WorldWideScience

Sample records for optics elements based

  1. Wave front sensor based on holographic optical elements

    Science.gov (United States)

    Kovalev, M. S.; Krasin, G. K.; Malinina, P. I.; Odinokov, S. B.; Sagatelyan, H. R.

    2016-08-01

    A wavefront sensor (WFS) based on holographic optical elements, namely computer generated Fourier holograms is proposed as a perspective alternative to the Shack-Hartmann sensor. A possibility of single and multimode sensor and the dependence of their characteristics were investigated.

  2. Analysis of offset error for segmented micro-structure optical element based on optical diffraction theory

    Science.gov (United States)

    Su, Jinyan; Wu, Shibin; Yang, Wei; Wang, Lihua

    2016-10-01

    Micro-structure optical elements are gradually applied in modern optical system due to their characters such as light weight, replicating easily, high diffraction efficiency and many design variables. Fresnel lens is a typical micro-structure optical element. So in this paper we take Fresnel lens as base of research. Analytic solution to the Point Spread Function (PSF) of the segmented Fresnel lens is derived based on the theory of optical diffraction, and the mathematical simulation model is established. Then we take segmented Fresnel lens with 5 pieces of sub-mirror as an example. In order to analyze the influence of different offset errors on the system's far-field image quality, we obtain the analytic solution to PSF of the system under the condition of different offset errors by using Fourier-transform. The result shows the translation error along XYZ axis and tilt error around XY axis will introduce phase errors which affect the imaging quality of system. The translation errors along XYZ axis constitute linear relationship with corresponding phase errors and the tilt errors around XY axis constitute trigonometric function relationship with corresponding phase errors. In addition, the standard deviations of translation errors along XY axis constitute quadratic nonlinear relationship with system's Strehl ratio. Finally, the tolerances of different offset errors are obtained according to Strehl Criteria.

  3. Large Aperture Scanning Lidar Based on Holographic Optical Elements

    Science.gov (United States)

    Schwemmer, Geary K.; Miller, David O.; Wilkerson, Thomas D.; Andrus, Ionio; Guerra, David V.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Lidar remote sensing instruments can make a significant contribution to satisfying many of the required measurements of atmospheric and surface parameters for future spaceborne platforms, including topographic altimeters, atmospheric profiles of, wind, humidity, temperature, trace molecules, aerosols, and clouds. It is highly desirable to have wide measurement swaths for rapid coverage rather than just the narrow ribbon of data that is obtained with a nadir only observation. For most applications global coverage is required, and for wind measurements scanning or pointing is required in order to retrieve the full 3-D wind vector from multiple line-of-sight Doppler measurements. Conventional lidar receivers make up a substantial portion of the instrument's size and weight. Wide angle scanning typically requires a large scanning mirror in front of the receiver telescope, or pointing the entire telescope and aft optics assembly, Either of these methods entails the use of large bearings, motors, gearing and their associated electronics. Spaceborne instruments also need reaction wheels to counter the torque applied to the spacecraft by these motions. NASA has developed simplified conical scanning telescopes using Holographic Optical Elements (HOEs) to reduce the size, mass, angular momentum, and cost of scanning lidar systems. NASA has developed two operating lidar systems based on 40 cm diameter HOEs. The first such system, named Prototype Holographic Atmospheric Scanner for Environmental Remote Sensing (PHASERS) was a joint development between NASA Goddard Space Flight Center (GSFC) and the University of Maryland College Park. PHASERS is based on a reflection HOE for use at the doubled Nd:YAG laser wavelength of 532 nm and has recently undergone a number of design changes in a collaborative effort between GSFC and Saint Anselm College in New Hampshire. The next step was to develop IR transmission HOEs for use with the Nd:YAG fundamental in the Holographic Airborne

  4. Elements of quantum optics

    CERN Document Server

    Meystre, Pierre

    2007-01-01

    Elements of Quantum Optics gives a self-contained and broad coverage of the basic elements necessary to understand and carry out research in laser physics and quantum optics, including a review of basic quantum mechanics and pedagogical introductions to system-reservoir interactions and to second quantization. The text reveals the close connection between many seemingly unrelated topics, such as probe absorption, four-wave mixing, optical instabilities, resonance fluorescence and squeezing. It also comprises discussions of cavity quantum electrodynamics and atom optics. The 4th edition includes a new chapter on quantum entanglement and quantum information, as well as added discussions of the quantum beam splitter, electromagnetically induced transparency, slow light, and the input-output formalism needed to understand many problems in quantum optics. It also provides an expanded treatment of the minimum-coupling Hamiltonian and a simple derivation of the Gross-Pitaevskii equation, an important gateway to rese...

  5. Optically Controlled Reconfigurable Antenna Array Based on E-Shaped Elements

    Directory of Open Access Journals (Sweden)

    Arismar Cerqueira Sodré Junior

    2014-01-01

    Full Text Available This work presents the development of optically controlled reconfigurable antenna arrays. They are based on two patch elements with E-shaped slots, a printed probe, and a photoconductive switch made from an intrinsic silicon die. Numerical simulations and experiments have been shown to be in agreement, and both demonstrate that the frequency response of the antenna arrays can be efficiently reconfigured over two different frequency ISM bands, namely, 2.4 and 5 GHz. A measured gain of 12.5 dBi has been obtained through the use of two radiating elements printed in a low-cost substrate and a dihedral corner reflector.

  6. Diffractive Optical Elements for Dynamic Optical Coupling

    Institute of Scientific and Technical Information of China (English)

    Changhe Zhou; Xin Zhao; Liren Liu

    2003-01-01

    Diffractive optical elements such as the complementary Dammann gratings are incorporated for dynamic optical fiber splitting and combining. Experimental results of 1′8 dynamic optical couplings are presented.

  7. Diffractive Optical Elements for Dynamic Optical Coupling

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Diffractive optical elements such as the complementary Dammann gratings are incorporated for dynamic optical fiber splitting and combining. Experimental results of 1×8 dynamic optical couplings are presented.

  8. PROPOSAL OF NEW OPTICAL ELEMENTS

    Directory of Open Access Journals (Sweden)

    Goce Chadzitaskos

    2013-10-01

    Full Text Available A overview of our patented proposals of new optical elements is presented. The elements are suitable for laser pulse analysis, telescopy, X-ray microscopy and X-ray telescopy. They are based on the interference properties of light: a special grating for a double slit pattern, parabolic strip imaging for a telescope, and Bragg’s condition for X-ray scattering on a slice of a single crystal for X-raymicroscopy and X-ray telescopy.

  9. Approach to improve beam quality of inter-satellite optical communication system based on diffractive optical elements.

    Science.gov (United States)

    Tan, Liying; Yu, Jianjie; Ma, Jing; Yang, Yuqiang; Li, Mi; Jiang, Yijun; Liu, Jianfeng; Han, Qiqi

    2009-04-13

    For inter-satellite optical communication transmitter with reflective telescope of two-mirrors on axis, a large mount of the transmitted energy will be blocked by central obscuration of the secondary mirror. In this paper, a novel scheme based on diffractive optical element (DOE) is introduced to avoid it. This scheme includes one diffractive beam shaper and another diffractive phase corrector, which can diffract the obscured part of transmitted beam into the domain unobscured by the secondary mirror. The proposed approach is firstly researched with a fixed obscuration ratio of 1/4. Numerical simulation shows that the emission efficiency of new figuration is 99.99%; the beam divergence from the novel inter-satellite optical communication transmitter is unchanged; and the peak intensity of receiver plane is increased about 31% compared with the typical configuration. Then the intensy patterns of receiver plane are analyzed with various obscuration ratio, the corresponding numerical modelling reveals that the intensity patterns with various obscuration ratio are nearly identical, but the amplify of relative peak intensity is getting down with the growth of obscuration ratio. This work can improve the beam quality of inter-satellite optical communication system without affecting any other functionality.

  10. Tunable Diffractive Optical Elements Based on Shape-Memory Polymers Fabricated via Hot Embossing.

    Science.gov (United States)

    Schauer, Senta; Meier, Tobias; Reinhard, Maximilian; Röhrig, Michael; Schneider, Marc; Heilig, Markus; Kolew, Alexander; Worgull, Matthias; Hölscher, Hendrik

    2016-04-13

    We introduce actively tunable diffractive optical elements fabricated from shape-memory polymers (SMPs). By utilizing the shape-memory effect of the polymer, at least one crucial attribute of the diffractive optical element (DOE) is tunable and adjustable subsequent to the completed fabrication process. A thermoplastic, transparent, thermoresponsive polyurethane SMP was structured with diverse diffractive microstructures via hot embossing. The tunability was enabled by programming a second, temporary shape into the diffractive optical element by mechanical deformation, either by stretching or a second embossing cycle at low temperatures. Upon exposure to the stimulus heat, the structures change continuously and controllable in a predefined way. We establish the novel concept of shape-memory diffractive optical elements by illustrating their capabilities, with regard to tunability, by displaying the morphing diffractive pattern of a height tunable and a period tunable structure, respectively. A sample where an arbitrary structure is transformed to a second, disparate one is illustrated as well. To prove the applicability of our tunable shape-memory diffractive optical elements, we verified their long-term stability and demonstrated the precise adjustability with a detailed analysis of the recovery dynamics, in terms of temperature dependence and spatially resolved, time-dependent recovery.

  11. Three-dimensional shape measurement based on light patterns projection using diffractive optical elements

    Science.gov (United States)

    Twardowski, P.; Serio, B.; Raulot, V.; Guilhem, M.

    2010-05-01

    We propose a structured light micro-opto electromechanical system (MOEMS) projector specially designed to display successively a set of patterns in order to extract the 3-D shape of an object using a CCD cameras module and a small ARM-based computer for control, registration and numerical analysis. This method consists in a temporal codification using a modified Gray code combined with a classical phase shifting technique. Our approach is to combine the unambiguous and robust codification of the Gray code method with the high resolution of the phase shifting method to result in highly accurate 3D reconstructions. The proposed MOEMS is based on an array of vertical-cavity surface-emitting laser (VCSEL) combined with two planar static diffractive optical elements (DOEs) arrays. DOEs masters on quartz substrate have been fabricated using photolithography therefore replication in polycarbonate is possible at low cost. The first DOE array is designed to collimate the VCSEL light (Fresnel-type element) and the second one to project the codification patterns. DOEs have been designed and fabricated by surface etching to achieve a good diffraction efficiency using four phase levels. First we introduce the MEOMS principle and the features of the different components. We present the layout design of the DOEs and describe the issues related to the micro-fabrication process. An experimental study of the topography of the DOEs is presented and discussed. We then discuss fabrication aspects including the DOEs integration and packaging.

  12. Scattering optical elements: stand-alone optical elements exploiting multiple light scattering

    CERN Document Server

    Park, Jongchan; Park, Chunghyun; Lee, KyeoReh; Lee, Heon; Cho, Yong-Hoon; Park, YongKeun

    2016-01-01

    Optical design and fabrication techniques are crucial for making optical elements. From conventional lenses to diffractive optical elements, and to recent metasurfaces, various types of optical elements have been proposed to manipulate light where optical materials are fabricated into desired structures. Here, we propose a scattering optical element (SOE) which exploits multiple light scattering and wavefront shaping. Instead of fabricating optical materials, the SOE consists of a disordered medium and a photopolymer-based wavefront recorder, with shapes the wavefront of impinging light on demand. With the proposed stand-alone SOEs, we experimentally demonstrate control of various properties of light, including intensity, polarisation, spectral frequency and near field. Due to the tremendous freedom brought about by disordered media, the proposed approach will provide unexplored routes to manipulate arbitrary optical fields in stand-alone optical elements.

  13. Evaluation of the current biased integrated optical processors based on bistable dode elements

    Science.gov (United States)

    Tang, C. L.; Swanson, P. D.; Parker, M. A.; Libby, S. I.

    1994-07-01

    Three optical switching elements have been designed, fabricated and tested for use in an integrated, optical signal processor. The first, and optical NOR logic gate, uses gain quenching as a means of allowing one (or more) light beam (s) to control the output light. This technique, along with the use of a two-pad bistable output laser, is used in the demonstration of the feasibility of the second device, an all optical RS flip-flop. The third device consists of a broad area orthogonal mode switch laser, whose corollary outputs correspond to the sign of the voltage difference between its two high impedance electrical inputs. This device also has possible memory applications if bistable mode switching within the broad area laser can be achieved.

  14. Optical Input/Electrical Output Memory Elements based on a Liquid Crystalline Azobenzene Polymer.

    Science.gov (United States)

    Mosciatti, Thomas; Bonacchi, Sara; Gobbi, Marco; Ferlauto, Laura; Liscio, Fabiola; Giorgini, Loris; Orgiu, Emanuele; Samorì, Paolo

    2016-03-01

    Responsive polymer materials can change their properties when subjected to external stimuli. In this work, thin films of thermotropic poly(metha)acrylate/azobenzene polymers are explored as active layer in light-programmable, electrically readable memories. The memory effect is based on the reversible modifications of the film morphology induced by the photoisomerization of azobenzene mesogenic groups. When the film is in the liquid crystalline phase, the trans → cis isomerization induces a major surface reorganization on the mesoscopic scale that is characterized by a reduction in the effective thickness of the film. The film conductivity is measured in vertical two-terminal devices in which the polymer is sandwiched between a Au contact and a liquid compliant E-GaIn drop. We demonstrate that the trans → cis isomerization is accompanied by a reversible 100-fold change in the film conductance. In this way, the device can be set in a high- or low-resistance state by light irradiation at different wavelengths. This result paves the way toward the potential use of poly(metha)acrylate/azobenzene polymer films as active layer for optical input/electrical output memory elements.

  15. Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications.

    Science.gov (United States)

    Akbari, Hoda; Naydenova, Izabela; Martin, Suzanne

    2014-03-01

    A holographic device is under development that aims to improve light collection in solar cells. The aim is to explore the potential of using photopolymer holographic optical elements (HOEs) to collect light from a moving source, such as the sun, and redirect it for concentration by a holographic lens. A working range of 45° is targeted for such a device to be useful in solar applications without tracking. A photopolymer HOE is capable of efficiently redirecting light, but the angular selectivity of a single grating is usually of the order of one degree at the thicknesses required for high efficiency. The challenge here is to increase the angular and wavelength range of the gratings so that a reasonable number may be multiplexed and/or combined to create a device that can concentrate light incident from a large range of angles. In this paper, low spatial frequency holographic recording is explored to increase the angular and wavelength range of an individual grating. Ultimately, a combination of gratings will be used so that a broad range of angles of incidence are accepted. A design is proposed for the combination of such elements into a holographic solar collector. The first step in achieving this is optimization of recording at low spatial frequency. This requires a photopolymer material with unique properties, such as a fast monomer diffusion rate. This paper reports results on the efficiency of holograms recorded in an acrylamide-based photopolymer at low spatial frequencies (100, 200, and 300  l/mm). The diffraction efficiency and angular selectivity of recorded holograms have been studied for various photopolymer layer thicknesses and different intensities of the recording beams. A diffraction efficiency of over 80% was achieved at a spatial frequency of 200  l/mm. The optimum intensity of recording at this spatial frequency was found to be 1  mW/cm2. Individual gratings and focusing elements with high efficiency and FWHM angles of 3° are

  16. Optoelectronic multiplexer for digital data processing based on lipid crystal pixels and optical fiber elements

    Science.gov (United States)

    Pérez, I.; Pena, J. M. S.; Torres, J. C.; Manzanares, R.; Marcos, C.; Vázquez, C.

    2007-06-01

    In this work, we present an optoelectronic digital multiplexer 4:1 based on a multipixel nematic liquid crystal cell. This device uses two optical control signals to select one among four possible optical data inputs. These data signals are generated by four red LEDs, which are guided through plastic optical fiber towards liquid crystal pixels. For our purpose, only four pixels of the cell will be used to modulate the optical signal across them. Each pixel will be addressed by a square waveform coming from the conditioning circuit managed by a microcontroller system. The electronic control allows the multiplexer to work as as simple two input logical gates such as AND, NAND, OR, NOR, XOR and XNOR. The operation time of the device is limited by the response time of LC cell that is in the millisecond range.

  17. Design of extended viewing zone at autostereoscopic 3D display based on diffusing optical element

    Science.gov (United States)

    Kim, Min Chang; Hwang, Yong Seok; Hong, Suk-Pyo; Kim, Eun Soo

    2012-03-01

    In this paper, to realize a non-glasses type 3D display as next step from the current glasses-typed 3D display, it is suggested that a viewing zone is designed for the 3D display using DOE (Diffusing Optical Element). Viewing zone of proposed method is larger than that of the current parallax barrier method or lenticular method. Through proposed method, it is shown to enable the expansion and adjustment of the area of viewing zone according to viewing distance.

  18. Thermal strain along optical fiber in lightweight composite FOG : Brillouin-based distributed measurement and finite element analysis

    Science.gov (United States)

    Minakuchi, Shu; Sanada, Teruhisa; Takeda, Nobuo; Mitani, Shinji; Mizutani, Tadahito; Sasaki, Yoshinobu; Shinozaki, Keisuke

    2014-05-01

    Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain distribution along an optical fiber in a CFRP FOG using a Brillouin-based high-spatial resolution system. The key strain profile is clarified and the strain development is simulated using finite element analysis. Finally, several constituent materials for FOG are quantitatively compared from the aspect of the maximum thermal strain and the density, confirming the clear advantage of CFRP.

  19. Performance of an optical encoder based on a nondiffractive beam implemented with a specific photodetection integrated circuit and a diffractive optical element.

    Science.gov (United States)

    Quintián, Fernando Perez; Calarco, Nicolás; Lutenberg, Ariel; Lipovetzky, José

    2015-09-01

    In this paper, we study the incremental signal produced by an optical encoder based on a nondiffractive beam (NDB). The NDB is generated by means of a diffractive optical element (DOE). The detection system is composed by an application specific integrated circuit (ASIC) sensor. The sensor consists of an array of eight concentric annular photodiodes, each one provided with a programmable gain amplifier. In this way, the system is able to synthesize a nonuniform detectivity. The contrast, amplitude, and harmonic content of the sinusoidal output signal are analyzed. The influence of the cross talk among the annular photodiodes is placed in evidence through the dependence of the signal contrast on the wavelength.

  20. Holographic Optical Element-Based Laser Diode Source System for Direct Metal Deposition in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To meet the challenges of rapid prototyping, direct hardware fabrication, and on-the-spot repairs on the ground and on NASA space platforms, Physical Optics...

  1. A tactile sensing element based on a hetero-core optical fiber for force measurement and texture detection

    Science.gov (United States)

    Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro

    2014-05-01

    Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.

  2. 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements

    Science.gov (United States)

    Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.

    2007-06-01

    Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.

  3. Optical-electronic device based on diffraction optical element for control of special protective tags executed from luminophor

    Science.gov (United States)

    Polyakov, M.; Odinokov, S.

    2017-05-01

    The report focuses on special printing industry, which is called secure printing, which uses printing techniques to prevent forgery or falsification of security documents. The report considered the possibility of establishing a spectral device for determining the authenticity of certain documents that are protected by machine-readable luminophor labels. The device works in two spectral ranges - visible and near infrared that allows to register Stokes and anti-Stokes spectral components of protective tags. The proposed device allows verification of the authenticity of security documents based on multiple criteria in different spectral ranges. It may be used at enterprises related to the production of security printing products, expert units of law enforcement bodies at check of authenticity of banknotes and other structures.

  4. Polishing techniques for MEGARA pupil elements optics

    Science.gov (United States)

    Izazaga, R.; Carrasco, E.; Aguirre, D.; Salas, A.; Gil de Paz, A.; Gallego, J.; Iglesias, J.; Arroyo, J. M.; Hernández, M.; López, N.; López, V.; Quechol, J. T.; Salazar, M. F.; Carballo, C.; Cruz, E.; Arriaga, J.; De la Luz, J. A.; Huepa, A.; Jaimes, G. L.; Reyes, J.

    2016-07-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral-field and multi-object optical spectrograph for the 10.4m Gran Telescopio Canarias.. It will offer RFWHM 6,000, 12,000 and 18,700 for the low- , mid- and high-resolution, respectively in the wavelength range 3650-9700Å. .The dispersive elements are volume phase holographic (VPH) gratings, sandwiched between two flat Fused Silica windows of high optical precision in large apertures. The design, based in VPHs in combination with Ohara PBM2Y prisms allows to keep the collimator and camera angle fixed. Seventy three optical elements are being built in Mexico at INAOE and CIO. For the low resolution modes, the VPHs windows specifications in irregularity is 1 fringe in 210mm x 170mm and 0.5 fringe in 190mm x 160mm. for a window thickness of 25 mm. For the medium and high resolution modes the irregularity specification is 2 fringes in 220mm x 180mm and 1 fringe in 205mm x 160mm, for a window thickness of 20mm. In this work we present a description of the polishing techniques developed at INAOE optical workshop to fabricate the 36 Fused Silica windows and 24 PBM2Y prisms that allows us to achieve such demanding specifications. We include the processes of mounting, cutting, blocking, polishing and testing.

  5. Universal Three-Qubit Entanglement Generation Based on Linear Optical Elements and Quantum Non-Demolition Detectors

    Science.gov (United States)

    Liu, Xin-Chang

    2016-12-01

    Recently, entanglement plays an important role in quantum information science. Here we propose an efficient and applicable method which transforms arbitrary three-qubit unknown state to a maximally entangled Greenberger-Horne-Zeilinger state, and the proposed method could be further generalized to multi-qubit case. The proposed setup exploits only linear optical elements and quantum non-demolition detectors using cross-Kerr media. As the quantum non-demolition detection could reveal us the output state of the photons without destroying them. This property may make our proposed setup flexible and can be widely used in current quantum information science and technology.

  6. Universal Three-Qubit Entanglement Generation Based on Linear Optical Elements and Quantum Non-Demolition Detectors

    Science.gov (United States)

    Liu, Xin-Chang

    2017-02-01

    Recently, entanglement plays an important role in quantum information science. Here we propose an efficient and applicable method which transforms arbitrary three-qubit unknown state to a maximally entangled Greenberger-Horne-Zeilinger state, and the proposed method could be further generalized to multi-qubit case. The proposed setup exploits only linear optical elements and quantum non-demolition detectors using cross-Kerr media. As the quantum non-demolition detection could reveal us the output state of the photons without destroying them. This property may make our proposed setup flexible and can be widely used in current quantum information science and technology.

  7. Modal liquid crystal array of optical elements.

    Science.gov (United States)

    Algorri, J F; Love, G D; Urruchi, V

    2013-10-21

    In this study, a novel liquid crystal array based on modal control principle is proposed and demonstrated. The advanced device comprises a six striped electrode structure that forms a configurable 2D matrix of optical elements. A simulation program based on the Frank-Oseen equations and modal control theory has been developed to predict the device electrooptic response, that is, voltage distribution, interference pattern and unwrapped phase. A low-power electronics circuit, that generates complex waveforms, has been built for driving the device. A combined variation of the waveform amplitude and phase has provided a high tuning versatility to the device. Thus, the simulations have demonstrated the generation of a liquid crystal prism array with tunable slope. The proposed device has also been configured as an axicon array. Test measurements have allowed us to demonstrate that electrooptic responses, simulated and empirical, are fairly in agreement.

  8. Design and finite element modeling of a novel optical microsystems-based tactile sensor for minimal invasive robotic surgery

    Science.gov (United States)

    Ghanbari Mardasi, Amir; Ghanbari, Mahmood; Salmani Tehrani, Mehdi

    2014-09-01

    Although recently Minimal Invasive Robotic Surgery (MIRS) has been more addressed because of its wide range of benefits, however there are still some limitations in this regard. In order to address the shortcomings of MIRS systems, various types of tactile sensors with different sensing principles have been presented in the last few years. In the present paper a MEMS-based optical sensor, which has been recently proposed by researchers, is investigated using numerical simulation. By this type of sensors real time quantification of both dynamic and statics contact forces between the tissue and surgical instrument would be possible. The presented sensor has one moving part and works based on the intensity modulation principle of optical fibers. It is electrically-passive, MRI-compatible and it is possible to be fabricated using available standard micro fabrication techniques. The behavior of the sensor has been simulated using COMSOL MULTIPHYSICS 3.5 software. Stress analysis is conducted on the sensor to assess the deflection of the moving part of the sensor due to applied force. The optical simulation is then conducted to estimate the power loss due to the moving part deflection. Using FEM modeling, the relation between force and deflection is derived which is necessary for the calibration of the sensor.

  9. Finite element analysis of optical waveguides

    Science.gov (United States)

    Mabaya, N.; Lagasse, P. E.; Vandenbulcke, P.

    1981-06-01

    Several finite element programs for the computation of the guided modes of optical waveguides are presented. The advantages and limitations of a very general program for the analysis of anisotropic guides are presented. A possible solution to the problem of the spurious numerical modes, encountered when calculating higher order modes, is proposed. For isotropic waveguides, it is shown that both EH- and HE-type modes can be very accurately approximated by two different scalar finite element programs. Finally, a boundary perturbation method is outlined that makes it possible to calculate the attenuation coefficient of leaky modes in single material guides, starting from a finite element calculation.

  10. Aberration coefficients of curved holographic optical elements

    Science.gov (United States)

    Verboven, P. E.; Lagasse, P. E.

    1986-11-01

    A general formula is derived that gives all aberration terms of holographic optical elements on substrates of any shape. The spherical substrate shape and the planar substrate shape are treated as important special cases. A numerical example illustrates the need of including higher-order aberrations.

  11. Method and system for processing optical elements using magnetorheological finishing

    Science.gov (United States)

    Menapace, Joseph Arthur; Schaffers, Kathleen Irene; Bayramian, Andrew James; Molander, William A

    2012-09-18

    A method of finishing an optical element includes mounting the optical element in an optical mount having a plurality of fiducials overlapping with the optical element and obtaining a first metrology map for the optical element and the plurality of fiducials. The method also includes obtaining a second metrology map for the optical element without the plurality of fiducials, forming a difference map between the first metrology map and the second metrology map, and aligning the first metrology map and the second metrology map. The method further includes placing mathematical fiducials onto the second metrology map using the difference map to form a third metrology map and associating the third metrology map to the optical element. Moreover, the method includes mounting the optical element in the fixture in an MRF tool, positioning the optical element in the fixture; removing the plurality of fiducials, and finishing the optical element.

  12. Diffractive optical elements written by photodeposition

    Science.gov (United States)

    Baal-Zedaka, I.; Hava, S.; Mirchin, N.; Margolin, R.; Zagon, M.; Lapsker, I.; Azoulay, J.; Peled, A.

    2003-03-01

    In this work direct laser writing of diffractive optical elements (DOE) by photodeposition (PD) of amorphous selenium (a-Se) from colloid solutions has been investigated. We used a computer controlled laser scanner for patterning thin film micro-profiles creating thus planar optical elements by direct beam writing on surfaces immersed in a liquid phase PD cell. The laser employed was an argon ion laser at 488 nm wavelength, with powers up to 55 mW, for writing typically 25-250 μm wide lines of 200 nm thickness at rates of about 150 μm/s. Various elements made of photodeposited thin films on polymethyl-methacrylate (PMMA) substrates were produced for prototyping microlenses, linear grating arrays, cylindrical and circular profiled DOE patterns.

  13. Diffractive optical elements written by photodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Baal-Zedaka, I.; Hava, S.; Mirchin, N.; Margolin, R.; Zagon, M.; Lapsker, I.; Azoulay, J.; Peled, A

    2003-03-15

    In this work direct laser writing of diffractive optical elements (DOE) by photodeposition (PD) of amorphous selenium (a-Se) from colloid solutions has been investigated. We used a computer controlled laser scanner for patterning thin film micro-profiles creating thus planar optical elements by direct beam writing on surfaces immersed in a liquid phase PD cell. The laser employed was an argon ion laser at 488 nm wavelength, with powers up to 55 mW, for writing typically 25-250 {mu}m wide lines of 200 nm thickness at rates of about 150 {mu}m/s. Various elements made of photodeposited thin films on polymethyl-methacrylate (PMMA) substrates were produced for prototyping microlenses, linear grating arrays, cylindrical and circular profiled DOE patterns.

  14. 3D optical vortices generated by micro-optical elements and its novel applications

    Institute of Scientific and Technical Information of China (English)

    BU J.; LIN J.; K. J. Moh; B. P. S. Ahluwalia; CHEN H. L.; PENG X.; NIU H. B.; YUAN X.C.

    2007-01-01

    In this paper we report on recent development in the areas of optical vortices generated by micro-optical elements and applications of optical vortices, including optical manipulation, radial polarization and secure free space optical communication

  15. X-ray monitoring optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  16. Multi-Element Electron-Transfer Optical Detector System

    Science.gov (United States)

    Jordan, Jeffrey D. (Inventor)

    2004-01-01

    A multi-element optical detector system includes an electrically resistive screen that is substantially transparent to radiation energy having a wavelength of interest. A plurality of electron transfer elements (e.g., a low work function photoactive material or a carbon nanotube (CNT)-based element) are provided with each having a first end and a second end. The first end of each element is spaced apart from the screen by an evacuated gap. When the radiation energy passes through the screen with a bias voltage applied thereto, transfer of electrons through each element is induced from the first end to the second end such that a quantity indicative of the electrons transferred through each element can be detected.

  17. Single-element Electron-transfer Optical Detector System

    Science.gov (United States)

    Jordan, Jeffrey D. (Inventor)

    2004-01-01

    An optical detector system includes an electrically resistive screen that is substantially transparent to radiation energy having a wavelength of interest. An electron transfer element (e.g., a low work function photoactive material or a carbon nanotube (CNT)-based element) has a first end and a second end with its first end spaced apart from the screen by an evacuated gap. When radiation energy passes through the screen with a bias voltage being applied thereto, transfer of electrons through the electron transfer element is induced from its first to its second end such that a quantity indicative of the electrons transferred can be detected.

  18. Cubic optical elements for an accommodative intraocular lens.

    Science.gov (United States)

    Simonov, Aleksey N; Vdovin, Gleb; Rombach, Michiel C

    2006-08-21

    We present a new accommodative intraocular lens based on a two-element varifocal Alvarez lens. The intraocular lens consists of (1) an anterior element combining a spherical lens for refractive power with a cubic surface for the varifocal effect, and (2) a posterior element with a cubic surface only. The focal length of the IOL lens changes when the superimposed refractive elements shift in opposite directions in a plane perpendicular to the optical axis. The ciliary muscle will drive the accommodation by a natural process of contraction and relaxation. Results of ray-tracing simulations of the model eye with the two-element intraocular lens are presented for on-axis and off-axis vision. The configuration of the lens is optimized to reduce refractive errors as well as effects of misalignment. A prototype with a clear aperture of ~5.7 mm is manufactured and evaluated in air with a Shack-Hartmann wave-front sensor. It provides an accommodation range of ~4 dioptres in the eye at a ~0.75-mm lateral displacement of the optical elements. The experimentally measured on-axis optical performance of the IOL lens agrees with the theoretically predicted performance.

  19. Virtual input device with diffractive optical element

    Science.gov (United States)

    Wu, Ching Chin; Chu, Chang Sheng

    2005-02-01

    As a portable device, such as PDA and cell phone, a small size build in virtual input device is more convenient for complex input demand. A few years ago, a creative idea called 'virtual keyboard' is announced, but up to now there's still no mass production method for this idea. In this paper we'll show the whole procedure of making a virtual keyboard. First of all is the HOE (Holographic Optical Element) design of keyboard image which yields a fan angle about 30 degrees, and then use the electron forming method to copy this pattern in high precision. And finally we can product this element by inject molding. With an adaptive lens design we can get a well correct keyboard image in distortion and a wilder fan angle about 70 degrees. With a batter alignment of HOE pattern lithography, we"re sure to get higher diffraction efficiency.

  20. Method and system for laser-based formation of micro-shapes in surfaces of optical elements

    Science.gov (United States)

    Bass, Isaac Louis; Guss, Gabriel Mark

    2013-03-05

    A method of forming a surface feature extending into a sample includes providing a laser operable to emit an output beam and modulating the output beam to form a pulse train having a plurality of pulses. The method also includes a) directing the pulse train along an optical path intersecting an exposed portion of the sample at a position i and b) focusing a first portion of the plurality of pulses to impinge on the sample at the position i. Each of the plurality of pulses is characterized by a spot size at the sample. The method further includes c) ablating at least a portion of the sample at the position i to form a portion of the surface feature and d) incrementing counter i. The method includes e) repeating steps a) through d) to form the surface feature. The sample is free of a rim surrounding the surface feature.

  1. Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens

    Science.gov (United States)

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2015-07-01

    The broadband directive in-phase emission from an array of sources conformed cylindrically is numerically and experimentally reported. Such manipulation is achieved through the use of a lens designed by transformation optics concept. The all-dielectric lens prototype is realized through three-dimensional (3D) polyjet printing and presents a graded refractive index. A microstrip antenna array fabricated using standard lithography techniques and conformed on a cylindrical surface is used as TE-polarized wave launcher for the lens. To experimentally demonstrate the broadband focusing properties and in-phase directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Experimental measurements agreeing qualitatively with numerical simulations validate the proposed lens and open the way to inexpensive all-dielectric microwave lenses for beam forming and collimation.

  2. Application of binary optical element to infrared hyperspectral detection

    Institute of Scientific and Technical Information of China (English)

    SUN; Qiang(孙强); YU; Bin(于斌); LIU; Yuling(刘玉玲); LU; Zhenwu(卢振武); CHEN; Bo(陈波); WANG; Zhaoqi(王肇圻); MU; Guoguang(母国光)

    2003-01-01

    Binary optical element (BOE) is applied to infrared hyperspectral detector. A new type of infrared hyperspectral detecting image system is designed based on the characteristics of abundant color-dispersion of BOE, and an example of combining refractive-diffractive zoom optical system with Cassegrain system is presented. The system not only has simple structure, long back-working distance and few requirements for material but also can increase the image resolution, abilities of accepting ray energy and registration. Consequently, by adding an appropriate stare array detector to the system, the detecting precision can be raised.

  3. Quantifying the polarization properties of non-depolarizing optical elements with virtual distorting elements.

    Science.gov (United States)

    Wang, Xiao; Yang, Feng; Yin, Jianhua

    2017-04-01

    It is well known that polarization can be potentially distorted by optical elements in optical paths, which intensively influences researches and techniques related to polarization analysis. For this, we proposed to exactly quantify the polarization properties of non-depolarizing optical elements with virtual distorting elements characterized by three parameters: orientation Θ, diattenuation Γ, and retardation Δ. Utilizing the least-squares fitting method, these three parameters can be determined by fitting the measured output polarization states from the optical element with the polarization responses of VDEs. The principle of this method is detailed, and a corresponding experimental setup is further presented. The feasibility of this method has been verified in reflective mirrors and a dichroic mirror. Based on the quantification results with our setup, we have successfully compensated the polarization distortion induced by a dichroic mirror. The precision of this method has been investigated in detail with Monte Carlo simulations. The investigation results show that this method has high precision at certain measurement conditions, and the precision can be further improved.

  4. Finite element analysis of thermal stresses in optical storage media

    Science.gov (United States)

    Evans, K. E.; Nkansah, M. A.; Abbott, S. J.

    1988-10-01

    Finite element techniques are used to calculate the thermal stresses generated in single-layer, optical storage thin films. The calculations predict that the thermal stresses generated by laser heating may reach values well beyond the strength of the media in times much less than that for pit formation by melting. Both dye-polymer and metal-based systems are considered with either air or substrate incident laser sources.

  5. Comparison Between Elemental Carbon Measured Using Thermal-Optical Analysis and Black Carbon Measurements Using A Novel Cellphone-Based System

    Science.gov (United States)

    Ramanathan, N.; Khan, B.; Leong, I.; Lukac, M.

    2011-12-01

    Black carbon (BC) is produced through the incomplete combustion of fossil and solid fuels. Current BC emissions inventories have large uncertainties of factors of 2 or more due to sparse measurements and because BC is often emitted by local sources that vary over time and space (Bond et al, 2004). Those uncertainties are major sources of error in air pollution models. Emissions from a variety of improved cookstove/fuel/combustion conditions were collected on pre-conditioned 47 mm quartz-fiber filters and analyzed for organic carbon (OC) and elemental carbon (EC) using thermal-optical analysis (TOA). The samples were then analyzed for BC concentration by using cellphone-based instrumentation developed by Ramanathan et al., 2011. The cellphone-based monitoring system (CBMS) is a wireless, low-cost, low-power system that monitors BC emissions. The CBMS is comprised of an aerosol filter sampler containing a battery-powered air pump and a 25mm filter holder that draws air in through a quartz-fiber filter. As black carbon deposits increase, the filter darkens--the darkest color representing the highest loading. A cellphone photograph of the filter with the black carbon deposit is taken and relayed to an analytics unit for comparison to a reference scale to estimate airborne BC concentration. The BC concentration can then be compared to the thermally derived EC concentration. TOA was conducted on a Sunset Laboratory Dual Optics Carbon Analyzer using a modified version of the Birch and Cary (1996) NIOSH 5040 protocol. The dual-optical instrument permitted simultaneous monitoring of the transmission (TOT) and reflectance (TOR). 619 samples were collected; EC was obtained using NIOSH TOT and NIOSH TOR methods, and BC was obtained using the CBMS analytics unit. The mean BC value reported by the CBMS agrees within 20% of the reference values for EC, confirming the findings in Ramanathan et al. (2011) based on samples from India. Given this accuracy, we conclude that the CBMS

  6. Design of nanophotonic elements with transformation optics

    Science.gov (United States)

    Ginis, Vincent; Tassin, Philippe; Danckaert, Jan; Soukoulis, Costas M.; Veretennicoff, Irina

    2012-10-01

    In this contribution we show that the fundamental diffraction limit of optical cavities can be overcome using a transformation-optical approach. Transformation optics has recently provided a new method for the design of devices to control electromagnetic fields, based on the analogy between the macroscopic Maxwell's equations in complex dielectrics and the free-space Maxwell's equations in a curved coordinate system. It offers an elegant approach to exploit the full potential of metamaterials. We show how transformation optics can be used to achieve the opposite e ect of an invisibility cloak; instead of prohibiting the electromagnetic waves from entering a predefi ned region, we encapsulate the light waves within such a finite region. This allows us to design cavities with extraordinary properties. We have been able to demonstrate theoretically the existence of eigenmodes whose wavelength is much larger than the characteristic dimensions of the device. Furthermore, our cavities avoid the bending losses observed in traditional microcavities, so the quality factor is only limited by the intrinsic absorption of the materials. Finally, we also demonstrate how the combination of radial and angular transformations allows developing cavities without bending losses using right-handed material parameters only.1, 2

  7. Measurement of Rotatory Optics Element in Tensor Dielectric Matrix for Rotatory Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    LIU Jinghao; ZHANG Xiaofan; LI Huazhou; BAO Zhenwu

    2005-01-01

    The rotatory optics element in the tensor dielectric coefficient matrix is an important parameter for analyzing and calculating a rotatory optical fiber by electromagnetic theory. But the mea-surement of rotatory optics element is difficult for the rotatory optical fiber. A simple principle and method for measuring rotatory optics element are put forward in this paper. Firstly by using electromagnetic theory it was demonstrated that the rotatory optics element has a simple linear relation with the rotatory angle, and then the rotatory optics element has a simple linear relation with the magnetic field strength (or bias current in the helix coil) . Secondly a measurement system for the rotatory optics element in the rotatory optical fiber was designed. Using the measurement system the rotatory element can be obtained by measuring the bias current simply.

  8. Polarisation-sensitive optical elements in azobenzene polyesters and peptides

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Dam-Hansen, Carsten; Berg, Rolf Henrik;

    2006-01-01

    In this article, we describe fabrication of polarisation holographic optical elements in azobenzene polyesters. Both liquid crystalline and amorphous side-chain polyesters have been utilised. Diffractive optical elements such as lenses and gratings that are sensitive to the polarisation...... of the incident light have been fabricated with polarisation holography. Computer-generated optical elements and patterns have also been written with a single polarised laser beam. Recording of polarisation defects enabling easy visualisation is also shown to be feasible in azobenzene polyesters....

  9. Transmissive Diffractive Optical Element Solar Concentrators

    Science.gov (United States)

    Baron, Richard; Moynihan, Philip; Price, Douglas

    2008-01-01

    Solar-thermal-radiation concentrators in the form of transmissive diffractive optical elements (DOEs) have been proposed as alternatives to mirror-type solar concentrators now in use. In comparison with functionally equivalent mirror-type solar concentrators, the transmissive, diffractive solar concentrators would weigh and cost less, and would be subject to relaxed mechanical tolerances. A DOE concentrator would be made from a thin, flat disk or membrane of a transmissive material having a suitable index of refraction. By virtue of its thinness, the DOE concentrator would have an areal mass density significantly less than that of a functionally equivalent conventional mirror. The DOE concentrator would have a relatively wide aperture--characterized by a focal-length/aperture-diameter ratio ('f number') on the order of 1. A kinoform (a surface-relief phase hologram) of high diffractive order would be microfabricated onto one face of the disk. The kinoform (see figure) would be designed to both diffract and refract incident solar radiation onto a desired focal region, without concern for forming an image of the Sun. The high diffractive order of this kinoform (in contradistinction to the low diffractive orders of some other kinoforms) would be necessary to obtain the desired f number of 1, which, in turn, would be necessary for obtaining a desired concentration ratio of 2,500 or greater. The design process of optimizing the concentration ratio of a proposed DOE solar concentrator includes computing convolutions of the optical bandwidth of the Sun with the optical transmission of the diffractive medium. Because, as in the cases of other non-imaging, light-concentrating optics, image quality is not a design requirement, the process also includes trading image quality against concentration ratio. A baseline design for one example calls for an aperture diameter of 1 m. This baseline design would be scalable to a diameter as large as 10 m, or to a smaller diameter for a

  10. Micro-optical elements and optical materials of certain spider webs

    Science.gov (United States)

    Kane, D. M.; Naidoo, N.; Little, D. J.

    2012-06-01

    Certain spider webs are composed of several types of micro-optical elements made from transparent optical materials. The silks (radial and capture) are almost exclusively protein. The nearly cylindrical silks have diameters in the range 0.1 to several microns and cross-sectional morphology that is cylindrical-multi-layered,.as studied by transmission electron microscopy, The capture threads are coated with aqueous adhesive that also forms into nearly elliptical micro-lenses (adhesive droplets) mounted on the near cylindrical silks. The remaining elements of the web are the cement junctions tying the radial and the capture threads of the web together. These are irregularly shaped platelets. Progress to date on our research characterizing the optical properties and function of these transparent orb webs has been to interpret the reflection and transmission properties of the elements of the web, and the web as a whole, in natural lighting; to evaluate the optical finish of the surface of the silks and capture droplets; and to measure the principal refractive indices of radial silks using new immersion based methods developed for application to micron-sized, curved optical elements. Here we report the principal refractive indices, birefringence, dispersion and morphology of transparent spider silk subject to various chemical treatments. The morphology is measured using TEM. Insight into the physical origin of the refractive index properties will be discussed.

  11. Deformation analysis of optical flat surface with finite element method

    Science.gov (United States)

    Fu, Pengqiang; Ren, Boyuan; Wang, Yiwen; Zhang, Dewei; Zhang, Longjiang; Su, Xing

    2016-10-01

    Proposing a new method for testing the ultra-precision aerostatic spindle motion accuracy based on analyzing the online real-time dynamic interference image. Optical flat crystal as the testing standard will be installed at the end of the ultra precision aerostatic spindle and will motion along with the spindle. On the other end of the spindle, the tool will be installed for online processing. The image data of optical flat crystal collected by the high-precision dynamic interferometer will be processed for analyzing the spindle error. For collecting higher accuracy image data, the installation way of optical flat crystal is one of the key technologies. Base on this, the effects of the clamping means on the surface accuracy of optical flat crystal is studied. At first, the finite element model of the optical flat crystal`s clamping structure were established. Secondly, the influence of the material of the supporting annulus, preload lateral clamping and spindle speed on the surface accuracy of optical flat crystal had been analyzed. At last, the improved and optimized structure of the optical flat crystal has been presented. As the analysis results shown, the RMS value of reference surface is 9.47nm and the deformation values of the central region is 0.17nm which satisfies the requirement of surface accuracy and installation of optical flat crystal. It has a very important theoretical and practical significance to establish spindle online testing system and research rotary error generating mechanism of ultra-precision spindle to improve surface accuracy of ultra-precision machining.

  12. Temperature control system for optical elements in astronomical instrumentation

    Science.gov (United States)

    Verducci, Orlando; de Oliveira, Antonio C.; Ribeiro, Flávio F.; Vital de Arruda, Márcio; Gneiding, Clemens D.; Fraga, Luciano

    2014-07-01

    Extremely low temperatures may damage the optical components assembled inside of an astronomical instrument due to the crack in the resin or glue used to attach lenses and mirrors. The environment, very cold and dry, in most of the astronomical observatories contributes to this problem. This paper describes the solution implemented at SOAR for remotely monitoring and controlling temperatures inside of a spectrograph, in order to prevent a possible damage of the optical parts. The system automatically switches on and off some heat dissipation elements, located near the optics, as the measured temperature reaches a trigger value. This value is set to a temperature at which the instrument is not operational to prevent malfunction and only to protect the optics. The software was developed with LabVIEWTM and based on an object-oriented design that offers flexibility and ease of maintenance. As result, the system is able to keep the internal temperature of the instrument above a chosen limit, except perhaps during the response time, due to inertia of the temperature. This inertia can be controlled and even avoided by choosing the correct amount of heat dissipation and location of the thermal elements. A log file records the measured temperature values by the system for operation analysis.

  13. Diffractive optical elements for transformation of modes in lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Arun K; Pax, Paul H; Heebner, John E; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2016-06-21

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  14. Micro-optical elements functioning in non-visible spectral range

    Science.gov (United States)

    Wang, Qin; Zhang, Andy Z. Z.; Bergström, Andreas; Huo, Vicky Z. J.; Almqvist, Susanne; Kaplan, Wlodek; Andersson, Jan Y.

    2010-05-01

    Nowadays novel micro-fabrication and wafer-based manufacturing approach allows realizing micro-optics in a way scientists have dreamt for generations, in particular, utilizing nano-imprint lithography as fabrication tooling enables greatly accelerating the micro-optics technology to its frontier. In this report, we present wafer-scale fabrication of various types of micro-optical elements based on photoresist, benzocyclobutene, photocurable imprint resist, and semiconductor materials by using thermal reflow, reactive ion etching, and imprint techniques. Especially, several concave or convex 3-dimensional micro-optical structures shaped by imprint method are detailed. These micro-optical elements can be monolithically or hybrid integrated onto optoelectronics devices, such as photodetectors and emitters as optical beam focuser, collimator, filter, or anti-reflectance elements. As application examples, polymer microlenses were integrated directly on the top of UV dual functional devices and quantum dot long wavelength infrared photodetectors, respectively.

  15. Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part I. Transmission holographic optical elements.

    Science.gov (United States)

    Kim, J M; Choi, B S; Kim, S I; Kim, J M; Bjelkhagen, H I; Phillips, N J

    2001-02-10

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOE's). The drawback of DCG is its low sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-high-resolution silver halide emulsions. An optimized processing technique for transmission HOE's recorded in these materials is introduced. Diffraction efficiencies over 90% can be obtained for transmissive diffraction gratings. Understanding the importance of the selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOE's.

  16. Element-Based Computational Model

    Directory of Open Access Journals (Sweden)

    Conrad Mueller

    2012-02-01

    Full Text Available A variation on the data-flow model is proposed to use for developing parallel architectures. While the model is a data driven model it has significant differences to the data-flow model. The proposed model has an evaluation cycleof processing elements (encapsulated data that is similar to the instruction cycle of the von Neumann model. The elements contain the information required to process them. The model is inherently parallel. An emulation of the model has been implemented. The objective of this paper is to motivate support for taking the research further. Using matrix multiplication as a case study, the element/data-flow based model is compared with the instruction-based model. This is done using complexity analysis followed by empirical testing to verify this analysis. The positive results are given as motivation for the research to be taken to the next stage - that is, implementing the model using FPGAs.

  17. Optical schemes for speckle suppression by Barker code diffractive optical elements.

    Science.gov (United States)

    Lapchuk, A; Kryuchyn, A; Petrov, V; Shyhovets, O V; Pashkevich, G A; Bogdan, O V; Kononov, A; Klymenko, A

    2013-09-01

    A method for speckle suppression based on Barker code and M-sequence code diffractive optical elements (DOEs) is analyzed. An analytical formula for the dependence of speckle contrast on the wavelength of the laser illumination is derived. It is shown that speckle contrast has a wide maximum around the optimal wavelength that makes it possible to obtain large speckle suppression by using only one DOE for red, green, and blue laser illumination. Optical schemes for implementing this method are analyzed. It is shown that the method can use a simple liquid-crystal panel for phase rotation instead of a moving DOE; however, this approach requires a high frequency of liquid-crystal switching. A simple optical scheme is proposed using a 1D Barker code DOE and a simple 1D liquid-crystal panel, which does not require a high frequency of liquid-crystal switching or high-accuracy DOE movement.

  18. Sighting optics including an optical element having a first focal length and a second focal length

    Science.gov (United States)

    Crandall, David Lynn

    2011-08-01

    One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.

  19. Dual Ion Beam Deposition Of Diamond Films On Optical Elements

    Science.gov (United States)

    Deutchman, Arnold H.; Partyka, Robert J.; Lewis, J. C.

    1990-01-01

    Diamond film deposition processes are of great interest because of their potential use for the formation of both protective as well as anti-reflective coatings on the surfaces of optical elements. Conventional plasma-assisted chemical vapor deposition diamond coating processes are not ideal for use on optical components because of the high processing temperatures required, and difficulties faced in nucleating films on most optical substrate materials. A unique dual ion beam deposition technique has been developed which now makes possible deposition of diamond films on a wide variety of optical elements. The new DIOND process operates at temperatures below 150 aegrees Farenheit, and has been used to nucleate and grow both diamondlike carbon and diamond films on a wide variety of optical :taterials including borosilicate glass, quartz glass, plastic, ZnS, ZnSe, Si, and Ge.

  20. Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part 2. Reflection holographic optical elements.

    Science.gov (United States)

    Kim, Jong Man; Choi, Byung So; Choi, Yoon Sun; Kim, Jong Min; Bjelkhagen, Hans I; Phillips, Nicholas J

    2002-03-10

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOEs). The drawback of DCG is its low energetic sensitivity and limited spectral response. Silver halide materials can be processed in such away that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-fine-grain silver halide (AgHal) emulsions. In particular, high spatial-frequency fringes associated with HOEs of the reflection type are difficult to construct when SHSG processing methods are employed. Therefore an optimized processing technique for reflection HOEs recorded in the new AgHal materials is introduced. Diffraction efficiencies over 90% can be obtained repeatably for reflection diffraction gratings. Understanding the importance of a selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOEs, also including high-quality display holograms of the reflection type in both monochrome and full color.

  1. Development of large aperture elements for active and adaptive optics

    Directory of Open Access Journals (Sweden)

    Stranakova E.

    2013-05-01

    Full Text Available Large-aperture elements for laser active and adaptive optics are investigated in collaboration within IOP AcSci CR, FEng CTU and 5M. A bimorph deformable mirror for high-power lasers based on a lightweight structure with a composite core is currently in development. In order to realize a sufficiently large working aperture we are using new technologies for production of core, bimorph actuator and DM reflector. Detailed simulation of components and structure is validated by measurement and testing. A research of DM actuation and response of a complicated mirror structure needed for an accurate control of a deformation is performed. Testing of samples and subscale measurements are currently performed, measurement of a complete structure is in preparation.

  2. ADVANTAGES OF DIFFRACTIVE OPTICAL ELEMENTS APPLICATION IN SIMPLE OPTICAL IMAGING SYSTEMS

    Directory of Open Access Journals (Sweden)

    N. D. Zoric

    2015-01-01

    Full Text Available The paper deals with the influence of diffractive optical elements on the optical aberrations. The correction of optical aberrations was investigated in the simple optical systems with one and two lenses (singlet and doublet. The advantages of diffractive optical elements are their ability to generate arbitrary complex wave fronts from a piece of optical material that is essentially flat. The optical systems consisting of the standard surfaces were designed and optimized by using the same starting points. Further, the diffractive and aspheric surfaces were introduced into the developed systems. The resulting hybrid systems were optimized. To compare the complicity of the development of narrow field systems and wide field optical systems, the optimization has been done separately for these two types of the instruments. The optical systems were designed by using special Optical Design Software. Тhe characteristics of designed diffractive surfaces were controlled in Software DIFSYS 2.30. Due to the application of diffractive optical elements the longitudinal chromatic aberration was 5 times reduced for the narrow field systems. The absolute value of Seidel coefficient related to the spherical aberration was reduced in the range of 0.03. Considering that diffractive optical elements have the known disadvantages, like possible parasitic diffraction orders and probable decrease of the transmission, we also developed and analyzed the optical systems with combined aspheric and diffractive surfaces. A combination of the aspheric and diffractive surfaces in the optical disk system of the disk reading lens, gave cutting down of the longitudinal color aberrations almost 15 times on-axis, comparing to the lens consisting of the aspherical and standard surfaces. All of the designed diffractive optical elements possess the parameters within the fabrication limits.

  3. Development of multiple-surface optical elements for road lighting.

    Science.gov (United States)

    Kravchenko, Sergey V; Byzov, Egor V; Moiseev, Mikhail A; Doskolovich, Leonid L

    2017-02-20

    The development of LED secondary optics for road illumination is quite a challenging problem. Optical elements developed for this kind of application should have maximal efficiency, provide high luminance and illuminance uniformity, and meet many other specific requirements. Here, we demonstrate that the usage of the supporting quadric method modification enables generating free-form optical solution satisfying all these requirements perfectly. As an example, two optical elements for different roadway types are computed, manufactured by injection molding, and then measured in a photometry bench. Experimental data demonstrate that the obtained light distributions meet ME1 class requirements of EN 13201 standard. The obtained directivity patterns are universal and provide high performance with different configurations of luminaires' arrangement: the ratio of pole altitude to distance can vary from 2.5 up to 3.6.

  4. Fabrication of Diffractive Optical Elements for an Integrated Compact Optical-MEMS Laser Scanner

    Energy Technology Data Exchange (ETDEWEB)

    WENDT,JOEL R.; KRYGOWSKI,T.W.; VAWTER,GREGORY A.; SPAHN,OLGA B.; SWEATT,WILLIAM C.; WARREN,MIAL E.; REYES,DAVID NMN

    2000-07-13

    The authors describe the microfabrication of a multi-level diffractive optical element (DOE) onto a micro-electromechanical system (MEMS) as a key element in an integrated compact optical-MEMS laser scanner. The DOE is a four-level off-axis microlens fabricated onto a movable polysilicon shuttle. The microlens is patterned by electron beam lithography and etched by reactive ion beam etching. The DOE was fabricated on two generations of MEMS components. The first generation design uses a shuttle suspended on springs and displaced by a linear rack. The second generation design uses a shuttle guided by roller bearings and driven by a single reciprocating gear. Both the linear rack and the reciprocating gear are driven by a microengine assembly. The compact design is based on mounting the MEMS module and a vertical cavity surface emitting laser (VCSEL) onto a fused silica substrate that contains the rest of the optical system. The estimated scan range of the system is {+-}4{degree} with a spot size of 0.5 mm.

  5. Military Specification, Mirror, Front Surfaced Aluminized: For Optical Elements

    Science.gov (United States)

    2007-11-02

    uniform magnesium fluoride or silicon monoxide or as otherwise specified on the applicable drawing. Tha film shall be free from holes, foreign...Mt] «. OATI Of IIMMIMION (YYMHDDt MIL-M-13508C AMENDMENT 1 27 May 1983 MILITARY SPECIFICATION MIRROR, FRONT SURFACED ALUMINIZED : FOR OPTICAL... ALUMINIZED : FOR OPTICAL ELEMENTS This notice should be filed in front of MIL-M-13508C, dated 19 March 1973 MIL-M-13508C dated 19 March 1973 with

  6. Photodeposited diffractive optical elements of computer generated masks

    Energy Technology Data Exchange (ETDEWEB)

    Mirchin, N. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel)]. E-mail: mirchin@hait.ac.il; Peled, A. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Baal-Zedaka, I. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Margolin, R. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Zagon, M. [Electrical and Electronics Engineering Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Lapsker, I. [Physics Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Verdyan, A. [Physics Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel); Azoulay, J. [Physics Department, Holon Academic Institute of Technology, 52 Golomb Street, Holon 58102 (Israel)

    2005-07-30

    Diffractive optical elements (DOE) were synthesized on plastic substrates using the photodeposition (PD) technique by depositing amorphous selenium (a-Se) films with argon lasers and UV spectra light. The thin films were deposited typically onto polymethylmethacrylate (PMMA) substrates at room temperature. Scanned beam and contact mask modes were employed using computer-designed DOE lenses. Optical and electron micrographs characterize the surface details. The films were typically 200 nm thick.

  7. Photodeposited diffractive optical elements of computer generated masks

    Science.gov (United States)

    Mirchin, N.; Peled, A.; Baal-Zedaka, I.; Margolin, R.; Zagon, M.; Lapsker, I.; Verdyan, A.; Azoulay, J.

    2005-07-01

    Diffractive optical elements (DOE) were synthesized on plastic substrates using the photodeposition (PD) technique by depositing amorphous selenium (a-Se) films with argon lasers and UV spectra light. The thin films were deposited typically onto polymethylmethacrylate (PMMA) substrates at room temperature. Scanned beam and contact mask modes were employed using computer-designed DOE lenses. Optical and electron micrographs characterize the surface details. The films were typically 200 nm thick.

  8. High-contrast self-imaging with ordered optical elements

    CERN Document Server

    Naqavi, Ali; Rossi, Markus

    2016-01-01

    Creating arbitrary light patterns finds applications in various domains including lithography, beam shaping, metrology, sensing and imaging. We study the formation of high-contrast light patterns that are obtained by transmission through an ordered optical element based on self-imaging.By applying the phase-space method, we explain phenomena such as the Talbot and the angular Talbot effects. We show that the image contrast is maximum when the source is either a plane wave or a point source, and it has a minimum for a source with finite spatial extent. We compare these regimes and address some of their fundamental differences. Specifically, we prove that increasing the source divergence reduces the contrast for the plane wave illumination but increases it for the point source. Also, we show that to achieve high contrast with a point source, tuning the source size and its distance to the element is crucial.We furthermore indicate and explore the possibility of realizing highly complex light patterns by using a ...

  9. Optical system design with conformal decentered and tilted elements

    Institute of Scientific and Technical Information of China (English)

    Jun Chang; Wubin He; Ruirui Wang; Shulong Feng

    2011-01-01

    @@ We investigate the aberration properties of the conformal optical system with decentered and tilted elements by vector aberration theory.By decentering and tilting the window and corrector of the system,two elements are effectively used together in a particular manner by aberration compensation to achieve off-axis imaging.A conceptual design is performed with a half-field of 2°, the F# of 4, and the wavelength ranging of 3700-4800 nm.The imaging quality can reach the optical diffraction limit and satisfy corresponding requirements.%We investigate the aberration properties of the conformal optical system with decentered and tilted elements by vector aberration theory.By decentering and tilting the window and corrector of the system,two elements are effectively used together in a particular manner by aberration compensation to achieve off-axis imaging.A conceptual design is performed with a half-field of 2°, the F# of 4, and the wavelength ranging of 3700-4800 nm.The imaging quality can reach the optical diffraction limit and satisfy corresponding requirements.

  10. Analog of Optical Elements for Sound Waves in Air

    Science.gov (United States)

    Gluck, Paul; Perkalskis, Benjamin

    2009-01-01

    Optical elements manipulate light waves. They may be used to focus the light or to change the phase, the polarization, the direction, or the intensity of light. Many of these functions are often demonstrated with microwaves, since the devices normally available in teaching laboratories produce wavelengths in the centimeter range and are therefore…

  11. Finite Element Studies Of Tangent Mounted Conical Optics

    Science.gov (United States)

    Stoneking, J.; Casstevens, J.; Stillman, D.

    1982-12-01

    This paper presents experimental and analytical results from a study investigating the effect of centrifugal force and gravity on two candidate mirror fixture designs to be used on a diamond-turning ma-chine. The authors illustrate and discuss the use of the finite element method as an aid in the design and fabrication of high precision metallic optical components.

  12. Special diffractive elements for optical trapping fabricated on optical fiber tips using the focused ion beam

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Guerreiro, A.; Viegas, J.; Jorge, P. A. S.

    2016-05-01

    In this work, spiral phase lenses and Fresnel zone lenses for beam tailoring, fabricated on the tip of optical fibers, are reported. The spiral phase lenses allow tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. Whereas, the Fresnel lenses are used as focusing systems. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The output optical intensity profiles matching the numerical simulations are presented and analyzed.

  13. A finite element approach to x-ray optics design

    Science.gov (United States)

    Honkanen, A. P.; Ferrero, C.; Guigay, J. P.; Mocella, V.

    2017-05-01

    Dynamical diffraction in a deformed (often bent) crystal is described by the Takagi equations 1 which, in general, have to be solved numerically on a regular 2-D grid of points representing a planar cross section of the crystal in which the diffraction of an incident X-ray wavefront occurs . Presently, the majority of numerical approaches are based on a finite difference solving scheme2-4 which can be easily implemented on a regular Cartesian grid but is not suitable for deformed meshes. In this case, the inner deformed crystal structure can be taken into account, but not the shape of the crystal surface if this differs substantially from a planar profile 5,6. Conversely, a finite element method (FEM) can be easily applied to a deformed mesh and serves very well to the purpose of modelling any incident wave on an arbitrarily shaped entrance surface 7 e.g. that of a bent crystal or a crystal submitted to a strong heat load 8-10. For instance, the cylindrical shape of the surface of a strongly bent crystal plate can easily be taken into account in a FEM calculation. Bent crystals are often used as focusing optical elements in Xray beamlines 11-13. In the following, we show the implementation of a general numerical framework for describing the propagation of X-rays inside a crystal based on the solution of the Takagi equations via the COMSOL Multiphysics FEM software package (www.comsol.com). A cylindrically bent crystal will be taken as an example to illustrate the capabilities of the new approach.

  14. Computer simulation of diffractive optical element (DOE) performance

    Science.gov (United States)

    Delacour, Jacques F.; Venturino, Jean-Claude; Gouedard, Yannick

    2004-02-01

    Diffractive optical elements (DOE), also known as computer generated holograms (CGH), can transform an illuminating laser beam into a specified intensity distribution by diffraction rather than refraction or reflection. These are widely used in coherent light systems with beam shaping purposes, as an alignment tool or as a structured light generator. The diffractive surface is split into an array of sub-wavelength depth cells. Each of these locally transforms the beam by phase adaptation. Based on the work of the LSP lab from the University of Strasbourg, France, we have developed a unique industry-oriented tool. It allows the user first to optimize a DOE using the Gerchberg-Saxton algorithm. This part can manage sources from the simple plane wave to high order Gaussian modes or complex maps defined beams and objective patterns based on BMP images. A simulation part permits then to test the performance of the DOE with regard to system parameters, dealing with the beam, the DOE itself and the system organization. This will meet the needs of people concerned by tolerancing issues. Focusing on the industrial problem of beam shaping, we will present the whole DOE design sequence, starting from the generation of a DOE up to the study of the sensitivity of its performance according to the variation of several parameters of the system. For example, we will show the influence of the position of the beam on diffraction efficiency. This unique feature formerly neglected in industrial design process will lead the way to production quality improvement.

  15. Fluidic Elements based on Coanda Effect

    Directory of Open Access Journals (Sweden)

    Constantin OLIVOTTO

    2010-12-01

    Full Text Available This paper contains first some definitions and classifications regarding the fluidic elements. Thegeneral current status is presented, nominating the main specific elements based on the Coanda effect developedspecially in Romania. In particularly the development of an original bistable element using industrial compressedair at industrial pressure supply is presented. The function of this element is based on the controlled attachmentof the main jet at a curved wall through the Coanda effect. The methods used for particular calculation andexperiments are nominated. The main application of these elements was to develop a specific execution element:a fluidic step–by-step motor based on the Coanda effect.

  16. Active optical zoom for space-based imaging

    Science.gov (United States)

    Wick, David V.; Bagwell, Brett E.; Sweatt, William C.; Peterson, Gary L.; Martinez, Ty; Restaino, Sergio R.; Andrews, Jonathan R.; Wilcox, Christopher C.; Payne, Don M.; Romeo, Robert

    2006-08-01

    The development of sensors that are compact, lighter weight, and adaptive is critical for the success of future military initiatives. Space-based systems need the flexibility of a wide FOV for surveillance while simultaneously maintaining high-resolution for threat identification and tracking from a single, nonmechanical imaging system. In order to meet these stringent requirements, the military needs revolutionary alternatives to conventional imaging systems. We will present recent progress in active optical (aka nonmechanical) zoom for space applications. Active optical zoom uses multiple active optics elements to change the magnification of the imaging system. In order to optically vary the magnification of an imaging system, continuous mechanical zoom systems require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of elements. By incorporating active elements into the optical design, we have designed, demonstrated, and patented imaging systems that are capable of variable optical magnification with no macroscopic moving parts.

  17. Method of Bonding Optical Elements with Near-Zero Displacement

    Science.gov (United States)

    Robinson, David; McClelland, Ryan; Byron, Glenn; Evans, Tyler

    2012-01-01

    The International X-ray Project seeks to build an x-ray telescope using thousands of pieces of thin and flexible glass mirror segments. Each mirror segment must be bonded into a housing in nearly perfect optical alignment without distortion. Forces greater than 0.001 Newton, or displacements greater than 0.5 m of the glass, cause unacceptable optical distortion. All known epoxies shrink as they cure. Even the epoxies with the least amount of shrinkage (<0.01%) cause unacceptable optical distortion and misalignment by pulling the mirror segments towards the housing as it cures. A related problem is that the shrinkage is not consistent or predictable so that it cannot be accounted for in the setup (i.e., if all of the bonds shrunk an equal amount, there would be no problem). A method has been developed that allows two components to be joined with epoxy in such a way that reduces the displacement caused by epoxy shrinking as it cures to less than 200 nm. The method involves using ultraviolet-cured epoxy with a displacement sensor and a nanoactuator in a control loop. The epoxy is cured by short-duration exposures to UV light. In between each exposure, the nano-actuator zeroes out the displacement caused by epoxy shrinkage and thermal expansion. After a few exposures, the epoxy has cured sufficiently to prevent further displacement of the two components. Bonding of optical elements has been done for many years, but most optics are thick and rigid elements that resist micro-Newton-level forces without causing distortion. When bonding thin glass optics such as the 0.40-mm thick IXO X-ray mirrors, forces in the micro- and milli-Newton levels cause unacceptable optical figure error. This innovation can now repeatedly and reliably bond a thin glass mirror to a metal housing with less than 0.2 m of displacement (<200 nm). This is an enabling technology that allows the installation of virtually stress-free, undistorted thin optics onto structures. This innovation is

  18. Finite Element Simulation of the Optical Modes of Semiconductor Lasers

    CERN Document Server

    Pomplun, J; Schmidt, F; Schliwa, A; Bimberg, D; Pietrzak, A; Wenzel, H; Erbert, G; 10.1002/pssb.200945451

    2010-01-01

    In the present article we investigate optical near fields in semiconductor lasers. We perform finite element simulations for two different laser types, namely a super large optical waveguide (SLOW) laser, which is an edge emitter, and a vertical cavity surface emitting laser (VCSEL). We give the mathematical formulation of the different eigenvalue problems that arise for our examples and explain their numerical solution with the finite element method. Thereby, we also comment on the usage of transparent boundary conditions, which have to be applied to respect the exterior environment, e.g., the very large substrate and surrounding air. For the SLOW laser we compare the computed near fields to experimental data for different design parameters of the device. For the VCSEL example a comparison to simplified 1D mode calculations is carried out.

  19. Effective medium based optical analysis with finite element method simulations to study photochromic transitions in Ag-TiO2 nanocomposite films

    Science.gov (United States)

    Abhilash, T.; Balasubrahmaniyam, M.; Kasiviswanathan, S.

    2016-03-01

    Photochromic transitions in silver nanoparticles (AgNPs) embedded titanium dioxide (TiO2) films under green light illumination are marked by reduction in strength and blue shift in the position of the localized surface plasmon resonance (LSPR) associated with AgNPs. These transitions, which happen in the sub-nanometer length scale, have been analysed using the variations observed in the effective dielectric properties of the Ag-TiO2 nanocomposite films in response to the size reduction of AgNPs and subsequent changes in the surrounding medium due to photo-oxidation. Bergman-Milton formulation based on spectral density approach is used to extract dielectric properties and information about the geometrical distribution of the effective medium. Combined with finite element method simulations, we isolate the effects due to the change in average size of the nanoparticles and those due to the change in the dielectric function of the surrounding medium. By analysing the dynamics of photochromic transitions in the effective medium, we conclude that the observed blue shift in LSPR is mainly because of the change in the dielectric function of surrounding medium, while a shape-preserving effective size reduction of the AgNPs causes decrease in the strength of LSPR.

  20. Implement Quantum Random Walks with Linear Optics Elements

    CERN Document Server

    Zhao, Z; Li, H; Yang, T; Chen, Z B; Pan, J W; Zhao, Zhi; Du, Jiangfeng; Li, Hui; Yang, Tao; Chen, Zeng-Bing; Pan, Jian-Wei

    2002-01-01

    The quantum random walk has drawn special interests because its remarkable features to the classical counterpart could lead to new quantum algorithms. In this paper, we propose a feasible scheme to implement quantum random walks on a line using only linear optics elements. With current single-photon interference technology, the steps that could be experimentally implemented can be extended to very large numbers. We also show that, by decohering the quantum states, our scheme for quantum random walk tends to be classical.

  1. Traceability of high focal length cameras with diffractive optical elements

    Science.gov (United States)

    Lages Martins, L.; Silva Ribeiro, A.; Sousa, J. Alves e.

    2016-11-01

    This paper describes the use of diffractive optical elements (DOEs) for metrological traceable geometrical testing of high focal length cameras applied in the observation of large- scale structures. DOEs and related mathematical models are briefly explained. Laboratorial activities and results are described for the case of a high focal length camera used for longdistance displacement measurement of a long-span (2278 m) suspension bridge.

  2. Design of a diffractive optical element for pattern formation in a bilingual virtual keyboard

    Science.gov (United States)

    Manouchehri, Sohrab; Rahimi, Mojtaba; Oboudiat, Mohammad

    2016-03-01

    Pattern formation is one of the many applications of diffractive optical elements (DOEs) for display. Since DOEs have lightweight and slim nature compared to other optical devices, using them as image projection device in virtual keyboards is suggested. In this paper, we present an approach to designing elements that produce distinct intensity patterns, in the far field, for two wavelengths. These two patterns are images of bilingual virtual keyboard. To achieve this with DOEs is not simple, as they are inherently wavelength specific. Our technique is based on phase periodic characteristic of wavefront using iterative algorithm to design the phase profiles.

  3. Optical Nyquist channel generation using a comb-based tunable optical tapped-delay-line.

    Science.gov (United States)

    Ziyadi, Morteza; Chitgarha, Mohammad Reza; Mohajerin-Ariaei, Amirhossein; Khaleghi, Salman; Almaiman, Ahmed; Cao, Yinwen; Willner, Moshe J; Tur, Moshe; Paraschis, Loukas; Langrock, Carsten; Fejer, Martin M; Touch, Joseph D; Willner, Alan E

    2014-12-01

    We demonstrate optical Nyquist channel generation based on a comb-based optical tapped-delay-line. The frequency lines of an optical frequency comb are used as the taps of the optical tapped-delay-line to perform a finite-impulse response (FIR) filter function. A single optical nonlinear element is utilized to multiplex the taps and form the Nyquist signal. The tunablity of the approach over the baud rate and modulation format is shown. Optical signal-to-noise ratio penalty of 2.8 dB is measured for the 11-tap Nyquist filtering of 32-Gbaud QPSK signal.

  4. Fiber optic refractometric sensors using a semi-ellipsoidal sensing element.

    Science.gov (United States)

    Castro Martinez, Amalia Nallely; Komanec, Matej; Nemecek, Tomas; Zvanovec, Stanislav; Khotiaintsev, Sergei

    2016-04-01

    We present theoretical and experimental results for a fiber optic refractometric sensor employing a semi-ellipsoidal sensing element made of polymethyl methacrylate. The double internal reflection of light inside the element provides sensitivity to the refractive index of the external analyte. We demonstrate that the developed sensor, operating at a wavelength of 632 nm, is capable of measurement within a wide range of refractive indices from n=1.00 to n=1.47 with sensitivity over 500 dB/RIU. A comparison of the developed sensor with two more complex refractometric sensors, one based on tapered optical fiber and the other based on suspended-core microstructure optical fiber, is presented.

  5. Fast character projection electron beam lithography for diffractive optical elements

    Science.gov (United States)

    Harzendorf, Torsten; Fuchs, Frank; Banasch, Michael; Zeitner, Uwe D.

    2014-05-01

    Electron beam lithography becomes attractive also for the fabrication of large scale diffractive optical elements by the use of the character projection (CP) technique. Even in the comparable fast variable shaped beam (VSB) exposure approach for conventional electron beam writers optical nanostructures may require very long writing times exceeding 24 hours per wafer because of the high density of features, as required by e.g. sub-wavelength nanostructures. Using character projection, the writing time can be reduced by more than one order of magnitude, due to the simultaneous exposure of multiple features. The benefit of character projection increases with increasing complexity of the features and decreasing period. In this contribution we demonstrate the CP technique for a grating of hexagonal symmetry at 350nm period. The pattern is designed to provide antireflective (AR) properties, which can be adapted in their spectral and angular domain for applications from VIS to NIR by changing the feature size and the etching depth of the nanostructure. This AR nanostructure can be used on the backside of optical elements e.g. gratings, when an AR coating stack could not be applied for the reason of climatic conditions or wave front accuracy.

  6. Fourier holographic display for augmented reality using holographic optical element

    Science.gov (United States)

    Li, Gang; Lee, Dukho; Jeong, Youngmo; Lee, Byoungho

    2016-03-01

    A method for realizing a three-dimensional see-through augmented reality in Fourier holographic display is proposed. A holographic optical element (HOE) with the function of Fourier lens is adopted in the system. The Fourier hologram configuration causes the real scene located behind the lens to be distorted. In the proposed method, since the HOE is transparent and it functions as the lens just for Bragg matched condition, there is not any distortion when people observe the real scene through the lens HOE (LHOE). Furthermore, two optical characteristics of the recording material are measured for confirming the feasibility of using LHOE in the proposed see-through augmented reality holographic display. The results are verified experimentally.

  7. Information virtual indicator with combination of diffractive optical elements

    Science.gov (United States)

    Grad, Y. A.; Drozdova, E. A.; Nayden, L. A.; Nikolaev, V. V.; Odinokov, S. B.; Solomashenko, A. B.

    2016-08-01

    A combination of diffractive optical elements for monochrome information virtual indicators is described. To reduce the spectral "blurring" of image in monochrome indicators with OLED-display or LCD-display with LED backlight the possibility of using the volume reflection hologram as a spectral filter is investigated. The theoretical and experimental results show that the volume reflection hologram can be used as part of a monochrome virtual indicator containing OLED-, LCOS- or LCD-display with LED-backlight and relief-phase gratings for output of radiation from substrate to reduce the spectral "blurring" of image.

  8. All-semiconductor metamaterial-based optical circuit board at the microscale

    Energy Technology Data Exchange (ETDEWEB)

    Min, Li; Huang, Lirong, E-mail: lrhuang@hust.edu.cn [Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arranging anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.

  9. Quasi-Rayleigh light scattering by internal elements of a metamaterial in a light-carrying core of a single-mode optical fiber based on the Veselago effect

    Science.gov (United States)

    Malykin, G. B.

    2016-04-01

    At present, single-mode optical fibers composed of metamaterials—so-called "left-handed" optical media—for the far- and mid-IR ranges have already been created. In the near future, left-handed singlemode optical fibers for the visible and near-IR ranges will be created, light-carrying cores of which will be composed by an ordered structure of dielectric elements, the dimensions of which will be much smaller than the light wavelength, while the effective refractive index of the structure will be negative; i.e., the structure will possess the so-called "Veselago effect." We show that, because the dimensions of these dielectric elements many times exceed the dimensions of molecules of optical media, the elements should strongly scatter light, with this scattering considerably exceeding the Rayleigh (molecular) light scattering that occurs in conventional quartz single-mode optical fibers. We propose to term this phenomenon the quasi-Rayleigh light scattering. Numerical estimates of the quasi-Rayleigh light scattering for left-handed single-mode optical fibers at a light wavelength of λ = 1.55 μm have been made.

  10. Tunable photonic elements at the surface of an optical fiber with piezoelectric core

    CERN Document Server

    Dmitriev, Artemiy V

    2016-01-01

    Tunable photonic elements at the surface of an optical fiber with piezoelectric core are proposed and analyzed theoretically. These elements are based on whispering gallery modes whose propagation along the fiber is fully controlled by nanoscale variation of the effective fiber radius, which can be tuned by means of a piezoelectric actuator embedded into the core. The developed theory allows one to express the introduced effective radius variation through the shape of the actuator and the voltage applied to it. In particular, the design of a miniature tunable optical delay line and a miniature tunable dispersion compensator is presented. The potential application of the suggested model to the design of a miniature optical buffer is discussed.

  11. Optical Fibre Based Frequency Shifters Project

    Science.gov (United States)

    1991-01-28

    A fibre optic frequency shifter can be used to replace the Bragg cell acousto-optic modulator, currently used to generate low frequency optical...carriers, in fibre optic communications and sensor systems. This new form of frequency shifter, being an all fibre device, in which the propagating optical...large number of workers in recent years, (for example references [2-81 and those contained therein). The main elements of a fibre - optic frequency

  12. Precision glass molding of high-resolution diffractive optical elements

    Science.gov (United States)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans P.; Plöger, Sven; Hermerschmidt, Andreas

    2016-04-01

    The demand of high resolution diffractive optical elements (DOE) is growing. Smaller critical dimensions allow higher deflection angles and can fulfill more demanding requirements, which can only be met by using electron-beam lithography. Replication techniques are more economical, since the high cost of the master can be distributed among a larger number of replicas. The lack of a suitable mold material for precision glass molding has so far prevented an industrial use. Glassy Carbon (GC) offers a high mechanical strength and high thermal strength. No anti-adhesion coatings are required in molding processes. This is clearly an advantage for high resolution, high aspect ratio microstructures, where a coating with a thickness between 10 nm and 200 nm would cause a noticeable rounding of the features. Electron-beam lithography was used to fabricate GC molds with highest precision and feature sizes from 250 nm to 2 μm. The master stamps were used for precision glass molding of a low Tg glass L-BAL42 from OHARA. The profile of the replicated glass is compared to the mold with the help of SEM images. This allows discussion of the max. aspect-ratio and min. feature size. To characterize optical performances, beamsplitting elements are fabricated and their characteristics were investigated, which are in excellent agreement to theory.

  13. Realization of an optical interferometer based on holographic optics for real-time testing of phase objects

    Indian Academy of Sciences (India)

    A K Aggarwal; Sushil K Kaura; D P Chhachhia; A K Sharma

    2004-11-01

    The paper describes a simple and cost effective method for the realization of an optical interferometer based on holographic optics, which use minimal bulk optical components. The optical arrangement in the proposed method involves a very simple alignment procedure and inexpensive holographic recording material is used in the formation of holographic optical elements. The proposed interferometer set-up is quite suitable for performing optical test studies on phase (transparent) objects in real-time. Recording schemes for the formation of holographic optical elements and the related technique for the realization of the interferometer set-up along with the experimental results have been presented.

  14. Alignment of the James Webb Space Telescope optical telescope element

    Science.gov (United States)

    Glassman, Tiffany; Levi, Joshua; Liepmann, Till; Hahn, Walter; Bisson, Gary; Porpora, Dan; Hadjimichael, Theo

    2016-07-01

    The optical telescope element (OTE) of the James Webb Space Telescope has now been integrated and aligned. The OTE comprises the flight mirrors and the structure that supports them - 18 primary mirror segments, the secondary mirror, and the tertiary and fine steering mirrors (both housed in the aft optics subsystem). The primary mirror segments and the secondary mirror have actuators to actively control their positions during operations. This allows the requirements for aligning the OTE subsystems to be in the range of microns rather than nanometers. During OTE integration, the alignment of the major subsystems of the OTE structure and optics were controlled to ensure that, when the telescope is on orbit and at cryogenic temperatures, the active mirrors will be within the adjustment range of the actuators. Though the alignment of this flagship mission was complex and intricate, the key to a successful integration process turned out to be very basic: a clear, concise series of steps employing advanced planning, backup measurements, and cross checks that this multi-organizational team executed with a careful and methodical approach. This approach was not only critical to our own success but has implications for future space observatories.

  15. Fiber optic-based biosensor

    Science.gov (United States)

    Ligler, Frances S.

    1991-01-01

    The NRL fiber optic biosensor is a device which measures the formation of a fluorescent complex at the surface of an optical fiber. Antibodies and DNA binding proteins provide the mechanism for recognizing an analyze and immobilizing a fluorescent complex on the fiber surface. The fiber optic biosensor is fast, sensitive, and permits analysis of hazardous materials remote from the instrumentation. The fiber optic biosensor is described in terms of the device configuration, chemistry for protein immobilization, and assay development. A lab version is being used for assay development and performance characterization while a portable device is under development. Antibodies coated on the fiber are stable for up to two years of storage prior to use. The fiber optic biosensor was used to measure concentration of toxins in the parts per billion (ng/ml) range in under a minute. Immunoassays for small molecules and whole bacteria are under development. Assays using DNA probes as the detection element can also be used with the fiber optic sensor, which is currently being developed to detect biological warfare agents, explosives, pathogens, and toxic materials which pollute the environment.

  16. Glass Difractive Optical Elements (DOEs with complex modulation DLC thin film coated

    Directory of Open Access Journals (Sweden)

    Marina Sparvoli

    2008-09-01

    Full Text Available We developed a complex (amplitude and phase modulation Diffractive Optical Element (DOE with four phase levels, which is based in a glass substrate coated with DLC (Diamond Like Carbon thin film as the amplitude modulator. The DLC film was deposited by magnetron reactive sputtering with a graphite target and methane gas in an optical glass surface. The glass and DLC film roughness were measured using non destructive methods, such as a high step meter, Atomic Force Microscopy and Diffuse Reflectance. Other properties, such as refractive index of both materials were measured. The DOEs were tested using 632.8 nm HeNe laser.

  17. Optical tomography reconstruction algorithm with the finite element method: An optimal approach with regularization tools

    Energy Technology Data Exchange (ETDEWEB)

    Balima, O., E-mail: ofbalima@gmail.com [Département des Sciences Appliquées, Université du Québec à Chicoutimi, 555 bd de l’Université, Chicoutimi, QC, Canada G7H 2B1 (Canada); Favennec, Y. [LTN UMR CNRS 6607 – Polytech’ Nantes – La Chantrerie, Rue Christian Pauc, BP 50609 44 306 Nantes Cedex 3 (France); Rousse, D. [Chaire de recherche industrielle en technologies de l’énergie et en efficacité énergétique (t3e), École de technologie supérieure, 201 Boul. Mgr, Bourget Lévis, QC, Canada G6V 6Z3 (Canada)

    2013-10-15

    Highlights: •New strategies to improve the accuracy of the reconstruction through mesh and finite element parameterization. •Use of gradient filtering through an alternative inner product within the adjoint method. •An integral form of the cost function is used to make the reconstruction compatible with all finite element formulations, continuous and discontinuous. •Gradient-based algorithm with the adjoint method is used for the reconstruction. -- Abstract: Optical tomography is mathematically treated as a non-linear inverse problem where the optical properties of the probed medium are recovered through the minimization of the errors between the experimental measurements and their predictions with a numerical model at the locations of the detectors. According to the ill-posed behavior of the inverse problem, some regularization tools must be performed and the Tikhonov penalization type is the most commonly used in optical tomography applications. This paper introduces an optimized approach for optical tomography reconstruction with the finite element method. An integral form of the cost function is used to take into account the surfaces of the detectors and make the reconstruction compatible with all finite element formulations, continuous and discontinuous. Through a gradient-based algorithm where the adjoint method is used to compute the gradient of the cost function, an alternative inner product is employed for preconditioning the reconstruction algorithm. Moreover, appropriate re-parameterization of the optical properties is performed. These regularization strategies are compared with the classical Tikhonov penalization one. It is shown that both the re-parameterization and the use of the Sobolev cost function gradient are efficient for solving such an ill-posed inverse problem.

  18. Inductively coupled plasma optical emission spectroscopy determination of trace element composition of argan oil.

    Science.gov (United States)

    Gonzálvez, A; Ghanjaoui, M E; El Rhazi, M; de la Guardia, M

    2010-02-01

    A methodology based on inductively coupled plasma optical emission spectroscopy (ICP-OES) after microwave assisted acid digestion has been developed to determine the trace element content of Moroccan argan oil. Limit of detection values equal or lower than few mg/kg were obtained for all elements under study. To assure the accuracy of the whole procedure, recovery studies were carried out on argan oil samples spiked at different concentration levels from 10 to 200 µg/L. Quantitative average recovery values were obtained for all elements evaluated, demonstrating the suitability of this methodology for the determination of trace elements in argan oil samples. Aluminum, calcium, chromium, iron, potassium, lithium, magnesium, sodium, vanadium and zinc were quantitatively determined in Moroccan argan oils being found that their concentration is different of that found in other edible oils thus offering a way for authentication and for the evaluation of possible adulterations.

  19. Investigation of diffractive optical element femtosecond laser machining

    Energy Technology Data Exchange (ETDEWEB)

    Chabrol, Grégoire R., E-mail: g.chabrol@ecam-strasbourg.eu [ECAM Strasbourg-Europe, Espace Européen de l’entreprise, 2, rue de Madrid – 67300 SCHILTIGHEIM, CS. 20013, 67012 Strasbourg CEDEX (France); Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Ciceron, Adline [ECAM Strasbourg-Europe, Espace Européen de l’entreprise, 2, rue de Madrid – 67300 SCHILTIGHEIM, CS. 20013, 67012 Strasbourg CEDEX (France); Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Twardowski, Patrice; Pfeiffer, Pierre [Laboratoire des Sciences de l’Ingénieur, de l’Informatique et de l’Imagerie (ICube), UDS-CNRS, UMR 7357, 300 bld Sébastien Brant, CS 10413, 67412 Illkirch cedex (France); Télécom Physique Strasbourg – Pôle API – 300 Bd Sébastien Brant – CS 10413, Illkirch Graffenstaden F 67400 (France); and others

    2016-06-30

    Highlights: • A method for rapid manufacturing of optical diffractive element in BK7 is proposed. • A binary grating in BK7 was successfully machined by femtosecond laser pulses. • Process relying on nonlinear absorption in the dielectric due to photoionization. • The binary grating was analysed by SEM and interferometric microscopy. • Simulations by Fourier modal method supported the measured diffractive efficiency. - Abstract: This paper presents an explorative study on the machining of diffractive optical elements (DOEs) in transparent materials using a femtosecond laser source. A simple form of DOE, a binary phase grating with a period of 20.85 μm (σ = 0.5 μm), a groove depth and width of 0.7 μm (σ = 0.2 μm) and 8.8 μm (σ = 0.5 μm) respectively, was successfully machined in BK7. The topographic characteristics were measured by white light interferometry and scanning electron microscopy (SEM). The processing was carried out on high precision stages with an ultrafast fibre laser (350 fs) emitting a 343 nm pulse focused onto the sample with a stationary microscope objective. A diffracted efficiency of 27%, obtained with a spectro goniometer, was corroborated by the theoretical results obtained by the Fourier modal method (FMM), taking into account the measured topographic values. These encouraging results demonstrate that high-speed femtosecond laser manufacturing of DOE in bulk glasses can be achieved, opening the way to rapid prototyping of multi-layered-DOEs.

  20. Optical design and multiobjective optimization of miniature zoom optics with liquid lens element.

    Science.gov (United States)

    Sun, Jung-Hung; Hsueh, Bo-Ren; Fang, Yi-Chin; MacDonald, John; Hu, Chao-Chang

    2009-03-20

    We propose an optical design for miniature 2.5x zoom fold optics with liquid elements. First, we reduce the volumetric size of the system. Second, this newly developed design significantly reduces the number of moving groups for this 2.5x miniature zoom optics (with only two moving groups compared with the four or five groups of the traditional zoom lens system), thanks to the assistance of liquid lens elements in particular. With regard to the extended optimization of this zoom optics, relative illuminance (RI) and the modulation transfer function (MTF) are considered because the more rays passing through the edge of the image, the lower will be the MTF, at high spatial frequencies in particular. Extended optimization employs the integration of the Taguchi method and the robust multiple criterion optimization (RMCO) approach. In this approach, a Pareto optimal robust design solution is set with the aid of a certain design of the experimental set, which uses analysis of variance results to quantify the relative dominance and significance of the design factors. It is concluded that the Taguchi method and RMCO approach is successful in optimizing the RI and MTF values of the fold 2.5x zoom lens system and yields better and more balanced performance, which is very difficult for the traditional least damping square method to achieve.

  1. Sighting optics including an optical element having a first focal length and a second focal length and methods for sighting

    Science.gov (United States)

    Crandall, David Lynn

    2011-08-16

    Sighting optics include a front sight and a rear sight positioned in a spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus for a user images of the front sight and the target.

  2. Research on the Design of an Optical Information Storage Sensing System Using a Diffractive Optical Element

    Directory of Open Access Journals (Sweden)

    Min Gu

    2013-11-01

    Full Text Available This paper introduces a compact optical information storage sensing system. Applications of this system include longitudinal surface plasmon resonance detection of gold nanorods with a single femtosecond laser in three-dimensional space as well as data storage. A diffractive optical element (DOE is applied in the system to separate the recording-reading beam from the servo beam. This allows us to apply a single laser and one objective lens in a single optical path for the servo beam and the recording-reading beam. The optical system has a linear region of 8 λ, which is compatible with current DVD servo modules. The wavefront error of the optical system is below 0.03 λrms. The minimum grating period of the DOE is 13.4 µm, and the depth of the DOE is 1.2 µm, which makes fabrication of it possible. The DOE is also designed to conveniently control the layer-selection process, as there is a linear correlation between the displacement of the DOE and the layer-selection distance. The displacement of DOE is in the range of 0–6.045 mm when the thickness of the layer-selection is 0.3 mm. Experiments were performed and the results have been verified.

  3. Optical sensing elements for nitrogen dioxide (NO.sub.2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements

    Science.gov (United States)

    Mechery, Shelly John; Singh, Jagdish P.

    2007-07-03

    A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.

  4. Optical fiber-based devices and applications

    Institute of Scientific and Technical Information of China (English)

    Perry Ping SHUM; Jonathan C. KNIGHT; Jesper LAEGSGAARD; Dora Juan Juan HU

    2010-01-01

    @@ Optical fiber technology has undergone tremendous growth and development over the last 40 years. Optical fibers constitute an information super highway and are vital in enabling the proliferating use of the Internet. Optical fiber is also an enabling technology which can find applications in sensing, imaging, biomedical, machining, etc. There have been a few milestones in the advancement of optical fiber technology. Firstly, the invention and development of the laser some 50 years ago made optical communications possible. Secondly, the fabrication of low-loss optical fibers has been a key element to the success of optical communication.

  5. Field-based transformation optics

    DEFF Research Database (Denmark)

    Novitsky, Andrey

    2011-01-01

    Instead of common definition of the transformation-optics devices via the coordinate transformation we offer the approach founded on boundary conditions for the fields. We demonstrate the effectiveness of the approach by two examples: two-shell cloak and concentrator of electric field. We believe...... that the field-based approach is quite important for effective field control....

  6. Long-term laser induced contamination tests of optical elements under vacuum at 351nm

    Science.gov (United States)

    Leinhos, Uwe; Mann, Klaus; Bayer, Armin; Dette, Jens-Oliver; Schöneck, Matthias; Endemann, Martin; Wernham, Denny; Petazzi, Federico; Tighe, Adrian; Alves, Jorge; Thibault, Dominique

    2010-11-01

    Photon-induced contamination of optical surfaces is a major obstacle for space-bound laser applications. At Laser-Laboratorium Göttingen, a setup was developed that allows monitoring transmission, reflection and fluorescence of laser-irradiated optical components under well-controlled vacuum conditions, in order to assess their possible optical degradation due to radiation-induced contaminant deposition in orbit. In cooperation with the European Space Agency ESA optical elements for the ADM-Aelolus mission were investigated. In order to perform global wind-profile observation based on Doppler-LIDAR, the satellite ADM-Aelolus will be launched in 2011 and injected into an orbit 400 km above Earth's surface. ADM-Aeolus will be the first satellite ever that is equipped with a UV-laser (emitting at a wavelength of 355 nm) and a reflector telescope. For both high-reflecting mirrors and an anti-reflective coated windows long-term irradiation tests (up to 500 million laser pulses per test run) were performed at a base pressure insulators for cabling, adhesives, etc.) were installed into the chamber, and the interaction of their degassing with the sample surfaces under laser irradiation was investigated. Optical degradation associated with contaminant adsorption was detected on the irradiated sample sites as a function of various parameters, including pulse repetition rate, view factor and coating material

  7. Fractional Order Element Based Impedance Matching

    KAUST Repository

    Radwan, Ahmed Gomaa

    2014-06-24

    Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha.|.noteq.1). A load impedance is located on the traditional Smith chart and projected onto the fractional order Smith chart. A fractional order matching element is determined by transitioning along a matching circle of the fractional order Smith chart based at least in part upon characteristic line impedance. In another embodiment, a system includes a fractional order impedance matching application executed in a computing device. The fractional order impedance matching application includes logic that obtains a first set of Smith chart coordinates at a first order, determines a second set of Smith chart coordinates at a second order, and determines a fractional order matching element from the second set of Smith chart coordinates.

  8. Focusing and imaging properties of diffractive optical elements with star-ring topological structure

    Science.gov (United States)

    Ke, Jie; Zhang, Junyong; Zhang, Yanli; Sun, Meizhi

    2015-08-01

    A kind of diffractive optical elements (DOE) with star-ring topological structure is proposed and their focusing and imaging properties are studied in detail. The so-called star-ring topological structure denotes that a large number of pinholes distributed in many specific zone orbits. In two dimensional plane, this structure can be constructed by two constrains, one is a mapping function, which yields total potential zone orbits, corresponding to the optical path difference (OPD); the other is a switching sequence based on the given encoded seed elements and recursion relation to operate the valid zone orbits. The focusing and imaging properties of DOE with star-ring topological structure are only determined by the aperiodic sequence, and not relevant to the concrete geometry structure. In this way, we can not only complete the traditional symmetrical DOE, such as circular Dammam grating, Fresnel zone plates, photon sieves, and their derivatives, but also construct asymmetrical elements with anisotropic diffraction pattern. Similarly, free-form surface or three dimensional DOE with star-ring topological structure can be constructed by the same method proposed. In consequence of smaller size, lighter weight, more flexible design, these elements may allow for some new applications in micro and nanphotonics.

  9. Integrated-optics-based optical coherence tomography

    NARCIS (Netherlands)

    Nguyen, D.V.

    2013-01-01

    Optical coherence tomography (OCT) is a high resolution, imaging technique that has developed over the last 20 years from a complicated laboratory setup into a ready-to-use commercially available device. Instead of using electronic time gating as being used by ultrasound (US) imaging, in OCT, the op

  10. Rare earth element enrichment using membrane based solvent extraction

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.; Zunita, M.; Wenten, I. G.

    2017-01-01

    The chemical, catalytic, electrical, magnetic, and optical properties of rare earth elements are required in broad applications. Rare earth elements have similar physical and chemical properties thus it is difficult to separate one from each other. Rare earth element is relatively abundant in earth's crust but rarely occur in high concentrated deposits. Traditionally, ion-exchange and solvent extraction techniques have been developed to separate and purify single rare earth solutions or compounds. Recently, membrane starts to gain attention for rare earth separation by combining membrane and proven technologies such as solvent extraction. Membrane-based process offers selective, reliable, energy efficient and easy to scale up separation. During membrane-based separation process, one phase passes through membrane pores while the other phase is rejected. There is no direct mixing of two phases thus the solvent loss is very low. Membrane can also lower solvent physical properties requirement (viscosity, density) and backmixing, eliminate flooding phenomenon and provide large interfacial area for mass transfer. This paper will summarize research efforts in developing membrane technology for rare earth element separation. Special attention will be given to solvent extraction related process as the commonly used method for rare earth element separation. Furthermore, membrane configuration and its potentials will also be discussed.

  11. Design of an optical-fiber refractometric transducer with hemispherical detection element

    OpenAIRE

    2006-01-01

    We analyzed the performance of the opticalfiber refractometric transducer with hemispherical optical detection element. Specifically, we examined the effect of the light intensity distribution in the optical fibers on the transducer response to the refractive index of the surrounding media. In addition, we accounted for small local imperfections of the optical detection element surface. Accounting for these effects results in a significant accuracy improvement in the modeling of the described...

  12. Spatial and temporal thermal analysis of acousto-optic deflectors using finite element analysis model.

    Science.gov (United States)

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun; Huang, Zhifeng; Zhou, Huaichun

    2012-07-01

    Thermal effects greatly influence the optical properties of the acousto-optic deflectors (AODs). Thermal analysis plays an important role in modern AOD design. However, the lack of an effective method of analysis limits the prediction in the thermal performance. In this paper, we propose a finite element analysis model to analyze the thermal effects of a TeO(2)-based AOD. Both transducer heating and acoustic absorption are considered as thermal sources. The anisotropy of sound propagation is taken into account for determining the acoustic absorption. Based on this model, a transient thermal analysis is employed using ANSYS software. The spatial temperature distributions in the crystal and the temperature changes over time are acquired. The simulation results are validated by experimental results. The effect of heat source and heat convection on temperature distribution is discussed. This numerical model and analytical method of thermal analysis would be helpful in the thermal design and practical applications of AODs.

  13. Inexpensive LED-based spectrophotometer for analyzing optical coatings

    CERN Document Server

    Hardie, Kayla; Kuntz, Katanya B; Jennewein, Thomas

    2016-01-01

    Optical coatings are widespread in everyday life, from camera lenses to glasses, to complex optics experiments. A simple, reliable device that can quickly and inexpensively analyze optical coatings is a valuable laboratory tool. Such a device can identify unknown or mislabelled optics, and characterize the transmission spectra of optical elements used in an experiment. We present the design and characterization of a LED-based spectrophotometer, and demonstrate its ability to identify different optical coatings. Our approach uses ten LEDs that cover a spectrum from 365 nm to 1000 nm. A small servomotor and microcontroller rotates a LED board to sequentially position each LED over an optical sample, and the transmitted light corresponding to each LED is measured with a silicon photodetector. The device is automated, portable, inexpensive, user-friendly and simple to build.

  14. Impedance-Tunable Transformation Optics: A New Strategy for Refctionless Design of Optical Elements

    CERN Document Server

    Cao, Jun; Yan, Shenglin; Sun, Xiaohan

    2013-01-01

    We propose a new strategy to remove the reections resulted from the finite embedded transformation-optical design by putting forward an impedance-tunable coordinate transformation,on which the functions of impedance coefficients can be derived in the original space without changing the refractive index. Based on the method, two-dimensional (2D) reectionless beam compressors, bends and splitters are designed through tuning the impedance coefficients. The numerical simulations show that the reection can be removed without inserting an antireflective coating. The impedance-tunable coordinate transformation can also be applied to other transformation-optical designs, such as cloaking, lens, antennas, etc.

  15. Fluorescence-enhanced optical spectroscopy using early arriving photons in transmission mode: a finite element approach

    Science.gov (United States)

    Piron, Vianney; L'Huillier, Jean-Pierre

    2012-06-01

    Optical imaging of turbid media is a challenging problem mainly due to the scattering process that reduces image contrast and degrades spatial resolution. The development of fluorescent probes has recently improved the noninvasive optical technique. In this paper, we are interested in the time gating fluorescence signals. The diffusion approximation is used in order to describe the light propagation of a laser pulse in a turbid media that mimics breast like biological tissue. A numerical model based on a finite element method is proposed. Fluorescence time dependent numerical simulations are performed in order to compute time-gated intensities resulting from line scans across partially absorbing and scattering slab configurations. Optical properties of embedded objects are chosen to be the same as optical properties of breast tumor. Tacking into account two hidden objects, we investigate the lateral resolution aimed by fluorescence modality, and we also compared the results to thus obtained by photon propagation. Different widths of the time gate are computed and it is demonstrated that both lateral localization of one inclusion, and resolution of two inclusions, are enhanced when the time-gate width (▵t) is decreased. The overall computations confirm that fluorescent time-gating technique is very sensitive to local variations in optical properties that are due to breast-like tumors in turbid media.

  16. Quantification of morphology of bacterial colonies using laser scatter measurements and solid element optical modeling

    Science.gov (United States)

    Leavesley, Silas; Bayraktar, Bülent; Venkatapathi, Murugesan; Hirleman, E. Dan; Bhunia, Arun K.; Robinson, J. Paul; Hassler, Richard; Smith, Linda; Rajwa, Bartek

    2007-02-01

    Traditional biological and chemical methods for pathogen identification require complicated sample preparation for reliable results. Optical scattering technology has been used for identification of bacterial cells in suspension, but with only limited success. Our published reports have demonstrated that scattered light based identification of Listeria colonies growing on solid surfaces is feasible with proper pattern recognition tools. Recently we have extended this technique to classification of other bacterial genera including, Salmonella, Bacillus, and Vibrio. Our approach may be highly applicable to early detection and classification of pathogens in food-processing industry and in healthcare. The unique scattering patterns formed by colonies of different species are created through differences in colony microstructure (on the order of wavelength used), bulk optical properties, and the macroscopic morphology. While it is difficult to model the effect on scatter-signal patterns owing to the microstructural changes, the influence of bulk optical properties and overall shape of colonies can be modeled using geometrical optics. Our latest research shows that it is possible to model the scatter pattern of bacterial colonies using solid-element optical modeling software (TracePro), and theoretically assess changes in macro structure and bulk refractive indices. This study allows predicting the theoretical limits of resolution and sensitivity of our detection and classification methods. Moreover, quantification of changes in macro morphology and bulk refractive index provides an opportunity to study the response of colonies to various reagents and antibiotics.

  17. Optical Microangiography Based on Optical Coherence Tomography

    Science.gov (United States)

    Reif, Roberto; Wang, Ruikang K.

    Proper homeostasis regulation of in vivo biological systems requires microvascular blood perfusion, which is the process of delivering blood into the tissue's capillary beds. Abnormal tissue vascularization has been associated with various diseases such as cancer, diabetes, neurological disorders, wounds, and inflammation. Understanding the changes in the vascular network or microangiography will have an important role in determining the causes and developing potential treatments for these diseases. Optical coherence tomography (OCT) is a noninvasive method for imaging three-dimensional biological tissues with high resolution (~10 µm) and without requiring the use of contrast agents. In this chapter we review several techniques for using OCT to determine blood flow velocities and the vessel morphology (optical microangiography). Different techniques will be discussed with a brief explanation of their limitations. Also, methods for quantifying these images are presented, as well as the depiction of several applications.

  18. A Space-Based Optical Communication System Utilizing Fiber Optics

    Science.gov (United States)

    1989-11-09

    single mode elliptic core fibers," Opt. Commun., 49, 3, 178-183 (1984). 35 15. B.J. Klein and J.J. Degnan, " Optical antenna gain. 1: Transmitting...antennas," Appl. Opt., 13,9,2134- 2141 (1974). 16. B.J. Klein and J.J. Degnan, " Optical antenna gain. 2: Receiving antennas," Appl. Opt., 13, 10,2397- 2401...1974). 17. B.J. Klein and J.J. Degnan, " Optical antenna gain. 3: The effect of secondary element support struts on transmitter gain," Appl. Opt., 15

  19. Two-photon phase gate with linear optical elements and atom-cavity system

    Science.gov (United States)

    Kang, Yi-Hao; Xia, Yan; Lu, Pei-Min

    2016-09-01

    We propose a protocol for implementing π phase gate of two photons with linear optical elements and an atom-cavity system. The evolution of the atom-cavity system is based on the quantum Zeno dynamics. The devices in the present protocol are simple and feasible with current experimental technology. Moreover, the method we proposed here is deterministic with a high fidelity. Numerical simulation shows that the evolution in cavity is efficient and robust. Therefore, the protocol may be helpful for quantum computation field.

  20. Parametric studies of magnetic-optic imaging using finite-element models

    Science.gov (United States)

    Chao, C.; Udpa, L.; Xuan, L.; Fitzpatrick, G.; Thorne, D.; Shih, W.

    2000-05-01

    Magneto-optic imaging is a relatively new sensor application of bubble memory technology to NDI. The Magneto-Optic Imager (MOI) uses a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The flux leakage is produced by eddy current induction techniques in nonferrous metals and magnetic yokes are used in ferromagnetic materials. The technique has gained acceptance in the aircraft maintenance industry for use to detect surface-breaking cracks and corrosion. Until recently, much of the MOI development has been empirical in nature since the electromagnetic processes that produce images are rather complex. The availability of finite element techniques to numerically solve Maxwell's equations, in conjunction with MOI observations, allows greater understanding of the capabilities of the instrument. In this paper, we present a systematic set of finite element calculations along with MOI measurements on specific defects to quantify the current capability of the MOI as well as its desired performance. Parametric studies including effects of liftoff and proximity of edges are also studied.—This material is based upon work supported by the Federal Aviation Administration under Contract #DTFA03-98-D-00008, Delivery Order #IA013 and performed at Iowa State University's Center for NDE as part of the Center for Aviation Systems Reliability program.

  1. Compact Fiber Optic Strain Sensors (cFOSS) Element

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are reducing the Fiber Optic Sensing Sysme (FOSS) technology’s size, power requirement, weight, and cost to effectively extend...

  2. Optical systems fabricated by printing-based assembly

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2017-03-21

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  3. Design and verification of diffractive optical elements for speckle generation of 3-D range sensors

    Science.gov (United States)

    Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang

    2016-09-01

    The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.

  4. Design and verification of diffractive optical elements for speckle generation of 3-D range sensors

    Science.gov (United States)

    Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang

    2016-12-01

    The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.

  5. Compressive sensing holography based on optical heterodyne detection

    Science.gov (United States)

    Hu, Youjun; Zhou, Dingfu; Yuan, Sheng; Wei, Yayun; Wang, Mengting; Zhou, Xin

    2016-12-01

    In this paper, compressive sensing holography based on optical heterodyne detection is presented, which can photograph the hologram of an object. The complex hologram is composed of a sine-hologram and a cosine-hologram. A single pixel photoelectric conversion element is used to detect the time-varying optical field which contains the amplitude and phase information of the transmitted light, and a simulation result is demonstrated further by recording the Fresnel hologram of a complex amplitude object.

  6. Microelectromechanical resonator based digital logic elements

    KAUST Repository

    Hafiz, Md Abdullah Al

    2016-10-20

    Micro/nano-electromechanical resonator based mechanical computing has recently attracted significant attention. However, its full realization has been hindered by the difficulty in realizing complex combinational logics, in which the logic function is constructed by cascading multiple smaller logic blocks. In this work we report an alternative approach for implementation of digital logic core elements, multiplexer and demultiplexer, which can be used to realize combinational logic circuits by suitable concatenation. Toward this, shallow arch shaped microresonators are electrically connected and their resonance frequencies are tuned based on an electrothermal frequency modulation scheme. This study demonstrates that by reconfiguring the same basic building block, the arch microresonator, complex logic circuits can be realized.

  7. Advanced applications of scatterometry based optical metrology

    Science.gov (United States)

    Dixit, Dhairya; Keller, Nick; Kagalwala, Taher; Recchia, Fiona; Lifshitz, Yevgeny; Elia, Alexander; Todi, Vinit; Fronheiser, Jody; Vaid, Alok

    2017-03-01

    The semiconductor industry continues to drive patterning solutions that enable devices with higher memory storage capacity, faster computing performance, and lower cost per transistor. These developments in the field of semiconductor manufacturing along with the overall minimization of the size of transistors require continuous development of metrology tools used for characterization of these complex 3D device architectures. Optical scatterometry or optical critical dimension (OCD) is one of the most prevalent inline metrology techniques in semiconductor manufacturing because it is a quick, precise and non-destructive metrology technique. However, at present OCD is predominantly used to measure the feature dimensions such as line-width, height, side-wall angle, etc. of the patterned nano structures. Use of optical scatterometry for characterizing defects such as pitch-walking, overlay, line edge roughness, etc. is fairly limited. Inspection of process induced abnormalities is a fundamental part of process yield improvement. It provides process engineers with important information about process errors, and consequently helps optimize materials and process parameters. Scatterometry is an averaging technique and extending it to measure the position of local process induced defectivity and feature-to-feature variation is extremely challenging. This report is an overview of applications and benefits of using optical scatterometry for characterizing defects such as pitch-walking, overlay and fin bending for advanced technology nodes beyond 7nm. Currently, the optical scatterometry is based on conventional spectroscopic ellipsometry and spectroscopic reflectometry measurements, but generalized ellipsometry or Mueller matrix spectroscopic ellipsometry data provides important, additional information about complex structures that exhibit anisotropy and depolarization effects. In addition the symmetry-antisymmetry properties associated with Mueller matrix (MM) elements

  8. Phylogeny based discovery of regulatory elements

    Directory of Open Access Journals (Sweden)

    Cohen Barak A

    2006-05-01

    Full Text Available Abstract Background Algorithms that locate evolutionarily conserved sequences have become powerful tools for finding functional DNA elements, including transcription factor binding sites; however, most methods do not take advantage of an explicit model for the constrained evolution of functional DNA sequences. Results We developed a probabilistic framework that combines an HKY85 model, which assigns probabilities to different base substitutions between species, and weight matrix models of transcription factor binding sites, which describe the probabilities of observing particular nucleotides at specific positions in the binding site. The method incorporates the phylogenies of the species under consideration and takes into account the position specific variation of transcription factor binding sites. Using our framework we assessed the suitability of alignments of genomic sequences from commonly used species as substrates for comparative genomic approaches to regulatory motif finding. We then applied this technique to Saccharomyces cerevisiae and related species by examining all possible six base pair DNA sequences (hexamers and identifying sequences that are conserved in a significant number of promoters. By combining similar conserved hexamers we reconstructed known cis-regulatory motifs and made predictions of previously unidentified motifs. We tested one prediction experimentally, finding it to be a regulatory element involved in the transcriptional response to glucose. Conclusion The experimental validation of a regulatory element prediction missed by other large-scale motif finding studies demonstrates that our approach is a useful addition to the current suite of tools for finding regulatory motifs.

  9. Evaluation of laser diode based optical switches for optical processors

    Science.gov (United States)

    Swanson, Paul D.; Parker, Michael A.; Libby, Stuart I.

    1993-07-01

    Three optical switching elements have been designed, fabricated, and tested for use in an integrated, optical signal processor. The first, an optical NOR logic gate, uses gain quenching as a means of allowing one (or more) light beam(s) to control the output light. This technique, along with the use of a two pad bistable output laser, is used in demonstrating the feasibility of the second device, an all optical RS flip flop. The third device consists of a broad area orthogonal model switching laser, whose corollary outputs correspond to the sign of the voltage difference between its two high impedance electrical inputs. This device also has possible memory applications if bistable mode switching within the broad area laser can be achieved.

  10. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...

  11. Experimental proposal of probabilistic superdense coding with linear optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qing; Li Jian; Guo Guangcan [Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 (China)

    2006-09-14

    In this paper, we propose an experimental scheme of probabilistic superdense coding assisted with linear optical manipulations, photon entanglement produced from parametric down-conversion and postselection from coincidence measurements. The proposal is feasible by current experimental technology.

  12. Long-focus reflective optical elements for technological application

    Science.gov (United States)

    Tolstopyatov, Eugene M.

    1998-09-01

    Simple and cheap long-focus optical systems consisting of cylindrical mirrors are proposed to use in processes of laser processing of materials (cutting, welding, thin film deposition by evaporation). Methods of calculation of the focusing systems of this type are developed and aberrations are estimated. Optical system was used as a part of installation for thin alloys and polymer films deposition as well as for manufacturing PTFE wool and PTFE porous material.

  13. Microlithography application for production of multilevel diffractive optical elements (as a security hologram feature)

    Science.gov (United States)

    Braginets, Eugene; Kurashov, V.; Honcharuk, S.; Girnyk, V.; Kostyukevych, S.; Kostyukevych, K.

    2011-02-01

    The goal of a present research is to develop a method for production of multilevel Diffractive Optical Elements (DOEs) for use in Digital Security Holograms, using the direct-writing maskless lithography system.

  14. Double peacock eye optical element for extended focal depth imaging with ophthalmic applications.

    Science.gov (United States)

    Romero, Lenny A; Millán, María S; Jaroszewicz, Zbigniew; Kolodziejczyk, Andrzej

    2012-04-01

    The aged human eye is commonly affected by presbyopia, and therefore, it gradually loses its capability to form images of objects placed at different distances. Extended depth of focus (EDOF) imaging elements can overcome this inability, despite the introduction of a certain amount of aberration. This paper evaluates the EDOF imaging performance of the so-called peacock eye phase diffractive element, which focuses an incident plane wave into a segment of the optical axis and explores the element's potential use for ophthalmic presbyopia compensation optics. Two designs of the element are analyzed: the single peacock eye, which produces one focal segment along the axis, and the double peacock eye, which is a spatially multiplexed element that produces two focal segments with partial overlapping along the axis. The performances of the peacock eye elements are compared with those of multifocal lenses through numerical simulations as well as optical experiments in the image space. The results demonstrate that the peacock eye elements form sharper images along the focal segment than the multifocal lenses and, therefore, are more suitable for presbyopia compensation. The extreme points of the depth of field in the object space, which represent the remote and the near object points, have been experimentally obtained for both the single and the double peacock eye optical elements. The double peacock eye element has better imaging quality for relatively short and intermediate distances than the single peacock eye, whereas the latter seems better for far distance vision.

  15. Network- and network-element-level parameters for configuration, fault, and performance management of optical networks

    Science.gov (United States)

    Drion, Christophe; Berthelon, Luc; Chambon, Olivier; Eilenberger, Gert; Peden, Francoise R.; Jourdan, Amaury

    1998-10-01

    With the high interest of network operators and manufacturers for wavelength division multiplexing (WDM) networking technology, the need for management systems adapted to this new technology keeps increasing. We investigated this topic and produced outputs through the specification of the functional architecture, network layered model, and through the development of new, TMN- based, information models for the management of optical networks and network elements. Based on these first outputs, defects in each layer together with parameters for performance management/monitoring have been identified for each type of optical network element, and each atomic function describing the element, including functions for both the transport of payload signals and of overhead information. The list of probable causes has been established for the identified defects. A second aspect consists in the definition of network-level parameters, if such photonic technology-related parameters are to be considered at this level. It is our conviction that some parameters can be taken into account at the network level for performance management, based on physical measurements within the network. Some parameters could possibly be used as criteria for configuration management, in the route calculation processes, including protection. The outputs of these specification activities are taken into account in the development of a manageable WDM network prototype which will be used as a test platform to demonstrate configuration, fault, protection and performance management in a real network, in the scope of the ACTS-MEPHISTO project. This network prototype will also be used in a larger size experiment in the context of the ACTS-PELICAN field trial (Pan-European Lightwave Core and Access Network).

  16. Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA.

    Science.gov (United States)

    Kravtsov, Konstantin; Prucnal, Paul R; Bubnov, Mikhail M

    2007-10-01

    We present an experimental demonstration of an ultrafast all-optical thresholder based on a nonlinear Sagnac interferometer. The proposed design is intended for operation at very small nonlinear phase shifts. Therefore, it requires an in-loop nonlinearity lower than for the classical nonlinear loop mirror scheme. Only 15 meters of conventional (non-holey) silica-based fiber is used as a nonlinear element. The proposed thresholder is polarization insensitive and is good for multi-wavelength operation, meeting all the requirements for autocorrelation detection in various optical CDMA communication systems. The observed cubic transfer function is superior to the quadratic transfer function of second harmonic generation-based thresholders.

  17. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas

    2015-01-01

    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  18. Reliability-Based Optimization of Structural Elements

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    In this paper structural elements from an optimization point of view are considered, i.e. only the geometry of a structural element is optimized. Reliability modelling of the structural element is discussed both from an element point of view and from a system point of view. The optimization...

  19. Chromatic error correction of diffractive optical elements at minimum etch depths

    Science.gov (United States)

    Barth, Jochen; Gühne, Tobias

    2014-09-01

    The integration of diffractive optical elements (DOE) into an optical design opens up new possibilities for applications in sensing and illumination. If the resulting optics is used in a larger spectral range we must correct not only the chromatic error of the conventional, refractive, part of the design but also of the DOE. We present a simple but effective strategy to select substrates which allow the minimum etch depths for the DOEs. The selection depends on both the refractive index and the dispersion.

  20. FABRICATION OF TRANSMISSIVE DIFFRACTIVE OPTICAL ELEMENTS FOR THE MID-INFRARED WITH A LASER WRITING INSTRUMENT

    Directory of Open Access Journals (Sweden)

    S. Calixto

    2007-08-01

    Full Text Available A simple method to fabricate infrared (λ = 10.6 μm diffractive optical elements that work in a transmissionmode is presented. A laser-writing instrument completely under computer control has been built todemonstrate the feasibility of this method. Several diffractive elements, fabricated using the laser-writinginstrument, are described.

  1. Iterative Fourier transform algorithm: different approaches to diffractive optical element design

    Science.gov (United States)

    Skeren, Marek; Richter, Ivan; Fiala, Pavel

    2002-10-01

    This contribution focuses on the study and comparison of different design approaches for designing phase-only diffractive optical elements (PDOEs) for different possible applications in laser beam shaping. Especially, new results and approaches, concerning the iterative Fourier transform algorithm, are analyzed, implemented, and compared. Namely, various approaches within the iterative Fourier transform algorithm (IFTA) are analyzed for the case of phase-only diffractive optical elements with quantizied phase levels (either binary or multilevel structures). First, the general scheme of the IFTA iterative approach with partial quantization is briefly presented and discussed. Then, the special assortment of the general IFTA scheme is given with respect to quantization constraint strategies. Based on such a special classification, the three practically interesting approaches are chosen, further-analyzed, and compared to eachother. The performance of these algorithms is compared in detail in terms of the signal-to-noise ratio characteristic developments with respect to the numberof iterations, for various input diffusive-type objects chose. Also, the performance is documented on the complex spectra developments for typical computer reconstruction results. The advantages and drawbacks of all approaches are discussed, and a brief guide on the choice of a particular approach for typical design tasks is given. Finally, the two ways of amplitude elimination within the design procedure are considered, namely the direct elimination and partial elimination of the amplitude of the complex hologram function.

  2. New nonlinear optical materials based on ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J P [Department of Physics, Fudan University, Shanghai 200433 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, K W [Department of Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)

    2006-01-01

    We exploit theoretically a new class of magneto-controlled nonlinear optical material based on ferrofluids in which ferromagnetic nanoparticles are coated with a nonmagnetic metallic nonlinear shell. Such an optical material can have anisotropic nonlinear optical properties and a giant enhancement of nonlinearity, as well as an attractive figure of merit.

  3. Cryogenic optical test planning using the Optical Telescope Element Simulator with the James Webb Space Telescope Integrated Science Instrument Module

    Science.gov (United States)

    Reichard, Timothy A.; Bond, Nicholas A.; Greeley, Bradford W.; Malumuth, Eliot M.; Melendez, Marcio; Shiri, Ron; Alves de Oliveira, Catarina; Antonille, Scott R.; Birkmann, Stephan; Davis, Clinton; Dixon, William V.; Martel, André R.; Miskey, Cherie L.; Ohl, Raymond G.; Sabatke, Derek; Sullivan, Joseph

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5 m diameter, segmented, deployable telescope for cryogenic infrared space astronomy ( 40 K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SIs), including a guider. The SI and guider units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as an instrument suite using a telescope simulator (Optical Telescope Element SIMulator; OSIM). OSIM is a high-fidelity, cryogenic JWST telescope simulator that features a 1.5m diameter powered mirror. The SIs are aligned to the flight structure's coordinate system under ambient, clean room conditions using optomechanical metrology and customized interfaces. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors and metrology in six degrees of freedom. SI performance, including focus, pupil shear, pupil roll, boresight, wavefront error, and image quality, is evaluated at the operating temperature using OSIM. The comprehensive optical test plans include drafting OSIM source configurations for thousands of exposures ahead of the start of a cryogenic test campaign. We describe how we predicted the performance of OSIM light sources illuminating the ISIM detectors to aide in drafting these optical tests before a test campaign began. We also discuss the actual challenges and successes of those exposure predictions encountered during a test campaign to fulfill the demands of the ISIM optical performance verification.

  4. hp-finite-elements for simulating electromagnetic fields in optical devices with rough textures

    CERN Document Server

    Burger, S; Hammerschmidt, M; Herrmann, S; Pomplun, J; Schmidt, F; Wohlfeil, B; Zschiedrich, L

    2015-01-01

    The finite-element method is a preferred numerical method when electromagnetic fields at high accuracy are to be computed in nano-optics design. Here, we demonstrate a finite-element method using hp-adaptivity on tetrahedral meshes for computation of electromagnetic fields in a device with rough textures. The method allows for efficient computations on meshes with strong variations in element sizes. This enables to use precise geometry resolution of the rough textures. Convergence to highly accurate results is observed.

  5. Optical image encryption based on a joint Fresnel transform correlator with double optical wedges.

    Science.gov (United States)

    Shen, Xueju; Dou, Shuaifeng; Lei, Ming; Chen, Yudan

    2016-10-20

    An optical cryptosystem based on the joint Fresnel transform correlator (JFTC) with double optical wedges is designed. The designed cryptosystem retains the two major advantages of JTC-based optical cryptosystems. First, the encrypted image is real-valued and therefore is easier to record and transmit. Second, the encryption process is simplified, since it doesn't require accurate alignment of optical elements or the generation of the complex conjugate of the key. Also, the designed optical cryptosystem can produce a decrypted image with higher quality than a JTC-based optical cryptosystem, because the original encrypted image is divided by the Fresnel transform power distribution of the key mask to generate the new encrypted image, which significantly reduces the noise during the decryption process. Simulation results showed that the correlation coefficient of the decrypted image and the original image can reach as large as 0.9819 after denoising and adequately selecting half-central interval a and encrypted image width w. Another improvement relative to JTC-based optical cryptosystems is that the attack resistibility gets enhanced due to the nonlinearity of the encryption process as well as the additional key parameter a, which enlarges the key space.

  6. QoS-aware precautionary performance monitoring for PCE-based coherent optical OFDM networks

    Institute of Scientific and Technical Information of China (English)

    Yueming Lu; Lianxing Hou

    2012-01-01

    A quality-of-service (QoS) aware scheme,called precautionary performance monitoring,is proposed to solve the optical impairments and congestion control in coherent optical orthogonal frequency division multiplexed (CO-OFDM) networks.The centralized path computation element (PCE) extensions based on the QoS level are applied to optical performance monitoring in this letter.

  7. Extended volume and surface scatterometer for optical characterization of 3D-printed elements

    Science.gov (United States)

    Dannenberg, Florian; Uebeler, Denise; Weiß, Jürgen; Pescoller, Lukas; Weyer, Cornelia; Hahlweg, Cornelius

    2015-09-01

    The use of 3d printing technology seems to be a promising way for low cost prototyping, not only of mechanical, but also of optical components or systems. It is especially useful in applications where customized equipment repeatedly is subject to immediate destruction, as in experimental detonics and the like. Due to the nature of the 3D-printing process, there is a certain inner texture and therefore inhomogeneous optical behaviour to be taken into account, which also indicates mechanical anisotropy. Recent investigations are dedicated to quantification of optical properties of such printed bodies and derivation of corresponding optimization strategies for the printing process. Beside mounting, alignment and illumination means, also refractive and reflective elements are subject to investigation. The proposed measurement methods are based on an imaging nearfield scatterometer for combined volume and surface scatter measurements as proposed in previous papers. In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. The device has been extended for observation of photoelasticity effects and therefore homogeneity of polarization behaviour. A refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of the layers of the surface under test, cross and parallel polarization techniques are applied. Practical examples from current research studies are included.

  8. Application of an approximate vectorial diffraction model to analysing diffractive micro-optical elements

    Institute of Scientific and Technical Information of China (English)

    Niu Chun-Hui; Li Zhi-Yuan; Ye Jia-Sheng; Gu Ben-Yuan

    2005-01-01

    Scalar diffraction theory, although simple and efficient, is too rough for analysing diffractive micro-optical elements.Rigorous vectorial diffraction theory requires extensive numerical efforts, and is not a convenient design tool. In this paper we employ a simple approximate vectorial diffraction model which combines the principle of the scalar diffraction theory with an approximate local field model to analyse the diffraction of optical waves by some typical two-dimensional diffractive micro-optical elements. The TE and TM polarization modes are both considered. We have found that the approximate vectorial diffraction model can agree much better with the rigorous electromagnetic simulation results than the scalar diffraction theory for these micro-optical elements.

  9. James Webb Space Telescope Optical Telescope Element/Integrated Science Instrument Module (OTIS) Status

    Science.gov (United States)

    Feinberg, Lee; Voyton, Mark; Lander, Juli; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirror center of curvature optical tests, electrical and operational tests, acoustics and vibration testing at the Goddard Space Flight Center before being shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparation for the cryogenic optical testing, the JWST project has built a Pathfinder telescope and has completed two Optical Ground System Equipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize optical test results to date and status the final Pathfinder test and the OTIS integration and environmental test preparations

  10. Generation of Multiphoton Entangled States with Linear Optical Elements

    Institute of Scientific and Technical Information of China (English)

    SHENG Yu-Bo; DENG Fu-Guo; ZHOU Hong-Yu

    2008-01-01

    We propose a linear optical protocol to generate three-photon and four-photon entangled states without resorting to entangled sources. The setup in this protocol is composed of three beam splitters and two half-wave plates.We can obtain three-photon and four-photon entangled states with postselection, as with other protocols. This protocol has the advantage of high efficiency and is more feasible than others.

  11. Silicon based ultrafast optical waveform sampling

    DEFF Research Database (Denmark)

    Ji, Hua; Galili, Michael; Pu, Minhao

    2010-01-01

    A 300 nmx450 nmx5 mm silicon nanowire is designed and fabricated for a four wave mixing based non-linear optical gate. Based on this silicon nanowire, an ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode-locker...

  12. Adaptive optics in digital micromirror based confocal microscopy

    Science.gov (United States)

    Pozzi, P.; Wilding, D.; Soloviev, O.; Vdovin, G.; Verhaegen, M.

    2016-03-01

    This proceeding reports early results in the development of a new technique for adaptive optics in confocal microscopy. The term adaptive optics refers to the branch of optics in which an active element in the optical system is used to correct inhomogeneities in the media through which light propagates. In its most classical form, mostly used in astronomical imaging, adaptive optics is achieved through a closed loop in which the actuators of a deformable mirror are driven by a wavefront sensor. This approach is severely limited in fluorescence microscopy, as the use of a wavefront sensor requires the presence of a bright, point like source in the field of view, a condition rarely satisfied in microscopy samples. Previously reported approaches to adaptive optics in fluorescence microscopy are therefore limited to the inclusion of fluorescent microspheres in the sample, to use as bright stars for wavefront sensors, or time consuming sensorless optimization procedures, requiring several seconds of optimization before the acquisition of a single image. We propose an alternative approach to the problem, implementing sensorless adaptive optics in a Programmable array microscope. A programmable array microscope is a microscope based on a digital micromirror device, in which the single elements of the micromirror act both as point sources and pinholes.

  13. Transition elements based on transfinite interpolation

    Science.gov (United States)

    Odabas, Onur R.; Sarigul-Klijn, Nesrin

    1993-01-01

    In this study the transfinite interpolation methodology, a 'blending-function' method in particular, is utilized for the formulation of transition elements. The method offers a formal way of meeting continuity requirements in a transition element. Element shape functions are derived by blending the continuity requirements of individual boundary segments. The blending directions are naturally orthogonal in rectangular domains therefore interpolation of the boundaries over rectangular 2D and 3D elements can be performed with minimal effort. In triangular domains, however, the choice of blending directions and interpolants is not straightforward. For that reason, two interpolation techniques are proposed for blending of the boundaries of triangular domains. A series of transition elements of various classes compatible with elements of different orders and dimensions is developed and the full potential of the transfinite interpolation, as it applies to element formulation, is explored.

  14. Development of optical devices based on neutron refractive optics

    Energy Technology Data Exchange (ETDEWEB)

    Oku, T.; Morita, S.; Moriyasu, S. [Institute of Physical and Chemical Research, Wako, Saitama (JP)] [and others

    2001-03-01

    We have been developing neutron optical devices based on neutron refractive optics, such as a neutron lens and prism to improve neutron scattering methods. Prototypes of a compound Fresnel lens, a magnetic lens and prism for neutrons have been developed. The functions of each devices were verified by experimental and numerical simulation studies, and their improvement and applications are still being investigated. The recent progress in our work is reviewed and perspective of their application to neutron scattering experiments is described. (author)

  15. An expanded X-ray beam facility (BEaTriX) to test the modular elements of the ATHENA optics

    CERN Document Server

    Spiga, D; Bonnini, E; Buffagni, E; Ferrari, C; Pareschi, G; Tagliaferri, G

    2015-01-01

    Future large X-ray observatories like ATHENA will be equipped with very large optics, obtained by assembling modular optical elements, named X-ray Optical Units (XOU) based on the technology of either Silicon Pore Optics or Slumped Glass Optics. In both cases, the final quality of the modular optic (a 5 arcsec HEW requirement for ATHENA) is determined by the accuracy alignment of the XOUs within the assembly, but also by the angular resolution of the individual XOU. This is affected by the mirror shape accuracy, its surface roughness, and the mutual alignment of the mirrors within the XOU itself. Because of the large number of XOUs to be produced, quality tests need to be routinely done to select the most performing stacked blocks, to be integrated into the final optic. In addition to the usual metrology based on profile and roughness measurements, a direct measurement with a broad, parallel, collimated and uniform X- ray beam would be the most reliable test, without the need of a focal spot reconstruction as...

  16. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    Science.gov (United States)

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  17. Finite Element Response Sensitivity Analysis: a comparison between force-based and Displacement-Based Frame Element Models

    OpenAIRE

    Barbato, Michele; Conte, J P

    2005-01-01

    This paper focuses on a comparison between displacement-based and force-based elements for static and dynamic response sensitivity analysis of frame type structures. Previous research has shown that force-based frame elements are superior to classical displacement-based elements enabling, at no significant additional computational costs, a drastic reduction in the number of elements required for a given level of accuracy in the simulated response. The present work shows that this advantage of...

  18. An expanded x-ray beam facility (BEaTriX) to test the modular elements of the ATHENA optics

    Science.gov (United States)

    Spiga, D.; Pelliciari, C.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Pareschi, G.; Tagliaferri, G.

    2014-07-01

    Future large X-ray observatories like ATHENA will be equipped with very large optics, obtained by assembling modular optical elements, named X-ray Optical Units (XOU) based on the technology of either Silicon Pore Optics or Slumped Glass Optics. In both cases, the final quality of the modular optic (a 5 arcsec HEW requirement for ATHENA) is determined by the accuracy alignment of the XOUs within the assembly, but also by the angular resolution of the individual XOU. This is affected by the mirror shape accuracy, its surface roughness, and the mutual alignment of the mirrors within the XOU itself. Because of the large number of XOUs to be produced, quality tests need to be routinely done to select the most performing stacked blocks, to be integrated into the final optic. In addition to the usual metrology based on profile and roughness measurements, a direct measurement with a broad, parallel, collimated and uniform Xray beam would be the most reliable test, without the need of a focal spot reconstruction as usually done in synchrotron light. To this end, we designed the BEaTriX (Beam Expander Testing X-ray facility) to be realized at INAF-OAB, devoted to the functional tests of the XOUs. A grazing incidence parabolic mirror and an asymmetrically cut crystal will produce a parallel X-ray beam broad enough to illuminate the entire aperture of the focusing elements. An X-ray camera at the focal distance from the mirrors will directly record the image. The selection of different crystals will enable to test the XOUs in the 1 - 5 keV range, included in the X-ray energy band of ATHENA (0.2-12 keV). In this paper we discuss a possible BEaTriX facility implementation. We also show a preliminary performance simulation of the optical system.

  19. A 45-element continuous facesheet surface micromachined deformable mirror for optical aberration correction

    Directory of Open Access Journals (Sweden)

    Weimin Wang

    2014-02-01

    Full Text Available A 45-element continuous facesheet surface micromachined deformable mirror (DM is presented and is fabricated using the PolyMUMPs multi-user micro-electro-mechanical system processes. The effects of the structural parameters on the characteristics of the DM, such as its stroke, frequency and actuator coupling, are analyzed. In addition, the DM design has also been verified through experimental testing. This DM prototype has a surface figure of 0.5 μm and a fill factor of 95%. The DM can provide a 0.6 μm stroke with 5.9% actuator coupling. A static aberration correction based on this DM is also demonstrated, which acts as a reference for the potential adaptive optics (AO applications of the device.

  20. Trace elemental composition of curry by inductively coupled plasma optical emission spectrometry (ICP-OES).

    Science.gov (United States)

    Gonzálvez, A; Armenta, S; De La Guardia, M

    2008-01-01

    A methodology based on inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted acid digestion was developed to determine the content of traces elements in curry samples from the Spanish market. The methodology was validated in terms of accuracy by the analysis of citrus and tomato leaf reference materials achieving comparable results with the certified values. The trace metal content of curry samples was compared with data available from previously published reports concerning Indian samples, especially in terms of heavy metal composition, in order to guarantee the quality of the commercially available spices in the European countries. Values found for the analysis of arsenic, lead and cadmium were significantly lower than the maximum limit allowed by European Union statutory limits for heavy metals and lower than those obtained for Indian curry leaves reported by Indian research teams by using neutron activation and γ-ray analysis.

  1. Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements.

    Science.gov (United States)

    Ye, Xingwei; Zhang, Fangzheng; Pan, Shilong

    2016-09-01

    A hardware-compressive optical true time delay architecture for 2D beam steering in a planar phased array antenna is proposed using fiber-Bragg-grating-based tunable dispersive elements (TDEs). For an M×N array, the proposed system utilizes N TDEs and M wavelength-fixed optical carriers to control the time delays. Both azimuth and elevation beam steering are realized by programming the settings of the TDEs. An experiment is carried out to demonstrate the delay controlling in a 2×2 array, which is fed by a wideband pulsed signal. Radiation patterns calculated from the experimentally measured waveforms at the four antennas match well with the theoretical results.

  2. Kriging-Based Finite Element Method: Element-By-Element Kriging Interpolation

    Directory of Open Access Journals (Sweden)

    W. Kanok-Nukulchai

    2009-01-01

    Full Text Available An enhancement of the finite element method with Kriging shape functions (K-FEM was recently proposed. In this method, the field variables of a boundary value problem are approximated using ‘element-by-element’ piecewise Kriging interpolation (el-KI. For each element, the interpolation function is constructed from a set of nodes within a prescribed domain of influence comprising the element and its several layers of neighbouring elements. This paper presents a numerical study on the accuracy and convergence of the el-KI in function fitting problems. Several examples of functions in two-dimensional space are employed in this study. The results show that very accurate function fittings and excellent convergence can be attained by the el-KI.

  3. A review of flexibility-based finite element method for beam-column elements

    Institute of Scientific and Technical Information of China (English)

    LI Shuang; ZHAI Changhai; XIE Lili

    2009-01-01

    For material nonlinear problem, elements derived with the flexibility-based method are more accurate than classical elements derived with the stiffness-based method. A review of the current state of the art of the flexibility-based finite element method is provided to enhance the robustness of structure analysis. The research on beam-column elements is the mainstream in the research on flexibility-based finite element method at present. The original development of flexibility-based finite element method is reviewed, and the further development of this method is then presented in several specific aspects, such as geometrically nonlinear analysis and dynamic analysis. The further research needed to be carried out in the future is finally discussed.

  4. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light

    Science.gov (United States)

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-07-01

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.

  5. A high-accuracy optical linear algebra processor for finite element applications

    Science.gov (United States)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  6. The Study of Optically Induced Effects due to Bending and Twisting using Vector Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Dacles-Mariani, J; Rodrigue, G

    2005-05-11

    We study the effects of macroscopic bends and twists in an optical waveguide and how they influence the transmission capabilities of a waveguide. These mechanical stresses and strains distort the optical indicatrix of the medium producing optical anisotropy. The spatially varying refractive indices are incorporated into the full-wave Maxwell's equations. The governing equations are discretized using a vector finite element method cast in a high-order finite element approximation. This approach allows us to study the complexities of the mechanical deformation within a framework of a high-order formulation which can in turn, reduce the computational requirement without degrading its performance. The optical activities generated, total energy produced and power loss due to the mechanical stresses and strains are reported and discussed.

  7. A new multiresolution finite element method based on a multiresolution quadrilateral plate element

    CERN Document Server

    Xia, YiMing

    2014-01-01

    A new multiresolution quadrilateral plate element is proposed and a multiresolution finite element method is hence presented. The multiresolution analysis (MRA) framework is formulated out of a mutually nesting displacement subspace sequence, whose basis functions are constructed of scaling and shifting on the element domain of basic node shape function. The basic node shape function is constructed by extending shape function around a specific node. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. As a result, the traditional 4-node quadrilateral plate element and method is a monoresolution one and also a special case of the proposed element and method. The meshing for the monoresolution plate element model is based on the empiricism while the RL adjusting for the multiresolution is laid on the rigorous mathematical basis. The accuracy of a structural analysis is fully determined by the RL, not by th...

  8. A multiresolution finite element method based on a new locking-free rectangular Mindlin plate element

    CERN Document Server

    Xia, Yi-Ming

    2015-01-01

    A locking-free rectangular Mindlin plate element with a new multi-resolution analysis (MRA) is proposed and a multireolution finite element method is hence presented. The MRA framework is formulated out of a mutually nesting displacement subspace sequence. The MRA endows the proposed element with the resolution level (RL) to adjust the element node number, thus modulating structural analysis accuracy accordingly. As a result, the traditional 4-node rectangular Mindlin plate element and method is a mono-resolution one and also a special case of the proposed element and method. The meshing for the monoresolution plate element model is based on the empiricism while the RL adjusting for the multiresolution is laid on the rigorous mathematical basis. The accuracy of a structural analysis is actually determined by the RL, not by the mesh. The rational MRA enables the implementation of the multiresolution Mindlin plate element method to be more rational and efficient than that of the conventional monoresolution or o...

  9. Some optical characteristics of powders of rare element tellurites

    Energy Technology Data Exchange (ETDEWEB)

    Voloshina, A.L.; Ivanchenko, L.A.; Obolonchik, V.A.; Lugovskaya, E.S. (AN Ukrainskoj SSR, Kiev. Inst. Problem Materialovedeniya)

    1982-09-01

    Optical properties of rare earth tellurites (except Ce and Pm) of Lu/sub 2/Te/sub 3/O/sub 9/ composition are studied. It is stated that crystallization of La tellurite specimens with elevation of the treatment temperature induces an increase in the refractive index, leads to transition from itotropism of particles with a cubic crystal system to emergence of long-prismshape grains, birefringence; orientation dependence of the refractive index is traced. It is shown that La/sub 2/Te/sub 3/O/sub 9/-type compounds by the pattern of their interaction with light may be referred to semiconductors with a h..nu.. >= 3.8 eV band gap. It is demonstrated through the La/sub 2/Te/sub 3/O/sub 9/ example that heat treatment of an air-dry specimen at temperatures above 400 deg C leads to a decrease of the band gap in the compounds of concern and to an increase of the light absorption factor within a photon energy range of h..nu.. > 4 eV.

  10. Graphene-Based Optical Biosensors and Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhiwen; He, Shijiang; Pei, Hao; Du, Dan; Fan, Chunhai; Lin, Yuehe

    2014-01-13

    This chapter focuses on the design, fabrication and application of graphene based optical nanobiosensors. The emerging graphene based optical nanobiosensors demonstrated the promising bioassay and biomedical applications thanking to the unique optical features of graphene. According to the different applications, the graphene can be tailored to form either fluorescent emitter or efficient fluorescence quencher. The exceptional electronic feature of graphene makes it a powerful platform for fabricating the SPR and SERS biosensors. Today the graphene based optical biosensors have been constructed to detect various targets including ions, small biomolecules, DNA/RNA and proteins. This chapter reviews the recent progress in graphene-based optical biosensors and discusses the opportunities and challenges in this field.

  11. Space-based optical image encryption.

    Science.gov (United States)

    Chen, Wen; Chen, Xudong

    2010-12-20

    In this paper, we propose a new method based on a three-dimensional (3D) space-based strategy for the optical image encryption. The two-dimensional (2D) processing of a plaintext in the conventional optical encryption methods is extended to a 3D space-based processing. Each pixel of the plaintext is considered as one particle in the proposed space-based optical image encryption, and the diffraction of all particles forms an object wave in the phase-shifting digital holography. The effectiveness and advantages of the proposed method are demonstrated by numerical results. The proposed method can provide a new optical encryption strategy instead of the conventional 2D processing, and may open up a new research perspective for the optical image encryption.

  12. Challenges in mold manufacturing for high precision molded diffractive optical elements

    Science.gov (United States)

    Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas

    2016-09-01

    Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.

  13. Biaxial crystal-based optical tweezers

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.;

    2010-01-01

    We suggest an optical tweezer setup based on an optically biaxial crystal. To control movements of opaque particles, we use shifts. The results of experimental studies are reported which are concerned with this laser tweezer setup. We demonstrate a movement of microparticles of toner using...... a singular-optical trap, rotation of particles due to orbital angular momentum of the field, and converging or diverging of two different traps when changing transmission plane of polariser at the input of our polarisation interferometer....

  14. Biaxial crystal-based optical tweezers

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.

    2010-01-01

    We suggest an optical tweezer setup based on an optically biaxial crystal. To control movements of opaque particles, we use shifts. The results of experimental studies are reported which are concerned with this laser tweezer setup. We demonstrate a movement of microparticles of toner using...... a singular-optical trap, rotation of particles due to orbital angular momentum of the field, and converging or diverging of two different traps when changing transmission plane of polariser at the input of our polarisation interferometer....

  15. Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process

    Science.gov (United States)

    Zhou, Jingbo; Li, Lei; Naples, Neil; Sun, Tao; Yi, Allen Y.

    2013-07-01

    Continuous diffractive optical elements (CDOEs) can be used for laser-beam reshaping, pattern generation and can help reduce large angle scattering. Lithography, the method for the production of binary diffractive surfaces, is not suitable for fabrication of CDOEs. Diamond turning using fast tool servo, on the other hand, is a non-cleanroom method for generating continuous microstructures with high precision and efficiency. In this paper, an algorithm for designing CDOEs is introduced. The moving least-squares (MLS) method is then used to obtain the local fitting equation of the diffractive surface. Based on the MLS fitting equation, the selection of diamond cutting tool geometries (including the tool nose radius, rake angle and clearance angle) is discussed and a tool nose radius compensation algorithm is included. This algorithm is a general method for the diamond turning of complex surfaces that can be represented by a point cloud. Surface measurements and diffractive patterns generated on test samples have shown that continuous diffractive surfaces were successfully machined. In the future, CDOEs can be machined on an optical mold surface for high-volume industrial production using methods such as injection molding.

  16. A novel method about online monitoring surface shape of optical elements in continuous polishing

    Science.gov (United States)

    Yin, Jin; Zhu, Jianqiang; Jiao, Xiang; Wu, Yongzhong

    2016-10-01

    In conventional continuous polishing process, the surface shape of work-piece was measured by an optical plane template after being placed in such environment with constant temperature for 1 to 2 hours. During this period, uncertain influence may occur on the polishing pad due to the change of system state. Meanwhile, the regular off-line testing may cause re-processing. In this paper, a new method about on-line monitoring surface shape of optical elements is proposed by the theory of run sphere, and the change in curvature radius of the work-piece which lead to its radial tilt angle change. The change in work-piece surface shape indirectly obtain by the correction plate small angle with respect to the horizontal, and the angle were detected on line by the high-precision goniometer with the resolution 0.04 ''. According to theoretical calculations, the diameter of 200mm precision work-piece PV value up to 0.02λ (λ = 632.8nm). The fused quartz glass was measured by above method. The test results showed that the surface accuracy and processing efficiency were significantly promoted, and also improving the controllability of surface shape of work-piece based on this method.

  17. Ion-exchanged diffractive elements in glass for substrate-mode optics.

    Science.gov (United States)

    Salmio, R P; Saarinen, J; Noponen, E

    1998-08-01

    We recently demonstrated the use of continuous-phase ion-exchanged diffractive elements in glass for free-space optics. We extend our design methods to substrate-mode optics, which permits compact packing of miniature-sized free-space optical systems. We designed one-dimensional gratings for equal-intensity 1 ? 3 and 1 ? 5 beam splitting, assuming both planar and conical incidence angles. An experimental demonstration of a 1 ? 3 beam splitter with a uniformity error of 3.4% is presented.

  18. Optimal Design of a Secondary Optical Element for a Noncoplanar Two-Reflector Solar Concentrator

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Chen

    2015-01-01

    Full Text Available This paper presents the results of a parametric design process used to achieve an optimal secondary optical element (SOE in a noncoplanar solar concentrator composed of two reflectors. The noncoplanar solar concentrator comprises a primary parabolic mirror (M1 and a secondary hyperbolic mirror (M2. The optical performance (i.e., acceptance angle, optical efficiency, and irradiance distribution of concentrators with various SOEs was compared using ray-tracing simulation. The parametric design process for the SOE was divided into two phases, and an optimal SOE was obtained. The sensitivity to assembly errors of the solar concentrator when using the optimal SOE was studied and the findings are discussed.

  19. Research on producing high quality diffractive optical elements in volume at a low cost

    Science.gov (United States)

    Daschner, Walter

    1997-11-01

    Diffractive Optical Elements (DOEs) can be utilized in a variety of possible applications in modern optical, as well as optoelectronic systems. The current roadblock for application of DOEs in consumer products is not the feasibility of the approach, as numerous applications have been successfully demonstrated. In order for the breakthrough to occur in industry, it is important to determine a convenient and cost-effective method for manufacturing DOEs. The industry will improve the design of their legacy systems and start including DOEs only when the performance improvement (which the utilization of DOEs achieves), can be purchased with a minimal amount of additional capital investment and cost-per-part. Therefore, the focus of this dissertation was to find a cost-effective method of fabricating large quantities of DOEs with currently available fabrication tools. Direct-write approaches were investigated to fabricate high-quality masters for a subsequent replication procedure based upon molding or casting. Electron-Beam Direct-Write was carried-out in a positive Novolac-based photo-resist which provides dry etch resistivity. Another focus of this development was to find a way to minimize Electron-Beam writing time for a given element. Proximity effect characterization and compensation has been carried-out in order to increase the fidelity of the pattern reproduction. A dry-etching procedure has been developed in order to transfer resist profiles into the substrate material. During this transfer step, the etch rates of resist and substrate material can be controlled; this in turn allows a choice of final feature depth in the substrate material (depending on refractive index and wavelength in use). Two Gray-Scale masking approaches were developed to allow the cost-effective mass fabrication of DOEs in a single optical exposure step. Thin film evaporation of Inconel achieves high-quality masks at a high price. High Energy Beam Sensitive Glass, the second mask material

  20. Design of the Secondary Optical Elements for Concentrated Photovoltaic Units with Fresnel Lenses

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Chen

    2015-10-01

    Full Text Available The goal of this presented study was to determine the optimum parameters of secondary optical elements (SOEs for concentrated photovoltaic (CPV units with flat Fresnel lenses. Three types of SOEs are under consideration in the design process, including kaleidoscope with equal optical path design (KOD, kaleidoscope with flat top surface (KFTS, and open-truncated tetrahedral pyramid with specular walls (SP. The function of using a SOE with a Fresnel lens in a CPV unit is to achieve high optical efficiency, low sensitivity to the sun tracking error, and improved uniformity of irradiance distribution on the solar cell. Ray tracing technique was developed to simulate the optical characteristics of the CPV unit with various design parameters of each type of SOE. Finally, an optimum KOD-type SOE was determined by parametric design process. The resulting optical performance of the CPV unit with the optimum SOE was evaluated in both single-wavelength and broadband simulation of solar spectrum.

  1. Optically-induced-potential-based image encryption.

    Science.gov (United States)

    Chen, Bing-Chu; Wang, He-Zhou

    2011-11-07

    We present a technique of nonlinear image encryption by use of virtual optics. The image to be encrypted is superposed on a random intensity image. And this superposed image propagates through a nonlinear medium and a 4-f system with single phase key. The image is encrypted to a stationary white noise. The decryption process is sensitive to the parameters of the encryption system and the phase key in 4-f system. This sensitivity makes attackers hard to access the phase key. In nonlinear medium, optically-induced potentials, which depend on intensity of optical wave, make the superposition principle frustrated. This nonlinearity based on optically induced potentials highly improves the secrecy level of image encryption. Resistance against attacks based on the phase retrieval technique proves that it has the high secrecy level. This nonlinear image encryption based on optically induced potentials is proposed and demonstrated for the first time.

  2. Optical touch screen based on waveguide sensing

    DEFF Research Database (Denmark)

    Pedersen, Henrik Chresten; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2011-01-01

    We disclose a simple, optical touch screen technique based on a planar injection molded polymer waveguide, a single laser, and a small linear detector array. The solution significantly reduces the complexity and cost as compared to existing optical touch technologies. Force detection of a touchin...... finger is also demonstrated....

  3. Optical touch screen based on waveguide sensing

    Science.gov (United States)

    Pedersen, Henrik C.; Jakobsen, Michael L.; Hanson, Steen G.; Mosgaard, Morten; Iversen, Theis; Korsgaard, Jorgen

    2011-08-01

    We disclose a simple, optical touch screen technique based on a planar injection molded polymer waveguide, a single laser, and a small linear detector array. The solution significantly reduces the complexity and cost as compared to existing optical touch technologies. Force detection of a touching finger is also demonstrated.

  4. Research of optical rainfall sensor based on CCD linear array

    Institute of Scientific and Technical Information of China (English)

    YANG; Bifeng; LIU; Yuyan; LU; Ying; WU; Shangqian

    2015-01-01

    Rainfall monitoring is one of the most important meteorological observation elements for the disaster weather. The maintenance of current tipping bucket rain gauge and weighing type rain gauge is a critical issue. The optical rainfall sensor based on CCD linear array is mainly studied in this paper. Because of the maintenance-free time and good adaptability,it can be widely used in the automatic rainfall monitoring in severe environment and have a good perspective in using.

  5. An Optical Pressure Sensor Based on MEMS

    Institute of Scientific and Technical Information of China (English)

    Tong Zhang; Sheng Qiang; Frank Lewis; Yalin Wu; Xiaozhu Chi

    2006-01-01

    An optical fiber pressure sensor has been developed for the measurement in human body. The sensing element is possessed of a membrane structure, which is fabricated by micromachining. The fabrication process includes anisotropic wet etching on the silicon wafer. For the transmitting source and signal light, a multimode optical fiber 50/125 μm (core/clad) in diameter was used. The intensity of the light reflected back into the fiber varies with the membrane deflection, which is a function of pressure. The deflection of the membrane by applied pressure can be mathematically described.

  6. Inductively Coupled Plasma Optical-Emission Spectroscopy Determination of Major and Minor Elements in Vinegar

    Directory of Open Access Journals (Sweden)

    Arzu AKPINAR-BAYIZIT

    2010-12-01

    Full Text Available This study characterizes the mineral content of vinegar samples. The concentrations of Na, K, Ca, Mg and P (major elements as well as Fe, Mn, Sn, Cu, Ni, Zn, Pb and Cd (minor elements were determined in 35 commercial vinegar samples using inductively coupled plasma optical-emission spectrometry (ICP-OES. The elements with the highest concentrations were K, Na, Ca, Mg and P. The concentrations of heavy metals in the vinegar samples, including Cd, Ni, Sn and Pb, were not considered a health risk.

  7. Mobile based optical form evaluation system

    Directory of Open Access Journals (Sweden)

    Asım Sinan YÜKSEL

    2016-05-01

    Full Text Available Optical forms that contain multiple-choice answers are widely used both for electing students and evaluating student achievements in education systems in our country and worldwide. Optical forms are evaluated by employing optical mark recognition techniques through optical readers. High cost of these machines, limited access to them, long waiting time for evaluation results make the process hard for educationists working in cities or countries. In this study, a mobile application was developed for the educationists who own mobile phones or tablets for the purpose of evaluating students' answer sheets quickly and independent of location and optical readers. Optical form recognition, reading and evaluation processes are done on the image of student's answer sheet that is taken with the mobile phone or tablet of educationist. The Android based mobile application that we developed has a user-friendly interface, high success rate and is the first of our knowledge application that operates on mobile platforms in this field.

  8. Optical Simulation and Experimental Verification of a Fresnel Solar Concentrator with a New Hybrid Second Optical Element

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2016-01-01

    Full Text Available Fresnel solar concentrator is one of the most common solar concentrators in solar applications. For high Fresnel concentrating PV or PV/T systems, the second optical element (SOE is the key component for the high optical efficiency at a wider deflection angle, which is important for overcoming unavoidable errors from the tacking system, the Fresnel lens processing and installment technology, and so forth. In this paper, a new hybrid SOE was designed to match the Fresnel solar concentrator with the concentration ratio of 1090x. The ray-tracing technology was employed to indicate the optical properties. The simulation outcome showed that the Fresnel solar concentrator with the new hybrid SOE has a wider deflection angle scope with the high optical efficiency. Furthermore, the flux distribution with different deviation angles was also analyzed. In addition, the experiment of the Fresnel solar concentrator with the hybrid SOE under outdoor condition was carried out. The verifications from the electrical and thermal outputs were all made to analyze the optical efficiency comprehensively. The optical efficiency resulting from the experiment is found to be consistent with that from the simulation.

  9. Three-dimensional Doppler anemometer using a holographic optical element.

    Science.gov (United States)

    Schneider, F; Windein, W

    1988-11-01

    A new simple 3-D laser Doppler system has been developed for simultaneous measurement of the instantaneous velocity vector of a scattering particle. The system is based on the reference beam method. It uses a hologram to generate the reference beams. Only one laser operating in single mode is required as the light source. The system has been tested by measuring all the components of the Reynolds stress tensor in a round cold air jet. The results are presented.

  10. Fiber optic based optical coherence tomography (OCT) for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  11. Tailored Aluminium based Coatings for Optical Appearance and Corrosion Resistance

    DEFF Research Database (Denmark)

    Aggerbeck, Martin

    The current project investigated the possibility of designing aluminium based coatings focusing on the effect of composition and surface finish on the optical appearance and on the alkaline corrosion properties using titanium as the main alloying element. The main results and discussions of this ......The current project investigated the possibility of designing aluminium based coatings focusing on the effect of composition and surface finish on the optical appearance and on the alkaline corrosion properties using titanium as the main alloying element. The main results and discussions...... the optical appearance is affected by the alloy composition, surface morphology, and the microstructure. Four commercial aluminium alloys were studied before and after polishing, etching, anodisation, and hot water sealing, giving an overview on how the alloy composition affects the appearance. It was found...... that the roughness after etching increases with higher amounts of alloying elements (especially iron and silicon). Proper polishing requires some alloy hardness, while alloy purity is required for a glossy appearance after anodisation. Magnetron sputtered aluminium based coatings containing up to 18 wt. % titanium...

  12. Multipoint laser Doppler vibrometry using holographic optical elements and a CMOS digital camera.

    Science.gov (United States)

    Connelly, Michael J; Szecówka, Przemyslaw M; Jallapuram, Raghavendra; Martin, Suzanne; Toal, Vincent; Whelan, Maurice P

    2008-02-15

    A laser Doppler vibrometer (LDV) is described in which holographic optical elements are used to provide the interferometer reference and object illumination beams. A complementary metal-oxide semiconductor camera, incorporating a digital signal processor, is used to carry out real-time signal processing of the interferometer output to allow multipoint LDV to be implemented.

  13. Scheme for Realizing Probabilistic Teleportation of Bipartite Photonic States via Linear Optical Elements

    Institute of Scientific and Technical Information of China (English)

    DONG Ping; LIN Ji-Cheng; YANG Ming; CAO Zhuo-Liang

    2006-01-01

    We propose a probabilistic scheme for realizing teleportation of bipartite photonic states using linear optical elements where only requires a two-photon Bell state used as quantum channel. It reduces the requirement of the entanglement of quantum channel, but requires an additional photon and an auxiliary maximally entangled photon pair locally.

  14. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    Science.gov (United States)

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  15. Optical microscopic imaging based on VRML language

    Science.gov (United States)

    Zhang, Xuedian; Zhang, Zhenyi; Sun, Jun

    2009-11-01

    As so-called VRML (Virtual Reality Modeling Language), is a kind of language used to establish a model of the real world or a colorful world made by people. As in international standard, VRML is the main kind of program language based on the "www" net building, which is defined by ISO, the kind of MIME is x-world or x-VRML. The most important is that it has no relationship with the operating system. Otherwise, because of the birth of VRML 2.0, its ability of describing the dynamic condition gets better, and the interaction of the internet evolved too. The use of VRML will bring a revolutionary change of confocal microscope. For example, we could send different kinds of swatch in virtual 3D style to the net. On the other hand, scientists in different countries could use the same microscope in the same time to watch the same samples by the internet. The mode of sending original data in the model of text has many advantages, such as: the faster transporting, the fewer data, the more convenient updating and fewer errors. In the following words we shall discuss the basic elements of using VRML in the field of Optical Microscopic imaging.

  16. Recent progress in see-through three-dimensional displays using holographic optical elements [Invited].

    Science.gov (United States)

    Jang, Changwon; Lee, Chang-Kun; Jeong, Jinsoo; Li, Gang; Lee, Seungjae; Yeom, Jiwoon; Hong, Keehoon; Lee, Byoungho

    2016-01-20

    The principles and characteristics of see-through 3D displays are presented. We especially focus on the integral-imaging display system using a holographic optical element (IDHOE), which is able to display 3D images and satisfy the see-through property at the same time. The technique has the advantage of the high transparency and capability of displaying autostereoscopic 3D images. We have analyzed optical properties of IDHOE for both recording and displaying stages. Furthermore, various studies of new applications and system improvements for IDHOE are introduced. Thanks to the characteristics of holographic volume grating, it is possible to implement a full-color lens-array holographic optical element and conjugated reconstruction as well as 2D/3D convertible IDHOE. Studies on the improvements of viewing characteristics including a viewing angle, fill factor, and resolution are also presented. Lastly, essential issues and their possible solutions are discussed as future work.

  17. Luminous exothermic hollow optical elements for enhancement of biofilm growth and activity.

    Science.gov (United States)

    Zhong, Nianbing; Zhao, Mingfu; Zhong, Lianchao; Li, Shan; Luo, Binbin; Tang, Bin; Song, Tao; Shi, Shenghui; Hu, Xinyu; Xin, Xin; Wu, Ruohua; Cen, Yanyan; Wang, Zhengkun

    2017-03-20

    In this work, we present a luminous-exothermic hollow optical element (LEHOE) that performs spectral beam splitting in the visible spectral range for the enhancement of biofilm growth and activity. The LEHOE is composed of a four-layer structure with a fiber core (air), cladding (SiO2), coating I (LaB6 film), and coating II (SiO2-Agarose-Medium film). To clarify the physical, optical and photothermal conversion properties of the LEHOE, we determined the surface morphology and composition of the coating materials, and examined the luminous intensity and heating rate at the LEHOE surface. The biofilm activity on the biocompatible LEHOE is far greater than that of commercial fibers, and the biofilm weight on the LEHOE is 4.5 × that of the uncoated hollow optical element.

  18. Tunable photonic bandgap fiber based devices for optical networks

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Rottwitt, Karsten

    2005-01-01

    In future all optical networks one of the enabling technologies is tunable elements including reconfigurable routers, switches etc. Thus, the development of a technology platform that allows construction of tuning components is critical. Lately, microstructured optical fibers, filled with liquid...

  19. Fourier optics analysis of phase-mask-based path-length-multiplexed optical coherence tomography.

    Science.gov (United States)

    Yin, Biwei; Dwelle, Jordan; Wang, Bingqing; Wang, Tianyi; Feldman, Marc D; Rylander, Henry G; Milner, Thomas E

    2015-11-01

    Optical coherence tomography (OCT) is an imaging technique that constructs a depth-resolved image by measuring the optical path-length difference between broadband light backscattered from a sample and a reference surface. For many OCT sample arm optical configurations, sample illumination and backscattered light detection share a common path. When a phase mask is placed in the sample path, features in the detected signal are observed, which suggests that an analysis of a generic common path OCT imaging system is warranted. In this study, we present a Fourier optics analysis using a Fresnel diffraction approximation of an OCT system with a path-length-multiplexing element (PME) inserted in the sample arm optics. The analysis may be generalized for most phase-mask-based OCT systems. A radial-angle-diverse PME is analyzed in detail, and the point spread function, coherent transfer function, sensitivity of backscattering angular diversity detection, and signal formation in terms of sample spatial frequency are simulated and discussed. The analysis reveals important imaging features and application limitations of OCT imaging systems with a phase mask in the sample path optics.

  20. Integration of refractive micro-optical elements with differential-pair optical-thyristor arrays.

    Science.gov (United States)

    Passon, C; Moisel, J; McArdle, N; Eckert, W; Brenner, K H; Kuijk, M; Heremans, P

    1996-03-10

    We demonstrate a refractive micr-optical system by using ion-exchange microlenses and microprisms, which are combined to generate a superposition of two shifted images. The microlenses, fabricated with field-assisted Ag-Na exchange, achieve diffraction-limited imaging with a single-lens system and with a double-lens system for a field of 800 µm × 800 µm. Furthermore, we demonstrate cascading of two separate differential-pair optical-thyristor arrays by transcribing the information of a source array onto a second destination array.

  1. Application of fluidic lens technology to an adaptive holographic optical element see-through autophoropter

    Science.gov (United States)

    Chancy, Carl H.

    A device for performing an objective eye exam has been developed to automatically determine ophthalmic prescriptions. The closed loop fluidic auto-phoropter has been designed, modeled, fabricated and tested for the automatic measurement and correction of a patient's prescriptions. The adaptive phoropter is designed through the combination of a spherical-powered fluidic lens and two cylindrical fluidic lenses that are orientated 45o relative to each other. In addition, the system incorporates Shack-Hartmann wavefront sensing technology to identify the eye's wavefront error and corresponding prescription. Using the wavefront error information, the fluidic auto-phoropter nulls the eye's lower order wavefront error by applying the appropriate volumes to the fluidic lenses. The combination of the Shack-Hartmann wavefront sensor the fluidic auto-phoropter allows for the identification and control of spherical refractive error, as well as cylinder error and axis; thus, creating a truly automated refractometer and corrective system. The fluidic auto-phoropter is capable of correcting defocus error ranging from -20D to 20D and astigmatism from -10D to 10D. The transmissive see-through design allows for the observation of natural scenes through the system at varying object planes with no additional imaging optics in the patient's line of sight. In this research, two generations of the fluidic auto-phoropter are designed and tested; the first generation uses traditional glass optics for the measurement channel. The second generation of the fluidic auto-phoropter takes advantage of the progress in the development of holographic optical elements (HOEs) to replace all the traditional glass optics. The addition of the HOEs has enabled the development of a more compact, inexpensive and easily reproducible system without compromising its performance. Additionally, the fluidic lenses were tested during a National Aeronautics Space Administration (NASA) parabolic flight campaign, to

  2. Experimental and statistical models of impact determination of the electron beam parameters on surface layers properties of optical elements in precision instruments building

    Directory of Open Access Journals (Sweden)

    I.V. Yatsenko

    2016-05-01

    external heat flows in 1.3...1.5 times higher than before treatment. Conclusions: As results of the research the experimental and statistical models to determine the impact of parameters of the electron beam on the basic properties of the surface layers of the optical elements and their resistance to thermal action have been developed. This makes it possible (with a relative error of 5 ... 9% automatically in real time to form a managed database with improved properties that impact on the technical and operational characteristics of optical components and devices based on them.

  3. Analysis of Dynamic Modeling Method Based on Boundary Element

    Directory of Open Access Journals (Sweden)

    Xu-Sheng Gan

    2013-07-01

    Full Text Available The aim of this study was to study an improved dynamic modeling method based on a Boundary Element Method (BEM. The dynamic model was composed of the elements such as the beam element, plate element, joint element, lumped mass and spring element by the BEM. An improved dynamic model of a machine structure was established based on plate-beam element system mainly. As a result, the dynamic characteristics of a machine structure were analyzed and the comparison of computational results and experimental’s showed the modeling method was effective. The analyses indicate that the introduced method inaugurates a good way for analyzing dynamic characteristics of a machine structure efficiently.

  4. Two-photon microscopy with diffractive optical elements and spatial light modulators

    Directory of Open Access Journals (Sweden)

    Brendon O Watson

    2010-09-01

    Full Text Available Two-photon microscopy is often performed at slow frame rates, due to the need to serially scan all points in a field of view with a single laser beam. To overcome this problem, we have developed two optical methods that split and multiplex a laser beam across the sample. In the first method a diffractive optical element (DOE generates a fixed number of beamlets that are scanned in parallel, resulting in a corresponding increase in speed, or in signal-to-noise ratio, in time-lapse measurements. The second method uses a computer-controlled spatial light modulator (SLM, to generate any arbitrary spatio-temporal light pattern. With an SLM one can image or photostimulate any predefined region of the image, such as neurons or dendritic spines. In addition, SLMs can be used to mimic a large number of optical transfer functions, including light path corrections or as adaptive optical devices.

  5. James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (OTIS) Status

    Science.gov (United States)

    Feinberg, Lee; Voyton, Mark; Lander, Julie; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated ScienceInstrument Module (ISIM)are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirrorcenter of curvatureoptical tests, electrical and operational tests, acoustics and vibration testing at the Goddard SpaceFlight Center beforebeing shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparationfor the cryogenicoptical testing, the JWST project has built a Pathfinder telescope and has completed two OpticalGround SystemEquipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize opticaltest results todate and status the final Pathfinder test and the OTIS integration and environmental test preparations

  6. A novel all-optical label processing based on multiple optical orthogonal codes sequences for optical packet switching networks

    Science.gov (United States)

    Zhang, Chongfu; Qiu, Kun; Xu, Bo; Ling, Yun

    2008-05-01

    This paper proposes an all-optical label processing scheme that uses the multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) networks. In this scheme, each MOOCS is a permutation or combination of the multiple optical orthogonal codes (MOOC) selected from the multiple-groups optical orthogonal codes (MGOOC). Following a comparison of different optical label processing (OLP) schemes, the principles of MOOCS-OPS network are given and analyzed. Firstly, theoretical analyses are used to prove that MOOCS is able to greatly enlarge the number of available optical labels when compared to the previous single optical orthogonal code (SOOC) for OPS (SOOC-OPS) network. Then, the key units of the MOOCS-based optical label packets, including optical packet generation, optical label erasing, optical label extraction and optical label rewriting etc., are given and studied. These results are used to verify that the proposed MOOCS-OPS scheme is feasible.

  7. Robust design of an optical router based on a tapered side-coupled integrated spaced sequence of optical resonators.

    Science.gov (United States)

    Bettotti, P; Mancinelli, M; Guider, R; Masi, M; Vanacharla, M Rao; Pavesi, L

    2011-04-15

    A novel (to our knowledge) scheme of an optical router/switch element, composed of a tapered side-coupled integrated spaced sequence of optical resonators, is proposed. It is based on a modified design of the ring sequence in which the resonance conditions are set by the single ring resonance and by the coherent feedback of the sequence of rings. This double condition yields robustness against fabrication defects, dense routing capability, and high switching efficiency.

  8. Establishing a fiber-optic-based optical neural interface.

    Science.gov (United States)

    Adamantidis, Antoine R; Zhang, Feng; de Lecea, Luis; Deisseroth, Karl

    2014-08-01

    Selective expression of opsins in genetically defined neurons makes it possible to control a subset of neurons without affecting nearby cells and processes in the intact brain, but light must still be delivered to the target brain structure. Light scattering limits the delivery of light from the surface of the brain. For this reason, we have developed a fiber-optic-based optical neural interface (ONI), which allows optical access to any brain structure in freely moving mammals. The ONI system is constructed by modifying the small animal cannula system from PlasticsOne. The system for bilateral stimulation consists of a bilateral cannula guide that has been stereotactically implanted over the target brain region, a screw cap for securing the optical fiber to the animal's head, a fiber guard modified from the internal cannula adapter, and a bare fiber whose length is customized based on the depth of the target region. For unilateral stimulation, a single-fiber system can be constructed using unilateral cannula parts from PlasticsOne. We describe here the preparation of the bilateral ONI system and its use in optical stimulation of the mouse or rat brain. Delivery of opsin-expressing virus and implantation of the ONI may be conducted in the same surgical session; alternatively, with a transgenic animal no opsin virus is delivered during the surgery. Similar procedures are useful for deep or superficial injections (even for neocortical targets, although in some cases surface light-emitting diodes or cortex-apposed fibers can be used for the most superficial cortical targets).

  9. Study of an athermal infrared dual band optical system design containing harmonic diffractive element

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A harmonic diffractive element (HDE) is first successfully introduced to the athermal system of infrared dual band in this paper. In this system, there are only three lens and two materials, silicon and germanium. When the temperature ranges from -70℃ to 100℃ in the dual band, it can simultaneously accomplish the rectification of the longitudinal aberration in the big field of view, as well as the wave front aberration less than 1/4 wavelength. Modulation transfer function of dual band approaches or attains the diffraction limit. The calculation results show that the spectral properties of the HDE are between refractive and diffractive elements, so we can design a simple dual-band and athermal optical system by selecting the thickness and central wavelength of the HDE exactly. Compared with a conventional refractive optical system, this system not only reduces the demand for high technical levels, but also has a compact structure, few elements, a high transmittance better aberrations performances and athermal character. At the same time, the use of the HDE also offers a new element for the infrared optics design.

  10. Finite Elements on Point Based Surfaces

    NARCIS (Netherlands)

    Clarenz, U.; Rumpf, M.; Telea, A.

    2004-01-01

    We present a framework for processing point-based surfaces via partial differential equations (PDEs). Our framework efficiently and effectively brings well-known PDE-based processing techniques to the field of point-based surfaces. Our method is based on the construction of local tangent planes and

  11. Optical image encryption based on diffractive imaging.

    Science.gov (United States)

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2010-11-15

    In this Letter, we propose a method for optical image encryption based on diffractive imaging. An optical multiple random phase mask encoding system is applied, and one of the phase-only masks is selected and laterally translated along a preset direction during the encryption process. For image decryption, a phase retrieval algorithm is proposed to extract a high-quality plaintext. The feasibility and effectiveness of the proposed method are demonstrated by numerical results. The proposed method can provide a new strategy instead of conventional interference methods, and it may open up a new research perspective for optical image encryption.

  12. Microcontroller-based locking in optics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K. [Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, 75005 Paris (France); State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Le Jeannic, H.; Ruaudel, J.; Morin, O.; Laurat, J., E-mail: julien.laurat@upmc.fr [Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, 75005 Paris (France)

    2014-12-15

    Optics experiments critically require the stable and accurate locking of relative phases between light beams or the stabilization of Fabry-Perot cavity lengths. Here, we present a simple and inexpensive technique based on a stand-alone microcontroller unit to perform such tasks. Easily programmed in C language, this reconfigurable digital locking system also enables automatic relocking and sequential functioning. Different algorithms are detailed and applied to fringe locking and to low- and high-finesse optical cavity stabilization, without the need of external modulations or error signals. This technique can readily replace a number of analog locking systems advantageously in a variety of optical experiments.

  13. Microcontroller-based locking in optics experiments

    CERN Document Server

    Huang, K; Ruaudel, J; Morin, O; Laurat, J

    2014-01-01

    Optics experiments critically require the stable and accurate locking of relative phases between light beams or the stabilization of Fabry-Perot cavity lengths. Here, we present a simple and inexpensive technique based on a stand-alone microcontroller unit to perform such tasks. Easily programmed in C language, this reconfigurable digital locking system also enables automatic relocking and sequential functioning. Different algorithms are detailed and applied to fringe locking and to low- and high-finesse optical cavity stabilization, without the need of external modulations or error signals. This technique can readily replace a number of analog locking systems advantageously in a variety of optical experiments.

  14. Microcontroller-based locking in optics experiments.

    Science.gov (United States)

    Huang, K; Le Jeannic, H; Ruaudel, J; Morin, O; Laurat, J

    2014-12-01

    Optics experiments critically require the stable and accurate locking of relative phases between light beams or the stabilization of Fabry-Perot cavity lengths. Here, we present a simple and inexpensive technique based on a stand-alone microcontroller unit to perform such tasks. Easily programmed in C language, this reconfigurable digital locking system also enables automatic relocking and sequential functioning. Different algorithms are detailed and applied to fringe locking and to low- and high-finesse optical cavity stabilization, without the need of external modulations or error signals. This technique can readily replace a number of analog locking systems advantageously in a variety of optical experiments.

  15. Duality based optical flow algorithms with applications

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X......-ray images of different hands, taken using different imaging devices are registered using a TV-L1 optical flow algorithm. We propose to regularize the input images, using sparsity enhancing regularization of the image gradient to improve registration results. The second application is registration of 2D...

  16. Duality based optical flow algorithms with applications

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X......-ray images of different hands, taken using different imaging devices are registered using a TV-L1 optical flow algorithm. We propose to regularize the input images, using sparsity enhancing regularization of the image gradient to improve registration results. The second application is registration of 2D...

  17. Arbitrarily complete Bell-state measurement using only linear optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Grice, W. P. [Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Tennessee (United States)

    2011-10-15

    A complete Bell-state measurement is not possible using only linear-optic elements, and most schemes achieve a success rate of no more than 50%, distinguishing, for example, two of the four Bell states but returning degenerate results for the other two. It is shown here that the introduction of a pair of ancillary entangled photons improves the success rate to 75%. More generally, the addition of 2{sup N}-2 ancillary photons yields a linear-optic Bell-state measurement with a success rate of 1-1/2{sup N}.

  18. Finite-element analysis of the optical-texture-mediated photoresponse in a nematic strip

    Science.gov (United States)

    Chung, Hayoung; Yun, Jung-Hoon; Choi, Joonmyung; Cho, Maenghyo

    2016-10-01

    In a nematic solid, wherein liquid crystal molecules are incorporated into polymeric chains, the chromophore phase is projected onto the polymer conformation, changing the stress-free configuration metric. Stimulated actuation cannot be separated from the structure itself, since the mesoscopic polymer properties dictate the degree and type of shape change. In this research, we focused on self-deforming device programming, inspired by recent optical techniques, to pattern nontrivial alignment textures and induce exotic strain fields on specimens. A finite-element framework incorporating a light-thermo-order coupled constitutive relation and geometric nonlinearities was utilized to compute mechanical deformations for given external stimuli. The distortion of planar strips into various exotic 3D shapes was simulated, and disclination-defect-like liquid crystal texture topographies with different defect strengths produced various many-poled shapes upon irradiation, as observed experimentally. The effects of the boundary conditions and geometric nonlinearities were also examined, exemplifying the need for a comprehensive finite-element-based framework. The same method was applied to textures naturally emerging due to static distortion, and the effects of the prescribed inhomogeneities on the overall deformations, which is the basis of inverse design, were observed. Furthermore, we analyzed the local Poisson-effect-induced instability resulting from inscribing a hedgehog disclination texture onto a solid; the onset of buckling-like deformations was observed energetically, and the relations between this onset and other physical properties were elucidated to enable microstate design while maintaining structural stability. These results will facilitate the development and comprehension of the mechanisms of remotely light-controlled self-assembly and propulsion systems that may soon be realized.

  19. Finite-element analysis of the optical-texture-mediated photoresponse in a nematic strip

    Science.gov (United States)

    Chung, Hayoung; Yun, Jung-Hoon; Choi, Joonmyung; Cho, Maenghyo

    2017-01-01

    In a nematic solid, wherein liquid crystal molecules are incorporated into polymeric chains, the chromophore phase is projected onto the polymer conformation, changing the stress-free configuration metric. Stimulated actuation cannot be separated from the structure itself, since the mesoscopic polymer properties dictate the degree and type of shape change. In this research, we focused on self-deforming device programming, inspired by recent optical techniques, to pattern nontrivial alignment textures and induce exotic strain fields on specimens. A finite-element framework incorporating a light-thermo-order coupled constitutive relation and geometric nonlinearities was utilized to compute mechanical deformations for given external stimuli. The distortion of planar strips into various exotic 3D shapes was simulated, and disclination-defect-like liquid crystal texture topographies with different defect strengths produced various many-poled shapes upon irradiation, as observed experimentally. The effects of the boundary conditions and geometric nonlinearities were also examined, exemplifying the need for a comprehensive finite-element-based framework. The same method was applied to textures naturally emerging due to static distortion, and the effects of the prescribed inhomogeneities on the overall deformations, which is the basis of inverse design, were observed. Furthermore, we analyzed the local Poisson-effect-induced instability resulting from inscribing a hedgehog disclination texture onto a solid; the onset of buckling-like deformations was observed energetically, and the relations between this onset and other physical properties were elucidated to enable microstate design while maintaining structural stability. These results will facilitate the development and comprehension of the mechanisms of remotely light-controlled self-assembly and propulsion systems that may soon be realized.

  20. Miniaturized optical sensors based on lens arrays

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, M.L.; Larsen, H.E.

    2005-01-01

    A suite of optical sensors based on the use of lenticular arrays for probing mechanical deflections will be displayed. The optical systems are well suited for miniaturization, and utilize speckles as the information-carriers. This implementation allows for acquiring directional information of the...... of the displacement. Systems for probing lateral displacements and in-plane vibrations (1-D and 2-D) are displayed, as will systems for probing angular velocity and torsional vibrations of rotating objects....

  1. Polarization-induced noise in a fiber-optic Michelson interferometer with Faraday rotator mirror elements.

    Science.gov (United States)

    Ferreira, L A; Santos, J L; Farahi, F

    1995-10-01

    Faraday rotator mirror elements have been used in a number of applications as compensators for induced birefringence in retracing paths. In interferometric systems, such as the fiber-optic Michelson interferometer, this approach proved to be useful in providing maximum fringe visibility and insensitivity to the polarization state of light injected into the interferometer. However, it is found that, when the characteristics of the fiber coupler depend on the polarization state of the input beam, the efficiency of the Faraday mirror elements is limited. Theoretical analysis and experimental results in support of this statement are presented.

  2. Polarization-induced noise in a fiber-optic Michelson interferometer with Faraday rotator mirror elements

    Science.gov (United States)

    Ferreira, L. A.; Santos, J. L.; Farahi, F.

    1995-10-01

    Faraday rotator mirror elements have been used in a number of applications as compensators for induced birefringence in retracing paths. In interferometric systems, such as the fiber-optic Michelson interferometer, this approach proved to be useful in providing maximum fringe visibility and insensitivity to the polarization state of light injected into the interferometer. However, it is found that, when the characteristics of the fiber coupler depend on the polarization state of the input beam, the efficiency of the Faraday mirror elements is limited. Theoretical analysis and experimental results in support of this statement are presented.

  3. Sun-tracking optical element realized using thermally activated transparency-switching material.

    Science.gov (United States)

    Apostoleris, Harry; Stefancich, Marco; Lilliu, Samuele; Chiesa, Matteo

    2015-07-27

    We present a proof of concept demonstration of a novel optical element: a light-responsive aperture that can track a moving light beam. The element is created using a thermally-activated transparency-switching material composed of paraffin wax and polydimethylsiloxane (PDMS). Illumination of the material with a focused beam causes the formation of a localized transparency at the focal spot location, due to local heating caused by absorption of a portion of the incident light. An application is proposed in a new design for a self-tracking solar collector.

  4. Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching

    Science.gov (United States)

    Zhang, Chongfu; Qiu, Kun; Zhou, Heng; Ling, Yun; Wang, Yawei; Xu, Bo

    2010-03-01

    In this paper, the tunable multiple optical orthogonal codes sequences (MOOCS)-based optical label for optical packet switching (OPS) (MOOCS-OPS) is experimentally demonstrated for the first time. The tunable MOOCS-based optical label is performed by using fiber Bragg grating (FBG)-based optical en/decoders group and optical switches configured by using Field Programmable Gate Array (FPGA), and the optical label is erased by using Semiconductor Optical Amplifier (SOA). Some waveforms of the MOOCS-based optical label, optical packet including the MOOCS-based optical label and the payloads are obtained, the switching control mechanism and the switching matrix are discussed, the bit error rate (BER) performance of this system is also studied. These experimental results show that the tunable MOOCS-OPS scheme is effective.

  5. High speed, high power one-dimensional beam steering from a 6-element optical phased array.

    Science.gov (United States)

    Huang, W Ronny; Montoya, Juan; Kansky, Jan E; Redmond, Shawn M; Turner, George W; Sanchez-Rubio, Antonio

    2012-07-30

    Beam steering at high speed and high power is demonstrated from a 6-element optical phased array using coherent beam combining (CBC) techniques. The steering speed, defined as the inverse of the time to required to sweep the beam across the steering range, is 40 MHz and the total power is 396 mW. The measured central lobe FWHM width is 565 μrad. High on-axis intensity is maintained periodically by phase-locking the array via a stochastic-parallel-gradient-descent (SPGD) algorithm. A master-oscillator-power-amplifier (MOPA) configuration is used where the amplifier array elements are semiconductor slab-coupled-optical-waveguide-amplifiers (SCOWAs). The beam steering is achieved by LiNbO(3) phase modulators; the phase-locking occurs by current adjustment of the SCOWAs. The system can be readily scaled to GHz steering speed and multiwatt-class output.

  6. Generalized ray-transfer matrix for an optical element having an arbitrary wavefront aberration.

    Science.gov (United States)

    Jeong, Tae Moon; Ko, Do-Kyeong; Lee, Jongmin

    2005-11-15

    A generalized ray-transfer matrix for describing the action of an optical element having an arbitrary wavefront aberration is obtained. In this generalized ray-transfer matrix, the action of the aberrated optical element is represented by the product of radial ray-transfer matrices and tangential ray-transfer matrices. The refraction angle of an incident ray is calculated from the gradient of the wavefront aberration at the point of incidence, and the radial and tangential ray-transfer matrices directly use the gradient as a matrix component. To show the validity of the generalized ray-transfer matrix, intercept heights from a spot diagram are calculated with the generalized ray-transfer matrix and compared with those calculated with commercial ray-tracing software.

  7. Elemental abundances of Galactic bulge planetary nebulae from optical recombination lines

    CERN Document Server

    Wang, W

    2007-01-01

    (abridged) Deep long-slit optical spectrophotometric observations are presented for 25 Galactic bulge planetary nebulae (GBPNe) and 6 Galactic disk planetary nebulae (GDPNe). The spectra, combined with archival ultraviolet spectra obtained with the International Ultraviolet Explorer (IUE) and infrared spectra obtained with the Infrared Space Observatory (ISO), have been used to carry out a detailed plasma diagnostic and element abundance analysis utilizing both collisional excited lines (CELs) and optical recombination lines (ORLs). Comparisons of plasma diagnostic and abundance analysis results obtained from CELs and from ORLs reproduce many of the patterns previously found for GDPNe. In particular we show that the large discrepancies between electron temperatures (Te's) derived from CELs and from ORLs appear to be mainly caused by abnormally low values yielded by recombination lines and/or continua. Similarly, the large discrepancies between heavy element abundances deduced from ORLs and from CELs are large...

  8. A graphene-based broadband optical modulator

    Science.gov (United States)

    Liu, Ming; Yin, Xiaobo; Ulin-Avila, Erick; Geng, Baisong; Zentgraf, Thomas; Ju, Long; Wang, Feng; Zhang, Xiang

    2011-06-01

    Integrated optical modulators with high modulation speed, small footprint and large optical bandwidth are poised to be the enabling devices for on-chip optical interconnects. Semiconductor modulators have therefore been heavily researched over the past few years. However, the device footprint of silicon-based modulators is of the order of millimetres, owing to its weak electro-optical properties. Germanium and compound semiconductors, on the other hand, face the major challenge of integration with existing silicon electronics and photonics platforms. Integrating silicon modulators with high-quality-factor optical resonators increases the modulation strength, but these devices suffer from intrinsic narrow bandwidth and require sophisticated optical design; they also have stringent fabrication requirements and limited temperature tolerances. Finding a complementary metal-oxide-semiconductor (CMOS)-compatible material with adequate modulation speed and strength has therefore become a task of not only scientific interest, but also industrial importance. Here we experimentally demonstrate a broadband, high-speed, waveguide-integrated electroabsorption modulator based on monolayer graphene. By electrically tuning the Fermi level of the graphene sheet, we demonstrate modulation of the guided light at frequencies over 1GHz, together with a broad operation spectrum that ranges from 1.35 to 1.6µm under ambient conditions. The high modulation efficiency of graphene results in an active device area of merely 25µm2, which is among the smallest to date. This graphene-based optical modulation mechanism, with combined advantages of compact footprint, low operation voltage and ultrafast modulation speed across a broad range of wavelengths, can enable novel architectures for on-chip optical communications.

  9. Microring-resonator-based four-port optical router for photonic networks-on-chip.

    Science.gov (United States)

    Ji, Ruiqiang; Yang, Lin; Zhang, Lei; Tian, Yonghui; Ding, Jianfeng; Chen, Hongtao; Lu, Yangyang; Zhou, Ping; Zhu, Weiwei

    2011-09-26

    We design and fabricate a four-port optical router, which is composed of eight microring-resonator-based switching elements, four optical waveguides and six waveguide crossings. The extinction ratio is about 13 dB for the through port and larger than 30 dB for the drop port. The crosstalk of the measured optical links is less than -13 dB. The average tuning power consumption is about 10.37 mW and the tuning efficiency is 5.398 mW/nm. The routing functionality and optical signal integrity are verified by transmitting a 12.5 Gb/s PRBS optical signal.

  10. Mach-Zehnder-based five-port silicon router for optical interconnects.

    Science.gov (United States)

    Li, Xianyao; Xiao, Xi; Xu, Hao; Li, Zhiyong; Chu, Tao; Yu, Jinzhong; Yu, Yude

    2013-05-15

    We propose and fabricate a five-port silicon optical router based on Mach-Zehnder interferometer switches. Only 10 switching elements and five low-loss waveguide crossings are required in our design. Through thermal control of the switching network, we successfully demonstrate 20 possible I/O paths of the five-port optical router at a data transmission rate of 32 Gb/s. The results here show great potential for application in ultrahigh-capacity optical interconnects.

  11. Optical Testing and Verification Methods for the James Webb Space Telescope Integrated Science Instrument Module Element

    Science.gov (United States)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; hide

    2016-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the fine guider. The SIs are mounted to a composite metering structure. The SI and guider units were integrated to the ISIM structure and optically tested at the NASA Goddard Space Flight Center as a suite using the Optical Telescope Element SIMulator (OSIM). OSIM is a full field, cryogenic JWST telescope simulator. SI performance, including alignment and wave front error, were evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  12. Optical testing and verification methods for the James Webb Space Telescope Integrated Science Instrument Module element

    Science.gov (United States)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; Eichhorn, William L.; Glasse, Alistair C.; Gracey, Renee; Hartig, George F.; Howard, Joseph M.; Kelly, Douglas M.; Kimble, Randy A.; Kirk, Jeffrey R.; Kubalak, David A.; Landsman, Wayne B.; Lindler, Don J.; Malumuth, Eliot M.; Maszkiewicz, Michael; Rieke, Marcia J.; Rowlands, Neil; Sabatke, Derek S.; Smith, Corbett T.; Smith, J. Scott; Sullivan, Joseph F.; Telfer, Randal C.; Te Plate, Maurice; Vila, M. Begoña.; Warner, Gerry D.; Wright, David; Wright, Raymond H.; Zhou, Julia; Zielinski, Thomas P.

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM), that contains four science instruments (SI) and the Fine Guidance Sensor (FGS). The SIs are mounted to a composite metering structure. The SIs and FGS were integrated to the ISIM structure and optically tested at NASA's Goddard Space Flight Center using the Optical Telescope Element SIMulator (OSIM). OSIM is a full-field, cryogenic JWST telescope simulator. SI performance, including alignment and wavefront error, was evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, implementation of associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  13. Multi-scale analysis of optic chiasmal compression by finite element modelling.

    Science.gov (United States)

    Wang, Xiaofei; Neely, Andrew J; McIlwaine, Gawn G; Lueck, Christian J

    2014-07-18

    The precise mechanism of bitemporal hemianopia (a type of partial visual field defect) is still not clear. Previous work has investigated this problem by studying the biomechanics of chiasmal compression caused by a pituitary tumour growing up from below the optic chiasm. A multi-scale analysis was performed using finite element models to examine both the macro-scale behaviour of the chiasm and the micro-scale interactions of the nerve fibres within it using representative volume elements. Possible effects of large deflection and non-linear material properties were incorporated. Strain distributions in the optic chiasm and optic nerve fibres were obtained from these models. The results of the chiasmal model agreed well with the limited experimental results available, indicating that the finite element modelling can be a useful tool for analysing chiasmal compression. Simulation results showed that the strain distribution in nasal (crossed) nerve fibres was much more nonuniform and locally higher than in temporal (uncrossed) nerve fibres. This strain difference between nasal and temporal nerve fibres may account for the phenomenon of bitemporal hemianopia.

  14. Optical diffusers based on silicone emulsions

    Science.gov (United States)

    Wang, Jui-Hao; Lien, Shui-Yang; Ho, Jeng-Rong; Shih, Teng-Kai; Chen, Chia-Fu; Chen, Chien-Chung; Whang, Wha-Tzong

    2009-12-01

    The present study provides an experimental approach for fabricating optical diffuser films based on silicone emulsions. The silicone emulsion consisting of silicone polymer (Sylgard 184) and NaCl aq. solution was used as the optical material of diffusers, wherein NaCl aq. solution was severed as surfactant to stabilize the emulsions. After stirring mechanically, microscaled water drop with various sizes distributed randomly in silicone polymer, wherein water drop was used as scattering diffusion particles. To modulate the volume of NaCl aq. solution, the diffusing performance of diffusers could be change by different amount drop particles. Thereafter, an optical examination was carried out to characterize optical properties, transmittance, and light diffusivity of volumetric diffuser films.

  15. Optical Sensors Based on Plastic Fibers

    Science.gov (United States)

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L.; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented. PMID:23112707

  16. Optical Sensors Based on Plastic Fibers

    Directory of Open Access Journals (Sweden)

    Rogério Nogueira

    2012-09-01

    Full Text Available The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.

  17. Erbium-doped nanoparticles in silica-based optical fibres

    CERN Document Server

    Blanc, Wilfried; Dussardier, Bernard; 10.1504/IJNT.2012.045350

    2012-01-01

    Developing of new rare-earth (RE)-doped optical fibres for power amplifiers and lasers requires continuous improvements in the fibre spectroscopic properties (like shape and width of the gain curve, optical quantum efficiency, resistance to spectral hole burning and photodarkening...). Silica glass as a host material for fibres has proved to be very attractive. However, some potential applications of RE-doped fibres suffer from limitations in terms of spectroscopic properties resulting from clustering or inappropriate local environment when doped into silica. To this aim, we present a new route to modify some spectroscopic properties of RE ions in silica-based fibres based on the incorporation of erbium ions in amorphous dielectric nanoparticles, grown in-situ in fibre preforms. By adding alkaline earth elements, in low concentration into silica, one can obtain a glass with an immiscibility gap. Then, phase separation occurs under an appropriate heat treatment. We investigated the role of three alkaline-earth...

  18. Concentrating partially entangled W-class states on nonlocal atoms using low- Q optical cavity and linear optical elements

    Science.gov (United States)

    Cao, Cong; Chen, Xi; Duan, YuWen; Fan, Ling; Zhang, Ru; Wang, TieJun; Wang, Chuan

    2016-10-01

    Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol (ECP) for nonlocal atom systems in the partially entangled W-class states, using the single-photon input-output process regarding low- Q cavity and linear optical elements. Compared with previously published ECPs for the concentration of non-maximally entangled atomic states, our protocol is much simpler and more efficient as it employs the Faraday rotation in cavity quantum electrodynamics (QED) and the parameter-splitting method. The Faraday rotation requires the cavity with low- Q factor and weak coupling to the atom, which makes the requirement for entanglement concentration much less stringent than the previous methods, and achievable with current cavity QED techniques. The parameter-splitting method resorts to linear-optical elements only. This ECP has high efficiency and fidelity in realistic experiments, and some imperfections during the experiment can be avoided efficiently with currently available techniques.

  19. Novel piezoelectric effect and surface plasmon resonance-based elements for MEMS applications.

    Science.gov (United States)

    Ponelyte, Sigita; Palevicius, Arvydas

    2014-04-17

    This paper covers research on novel thin films with periodical microstructure--optical elements, exhibiting a combination of piezoelectric and surface plasmon resonance effects. The research results showed that incorporation of Ag nanoparticles in novel piezoelectric--plasmonic elements shift a dominating peak in the visible light spectrum. This optical window is essential in the design of optical elements for sensing systems. Novel optical elements can be tunable under defined bias and change its main grating parameters (depth and width) influencing the response of diffraction efficiencies. These elements allow opening new avenues in the design of more sensitive and multifunctional microdevices.

  20. A new strain based brick element for plate bending

    Directory of Open Access Journals (Sweden)

    L. Belounar

    2014-03-01

    Full Text Available This paper presents the development of a new three-dimensional brick finite element by the use of the strain based approach for the linear analysis of plate bending. The developed element has the three essential external degrees of freedom (U, V and W at each of the eight corner nodes as well as at the centroidal node. The displacement field of the developed element is based on assumed functions for the various strains satisfying the compatibility equations and the static condensation technique is used for the internal node. The performance of this element is evaluated on several problems related to thick and thin plate bending in linear analysis. The obtained results show the good performances and accuracy of the present element.

  1. Aircraft detection based on probability model of structural elements

    Science.gov (United States)

    Chen, Long; Jiang, Zhiguo

    2014-11-01

    Detecting aircrafts is important in the field of remote sensing. In past decades, researchers used various approaches to detect aircrafts based on classifiers for overall aircrafts. However, with the development of high-resolution images, the internal structures of aircrafts should also be taken into consideration now. To address this issue, a novel aircrafts detection method for satellite images based on probabilistic topic model is presented. We model aircrafts as the connected structural elements rather than features. The proposed method contains two major steps: 1) Use Cascade-Adaboost classier to identify the structural elements of aircraft firstly. 2) Connect these structural elements to aircrafts, where the relationships between elements are estimated by hierarchical topic model. The model places strict spatial constraints on structural elements which can identify differences between similar features. The experimental results demonstrate the effectiveness of the approach.

  2. Optical stimulator for vision-based sensors

    DEFF Research Database (Denmark)

    Rössler, Dirk; Pedersen, David Arge Klevang; Benn, Mathias

    2014-01-01

    We have developed an optical stimulator system for vision-based sensors. The stimulator is an efficient tool for stimulating a camera during on-ground testing with scenes representative of spacecraft flights. Such scenes include starry sky, planetary objects, and other spacecraft. The optical...... precision and long-term stability. The system can be continuously used over several days. By facilitating a full camera including optics in the loop, the stimulator enables the more realistic simulation of flight maneuvers based on navigation cameras than pure computer simulations or camera stimulations...... stimulator is used as a test bench to simulate high-precision navigation by different types of camera systems that are used onboard spacecraft, planetary rovers, and for spacecraft rendezvous and proximity maneuvers. Careful hardware design and preoperational calibration of the stimulator result in high...

  3. Vortex-based line beam optical tweezers

    Science.gov (United States)

    Cheng, Shubo; Tao, Shaohua

    2016-10-01

    A vortex-based line beam, which has a straight-line shape of intensity and possesses phase gradient along the line trajectory is developed and applied for optical manipulation in this paper. The intensity and phase distributions of the beam in the imaging plane of the Fourier transform are analytically studied. Simulation results show that the length of the line and phase gradient possessed by a vortex-based line beam are dependent on the topological charge and the azimuthal proportional constant. A superposition of multiple phase-only holograms with elliptical azimuthal phases can be used to generate an array of vortex-based line beams. Optical trapping with the vortex-based line beams has been implemented. Furthermore, the automatic transportation of microparticles along the line trajectory perpendicular to the optical axis is realized with an array of the beams. The generation method for the vortex-based line beam is simple. The beam would have potential applications in fields such as optical trapping, laser machining, and so on.

  4. RESEARCH ON VIRTUAL-PART-BASED CONNECTING ELEMENT MODELING

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Based on the inner character analysis of interpart, detail modification and assembly relation of mechanical connecting element, the idea, which extends the feature modeling of part to the interpart feature modeling for assembly purpose, is presented, and virtual-part-based connecting element modeling is proposed. During the assembly modeling, base parts are modified by the Boolean subtraction between the virtual part and the part to be connected. Dynamic matching algorithm, which is based on list database, is designed for dynamic extension and off-line editing of connecting part and virtual part, and design rules of connecting element is encapsulated by the virtual part. A prototyped software module for rapid design of connecting elements is implemented under self-developed CAD/CAM platform-SuperMan.

  5. Optical OFDM-based Data Center Networks

    Directory of Open Access Journals (Sweden)

    Christoforos Kachris

    2013-07-01

    Full Text Available Cloud computing and web emerging application has created the need for more powerful data centers with high performance interconnection networks.Current data center networks,based on electronic packet switches,will not be able to satisfy the required communication bandwidth of emerging applications without consuming excessive power.Optical interconnercts have gained attention recently as a promising solution offering high throughput,low latency and reduced energy cosumption compared to current networks based in commidity switches.This paper presents a novel architecture for data center networks based on optical OFDM using Wavelength Selective Swithces(WSS. The OFDM-based solution provides high throughput,reduced latency and fine grain bandwidth allocation. A heuristic algorithm for the bandwidth allocation is presented and evaluated in terms of utilization. The power analysis shows that the proposed scheme is almost 60% more energy efficient compared to the current networks based on eommodity switches.

  6. Theory of fractional order elements based impedance matching networks

    KAUST Repository

    Radwan, Ahmed G.

    2011-03-01

    Fractional order circuit elements (inductors and capacitors) based impedance matching networks are introduced for the first time. In comparison to the conventional integer based L-type matching networks, fractional matching networks are much simpler and versatile. Any complex load can be matched utilizing a single series fractional element, which generally requires two elements for matching in the conventional approach. It is shown that all the Smith chart circles (resistance and reactance) are actually pairs of completely identical circles. They appear to be single for the conventional integer order case, where the identical circles completely overlap each other. The concept is supported by design equations and impedance matching examples. © 2010 IEEE.

  7. Research of Stamp Forming Simulation Based on Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    SU Xaio-ping; XU Lian

    2008-01-01

    We point out that the finite element method offers a greta functional improvement for analyzing the stamp forming process of an automobile panel. Using the finite element theory and the simulation method of sheet stamping forming, the element model of sheet forming is built based on software HyperMesh,and the simulation of the product's sheet forming process is analyzed based on software Dynaform. A series of simulation results are obtained. It is clear that the simulation results from the theoretical basis for the product's die design and are useful for selecting process parameters.

  8. Weak scratch detection and defect classification methods for a large-aperture optical element

    Science.gov (United States)

    Tao, Xian; Xu, De; Zhang, Zheng-Tao; Zhang, Feng; Liu, Xi-Long; Zhang, Da-Peng

    2017-03-01

    Surface defects on optics cause optic failure and heavy loss to the optical system. Therefore, surface defects on optics must be carefully inspected. This paper proposes a coarse-to-fine detection strategy of weak scratches in complicated dark-field images. First, all possible scratches are detected based on bionic vision. Then, each possible scratch is precisely positioned and connected to a complete scratch by the LSD and a priori knowledge. Finally, multiple scratches with various types can be detected in dark-field images. To classify defects and pollutants, a classification method based on GIST features is proposed. This paper uses many real dark-field images as experimental images. The results show that this method can detect multiple types of weak scratches in complex images and that the defects can be correctly distinguished with interference. This method satisfies the real-time and accurate detection requirements of surface defects.

  9. Optical Picosecond MCPI-Based Imagers

    Energy Technology Data Exchange (ETDEWEB)

    Buckles, R. A.; guyton, R. L.; Ross, P. W.

    2012-08-14

    We report on the design, construction, and initial test results of a custom MCPI design which incorporates a wideband strip transmission line drive structure. A special 16:1 series transmission-line-transformer (STLT) is utilized to distribute the drive signal from a 50-ohm, 1.85 mm coaxial vacuum feedthrough to a 3-ohm strip across the MCP. Transformer circuit material is a flexible Teflon/Kapton laminate for minimal loss and dispersion. A novel vialess multilayer structure composed of embedded, symmetrical strips, preserves ideal impulse response. Impedance matched interfaces and transitions are designed with method of moments, empirical codes, and finite element analysis. Millimeter-wave time-domain reflectometer and vector network analyzer measurements are presented, with comparison to time-domain and swept frequency 3D finite element simulation. Gain compression is expected to produce a 20 ps optical impulse response, dominated by the leaded MCP glass dielectric dispersion. Follow-on work will complete the optical impulse response tests, and extrapolation to more expensive silicon MCP and 1-mm feedthroughs promises an impulse response of 5 ps.

  10. Nanopinholes-Based Optical Superlens

    Directory of Open Access Journals (Sweden)

    Yongqi Fu

    2008-01-01

    Full Text Available A type of nanopinhole-based plasmonic structure is presented. It can realize superfocusing within micron-scale propagation distance with spatial resolution beyond diffraction limit. Cut-off wavelength effect is highlighted for understanding how periodicity distribution of the nanopinholes influences transmission and focusing through the structure. Redshift peak transmission occurs while the periodicity increases. In addition, focusing property of the plasmonic structures is analyzed for the monochromatic illumination with different incident wavelengths ranging from 400 nm to 750 nm. The easy fabrication and high focusing performance of the proposed structures may be used in data storage devices, bioimaging, and nanolithography.

  11. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2015-04-01

    Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.

  12. Mathematical simulation of the optical system of a fiber-optic measuring micro motion converter with a cylindrical lens modulation element

    Science.gov (United States)

    Murashkina, T. I.; Motin, A. V.; Badeeva, E. A.

    2017-01-01

    The paper presents the results of mathematical modeling to determine the physical, structural and technological parameters of differential fiber-optic micro motion converters with a cylindrical lens, which are basic elements of the technical solutions for fiber-optic sensors of various physical quantities used in the industry in automated control systems.

  13. Broadband unidirectional behavior of electromagnetic waves based on transformation optics

    Science.gov (United States)

    Zang, Xiaofei; Zhu, Yiming; Ji, Xuebin; Chen, Lin; Hu, Qing; Zhuang, Songlin

    2017-01-01

    High directive antennas are fundamental elements for microwave communication and information processing. Here, inspired by the method of transformation optics, we propose and demonstrate a transformation medium to control the transmission path of a point source, resulting in the unidirectional behavior of electromagnetic waves (directional emitter) without any reflectors. The network of inductor-capacitor transmission lines is designed to experimentally realize the transformation medium. Furthermore, the designed device can work in a broadband frequency range. The unidirectional-manner-based device demonstrated in this work will be an important step forward in developing a new type of directive antennas.

  14. Stability of the micromachined membrane deformable mirror as a freeform optical element

    Science.gov (United States)

    Vdovin, Gleb; Soloviev, Oleg; Patlan, Seva

    2014-09-01

    Micromachined membrane deformable mirror (MMDM) can serve as an ad hoc" free-form optical element. To test the repeatability and stability of the standard MMDM, we have conducted the test of surface figure during multiple thermal cycling, test of figure drift at elevated temperatures, and a long-term 16-day stability test of actively formed mirror figure. The average rms error did not exceed λ =25 at λ = 633 nm, after repeated cycling from -14 to +70 C, with return to the room temperature. The existing design provides ~10° stability in the temperature range of ~10°. Optimization of the design, eliminating astigmatism, would allow one to extend the temperature range to about 30. The long-term mirror figure instability at a constant temperature reaches λ/20 rms in 16 days. The P-V error with respect to the nearest sphere changes from λ/20 in the first day, to about λ/10 in the 16-th day. The tests show that MMDM is stable enough to make a reasonable alternative to free-form optics in applications that require various optical shapes to be formed with a single element.

  15. Soft-x-ray magneto-optical Kerr effect and element-specific hysteresis measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Interest in the utilization of x-ray magneto-optical properties to provide element-specific magnetic information, combined with recent development of tunable linear polarizers for spectroscopic polarization measurement, have led the authors to the study of magneto-optical rotation (MOR) near core levels of magnetic atoms in magnetic multilayer and alloy films. Their initial observation of Faraday rotation (in transmission) demonstrated that for Fe MOR is easily measured and is larger at its L{sub 3} resonance than in the near-visible spectral regions. This work also demonstrated that the spectroscopic behavior of the MOR signal in transmission, resulting from the differential reaction of left- and right-circular components of a linearly polarized beam, is related to the magnetic circular dichroism (MCD), or differential absorption, as expected by a Kramers-Kronig transformation. Thus MCD measurements using circular polarization and MOR measurements using linear polarization can provide complementary, and in some cases equivalent, information. On beamline 6.3.2 the authors have begun to investigate soft x-ray MOR in the reflection geometry, the x-ray magneto-optic Kerr effect (XMOKE). Early measurements have demonstrated the ability to measure element-specific hysteresis loops and large rotations compared to analogous near-visible measurements. The authors are investigating the spectral dependence of the XMOKE signal, and have initiated systematic materials studies of sputter-deposited films of Fe, Fe{sub x}Cr{sub 1{minus}x} alloys, and Fe/Cr multilayers.

  16. Quantum stream cipher based on optical communications

    OpenAIRE

    Hirota, Osamu; Kato, Kentaro; Sohma, Masaki; Usuda, Tsuyoshi S.; HARASAWA, Katsuyoshi

    2004-01-01

    In 2000, an attractive new quantum cryptography was discovered by H.P.Yuen based on quantum communication theory. It is applicable to direct encryption, for example quantum stream cipher based on Yuen protocol(Y-00), with high speeds and for long distance by sophisticated optical devices which can work under the average photon number per signal light pulse:$ = 1000 \\sim 10000$. In addition, it may provide information-theoretic security against known/chosen plaintext attack, which has no class...

  17. New approaches in diffraction based optical metrology

    Science.gov (United States)

    Ebert, M.; Vanoppen, P.; Jak, M.; v. d. Zouw, G.; Cramer, H.; Nooitgedagt, T.; v. d. Laan, H.

    2016-03-01

    Requirements for on-product overlay, focus and CD uniformity continue to tighten in order to support the demands of 10nm and 7nm nodes. This results in the need for simultaneously accurate, robust and dense metrology data as input for closed-loop control solutions thereby enabling wafer-level control and high order corrections. In addition the use of opaque materials and stringent design rules drive the need for expansion of the available measurement wavelengths and metrology target design space. Diffraction based optical metrology has been established as the leading methodology for integrated as well as standalone optical metrology for overlay, focus and CD monitoring and control in state of the art chip manufacturing. We are presenting the new approaches to diffraction based optical metrology designed to meet the processing diffraction based metrology signals. In this paper we will present the new detection principle and its impact on key performance characteristics of overlay and focus measurements. We will also describe the wide range of applications of a newly introduced increased measurement spot size, enabling significant improvements to accuracy and process robustness of overlay and focus measurements. With the YS350E the optical CD measurement capability is also extended, to 10x10μm2 targets. We will discuss the performance and value of small targets in after-develop and after-etch applications.

  18. Passive optical switches based on endohedral fullerenes

    Science.gov (United States)

    Dong, Yongchang; Deepika Saini Collaboration; Luis A. Echegoyen Collaboration; Ramakrishna Podila Collaboration

    Although there have been many attempts to find better nanomaterial-based optical limiters & switches in recent years, currently there are only a few effective options for high-energy lasers. Reverse saturable absorption in fullerenes has been widely used to realize excellent passive optical limiters for the visible region up to 650 nm. The electronic structure of fullerenes can be modified by the encapsulation of endohedral clusters to achieve exotic quantum states of matter such as superconductivity. Building on this concept, in this talk, we show that three tri-metallic nitride endohedral fullerenes could alter the HOMO-LUMO gap and allow passive optical switching with a low limiting threshold (0.3 J/cm2) and a wider operation window up to 1064 nm (average pulse energy>0.5 mJ in ns regime).

  19. Superior spatial resolution in confocal X-ray techniques using collimating channel array optics: elemental mapping and speciation in archaeological human bone

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, S.; Agyeman-Budu, D. N.; Woll, A. R.; Swanston, T.; Varney, T. L.; Cooper, D. M. L.; Hallin, E.; George, G. N.; Pickering, I. J.; Coulthard, I.

    2017-01-01

    Confocal X-ray fluorescence imaging (CXFI) and confocal X-ray absorption spectroscopy (CXAS) respectively enable the study of three dimensionally resolved localization and speciation of elements. Applied to a thick sample, essentially any volume element of interest within the X-ray fluorescence escape depth can be examined without the need for physical thin sectioning. To date, X-ray confocal detection generally has employed a polycapillary optic in front of the detector to collect fluorescence from the probe volume formed at the intersection of its focus with the incident microfocus beam. This work demonstrates the capability of a novel Collimating Channel Array (CCA) optic in providing an improved and essentially energy independent depth resolution approaching 2 μm. By presenting a comparison of elemental maps of archaeological bone collected without confocal detection, and with polycapillary- and CCA-based confocal detection, this study highlights the strengths and limitations of each mode. Unlike the polycapillary, the CCA shows similar spatial resolution in maps for both low (Ca) and high (Pb and Sr) energy X-ray fluorescence, thus illustrating the energy independent nature of the CCA optic resolution. While superior spatial resolution is demonstrated for all of these elements, the most significant improvement is observed for Ca, demonstrating the advantage of employing the CCA optic in examining light elements. In addition to CXFI, this configuration also enables the collection of Pb L3 CXAS data from micro-volumes with dimensions comparable to bone microstructures of interest. Our CXAS result, which represents the first CCA-based biological CXAS, demonstrates the ability of CCA optics to collect site specific spectroscopic information. The demonstrated combination of site-specific elemental localization and speciation data will be useful in diverse fields.

  20. Pancharatnam-Berry optical element sorter of full angular momentum eigenstate.

    Science.gov (United States)

    Walsh, Gary F

    2016-03-21

    We propose and numerically demonstrate a Pancharatnam-Berry optical element (PBOE) device that simultaneously sorts spin (SAM) and orbital (OAM) angular momentum. This device exploits the circular polarization selective properties of PBOEs to modulate independently the orthogonal SAM eigenstates within a geometric optical transformation that sorts OAM, enabling single measurement characterization of the full angular momentum eigenstate. This expands the available state space for OAM communication and enables characterization of the eigenmode composition of structured polarization beams. We define the two-dimensional orientation patterns of the transversely varying half-waveplate PBOEs that implement the angular momentum sorter. We show that the device discriminates the OAM and SAM eigenstates of optical beams including laser cavity modes such as Laguerre-Gaussian OAM eigenmodes, Hermite-Gaussian modes, and hybrid modes with complex structured polarization. We also demonstrate that it can determine the m parameter of higher order LGml Laguerre-Gaussian modes. The ability of this device to decode information from spatially structured optical phase has potential for applications in communication, encryption, modal characterization, and scientific measurements.

  1. Prediction of metallic nano-optical trapping forces by finite element-boundary integral method.

    Science.gov (United States)

    Pan, Xiao-Min; Xu, Kai-Jiang; Yang, Ming-Lin; Sheng, Xin-Qing

    2015-03-01

    The hybrid of finite element and boundary integral (FE-BI) method is employed to predict nano-optical trapping forces of arbitrarily shaped metallic nanostructures. A preconditioning strategy is proposed to improve the convergence of the iterative solution. Skeletonization is employed to speed up the design and optimization where iteration has to be repeated for each beam configuration. The radiation pressure force (RPF) is computed by vector flux of the Maxwell's stress tensor. Numerical simulations are performed to validate the developed method in analyzing the plasmonic effects as well as the optical trapping forces. It is shown that the proposed method is capable of predicting the trapping forces of complex metallic nanostructures accurately and efficiently.

  2. Optical Slot-Waveguide Based Biochemical Sensors

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2009-06-01

    Full Text Available Slot-waveguides allow light to be guided and strongly confined inside a nanometer-scale region of low refractive index. Thus stronger light-analyte interaction can be obtained as compared to that achievable by a conventional waveguide, in which the propagating beam is confined to the high-refractive-index core of the waveguide. In addition, slot-waveguides can be fabricated by employing CMOS compatible materials and technology, enabling miniaturization, integration with electronic, photonic and fluidic components in a chip, and mass production. These advantages have made the use of slot-waveguides for highly sensitive biochemical optical integrated sensors an emerging field. In this paper, recent achievements in slot-waveguide based biochemical sensing will be reviewed. These include slot-waveguide ring resonator based refractometric label-free biosensors, label-based optical sensing, and nano-opto-mechanical sensors.

  3. All-optical adder/subtractor based on tera-hertz optical asymmetric demultiplexer

    Institute of Scientific and Technical Information of China (English)

    Dilip Kumar Gayen; Rajat Kumar Pal; Jitendra Nath Roy

    2009-01-01

    An all-optical adder/subtractor (A/S) unit with the help of terahertz optical asymmetric demultiplexer (TOAD) is proposed.Tile all-optical A/S unit with a set of all-optical full-adders and optical exclusive-ORs (XORs),can be used to perform a fast central processor unit using optical hardware components.We try to exploit the advantages of TOAD-based optical switch to design an integrated all-optical circuit which can perform binary addition and subtraction.With computer simulation results confirming the described methods,conclusions are given.

  4. Bidirectional all-optical switches based on highly nonlinear optical fibers

    Science.gov (United States)

    Liu, Wenjun; Yang, Chunyu; Liu, Mengli; Yu, Weitian; Zhang, Yujia; Lei, Ming; Wei, Zhiyi

    2017-05-01

    All-optical switches have become one of the research focuses of nonlinear optics due to their fast switching speed. They have been applied in such fields as ultrafast optics, all-optical communication and all-optical networks. In this paper, based on symbolic computation, bidirectional all-optical switches are presented using analytic two-soliton solutions. Various types of soliton interactions are analyzed through choosing the different parameters of high-order dispersion and nonlinearity. Results indicate that bidirectional all-optical switches can be effectively achieved using highly nonlinear optical fibers.

  5. Generation of Bessel Beams at mm- and Sub mm-wavelengths by Binary Optical Elements

    Science.gov (United States)

    Yu, Y. Z.; Dou, W. B.

    2008-07-01

    In this paper, binary optical elements (BOE’s) are designed for generating Bessel beams at mm- and sub mm- wavelengths. The design tool is to combine a genetic algorithm (GA) for global optimization with a two-dimension finite-difference time-domain (2-D FDTD) method for rigorous electromagnetic computation. The design process for converting a normally incident Gaussian beam into a Bessel beam is described in detail. Numerical results demonstrate that the designed BOE’s can not only successfully produce arbitrary order Bessel beams, but also have higher diffraction efficiencies when compared with amplitude holograms.

  6. Optical antenna gain. III - The effect of secondary element support struts on transmitter gain

    Science.gov (United States)

    Klein, B. J.; Degnan, J. J.

    1976-01-01

    The effect of a secondary-element spider support structure on optical antenna transmitter gain is analyzed. An expression describing the influence of the struts on the axial gain, in both the near and far fields, is derived as a function of the number of struts and their width. It is found that, for typical systems, the struts degrade the on-axis gain by less than 0.4 dB, and the first side-lobe level is not increased significantly. Contour plots have also been included to show the symmetry of the far-field distributions for three- and four-support members.

  7. Optical antenna gain. 3: The effect of secondary element support struts on transmitter gain.

    Science.gov (United States)

    Klein, B J; Degnan, J J

    1976-04-01

    The effect of a secondary element spider support structure on optical antenna transmitter gain is analyzed. An expression describing the influence of the struts on the axial gain, in both the near and far fields, is derived as a function of the number of struts and their width. It is found that, for typical systems, the struts degrade the on-axis gain by less than 0.4 dB, and the first side-lobe level is not increased significantly. Contour plots have also been included to show the symmetry of the far-field distributions for three and four support members.

  8. Field enhancement analysis of an apertureless near field scanning optical microscope probe with finite element method

    Institute of Scientific and Technical Information of China (English)

    Weibin Chen; Qiwen Zhan

    2007-01-01

    Plasmonic field enhancement in a fully coated dielectric near field scanning optical microscope (NSOM)probe under radial polarization illumination is analyzed using an axially symmetric three-dimensional (3D)finite element method (FEM) model. The enhancement factor strongly depends on the illumination spot size, taper angle of the probe, and the metal film thickness. The tolerance of the alignment angle is investigated. Probe designs with different metal coatings and their enhancement performance are studied as well. The nanometric spot size at the tip apex and high field enhancement of the apertureless NSOM probe have important potential application in semiconductor metrology.

  9. Splitting of quantum information in travelling wave fields using only linear optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, W B; De Almeida, N G; Avelar, A T; Baseia, B [Instituto de Fisica, Universidade Federal de Goias, 74.001-970, Goiania-GO (Brazil)

    2011-02-28

    In this paper we present a feasible post-selection scheme to split quantum information in the realm of travelling waves with success probability of 50%. Taking advantage of this scheme we have also proposed the generation of a class of W states useful for perfect teleportation and superdense coding. The scheme employs only linear optical elements as beam splitters (BS) and phase shifters, plus two photon counters and a source of two spontaneous parametric down-conversion photons. It is shown that splitting of quantum information with high fidelity is possible, even when using inefficient detectors and photoabsorption BS.

  10. Microchip Flow Cytometer with Integrated Polymer Optical Elements for Measurement of Scattered Light

    DEFF Research Database (Denmark)

    Wang, Zhenyu; El-Ali, Jamil; Perch-Nielsen, Ivan Ryberg

    2004-01-01

    channels to form a complete microchip flow cytometer. All the optical elements, the microfluidic system, and the fiber-to-waveguide couplers were defined in one layer of polymer (SU-8, negative photoresist) by standard photolithography. With only one single mask procedure, all the fabrication and packaging...... processes can be finished in one day. Polystyrene beads were measured in the microchip flow cytometer, and three signals (forward scattering, large angle scattering and extinction) were measured simultaneously for each bead. The average intensities of the forward Scattered light and the incident light...

  11. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Optical Extension for Neutron Capture Elements

    Science.gov (United States)

    Melendez, Matthew; O'Connell, Julia; Frinchaboy, Peter M.; Donor, John; Cunha, Katia M. L.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Stassun, Keivan G.; APOGEE Team

    2017-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. However, neutron capture elements are very limited in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we are conducting a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. As part of this effort, we present Ba II, La II, Ce II and Eu II results for a few open clusters without previous abundance measurements using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.This work is supported by an NSF AAG grant AST-1311835.

  12. Research on Knowledge-based Connecting Elements Modeling

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Steps of manipulation is required to complete the m od eling of the connection elements such as bolt, pin and the like in commerce CAD system. It leads to low efficiency, difficulty to assure the relative position, impossibility to express rules and knowledge. Based on the inner character analy sis of interpart, detail modification and assembly relation of mechanical connec ting element, the idea, which extends the feature modeling of part to the interp art feature modeling for assembly purpose, is presen...

  13. Novel Chromatic Technique Based on Optical Absorbance in Characterizing Mineral Hydraulic Oil Degradation

    OpenAIRE

    Ossia, C. V.; Kong, H

    2012-01-01

    A low cost, compact, real-time, and quick measurement optical device based on the absorbance of white light, which comprised of photodiodes in a 3-element color-sensor, feedback diodes, water and temperature sensing element, and so on, was developed and tested in low absorption mineral oil. The device, a deviation from conventional electrical, mechanical, and electrochemical techniques, uses color ratio (CR) and total contamination index (TCI) parameters based on transmitted light intensity i...

  14. Magneto-optical investigation of the shape anisotropy of individual micron-sized magnetic elements

    Science.gov (United States)

    Sebastian, T.; Conca, A.; Wolf, G.; Schultheiss, H.; Leven, B.; Hillebrands, B.

    2011-10-01

    In this work, the anisotropy of individual microstructured magnetic elements has been investigated. The investigated elements are of elliptical shape with different sizes and aspect ratios (AR), structured from a 5-nm-thick permalloy (Ni80 Fe20) film. For the measurements, a new magneto-optical Kerr effect (MOKE) magnetometer was used. To allow for the investigation of individual microstructured elements, a micro-focused probing laser beam (spatial resolution ≈1μm) has been combined with a self-stabilizing positioning system of high accuracy, including a rotating unit. Hysteresis loops can be taken for varying orientation of the symmetry axes of the magnetic elements relative to the applied field. For the characterization of the anisotropy, the coercive field as a function of the magnetization direction is extracted from the corresponding hysteresis loops. These results make a quantitative and systematic study of the influence of the shape anisotropy on the magnetic behavior of microstructures possible. The experimental data has been compared to an extended Stoner-Wohlfarth model.

  15. Resource Letter: LBOT-1: Laser-based optical tweezers

    Science.gov (United States)

    Lang, Matthew J.; Block, Steven M.

    2006-01-01

    This Resource Letter provides a guide to the literature on optical tweezers, also known as laser-based, gradient-force optical traps. Journal articles and books are cited for the following main topics: general papers on optical tweezers, trapping instrument design, optical detection methods, optical trapping theory, mechanical measurements, single molecule studies, and sections on biological motors, cellular measurements and additional applications of optical tweezers. PMID:16971965

  16. Resource Letter: LBOT-1: Laser-based optical tweezers

    OpenAIRE

    Lang, Matthew J.; Block, Steven M.

    2003-01-01

    This Resource Letter provides a guide to the literature on optical tweezers, also known as laser-based, gradient-force optical traps. Journal articles and books are cited for the following main topics: general papers on optical tweezers, trapping instrument design, optical detection methods, optical trapping theory, mechanical measurements, single molecule studies, and sections on biological motors, cellular measurements and additional applications of optical tweezers.

  17. Reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches.

    Science.gov (United States)

    Yang, Lin; Xia, Yuhao; Zhang, Fanfan; Chen, Qiaoshan; Ding, Jianfeng; Zhou, Ping; Zhang, Lei

    2015-04-01

    We demonstrate a reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach-Zehnder optical switches. For all optical links in its 9 routing states, the optical signal-to-noise ratios are larger than 15 dB in the wavelength range from 1525 to 1565 nm. Each optical link of the optical router can manipulate 50 wavelength-division-multiplexing channels with the data rate of 32 Gbps for each channel in the same wavelength range. Its average energy efficiency is about 16.3 fJ/bit, and its response time is about 19 μs.

  18. Computing the laser beam path in optical cavities: a geometric Newton's method based approach

    CERN Document Server

    Cuccato, Davide; Ortolan, Antonello; Beghi, Alessandro

    2015-01-01

    In the last decade, increasing attention has been drawn to high precision optical experiments, which push resolution and accuracy of the measured quantities beyond their current limits. This challenge requires to place optical elements (e.g. mirrors, lenses, etc.) and to steer light beams with sub-nanometer precision. Existing methods for beam direction computing in resonators, e.g. iterative ray tracing or generalized ray transfer matrices, are either computationally expensive or rely on overparametrized models of optical elements. By exploiting Fermat's principle, we develop a novel method to compute the steady-state beam configurations in resonant optical cavities formed by spherical mirrors, as a function of mirror positions and curvature radii. The proposed procedure is based on the geometric Newton method on matrix manifold, a tool with second order convergence rate that relies on a second order model of the cavity optical length. As we avoid coordinates to parametrize the beam position on mirror surfac...

  19. Temperature Sensors Based on WGM Optical Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute; Itchenko, Vladimir; Matsko, Andrey; Strekalov, Dmitry

    2008-01-01

    A proposed technique for measuring temperature would exploit differences between the temperature dependences of the frequencies of two different electromagnetic modes of a whispering gallery-mode (WGM) optical resonator. An apparatus based on this technique was originally intended to be part of a control system for stabilizing a laser frequency in the face of temperature fluctuations. When suitably calibrated, apparatuses based on this technique could also serve as precise temperature sensors for purposes other than stabilization of lasers. A sensor according to the proposal would include (1) a transparent WGM dielectric resonator having at least two different sets of modes characterized by different thermo-optical constants and (2) optoelectronic instrumentation for measuring the difference between the temperature-dependent shifts of the resonance frequencies of the two sets of modes.

  20. Computational optical palpation: micro-scale force mapping using finite-element methods (Conference Presentation)

    Science.gov (United States)

    Wijesinghe, Philip; Sampson, David D.; Kennedy, Brendan F.

    2016-03-01

    Accurate quantification of forces, applied to, or generated by, tissue, is key to understanding many biomechanical processes, fabricating engineered tissues, and diagnosing diseases. Many techniques have been employed to measure forces; in particular, tactile imaging - developed to spatially map palpation-mimicking forces - has shown potential in improving the diagnosis of cancer on the macro-scale. However, tactile imaging often involves the use of discrete force sensors, such as capacitive or piezoelectric sensors, whose spatial resolution is often limited to 1-2 mm. Our group has previously presented a type of tactile imaging, termed optical palpation, in which the change in thickness of a compliant layer in contact with tissue is measured using optical coherence tomography, and surface forces are extracted, with a micro-scale spatial resolution, using a one-dimensional spring model. We have also recently combined optical palpation with compression optical coherence elastography (OCE) to quantify stiffness. A main limitation of this work, however, is that a one-dimensional spring model is insufficient in describing the deformation of mechanically heterogeneous tissue with uneven boundaries, generating significant inaccuracies in measured forces. Here, we present a computational, finite-element method, which we term computational optical palpation. In this technique, by knowing the non-linear mechanical properties of the layer, and from only the axial component of displacement measured by phase-sensitive OCE, we can estimate, not only the axial forces, but the three-dimensional traction forces at the layer-tissue interface. We use a non-linear, three-dimensional model of deformation, which greatly increases the ability to accurately measure force and stiffness in complex tissues.

  1. Silicon-Chip-Based Optical Frequency Combs

    Science.gov (United States)

    2015-10-26

    frequencies . This phenomenon appears in many systems spanning biology, chemistry, neuroscience, and physics [29,30]. Examples include power grid networks... Frequency Combs," Phys. Rev. Lett. 100, 013902 (2008). [91] F. Leo, et al., “Dispersive wave emission and supercontinuum generation in a silicon wire...AFRL-AFOSR-VA-TR-2015-0365 Silicon-Chip-Based Optical Frequency Combs Alexander Gaeta CORNELL UNIVERSITY Final Report 10/26/2015 DISTRIBUTION A

  2. A computational study of nodal-based tetrahedral element behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Gullerud, Arne S.

    2010-09-01

    This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.

  3. Picosecond optical MCPI-based imagers

    Science.gov (United States)

    Buckles, Robert A.; Guyton, Robert L.; Ross, Patrick W.

    2012-10-01

    We present the desired performance specifications for an advanced optical imager, which borrows practical concepts in high-speed microchannel plate (MCP) intensified x-ray stripline imagers and time-dilation techniques. With a four-fold speed improvement in state-of-the-art high-voltage impulse drivers, and novel atomic-layer deposition MCPs, we tender a design capable of 5 ps optical gating without the use of magnetic field confinement of the photoelectrons. We analyze the electron dispersion effects in the MCP and their implications for gating pulses shorter than the MCP transit time. We present a wideband design printed-circuit version of the Series Transmission Line Transformer (STLT) that makes use of 50-ohm coaxial 1.0 mm (110 GHz) and 1.85 mm (65 GHz) hermetically sealed vacuum feedthroughs and low-dispersion Teflon/Kapton circuit materials without the use of any vias. The STLT matches impedance at all interfaces with a 16:1 impedance (4:1 voltage) reduction, and delivers a dispersion-limited sharp impulse to the MCP strip. A comparison of microstrip design calculations is given, showing variances between method of moments, empirical codes, and finite element methods for broad, low-impedance traces. Prototype performance measurements are forthcoming.

  4. COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES

    Institute of Scientific and Technical Information of China (English)

    Zuorong Chen; A.P. Bunger; Xi Zhang; Robert G. Jeffrey

    2009-01-01

    Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.

  5. Miniature lightweight x-ray optics (MiXO) for surface elemental composition mapping of asteroids and comets

    CERN Document Server

    Hong, Jaesub

    2016-01-01

    The compositions of diverse planetary bodies are of fundamental interest to planetary science, providing clues to the formation and evolutionary history of the target bodies and the Solar system as a whole. Utilizing the X-ray fluorescence unique to each atomic element, X-ray imaging spectroscopy is a powerful diagnostic tool of the chemical and mineralogical compositions of diverse planetary bodies. Until now the mass and volume of focusing X-ray optics have been too large for resource-limited in-situ missions, so near-target X-ray observations of planetary bodies have been limited to simple collimator-type X-ray instruments. We introduce a new Miniature lightweight Wolter-I focusing X-ray Optics (MiXO) using metal-ceramic hybrid X-ray mirrors based on electroformed nickel replication and plasma thermal spray processes. MiXO can enable compact, powerful imaging X-ray telescopes suitable for future planetary missions. We illustrate the need for focusing X-ray optics in observing relatively small planetary bod...

  6. MODELING AND EXPERIMENTAL STUDY OF A FIBER OPTIC HYDROPHONE SENSING ELEMENT

    Directory of Open Access Journals (Sweden)

    Mikhail E. Efimov

    2014-09-01

    Full Text Available A model of the fiber-optic hydrophone sensor is suggested. Hydrophone construction comprises a malleable core made of a polymeric material with regulated elastic properties to which the optical fiber is wound. The built-in module of Comsol Multiphysics - Acoustic Solid Interaction is used in the simulation; it evaluates the impact of the acoustic field of different frequencies and amplitudes on the value of the sensor surface deformation. The proposed model gives the possibility for simulating the hydrophone in various environments; materials and dimensions of sensor are selected at the design stage to ensure the required performance: frequency response and sensitivity of fiber optic hydrophone. Correctness of the model construction was verified by results comparison of the computer simulation and experimental study in the acoustic pool. The prototype was represented as the phase interferometric fiber-optic hydrophone on the Bragg gratings. The sensing element is formed as a cylindrical core round which the optical fiber is wound. Core characteristics are: the material attenuation (damping – 0.1, Young's modulus of the core - 6 MPa, Poisson’s ratio - 0.49. The prototype was tested in the experimental pool, which design makes it possible to carry out measurements at frequencies above 3 kHz in the absence of reflections of the acoustic signal. The impact assessment of the acoustic field is carried out by means of an approved piezoelectric hydrophone: the amplitude of the acoustic field of a plane wave is 0.5 and 1 Pa, frequencies of the acoustic impact are 3000 - 8000 Hz. According to the findings fabricated prototype sensitivity was equal to 0.1 rad / Pa at the frequency of 3 kHz. Studies have shown that the sensitivity of the simulated fiber optic hydrophone will decrease with increasing frequency of hydroacoustic exposure. At 8 kHz frequency the sensitivity is decreased to 0.01 rad / Pa. Prototype testing results have confirmed the adequacy

  7. High Resolution Euler Solvers Based on the Space-Time Conservation Element and Solution Element Method

    Science.gov (United States)

    Wang, Xiao-Yen; Chow, Chuen-Yen; Chang, Sin-Chung

    1996-01-01

    The I-D, quasi I-D and 2-D Euler solvers based on the method of space-time conservation element and solution element are used to simulate various flow phenomena including shock waves, Mach stem, contact surface, expansion waves, and their intersections and reflections. Seven test problems are solved to demonstrate the capability of this method for handling unsteady compressible flows in various configurations. Numerical results so obtained are compared with exact solutions and/or numerical solutions obtained by schemes based on other established computational techniques. Comparisons show that the present Euler solvers can generate highly accurate numerical solutions to complex flow problems in a straightforward manner without using any ad hoc techniques in the scheme.

  8. Double-crystal monochromator as the first optical element in BESSRC-CAT beamlines (abstract)

    Science.gov (United States)

    Beno, Mark A.; Ramanathan, Mohan

    1996-09-01

    The first optical element in the BESSRC-CAT beamlines at the Advanced Photon Source will be a monochromator, so that a standard design for this critical component is advantageous. The monochromator we have designed is a double-crystal, fixed-exit scheme with a constant offset designed for UHV operation, thereby allowing windowless operation of the beamlines. The crystals are mounted on a turntable with the first crystal at the center of rotation. A mechanical linkage is used to correctly position the second crystal and maintain a constant offset. The main drive for the rotary motion is provided by a vacuum-compatible Huber goniometer isolated from the main vacuum chamber. Rotary motion of the primary monochromator stage is accomplished by using two adjacent vacuum chambers connected only by the small annular opening around a hollow stainless steel shaft, which connects the Huber goniometer to the turntable on which the crystals are mounted. The design of the monochromator is such that it can accommodate both water and liquid nitrogen cooling for the crystal optics. The basic design for the monochromator linkage mechanism will be presented along with details of the monochromator chamber. The results of initial optical tests of the monochromator system using tilt sensors and a precision autocollimator will also be given.

  9. Optical flow based finger stroke detection

    Science.gov (United States)

    Zhu, Zhongdi; Li, Bin; Wang, Kongqiao

    2010-07-01

    Finger stroke detection is an important topic in hand based Human Computer Interaction (HCI) system. Few research studies have carried out effective solutions to this problem. In this paper, we present a novel approach for stroke detection based on mono vision. Via analyzing the optical flow field within the finger area, our method is able to detect finger stroke under various camera position and visual angles. We present a thorough evaluation for each component of the algorithm, and show its efficiency and effectiveness on solving difficult stroke detection problems.

  10. Ultrafast all-optical clock recovery based on phase-only linear optical filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael

    2014-01-01

    We report on a novel, efficient technique for all-optical clock recovery from RZ-OOK data signals based on spectral phase-only (all-pass) optical filtering. This technique significantly enhances both the recovered optical clock quality and energy efficiency in comparison with conventional amplitude...... optical filtering approaches using a Fabry-Perot filter. The proposed concept is validated through recovery of the optical clock from a 640 Gbit/s RZ-OOK data signal using a commercial linear optical waveshaper. (C) 2014 Optical Society of America...

  11. Broadband optical isolator based on helical metamaterials.

    Science.gov (United States)

    Cao, Hu; Yang, ZhenYu; Zhao, Ming; Wu, Lin; Zhang, Peng

    2015-05-01

    Based on helical metamaterials, a new broadband optical isolator with a triple-helix structure is proposed in this paper. The right-handed circularly polarized light can transmit through the isolator with its polarization unchanged. The reverse propagating light, which is caused by the reflection of the latter optical devices, is converted into left-handed circularly polarized light that is suppressed by the proposed isolator because of absorption. Our design has some unprecedented advantages such as broad frequency ranges and a compact structure; moreover, neither polarizers nor adscititious magnetic fields are required. Properties of the isolator are investigated using the finite-difference time-domain method, and this phenomenon is studied by the mechanism of helical antenna theory.

  12. Reflective Optical Limiter Based on Resonant Transmission

    CERN Document Server

    Makri, Eleana; Vitebskiy, Ilya

    2014-01-01

    Optical limiters transmit low-level radiation while blocking electromagnetic pulses with excessively high energy (energy limiters) or with excessively high peak intensity (power limiters). A typical optical limiter absorbs most of the high-level radiation which can cause its destruction via overheating. Here we introduce the novel concept of a reflective energy limiter which blocks electromagnetic pulses with excessively high total energy by reflecting them back to space, rather than absorbing them. The idea is to use a defect layer with temperature dependent loss tangent embedded in a low-loss photonic structure. The low energy pulses with central frequency close to that of the localized defect mode will pass through. But if the cumulative energy carried by the pulse exceeds certain level, the entire photonic structure reflects the incident light (and does not absorb it!) for a broad frequency window. The underlying physical mechanism is based on self-regulated impedance mismatch which increases dramatically...

  13. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    Science.gov (United States)

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-07-15

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization.

  14. Riboswitch-based sensor in low optical background

    Science.gov (United States)

    Harbaugh, Svetlana V.; Davidson, Molly E.; Chushak, Yaroslav G.; Kelley-Loughnane, Nancy; Stone, Morley O.

    2008-08-01

    Riboswitches are a type of natural genetic control element that use untranslated sequence in the RNA to recognize and bind to small molecules that regulate expression of that gene. Creation of synthetic riboswitches to novel ligands depends on the ability to screen for analyte binding sensitivity and specificity. In our work, we have coupled a synthetic riboswitch to an optical reporter assay based on fluorescence resonance energy transfer (FRET) between two genetically-coded fluorescent proteins. Specifically, a theophylline-sensitive riboswitch was placed upstream of the Tobacco Etch Virus (TEV) protease coding sequence, and a FRET-based construct, BFP-eGFP or eGFP-REACh, was linked by a peptide encoding the recognition sequence for TEV protease. Cells expressing the riboswitch showed a marked optical difference in fluorescence emission in the presence of theophylline. However, the BFP-eGFP FRET pair posses significant optical background that reduces the sensitivity of a FRET-based assay. To improve the optical assay, we designed a nonfluorescent yellow fluorescent protein (YFP) mutant called REACh (for Resonance Energy-Accepting Chromoprotein) as the FRET acceptor for eGFP. The advantage of using an eGFP-REACh pair is the elimination of acceptor fluorescence which leads to an improved detection of FRET via better signal-to-noise ratio. The EGFP-REACh fusion protein was constructed with the TEV protease cleavage site; thus upon TEV translation, cleavage occurs diminishing REACh quenching and increasing eGFP emission resulting in a 4.5-fold improvement in assay sensitivity.

  15. An Optimization-Based Approach to Injector Element Design

    Science.gov (United States)

    Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar; Turner, Jim (Technical Monitor)

    2000-01-01

    An injector optimization methodology, method i, is used to investigate optimal design points for gaseous oxygen/gaseous hydrogen (GO2/GH2) injector elements. A swirl coaxial element and an unlike impinging element (a fuel-oxidizer-fuel triplet) are used to facilitate the study. The elements are optimized in terms of design variables such as fuel pressure drop, APf, oxidizer pressure drop, deltaP(sub f), combustor length, L(sub comb), and full cone swirl angle, theta, (for the swirl element) or impingement half-angle, alpha, (for the impinging element) at a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w), injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for both element types. Method i is then used to generate response surfaces for each dependent variable for both types of elements. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing the five dependent variables in terms of the input variables. Three examples illustrating the utility and flexibility of method i are discussed in detail for each element type. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the element design is illustrated. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface that includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues

  16. The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters Based on SOAs

    DEFF Research Database (Denmark)

    Lloret, Juan; Ramos, Francisco; Xue, Weiqi

    2011-01-01

    Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascaded...... shifting stages are also carried out. Suppression of the noise level by more than 5 dB has been achieved in schemes based on band-pass optical filtering when three phase shifting stages are cascaded....

  17. Optical computation based on nonlinear total reflectional optical switch at the interface

    Indian Academy of Sciences (India)

    Jianqi Zhang; Huan Xu

    2009-03-01

    A new scheme of binary half adder and full adder is proposed. It realizes a kind of all-optical computation which is based on the polarization coding technique and the nonlinear total reflectional optical switches.

  18. Advanced Optical Signal Processing using Time Lens based Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2016-01-01

    An overview of recent progress on time lens based advanced optical signal processing is presented, with a special focus on all-optical ultrafast 640 Gbit/s all-channel serial-to-parallel conversion, and scalable WDM regeneration....

  19. Miniature lightweight X-ray optics (MiXO) for surface elemental composition mapping of asteroids and comets

    Science.gov (United States)

    Hong, Jaesub; Romaine, Suzanne

    2016-02-01

    The compositions of diverse planetary bodies are of fundamental interest to planetary science, providing clues to the formation and evolutionary history of the target bodies and the solar system as a whole. Utilizing the X-ray fluorescence unique to each atomic element, X-ray imaging spectroscopy is a powerful diagnostic tool of the chemical and mineralogical compositions of diverse planetary bodies. Until now the mass and volume of focusing X-ray optics have been too large for resource-limited in situ missions, so near-target X-ray observations of planetary bodies have been limited to simple collimator-type X-ray instruments. We introduce a new Miniature lightweight Wolter-I focusing X-ray Optics (MiXO) using metal-ceramic hybrid X-ray mirrors based on electroformed nickel replication and plasma thermal spray processes. MiXO can enable compact, powerful imaging X-ray telescopes suitable for future planetary missions. We illustrate the need for focusing X-ray optics in observing relatively small planetary bodies such as asteroids and comet nuclei. We present a few example configurations of MiXO telescopes and demonstrate their superior performance in comparison to an alternative approach, micro-pore optics, which is being employed for the first planetary focusing X-ray telescope, the Mercury Imaging X-ray Spectrometer-T onboard Bepicolumbo. X-ray imaging spectroscopy using MiXO will open a large new discovery space in planetary science and will greatly enhance our understanding of the nature and origin of diverse planetary bodies.

  20. Aberration-free ultra-fast optical oscilloscope using a four-wave mixing based time-lens

    Science.gov (United States)

    Schröder, Jochen; Wang, Fan; Clarke, Aisling; Ryckeboer, Eva; Pelusi, Mark; Roelens, Michaël A. F.; Eggleton, Benjamin J.

    2010-06-01

    We demonstrate an aberration-free, all-optical, ultra-fast oscilloscope based on the concept of Fourier-transformation with an optical time-lens. By combining the four-wave mixing time-lens with a Fourier-domain optical processor as the dispersive element we avoid aberrations associated with the traditional method of using lengths of fibre for the dispersive elements. We investigate the impact of aberrations due to third-order dispersion and inaccuracies in matching the Fourier-transform condition and demonstrate how these are overcome using the optical processor. The resolution of the oscilloscope is 750 fs.

  1. On diversity performance of two-element coupling element based antenna structure for mobile terminal

    DEFF Research Database (Denmark)

    Al-Hadi, Azremi Abdullah; Toivanen, Juha; Laitinen, Tommi

    2010-01-01

    fading. The main challenge of antenna diversity in practical application is the integration of multiple antennas on a small ground plane. Two-element antenna structure based on coupling element antenna concept for diversity application has been studied in previous work and it has shown to be feasible......In wireless communication systems, multipath interference has a significant impact on system design and performance. Fast fading is caused by the coherent summation of one or more echoes from many reflection points reaching the receive antenna. Antenna diversity can be used to mitigate multipath...... for low frequency diversity application with stable and low envelope correlation across wide frequency range. The studied structure has been tuned to be operating at 1600 MHz for measurement evaluation purpose. This paper presents an analysis of diversity performance of the structure in terms...

  2. Performance analysis of multiple optical orthogonal codes sequences-based optical labels for optical packet switching networks

    Science.gov (United States)

    Zhang, Chongfu; Ma, Chunli; Wang, Zhengsuan; Qiu, Kun

    2011-09-01

    Multiple optical orthogonal codes sequences (MOOCS)-based optical labels for optical packet switching (MOOCS-OPS) were proposed and studied in our previous works. In order to evaluate the performances of the MOOCS-OPS networks resulting from interference of the MOOCS-based optical labels, we utilize a new study method that applies the independent case of multiple optical orthogonal codes to derive the probability function of the MOOCS-OPS networks for the first time. Additionally, the optical label processing time, the utilization efficiency, and the packet loss rate in the MOOCS-OPS networks are also considered. We discuss the performance and efficiency characteristics with a variety of parameters, and compare some characteristics of the system employed by a single optical orthogonal code or MOOCS-based optical labels. The performances of the system are also calculated, and our results verify that the method and the networks are effective. Moreover, it is found that performances of the MOOCS-OPS networks would, negatively, be worsened, compared with the single optical orthogonal code-based optical label for optical packet switching; however, the MOOCS-OPS networks can greatly enlarge the scalability of the optical packet switching networks.

  3. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no bias (0.00 μg m-3, concentration value based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.03 μg m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment

  4. Fiber-optical accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer.......Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  5. Towards a Re-definition of the Second Based on Optical Atomic Clocks

    CERN Document Server

    Riehle, Fritz

    2015-01-01

    The rapid increase in accuracy and stability of optical atomic clocks compared to the caesium atomic clock as primary standard of time and frequency asks for a future re-definition of the second in the International System of Units (SI). The status of the optical clocks based on either single ions in radio-frequency traps or on neutral atoms stored in an optical lattice is described with special emphasis of the current work at the Physikalisch-Technische Bundesanstalt (PTB). Besides the development and operation of different optical clocks with estimated fractional uncertainties in the 10^-18 range, the supporting work on ultra-stable lasers as core elements and the means to compare remote optical clocks via transportable standards, optical fibers, or transportable clocks is reported. Finally, the conditions, methods and next steps are discussed that are the prerequisites for a future re-definition of the second.

  6. Discrete Element Simulation of Asphalt Mastics Based on Burgers Model

    Institute of Scientific and Technical Information of China (English)

    LIU Yu; FENG Shi-rong; HU Xia-guang

    2007-01-01

    In order to investigate the viscoelastic performance of asphalt mastics, a micro-mechanical model for asphalt mastics was built by applying Burgers model to discrete element simulation and constructing Burgers contact model. Then the numerical simulation of creep tests was conducted, and results from the simulation were compared with the analytical solution for Burgers model. The comparision snowed that the two results agreed well with each other, suggesting that discrete element model based on Burgers model could be employed in the numerical simulation for asphalt mastics.

  7. Splitting extrapolation based on domain decomposition for finite element approximations

    Institute of Scientific and Technical Information of China (English)

    吕涛; 冯勇

    1997-01-01

    Splitting extrapolation based on domain decomposition for finite element approximations is a new technique for solving large scale scientific and engineering problems in parallel. By means of domain decomposition, a large scale multidimensional problem is turned to many discrete problems involving several grid parameters The multi-variate asymptotic expansions of finite element errors on independent grid parameters are proved for linear and nonlin ear second order elliptic equations as well as eigenvalue problems. Therefore after solving smaller problems with similar sizes in parallel, a global fine grid approximation with higher accuracy is computed by the splitting extrapolation method.

  8. River Health Assessment Based on Fuzzy Matter-element Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The study aimed to assess the health state of rivers by using fuzzy matter-element model.[Method] Based on fuzzy matter-element analysis theory,the assessment model of river health was established,then a modified method to calculate the superior subordinate degree was put forward according to Hamming distance.Afterwards,a multi-level evaluation model,which contained the assessment indicators about hydrological features,ecological characteristics,environmental traits and service function,was set ...

  9. Convergence of a residual based artificial viscosity finite element method

    KAUST Repository

    Nazarov, Murtazo

    2013-02-01

    We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.

  10. Trace elements based classification on clinkers. Application to Spanish clinkers

    OpenAIRE

    Tamás, F. D.; Abonyi, J.; Puertas, F.

    2001-01-01

    The qualitative identification to determine the origin (i.e. manufacturing factory) of Spanish clinkers is described. The classification of clinkers produced in different factories can be based on their trace element content. Approximately fifteen clinker sorts are analysed, collected from 11 Spanish cement factories to determine their Mg, Sr, Ba, Mn, Ti, Zr, Zn and V content. An expert system formulated by a binary decision tree is designed based on the collected data. The performance of the...

  11. An electro-optic waveform interconnect based on quantum interference

    CERN Document Server

    Qin, Li-Guo; Gong, Shang-Qing

    2016-01-01

    The ability to modulate an optical field via an electric field is regarded as a key function of electro-optic interconnects, which are used in optical communications and information processing systems. One of the main required devices for such interconnects is the electro-optic modulator (EOM). Current EOM based on the electro-optic effect and the electro-absorption effect often is bulky and power inefficient due to the weak electro-optic properties of its constituent materials. Here we propose a new mechanism to produce an arbitrary-waveform EOM based on the quantum interference, in which both the real and imaginary parts of the susceptibility are engineered coherently with the superhigh efficiency. Based on this EOM, a waveform interconnect from the voltage to the modulated optical absorption is realised. We expect that such a new type of electro-optic interconnect will have a broad range of applications including the optical communications and network.

  12. Optical position encoder based on four-section diffraction grating

    Science.gov (United States)

    Zherdev, A. Y.; Odinokov, S. B.; Lushnikov, D. S.; Markin, V. V.; Gurylev, O. A.; Shishova, M. V.

    2017-05-01

    Optical position encoder consists of movable coding grating and fixed analyzing grating. Light passing and diffracting through these two gratings creates interference signal on optical detector. Decoding of interference signal phase allows to determinate current position. Known optical position encoders use several accurate adjusted optical channels and detectors to gather several signals with different phase for higher encoder accuracy. We propose to use one optical channel with several-section analyzing diffraction grating for this purpose to simplify optical scheme and adjusting requirements. Optical scheme of position encoder based on four-section analyzing diffraction grating is developed and described in this paper.

  13. Multimineral optimization processing method based on elemental capture spectroscopy logging

    Institute of Scientific and Technical Information of China (English)

    Feng Zhou; Li Xin-Tong; Wu Hong-Liang; Xia Shou-Ji; Liu Ying-Ming

    2014-01-01

    Calculating the mineral composition is a critical task in log interpretation. Elemental capture spectroscopy (ECS) log provides the weight percentages of twelve common elements, which lays the foundation for the accurate calculation of mineral compositions. Previous processing methods calculated the formation composition via the conversion relation between the formation chemistry and minerals. Thus, their applicability is limited and the method precision is relatively low. In this study, we present a multimineral optimization processing method based on the ECS log. We derived the ECS response equations for calculating the formation composition, then, determined the logging response values for the elements of common minerals using core data and theoretical calculations. Finally, a software module was developed. The results of the new method are consistent with core data and the mean absolute error is less than 10%.

  14. Waveguide-based optical chemical sensor

    Science.gov (United States)

    Grace, Karen M.; Swanson, Basil I.; Honkanen, Seppo

    2007-03-13

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  15. Optical Properties of Bismuth Tellurite Based Glass

    Directory of Open Access Journals (Sweden)

    Hooi Ming Oo

    2012-04-01

    Full Text Available A series of binary tellurite based glasses (Bi2O3x (TeO2100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO. The Fourier transform infrared spectroscopy (FTIR results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases.

  16. Optical properties of bismuth tellurite based glass.

    Science.gov (United States)

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi(2)O(3))(x) (TeO(2))(100-) (x) was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi(3+) increase, this is due to the increased polarization of the ions Bi(3+) and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, E(opt) decreases while the refractive index increases when the ion Bi(3+) content increases.

  17. Polymer based nanocomposites with tailorable optical properties

    Science.gov (United States)

    Colombo, Annalisa; Simonutti, Roberto

    2014-09-01

    Transparent polymers are extensively used in everyday life, from windows to computer displays, from food packaging to lenses. A possible approach for modulating their optical properties (refractive index, transparency, color and luminescence) is to change the chemical structure of the polymer, however this option is in many cases economically prohibitive. Our approach, instead, relies in the use of standard polymers with the supplement of specific nanostructured additives able to tune the final property of the material. Among others, the cases of luminescent solar concentrators based on poly(methylmethacrylate) containing luminescent quantum dots and highly transparent polymer nanocomposites with high refractive index will be presented.

  18. Precision enhancement in boundary element methods with application to electron optics.

    Science.gov (United States)

    Loyd, Jody S; Gregory, Don A

    2016-08-01

    A hybrid approach is presented for obtaining electric potentials for use in electron optics modeling. An initial solution from the boundary element method (BEM) is used to derive the bounding potential of a cylindrical subdomain subsequently used in a Fourier series solution. The approach combines the inherent precision of this analytic solution with the flexibility of BEM to describe practical, non-idealized systems of electrodes. The resulting lens field in the Fourier series subdomain is of higher precision, thereby allowing smaller errors in subsequent calculations of electron ray paths. The effects of aberrations are thus easier to observe in tracing non-paraxial rays. Example ray-traces through a simple, known einzel lens are given as validation of this approach.

  19. Beam shaping for multicolour light-emitting diodes with diffractive optical elements

    KAUST Repository

    Yu, Chao

    2016-10-06

    An improved particle swarm optimization method is proposed for the design of ultra-thin diffractive optical elements (DOEs) enabling multicolour beam shaping functionality. We employ pre-optimized initial structures and adaptive weight strategy in the algorithm to achieve better and identical shaping performance for multiple colours. Accordingly, a DOE for shaping light from green and blue LEDs has been designed and fabricated. Both experiment and numerical simulations have been conducted and the results agree well with each other. 15.66% average root mean square error (RMSE) and 0.22% RMSE difference are achieved. In addition, the parameters closely related to the performance of the optimization are analysed, which can provide insights for future application designs.

  20. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications.

    Science.gov (United States)

    Marín-Sáez, Julia; Atencia, Jesús; Chemisana, Daniel; Collados, María-Victoria

    2016-03-21

    Volume Holographic Optical Elements (HOEs) present interesting characteristics for photovoltaic applications as they can select spectrum for concentrating the target bandwidth and avoiding non-desired wavelengths, which can cause the decrease of the performance on the cell, for instance by overheating it. Volume HOEs have been recorded on Bayfol HX photopolymer to test the suitability of this material for solar concentrating photovoltaic systems. The HOEs were recorded at 532 nm and provided a dynamic range, reaching close to 100% efficiency at 800 nm. The diffracted spectrum had a FWHM of 230 nm when illuminating at Bragg angle. These characteristics prove HOEs recorded on Bayfol HX photopolymer are suitable for concentrating solar light onto photovoltaic cells sensitive to that wavelength range.

  1. New alternating direction procedures in finite element analysis based upon EBE approximate factorizations. [element-by-element

    Science.gov (United States)

    Hughes, T. J. R.; Winget, J.; Levit, I.; Tezduyar, T. E.

    1983-01-01

    Element-by-element approximate factorization procedures are proposed for solving the large finite element equation systems which arise in computational mechanics. A variety of techniques are compared on problems of structural mechanics, heat conduction and fluid mechanics. The results obtained suggest considerable potential for the methods described.

  2. Fabrication of Porous Silicon Based Humidity Sensing Elements on Paper

    Directory of Open Access Journals (Sweden)

    Tero Jalkanen

    2015-01-01

    Full Text Available A roll-to-roll compatible fabrication process of porous silicon (pSi based sensing elements for a real-time humidity monitoring is described. The sensing elements, consisting of printed interdigitated silver electrodes and a spray-coated pSi layer, were fabricated on a coated paper substrate by a two-step process. Capacitive and resistive responses of the sensing elements were examined under different concentrations of humidity. More than a three orders of magnitude reproducible decrease in resistance was measured when the relative humidity (RH was increased from 0% to 90%. A relatively fast recovery without the need of any refreshing methods was observed with a change in RH. Humidity background signal and hysteresis arising from the paper substrate were dependent on the thickness of sensing pSi layer. Hysteresis in most optimal sensing element setup (a thick pSi layer was still noticeable but not detrimental for the sensing. In addition to electrical characterization of sensing elements, thermal degradation and moisture adsorption properties of the paper substrate were examined in connection to the fabrication process of the silver electrodes and the moisture sensitivity of the paper. The results pave the way towards the development of low-cost humidity sensors which could be utilized, for example, in smart packaging applications or in smart cities to monitor the environment.

  3. A Novel Acoustic Emission Fiber Optic Sensor Based on a Single Mode Optical Fiber Coupler

    Institute of Scientific and Technical Information of China (English)

    CHEN Rongsheng; LIAO Yanbiao; ZHENG Gangtie; LIU Tongyu; Gerard Franklyn Fernando

    2001-01-01

    This paper reports, for the first time, on the use of a fused-taper single mode optical fiber coupler as a sensing element for the detection of acoustic emission (AE) and ultrasound. When an acoustic wave impinges on the mode-coupling region of a coupler, the coupling coefficient is modulated via the photo-elastic effect. Therefore, the transfer function of the coupler is modulated by an acoustic wave. The sensitivity of the sensor at 140 kHz was approximately 5.2 mV/Pa and the noise floor was 1 Pa. The bandwidth of the sensor was up to several hundred kHz. This AE sensor exhibits significant advantage compared with interferometer-based AE sensors.

  4. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    Science.gov (United States)

    Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.

    2014-12-01

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of ~ 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.

  5. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    CERN Document Server

    Alexander, J P; Conolly, C; Edwards, E; Ehrlichman, M P; Flanagan, J W; Fontes, E; Heltsley, B K; Lyndaker, A; Peterson, D P; Rider, N T; Rubin, D L; Seeley, R; Shanks, J

    2014-01-01

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring $e^+$ and $e^-$ beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of $10-100~\\mu$m on a turn-by-turn, bunch-by-bunch basis at $e^\\pm$ beam energies of $\\sim2-5~$GeV. X-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.

  6. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    Science.gov (United States)

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.

  7. Holographic Optical Element-Based Laser Diode Source Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking improved methods of rapid prototyping, which are best achieved by using directed metal deposition (DMD). Current DMD systems consume a great deal of...

  8. Ultracompact optical circulator based on a uniformly magnetic magnetophotonic annular Bragg cavity

    CERN Document Server

    Śmigaj, Wojciech; Romero-Vivas, Javier; Guenneau, Sébastien; Dagens, Béatrice; Gralak, Boris; Vanwolleghem, Mathias

    2011-01-01

    We have developed a theoretical framework that allows an efficient design of integrated optical circulators based on non-reciprocal magneto-optical cavities. Using this approach we have analysed different possible layouts for nonreciprocal resonant cavities. This investigation has allowed us to propose a new class of miniaturized integrated optical circulators that achieve simultaneously strong optical circulation while maintaining reasonable technological feasibility. Their layout is based on a radial Bragg cavity formed by arranging centrosymmetric annular magneto-optic rings. The circulator ports are standard rib waveguides, butt-coupled to the ring cavity by possibly cutting the outer cavity rings. Using a coupled mode description of the complete cavity/waveguide-port system, it is shown that it is indispensable to take possible direct port-to-port coupling into account for a proper optimization of the device. Including these optimization parameters in finite element simulations has led us to propose a st...

  9. Multisensor transducer based on a parallel fiber optic digital-to-analog converter

    Directory of Open Access Journals (Sweden)

    Grechishnikov Vladimir

    2017-01-01

    Full Text Available Considered possibility of creating a multisensory information converter (MSPI based on new fiber-optic functional element-digital-to-analog (DAC fiber optic converter. The use of DAC fiber-optic provides jamming immunity combined with low weight and cost of indicators .Because of that MSPI scheme was developed based on parallel DAC fiber-optic (Russian Federation Patent 157416. We came up with an equation for parallel DAC fiber-optic. An eleborate general mathematical model of the proposed converter. Developed a method for reducing conversion errors by placing the DAC transfer function between i and i + 1 ADC quantization levels. By using this model it allows you to obtain reliable information about the technical capabilities of a converter without the need for costly experiments.

  10. Integrated optic devices based on nonlinear optical polymers

    Science.gov (United States)

    van Tomme, Emmanuel; van Daele, Peter P.; Baets, Roel G.; Lagasse, Paul E.

    1991-03-01

    An examination is made of the state of the art of nonlinear optical polymeric materials in view of their potential advantages. It is shown that these organic materials have many attractive features compared to LiNbO3 and III-V semiconductors with regard to their use in integrated optic circuits, especially since the level of integration is ever increasing. Considering more specifically electro-optic devices, a description is given of some of the theoretical background and basic properties. These polymers have already demonstrated a very high and extremely fast electro-optic effect compared to LiNbO3. It is also shown how low-loss waveguides can be fabricated by using easy techniques such as direct UV bleaching. The performance of phase modulators, Mach-Zehnder interferometers, and 2 x 2 space switches built with such polymers is already very promising. The results described in this study indicate a rapid rate of progress made by this technology, and one can expect that polymers in general and NLO polymers in particular will play an increasingly important role in integrated optics.

  11. A mid-infrared Mueller ellipsometer with pseudo-achromatic optical elements

    CERN Document Server

    Garcia-Caurel, E; Ndong, G; Al-Bugami, B; Bernon, C; Al-Qahtani, E; Rengnez, F; De Martino, A

    2015-01-01

    The purpose of this article is to present a new broadband Mueller ellipsometer designed to work in the mid-infrared range, from 3 to 14 microns. The Mueller ellipsometer, which can be mounted in reflection or in transmission configuration, consists of a polarization state generator (PSG), a sample holder, and a polarization state analyzer (PSA). The PSG consists in one linear polarizer and a retarder sequentially rotated to generate a set of four optimal polarization states. The retarder consists in a bi-prism made of two identical Fresnel rhombs disposed symmetrically and joined by optical contact, giving the ensemble a "V" shape. Retardation is induced by the four total internal reflections that the beam undergoes when it propagates through the bi-prism. Total internal reflection allows to generate a quasi-achromatic retardation. The PSA is identical to the PSG, but with its optical elements mounted in reverse order. After a measurement run, the instrument yields a set of sixteen independent values, which i...

  12. Biogenic Aerosols Over the Amazon Basin: Optical Properties and Relationship With Elemental and Ionic Composition

    Science.gov (United States)

    Artaxo, P.; Martin, S. T.; Andreae, M. O.; Godoy, J. M.; Godoy, M. L.; Rizzo, L. V.; Paixao, M.

    2008-12-01

    We investigated the optical properties of natural biogenic aerosol particles over the central Amazon Basin near Manaus during the wet season in February and March 2008. The measurements were conducted as part of the AMAZE-08 (Amazonian Aerosol Characterization Experiment) sampling campaign. Light absorption was determined with the use of an Aethalometer and an MAAP (Multi Angle Absorption Photometer). Light scattering was measured with a 3 wavelength TSI nephelometer and an Ecotech nephelometer. The elemental composition was measured trough PIXE and IC. Single scattering albedo shows relatively low values varying from 0.86 to 0.95. Very low fine mode aerosol mass was measured, and coarse mode particles are responsible for a significant fraction of scattering and absorption. Sulfur was observed in very low concentrations, and most of the aerosol mass was organic. Long range transport of soil dust from Sahara were observed and reflected in the light scattering coefficient. Wavelength dependence of absorption indicates the strong influence of coarse mode aerosol. Aerosol optical thickness shows low values, but with significant single scattering albedo values, showing strong absorption properties of these biogenic aerosols. Size distribution measurements shows consistence with the scattering coefficients measured, if the coarse mode particles are taken into account.

  13. Vector Finite Element Modeling of the Full-Wave Maxwell Equations to Evaluate Power Loss in Bent Optical Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Koning, J; Rieben, R; Rodrigue, G

    2004-12-09

    We measure the loss of power incurred by the bending of a single mode step-indexed optical fiber using vector finite element modeling of the full-wave Maxwell equations in the optical regime. We demonstrate fewer grid elements can be used to model light transmission in longer fiber lengths by using high-order basis functions in conjunction with a high order energy conserving time integration method. The power in the core is measured at several points to determine the percentage loss. We also demonstrate the effect of bending on the light polarization.

  14. 40-Gb/s all-optical wavelength conversion based on a nonlinear optical loop mirror

    DEFF Research Database (Denmark)

    Yu, Jianjun; Zheng, Xueyan; Peucheret, Christophe

    2000-01-01

    All-optical wavelength conversion based on a nonlinear optical loop mirror (NOLM) at 40 Gb/s is demonstrated for the first time. The effect of walkoff time between control beam and signal beams is investigated when the NOLM is used as an all-optical wavelength converter or an all...

  15. A parity checker circuit based on microelectromechanical resonator logic elements

    Science.gov (United States)

    Hafiz, Md Abdullah Al; Li, Ren; Younis, Mohammad I.; Fariborzi, Hossein

    2017-03-01

    Micro/nano-electromechanical resonator based logic computation has attracted significant attention in recent years due to its dynamic mode of operation, ultra-low power consumption, and potential for reprogrammable and reversible computing. Here we demonstrate a 4-bit parity checker circuit by utilizing recently developed logic gates based on MEMS resonators. Toward this, resonance frequencies of shallow arch shaped micro-resonators are electrothermally tuned by the logic inputs to constitute the required logic gates for the proposed parity checker circuit. This study demonstrates that by utilizing MEMS resonator based logic elements, complex digital circuits can be realized.

  16. A parity checker circuit based on microelectromechanical resonator logic elements

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-01-11

    Micro/nano-electromechanical resonator based logic computation has attracted significant attention in recent years due to its dynamic mode of operation, ultra-low power consumption, and potential for reprogrammable and reversible computing. Here we demonstrate a 4-bit parity checker circuit by utilizing recently developed logic gates based on MEMS resonators. Toward this, resonance frequencies of shallow arch shaped micro resonators are electrothermally tuned by the logic inputs to constitute the required logic gates for the proposed parity checker circuit. This study demonstrates that by utilizing MEMS resonator based logic elements, complex digital circuits can be realized.

  17. Carbon nanotube-based functional materials for optical limiting.

    Science.gov (United States)

    Chen, Yu; Lin, Ying; Liu, Ying; Doyle, James; He, Nan; Zhuang, Xiaodong; Bai, Jinrui; Blau, Werner J

    2007-01-01

    Optical limiting is an important application of nonlinear optics, useful for the protection of human eyes, optical elements, and optical sensors from intense laser pulses. An optical limiter is such a device that strongly attenuates high intensity light and potentially damaging light such as focused laser beams, whilst allowing for the high transmission of ambient light. Optical limiting properties of carbon nanotube suspensions, solubilized carbon nanotubes, small molecules doped carbon nanotubes and polymer/carbon nanotube composites have been reviewed. The optical limiting responses of carbon nanotube suspensions are shown to be dominated by nonlinear scattering as a result of thermally induced solvent-bubble formation and sublimation of the nanotubes, while the solubilized carbon nanotubes optically limit through nonlinear absorption mechanism and exhibit significant solution-concentration-dependent optical limiting responses. In the former case the optical limiting results are independent of nanotube concentrations at the same linear transmittance as that of the solubilized systems. Many efforts have been invested into the research of polymer/carbon nanotube composites in an attempt to allow for the fabrication of films required for the use of nanotubes in a real optical limiting application. The higher carbon nanotube content samples block the incident light more effectively at higher incident energy densities or intensities. The optical limiting mechanism of these composite materials is quite complicated. Besides nonlinear scattering contribution to the optical limiting, there may also be other contributions e.g., nonlinear absorption, nonlinear refraction, electronic absorption and others to the optical limiting. Further improvements in the optical limiting efficiency of the composites and in the dispersion and alignment properties of carbon nanotubes in the polymer matrix could be realized by variation of both nanostructured guest and polymer host, and by

  18. Inorganic elemental determinations of marine traditional Chinese Medicine Meretricis concha from Jiaozhou Bay: The construction of inorganic elemental fingerprint based on chemometric analysis

    Science.gov (United States)

    Shao, Mingying; Li, Xuejie; Zheng, Kang; Jiang, Man; Yan, Cuiwei; Li, Yantuan

    2016-04-01

    The goal of this paper is to explore the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, which is a commonly used marine traditional Chinese medicine (TCM) for the treatment of asthma and scald burns. For that, the inorganic elemental contents of Meretricis concha from five sampling points in Jiaozhou Bay have been determined by means of inductively coupled plasma optical emission spectrometry, and the comparative investigations based on the contents of 14 inorganic elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se and Zn) of the samples from Jiaozhou Bay and the previous reported Rushan Bay were performed. It has been found that the samples from the two bays are approximately classified into two kinds using hierarchical cluster analysis, and a four-factor model based on principle component analysis could explain approximately 75% of the detection data, also linear discriminant analysis can be used to develop a prediction model to distinguish the samples from Jiaozhou Bay and Rushan Bay with accuracy of about 93%. The results of the present investigation suggested that the inorganic elemental fingerprint based on the combination of the measured elemental content and chemometric analysis is a promising approach for verifying the geographical origin of Meretricis concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.

  19. Optofluidic elements in liquid-based sensor systems; Optofluidische Komponenten in der Fluessigkeitssensorik

    Energy Technology Data Exchange (ETDEWEB)

    Rosenauer, Michael; Weber, Emanuel; Vellekoop, Michael J. [Technische Univ. Wien (Austria). Inst. fuer Sensor- und Aktuatorsysteme; Stampfl, Juergen [Technische Univ. Wien (Austria). Inst. fuer Werkstoffwissenschaft und Werkstofftechnologie

    2010-07-01

    Adaptive optical components in integrated sensor systems are critical for the excitation and detection of luminescence signals in bioassay applications. In this work two types of optofluidic elements with the ability to increase the sensitivity and applicability of these lab-on-a-chips are discussed. First a hydrodynamic shapeable liquid microlens based on a microfluidic channel structure is presented. It allows a three-dimensional alteration of the focal length in-plane to the substrate. The second sensor system comprises an adaptive liquid-core/liquid-cladding waveguide. The prototypes are fabricated by micro-stereolithography in a transparent photopolymer. (orig.)

  20. BLAT-Based Comparative Analysis for Transposable Elements: BLATCAT

    Directory of Open Access Journals (Sweden)

    Sangbum Lee

    2014-01-01

    Full Text Available The availability of several whole genome sequences makes comparative analyses possible. In primate genomes, the priority of transposable elements (TEs is significantly increased because they account for ~45% of the primate genomes, they can regulate the gene expression level, and they are associated with genomic fluidity in their host genomes. Here, we developed the BLAST-like alignment tool (BLAT based comparative analysis for transposable elements (BLATCAT program. The BLATCAT program can compare specific regions of six representative primate genome sequences (human, chimpanzee, gorilla, orangutan, gibbon, and rhesus macaque on the basis of BLAT and simultaneously carry out RepeatMasker and/or Censor functions, which are widely used Windows-based web-server functions to detect TEs. All results can be stored as a HTML file for manual inspection of a specific locus. BLATCAT will be very convenient and efficient for comparative analyses of TEs in various primate genomes.

  1. BLAT-based comparative analysis for transposable elements: BLATCAT.

    Science.gov (United States)

    Lee, Sangbum; Oh, Sumin; Kang, Keunsoo; Han, Kyudong

    2014-01-01

    The availability of several whole genome sequences makes comparative analyses possible. In primate genomes, the priority of transposable elements (TEs) is significantly increased because they account for ~45% of the primate genomes, they can regulate the gene expression level, and they are associated with genomic fluidity in their host genomes. Here, we developed the BLAST-like alignment tool (BLAT) based comparative analysis for transposable elements (BLATCAT) program. The BLATCAT program can compare specific regions of six representative primate genome sequences (human, chimpanzee, gorilla, orangutan, gibbon, and rhesus macaque) on the basis of BLAT and simultaneously carry out RepeatMasker and/or Censor functions, which are widely used Windows-based web-server functions to detect TEs. All results can be stored as a HTML file for manual inspection of a specific locus. BLATCAT will be very convenient and efficient for comparative analyses of TEs in various primate genomes.

  2. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  3. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    OpenAIRE

    Changyong Cao; Qing-Hua Qin

    2015-01-01

    An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM) and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field) are employed. The formulations for...

  4. Dust optical properties retrieved from ground-based polarimetric measurements.

    Science.gov (United States)

    Li, Zhengqiang; Goloub, Philippe; Blarel, Luc; Damiri, Bahaiddin; Podvin, Thierry; Jankowiak, Isabelle

    2007-03-20

    We have systematically processed one year of sunphotometer measurements (recorded at five AERONET/PHOTONS sites in Africa) in order to assess mineral dust optical properties with the use of a new polarimetry-based algorithm. We consider the Cimel CE318 polarized sunphotometer version to obtain single-scattering albedo, scattering phase matrix elements F(11) and F(12) for dust aerosols selected with Angström exponents ranging from -0.05 to 0.25. Retrieved F(11) and F(12) differ significantly from those of spherical particles. The degree of linear polarization -F(12)/F(11) for single scattering of atmospheric total column dust aerosols in the case of unpolarized incident light is systematically retrieved for the first time to our knowledge from sunphotometer measurements and shows consistency with previous laboratory characterizations of nonspherical particles.

  5. Demonstration of a novel dispersive spectral splitting optical element for cost- effective photovoltaic conversion

    CERN Document Server

    Maragliano, Carlo; Bronzoni, Matteo; Rampino, Stefano; Fitzgerald, Eugene A; Chiesa, Matteo; Stefancich, Marco

    2015-01-01

    In this letter we report the preliminary validation of a low-cost paradigm for photovoltaic power generation that utilizes a prismatic Fresnel-like lens to simultaneously concentrate and separate sunlight into continuous laterally spaced spectral bands, which are then fed into spectrally matched single-junction photovoltaic cells. A prismatic lens was designed using geometric optics and the dispersive properties of the employed material, and its performance was simulated with a ray- tracing software. After device optimization, it was fabricated by injection molding, suitable for large-scale mass production. We report an average optical transmittance of ~ 90% over the VNIR range with spectral separation in excellent agreement with our simulations. Finally, two prototype systems were tested: one with GaAsP and c-Si photovoltaic devices and one with a pair of copper indium gallium selenide based solar cells. The systems demonstrated an increase in peak electrical power output of 51% and 64% respectively under wh...

  6. Generation of Laguerre Gaussian beams using spiral phase diffractive elements fabricated on optical fiber tips using focused ion beam milling

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Dahal, P.; Guerreiro, A.; Jorge, P. A. S.; Viegas, J.

    2016-03-01

    In this work, spiral phase lenses fabricated on the tip of single mode optical fibers are reported. This allows tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The phase profiles are evaluated and validated using an implementation of the Finite Differences Time Domain. The output optical intensity profiles matching the numerical simulations are presented and analyzed. Finally, results on cell trapping and manipulation are briefly described.

  7. Single Spring Joint Element Based on the Mixed Coordinate System

    Directory of Open Access Journals (Sweden)

    Lanhao Zhao

    2015-01-01

    Full Text Available As a FEM for reinforced concrete bond-slip problems, one important feature of the typical double spring joint element method is the selection of the normal stiffness, which may cause the mutual embedding problem and bring challenges to the calculation. In this paper, a novel single spring joint element method based on the mixed coordinate system is proposed to simulate the interaction of two materials. Instead of choosing the normal stiffness arbitrarily, the proposed method makes DOFs of two materials in the normal direction equal to ensure deformation compatibility. And its solid elements for the concrete are solved in global coordinate system, while the beam elements for the steel bar are solved in local coordinate system. In addition, the proposed method can also be applied to RC structures with irregular arrangements of steel bars. Numerical examples demonstrate the validity and accuracy of the proposed approach. Furthermore, the bond model is applied to RC beams with the description of the damage process.

  8. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range...... of the device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype accelerometer...

  9. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range...... of the device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype accelerometer...

  10. Mining key elements for severe convection prediction based on CNN

    Science.gov (United States)

    Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng

    2017-04-01

    Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with

  11. Experimental demonstration of an all-optical fiber-based Fredkin gate.

    Science.gov (United States)

    Kostinski, Natalie; Fok, Mable P; Prucnal, Paul R

    2009-09-15

    We propose and report on what we believe to be the first experimental demonstration of an all-optical fiber-based Fredkin gate for reversible digital logic. The simple 3-input/3-output fiber-based nonlinear optical loop mirror architecture requires only minor alignment for full operation. A short nonlinear element, heavily doped GeO(2) fiber (HDF), allows for a more compact design than typical nonlinear fiber gates. The HDF is ideal for studying reversibility, functioning as a noise-limited medium, as compared to the semiconductor optical amplifier, while allowing for cross-phase modulation, a nondissipative optical interaction. We suggest applications for secure communications, based on "cool" computing.

  12. Finite element based micro-mechanics modeling of textile composites

    Science.gov (United States)

    Glaessgen, E. H.; Griffin, O. H., Jr.

    1995-01-01

    Textile composites have the advantage over laminated composites of a significantly greater damage tolerance and resistance to delamination. Currently, a disadvantage of textile composites is the inability to examine the details of the internal response of these materials under load. Traditional approaches to the study fo textile based composite materials neglect many of the geometric details that affect the performance of the material. The present three dimensional analysis, based on the representative volume element (RVE) of a plain weave, allows prediction of the internal details of displacement, strain, stress, and failure quantities. Through this analysis, the effect of geometric and material parameters on the aforementioned quantities are studied.

  13. All-optical digital processor based on harmonic generation phenomena

    Science.gov (United States)

    Shcherbakov, Alexandre S.; Rakovsky, Vsevolod Y.

    1990-07-01

    Digital optical processors are designed to combine ultra- parallel data procesing capabilities of optical aystems cnd high accur&cy of performed computations. The ultimate limit of the processing rate can be anticipated from all-optical parcllel erchitecturea based on networks o logic gates using materials exibiting strong electronic nonlinearities with response times less than 1O seconds1.

  14. Document Indexing for Image-Based Optical Information Systems.

    Science.gov (United States)

    Thiel, Thomas J.; And Others

    1991-01-01

    Discussion of image-based information retrieval systems focuses on indexing. Highlights include computerized information retrieval; multimedia optical systems; optical mass storage and personal computers; and a case study that describes an optical disk system which was developed to preserve, access, and disseminate military documents. (19…

  15. All-optical sampling based on quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Wu, Chen; Wang, Yongjun; Wang, Lina

    2016-11-01

    In recent years, the all-optical signal processing system has become a hot research field of optical communication. This paper focused on the basic research of quantum-dot (QD) semiconductor optical amplifier (SOA) and studied its practical application to all-optical sampling. A multi-level dynamic physical model of QD-SOA is established, and its ultrafast dynamic characteristics are studied through theoretical and simulation research. For further study, an all-optical sampling scheme based on the nonlinear polarization rotation (NPR) effect of QD-SOA is also proposed. This paper analyzed the characteristics of optical switch window and investigated the influence of different control light pulses on switch performance. The presented optical sampling method has an important role in promoting the improvement of all-optical signal processing technology.

  16. Optical Biosensors Based on Semiconductor Nanostructures

    Directory of Open Access Journals (Sweden)

    Raúl J. Martín-Palma

    2009-06-01

    Full Text Available The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented.

  17. Attenuation in silica-based optical fibers

    DEFF Research Database (Denmark)

    Wandel, Marie Emilie

    2006-01-01

    In this thesis on attenuation in silica based optical fibers results within three main topics are reported. Spectral attenuation measurements on transmission fibers are performed in the wide wavelength range 290 nm – 1700 nm. The measured spectral attenuation is analyzed with special emphasis...... on absorption peaks in order to investigate the cause of an unusual high attenuation in a series of transmission fibers. Strong indications point to Ni2+ in octahedral coordination as being the cause of the high attenuation. The attenuation of fibers having a high core refractive index is analyzed and the cause...... of the high attenuation measured in such fibers is described as being due to scattering of light on fluctuations of the core diameter. A novel semi-empirical model for predicting the attenuation of high index fibers is presented. The model is shown to be able to predict the attenuation of high index fibers...

  18. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Changyong Cao

    2015-01-01

    Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.

  19. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier.

    Science.gov (United States)

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-27

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing.

  20. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier

    Science.gov (United States)

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-01

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing.

  1. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal.

    Science.gov (United States)

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-08-05

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature 'prototype' PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.

  2. Adding Social Elements to Game-Based Learning

    Directory of Open Access Journals (Sweden)

    Chien-Hung Lai

    2014-05-01

    Full Text Available Game-based learning is to present the instruction by games in learning, with the main purpose of triggering learners’ motives instead of instructing the courses. Thus, increasing learning motive by game-based learning becomes a common instructional strategy to enhance learning achievement. However, it is not easy to design interesting games combined with courses. In 2011, Echeverria proposed a design to combine characteristics of games with elements of courses by matching the virtual scenarios in games with proper courses. However, in the past game-based learning, students were gathered in regular places for several times of game-based learning. Students’ learning was limited by time and space. Therefore, for students’ game-based learning at any time and in any places, based on theories of design elements of online community game Aki Järvinen, this study treats Facebook as the platform of games. The development by online community game is easier, faster and cheaper than traditional video games. In 2006, Facebook allowed API program of the third party. Therefore, by Facebook, this study provides the platform for students to learn in social lives to explore students’ activities in online community games. Questionnaire survey is conducted to find out if the design of non-single user game is attractive for students to participate in game-based learning. In order to make sure that the questionnaires can be the criteria to investigate students’ intention to play games, by statistical program of social science; this study validates reliability and validity of items of questionnaire to effectively control the effect of online community games on students’ learning intention.

  3. Using binary optical elements (BOEs) to generate rectangular spots for illumination in micro flow cytometer

    Science.gov (United States)

    Zhao, Jingjing; You, Zheng

    2016-01-01

    This work introduces three rectangular quasi-flat-top spots, which are provided by binary optical elements (BOEs) and utilized for the illumination in a microflow cytometer. The three spots contain, respectively, one, two, and three rectangles (R1, R2, and R3). To test the performance of this mechanism, a microflow cytometer is established by integrating the BOEs and a three-dimensional hydrodynamic focusing chip. Through the experiments of detecting fluorescence microbeads, the three spots present good fluorescence coefficients of variation in comparison with those derived from commercial instruments. Benefiting from a high spatial resolution, when using R1 spot, the micro flow cytometer can perform a throughput as high as 20 000 events per second (eps). Illuminated by R2 or R3 spot, one bead emits fluorescence twice or thrice, thus the velocity can be measured in real time. Besides, the R3 spot provides a long-time exposure, which is conducive to improving fluorescence intensity and the measurement stability. In brief, using the spots shaped and homogenized by BOEs for illumination can increase the performance and the functionality of a micro flow cytometer. PMID:27733892

  4. Mechanical blind gap measurement tool for alignment of the JWST Optical Telescope Element

    Science.gov (United States)

    Liepmann, Till

    2016-09-01

    This paper describes a novel gap gauge tool that is used to provide an independent check of the James Webb Space Telescope (JWST) Optical Telescope Element (OTE) primary mirror alignment. Making accurate measurements of the mechanical gaps between the OTE mirror segments is needed to verify that the segments were properly aligned relative to each other throughout the integration and test of the 6.6 meter telescope. The gap between the Primary Mirror Segment Assemblies (PMSA) is a sensitive indicator of the relative clocking and decenter. Further, the gap measurements are completely independent of all the other measurements use in the alignment process (e.g. laser trackers and laser radar). The gap measurement is a challenge, however, that required a new approach. Commercial gap measurements tools were investigated; however no suitable solution is available. The challenge of this measurement is due to the required 0.1 mm accuracy, the close spacing of the mirrors segments (approximately 3-9mm), the acute angle between the segment sides (approximately 4 degrees), and the difficult access to the blind gap. Several techniques were considered and tested before selecting the gauge presented here. This paper presents the theory, construction and calibration of the JWST gap gauge that is being used to measure and verify alignment of the OTE primary mirror segments.

  5. Long term measurements of the elemental composition and optical properties of aerosols in Amazonia

    Directory of Open Access Journals (Sweden)

    Arana A. A.

    2013-04-01

    Full Text Available Aerosols are being collected and analyzed for trace elements in two sites in Amazonia since January 2008. On eof the site, Manaus is located in a very pristine area in Central Amazonia. The site is nt affected directly by any urban plume for thousands of kilometers. A second site is located in Porto Velho, in a region with heavy land use change and deforestation. Optical properties (light scattering ad absorption are also being measured in order to study the climatic impact of aerosols. It was observed a clear seasonal pattern for both sites, with higher concentrations in the dry season. But the difference in seasonal concentrations observed for Porto Velho is much larger due to stronger anthropogenic influences. In Manaus during the wet season, very low concentrations of heavy metals, maybe the smallest measured in continental regions are reported. Positive Matrix Factorization (PMF was used to separate the different aerosol components. In general, for fine and coarse mode and wet and dry season, 3 aerosol components could be observed: 1 Natural biogenic aerosol; 2 biomass burning component; 3 Soil dust both locally and long range transported Sahara dust

  6. Thermal conductivity calculation of bio-aggregates based materials using finite and discrete element methods

    Science.gov (United States)

    Pennec, Fabienne; Alzina, Arnaud; Tessier-Doyen, Nicolas; Naitali, Benoit; Smith, David S.

    2012-11-01

    This work is about the calculation of thermal conductivity of insulating building materials made from plant particles. To determine the type of raw materials, the particle sizes or the volume fractions of plant and binder, a tool dedicated to calculate the thermal conductivity of heterogeneous materials has been developped, using the discrete element method to generate the volume element and the finite element method to calculate the homogenized properties. A 3D optical scanner has been used to capture plant particle shapes and convert them into a cluster of discret elements. These aggregates are initially randomly distributed but without any overlap, and then fall down in a container due to the gravity force and collide with neighbour particles according to a velocity Verlet algorithm. Once the RVE is built, the geometry is exported in the open-source Salome-Meca platform to be meshed. The calculation of the effective thermal conductivity of the heterogeneous volume is then performed using a homogenization technique, based on an energy method. To validate the numerical tool, thermal conductivity measurements have been performed on sunflower pith aggregates and on packed beds of the same particles. The experimental values have been compared satisfactorily with a batch of numerical simulations.

  7. Performance of laser based optical imaging system

    Science.gov (United States)

    Shah, Dhrupesh S.; Banerjee, Arup; Vora, Anup; Biswas, Amiya; Patel, Naimesh; Kurulkar, Amit; Dutt, Ashutosh

    2016-05-01

    Day night imaging application requires high dynamic range optical imaging system to detect targets of interest covering mid-day (>32000 Lux)[1], and moonless night ( 1mLux)[1] under clear sky- (visibility of >10km, atmospheric loss of 500m, atmospheric loss of >15dB/Km) conditions. Major governing factors for development of such camera systems are (i) covert imaging with ability to identify the target, (ii) imaging irrespective to the scene background, (iii) reliable operation , (iv) imaging capabilities in inclement weather conditions, (v) resource requirement vs availability power & mass, (vi) real-time data processing, (vii) self-calibration, and (viii) cost. Identification of optimum spectral band of interest is most important to meet these requirements. Conventional detection systems sensing in MWIR and LWIR band has certain draw backs in terms of target detection capabilities, susceptibility to background and huge thermo-mechanical resource requirement. Alternatively, range gated imaging camera system sensing in NIR/SWIR spectrum has shown significant potential to detect wide dynamic range targets. ToF Camera configured in NIR band has certain advantages in terms of Focal Plane Assembly (FPA) development with large format detectors and thermo-mechanical resource requirement compared to SWIR band camera configuration. In past, ToF camera systems were successfully configured in NIR spectrum using silicon based Electron Multiplying CCD (EMCCD), Intensifier CCD (ICCD) along with Gating device and pulsed laser source having emission in between 800nm to 900nm. However, these systems have a very low dynamic range and not suitable for clear sky mid-day conditions. Recently silicon based scientific grade CMOS image sensors have shown significant improvement in terms of high NIR responsivity and available in bigger formats (5MP or more), adequate Full well capacity for day time imaging (>30Ke), very low readout noise (<2e) required for night imaging and higher frame

  8. Fractal zone plate beam based optical tweezers

    Science.gov (United States)

    Cheng, Shubo; Zhang, Xinyu; Ma, Wenzhuo; Tao, Shaohua

    2016-01-01

    We demonstrate optical manipulation with an optical beam generated by a fractral zone plate (FZP). The experimental results show that the FZP beam can simultaneously trap multiple particles positioned in different focal planes of the FZP beam, owing to the multiple foci and self-reconstruction property of the FZP beam. The FZP beam can also be used to construct three-dimensional optical tweezers for potential applications. PMID:27678305

  9. Joint Forward Operating Base Elements of Command and Control

    Science.gov (United States)

    Summers, William C.

    2002-01-01

    Since the 1986 Goldwater-Nichols Act directed the Chairman of the Joint Chiefs of Staff to develop doctrine for the joint employment of the armed forces, tactics, techniques, and procedures have evolved at different rates depending on the competency. Whereas the command of joint air forces is well prescribed within the structure of the air operations center and its associated leadership, command of air assets at a joint forward operating base lacks guidance. Today, the United States prosecutes an air war over Afghanistan from bases in Uzbekistan, Pakistan, and Afghanistan. Elements of the United States Army, Air Force, and Marines combine at these geographically minute locations, each bringing a certain complement of support and command and control. Evidence from operations during the 1999 air war for Kosovo at Tirana Rinas Airport in Albania suggests that when these service elements meet at the airfield for the first time, there are problems associated with local procedure. At best, time is wasted creating local joint systems to overcome the difficulties. At worst, safety and mission accomplishment are jeopardized. This thesis will address the need to develop doctrine and a jointly integrated organization to support the command and control function at a forward operating base.

  10. The Research of Welding Residual Stress Based Finite Element Method

    Directory of Open Access Journals (Sweden)

    Qinghua Bai

    2013-06-01

    Full Text Available Welding residual stress was caused by local heating during the welding process, tensile residual stress reduce fatigue strength and corrosion resistance, Compressive residual stress decreases stability limit. So it will produce brittle fracture, reduce working life and strength of workpiece; Based on the simulation of welding process with finite element method, calculate the welding temperature field and residual stress, and then measure residual stress in experiments, So as to get the best welding technology and welding parameters, to reduce welding residual stress effective, it has very important significance.

  11. Nanofiber-based all-optical switches

    CERN Document Server

    Kien, Fam Le

    2016-01-01

    We study all-optical switches operating on a single four-level atom with the $N$-type transition configuration in a two-mode nanofiber cavity with a significant length (on the order of $20$ mm) and a moderate finesse (on the order of 300) under the electromagnetically induced transparency (EIT) conditions. In our model, the gate and probe fields are the quantum nanofiber-cavity fields excited by weak classical light pulses, and the parameters of the $D_2$ line of atomic cesium are used. We examine two different switching schemes. The first scheme is based on the effect of the presence of a photon in the gate mode on the EIT of the probe mode. The second scheme is based on the use of EIT to store a photon of the gate mode in the population of an appropriate atomic level, which leads to the reduction of the transmission of the field in the probe mode. We investigate the dependencies of the switching contrast on various parameters, such as the cavity length, the mirror reflectivity, and the detunings and powers ...

  12. Quantum stream cipher based on optical communications

    CERN Document Server

    Hirota, O; Sohma, M; Usuda, T S; Harasawa, K; Hirota, Osamu; Kato, Kentaro; Sohma, Masaki; Usuda, Tsuyoshi S.; Harasawa, Katsuyoshi

    2004-01-01

    In 2000, an attractive new quantum cryptography was discovered by H.P.Yuen based on quantum communication theory. It is applicable to direct encryption, for example quantum stream cipher based on Yuen protocol(Y-00), with high speeds and for long distance by sophisticated optical devices which can work under the average photon number per signal light pulse:$ = 1000 \\sim 10000$. In addition, it may provide information-theoretic security against known/chosen plaintext attack, which has no classical analogue. That is, one can provide secure communication, even the system has $H(K) << H(X)$. In this paper, first, we give a brief review on the general logic of Yuen's theory. Then, we show concrete security analysis of quantum stream cipher to quantum individual measurement attacks. Especially by showing the analysis of Lo-Ko known plaintext attack, the feature of Y-00 is clarified. In addition, we give a simple experimental result on the advantage distillation by scheme consisting of intensity modulation/dir...

  13. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2000-01-01

    Semiconductor optical amplifiers are useful building blocks for all-optical gates as wavelength converters and OTDM demultiplexers. The paper reviews the progress from simple gates using cross-gain modulation and four-wave mixing to the integrated interferometric gates using cross-phase modulation....... These gates are very efficient for high-speed signal processing and open up interesting new areas, such as all-optical regeneration and high-speed all-optical logic functions...

  14. Optical chiral metamaterial based on the resonant behaviour of nanodiscs

    Science.gov (United States)

    Kordi, Mahdi; Mojtaba Mirsalehi, Mir

    2016-08-01

    Circular dichorism and optical activity have been achieved by chiral metamaterials in the optical spectrum, but for the case of negative index of refraction, remarkable achievements have not been obtained in this region so far. We employ nanoparticles to shift the resonant frequency of a chiral metamaterial based on twisted cross wires to optical domain. Our proposed structure provides giant optical activity, strong circular dichorism and also negative refractive index in the optical wavelengths. Optical activity in our structure has a rotary power similar to a gyrotropic crystal of quartz, but in a thickness which is four orders of magnitude smaller. The foundation of our method for realizing such an optical chiral metamaterial is based on creating a different coupling between longitudinal modes of localized surface plasmons for right and left circularly polarized incident waves.

  15. Siloxane-based photonic structures and their application in optic and optoelectronic devices

    Science.gov (United States)

    Pudiš, Dušan; Šušlik, Łuboš; Jandura, Daniel; Goraus, Matej; Figurová, Mária; Martinček, Ivan; Gašo, Peter

    2016-12-01

    Polymer based photonics brings simple and cheap solutions often with interesting results. We present capabilities of some siloxanes focusing on polydimethylsiloxane (PDMS) with unique mechanical and optical properties. In combination of laser lithography technologies with siloxane embossing we fabricate different grating structures with one- and two-dimensional symmetry. Concept of PDMS based thin membranes with patterned surface as an effective diffraction element for modification of radiation pattern diagram of light emitting diodes is here shown. Also the PDMS was used as an alternative material for fabrication of complicated waveguide with implemented Bragg grating. For lab-on-chip applications, we patterned PDMS microstructures for microfluidic and micro-optic devices.

  16. Low-Loss Polymer-Based Ring Resonator for Resonant Integrated Optical Gyroscopes

    Directory of Open Access Journals (Sweden)

    Guang Qian

    2014-01-01

    Full Text Available Waveguide ring resonator is the sensing element of resonant integrated optical gyroscope (RIOG. This paper reports a polymer-based ring resonator with a low propagation loss of about 0.476 dB/cm for RIOG. The geometrical parameters of the waveguide and the coupler of the resonator were optimally designed. We also discussed the optical properties and gyroscope performance of the polymer resonator which shows a high quality factor of about 105. The polymer-based RIOG exhibits a limited sensitivity of less than 20 deg/h for the low and medium resolution navigation systems.

  17. All-optical virtual private network and ONUs communication in optical OFDM-based PON system.

    Science.gov (United States)

    Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun

    2011-11-21

    We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible.

  18. Multicore optical fibre and fibre-optic delay line based on it

    Science.gov (United States)

    Egorova, O. N.; Astapovich, M. S.; Belkin, M. E.; Semjonov, S. L.

    2016-12-01

    The first switchable fibre-optic delay line based on a 1300-{\\text{m}}-long multicore optical fibre has been fabricated and investigated. We have obtained signal delay times of up to 45 \\unicode{956}{\\text{s}} at 6.43-\\unicode{956}{\\text{s}} intervals. Sequential signal propagation through the cores of the multicore optical fibre makes it possible to reduce the fibre length necessary for obtaining a predetermined delay time, which is important for reducing the weight and dimensions of devices based on the use of fibre-optic delay lines.

  19. Low voltage integrated optics electro-optical modulator applied to optical voltage transformer based on WLI technique

    Science.gov (United States)

    Santos, J. C.; Rubini, J.; Silva, L. P. C.; Caetano, R. E.

    2015-09-01

    The use of two electro-optical modulators linked in series, one for sensing and one for recovering signals, was formerly presented by some of the authors as a solution for interrogation of optical fiber sensor systems based on WLI method. A key feature required from such systems is that half-wave voltage (Vπ) of recovering modulator must be as small as possible. Aiming at meeting this requirement, in this paper it is presented the use of an unbalanced Michelson Interferometer implemented using an integrated optics component as recover interferometer in an optical voltage transformer intended for high voltage measurements.

  20. Imaging of elements in leaves of tobacco by solid sampling–electrothermal vaporization–inductively coupled plasma-optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Masson, Pierre, E-mail: masson@bordeaux.inra.fr

    2014-12-01

    Plants take up and store elements according to the environment in which they are growing. Because plants are at the base of the food chain, the determination of essential elements or toxic elements in plant materials is of importance. However, it is assumed that the element content determined on selected tissues may provide more specific information than that derived from the whole plant analysis. In this work, we assessed the feasibility of solid sampling–electrothermal vaporization–inductively coupled plasma-optical emission spectrometry analyses for quantitative imaging of Cd and Mg in plant leaves. Leaves of tobacco (Nicotiana tabacum) were selected to be used as samples. To produce a two dimensional image, sections cut from leaf samples were analyzed. Cellulose doped with multi-element solution standards was used as calibration samples. Two certified reference materials (NIST SRM 1547 Peach Leaves and NIST SRM 1573a Tomato leaves) were used to verify the accuracy of measurements with good agreement between the measured concentrations and the certified values. Quantitative imaging revealed the inhomogeneous distribution of the selected elements. Excess of Cd and Mg tended to be focused on peripheral regions and the tip of the leaf.

  1. Fiber Optic-Based Refractive Index Sensing at INESC Porto

    Science.gov (United States)

    Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando

    2012-01-01

    A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405

  2. Rapid Separation of Elemental Species by Fast Multicapillary Gas Chromatography with Multichannel Optical Spectrometry Detection following Headspace Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Jacek Giersz

    2015-05-01

    Full Text Available A method for conducting fast and efficient gas chromatography based on short multicapillaries in straight alignment combined with atomic emission detection was developed for field analysis. The strategy enables for speciation analysis of organometallic compounds. The analytes are simultaneously ethylated and preconcentrated on a solid phase microextraction (SPME fiber placed in the headspace over the sample for 25 min. The ethylated species are then completely separated and selectively quantified within 25 s under isothermal conditions. A new miniaturized speciation analyzer has been constructed and evaluated. The system consists of a GC injection port and a lab-made miniaturized GC unit directly coupled with miniaturized plasma excitation source. The emitted light is transferred via optical fiber and registered with a miniaturized charged coupled device (CCD based spectrometer. Working parameters for multicapillary column gas chromatography with atomic emission detector, including carrier gas flow rate, desorption temperature, and GC column temperature, were optimized to achieve good separation of analytes. Basic investigations of the fundamental properties of 5 cm-long multicapillary column, to evaluate its potential and limitations as a rapid separation unit, are presented. The adaptation of the technique for use with a SPME system and with a multichannel element-selective plasma-emission detector is highlighted.

  3. Organic double layer element driven by triboelectric nanogenerator: Study of carrier behavior by non-contact optical method

    Science.gov (United States)

    Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-02-01

    By using optical electric-field-induced second-harmonic generation (EFISHG) technique, we studied carrier behavior caused by contact electrification (CE) in an organic double-layer element. This double-layer sample was half suspended in the open air, where one electrode (anode or cathode) was connected with a Cu foil for electrification while the other electrode was floated. Results showed two distinct carrier behaviors, depending on the (anode or cathode) connections to the Cu foil, and these carrier behaviors were analyzed based on the Maxwell-Wagner model. The double-layer sample works as a simple solar cell device. The photovoltaic effect and CE process have been proved to be two paralleled effects without strong interaction with each other, while photoconductivity changing in the sample can enhance the relaxation of CE induced charges. By probing the carrier behavior in this half-suspended device, the EFISHG technique has been demonstrated to be an effective non-contact method for clarifying the CE effect on related energy harvesting devices and electronics devices. Meanwhile, the related physical analysis in this letter is also useful for elucidating the fundamental characteristic of hybrid energy system based on solar cell and triboelectric nanogenerator.

  4. Optical encryption in spatially-incoherent light using two LC SLMs for both information input and encryption element imaging

    Science.gov (United States)

    Bondareva, Alyona P.; Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.

    2014-10-01

    At present time methods of optical encryption are actively developed. The majority of existing methods of optical encryption use not only light intensity distribution, easily registered with photosensors, but also its phase distribution which require application of complex holographic schemes in conjunction with spatially coherent monochromatic illumination. This leads to complex optical schemes and low decryption quality. To eliminate these disadvantages it is possible to implement optical encryption using spatially incoherent monochromatic illumination which requires registration of light intensity distribution only. Encryption is accomplished by means of optical convolution of image of scene to be encrypted and encryption diffractive optical element (DOE) point spread function (PSF) which serves as encryption key. Encryption process is described as follows. Scene is illuminated with spatially-incoherent monochromatic light. In the absence of encryption DOE lens forms image of scene in photosensor plane. DOE serves as encryption element, its PSF - encryption key. Light passing through DOE forms convolution of object image and DOE PSF. Registered by photosensor convolution is encrypted image. Decryption was conducted numerically on computer by means of inverse filtration with regularization. Kinoforms were used as encryption DOE because they have single diffraction order. Two liquid crystal (LC) spatial light modulators (SLM) were used to implement dynamic digital information input and dynamic encryption key change. As input scene amplitude LC SLM HoloEye LC2002 with 800×600 pixels 32×32 μm2 and 256 gray levels was used. To image synthesized encryption kinoforms phase LC SLM HoloEye PLUTO VIS with 1920×1080 pixels 8×8 μm2 and 256 phase levels was used. Set of test images was successfully optically encrypted and then numerically decrypted. Encrypted images contents are hidden. Decrypted images despite quite high noise levels are positively recognizable

  5. Applications of optical fibers and miniature photonic elements in medical diagnostics

    Science.gov (United States)

    Blaszczak, Urszula; Gilewski, Marian; Gryko, Lukasz; Zajac, Andrzej; Kukwa, Andrzej; Kukwa, Wojciech

    2014-05-01

    Construction of endoscopes which are known for decades, in particular in small devices with the diameter of few millimetres, are based on the application of fibre optic imaging bundles or bundles of fibers in the illumination systems (usually with a halogen source). Cameras - CCD and CMOS - with the sensor size of less than 5 mm emerging commercially and high power LED solutions allow to design and construct modern endoscopes characterized by many innovative properties. These constructions offer higher resolution. They are also relatively cheaper especially in the context of the integration of the majority of the functions on a single chip. Mentioned features of the CMOS sensors reduce the cycle of introducing the newly developed instruments to the market. The paper includes a description of the concept of the endoscope with a miniature camera built on the basis of CMOS detector manufactured by Omni Vision. The set of LEDs located at the operator side works as the illuminating system. Fibre optic system and the lens of the camera are used in shaping the beam illuminating the observed tissue. Furthermore, to broaden the range of applications of the endoscope, the illuminator allows to control the spectral characteristics of emitted light. The paper presents the analysis of the basic parameters of the light-and-optical system of the endoscope. The possibility of adjusting the magnifications of the lens, the field of view of the camera and its spatial resolution is discussed. Special attention was drawn to the issues related to the selection of the light sources used for the illumination in terms of energy efficiency and the possibility of providing adjusting the colour of the emitted light in order to improve the quality of the image obtained by the camera.

  6. Management Concerns for Optical Based Filing Systems

    Science.gov (United States)

    1990-03-01

    terminals, WORM Palo Alto, CA 94303 drives, optical jukeboxes, printers, scanners. Candi Technology Inc. Systems integrators providing 2354 Calle Del Mundo ...n.3, p. 68, 6 February 1989. Dortch, M., "A Storage Media Primer ", LAN Times, v.6, n.1, pp. 38-39, January 1989. Dukeman, John, "Optical Disk - A

  7. A microfluidic based optical particle detection method

    Science.gov (United States)

    Dou, James; Chen, Lu; Nayyar, Rakesh; Aitchison, Stewart

    2012-03-01

    An optical particle detection and analysis method is presented. This method combines the capillary microfluidics, integrated optics and novel image acquisition and analysis algorithms to form the basis of a portable or handheld cytometer instrument. Experimental results provided shows the testing results are closely matched with conventional flow cytometer data.

  8. Proposal for loadable and erasable optical memory unit based on dual active microring optical integrators

    Science.gov (United States)

    Ding, Yunhong; Zhang, Xiaobei; Zhang, Xinliang; Huang, Dexiu

    2008-11-01

    A novel approach for loadable and erasable optical memory unit based on dual microring optical integrators is proposed and studied. The optical integrator, which can generate an optical step function for data storing, is synthesized using active media for loss compensation and a tunable phase shifter for data reading at any time. The input data into the memory is return-to-zero (RZ) signal, and the output data read from the memory is also RZ format with a narrower pulse width. An optical digital register based on the proposed optical memory unit is also investigated and simulated, which shows the potential for large scale data storage and serial-to-parallel data conversion. A great number of such memory units can be densely integrated on a photonic circuit for future large scale data storage and buffer.

  9. Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup.

    Science.gov (United States)

    Ossowski, Paweł; Raiter-Smiljanic, Anna; Szkulmowska, Anna; Bukowska, Danuta; Wiese, Małgorzata; Derzsi, Ladislav; Eljaszewicz, Andrzej; Garstecki, Piotr; Wojtkowski, Maciej

    2015-10-19

    We demonstrate a novel optical method for the detection and differentiation between erythrocytes and leukocytes that uses amplitude and phase information provided by optical coherence tomography (OCT). Biological cells can introduce significant phase modulation with substantial scattering anisotropy and dominant forward-scattered light. Such physical properties may favor the use of a trans-illumination imaging technique. However, an epi-illumination mode may be more practical and robust in many applications. This study describes a new way of measuring the phase modulation introduced by flowing microobjects. The novel part of this invention is that it uses the backscattered signal from the substrate located below the flowing/moving objects. The identification of cells is based on phase-sensitive OCT signals. To differentiate single cells, a custom-designed microfluidic device with a highly scattering substrate is introduced. The microchannels are molded in polydimethylsiloxane (PDMS) mixed with titanium dioxide (TiO2) to ensure high scattering properties. The statistical parameters of the measured signal depend on the cells' features, such as their size, shape, and internal structure.

  10. Photonic processing and realization of an all-optical digital comparator based on semiconductor optical amplifiers

    Science.gov (United States)

    Singh, Simranjit; Kaur, Ramandeep; Kaler, Rajinder Singh

    2015-01-01

    A module of an all-optical 2-bit comparator is analyzed and implemented using semiconductor optical amplifiers (SOAs). By employing SOA-based cross phase modulation, the optical XNOR logic is used to get an A=B output signal, where as AB¯ and A¯B> logics operations are used to realize A>B and Aoptical high speed networks and computing systems.

  11. All-Optical Terahertz Optical Asymmetric Demultiplexer (toad) Based Binary Comparator:. a Proposal

    Science.gov (United States)

    Chattopadhyay, Tanay

    Comparator determines whether a number is greater than, equals to or less than another number. It plays a significant role in fast central processing unit in all-optical scheme. In all-optical scheme here 1-bit binary comparator is proposed and described by Terahertz Optical Asymmetric Demultiplexer (TOAD) based interferometric switch. Simulation result by Mathcad-7 is also given. Cascading technique of building up the n-bit binary comparator with this 1-bit comparator block is also proposed here.

  12. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    Science.gov (United States)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  13. A Lagrange multiplier based divide and conquer finite element algorithm

    Science.gov (United States)

    Farhat, C.

    1991-01-01

    A novel domain decomposition method based on a hybrid variational principle is presented. Prior to any computation, a given finite element mesh is torn into a set of totally disconnected submeshes. First, an incomplete solution is computed in each subdomain. Next, the compatibility of the displacement field at the interface nodes is enforced via discrete, polynomial and/or piecewise polynomial Lagrange multipliers. In the static case, each floating subdomain induces a local singularity that is resolved very efficiently. The interface problem associated with this domain decomposition method is, in general, indefinite and of variable size. A dedicated conjugate projected gradient algorithm is developed for solving the latter problem when it is not feasible to explicitly assemble the interface operator. When implemented on local memory multiprocessors, the proposed methodology requires less interprocessor communication than the classical method of substructuring. It is also suitable for parallel/vector computers with shared memory and compares favorably with factorization based parallel direct methods.

  14. Optical correlation recognition based on LCOS

    Science.gov (United States)

    Tang, Mingchuan; Wu, Jianhong

    2013-08-01

    Vander-Lugt correlator[1] plays an important role in optical pattern recognition due to the characteristics of accurate positioning and high signal-to-noise ratio. The ideal Vander-Lugt correlator should have the ability of outputting strong and sharp correlation peak in allusion to the true target, in the existing Spatial Light Modulators[2], Liquid Crystal On Silicon(LCOS) has been the most competitive candidate for the matched filter owing to the continuous phase modulation peculiarity. Allowing for the distortions of the target to be identified including rotations, scaling changes, perspective changes, which can severely impact the correlation recognition results, herein, we present a modified Vander-Lugt correlator based on the LCOS by means of applying an iterative algorithm to the design of the filter so that the correlator can invariant to the distortions while maintaining good performance. The results of numerical simulation demonstrate that the filter could get the similar recognition results for all the training images. And the experiment shows that the modified correlator achieves the 180° rotating tolerance significantly improving the recognition efficiency of the correlator.

  15. A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency

    Institute of Scientific and Technical Information of China (English)

    Ye Jia-Sheng; Wang Jin-Ze; Huang Qing-Li; Dong Bi-Zhen; Zhang Yan; Yang Guo-Zhen

    2013-01-01

    In this paper,a novel method is proposed and employed to design a single diffractive optical element (DOE) for implementing spectrum-splitting and beam-concentration (SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modem photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.

  16. A single diffractive optical element for implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency

    CERN Document Server

    Ye, Jia-Sheng; Huang, Qing-Li; Dong, Bi-Zhen; Zhang, Yan; Yang, Guo-Zhen

    2013-01-01

    In this paper, a novel method is proposed, and employed to design a single diffractive optical element (DOE) for implementing spectrum-splitting and beam-concentration (SSBC) functions simultaneously. We develop an optimization algorithm, through which the SSBC DOE can be optimized within an arbitrary thickness range, according to the limitations of modern photolithography technology. Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency. It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.

  17. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  18. Grazing-Incidence Neutron Optics based on Wolter Geometries

    Science.gov (United States)

    Gubarev, M. V.; Ramsey, B. D.; Mildner, D. F. R.

    2008-01-01

    The feasibility of grazing-incidence neutron imaging optics based on the Wolter geometries have been successfully demonstrated. Biological microscopy, neutron radiography, medical imaging, neutron crystallography and boron neutron capture therapy would benefit from high resolution focusing neutron optics. Two bounce optics can also be used to focus neutrons in SANS experiments. Here, the use of the optics would result in lower values of obtainable scattering angles. The high efficiency of the optics permits a decrease in the minimum scattering vector without lowering the neutron intensity on sample. In this application, a significant advantage of the reflective optics over refractive optics is that the focus is independent of wavelength, so that the technique can be applied to polychromatic beams at pulsed neutron sources.

  19. Optical signal processing of video surveillance for recognizing and measurement location railway infrastructure elements

    Science.gov (United States)

    Diyazitdinov, Rinat R.; Vasin, Nikolay N.

    2016-03-01

    Processing of optical signals, which are received from CCD sensors of video cameras, allows to extend the functionality of video surveillance systems. Traditional video surveillance systems are used for saving, transmitting and preprocessing of the video content from the controlled objects. Video signal processing by analytics systems allows to get more information about object's location and movement, the flow of technological processes and to measure other parameters. For example, the signal processing of video surveillance systems, installed on carriage-laboratories, are used for getting information about certain parameters of the railways. Two algorithms for video processing, allowing recognition of pedestrian crossings of the railways, as well as location measurement of the so-called "Anchor Marks" used to control the mechanical stresses of continuous welded rail track are described in this article. The algorithms are based on the principle of determining the region of interest (ROI), and then the analysis of the fragments inside this ROI.

  20. Trace elements based classification on clinkers. Application to Spanish clinkers

    Directory of Open Access Journals (Sweden)

    Tamás, F. D.

    2001-12-01

    Full Text Available The qualitative identification to determine the origin (i.e. manufacturing factory of Spanish clinkers is described. The classification of clinkers produced in different factories can be based on their trace element content. Approximately fifteen clinker sorts are analysed, collected from 11 Spanish cement factories to determine their Mg, Sr, Ba, Mn, Ti, Zr, Zn and V content. An expert system formulated by a binary decision tree is designed based on the collected data. The performance of the obtained classifier was measured by ten-fold cross validation. The results show that the proposed method is useful to identify an easy-to-use expert system that is able to determine the origin of the clinker based on its trace element content.

    En el presente trabajo se describe el procedimiento de identificación cualitativa de clínkeres españoles con el objeto de determinar su origen (fábrica. Esa clasificación de los clínkeres se basa en el contenido de sus elementos traza. Se analizaron 15 clínkeres diferentes procedentes de 11 fábricas de cemento españolas, determinándose los contenidos en Mg, Sr, Ba, Mn, Ti, Zr, Zn y V. Se ha diseñado un sistema experto mediante un árbol de decisión binario basado en los datos recogidos. La clasificación obtenida fue examinada mediante la validación cruzada de 10 valores. Los resultados obtenidos muestran que el modelo propuesto es válido para identificar, de manera fácil, un sistema experto capaz de determinar el origen de un clínker basándose en el contenido de sus elementos traza.

  1. A new wavelet-based thin plate element using B-spline wavelet on the interval

    Science.gov (United States)

    Jiawei, Xiang; Xuefeng, Chen; Zhengjia, He; Yinghong, Zhang

    2008-01-01

    By interacting and synchronizing wavelet theory in mathematics and variational principle in finite element method, a class of wavelet-based plate element is constructed. In the construction of wavelet-based plate element, the element displacement field represented by the coefficients of wavelet expansions in wavelet space is transformed into the physical degree of freedoms in finite element space via the corresponding two-dimensional C1 type transformation matrix. Then, based on the associated generalized function of potential energy of thin plate bending and vibration problems, the scaling functions of B-spline wavelet on the interval (BSWI) at different scale are employed directly to form the multi-scale finite element approximation basis so as to construct BSWI plate element via variational principle. BSWI plate element combines the accuracy of B-spline functions approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples are studied to demonstrate the performances of the present element.

  2. A Novel Extrinsic Fiber-Optic Fabry-Perot Strain Sensor System Based on Optical Amplification

    Institute of Scientific and Technical Information of China (English)

    Yun-Jiang Rao; Jian Jiang; Zheng-Lin Ran

    2003-01-01

    A novel extrinsic fiber-optic Fabry-Perot interferometric strain sensor system is demonstrated based on the simultaneous use of the amplified spontaneous emission and optical amplification. The improvement of 3~4 orders of magnitude in signal level can be achieved.

  3. High-accurate optical vector analysis based on optical single-sideband modulation

    Science.gov (United States)

    Xue, Min; Pan, Shilong

    2016-11-01

    Most of the efforts devoted to the area of optical communications were on the improvement of the optical spectral efficiency. Varies innovative optical devices are thus developed to finely manipulate the optical spectrum. Knowing the spectral responses of these devices, including the magnitude, phase and polarization responses, is of great importance for their fabrication and application. To achieve high-resolution characterization, optical vector analyzers (OVAs) based on optical single-sideband (OSSB) modulation have been proposed and developed. Benefiting from the mature and highresolution microwave technologies, the OSSB-based OVA can potentially achieve a resolution of sub-Hz. However, the accuracy is restricted by the measurement errors induced by the unwanted first-order sideband and the high-order sidebands in the OSSB signal, since electrical-to-optical conversion and optical-to-electrical conversion are essentially required to achieve high-resolution frequency sweeping and extract the magnitude and phase information in the electrical domain. Recently, great efforts have been devoted to improve the accuracy of the OSSB-based OVA. In this paper, the influence of the unwanted-sideband induced measurement errors and techniques for implementing high-accurate OSSB-based OVAs are discussed.

  4. A Novel Extrinsic Fiber-Optic Fabry-Perot Strain Sensor System Based on Optical Amplification

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel extrinsic fiber-optic Fabry-Perot interferometric strain sensor system is demonstrated based on the simultaneous use of the amplified spontaneous emission and optical amplification. The improvement of 3~4 orders of magnitude in signal level can be achieved.

  5. Experimental study on all-optical half-adder based on semi-conductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    HAN Bing-chen; YU Jin-long; WANG Wen-rui; ZHANG Li-tai; HU Hao; YANG En-ze

    2009-01-01

    We demonstrate a novel all-optical half-adder based on two semiconductor optical amplifiers (SOAS). Two optical band-pass filters are used to select the two idlers generated by four-wave mixing (FWM) effect of the first SOA. Therefore, the AND gate and XNOR logic are realized simultaneously. The second SOA acts as a NOT gate, in which the NOR logic is achieved with the input of the logic XNOR. As a result, the output is the sum of the two input bits and the carry. In the experiment, all-optical half-addition calculation is achieved between two 10 Gb/s signals.

  6. Optical Generation of Fuzzy-Based Rules

    Science.gov (United States)

    Gur, Eran; Mendlovic, David; Zalevsky, Zeev

    2002-08-01

    In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.

  7. Motion Structural Optimization Strategy for Rhombic Element Based Foldable Structure

    Directory of Open Access Journals (Sweden)

    Seung Hyun Jeong

    2015-02-01

    Full Text Available This research presents a new systematical design approach of foldable structure composed of several rhombic elements by applying genetic algorithm. As structural shapes represented by a foldable structure can be easily and dramatically morphed by manipulating rotational directions and angle of joints, the foldable structure has been used for various elementary structural members and engineering mechanisms. However a systematic design approach determining detail rotational angle and directions of unit cells for arbitrary shaped target areas has not been proposed yet. This research contributes to it by developing a new structural optimization method determining optimal angle and rotation directions to cover arbitrary shaped target areas of interest with aggregated rhombic elements. To achieve this purpose, we present an optimization formulation minimizing the sum of distances between each reference joint of an arbitrary shaped target area and its closest outer joints of foldable structure. To find out the outer joint set of a given foldable structure, an efficient geometric analysis method based on Delaunay triangulation is also developed and implemented. To show the validity and limitations of the present approach, several foldable structure design problems for two-dimensional arbitrary shaped target areas are solved with the present optimization procedure.

  8. Ambient organic carbon to elemental carbon ratios: Influence of the thermal–optical temperature protocol and implications

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yuan, E-mail: ycheng@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); He, Ke-bin, E-mail: hekb@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing (China); Duan, Feng-kui; Du, Zhen-yu [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China); Zheng, Mei [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Ma, Yong-liang [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing (China)

    2014-01-01

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal–optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC{sub IMPROVE-A} (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC{sub NIOSH} ratio and the EC{sub IMPROVE-A} to EC{sub EUSAAR} ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation

  9. Flexible Holographic Fabrication of 3D Photonic Crystal Templates with Polarization Control through a 3D Printed Reflective Optical Element

    Directory of Open Access Journals (Sweden)

    David Lowell

    2016-07-01

    Full Text Available In this paper, we have systematically studied the holographic fabrication of three-dimensional (3D structures using a single 3D printed reflective optical element (ROE, taking advantage of the ease of design and 3D printing of the ROE. The reflective surface was setup at non-Brewster angles to reflect both s- and p-polarized beams for the interference. The wide selection of reflective surface materials and interference angles allow control of the ratio of s- and p-polarizations, and intensity ratio of side-beam to central beam for interference lithography. Photonic bandgap simulations have also indicated that both s and p-polarized waves are sometimes needed in the reflected side beams for maximum photonic bandgap size and certain filling fractions of dielectric inside the photonic crystals. The flexibility of single ROE and single exposure based holographic fabrication of 3D structures was demonstrated with reflective surfaces of ROEs at non-Brewster angles, highlighting the capability of the ROE technique of producing umbrella configurations of side beams with arbitrary angles and polarizations and paving the way for the rapid throughput of various photonic crystal templates.

  10. Optical coherent detection Brillouin distributed optical fiber sensor based on orthogonal polarization diversity reception

    Institute of Scientific and Technical Information of China (English)

    Muping Song; Bin Zhao; Xianmin Zhang

    2005-01-01

    In Brillouin distributed optical fiber sensor, using optical coherent detection to detect Brillouin scattering optical signal is a good method, but there exists the polarization correlated detection problem. A novel detecting scheme is presented and demonstrated experimentally, which adopts orthogonal polarization diversity reception to resolve the polarization correlated detection problem. A laser is used as pump and reference light sources, a microwave electric-optical modulator (EOM) is adopted to produce frequency shift reference light, a polarization controller is used to control the polarization of the reference light which is changed into two orthogonal polarization for two adjacent acquisition periods. The Brillouin scattering light is coherently detected with the reference light, and the Brillouin scattering optical signal is taken out based on Brillouin frequency shift. After electronic processing, better Brillouin distributed sensing signal is obtained. A 25-km Brillouin distributed optical fiber sensor is achieved.

  11. Passive optical networks based on optical CDMA: Design and system analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG ChongFu; QIU Kun; XU Bo

    2007-01-01

    In this paper, a novel Passive Optical Network based on Optical Code Division Multiple Access (OCDMA-PON) is presented. The design of the Optical Line Terminator (OLT) and the Optical Network Unit (ONU) for the OCDMA-PON are studied in detail. The proposed OCDMA-PON combines the advantages of PON and OCDMA technology and it can be applied to an optical access network with full services on demand, such as internet protocol, video on demand, tele-presence and high quality audio. Compared to other multiple access technologies, the proposed OCDMA-PON provides more ONU and assembly flexibly for PON. We analyze in detail the scalability and system transmission performance of such a network. Simulation results indicate that the proposed scheme is feasible and that the novel design can improve the scalability and transmission performance of the optical access networks.

  12. Finite Element Based Design and Optimization for Piezoelectric Accelerometers

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.; Yao, Q.

    1998-01-01

    A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...

  13. Modeling focusing characteristics of low Fnumber diffractive optical elements with continuous relief fabricated by laser direct writing.

    Science.gov (United States)

    Shan, Mingguang; Tan, Jiubin

    2007-12-10

    A theoretical model is established using Rayleigh-Sommerfeld diffraction theory to describe the diffraction focusing characteristics of low F-number diffractive optical elements with continuous relief fabricated by laser direct writing, and continuous-relief diffractive optical elements with a design wavelength of 441.6nm and a F-number of F/4 are fabricated and measured to verify the validity of the diffraction focusing model. The measurements made indicate that the spot size is 1.75mum and the diffraction efficiency is 70.7% at the design wavelength, which coincide well with the theoretical results: a spot size of 1.66mum and a diffraction efficiency of 71.2%.

  14. Optical Sensing and Trapping Based on Localized Surface Plasmons

    Science.gov (United States)

    Kang, Zhiwen

    This project involves the study of novel plasmonic nanodevices that provide unique functionality in optical sensing, surface-enhanced Raman scattering (SERS), and optical trapping. The first design is based on a coupling system involving double-layered metal nano-strips arrays. This system has the advantages of simple geometry and direct integration with microfluidic chips. The intense optical localization due to field coupling within the system can enhance detection sensitivity of target molecules, especially by virtue of the optical trapping of plasmonic nanoparticles. The optical resonant condition is obtained theoretically through analyzing the SPs modes. Numerical modeling based on two-dimensional (2D) finite-difference time-domain (FDTD) is consistent with the theoretical analysis and demonstrates the feasibility of using this system for optical sensing and trapping. In the second design, a gold nano-ring structure is demonstrated to be an effective approach for plasmonic nano-optical tweezers (PNOTs) for trapping metallic nanoparticles. In our demonstration example, we have optimized a device for SERS operation at the wavelength of 785 nm. Three-dimensional (3D) FDTD techniques have been employed to calculate the optical response, and the optical force distribution have been derived using the Maxwell stress tensor (MST) method. Simulation results indicate that the nano-ring produces a maximum trapping potential well of ~32 kBT on a 20 nm gold nanoparticle. The existence of multiple potential well results in a very large active trapping volume of ~106 nm3 for the target particles. Furthermore, the trapped gold nanoparticles further lead to the formation of nano-gaps that offer a near-field enhancement of ~160 times, resulting in an achievable EF of 108 for SERS. In the third design, we propose a concept of all-optical nano-manipulation. We show that target molecules, after being trapped, can be transferred between the trapping sites within a linear array of

  15. Affinity sensor based on immobilized molecular imprinted synthetic recognition elements.

    Science.gov (United States)

    Lenain, Pieterjan; De Saeger, Sarah; Mattiasson, Bo; Hedström, Martin

    2015-07-15

    An affinity sensor based on capacitive transduction was developed to detect a model compound, metergoline, in a continuous flow system. This system simulates the monitoring of low-molecular weight organic compounds in natural flowing waters, i.e. rivers and streams. During operation in such scenarios, control of the experimental parameters is not possible, which poses a true analytical challenge. A two-step approach was used to produce a sensor for metergoline. Submicron spherical molecularly imprinted polymers, used as recognition elements, were obtained through emulsion polymerization and subsequently coupled to the sensor surface by electropolymerization. This way, a robust and reusable sensor was obtained that regenerated spontaneously under the natural conditions in a river. Small organic compounds could be analyzed in water without manipulating the binding or regeneration conditions, thereby offering a viable tool for on-site application.

  16. Submarine Magnetic Field Extrapolation Based on Boundary Element Method

    Institute of Scientific and Technical Information of China (English)

    GAO Jun-ji; LIU Da-ming; YAO Qiong-hui; ZHOU Guo-hua; YAN Hui

    2007-01-01

    In order to master the magnetic field distribution of submarines in the air completely and exactly and study the magnetic stealthy performance of submarine, a mathematic model of submarine magnetic field extrapolation is built based on the boundary element method (BEM). An experiment is designed to measure three components of magnetic field on the envelope surface surrounding a model submarine. The data in differentheights above the model submarine are obtained by use of tri-axial magnetometers. The results show that this extrapolation model has good stabilities and high accuracies compared the measured data with the extrapolated data. Moreover, the model can reflect the submarine magnetic field distribution in the air exactly, and is valuable in practical engineering.

  17. Optical isolator based on nonreciprocal coupling of two Tamm plasmon polaritons

    Science.gov (United States)

    Fang, Yun-Tuan; Zheng, Jing

    2014-12-01

    In this paper, we have studied the one-dimensional photonic crystal (PC) including a magneto-optical metal defect using the developed transfer matrix method for magnetic materials. Around the two interfaces between metal and one-dimensional PC, two nonsymmetric Tamm magneto-plasmon polaritons may be excited and coupled. The coupled states take on a clear nonreciprocal behavior and result in nonreciprocal transmission. The results are demonstrated through electromagnetic field distribution simulations based on finite element software. It provides a useful reference to realize optical isolator design.

  18. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method

    Science.gov (United States)

    Deng, Yongbo; Korvink, Jan G.

    2016-05-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.

  19. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method.

    Science.gov (United States)

    Deng, Yongbo; Korvink, Jan G

    2016-05-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.

  20. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method

    Science.gov (United States)

    Korvink, Jan G.

    2016-01-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766

  1. Multi-Element Free Space Optical (FSO) Modules for Mobile Opportunistic Networking

    Science.gov (United States)

    2016-11-14

    Workshops (ICC). 23-MAY-16, Kuala Lumpur, Malaysia . : , . Autonomous Alignment of Free-Space-Optical Links Between UAVs, ACM MobiCom Workshop on...achieved a 3.5 GPA to 4.0 (4.0 max scale): Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education , Research...Free-Space-Optical Links: A Prototype, Proceedings of IEEE ICC Workshop on Optical Wireless Communication (OWC), Pages 157-162, Kuala Lumpur, Malaysia

  2. Two New Quadrilateral Elements Based on Strain States

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaiee-Pajand

    2015-06-01

    Full Text Available In this paper, two new quadrilateral elements are formulated to solve plane problems. Low sensitivity to geometric distortion, no parasitic shear error, rotational invariance, and satisfying the Felippa pure bending test are characteristics of these suggested elements. One proposed element is formulated by establishing equilibrium equations for the second-order strain field. The other suggested element is obtained by establishing equilibrium equations only for the linear part of the strain field. The number of the strain states decreases when the conditions among strain states are satisfied. Several numerical tests are used to demonstrate the performance of the proposed elements. Famous elements, which were suggested by other researchers, are used as a means of comparison. It is shown that these novel elements pass the strong patch tests, even for extremely poor meshes, and one of them has an excellent accuracy and fast convergence in other complicated problems.

  3. A Closed-Cycle Optical Cryostat and Improved Optical Elements for Studies of Dissipation at the Molecular Scale

    Science.gov (United States)

    2016-02-05

    dependent resistivity of the Au film constituting the wire . The heating is considerably enhanced when the incident polarization is aligned...Zolotavin, Douglas Natelson. Plasmonic Heating in Au nanowires at Low Temperatures, ACS Nano (02 2016) TOTAL: 1 Books Number of Manuscripts: Patents...Inventions (DD882) Scientific Progress See attachment. Technology Transfer Final report: A closed-cycle optical cryostat and

  4. Simultaneous interferometric optical-figure characterizations for two optical elements in series: Proposition of an unconventional numerical integration scheme

    Energy Technology Data Exchange (ETDEWEB)

    Gwo, D

    2006-03-20

    The article proposes a scheme to break a catch-22 loop in an optical-figure/wavefont measurement. For instance, to measure the tilt-independent optical-figure of a nominal optical flat at cryogenic temperatures, it requires a cryogenic dewar-window system for a Fizeau interferometer outside the dewar to see through. The issue is: how to calibrate in situ the window system using the yet-to-be-calibrated nominal optical flat, and vice versa, in only one cryogenic cooldown? The proposition includes: (a) interferometric phase-map measurements with the test piece slightly offset in different transverse directions, and (b) for synthesizing the 2-dimensional WDF, an unconventional numerical scheme starting with 1-dimensional bi-direction integration. The numerical scheme helps minimize the non-uniformity in integrated noise-power distribution that results from integrating data, and thus the associated uncorrelated random noise, from raw phase-maps. The numerical scheme represents a new concept specifically for integrating noise-carrying experimental data.

  5. Folded-Cavity Resonators as Key Elements for Optical Filtering and Low-Voltage Electroabsorption Modulation

    Science.gov (United States)

    Djordjev, Kostadin D.; Lin, Chao-Kun; Zhu, Jintian; Bour, David; Tan, Michael R.

    2006-09-01

    Folded-cavity (FC) resonators, which are based on shallow-etched ridge waveguides combined with four deeply etched turning mirrors, are designed and fabricated. The device consists of a resonant FC and a bus waveguide coupled to it through a directional coupler. Optical passive filters, based on this technology, exhibit quality factors in the excess of 5000, with a low insertion loss of 5 dB (including the input coupling loss to a fiber) and more than 15-dB extinction at resonance. When the filter is combined with an electroabsorption active region and is designed to operate in the overcoupled regime, a low-voltage/high-extinction-ratio resonant modulation becomes feasible. The resonant modulator exhibits a low insertion loss (greater than 22-dB extinction at resonance) and offers a low-voltage operation. A change in the applied voltage by 0.7 V (close to the critically coupled conditions) leads to a transmission change of more than 16 dB. Open eye diagrams at 12 Gb/s are presented. To decrease the insertion loss, multiple material bangaps are further monolithically integrated across the wafer by utilizing the quantum-well-intermixing techniques.

  6. Large Optical Telescope Based on High Efficiency Thin Film Planar Diffractive Optics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In future ground-based receivers for deep-space optical communications with spacecraft, aperture diameters of the order of 10 meters are required even with the most...

  7. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy

    NARCIS (Netherlands)

    Antonello, J.; Werkhoven, T. van; Verhaegen, M.; Truong, H.H.; Keller, C.U.; Gerritsen, H.C.

    2014-01-01

    Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The abe

  8. Phosphorus-based compounds for EUV multilayer optics materials

    NARCIS (Netherlands)

    Medvedev, V.V.; Yakshin, A.E.; Kruijs, van de R.W.E.; Bijkerk, F.

    2015-01-01

    We have evaluated the prospects of phosphorus-based compounds in extreme ultraviolet multilayer optics. Boron phosphide (BP) is suggested to be used as a spacer material in reflective multilayer optics operating just above the L-photoabsorption edge of P (λ ≈9.2 nm). Mo, Ag, Ru, Rh, and Pd were cons

  9. Optical correlation based on the fractional Fourier transform.

    Science.gov (United States)

    Granieri, S; Arizaga, R; Sicre, E E

    1997-09-10

    Some properties of optical correlation based on the fractional Fourier transform are analyzed. For a particular set of fractional orders, a filter is obtained that becomes insensitive to scale variations of the object. An optical configuration is also proposed to carry out the fractional correlation in a flexible way, and some experimental results are shown.

  10. Ring-based All-Optical Datacenter Networks

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Berger, Michael Stübert; Ruepp, Sarah Renée

    2015-01-01

    Ring-based generic network architecture for all-optical datacenters is proposed, offering highly scalable interconnection network with reduced cabling complexity. Simulations show improved performance compared to all-optical fat-tree datacenter architecture with 40%-99% improved connection request...

  11. Optical fiber gas sensing system based on FBG filtering

    Science.gov (United States)

    Wang, Shutao

    2008-10-01

    An optical fiber gas sensing system based on the law of Beer-Lambert is designed to determine the concentration of gas. This technique relies on the fact that the target gas has a unique, well-defined absorption characteristic within the infrared region of electromagnetic spectrum. The narrow-band filtering characteristic of optical fiber Bragg grating is used to produce the narrow spectrum light signal. An aspheric objective optical fiber collimator is used in the system as an optical fiber gas sensing detector to improve the sensitivity and stability. Experimental results show there is a high measuring sensitivity at 0.01%, and the measuring range goes beyond 5%.

  12. All-optical pseudorandom bit sequences generator based on TOADs

    Science.gov (United States)

    Sun, Zhenchao; Wang, Zhi; Wu, Chongqing; Wang, Fu; Li, Qiang

    2016-03-01

    A scheme for all-optical pseudorandom bit sequences (PRBS) generator is demonstrated with optical logic gate 'XNOR' and all-optical wavelength converter based on cascaded Tera-Hertz Optical Asymmetric Demultiplexer (TOADs). Its feasibility is verified by generation of return-to-zero on-off keying (RZ-OOK) 263-1 PRBS at the speed of 1 Gb/s with 10% duty radio. The high randomness of ultra-long cycle PRBS is validated by successfully passing the standard benchmark test.

  13. A Passive Optical Fiber Current Sensor Based on YIG

    Institute of Scientific and Technical Information of China (English)

    Jing Shao; Wen Liu; Cui-Qing Liu; Duan Xu

    2008-01-01

    A research on passive optical fiber current sensor based on magneto-optical crystal and a new design of light path of the sensor head are presented. Both methods of dual-channel optical detection of the polarization state of the output light and signal processing are proposed. Signal processing can obtain the linear output of the current measurement of the wire more conveniently. Theoretical analysis on the magneto-optical fiber current sensor is given, followed by experiments. After that, further analysis is made according to the results, which leads to clarifying the exiting problems and their placements.

  14. Optical resilient packet ring (O-RPR) based on all-optical buffering techniques

    Science.gov (United States)

    Wu, Chongqing; Sheng, Xingzhi; Fu, Songnian; Wei, Bin; Li, Yajie; Liu, Aiming

    2006-01-01

    This paper reports the progress of the 863 high-technology project of China "Optical Resilient Packet Ring (O-RPR) Based on All-optical Buffering Techniques". In this ring network, for the packet through an intermediate node the conversion of O/E/O is not needed in order to overcome the bottleneck of O/E/O. In all-optical node a Dual Loop Optical Buffer (DLOB) is used to revolve the collision between the packet, which pass through the node, and add packet from local user to ring. The principle of DLOB is introduced. The bit-rate of head of optical frame is lower than the bit-rate of payload in a packet, in order to increase the efficiency of transmission link. This paper will introduce the network topology, layers and the structure of optical node. It includes an optical splitter, optical delay line as input buffer, a SOA as optical switch, which switch the packet dropping down form the ring or pass through the node, a DLOB and an electric buffer. An ARM is used for regulation of different buffers. The experiment results of a demonstrate network including 3 nodes are given.

  15. Optical Doppler tomography based on a field programmable gate array

    DEFF Research Database (Denmark)

    Larsen, Henning Engelbrecht; Nilsson, Ronnie Thorup; Thrane, Lars

    2008-01-01

    We report the design of and results obtained by using a field programmable gate array (FPGA) to digitally process optical Doppler tomography signals. The processor fits into the analog signal path in an existing optical coherence tomography setup. We demonstrate both Doppler frequency and envelope...... extraction using the Hilbert transform, all in a single FPGA. An FPGA implementation has certain advantages over general purpose digital signal processor (DSP) due to the fact that the processing elements operate in parallel as opposed to the DSP. which is primarily a sequential processor....

  16. Photodiode Based Detection for Multiple Trap Optical Tweezers

    DEFF Research Database (Denmark)

    Ott, Dino

    This thesis is concerned with the position tracking of microscopic, optically trapped particles and the quantification of the forces acting on them. A new detection method for simultaneous, three-dimensional tracking of multiple particles is presented, its performance is evaluated, and its...... usefulness is illustrated in specific application examples. Optical traps enable contact-less, all-optical manipulation of microscopic objects. Over the last decades, this laser-based micro-manipulation tool has facilitated numerous exciting discoveries within biology and physics, and it is today regarded...... as one of the workhorses of biophysical research. There exists a variety of implementations of optical traps, from simple single traps to complex multiple traps with engineered three-dimensional light fields. In comparison to single beam optical traps, multiple beam optical traps offer more freedom...

  17. Finite element analysis of osteoporosis models based on synchrotron radiation

    Science.gov (United States)

    Xu, W.; Xu, J.; Zhao, J.; Sun, J.

    2016-04-01

    With growing pressure of social aging, China has to face the increasing population of osteoporosis patients as well as the whole world. Recently synchrotron radiation has become an essential tool for biomedical exploration with advantage of high resolution and high stability. In order to study characteristic changes in different stages of primary osteoporosis, this research focused on the different periods of osteoporosis of rats based on synchrotron radiation. Both bone histomorphometry analysis and finite element analysis were then carried on according to the reconstructed three dimensional models. Finally, the changes of bone tissue in different periods were compared quantitatively. Histomorphometry analysis showed that the structure of the trabecular in osteoporosis degraded as the bone volume decreased. For femurs, the bone volume fraction (Bone volume/ Total volume, BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μ m to 97.09μ m) and the reduction of the number of trabecular (from 7.99 mm-1 to 5.97mm-1). Simulation of various mechanical tests with finite element analysis (FEA) indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness of femurs decreased from 1770.96 Fμ m-1 to 697.41 Fμ m-1, the bending and torsion stiffness were from 1390.80 Fμ m-1 to 566.11 Fμ m-1 and from 2957.28N.m/o to 691.31 N.m/o respectively, indicated the decrease of bone strength, and it matched the histomorphometry analysis. This study suggested that FEA and synchrotron radiation were excellent methods for analysing bone strength conbined with histomorphometry analysis.

  18. Diffraction-based optical sensor detection system for capture-restricted environments

    Science.gov (United States)

    Khandekar, Rahul M.; Nikulin, Vladimir V.

    2008-04-01

    The use of digital cameras and camcorders in prohibited areas presents a growing problem. Piracy in the movie theaters results in huge revenue loss to the motion picture industry every year, but still image and video capture may present even a bigger threat if performed in high-security locations. While several attempts are being made to address this issue, an effective solution is yet to be found. We propose to approach this problem using a very commonly observed optical phenomenon. Cameras and camcorders use CCD and CMOS sensors, which include a number of photosensitive elements/pixels arranged in a certain fashion. Those are photosites in CCD sensors and semiconductor elements in CMOS sensors. They are known to reflect a small fraction of incident light, but could also act as a diffraction grating, resulting in the optical response that could be utilized to identify the presence of such a sensor. A laser-based detection system is proposed that accounts for the elements in the optical train of the camera, as well as the eye-safety of the people who could be exposed to optical beam radiation. This paper presents preliminary experimental data, as well as the proof-of-concept simulation results.

  19. A hybrid-stress element based on Hamilton principle

    Science.gov (United States)

    Cen, Song; Zhang, Tao; Li, Chen-Feng; Fu, Xiang-Rong; Long, Yu-Qiu

    2010-08-01

    A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3 β here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3 β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.

  20. Optical techniques as validation tools for finite element modeling of biomechanical structures, demonstrated in bird ear research

    Science.gov (United States)

    Muyshondt, Pieter; De Greef, Daniël; Soons, Joris; Dirckx, Joris J. J.

    2014-05-01

    In this paper we demonstrate the potential of stroboscopic digital holography and laser vibrometry as tools to gather vibration data and validate modelling results in complex biomechanical systems, in this case the avian middle ear. Whereas the middle ear of all mammal species contains three ossicles, birds only feature one ossicle, the columella. Despite this far simpler design, the hearing range of most birds is comparable to mammals, and is adapted to operate under very diverse atmospheric circumstances. This makes the investigation of the avian middle ear potentially very meaningful, since it could provide knowledge that can improve the design of prosthetic ossicle replacements in humans such as a TORP (Total Ossicle Replacement Prosthesis). In order to better understand the mechanics of the bird's hearing, we developed a finite element model that simulates the transmission of an incident acoustic wave on the eardrum via the middle ear structures to the fluid of the inner ear. The model is based on geometry extracted from stained μCT data and is validated using results from stroboscopic digital holography measurements on the eardrum and LDV measurements on the columella footplate. This technique uses very short high-power laser pulses that are synchronized to the membrane's vibration phase to measure the dynamic response of the bird's eardrum to an incident acoustic stimulus. Vibration magnitude as well as phase relative to the sound wave can be deduced from the results, the latter being of great importance in the elastic characterization of the tympanic membrane. In this work, the setup and results from the optical measurements, as well as the properties and optimization of the finite element model are presented. Observed phase variations across the eardrum's surface on the holography results strongly suggest the presence of internal energy losses in the membrane due to damping. Therefore, a viscoelastic characterisation of the model based on a complex

  1. A Novel Analytical Approach for Multi-Layer Diaphragm-Based Optical Microelectromechanical-System Pressure Sensors

    Institute of Scientific and Technical Information of China (English)

    LI Ming; WANG Ming; RONG Hua; LI Hong-Pu

    2006-01-01

    @@ An optical microelectromechanical-system (MEMS) pressure sensor based on multi-layer circular diaphragm is described and analysed by using the proposed novel analytical approach and the traditional transfer matrix method. The analytical expressions of the deflection of multi-layer diaphragm and absolute optical reflectance are derived respectively. The influence of residual stress on the deflection of diaphragm is also analysed. Simulation results given by the finite element method are consistent with the ones which are analysed by using the analytical approach. The analytical approach will be helpful to design and fabricate the optical MEMS pressure sensors with multi-layer diaphragm based on Fabry-Perot interferometry.

  2. Gabor-based fusion technique for Optical Coherence Microscopy.

    Science.gov (United States)

    Rolland, Jannick P; Meemon, Panomsak; Murali, Supraja; Thompson, Kevin P; Lee, Kye-sung

    2010-02-15

    We recently reported on an Optical Coherence Microscopy technique, whose innovation intrinsically builds on a recently reported - 2 microm invariant lateral resolution by design throughout a 2 mm cubic full-field of view - liquid-lens-based dynamic focusing optical probe [Murali et al., Optics Letters 34, 145-147, 2009]. We shall report in this paper on the image acquisition enabled by this optical probe when combined with an automatic data fusion method developed and described here to produce an in-focus high resolution image throughout the imaging depth of the sample. An African frog tadpole (Xenopus laevis) was imaged with the novel probe and the Gabor-based fusion technique, demonstrating subcellular resolution in a 0.5 mm (lateral) x 0.5 mm (axial) without the need, for the first time, for x-y translation stages, depth scanning, high-cost adaptive optics, or manual intervention. In vivo images of human skin are also presented.

  3. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2014-02-01

    Full Text Available This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that the light transmission through etched fiber at 1550 nm wavelength optical source becomes highly temperature sensitive, compared to the temperature insensitive behavior observed in un-etched fiber for the range on 30ºC to 100ºC at 1550 nm. The sensor response under temperature cycling is repeatable and, proposed to be useful for low frequency analogue signal transmission over optical fiber by means of inline thermal modulation approach.

  4. Passive endoscopic polarization sensitive optical coherence tomography with completely fiber based optical components

    Science.gov (United States)

    Cahill, Lucas; Lee, Anthony M. D.; Pahlevaninezhad, Hamid; Ng, Samson; MacAulay, Calum E.; Poh, Catherine; Lane, Pierre

    2015-03-01

    Polarization Sensitive Optical Coherence Tomography (PSOCT) is a functional extension of Optical Coherence Tomography (OCT) that is sensitive to well-structured, birefringent tissue such as scars, smooth muscle and cartilage. In this work, we present a novel completely fiber based swept source PSOCT system using a fiber-optic rotary pullback catheter. This PSOCT implementation uses only passive optical components and requires no calibration while adding minimal additional cost to a standard structural OCT imaging system. Due to its complete fiber construction, the system can be made compact and robust, while the fiber-optic catheter allows access to most endoscopic imaging sites. The 1.5mm diameter endoscopic probe can capture 100 frames per second at pullback speeds up to 15 mm/s allowing rapid traversal of large imaging fields. We validate the PSOCT system with known birefringent tissues and demonstrate in vivo PSOCT imaging of human oral scar tissue.

  5. All-optical flip-flop based on vertical cavity semiconductor optical amplifiers.

    Science.gov (United States)

    Song, Deqiang; Gauss, Veronica; Zhang, Haijiang; Gross, Matthias; Wen, Pengyue; Esener, Sadik

    2007-10-15

    We report the operation of an all-optical set-reset (SR) flip-flop based on vertical cavity semiconductor optical amplifiers (VCSOAs). This flip-flop is cascadable, has low optical switching power (~10 microW), and has the potential to be integrated on a small footprint (~100 microm(2)). The flip-flop is composed of two cross-coupled electrically pumped VCSOA inverters and uses the principles of cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics to achieve flip-flop functionality. We believe that, when integrated on chip, this type of all-optical flip-flop opens new prospects for implementing all-optical fast memories and timing regeneration circuits.

  6. Optical Recombination Lines of Heavy-elements in Giant Extragalactic HII Regions

    CERN Document Server

    Esteban, C; Torres-Peimbert, S; Rodríguez, M

    2002-01-01

    We present high resolution observations of the giant extragalactic H II regions NGC 604, NGC 2363, NGC 5461 and NGC 5471, based on observations taken with the ISIS spectrograph on the William Herschel Telescope. We have detected -by the first time- C II and O II recombination lines in these objects. We find that recombination lines give larger C^{++} and O^{++} abundances than collisionallly excited lines, suggesting that temperature variations can be present in the objects. We detect [Fe IV] lines in NGC 2363 and NGC 5471, the most confident detection of optical lines of this kind in H II regions. Considering the temperature structure we derive their H, He, C, N, O, Ne, S, Ar, and Fe abundances. From the recombination lines of NGC 5461 and NGC 5471 we determine the presence of C/H and O/H gradients in M101. We calculate the Delta Y/Delta O and Delta Y/Delta Z values considering the presence of temperature variations and under the assumption of constant temperature. We obtain a better agreement with models of...

  7. Stress and Deformation Analysis in Base Isolation Elements Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Claudiu Iavornic

    2011-01-01

    Full Text Available In Modern tools as Finite Element Method can be used to study the behavior of elastomeric isolation systems. The simulation results obtained in this way provide a large series of data about the behavior of elastomeric isolation bearings under different types of loads and help in taking right decisions regarding geometrical optimizations needed for improve such kind of devices.

  8. Optical design of rotationally symmetric triangulation sensors with low-cost detectors based on reflective optics

    Science.gov (United States)

    Ott, Peter

    2003-05-01

    Classical triangulation sensors exhibit an orientation depend signal if the scattering properties of the work-piece are not symmetrical like at curved surface locations. This problem is avoided by rotational symmetric triangulation sensors. Due to this attractive property in a lot of applications such a sensor was introduced very recently on the market. This sensor is based on refractive optics and a special PSD detector, both custom made resulting in high costs. Additionally, the existing optical design approach does not offer an optical layout to start with, thus a good amount of trial and error is required and non-optimal solutions are probable. Therefore, there is great interest for a clear optical design strategy that results in layouts that are suitable also to use low cost commercial available detectors, such as CCD or CMOS image detectors. In this paper such a design procedure is presented for optical designs that use reflecting optical surfaces. Several solutions are depicted and discussed. The designs are not only attractive from the optical point of view and from detector considerations, but also from opto-mechanical design issues. For example designs with only one opto-mechanical part are possible. The resulting optical designs consist of aspherical surfaces which are obtained directly by using only some new relations of first order optics for off-axis objects. The designs are validated by exact ray tracing. These ray tracing results show already very good performance. Nevertheless, it was possible to further optimize the optical designs very efficiently using ray tracing software, thus yielding improved optical properties.

  9. The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography.

    Science.gov (United States)

    Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie

    2010-09-13

    In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.

  10. Initial chemical transport of reducing elements and chemical reactions in oxide cathode base metal

    Energy Technology Data Exchange (ETDEWEB)

    Roquais, J.M.; Poret, F.; Doze, R. le; Dufour, P.; Steinbrunn, A

    2002-11-30

    In the present work, the formation of compounds associated to the diffusion of reducing elements (Mg and Al) to the nickel surface of a one-piece oxide cathode has been studied. Those compounds have been evidenced after the annealing steps at high temperature performed on cathode base metal prior to the emitting ing deposition. Therefore, they form the ''initial'' interface between the nickel and the coating, in other words, the interface existing at the beginning of cathode life. Extensive analysis to characterize the nickel base prior to coating deposition has been performed by means of scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and glow discharge optical emission spectroscopy (GDOES). TEM and AES analysis have allowed to identify for the first time a spinel compound of MgAl{sub 2}O{sub 4}. The preferential distribution of the different compounds on the nickel surface has been studied by EDX mapping. Experimental profiles of diffusion of the reducing elements in the nickel have been obtained over the entire thickness of the material by GDOES. The mechanism of formation of these compounds together with a related diffusion model are proposed.

  11. Recent Advancements in Semiconductor-based Optical Signal Processing

    DEFF Research Database (Denmark)

    Nielsen, M L; Mørk, Jesper

    2006-01-01

    Significant advancements in technology and basic understanding of device physics are bringing optical signal processing closer to a commercial breakthrough. In this paper we describe the main challenges in high-speed SOA-based switching....

  12. Helium-3 Microscopic Optical Model Potential Based on Skyrme Interaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The helium-3 microscopic optical potential is obtained by Green function method through nuclear matter approximation and local density approximation based on the effective Skyrme interaction. The reaction cross

  13. A Compact, Waveguide Based Programmable Optical Comb Generator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I STTR effort will establish the feasibility of developing a compact broadband near to mid-IR programmable optical comb for use in laser based remote...

  14. Characterization of optical strain sensors based on silicon waveguides

    NARCIS (Netherlands)

    Westerveld, W.J.; Pozo Torres, J.M.; Muilwijk, P.M.; Leinders, S.M.; Harmsma, P.J.; Tabak, E.; Dool, T.C. van den; Dongen, K.W.A. van; Yousefi, M.; Urbach, H.P.

    2013-01-01

    Strain gauges are widely employed in microelectromechanical systems (MEMS) for sensing of, for example, deformation, acceleration, pressure, or sound [1]. Such gauges are typically based on electronic piezoresistivity. We propose integrated optical sensors which have particular benefits: insensitivi

  15. Optical carrier-based microwave interferometers for sensing application

    Science.gov (United States)

    Huang, Jie; Lan, Xinwei; Wang, Hanzheng; Yuan, Lei; Xiao, Hai

    2014-06-01

    Optical fiber interferometers (OFIs) have been extensively utilized for precise measurements of various physical/chemical quantities (e.g., temperature, strain, pressure, rotation, refractive index, etc.). However, the random change of polarization states along the optical fibers and the strong dependence on the materials and geometries of the optical waveguides are problematic for acquiring high quality interference signal. Meanwhile, difficulty in multiplexing has always been a bottleneck on the application scopes of OFIs. Here, we present a sensing concept of optical carrier based microwave interferometry (OCMI) by reading optical interferometric sensors in microwave domain. It combines the advantages from both optics and microwave. The low oscillation frequency of the microwave can hardly distinguish the optical differences from both modal and polarization dispersion making it insensitive to the optical waveguides/materials. The phase information of the microwave can be unambiguitly resolved so that it has potential in fully distributed sensing. The OCMI concept has been implemented in different types of interferometers (i.e., Michelson, Mach-Zehnder, Fabry-Perot) among different optical waveguides (i.e., singlemode, multimode, and sapphire fibers) with excellent signal-to-noise ratio (SNR) and low polarization dependence. A spatially continuous distributed strain sensing has been demonstrated.

  16. Study of packaging design based on Chinese traditional elements

    Institute of Scientific and Technical Information of China (English)

    崔蓝幻

    2015-01-01

    Summary: Chinese traditional culture of China’s packaging design workers provide material inexhaustible creative ideas. In recent years, most of the fusion of traditional elements in the international and domestic importance of packaging in the design. By analyzing the elements of traditional Chinese and international best packaging design combined with each other, its essence applied to packaging design in the past.

  17. Optical inclinometer based on fibre-taper-modal Michelson interferometer

    Science.gov (United States)

    Amaral, L. M. N.; Frazão, O.; Santos, J. L.; Lobo Ribeiro, A. B.

    2010-09-01

    An inclinometer sensor based on optical fibre-taper-modal Michelson interferometer is demonstrated. The magnitude of the tilt (bending angle of the fibre taper interferometer) is obtained by passive interferometric interrogation based on the generation of two quadrature phase-shifted signals from two fibre Bragg gratings. Optical phase-to-rotation sensitivity of 1.13 rad/degree with a 14 mrad/√Hz resolution is achieved.

  18. Optically-Based Diagnostics for Gas-Phase Laser Development

    Science.gov (United States)

    2010-08-01

    Phase Laser Development Acknowledgement of Support and Disclaimer This material is based upon work supported by Air Force Office of Scientific...00-2010 4. TITLE AND SUBTITLE Optically-Based Diagnostics for Gas-Phase Laser Development 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Sciences Inc. Role of Optical Diagnostics in High Energy Gas Laser Development  Chemically rich, energetic, reacting flow with competing phenomena

  19. Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation

    KAUST Repository

    Pan, Bing

    2015-02-12

    Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.

  20. Slow light based optical frequency shifter

    CERN Document Server

    Li, Qian; Thuresson, Axel; Nilsson, Adam N; Rippe, Lars; Kröll, Stefan

    2016-01-01

    We demonstrate experimentally and theoretically a controllable way of shifting the frequency of an optical pulse by using a combination of spectral hole burning, slow light effect, and linear Stark effect in a rare-earth-ion doped crystal. We claim that the solid angle of acceptance of a frequency shift structure can be close to $2\\pi$, which means that the frequency shifter could work not only for optical pulses propagating in a specific spatial mode but also for randomly scattered light. As the frequency shift is controlled solely by an external electric field, it works also for weak coherent light fields, and can e.g. be used as a frequency shifter for quantum memory devices in quantum communication.

  1. Enzyme-Based Fiber Optic Sensors

    Science.gov (United States)

    Kulp, Thomas J.; Camins, Irene; Angel, Stanley M.

    1988-06-01

    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and, consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of ~0.1 to 100 mM. The penicillin optrode response time is 40 to 60 s while that for glucose is ~5 to 12 min.

  2. Optical Flow based Robot Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Kahlouche Souhila

    2008-11-01

    Full Text Available In this paper we try to develop an algorithm for visual obstacle avoidance of autonomous mobile robot. The input of the algorithm is an image sequence grabbed by an embedded camera on the B21r robot in motion. Then, the optical flow information is extracted from the image sequence in order to be used in the navigation algorithm. The optical flow provides very important information about the robot environment, like: the obstacles disposition, the robot heading, the time to collision and the depth. The strategy consists in balancing the amount of left and right side flow to avoid obstacles, this technique allows robot navigation without any collision with obstacles. The robustness of the algorithm will be showed by some examples.

  3. Microresonator-based optical frequency combs.

    Science.gov (United States)

    Kippenberg, T J; Holzwarth, R; Diddams, S A

    2011-04-29

    The series of precisely spaced, sharp spectral lines that form an optical frequency comb is enabling unprecedented measurement capabilities and new applications in a wide range of topics that include precision spectroscopy, atomic clocks, ultracold gases, and molecular fingerprinting. A new optical frequency comb generation principle has emerged that uses parametric frequency conversion in high resonance quality factor (Q) microresonators. This approach provides access to high repetition rates in the range of 10 to 1000 gigahertz through compact, chip-scale integration, permitting an increased number of comb applications, such as in astronomy, microwave photonics, or telecommunications. We review this emerging area and discuss opportunities that it presents for novel technologies as well as for fundamental science.

  4. Demonstration of optical computing logics based on binary decision diagram.

    Science.gov (United States)

    Lin, Shiyun; Ishikawa, Yasuhiko; Wada, Kazumi

    2012-01-16

    Optical circuits are low power consumption and fast speed alternatives for the current information processing based on transistor circuits. However, because of no transistor function available in optics, the architecture for optical computing should be chosen that optics prefers. One of which is Binary Decision Diagram (BDD), where signal is processed by sending an optical signal from the root through a serial of switching nodes to the leaf (terminal). Speed of optical computing is limited by either transmission time of optical signals from the root to the leaf or switching time of a node. We have designed and experimentally demonstrated 1-bit and 2-bit adders based on the BDD architecture. The switching nodes are silicon ring resonators with a modulation depth of 10 dB and the states are changed by the plasma dispersion effect. The quality, Q of the rings designed is 1500, which allows fast transmission of signal, e.g., 1.3 ps calculated by a photon escaping time. A total processing time is thus analyzed to be ~9 ps for a 2-bit adder and would scales linearly with the number of bit. It is two orders of magnitude faster than the conventional CMOS circuitry, ~ns scale of delay. The presented results show the potential of fast speed optical computing circuits.

  5. Recombinant Reflectin-Based Optical Materials

    Science.gov (United States)

    2012-01-01

    1,1,1,3,3,3 hexafluoroiso- propanol (HFIP), the ionic liquid , 1-butyl-3-methylimidazo- lium chloride (BMIM), and SDS. SDS solubility suggested a...the combination of a Deuterium lamp and a Halogen lamp, providing a wave- length range of 400–1100 nm. The resolution of the spec- trometer was 1 nm...reflectin thin films was changed by dipping the sample in liquid .11 Here we present more quantitative characteriza- tion of optical responses of

  6. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements.

    Science.gov (United States)

    Pogorielov, Maksym; Husak, Eugenia; Solodivnik, Alexandr; Zhdanov, Sergii

    2017-03-01

    In recent years, the paradigm about the metal with improved corrosion resistance for application in surgery and orthopedy was broken. The new class of biodegradable metal emerges as an alternative for biomedical implants. These metals corrode gradually with an appropriate host response and release of corrosion products. And it is absolutely necessary to use essential metals metabolized by hosting organism with local and general nontoxic effect. Magnesium serves this aim best; it plays the essential role in body metabolism and should be completely excreted within a few days after degradation. This review summarizes data from Mg discovery and its first experimental and clinical application of modern concept of Mg alloy development. We focused on biodegradable metal application in general surgery and orthopedic practice and showed the advantages and disadvantages Mg alloys offer. We focused on methods of in vitro and in vivo investigation of degradable Mg alloys and correlation between these methods. Based on the observed data, a better way for new alloy pre-clinical investigation is suggested. This review analyzes possible alloying elements that improve corrosion rate, mechanical properties, and gives the appropriate host response.

  7. Elliptical formation control based on relative orbit elements

    Institute of Scientific and Technical Information of China (English)

    Yin Jianfeng; Han Chao

    2013-01-01

    A new set of relative orbit elements (ROEs) is used to derive a new elliptical formation flying model. In-plane and out-of-plane motions can be completely decoupled, which benefits ellip-tical formation design. The inverse transformation of the state transition matrix is derived to study the relative orbit control strategy. Impulsive feedback control laws are developed for both in-plane and out-of-plane relative motions. Control of in-plane and out-of-plane relative motions can be completely decoupled using the ROE-based feedback control law. A tangential impulsive control method is proposed to study the relationship of fuel consumption and maneuvering positions. An optimal analytical along-track impulsive control strategy is then derived. Different typical orbit maneuvers, including formation establishment, reconfiguration, long-distance maneuvers, and for-mation keeping, are taken as examples to demonstrate the performance of the proposed control laws. The effects of relative measurement errors are also considered to validate the high accuracy of the proposed control method.

  8. Finite element based simulation of dry sliding wear

    Science.gov (United States)

    Hegadekatte, V.; Huber, N.; Kraft, O.

    2005-01-01

    In order to predict wear and eventually the life-span of complex mechanical systems, several hundred thousand operating cycles have to be simulated. Therefore, a finite element (FE) post-processor is the optimum choice, considering the computational expense. A wear simulation approach based on Archard's wear law is implemented in an FE post-processor that works in association with a commercial FE package, ABAQUS, for solving the general deformable-deformable contact problem. Local wear is computed and then integrated over the sliding distance using the Euler integration scheme. The wear simulation tool works in a loop and performs a series of static FE-simulations with updated surface geometries to get a realistic contact pressure distribution on the contacting surfaces. It will be demonstrated that this efficient approach can simulate wear on both two-dimensional and three-dimensional surface topologies. The wear on both the interacting surfaces is computed using the contact pressure distribution from a two-dimensional or three-dimensional simulation, depending on the case. After every wear step the geometry is re-meshed to correct the deformed mesh due to wear, thus ensuring a fairly uniform mesh for further processing. The importance and suitability of such a wear simulation tool will be enunciated in this paper.

  9. CFD-Based Design Optimization for Single Element Rocket Injector

    Science.gov (United States)

    Vaidyanathan, Rajkumar; Tucker, Kevin; Papila, Nilay; Shyy, Wei

    2003-01-01

    To develop future Reusable Launch Vehicle concepts, we have conducted design optimization for a single element rocket injector, with overall goals of improving reliability and performance while reducing cost. Computational solutions based on the Navier-Stokes equations, finite rate chemistry, and the k-E turbulence closure are generated with design of experiment techniques, and the response surface method is employed as the optimization tool. The design considerations are guided by four design objectives motivated by the consideration in both performance and life, namely, the maximum temperature on the oxidizer post tip, the maximum temperature on the injector face, the adiabatic wall temperature, and the length of the combustion zone. Four design variables are selected, namely, H2 flow angle, H2 and O2 flow areas with fixed flow rates, and O2 post tip thickness. In addition to establishing optimum designs by varying emphasis on the individual objectives, better insight into the interplay between design variables and their impact on the design objectives is gained. The investigation indicates that improvement in performance or life comes at the cost of the other. Best compromise is obtained when improvements in both performance and life are given equal importance.

  10. An optical flow-based state-space model of the vocal folds

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas

    2017-01-01

    . A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able......High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation...... to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters....

  11. Ultrafast optical signal processing on silicon-based platforms

    Science.gov (United States)

    Tan, Dawn T. H.

    2016-03-01

    The development of silicon - based photonic components and systems has advanced tremendously over the last decade, largely for applications in optical interconnects. The role of silicon - based platforms for both linear and nonlinear optics remains highly pertinent because of their ability to be integrated with CMOS - based electronics. In this paper, we present recent research progress pertaining to ultrafast optical signal processing on silicon - based platforms. Advances in on - chip multiplexing strategies with the potential for meeting 200GHz dense wavelength division multiplexing standards across the C - and L - bands will be discussed. In addition, the development of a silicon - based nonlinear optics platform with high nonlinear figures of merit will be presented. Nonlinear optical devices fabricated from the developed platform possess nonlinear parameters 500 times larger than that in silicon nitride waveguides, while possessing negligible nonlinear losses at 1.55μm. Ultra - broadband, low power nonlinear wavelength generation using these devices, as well as their potential for realizing advanced light sources for optical interconnect - based applications will be presented.

  12. Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer

    Science.gov (United States)

    Xu, Jing; Zhang, Xinliang; Liu, Deming; Huang, Dexiu

    2006-10-01

    An ultrafast all-optical logic NOR gate based on a semiconductor optical amplifier (SOA) and a fiber delay interferometer (FDI) is presented. For high-speed input return-to-zero (RZ) signal, nonreturn-to-zero (NRZ) switching windows which satisfy Boolean NOR operation can be formed by properly choosing the delay time and the phase shift of FDI. 40Gb/s NOR operation has been demonstrated successfully with low control optical power. The factors that degrade the NOR operation have been discussed.

  13. Tunable Optical Filter Based on Mechanically Induced Cascaded Long Period Optical Fiber Grating

    Directory of Open Access Journals (Sweden)

    Sunita P. Ugale

    2013-01-01

    Full Text Available We have proposed and demonstrated experimentally a novel and simple tunable optical filter based on mechanically induced and cascaded long period optical fiber gratings. In this filter variable FWHM and center wavelength is provided by cascading long period and ultralong period optical fiber gratings with different periods in a novel fiber structure. We report here for the first time to our knowledge the characterization of mechanically induced long period fiber gratings with periods up to several millimeters in novel multimode-single-mode-multimode fiber structure. We have obtained maximum loss peak of around 20 dB.

  14. Acoustic analysis of lightweight auto-body based on finite element method and boundary element method

    Institute of Scientific and Technical Information of China (English)

    LIANG Xinhua; ZHU Ping; LIN Zhongqin; ZHANG Yan

    2007-01-01

    A lightweight automotive prototype using alter- native materials and gauge thickness is studied by a numeri- cal method. The noise, vibration, and harshness (NVH) performance is the main target of this study. In the range of 1-150 Hz, the frequency response function (FRF) of the body structure is calculated by a finite element method (FEM) to get the dynamic behavior of the auto-body structure. The pressure response of the interior acoustic domain is solved by a boundary element method (BEM). To find the most contrib- uting panel to the inner sound pressure, the panel acoustic contribution analysis (PACA) is performed. Finally, the most contributing panel is located and the resulting structural optimization is found to be more efficient.

  15. Experimental and theoretical investigation of semiconductor optical amplifier (SOA) based all-optical switches

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup

    2004-01-01

    This thesis analyzes semiconductor optical amplifier (SOA) based all-optical switches experimentally and through numerical simulations. These devices are candidates for optical signal processing functionalities such as wavelength conversion, regeneration, and logic processing in future transparent...... optical networks. The factors governing the modulation bandwidth of SOAs are determined, and schemes for reducing detrimental patterning effects are discussed. Three types of SOA-based switches are investigated numerically: so-called standardmode and differential-mode switches, and the filtering assisted...... switch. Differential -mode switches are shown to eliminate one contribution to the patterning effects, referred to as the linear patterning. This enables operation at bitrates far beyond the limit set by the carrier lifetime, but ultimately a saturation-induced patterning effect, nonlinear patterning...

  16. Intensity based sensor based on single mode optical fiber patchcords

    Science.gov (United States)

    Bayuwati, Dwi; Waluyo, Tomi Budi; Mulyanto, Imam

    2016-11-01

    This paper describes the use of several single mode (SM) fiber patchcords available commercially in the market for intensity based sensor by taking the benefit of bending loss phenomenon. Firtsly, the full transmission spectrum of all fiber patchcords were measured and analyzed to examine its bending properties at a series of wavelength using white light source and optical spectrum analyzer. Bending spectral at various bending diameter using single wavelength light sources were then measured for demonstration.Three good candidates for the intensity based sensor are SM600 fiber patchcord with 970 nm LED, SMF28 fiber patchcord with 1050 nm LED and 780HP fiber patchcord with 1310 nm LED which have noticeable bending sensitive area. Experiments show that the combination of the SMF28with 1050 nm LED has 30 mm measurement range which is the widest; with sensitivity 0.107 dB/mm and resolution 0.5 mm compared with combination of SM600 patchcord and LED 970 nm which has the best sensitivity (0.891 dB/mm) and resolution (0.06 mm) but smaller range measurement (10 mm). Some suitable applications for each fiber patchcord - light source pair have also been discussed.

  17. Fabrication of optical element from unidirectional grown imidazole-imidazolium picrate monohydrate (IIP) organic crystals for nonlinear optical applications

    Science.gov (United States)

    Vivek, P.; Murugakoothan, P.

    2014-12-01

    Nonlinear optical bulk single crystal of Imidazole-imidazolium picrate monohydrate (IIP) has been grown by Sankaranarayanan-Ramasamy (SR) method using acetonitrile as solvent. First time we report the bulk growth of IIP crystal by SR method. The transparent IIP single crystal of maximum diameter 21 mm and length 46 mm was obtained by employing SR method. The grown crystal was subjected to high resolution X-ray diffraction, UV-vis-NIR transmittance, refractive index, hardness, dielectric and laser damage threshold studies. The crystalline perfection of the grown crystal was analyzed using HRXRD. Cut off wavelength and optical transmission window of the crystal was assessed by UV-vis-NIR and the refractive index of the crystal was found. The mechanical property of the crystal was estimated by Vicker's hardness test. The dielectric property of the crystal was measured as a function of frequency. The laser damage threshold value was determined. The particle size dependent second harmonic generation efficiency for IIP was evaluated with standard reference material potassium dihydrogen phosphate (KDP) by Kurtz-Perry powder method using Nd:YAG laser, which established the existence of phase matching. The second harmonic generation (SHG) of IIP crystal was investigated by the SHG Maker fringes technique. The mechanism of growth is revealed by carrying out chemical etching using acetonitrile as etchant.

  18. Achieving Giant Magneto-optic Effects with Optical Tamm States in Graphene-based Photonics

    OpenAIRE

    Da, Haixia; Qiu, Cheng-Wei; Bao, Qiaoliang; Teng, Jinghua; Loh, Kian Ping; Garcia-Vidal, Francisco J.

    2013-01-01

    We manipulate optical Tamm states in graphene-based photonics to achieve and steer large magneto-optical effects. Here we report the presence of a giant Faraday rotation via a single graphene layer of atomic thickness while keeping a high transmission. The Faraday rotation is enhanced across the interface between two photonic crystals due to the presence of an interface mode, which presents a strong electromagnetic field confinement at the location of the graphene sheet. Our proposed scheme o...

  19. Mathematical Model of Fiber Optic Temperature Sensor Based on Optic Absorption and Experiment Testing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of analysis on the temperature monitoring methods for high voltage devices, a new type of fiber optic sensor structure with reference channel is given. And the operation principle of fiber optic sensor is analysed at large based on the absorption of semiconductor chip. The mathematical model of both devices and the whole system are also given. It is proved by the experiment that this mathematical model is reliable.

  20. Fiber-optic refractive index sensor based on surface plasmon resonance

    Science.gov (United States)

    Hlubina, Petr; Ciprian, Dalibor; Kadulova, Miroslava

    2015-01-01

    A fiber-optic refractive index sensor based on surface plasmon resonance (SPR) in a thin metal film deposited on an unclad core of a multimode fiber is presented. The sensing element of the SPR fiber-optic sensor is a bare core of a step-index optical fiber made of fused silica with a deposited gold film. First, a model of the SPR fiber-optic sensor based on the theory of attenuated total internal reflection is presented. The analysis is carried out in the frame of optics of multilayered media. The sensing scheme uses a wavelength interrogation method and the calculations are performed over a broad spectral range. Second, in a practical realization of the sensor with a double-sided sputtered gold film, a reflection-based sensing scheme to measure the refractive indices of liquids is considered. The refractive index of a liquid is sensed by measuring the position of the dip in the reflected spectral intensity distribution. As an example, the aqueous solutions of ethanol with refractive indices in a range from 1.333 to 1.364 are measured.

  1. Finite element analysis of rotating beams physics based interpolation

    CERN Document Server

    Ganguli, Ranjan

    2017-01-01

    This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.

  2. BEaTriX, expanded X-ray beam facility for testing modular elements of telescope optics: an update

    CERN Document Server

    Pelliciari, Carlo; Bonnini, Elisa; Buffagni, Elisa; Ferrari, Claudio; Pareschi, Giovanni; Tagliaferri, Gianpiero

    2016-01-01

    We present in this paper an update on the design of BEaTriX (Beam Expander Testing X-ray facility), an X-ray apparatus to be realized at INAF/OAB and that will generate an expanded, uniform and parallel beam of soft X-rays. BEaTriX will be used to perform the functional tests of X-ray focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, using the Silicon Pore Optics (SPO) as a baseline technology, and Slumped Glass Optics (SGO) as a possible alternative. Performing the tests in X-rays provides the advantage of an in-situ, at-wavelength quality control of the optical modules produced in series by the industry, performing a selection of the modules with the best angular resolution, and, in the case of SPOs, there is also the interesting possibility to align the parabolic and the hyperbolic stacks directly under X-rays, to minimize the aberrations. However, a parallel beam with divergence below 2 arcsec is necessary in order to measure mirror elements that are expected to reach ...

  3. Characterization of a Test Site for the Measuring of the Focal Point of Reflective Optical Elements for Concentrator Photovoltaic

    CERN Document Server

    Frick, Manuel

    2014-01-01

    In order to achieve a large deployment of renewable energies, the electricity production costs have to be as low as possible. Many different technologies have been proposed to achieve the best efficiency to cost ratio. One of those is concentrating photovoltaics (CPV) which takes advantage of the high efficiency of multi-junction cells while limiting the costs by reducing the size of the cell and concentrating the direct irradiance with a cheaper optical element. Next to the widely used Fresnel lenses concave mirrors could be of interest as concentrator optic. As for the whole module those optics have to minimize losses and production costs at once. Measuring scattering and slope errors of the mirrors is of great importance to achieve an optimal design and production process. Therefore an optical test site doing so by observing the 2D irradiance distribution in the focal point has been built at the Fraunhofer ISE. The aim of this thesis is to characterize this test site. Therefore the behavior of the differen...

  4. Synthesis, characterization and third-order nonlinear optical properties of symmetrical ferrocenyl Schiff base materials

    Science.gov (United States)

    Yu, Weiguo; Jia, Jianhong; Gao, Jianrong; Han, Liang; Li, Yujin

    2015-03-01

    Six symmetrical ferrocenyl Schiff base materials were synthesized and characterized by UV, 1H NMR, mass spectrometry (MS) and elemental analysis. Their off-resonant third-order nonlinear optical properties were measured using femtosecond laser and degenerate four-wave mixing (DFWM) technique. The third-order nonlinear optical susceptibilities χ(3) were 1.961-6.363 × 10-13 esu. The nonlinear refractive indexes n2 were 3.609-11.716 × 10-12 esu. The second-order hyperpolarizabilities γ of these molecules were 1.967-6.388 × 10-31 esu. The response time were 45.759-73.079 fs. The results indicate that these materials have potential nonlinear optical applications.

  5. Single-crystal Sapphire Based Optical Polarimetric Sensor for High Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Anbo Wang

    2006-08-01

    Full Text Available Optical sensors have been investigated and widely deployed in industrial andscientific measurement and control processes, mainly due to their accuracy, high sensitivityand immunity to electromagnetic interference and other unique characteristics. They areespecially suited for harsh environments applications, where no commercial electricalsensors are available for long-term stable operations. This paper reports a novel contactoptical high temperature sensor targeting at harsh environments. Utilizing birefringentsingle crystal sapphire as the sensing element and white light interferometric signalprocessing techniques, an optical birefringence based temperature sensor was developed.With a simple mechanically structured sensing probe, and an optical spectrum-codedinterferometric signal processor, it has been tested to measure temperature up to 1600 °Cwith high accuracy, high resolution, and long-term measurement stability.

  6. Elemental and Molecular Heritage: An Internet-based Display

    Directory of Open Access Journals (Sweden)

    Henry S. Rzepa

    1998-03-01

    Full Text Available The background to a Web page describing elemental and molecular heritage at Imperial College chemistry department is described. Photographs are shown of the original samples of elemental bromine and crystalline silicon, and molecular ferrocene and mauveine. 3D "Hyperactive" models of these systems are shown, together with a recently discovered heterocyclic systems scorpionine, which like mauveine is made by a deceptively simple chemical synthesis.

  7. Silicon waveguide based 320 Gbit/s optical sampling

    DEFF Research Database (Denmark)

    Ji, Hua; Galili, Michael; Pu, Minhao

    2010-01-01

    A silicon waveguide-based ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode-locker as the sampling source. A clear eye-diagram of a 320 Gbit/s data signal is obtained.......A silicon waveguide-based ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode-locker as the sampling source. A clear eye-diagram of a 320 Gbit/s data signal is obtained....

  8. A Finite Circular Arch Element Based on Trigonometric Shape Functions

    Directory of Open Access Journals (Sweden)

    H. Saffari

    2007-01-01

    Full Text Available The curved-beam finite element formulation by trigonometric function for curvature is presented. Instead of displacement function, trigonometric function is introduced for curvature to avoid the shear and membrane locking phenomena. Element formulation is carried out in polar coordinates. The element with three nodal parameters is chosen on curvature. Then, curvature field in the element is interpolated as the conventional trigonometric functions. Shape functions are obtained as usual by matrix operations. To consider the boundary conditions, a transformation matrix between nodal curvature and nodal displacement vectors is introduced. The equilibrium equation is written by minimizing the total potential energy in terms of the displacement components. In such equilibrium equation, the locking phenomenon is eliminated. The interesting point in this method is that for most problems, it is sufficient to use only one element to obtain the solution. Four examples are presented in order to verify the element formulation and to show the accuracy and efficiency of the method. The results are compared with those of other concepts.

  9. Optical-frequency-comb based ultrasound sensor

    Science.gov (United States)

    Minamikawa, Takeo; Ogura, Takashi; Masuoka, Takashi; Hase, Eiji; Nakajima, Yoshiaki; Yamaoka, Yoshihisa; Minoshima, Kaoru; Yasui, Takeshi

    2017-03-01

    Photo-acoustic imaging is a promising modality for deep tissue imaging with high spatial resolution in the field of biology and medicine. High penetration depth and spatial resolution of the photo-acoustic imaging is achieved by means of the advantages of optical and ultrasound imaging, i.e. tightly focused beam confines ultrasound-generated region within micrometer scale and the ultrasound can propagate through tissues without significant energy loss. To enhance the detection sensitivity and penetration depth of the photo-acoustic imaging, highly sensitive ultrasound detector is greatly desired. In this study, we proposed a novel ultrasound detector employing optical frequency comb (OFC) cavity. Ultrasound generated by the excitation of tightly focused laser beam onto a sample was sensed with a part of an OFC cavity, being encoded into OFC. The spectrally encoded OFC was converted to radio-frequency by the frequency link nature of OFC. The ultrasound-encoded radio-frequency can therefore be directly measured with a high-speed photodetector. We constructed an OFC cavity for ultrasound sensing with a ring-cavity erbium-doped fiber laser. We provided a proof-of-principle demonstration of the detection of ultrasound that was generated by a transducer operating at 10 MHz. Our proposed approach will serve as a unique and powerful tool for detecting ultrasounds for photo-acoustic imaging in the future.

  10. Optimizing the Elemental Sensitivity and Focal Spot Size of a Monolithic Polycapillary Optic Using Micro-X-Ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Worley, C.; Havrilla, G.; Gao, N.; Xia, Q.-F.

    1998-10-01

    A commercial micro-X-ray fluorescence (MXRF) instrument with an aperture X-ray guide was used to compare elemental sensitivities and focal spot sizes with those obtained by focusing the source with a monolithic polycapillary optic retrofitted into the system. The capillary provided an intensity gain of 125 at 4 keV vs. using a pinhole beam collimator; however, this gain advantage declined with increasing analyte line energy as a result of the capillary being designed shorter than its optimal length to fit into the commercial instrument. A minimum capillary focal spot FWHM of 36 {micro}m was achieved, whereas the smallest pinhole aperture available of 50 {micro}m in diameter produced a focal spot width of 69 {micro}m FWHM. Hence, better MXRF lateral resolution could be obtained with the capillary with a simultaneous improvement in elemental sensitivity.

  11. A versatile three/four crystal X-ray diffractometer for X-ray optical elements: Performance and applications

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Jacobsen, E.;

    1987-01-01

    A versatile X-ray diffractometer for the study of X-ray optical elements such as grazing incidence mirrors, crystals and X-ray gratings has been built and put into operation at the Danish Space Research Institute. The diffractrometer is built on a 1.5 m long granite bench with the X-ray source...... located at one end of the bench where it can be rotated around a fixed vertical axis. The beam defining elements are perfect crystals of Si, Ge or quartz. With these it is possible to define a highly collimated beam of a few arcsec fwhm in the scattering plane. Examples of measurements on various X-ray...

  12. Photodiode Based Detection for Multiple Trap Optical Tweezers

    DEFF Research Database (Denmark)

    Ott, Dino

    This thesis is concerned with the position tracking of microscopic, optically trapped particles and the quantification of the forces acting on them. A new detection method for simultaneous, three-dimensional tracking of multiple particles is presented, its performance is evaluated, and its...... usefulness is illustrated in specific application examples. Optical traps enable contact-less, all-optical manipulation of microscopic objects. Over the last decades, this laser-based micro-manipulation tool has facilitated numerous exciting discoveries within biology and physics, and it is today regarded...

  13. Distributed optical fiber dynamic magnetic field sensor based on magnetostriction.

    Science.gov (United States)

    Masoudi, Ali; Newson, Trevor P

    2014-05-01

    A distributed optical fiber sensor is introduced which is capable of quantifying multiple magnetic fields along a 1 km sensing fiber with a spatial resolution of 1 m. The operation of the proposed sensor is based on measuring the magnetorestrictive induced strain of a nickel wire attached to an optical fiber. The strain coupled to the optical fiber was detected by measuring the strain-induced phase variation between the backscattered Rayleigh light from two segments of the sensing fiber. A magnetic field intensity resolution of 0.3 G over a bandwidth of 50-5000 Hz was demonstrated.

  14. An optical CDMA system based on chaotic sequences

    Science.gov (United States)

    Liu, Xiao-lei; En, De; Wang, Li-guo

    2014-03-01

    In this paper, a coherent asynchronous optical code division multiple access (OCDMA) system is proposed, whose encoder/decoder is an all-optical generator. This all-optical generator can generate analog and bipolar chaotic sequences satisfying the logistic maps. The formula of bit error rate (BER) is derived, and the relationship of BER and the number of simultaneous transmissions is analyzed. Due to the good property of correlation, this coherent OCDMA system based on these bipolar chaotic sequences can support a large number of simultaneous users, which shows that these chaotic sequences are suitable for asynchronous OCDMA system.

  15. A passive optical network based on optical code division multiplexing and time division multiple access technology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM technology to guarantee the security, while the upstream traffics pass through the same optical fiber by the common time division multiple access (TDMA) technology to decrease the cost.This schemes are denoted as OCDM/TDMA-PON, which can be applied to an optical access network (OAN) with full services on demand, such as Internet protocol, video on demand, tele-presence and high quality audio. The proposed OCDM/TDMA-PON scheme combines advantages of PON, TDMA, and OCDM technology. Simulation results indicate that the designed scheme improves the OAN performance,and enhances flexibility and scalability of the system.

  16. Large dynamic range optical vector analyzer based on optical single-sideband modulation and Hilbert transform

    Science.gov (United States)

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2016-07-01

    A large dynamic range optical vector analyzer (OVA) based on optical single-sideband modulation is proposed and demonstrated. By dividing the optical signal after optical device under test into two paths, reversing the phase of one swept sideband using a Hilbert transformer in one path, and detecting the two signals from the two paths with a balanced photodetector, the measurement errors induced by the residual -1st-order sideband and the high-order sidebands can be eliminated and the dynamic range of the measurement is increased. In a proof-of-concept experiment, the stimulated Brillouin scattering and a fiber Bragg grating are measured by OVAs with and without the Hilbert transform and balanced photodetection. Results show that about 40-dB improvement in the measurement dynamic range is realized by the proposed OVA.

  17. A reconstructed edge-based smoothed DSG element based on global coordinates for analysis of Reissner-Mindlin plates

    Science.gov (United States)

    Yang, Gang; Hu, De'an; Long, Shuyao

    2017-02-01

    A reconstructed edge-based smoothed triangular element, which is incorporated with the discrete shear gap (DSG) method, is formulated based on the global coordinate for analysis of Reissner-Mindlin plates. A symbolic integration combined with the smoothing technique is implemented to calculate the smoothed finite element matrices, which is integrated along the boundaries of each smoothing cell. Numerical results show that the proposed element is free from shear locking, and its results are in good agreement with the exact solutions, even for very thin plates with extremely distorted elements. The proposed element gives more accurate results than the original DSG element without smoothing, and it can be taken as an alternative element for analysis of Reissner-Mindlin plates. The prominent feature of the present element is that the integration scheme is unified in the smoothed form for all of the finite element matrices.

  18. Determining Aerodynamic Loads Based on Optical Deformation Measurements

    Science.gov (United States)

    Liu, Tianshu; Barrows, D. A.; Burner, A. W.; Rhew, R. D.

    2001-01-01

    This paper describes a videogrammetric technique for determining aerodynamic loads based on optical elastic deformation measurements. The data reduction methods are developed to extract the normal force and pitching moment from beam deformation data. The axial force is obtained by measuring the axial translational motion of a movable shaft in a spring/bearing device. Proof-of-concept calibration experiments are conducted to assess the accuracy of this optical technique.

  19. Last Advances in Silicon-Based Optical Biosensors.

    Science.gov (United States)

    Fernández Gavela, Adrián; Grajales García, Daniel; Ramirez, Jhonattan C; Lechuga, Laura M

    2016-02-24

    We review the most important achievements published in the last five years in the field of silicon-based optical biosensors. We focus specially on label-free optical biosensors and their implementation into lab-on-a-chip platforms, with an emphasis on developments demonstrating the capability of the devices for real bioanalytical applications. We report on novel transducers and materials, improvements of existing transducers, new and improved biofunctionalization procedures as well as the prospects for near future commercialization of these technologies.

  20. Stochastic structural model of rock and soil aggregates by continuum-based discrete element method

    Institute of Scientific and Technical Information of China (English)

    WANG; Yuannian; ZHAO; Manhong; LI; Shihai; J.G.; Wang

    2005-01-01

    This paper first presents a stochastic structural model to describe the random geometrical features of rock and soil aggregates. The stochastic structural model uses mixture ratio, rock size and rock shape to construct the microstructures of aggregates,and introduces two types of structural elements (block element and jointed element) and three types of material elements (rock element, soil element, and weaker jointed element)for this microstructure. Then, continuum-based discrete element method is used to study the deformation and failure mechanism of rock and soil aggregate through a series of loading tests. It is found that the stress-strain curve of rock and soil aggregates is nonlinear, and the failure is usually initialized from weaker jointed elements. Finally, some factors such as mixture ratio, rock size and rock shape are studied in detail. The numerical results are in good agreement with in situ test. Therefore, current model is effective for simulating the mechanical behaviors of rock and soil aggregates.