Library
Burns, John
1997-01-01
This report contains a summary and highlights of the research funded by the Air Force under AFOSR URI Grant F49620-93-1-0280, titled 'Center for Optimal Design and Control of Distributed Parameter Systems' (CODAC...
A Nonlinear Fuel Optimal Reaction Jet Control Law
National Research Council Canada - National Science Library
Breitfeller, Eric
2002-01-01
We derive a nonlinear fuel optimal attitude control system (ACS) that drives the final state to the desired state according to a cost function that weights the final state angular error relative to the angular rate error...
An introduction to optimal control of FBSDE with incomplete information
Wang, Guangchen; Xiong, Jie
2018-01-01
This book focuses on maximum principle and verification theorem for incomplete information forward-backward stochastic differential equations (FBSDEs) and their applications in linear-quadratic optimal controls and mathematical finance. Lots of interesting phenomena arising from the area of mathematical finance can be described by FBSDEs. Optimal control problems of FBSDEs are theoretically important and practically relevant. A standard assumption in the literature is that the stochastic noises in the model are completely observed. However, this is rarely the case in real world situations. The optimal control problems under complete information are studied extensively. Nevertheless, very little is known about these problems when the information is not complete. The aim of this book is to fill this gap. This book is written in a style suitable for graduate students and researchers in mathematics and engineering with basic knowledge of stochastic process, optimal control and mathematical finance.
Optimizing data access in the LAMPF control system
International Nuclear Information System (INIS)
Schaller, S.C.; Corley, J.K.; Rose, P.A.
1985-01-01
The LAMPF control system data access software offers considerable power and flexibility to application programs through symbolic device naming and an emphasis on hardware independence. This paper discusses optimizations aimed at improving the performance of the data access software while retaining these capabilities. The only aspects of the optimizations visible to the application programs are ''vector devices'' and ''aggregate devices.'' A vector device accesses a set of hardware related data items through a single device name. Aggregate devices allow run-time optimization of references to groups of unrelated devices. Optimizations not visible on the application level include careful handling of: network message traffic; the sharing of global resources; and storage allocation
Using Chemicals to Optimize Conformance Control in Fractured Reservoirs; TOPICAL
International Nuclear Information System (INIS)
Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Wang, Ying; Kumar, Ananad; Wavrik, Kathryn
2001-01-01
This report describes work performed during the third and final year of the project, Using Chemicals to Optimize Conformance Control in Fractured Reservoirs. This research project had three objectives. The first objective was to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective was to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective was to develop procedures to optimize blocking agent placement in naturally fractured reservoirs
Optimal Control Of Nonlinear Wave Energy Point Converters
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten
2013-01-01
idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states...
Optimization and Control of Bilinear Systems Theory, Algorithms, and Applications
Pardalos, Panos M
2008-01-01
Covers developments in bilinear systems theory Focuses on the control of open physical processes functioning in a non-equilibrium mode Emphasis is on three primary disciplines: modern differential geometry, control of dynamical systems, and optimization theory Includes applications to the fields of quantum and molecular computing, control of physical processes, biophysics, superconducting magnetism, and physical information science
Economics-based optimal control of greenhouse tomato crop production
Tap, F.
2000-01-01
The design and testing of an optimal control algorithm, based on scientific models of greenhouse and tomato crop and an economic criterion (goal function), to control greenhouse climate, is described. An important characteristic of this control is that it aims at maximising an economic
A novel technique for active vibration control, based on optimal
Indian Academy of Sciences (India)
In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...
Optimal trajectory control of a CLCC resonant power converter
Huisman, H.; Visser, de I.; Duarte, J.L.
2015-01-01
A CLCC resonant converter to be used in an isolated power supply is operated using optimal trajectory control (OTC). As a consequence, the converter's inner loop behavior is changed to that of a controlled current source. The controller is implemented in an FPGA. Simulation results and recorded
Takemiya, Tetsushi
, and that (2) the AMF terminates optimization erroneously when the optimization problems have constraints. The first problem is due to inaccuracy in computing derivatives in the AMF, and the second problem is due to erroneous treatment of the trust region ratio, which sets the size of the domain for an optimization in the AMF. In order to solve the first problem of the AMF, automatic differentiation (AD) technique, which reads the codes of analysis models and automatically generates new derivative codes based on some mathematical rules, is applied. If derivatives are computed with the generated derivative code, they are analytical, and the required computational time is independent of the number of design variables, which is very advantageous for realistic aerospace engineering problems. However, if analysis models implement iterative computations such as computational fluid dynamics (CFD), which solves system partial differential equations iteratively, computing derivatives through the AD requires a massive memory size. The author solved this deficiency by modifying the AD approach and developing a more efficient implementation with CFD, and successfully applied the AD to general CFD software. In order to solve the second problem of the AMF, the governing equation of the trust region ratio, which is very strict against the violation of constraints, is modified so that it can accept the violation of constraints within some tolerance. By accepting violations of constraints during the optimization process, the AMF can continue optimization without terminating immaturely and eventually find the true optimum design point. With these modifications, the AMF is referred to as "Robust AMF," and it is applied to airfoil and wing aerodynamic design problems using Euler CFD software. The former problem has 21 design variables, and the latter 64. In both problems, derivatives computed with the proposed AD method are first compared with those computed with the finite
Applying dynamic mold temperature control to cosmetic package design
Directory of Open Access Journals (Sweden)
Hsiao Shih-Wen
2017-01-01
Full Text Available Owing to the fashion trend and the market needs, this study developed the eco-cushion compact. Through the product design and the advanced process technology, many issues have improved, for instance, the inconvenience of transportation, the lack of multiuse capability, the increase of costs, and the low yield rate. The eco-cushion compact developed in this study was high quality, low cost, and meets the requirements of the eco market. The study aimed at developing a reusable container. Dynamic mold temperature control was introduced in the injection modeling process. The innovation in the product was its multi-functional formula invention, eco-product design, one-piece powder case design, and multifunctional design in the big powder case, mold flow and development of dynamic mold temperature control. Finally, through 3D drawing and modeling, and computer assistance for mold flow and verification to develop and produce models. During the manufacturing process, in order to solve the problems of tightness and warping, development and manufacture of dynamic mold temperature control were introduced. This decreased the injection cycle and residual stress, and deformation of the products has reduced to less than 0.2 mm, and the air tightness increased. In addition, air leakage was less than 2% and the injection cycle decreased to at least 10%. The results of the study can be extended and applied on the future design on cosmetic package and an alternative can be proposed to solve the problems of air tightness and warping. In this study, dynamic mold temperature control is considered as a design with high price-performance ratio, which can be adopted on industrial application for practical benefit and improvement.
Low-order feedforward controllers: Optimal performance and practical considerations
Hast, Martin; Hägglund, Tore
2014-01-01
Feedforward control from measurable disturbances can significantly improve the performance in control loops. However, tuning rules for such controllers are scarce. In this paper design rules for how to choose optimal low-order feedforward controller parameter are presented. The parameters are chosen so that the integrated squared error, when the system is subject to a step disturbance, is minimized. The approach utilizes a controller structure that decouples the feedforward and the feedback c...
Attitude Optimal Backstepping Controller Based Quaternion for a UAV
Djamel, Kaddouri; Abdellah, Mokhtari; Benallegue, Abdelaziz
2016-01-01
A hierarchical controller design based on nonlinear H∞ theory and backstepping technique is developed for a nonlinear and coupled dynamic attitude system using conventional quaternion based method. The derived controller combines the attractive features of H∞ optimal controller and the advantages of the backstepping technique leading to a control law which avoids winding phenomena. Performance issues of the controller are illustrated in a simulation study made for a four-rotor vertical take-o...
Numerical aspects of optimal control of penicillin production
Czech Academy of Sciences Publication Activity Database
Pčolka, M.; Čelikovský, Sergej
2014-01-01
Roč. 37, č. 1 (2014), s. 71-81 ISSN 1615-7591 R&D Projects: GA ČR(CZ) GA13-20433S Institutional support: RVO:67985556 Keywords : Optimal control * Nonlinear systems * Fermentation process * Gradient method optimization * Antibiotics production Subject RIV: BC - Control Systems Theory Impact factor: 1.997, year: 2014 http://library.utia.cas.cz/separaty/2014/TR/celikovsky-0424718.pdf
Closed-Loop Optimal Control Implementations for Space Applications
2016-12-01
with standard linear algebra techniques if is converted to a diagonal square matrix by multiplying by the identity matrix, I , as was done in (1.134...OPTIMAL CONTROL IMPLEMENTATIONS FOR SPACE APPLICATIONS by Colin S. Monk December 2016 Thesis Advisor: Mark Karpenko Second Reader: I. M...COVERED Master’s thesis, Jan-Dec 2016 4. TITLE AND SUBTITLE CLOSED-LOOP OPTIMAL CONTROL IMPLEMENTATIONS FOR SPACE APPLICATIONS 5. FUNDING NUMBERS
Robust Optimal Adaptive Trajectory Tracking Control of Quadrotor Helicopter
Directory of Open Access Journals (Sweden)
M. Navabi
Full Text Available Abstract This paper focuses on robust optimal adaptive control strategy to deal with tracking problem of a quadrotor unmanned aerial vehicle (UAV in presence of parametric uncertainties, actuator amplitude constraints, and unknown time-varying external disturbances. First, Lyapunov-based indirect adaptive controller optimized by particle swarm optimization (PSO is developed for multi-input multi-output (MIMO nonlinear quadrotor to prevent input constraints violation, and then disturbance observer-based control (DOBC technique is aggregated with the control system to attenuate the effects of disturbance generated by an exogenous system. The performance of synthesis control method is evaluated by a new performance index function in time-domain, and the stability analysis is carried out using Lyapunov theory. Finally, illustrative numerical simulations are conducted to demonstrate the effectiveness of the presented approach in altitude and attitude tracking under several conditions, including large time-varying uncertainty, exogenous disturbance, and control input constraints.
Optimal boundary control and boundary stabilization of hyperbolic systems
Gugat, Martin
2015-01-01
This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary. The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization. Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples. To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled. Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.
An Optimal Homotopy Asymptotic Approach Applied to Nonlinear MHD Jeffery-Hamel Flow
Directory of Open Access Journals (Sweden)
Vasile Marinca
2011-01-01
Full Text Available A simple and effective procedure is employed to propose a new analytic approximate solution for nonlinear MHD Jeffery-Hamel flow. This technique called the Optimal Homotopy Asymptotic Method (OHAM does not depend upon any small/large parameters and provides us with a convenient way to control the convergence of the solution. The examples given in this paper lead to the conclusion that the accuracy of the obtained results is growing along with increasing the number of constants in the auxiliary function, which are determined using a computer technique. The results obtained through the proposed method are in very good agreement with the numerical results.
Optimized controllers for enhancing dynamic performance of PV interface system
Directory of Open Access Journals (Sweden)
Mahmoud A. Attia
2018-05-01
Full Text Available The dynamic performance of PV interface system can be improved by optimizing the gains of the Proportional–Integral (PI controller. In this work, gravitational search algorithm and harmony search algorithm are utilized to optimal tuning of PI controller gains. Performance comparison between the PV system with optimized PI gains utilizing different techniques are carried out. Finally, the dynamic behavior of the system is studied under hypothetical sudden variations in irradiance. The examination of the proposed techniques for optimal tuning of PI gains is conducted using MATLAB/SIMULINK software package. The main contribution of this work is investigating the dynamic performance of PV interfacing system with application of gravitational search algorithm and harmony search algorithm for optimal PI parameters tuning. Keywords: Photovoltaic power systems, Gravitational search algorithm, Harmony search algorithm, Genetic algorithm, Artificial intelligence
Boughari, Yamina
New methodologies have been developed to optimize the integration, testing and certification of flight control systems, an expensive process in the aerospace industry. This thesis investigates the stability of the Cessna Citation X aircraft without control, and then optimizes two different flight controllers from design to validation. The aircraft's model was obtained from the data provided by the Research Aircraft Flight Simulator (RAFS) of the Cessna Citation business aircraft. To increase the stability and control of aircraft systems, optimizations of two different flight control designs were performed: 1) the Linear Quadratic Regulation and the Proportional Integral controllers were optimized using the Differential Evolution algorithm and the level 1 handling qualities as the objective function. The results were validated for the linear and nonlinear aircraft models, and some of the clearance criteria were investigated; and 2) the Hinfinity control method was applied on the stability and control augmentation systems. To minimize the time required for flight control design and its validation, an optimization of the controllers design was performed using the Differential Evolution (DE), and the Genetic algorithms (GA). The DE algorithm proved to be more efficient than the GA. New tools for visualization of the linear validation process were also developed to reduce the time required for the flight controller assessment. Matlab software was used to validate the different optimization algorithms' results. Research platforms of the aircraft's linear and nonlinear models were developed, and compared with the results of flight tests performed on the Research Aircraft Flight Simulator. Some of the clearance criteria of the optimized H-infinity flight controller were evaluated, including its linear stability, eigenvalues, and handling qualities criteria. Nonlinear simulations of the maneuvers criteria were also investigated during this research to assess the Cessna
Forest road erosion control using multiobjective optimization
Matthew Thompson; John Sessions; Kevin Boston; Arne Skaugset; David Tomberlin
2010-01-01
Forest roads are associated with accelerated erosion and can be a major source of sediment delivery to streams, which can degrade aquatic habitat. Controlling road-related erosion therefore remains an important issue for forest stewardship. Managers are faced with the task to develop efficient road management strategies to achieve conflicting environmental and economic...
Robust balance shift control with posture optimization
Kavafoglu, Z.; Kavafoglu, Ersan; Egges, J.
2015-01-01
In this paper we present a control framework which creates robust and natural balance shifting behaviours during standing. Given high-level features such as the position of the center of mass projection and the foot configurations, a kinematic posture satisfying these features is synthesized using
Reproducibility, Controllability, and Optimization of Lenr Experiments
Nagel, David J.
2006-02-01
Low-energy nuclear reaction (LENR) measurements are significantly and increasingly reproducible. Practical control of the production of energy or materials by LENR has yet to be demonstrated. Minimization of costly inputs and maximization of desired outputs of LENR remain for future developments.
Optimal control of vibrational transitions of HCl
Indian Academy of Sciences (India)
Control of fundamental and overtone transitions of a vibration are studied for the diatomic molecule, HCl. Specifically, the results of the effect of variation of the penalty factor on the physical attributes of the system (i.e., probabilities) and pulse (i.e., amplitudes) considering three different pulse durations for each value of the ...
Optimal control of vibrational transitions of HCl
Indian Academy of Sciences (India)
2016-09-07
Sep 7, 2016 ... and making, occur in ultrafast time-scale. The control of energy flow in a relatively short time-scale (∼10 fs), in a nuclear ... general motivation to study HCl. ...... ics in science and engineering (Academic Press, New York,.
Optimal control of a waste water cleaning plant
Directory of Open Access Journals (Sweden)
Ellina V. Grigorieva
2010-09-01
Full Text Available In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.
Genetic Algorithm Optimizes Q-LAW Control Parameters
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
Multiobjective optimization of low impact development stormwater controls
Eckart, Kyle; McPhee, Zach; Bolisetti, Tirupati
2018-07-01
Green infrastructure such as Low Impact Development (LID) controls are being employed to manage the urban stormwater and restore the predevelopment hydrological conditions besides improving the stormwater runoff water quality. Since runoff generation and infiltration processes are nonlinear, there is a need for identifying optimal combination of LID controls. A coupled optimization-simulation model was developed by linking the U.S. EPA Stormwater Management Model (SWMM) to the Borg Multiobjective Evolutionary Algorithm (Borg MOEA). The coupled model is capable of performing multiobjective optimization which uses SWMM simulations as a tool to evaluate potential solutions to the optimization problem. The optimization-simulation tool was used to evaluate low impact development (LID) stormwater controls. A SWMM model was developed, calibrated, and validated for a sewershed in Windsor, Ontario and LID stormwater controls were tested for three different return periods. LID implementation strategies were optimized using the optimization-simulation model for five different implementation scenarios for each of the three storm events with the objectives of minimizing peak flow in the stormsewers, reducing total runoff, and minimizing cost. For the sewershed in Windsor, Ontario, the peak run off and total volume of the runoff were found to reduce by 13% and 29%, respectively.
The control of inorganic nanotube morphology using an applied potential
International Nuclear Information System (INIS)
Gingrich, Todd R; Wilson, Mark
2011-01-01
Molecular dynamics computer simulations of the filling of carbon nanotubes (CNTs) by a generic molten salt to form hexagonal-net-based inorganic nanotubes (INTs) are described. A model is introduced to incorporate CNT metallicity which imposes variable Gaussian charges on each atomic site in order to retain an equipotential. The inclusion of CNT metallicity is observed to have no significant effect on the distribution of the INT morphologies formed as compared with the filling of non-metallic CNTs. The application of a voltage bias to the CNT forms a new class of INTs which can be considered as constructed from concentric layers of pseudo-close-packed anions and cations. Removal of the voltage bias leads to the formation of hexagonal-net-based INTs with a distribution of morphologies different to that observed for the filling of the unbiased CNTs. The differences in distributions are interpreted in terms of the CNTs behaving as effective energy landscape filters, for which the applied voltage acts as an additional control variable. The application of a potential acts to control the distribution of INT morphologies by facilitating alternative mechanistic pathways to nanotube formation.
Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control
Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.
2016-02-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
Mechanisms of Molecular Response in the Optimal Control of Photoisomerization
International Nuclear Information System (INIS)
Dietzek, Benjamin; Brueggemann, Ben; Pascher, Torbjoern; Yartsev, Arkady
2006-01-01
We report on adaptive feedback control of photoinduced barrierless isomerization of 1,1'-diethyl-2,2'-cyanine in solution. We compare the effect of different fitness parameters and show that optimal control of the absolute yield of isomerization (photoisomer concentration versus excitation photons) can be achieved, while the relative isomerization yield (photoisomer concentration versus number of relaxed excited-state molecules) is unaffected by adaptive feedback control. The temporal structure of the optimized excitation pulses allows one to draw clear mechanistic conclusions showing the critical importance of coherent nuclear motion for the control of isomerization
Real-Time Optimal Flood Control Decision Making and Risk Propagation Under Multiple Uncertainties
Zhu, Feilin; Zhong, Ping-An; Sun, Yimeng; Yeh, William W.-G.
2017-12-01
Multiple uncertainties exist in the optimal flood control decision-making process, presenting risks involving flood control decisions. This paper defines the main steps in optimal flood control decision making that constitute the Forecast-Optimization-Decision Making (FODM) chain. We propose a framework for supporting optimal flood control decision making under multiple uncertainties and evaluate risk propagation along the FODM chain from a holistic perspective. To deal with uncertainties, we employ stochastic models at each link of the FODM chain. We generate synthetic ensemble flood forecasts via the martingale model of forecast evolution. We then establish a multiobjective stochastic programming with recourse model for optimal flood control operation. The Pareto front under uncertainty is derived via the constraint method coupled with a two-step process. We propose a novel SMAA-TOPSIS model for stochastic multicriteria decision making. Then we propose the risk assessment model, the risk of decision-making errors and rank uncertainty degree to quantify the risk propagation process along the FODM chain. We conduct numerical experiments to investigate the effects of flood forecast uncertainty on optimal flood control decision making and risk propagation. We apply the proposed methodology to a flood control system in the Daduhe River basin in China. The results indicate that the proposed method can provide valuable risk information in each link of the FODM chain and enable risk-informed decisions with higher reliability.
Sensitivity study on heuristic rules applied to the neutronic optimization of cells for BWR
International Nuclear Information System (INIS)
Gonzalez C, J.; Martin del Campo M, C.; Francois L, J.L.
2004-01-01
The objective of this work is to verify the validity of the heuristic rules that have been applied in the processes of radial optimization of fuel cells. It was examined the rule with respect to the accommodation of fuel in the corners of the cell and it became special attention on the influence of the position and concentration of those pellets with gadolinium in the reactivity of the cell and the safety parameters. The evaluation behaved on designed cells violating the heuristic rules. For both cases the cells were analyzed between infinite using the HELIOS code. Additionally, for the second case, it was behaved a stage more exhaustive where it was used one of the studied cells that it completed those safety parameters and of reactivity to generate the design of an assemble that was used to calculate with CM-PRESTO the behavior of the nucleus during three operation cycles. (Author)
Botelho, Fabio
2014-01-01
This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.
Directory of Open Access Journals (Sweden)
Muhamad Zalani Daud
2014-01-01
Full Text Available This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV system with battery energy storage (BES. The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC. For the grid side VSC (G-VSC, two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A
2014-01-01
This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
Energy Technology Data Exchange (ETDEWEB)
Reinl, Christian; Stryk, Oskar von [Technische Univ. Darmstadt (Germany). FB Informatik; Glocker, Markus [Trimble Terrasat GmbH, Hoehenkirchen (Germany)
2009-07-01
Nonlinear hybrid dynamical systems for modeling optimal cooperative control enable a tight and formal coupling of discrete and continuous state dynamics, i.e. of dynamic role and task assignment with switching dynamics of motions. In the resulting mixed-integer multi-phase optimal control problems constraints on the discrete and continuous state and control variables can be considered, e.g., formation or communication requirements. Two numerical methods are investigated: a decomposition approach using branch-and-bound and direct collocation methods as well as an approximation by large-scale, mixed-integer linear problems. Both methods are applied to example problems: the optimal simultaneous waypoint sequencing and trajectory planning of a team of aerial vehicles and the optimization of role distribution and trajectories in robot soccer. (orig.)
A Galerkin-Parameterization Method for the Optimal Control of Smart Microbeams
Directory of Open Access Journals (Sweden)
Marwan Abukhaled
2009-01-01
Full Text Available A proposed computational method is applied to damp out the excess vibrations in smart microbeams, where the control action is implemented using piezoceramic actuators. From a mathematical point of view, we wish to determine the optimal boundary actuators that minimize a given energy-based performance measure. The minimization of the performance measure over the actuators is subjected to the full motion of the structural vibrations of the micro-beams. A direct state-control parametrization approach is proposed where the shifted Legendre polynomials are employed to solve the optimization problem. Legendre operational matrix and the properties of Kronecker product are utilized to find the approximated optimal trajectory and optimal control law of the lumped parameter systems with respect to the quadratic cost function by solving linear algebraic equations. Numerical examples are provided to demonstrate the applicability and efficiency of the proposed approach.
Applying the J-optimal channelized quadratic observer to SPECT myocardial perfusion defect detection
Kupinski, Meredith K.; Clarkson, Eric; Ghaly, Michael; Frey, Eric C.
2016-03-01
To evaluate performance on a perfusion defect detection task from 540 image pairs of myocardial perfusion SPECT image data we apply the J-optimal channelized quadratic observer (J-CQO). We compare AUC values of the linear Hotelling observer and J-CQO when the defect location is fixed and when it occurs in one of two locations. As expected, when the location is fixed a single channels maximizes AUC; location variability requires multiple channels to maximize the AUC. The AUC is estimated from both the projection data and reconstructed images. J-CQO is quadratic since it uses the first- and second- order statistics of the image data from both classes. The linear data reduction by the channels is described by an L x M channel matrix and in prior work we introduced an iterative gradient-based method for calculating the channel matrix. The dimensionality reduction from M measurements to L channels yields better estimates of these sample statistics from smaller sample sizes, and since the channelized covariance matrix is L x L instead of M x M, the matrix inverse is easier to compute. The novelty of our approach is the use of Jeffrey's divergence (J) as the figure of merit (FOM) for optimizing the channel matrix. We previously showed that the J-optimal channels are also the optimum channels for the AUC and the Bhattacharyya distance when the channel outputs are Gaussian distributed with equal means. This work evaluates the use of J as a surrogate FOM (SFOM) for AUC when these statistical conditions are not satisfied.
International Nuclear Information System (INIS)
Mouton, S.; Ledoux, Y.; Teissandier, D.; Sebastian, P.
2010-01-01
A key challenge for the future is to reduce drastically the human impact on the environment. In the aeronautic field, this challenge aims at optimizing the design of the aircraft to decrease the global mass. This reduction leads to the optimization of every part constitutive of the plane. This operation is even more delicate when the used material is composite material. In this case, it is necessary to find a compromise between the strength, the mass and the manufacturing cost of the component. Due to these different kinds of design constraints it is necessary to assist engineer with decision support system to determine feasible solutions. In this paper, an approach is proposed based on the coupling of the different key characteristics of the design process and on the consideration of the failure risk of the component. The originality of this work is that the manufacturing deviations due to the RTM process are integrated in the simulation of the assembly process. Two kinds of deviations are identified: volume impregnation (injection phase of RTM process) and geometrical deviations (curing and cooling phases). The quantification of these deviations and the related failure risk calculation is based on finite element simulations (Pam RTM registered and Samcef registered softwares). The use of genetic algorithm allows to estimate the impact of the design choices and their consequences on the failure risk of the component. The main focus of the paper is the optimization of tool design. In the framework of decision support systems, the failure risk calculation is used for making the comparison of possible industrialization alternatives. It is proposed to apply this method on a particular part of the airplane structure: a spar unit made of carbon fiber/epoxy composite.
Directory of Open Access Journals (Sweden)
Hernán Darío Vargas Cardona
2015-07-01
Full Text Available Identification of brain signals from microelectrode recordings (MER is a key procedure during deep brain stimulation (DBS applied in Parkinson’s disease patients. The main purpose of this research work is to identify with high accuracy a brain structure called subthalamic nucleus (STN, since it is the target structure where the DBS achieves the best therapeutic results. To do this, we present an approach for optimal representation of MER signals through method of frames. We obtain coefficients that minimize the Euclidean norm of order two. From optimal coefficients, we extract some features from signals combining the wavelet packet and cosine dictionaries. For a comparison frame with the state of the art, we also process the signals using the discrete wavelet transform (DWT with several mother functions. We validate the proposed methodology in a real data base. We employ simple supervised machine learning algorithms, as the K-Nearest Neighbors classifier (K-NN, a linear Bayesian classifier (LDC and a quadratic Bayesian classifier (QDC. Classification results obtained with the proposed method improves significantly the performance of the DWT. We achieve a positive identification of the STN superior to 97,6%. Identification outcomes achieved by the MOF are highly accurate, as we can potentially get a false positive rate of less than 2% during the DBS.
Safety constraints applied to an adaptive Bayesian condition-based maintenance optimization model
International Nuclear Information System (INIS)
Flage, Roger; Coit, David W.; Luxhøj, James T.; Aven, Terje
2012-01-01
A model is described that determines an optimal inspection and maintenance scheme for a deteriorating unit with a stochastic degradation process with independent and stationary increments and for which the parameters are uncertain. This model and resulting maintenance plans offers some distinct benefits compared to prior research because the uncertainty of the degradation process is accommodated by a Bayesian approach and two new safety constraints have been applied to the problem: (1) with a given subjective probability (degree of belief), the limiting relative frequency of one or more failures during a fixed time interval is bounded; or (2) the subjective probability of one or more failures during a fixed time interval is bounded. In the model, the parameter(s) of a condition-based inspection scheduling function and a preventive replacement threshold are jointly optimized upon each replacement and inspection such as to minimize the expected long run cost per unit of time, but also considering one of the specified safety constraints. A numerical example is included to illustrate the effect of imposing each of the two different safety constraints.
International Nuclear Information System (INIS)
Sacco, Wagner F.; Oliveira, Cassiano R.E. de
2005-01-01
A new metaheuristic called 'Gravitational Attraction Algorithm' (GAA) is introduced in this article. It is an analogy with the gravitational force field, where a body attracts another proportionally to both masses and inversely to their distances. The GAA is a populational algorithm where, first of all, the solutions are clustered using the Fuzzy Clustering Means (FCM) algorithm. Following that, the gravitational forces of the individuals in relation to each cluster are evaluated and this individual or solution is displaced to the cluster with the greatest attractive force. Once it is inside this cluster, the solution receives small stochastic variations, performing a local exploration. Then the solutions are crossed over and the process starts all over again. The parameters required by the GAA are the 'diversity factor', which is used to create a random diversity in a fashion similar to genetic algorithm's mutation, and the number of clusters for the FCM. GAA is applied to the reactor core design optimization problem which consists in adjusting several reactor cell parameters in order to minimize the average peak-factor in a 3-enrichment-zone reactor, considering operational restrictions. This problem was previously attacked using the canonical genetic algorithm (GA) and a Niching Genetic Algorithm (NGA). The new metaheuristic is then compared to those two algorithms. The three algorithms are submitted to the same computational effort and GAA reaches the best results, showing its potential for other applications in the nuclear engineering field as, for instance, the nuclear core reload optimization problem. (author)
Directory of Open Access Journals (Sweden)
Samuel Boudet
2014-01-01
Full Text Available Muscle artifacts constitute one of the major problems in electroencephalogram (EEG examinations, particularly for the diagnosis of epilepsy, where pathological rhythms occur within the same frequency bands as those of artifacts. This paper proposes to use the method dual adaptive filtering by optimal projection (DAFOP to automatically remove artifacts while preserving true cerebral signals. DAFOP is a two-step method. The first step consists in applying the common spatial pattern (CSP method to two frequency windows to identify the slowest components which will be considered as cerebral sources. The two frequency windows are defined by optimizing convolutional filters. The second step consists in using a regression method to reconstruct the signal independently within various frequency windows. This method was evaluated by two neurologists on a selection of 114 pages with muscle artifacts, from 20 clinical recordings of awake and sleeping adults, subject to pathological signals and epileptic seizures. A blind comparison was then conducted with the canonical correlation analysis (CCA method and conventional low-pass filtering at 30 Hz. The filtering rate was 84.3% for muscle artifacts with a 6.4% reduction of cerebral signals even for the fastest waves. DAFOP was found to be significantly more efficient than CCA and 30 Hz filters. The DAFOP method is fast and automatic and can be easily used in clinical EEG recordings.
Optimal centralized and decentralized velocity feedback control on a beam
International Nuclear Information System (INIS)
Engels, W P; Elliott, S J
2008-01-01
This paper considers the optimization of a velocity feedback controller with a collocated force actuator, to minimize the kinetic energy of a simply supported beam. If the beam is excited at a single location, the optimum feedback gain varies with the position of the control system. It is shown that this variation depends partly on the location of the control force relative to the exciting force. If a distributed excitation is assumed, that is random in both time and space, a unique optimum value of the feedback gain can be found for a given control location. The effect of the control location on performance and the optimal feedback gain can then be examined and is found to be limited provided the control locations are not close to the ends of the beam. The optimization can also be performed for a multichannel velocity feedback system. Both a centralized and a decentralized controller are considered. It is shown that the difference in performance between a centralized and a decentralized controller is small, unless the control locations are closely spaced. In this case the centralized controller effectively feeds back a moment proportional to angular velocity as well as a force proportional to a velocity. It is also shown that the optimal feedback gain can be approximated on the basis of a limited model and that similar results can be achieved
Developments in model-based optimization and control distributed control and industrial applications
Grancharova, Alexandra; Pereira, Fernando
2015-01-01
This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and desi...
Stochastic optimal control in infinite dimension dynamic programming and HJB equations
Fabbri, Giorgio; Święch, Andrzej
2017-01-01
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite ...
Optimization of inverse model identification for multi-axial test rig control
Directory of Open Access Journals (Sweden)
Müller Tino
2016-01-01
Full Text Available Laboratory testing of multi-axial fatigue situations improves repeatability and allows a time condensing of tests which can be carried out until component failure, compared to field testing. To achieve realistic and convincing durability results, precise load data reconstruction is necessary. Cross-talk and a high number of degrees of freedom negatively affect the control accuracy. Therefore a multiple input/multiple output (MIMO model of the system, capturing all inherent cross-couplings is identified. In a first step the model order is estimated based on the physical fundamentals of a one channel hydraulic-servo system. Subsequently, the structure of the MIMO model is optimized using correlation of the outputs, to increase control stability and reduce complexity of the parameter optimization. The identification process is successfully applied to the iterative control of a multi-axial suspension rig. The results show accurate control, with increased stability compared to control without structure optimization.
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
Hierarchical optimal control of large-scale nonlinear chemical processes.
Ramezani, Mohammad Hossein; Sadati, Nasser
2009-01-01
In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.
Process control and optimization with simple interval calculation method
DEFF Research Database (Denmark)
Pomerantsev, A.; Rodionova, O.; Høskuldsson, Agnar
2006-01-01
for the quality improvement in the course of production. The latter is an active quality optimization, which takes into account the actual history of the process. The advocate approach is allied to the conventional method of multivariate statistical process control (MSPC) as it also employs the historical process......Methods of process control and optimization are presented and illustrated with a real world example. The optimization methods are based on the PLS block modeling as well as on the simple interval calculation methods of interval prediction and object status classification. It is proposed to employ...... the series of expanding PLS/SIC models in order to support the on-line process improvements. This method helps to predict the effect of planned actions on the product quality and thus enables passive quality control. We have also considered an optimization approach that proposes the correcting actions...
Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.
Aprasoff, Jonathan; Donchin, Opher
2012-04-01
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.
Optimal control of multi-level quantum systems
Energy Technology Data Exchange (ETDEWEB)
Fisher, Robert M.
2010-12-02
This thesis is concerned with the control of quantum systems. Given a Hamiltonian model of a quantum system, we are interested in finding controls - typically shaped electromagnetic pulses - that steer the evolution of the system toward a desired target operation. For this we employ a numerical optimisation method known as the GRAPE algorithm. For particular experimental systems, we design control schemes that respect constraints of robustness and addressability, and are within the reach of the experimental hardware. A general procedure is given for specifying a Hamiltonian model of a driven N-level system and converting it to an appropriate rotating frame. This is then applied together with the numerical algorithm to design improved schemes for two different systems, where laser fields manipulate orbital and hyperfine states of Pr{sup 3+} and Rb. The generation of cluster states in Ising-coupled systems is also studied. We find that, in the ideal case, the solution of evolving only under the coupling Hamiltonian is not time-optimal. This surprising result is in contrast to the known cases for unitary gates. For a symmetrised three-qubit example, we provide a geometrical interpretation of this. Numerically optimised control schemes are then developed for a nonideal coupling topology, modelling an experimental configuration of trapped ions. Controls for the implementation of the two-qubit Deutsch and Grover algorithms are designed for a pair of {sup 13}C nuclear spins at a nitrogen vacancy center in diamond. These implementations are robust to experimental errors, and found to be reproduced with high accuracy on a VFG-150 pulse generator. We also consider two-qubit gate synthesis in a system of superconducting qubits coupled by microwave resonators known as the cavity grid. We find that the optimised schemes allow two-qubit operations to be performed between an arbitrary qubit pair on the grid with only a small time overhead, with speedups of 2-4 over the existing
Optimal control of multi-level quantum systems
International Nuclear Information System (INIS)
Fisher, Robert M.
2010-01-01
This thesis is concerned with the control of quantum systems. Given a Hamiltonian model of a quantum system, we are interested in finding controls - typically shaped electromagnetic pulses - that steer the evolution of the system toward a desired target operation. For this we employ a numerical optimisation method known as the GRAPE algorithm. For particular experimental systems, we design control schemes that respect constraints of robustness and addressability, and are within the reach of the experimental hardware. A general procedure is given for specifying a Hamiltonian model of a driven N-level system and converting it to an appropriate rotating frame. This is then applied together with the numerical algorithm to design improved schemes for two different systems, where laser fields manipulate orbital and hyperfine states of Pr 3+ and Rb. The generation of cluster states in Ising-coupled systems is also studied. We find that, in the ideal case, the solution of evolving only under the coupling Hamiltonian is not time-optimal. This surprising result is in contrast to the known cases for unitary gates. For a symmetrised three-qubit example, we provide a geometrical interpretation of this. Numerically optimised control schemes are then developed for a nonideal coupling topology, modelling an experimental configuration of trapped ions. Controls for the implementation of the two-qubit Deutsch and Grover algorithms are designed for a pair of 13 C nuclear spins at a nitrogen vacancy center in diamond. These implementations are robust to experimental errors, and found to be reproduced with high accuracy on a VFG-150 pulse generator. We also consider two-qubit gate synthesis in a system of superconducting qubits coupled by microwave resonators known as the cavity grid. We find that the optimised schemes allow two-qubit operations to be performed between an arbitrary qubit pair on the grid with only a small time overhead, with speedups of 2-4 over the existing schemes
Robust and optimal control a two-port framework approach
Tsai, Mi-Ching
2014-01-01
A Two-port Framework for Robust and Optimal Control introduces an alternative approach to robust and optimal controller synthesis procedures for linear, time-invariant systems, based on the two-port system widespread in electrical engineering. The novel use of the two-port system in this context allows straightforward engineering-oriented solution-finding procedures to be developed, requiring no mathematics beyond linear algebra. A chain-scattering description provides a unified framework for constructing the stabilizing controller set and for synthesizing H2 optimal and H∞ sub-optimal controllers. Simple yet illustrative examples explain each step. A Two-port Framework for Robust and Optimal Control features: · a hands-on, tutorial-style presentation giving the reader the opportunity to repeat the designs presented and easily to modify them for their own programs; · an abundance of examples illustrating the most important steps in robust and optimal design; and · �...