WorldWideScience

Sample records for optically flat substrates

  1. Optical measurement of microroughness of pigment coatings on rough substrates

    Science.gov (United States)

    Elton, N. J.

    2009-02-01

    The optical determination of rms roughness at the sub-wavelength scale by measurement of specular intensity as a function of wavelength or angle of incidence is well known. The method is normally used for specimens that are macroscopically flat. However, important industrial materials such as coated paper and paint consist of microscopically rough pigment coatings on a macroscopically rough substrate. Numerical modelling is used to assess the applicability and limitations of optical measurement of microroughness for such materials. Experimental results are presented for a range of paints on substrates of various macroroughness. Model and data are in fair agreement and show that the presence of substrate macroroughness always leads to an underestimation of microroughness. Generally, optical measurements of microroughness are only comparable for substrates of similar macroroughness and a limiting value exists above which measurements may not be meaningful.

  2. Optical measurement of microroughness of pigment coatings on rough substrates

    International Nuclear Information System (INIS)

    Elton, N J

    2009-01-01

    The optical determination of rms roughness at the sub-wavelength scale by measurement of specular intensity as a function of wavelength or angle of incidence is well known. The method is normally used for specimens that are macroscopically flat. However, important industrial materials such as coated paper and paint consist of microscopically rough pigment coatings on a macroscopically rough substrate. Numerical modelling is used to assess the applicability and limitations of optical measurement of microroughness for such materials. Experimental results are presented for a range of paints on substrates of various macroroughness. Model and data are in fair agreement and show that the presence of substrate macroroughness always leads to an underestimation of microroughness. Generally, optical measurements of microroughness are only comparable for substrates of similar macroroughness and a limiting value exists above which measurements may not be meaningful

  3. Innovative lightweight substrate for stable optical benches and mirrors

    Science.gov (United States)

    Rugi Grond, E.; Herren, A.; Mérillat, S.; Fermé, J. J.

    2017-11-01

    High precision space optics, such as spectrometers, relay optics, and filters, require ultra stable, lightweight platforms. These equipped platforms have on one side to survive the launch loads, on the other side they have to maintain their stability also under the varying thermal loads occurring in space. Typically such platforms have their equipment (prisms, etalons, beam expanders, etc.) mounted by means of classical bonding, hydro-catalytic bonding or optical contacting. Therefore such an optical bench requires to provide an excellent flatness, minimal roughness and is usually made of the same material as the equipment it carries (glass, glass ceramics). For space systems, mass is a big penalty, therefore such optical platforms are in most cases light weighted by means of machining features (i.e. pockets). Besides of being not extremely mass efficient, such pockets reduce the load carrying capability of the base material significantly. The challenge for Oerlikon Space, in this context, was to develop, qualify and deliver such optical benches, providing a substantial mass reduction compared to actual light weighted systems, while maintaining most of the full load carrying capacity of the base material. Additionally such a substrate can find an attractive application for mirror substrates. The results of the first development and of the first test results will be presented.

  4. Elongated grains in cube textured nickel substrate tapes and flat wires

    International Nuclear Information System (INIS)

    Eickemeyer, J; Gueth, A; Holzapfel, B

    2008-01-01

    Cube textured nickel substrate tapes and flat wires with an increased grain aspect ratio were prepared from nickel micro-alloyed with silver plus yttrium and silver, respectively. Whereas the maximum grain aspect ratio for the tapes was about 6, this value reached up to 14 for the flat wires

  5. Optical identifications of flat-spectrum radio sources

    International Nuclear Information System (INIS)

    Condon, J.J.; Condon, M.A.; Broderick, J.J.; Davis, M.M.

    1983-01-01

    A complete sample of radio sources with S> or =0.3 Jy at 1400 MHz, +24 0 0 , and low-frequency spectral indices α(408, 1400) or =+0.5 are usually in empty fields. The lower limits that can be assigned to the radio-optical spectral indices α/sub RO/ of these sources are significantly higher than the median α/sub RO/ of the sources with flat high-frequency spectra, so the optical characteristics of the two classes of radio source are intrinsically different. The radio and optical fluxes of flat-spectrum QSO's appear to be correlated, at least when averaged over 10 2 --10 3 yr

  6. Friction of hydrogels with controlled surface roughness on solid flat substrates.

    Science.gov (United States)

    Yashima, Shintaro; Takase, Natsuko; Kurokawa, Takayuki; Gong, Jian Ping

    2014-05-14

    This study investigated the effect of hydrogel surface roughness on its sliding friction against a solid substrate having modestly adhesive interaction with hydrogels under small normal pressure in water. The friction test was performed between bulk polyacrylamide hydrogels of varied surface roughness and a smooth glass substrate by using a strain-controlled rheometer with parallel-plates geometry. At small pressure (normal strain 1.4-3.6%), the flat surface gel showed a poor reproducibility in friction. In contrast, the gels with a surface roughness of 1-10 μm order showed well reproducible friction behaviors and their frictional stress was larger than that of the flat surface hydrogel. Furthermore, the flat gel showed an elasto-hydrodynamic transition while the rough gels showed a monotonous decrease of friction with velocity. The difference between the flat surface and the rough surface diminished with the increase of the normal pressure. These phenomena are associated with the different contact behaviors of these soft hydrogels in liquid, as revealed by the observation of the interface using a confocal laser microscope.

  7. New process for high optical quality InAs quantum dots grown on patterned GaAs(001) substrates

    International Nuclear Information System (INIS)

    Alonso-Gonzalez, Pablo; Gonzalez, Luisa; Gonzalez, Yolanda; Fuster, David; Fernandez-Martinez, Ivan; Martin-Sanchez, Javier; Abelmann, Leon

    2007-01-01

    This work presents a selective ultraviolet (UV)-ozone oxidation-chemical etching process that has been used, in combination with laser interference lithography (LIL), for the preparation of GaAs patterned substrates. Further molecular beam epitaxy (MBE) growth of InAs results in ordered InAs/GaAs quantum dot (QD) arrays with high optical quality from the first layer of QDs formed on the patterned substrate. The main result is the development of a patterning technology that allows the engineering of customized geometrical displays of QDs with the same optical quality as those formed spontaneously on flat non-patterned substrates

  8. Flat panel planar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  9. Evaluation of the deformation value of an optical flat under gravity

    International Nuclear Information System (INIS)

    Kondo, Yohan; Bitou, Youichi

    2014-01-01

    The flatness of an optical surface can be evaluated using a Fizeau interferometer. There is strong demand for ensuring that the measurement uncertainty of flatness is of nanometer order over a measurement range of 300 mm or more; however, the measurement range and measurement uncertainty of flatness at the National Metrology Institute of Japan (NMIJ) are 300 mm and 10 nm, respectively. In a Fizeau flatness interferometer, the gap distance between the reference flat and the specimen is measured. To obtain the absolute profile of the specimen, the absolute profile of the reference flat should be measured in advance. The three-flat test is one of the methods used to measure the absolute profile of a reference flat. The reference flat, however, deforms under the force of gravity, and its absolute deformation value cannot be determined by the three-flat test. The deformation value of the reference flat can be corrected by the finite element method (FEM) analysis; however, it is difficult to ensure the validity of the analysis and there is a large uncertainty component of the Fizeau flatness interferometer. To verify the FEM analysis, we developed a scanning deflectometric profiler (SDP) that does not require a reference flat and can directly measure a profile. We calibrated an optical flat using a Fizeau flatness interferometer and the SDP. Finally, the deformation value of the reference flat under the force of gravity was evaluated by comparing the measurement results. (paper)

  10. Flat panel planar optic display. Revision 4/95

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-05-01

    A prototype 10 inch flat panel Planar Optic display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic glass sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  11. Direct metal transfer printing on flexible substrate for fabricating optics functional devices

    Science.gov (United States)

    Jiang, Yingjie; Zhou, Xiaohong; Zhang, Feng; Shi, Zhenwu; Chen, Linsen; Peng, Changsi

    2015-11-01

    New functional materials and devices based on metal patterns can be widely used in many new and expanding industries,such as flat panel displays, alternative energy,sensors and so on. In this paper, we introduce a new transfer printing method for fabricating metal optics functional devices. This method can directly transfer a metal pattern from a polyethylene terephthalate (PET)supported UV or polydimethylsiloxane (PDMS) pattern to another PET substrate. Purely taking advantage of the anaerobic UV curing adhesive (a-UV) on PET substrate, metal film can be easily peeled off from micro/nano-structured surface. As a result, metal film on the protrusion can be selectively transferred onto the target substrate, to make it the metal functional surface. But which on the bottom can not be transferred. This method provides low cost fabrication of metal thin film devices by avoiding high cost lithography process. Compared with conventional approach, this method can get more smooth rough edges and has wider tolerance range for the original master mold. Future developments and potential applications of this metal transfer method will be addressed.

  12. Development of Surfaces Optically Suitable for Flat Solar Panels

    Science.gov (United States)

    Desmet, D.; Jason, A.

    1978-01-01

    Three areas of research in the development of flat solar panels are described. (1) A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces was developed. The reflectometer has a phase locked detection system. (2) A coating composed of strongly bound copper oxide that is formed by an etching process performed on an aluminum alloy with high copper content was also developed. Because of this one step fabrication process, fabrication costs are expected to be small. (3) A literature search was conducted and conclusions on the required optical properties of flat plate solar collectors are presented.

  13. Strain Multiplexed Metasurface Holograms on a Stretchable Substrate.

    Science.gov (United States)

    Malek, Stephanie C; Ee, Ho-Seok; Agarwal, Ritesh

    2017-06-14

    We demonstrate reconfigurable phase-only computer-generated metasurface holograms with up to three image planes operating in the visible regime fabricated with gold nanorods on a stretchable polydimethylsiloxane substrate. Stretching the substrate enlarges the hologram image and changes the location of the image plane. Upon stretching, these devices can switch the displayed holographic image between multiple distinct images. This work opens up the possibilities for stretchable metasurface holograms as flat devices for dynamically reconfigurable optical communication and display. It also confirms that metasurfaces on stretchable substrates can serve as platform for a variety of reconfigurable optical devices.

  14. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system

    NARCIS (Netherlands)

    Miao, W.; Luo, J.; Di Lucente, S.; Dorren, H.J.S.; Calabretta, N.

    2013-01-01

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. 4×4 dynamic switch operation at 40 Gb/s reported 300ns minimum end-to-end latency (including 25m transmission link) and

  15. Optical characterization of nanoporous AAO sensor substrate

    Science.gov (United States)

    Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup

    2014-05-01

    Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.

  16. Microstructural and Optical Properties of Porous Alumina Elaborated on Glass Substrate

    Science.gov (United States)

    Zaghdoudi, W.; Gaidi, M.; Chtourou, R.

    2013-03-01

    A transparent porous anodized aluminum oxide (AAO) nanostructure was formed on a glass substrate using the anodization of a highly pure evaporated aluminum layer. A parametric study was carried out in order to achieve a fine control of the microstructural and optical properties of the elaborated films. The microstructural and surface morphologies of the porous alumina films were characterized by x-ray diffraction and atomic force microscopy. Pore diameter, inter-pore separation, and the porous structure as a function of anodization conditions were investigated. It was then found that the pores density decreases with increasing the anodization time. Regular cylindrical porous AAO films with a flat bottom structure were formed by chemical etching and anodization. A high transmittance in the 300-900 nm range is reported, indicating a fulfilled growth of the transparent sample (alumina) from the aluminum metal. The data showed typical interference oscillations as a result of the transparent characteristics of the film throughout the visible spectral range. The thickness and the optical constants ( n and k) of the porous anodic alumina films, as a function of anodizing time, were obtained using spectroscopic ellipsometry in the ultraviolet-visible-near infrared (UV-vis-NIR) regions.

  17. Reduced timing Sensitivity in all-optical switching using flat-top control pulses obtained by the optical fourier transform technique

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    into the time domain, referred to as the optical Fourier transform technique. A 3 ps flat-top pulse derived from a 3 nm wide square filter is obtained, and used to gate an all-optical OTDM demultiplexer, yielding an error-free timing jitter tolerance of 3 ps for 80 Gb/s and 160 Gb/s data signals.......For high-speed serial data, timing tolerance is crucial for switching and regeneration. We propose a novel scheme to generate flat-top pulses, for use as gating control pulses. The scheme relies on spectral shaping by a square-shaped filter, followed by a linear transformation of the spectral shape...

  18. Lithography-Free Fabrication of Reconfigurable Substrate Topography For Contact Guidance

    Science.gov (United States)

    Pholpabu, Pitirat; Kustra, Stephen; Wu, Haosheng; Balasubramanian, Aditya; Bettinger, Christopher J.

    2014-01-01

    Mammalian cells detect and respond to topographical cues presented in natural and synthetic biomaterials both in vivo and in vitro. Micro- and nano-structures influence the adhesion, morphology, proliferation, migration, and differentiation of many phenotypes. Although the mechanisms that underpin cell-topography interactions remain elusive, synthetic substrates with well-defined micro- and nano-structures are important tools to elucidate the origin of these responses. Substrates with reconfigurable topography are desirable because programmable cues can be harmonized with dynamic cellular responses. Here we present a lithography-free fabrication technique that can reversibly present topographical cues using an actuation mechanism that minimizes the confounding effects of applied stimuli. This method utilizes strain-induced buckling instabilities in bi-layer substrate materials with rigid uniform silicon oxide membranes that are thermally deposited on elastomeric substrates. The resulting surfaces are capable of reversible of substrates between three distinct states: flat substrates (A = 1.53 ± 0.55 nm, Rms = 0.317 ± 0.048 nm); parallel wavy grating arrays (A|| = 483.6 ± 7.8 nm and λ|| = 4.78 ± 0.16 μm); perpendicular wavy grating arrays (A⊥ = 429.3 ± 5.8 nm; λ⊥ = 4.95 ± 0.36 μm). The cytoskeleton dynamics of 3T3 fibroblasts in response to these surfaces was measured using optical microscopy. Fibroblasts cultured on dynamic substrates that are switched from flat to topographic features (FLAT-WAVY) exhibit a robust and rapid change in gross morphology as measured by a reduction in circularity from 0.30 ± 0.13 to 0.15 ± 0.08 after 5 min. Conversely, dynamic substrate sequences of FLAT-WAVY-FLAT do not significantly alter the gross steady-state morphology. Taken together, substrates that present topographic structures reversibly can elucidate dynamic aspects of cell-topography interactions. PMID:25468368

  19. Development study of the X-ray scattering properties of a group of optically polished flat samples

    Science.gov (United States)

    Froechtenigt, J. F.

    1973-01-01

    A group of twelve optically polished flat samples were used to study the scattering of X-rays. The X-ray beam reflected from the twelve optical flat samples was analyzed by means of a long vacuum system of special design for these tests. The scattering measurements were made at 8.34A and 0.92 deg angle of incidence. The results for ten of the samples are comparable, the two exceptions being the fire polished samples.

  20. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates

    International Nuclear Information System (INIS)

    Vandamme, N; Janssens, E; Vanhoutte, F; Lievens, P; Haesendonck, C van

    2003-01-01

    We systematically studied the influence of the substrate on the shape, mobility, and stability of deposited gold clusters. The Au n clusters were produced in a laser vaporization source and deposited with low kinetic energy (∼0.4 eV/atom) on atomically flat substrates (graphite, mica, and gold and silver films on mica) under UHV conditions. Their size distribution is probed with time-of-flight mass spectrometry and ranges from dimers to several hundreds of atoms. Scanning probe microscopy is used to characterize the deposited clusters and the formation of islands by cluster aggregation. On all substrates, Au n islands can be clearly distinguished and the islands are flattened despite the small impact energy. The shape and size of the island configurations are strongly system dependent. Gold clusters deposited on Au(111) and Ag(111) films grown on mica do not aggregate, but deform due to strong cluster-substrate interactions. The clusters tend to grow epitaxially on these surfaces. On graphite and on mica, deposited clusters do diffuse and aggregate. On the graphite surface, large ramified islands are formed by juxtaposition of small islands and trapping of the clusters at the step edges. On the other hand, the diffusion of the clusters on mica results in a total coalescence of the Au n clusters into compact islands

  1. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Source For System-Level Testing Of Optical Sensors

    Science.gov (United States)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-01-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance.

  2. Flat-Top and Stacking-Fault-Free GaAs-Related Nanopillars Grown on Si Substrates

    Directory of Open Access Journals (Sweden)

    Kouta Tateno

    2012-01-01

    Full Text Available The VLS (vapor-liquid-solid method is one of the promising techniques for growing vertical III-V compound semiconductor nanowires on Si for application to optoelectronic circuits. Heterostructures grown in the axial direction by the VLS method and in the radial direction by the general layer-by-layer growth method make it possible to fabricate complicated and functional three-dimensional structures in a bottom-up manner. We can grow some vertical heterostructure nanopillars with flat tops on Si(111 substrates, and we have obtained core-multishell Ga(InP/GaAs/GaP nanowires with flat tops and their air-gap structures by using selective wet etching. Simulations indicate that a high- factor of over 2000 can be achieved for this air-gap structure. From the GaAs growth experiments, we found that zincblende GaAs without any stacking faults can be grown after the GaP nanowire growth. Pillars containing a quantum dot and without stacking faults can be grown by using this method. We can also obtain flat-top pillars without removing the Au catalysts when using small Au particles.

  3. A study on arrangement characteristics of microparticles in sedimentation on flat and round substrates

    Science.gov (United States)

    Yeo, Eunju; Son, Minhee; Kim, Kwanoh; Kim, Jeong Hwan; Yoo, Yeong-Eun; Choi, Doo-Sun; Kim, Jungchul; Yoon, Seok Ho; Yoon, Jae Sung

    2017-12-01

    Recent advances of microfabrication techniques have enabled diverse structures and devices on the microscale. This fabrication method using microparticles is one of the most promising technologies because it can provide a cost effective process for large areas. So, many researchers are studying modulation and manipulation of the microparticles in solution to obtain a proper arrangement. However, the microparticles are in sedimentation status during the process in many cases, which makes it difficult to control their arrangement. In this study, droplets containing microparticles were placed on a substrate with minimal force and we investigated the arrangement of these microparticles after evaporation of the liquid. Experiments have been performed with upward and downward substrates to change the direction of gravity. The geometry of substrates was also changed, which were flat or round. The results show that the arrangement depends on the size of particles and gravity and geometry of the substrate. The arrangement also depends on the movement of the contact line of the droplets, which may recede or be pinned during evaporation. This study is expected to provide a method of the fabrication process for microparticles which may not be easily manipulated due to sedimentation.

  4. Flat-top pulse generation by the optical Fourier transform technique for ultrahigh speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael

    2009-01-01

    This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super-Gaussian sp......This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super...

  5. Multi-spectral optical absorption in substrate-free nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray, E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7 (Canada); Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  6. OPSquare : assessment of a novel flat optical data center network architecture under realistic data center traffic

    NARCIS (Netherlands)

    Miao, W.; Yan, F.; Raz, O.; Calabretta, N.

    2016-01-01

    The performances of OPSquare flat data-center network based on flow-controlled optical switches are investigated. Results show <1E-6 packet loss and <2µs end-to-end latency for 0.3 load when scaling to 40960 servers with 32×32 optical switches.

  7. Substrate effects on the formation of flat Ag films on (110) surfaces of III-V compound semiconductors

    International Nuclear Information System (INIS)

    Chao, K.; Zhang, Z.; Ebert, P.; Shih, C.K.

    1999-01-01

    Ag films grown at 135 K on (110) surfaces of III-V compound semiconductors and annealed at room temperature are investigated by scanning tunneling microscopy and low-energy electron diffraction. Ag films on Ga-V semiconductors are well ordered, atomically flat, and exhibit a specific critical thickness, which is a function of the substrate material. Films grown on In-V semiconductors are still rather flat, but significantly more disordered. The (111) oriented Ag films on III-arsenides and III-phosphides exhibit a clear twofold superstructure. Films on III-antimonides exhibit threefold low-energy electron diffraction images. The morphology of the Ag films can be explained on the basis of the electronic growth mechanism. copyright 1999 The American Physical Society

  8. MUSIC ALGORITHM FOR LOCATING POINT-LIKE SCATTERERS CONTAINED IN A SAMPLE ON FLAT SUBSTRATE

    Institute of Scientific and Technical Information of China (English)

    Dong Heping; Ma Fuming; Zhang Deyue

    2012-01-01

    In this paper,we consider a MUSIC algorithm for locating point-like scatterers contained in a sample on flat substrate.Based on an asymptotic expansion of the scattering amplitude proposed by Ammari et al.,the reconstruction problem can be reduced to a calculation of Green function corresponding to the background medium.In addition,we use an explicit formulation of Green function in the MUSIC algorithm to simplify the calculation when the cross-section of sample is a half-disc.Numerical experiments are included to demonstrate the feasibility of this method.

  9. The effect of optical substrates on micro-FTIR analysis of single mammalian cells.

    Science.gov (United States)

    Wehbe, Katia; Filik, Jacob; Frogley, Mark D; Cinque, Gianfelice

    2013-02-01

    The study of individual cells with infrared (IR) microspectroscopy often requires living cells to be cultured directly onto a suitable substrate. The surface effect of the specific substrates on the cell growth-viability and associated biochemistry-as well as on the IR analysis-spectral interference and optical artifacts-is all too often ignored. Using the IR beamline, MIRIAM (Diamond Light Source, UK), we show the importance of the substrate used for IR absorption spectroscopy by analyzing two different cell lines cultured on a range of seven optical substrates in both transmission and reflection modes. First, cell viability measurements are made to determine the preferable substrates for normal cell growth. Successively, synchrotron radiation IR microspectroscopy is performed on the two cell lines to determine any genuine biochemically induced changes or optical effect in the spectra due to the different substrates. Multivariate analysis of spectral data is applied on each cell line to visualize the spectral changes. The results confirm the advantage of transmission measurements over reflection due to the absence of a strong optical standing wave artifact which amplifies the absorbance spectrum in the high wavenumber regions with respect to low wavenumbers in the mid-IR range. The transmission spectra reveal interference from a more subtle but significant optical artifact related to the reflection losses of the different substrate materials. This means that, for comparative studies of cell biochemistry by IR microspectroscopy, it is crucial that all samples are measured on the same substrate type.

  10. Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2017-10-01

    Full Text Available An essential impact which can improve the indoor environment and save on power consumption for artificial lighting is utilization of daylight. Optical fiber daylighting technology offers a way to use direct daylight for remote spaces in a building. However, the existing paradigm based on the precise orientation of sunlight concentrator toward the Sun is very costly and difficult to install on the roof of buildings. Here, we explore an alternative approach using mirror-coated lens array and planar waveguide to develop a flat optical fiber daylighting system (optical fiber daylighting panel with lateral displacement Sun-tracking mechanism. Sunlight collected and reflected by each mirror-coated lens in a rectangular lens array is coupled into a planar waveguide using cone prisms placed at each lens focus. This geometry yields a thin, flat profile for Sunlight concentrator. Our proposed concentrating panel can be achieved with 35 mm thickness while the concentrator’s width and length are 500 mm × 500 mm. The commercial optical simulation tool (LightToolsTM was used to develop the simulation models and analyze the system performance. Simulation results based on the designed system demonstrated an optical efficiency of 51.4% at a concentration ratio of 125. The system can support utilizing a lateral displacement Sun-tracking system, which allows for replacing bulky and robust conventional rotational Sun-tracking systems. This study shows a feasibility of a compact and inexpensive optical fiber daylighting system to be installed on the roof of buildings.

  11. Optical substrate materials for synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    Howells, M.R.; Paquin, R.A.

    1997-06-01

    The authors consider the materials choices available for making optical substrates for synchrotron radiation beam lines. They find that currently the optical surfaces can only be polished to the required finish in fused silica and other glasses, silicon, CVD silicon carbide, electroless nickel and 17-4 PH stainless steel. Substrates must therefore be made of one of these materials or of a metal that can be coated with electroless nickel. In the context of material choices for mirrors they explore the issues of dimensional stability, polishing, bending, cooling, and manufacturing strategy. They conclude that metals are best from an engineering and cost standpoint while the ceramics are best from a polishing standpoint. They then give discussions of specific materials as follows: silicon carbide, silicon, electroless nickel, Glidcop trademark, aluminum, precipitation-hardening stainless steel, mild steel, invar and superinvar. Finally they summarize conclusions and propose ideas for further research

  12. Flat Ge-doped optical fibres for food irradiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Noor, N. Mohd; Jusoh, M. A. [Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Razis, A. F. Abdull [Food Safety Research Centre, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Alawiah, A. [Faculty of Engineering and Technology, Multimedia University, 75450 Malacca (Malaysia); Bradley, D. A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  13. Flat Ge-doped optical fibres for food irradiation dosimetry

    International Nuclear Information System (INIS)

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-01-01

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%

  14. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens.

    Science.gov (United States)

    Jiang, Ning; Wang, Chao; Xue, Chenpeng; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2017-06-26

    We propose a flat wideband chaos generation scheme that shows excellent time delay signature suppression effect, by injecting the chaotic output of general external cavity semiconductor laser into an optical time lens module composed of a phase modulator and two dispersive units. The numerical results demonstrate that by properly setting the parameters of the driving signal of phase modulator and the accumulated dispersion of dispersive units, the relaxation oscillation in chaos can be eliminated, wideband chaos generation with an efficient bandwidth up to several tens of GHz can be achieved, and the RF spectrum of generated chaotic signal is nearly as flat as uniform distribution. Moreover, the periodicity of chaos induced by the external cavity modes can be simultaneously destructed by the optical time lens module, based on this the time delay signature can be completely suppressed.

  15. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    CERN Document Server

    AUTHOR|(CDS)2070952; Valishev, Aleksander; Shatilov, Dmitry

    2015-01-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical β∗ values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  16. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Fartoukh, Stephane [CERN; Valishev, Alexander [Fermilab; Shatilov, Dmitry [BINP, Novosibirsk

    2015-06-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical $\\beta^{\\ast}$values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  17. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Abdel-wahab, M.Sh [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni -Suef University, Beni-Suef (Egypt); Al-ghamdi, Attieh A. [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Dahlan, Ammar sadik [Department of architecture, faculty of environmental design, King Abdulaziz University, Jeddah (Saudi Arabia); Yahia, I.S. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Nano-Science & Semiconductor Labs, Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt)

    2016-01-15

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ{sup (3)} was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  18. Critical issues in enhancing brightness in thin film phosphors for flat-panel display applications

    International Nuclear Information System (INIS)

    Singh, R.K.; Chen, Z.; Kumar, D.; Cho, K.; Ollinger, M.

    2002-01-01

    Thin film phosphors have potential applications in field emission flat-panel displays. However, they are limited by the lower cathodoluminescent brightness in comparison to phosphor powders. In this paper, we have investigated the critical parameters that need to be optimized to increase the brightness of phosphor thin films. Specifically, we studied the role of surface roughness and optical properties of the substrate on the brightness of the phosphor films. Thin Y 2 O 3 :Eu phosphor films were deposited on various substrates (lanthanum aluminate, quartz, sapphire, and silicon) with thicknesses varying from 50 to 500 nm. A model that accounts for diffuse and specular or scattering effects has been developed to understand the effects of the microstructure on the emission characteristics of the cathodoluminescent films. The results from the model show that both the optical properties of the substrate and the surface roughness of the films play a critical role in controlling the brightness of laser deposited phosphor films

  19. Cryogenic Q-factor measurement of optical substrate materials

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, S; Nawrodt, R; Zimmer, A; Thuerk, M; Vodel, W; Seidel, P [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany)

    2006-03-02

    Upcoming generations of interferometric gravitational wave detectors are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of optical components (e.g. end mirrors, cavity couplers, beam splitters). The main contributions to this noise are due to the substrate, the optical coating, and the suspension. The thermal noise can be reduced by cooling to cryogenic temperatures. In addition the overall mechanical quality factor should preferable increase at low temperatures. The experimental details of a new cryogenic apparatus for investigations of the temperature dependency of the Q-factor of several substrate materials in the range of 5 to 300 K are presented. To perform a ring down recording an electrostatic mode excitation of the samples and an interferometric read-out of the amplitude of the vibrations was used.

  20. III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kunert, B.; Guo, W.; Mols, Y.; Pantouvaki, M.; Van Campenhout, J.; Langer, R.; Barla, K. [imec, Kapeldreef 75, 3001 Heverlee (Belgium); Tian, B.; Wang, Z.; Shi, Y.; Van Thourhout, D. [Photonics Research Group, Ghent University, Technologiepark-Zwijnaarde 15, 9052 Gent (Belgium)

    2016-08-29

    We report on an integration approach of III/V nano ridges on patterned silicon (Si) wafers by metal organic vapor phase epitaxy (MOVPE). Trenches of different widths (≤500 nm) were processed in a silicon oxide (SiO{sub 2}) layer on top of a 300 mm (001) Si substrate. The MOVPE growth conditions were chosen in a way to guarantee an efficient defect trapping within narrow trenches and to form a box shaped ridge with increased III/V volume when growing out of the trench. Compressively strained InGaAs/GaAs multi-quantum wells with 19% indium were deposited on top of the fully relaxed GaAs ridges as an active material for optical applications. Transmission electron microcopy investigation shows that very flat quantum well (QW) interfaces were realized. A clear defect trapping inside the trenches is observed whereas the ridge material is free of threading dislocations with only a very low density of planar defects. Pronounced QW photoluminescence (PL) is detected from different ridge sizes at room temperature. The potential of these III/V nano ridges for laser integration on Si substrates is emphasized by the achieved ridge volume which could enable wave guidance and by the high crystal quality in line with the distinct PL.

  1. Optical properties of thin Cu films as a function of substrate temperature

    CERN Document Server

    Savaloni, H

    2003-01-01

    Copper films (250 nm) deposited on glass substrates, at different substrate temperatures. Their optical properties were measured by ellipsometry (single wavelength of 589.3 nm) and spectrophotometry in the spectral range of 200-2600 nm. Kramers Kronig method was used for the analysis of the reflectivity curves of Cu films to obtain the optical constants of the films, while ellipsometry measurement was carried out as an independent method. The influence of substrate temperature on the microstructure of thin metallic films [Structure Zone Model ] is well established. The Effective Medium Approximation analysis was used to establish the relationship between the Structure Zone Model and Effective Medium Approximation predictions. Good agreements between Structure Zone Model as a function of substrate temperature and the values of volume fraction of voids obtained from Effective Medium Temperature analysis, are obtained; by increasing the substrate temperature the separation of the metallic grains decrease hence t...

  2. Reflective small angle electron scattering to characterize nanostructures on opaque substrates

    Science.gov (United States)

    Friedman, Lawrence H.; Wu, Wen-Li; Fu, Wei-En; Chien, Yunsan

    2017-09-01

    Feature sizes in integrated circuits (ICs) are often at the scale of 10 nm and are ever shrinking. ICs appearing in today's computers and hand held devices are perhaps the most prominent examples. These smaller feature sizes demand equivalent advances in fast and accurate dimensional metrology for both development and manufacturing. Techniques in use and continuing to be developed include X-ray based techniques, optical scattering, and of course the electron and scanning probe microscopy techniques. Each of these techniques has their advantages and limitations. Here, the use of small angle electron beam scattering measurements in a reflection mode (RSAES) to characterize the dimensions and the shape of nanostructures on flat and opaque substrates is demonstrated using both experimental and theoretical evidence. In RSAES, focused electrons are scattered at angles smaller than 1 ° with the assistance of electron optics typically used in transmission electron microscopy. A proof-of-concept experiment is combined with rigorous electron reflection simulations to demonstrate the efficiency and accuracy of RSAES as a method of non-destructive measurement of shapes of features less than 10 nm in size on flat and opaque substrates.

  3. Flat-field response and geometric distortion measurements of optical streak cameras

    International Nuclear Information System (INIS)

    Montgomery, D.S.; Drake, R.P.; Jones, B.A.; Wiedwald, J.D.

    1987-08-01

    To accurately measure pulse amplitude, shape, and relative time histories of optical signals with an optical streak camera, it is necessary to correct each recorded image for spatially-dependent gain nonuniformity and geometric distortion. Gain nonuniformities arise from sensitivity variations in the streak-tube photocathode, phosphor screen, image-intensifier tube, and image recording system. These nonuniformities may be severe, and have been observed to be on the order of 100% for some LLNL optical streak cameras. Geometric distortion due to optical couplings, electron-optics, and sweep nonlinearity not only affects pulse position and timing measurements, but affects pulse amplitude and shape measurements as well. By using a 1.053-μm, long-pulse, high-power laser to generate a spatially and temporally uniform source as input to the streak camera, the combined effects of flat-field response and geometric distortion can be measured under the normal dynamic operation of cameras with S-1 photocathodes. Additionally, by using the same laser system to generate a train of short pulses that can be spatially modulated at the input of the streak camera, we can effectively create a two-dimensional grid of equally-spaced pulses. This allows a dynamic measurement of the geometric distortion of the streak camera. We will discuss the techniques involved in performing these calibrations, will present some of the measured results for LLNL optical streak cameras, and will discuss software methods to correct for these effects. 6 refs., 6 figs

  4. Modelling of passive heating for replication of sub-micron patterns in optical disk substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngmin; Bae, Jaecheol; Kim, Hongmin; Kang, Shinill [School of Mechanical Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-ku, Seoul (Korea, Republic of)

    2004-05-07

    The transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer generated during the polymer filling worsens transcribability because the solidified layer prevents the polymer melt from filling the sub-micron patterns. Therefore, the development of the solidified layer during the filling stage of injection moulding must be delayed. For this delay, passive heating through an insulation layer has been used. In the present study, to examine the development of the solidified layer, delayed by passive heating, the flow of the polymer melt with passive heating was analysed. Passive heating delayed markedly the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micron patterns. As a result, we predict that passive heating can improve the transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mould and measured the transcribability of an optical disk substrate.

  5. Modelling of passive heating for replication of sub-micron patterns in optical disk substrates

    International Nuclear Information System (INIS)

    Kim, Youngmin; Bae, Jaecheol; Kim, Hongmin; Kang, Shinill

    2004-01-01

    The transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer generated during the polymer filling worsens transcribability because the solidified layer prevents the polymer melt from filling the sub-micron patterns. Therefore, the development of the solidified layer during the filling stage of injection moulding must be delayed. For this delay, passive heating through an insulation layer has been used. In the present study, to examine the development of the solidified layer, delayed by passive heating, the flow of the polymer melt with passive heating was analysed. Passive heating delayed markedly the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micron patterns. As a result, we predict that passive heating can improve the transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mould and measured the transcribability of an optical disk substrate

  6. Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application

    Science.gov (United States)

    Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J.

    2008-04-01

    Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG ( Edge-defined Film-fed- Growth) silicon substrates. The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.

  7. Numerical Study of Suspension HVOF Spray and Particle Behavior Near Flat and Cylindrical Substrates

    Science.gov (United States)

    Jadidi, M.; Yeganeh, A. Zabihi; Dolatabadi, A.

    2018-01-01

    In thermal spray processes, it is demonstrated that substrate shape and location have significant effects on particle in-flight behavior and coatings quality. In the present work, the suspension high-velocity oxygen fuel (HVOF) spraying process is modeled using a three-dimensional two-way coupled Eulerian-Lagrangian approach. Flat and cylindrical substrates are placed at different standoff distances, and particles characteristics near the substrates and upon impact are studied. Suspension is a mixture of ethanol, ethylene glycol, and mullite solid powder (3Al2O3·2SiO2) in this study. Suspension droplets with predefined size distribution are injected into the combustion chamber, and the droplet breakup phenomenon is simulated using Taylor analogy breakup model. Furthermore, the eddy dissipation model is used to model the premixed combustion of oxygen-propylene, and non-premixed combustion of oxygen-ethanol and oxygen-ethylene glycol. To simulate the gas phase turbulence, the realizable k-ɛ model is applied. In addition, as soon as the breakup and combustion phenomena are completed, the solid/molten mullite particles are tracked through the domain. It is shown that as the standoff distance increases the particle temperature and velocity decrease and the particle trajectory deviation becomes more significant. The effect of stagnation region on the particle velocity and temperature is also discussed in detail. The catch rate, which is defined as the ratio of the mass of landed particles to injected particles, is calculated for different substrate shapes and standoff distances in this study. The numerical results presented here is consistent with the experimental data in the literature for the same operating conditions.

  8. Optical aberrations in underwater photogrammetry with flat and hemispherical dome ports

    Science.gov (United States)

    Menna, Fabio; Nocerino, Erica; Remondino, Fabio

    2017-06-01

    The paper analyses differences between dome and flat port housings used for underwater photogrammetry. The underwater environment negatively affects image quality and 3D reconstructions, but this influence on photogrammetric measurements, so far, has not been addressed properly in the literature. In this work, motivations behind the need for systematic underwater calibrations are provided, then experimental tests using a specifically designed photogrammetric modular test object in laboratory and at sea are reported. The experiments are carried out using a Nikon D750 24 Mpx DSLR camera with a 24 mm f2.8 AF/D lens coupled with a NIMAR NI3D750ZM housing, equipped first with a dome and, successively, with a flat port. To quantify the degradation of image quality, MTF measurements are carried out, then the outcomes of self-calibrating bundle adjustment calibrations are shown and commented. Optical phenomena like field curvature as well as chromatic aberration and astigmatism are analysed and their implications on the degradation of image quality is factored in the bundle adjustment through a different weighting of 2D image observations.

  9. Optical response of a flat metallic surface coated with a monolayer array of latex spheres

    International Nuclear Information System (INIS)

    Shi Lei; Liu Xiaohan; Yin Haiwei; Zi Jian

    2010-01-01

    We report on the fabrication, characterization and simulation of a structure consisting of a flat metallic surface coated with a monolayer array of latex spheres. This structure shows interesting optical response: over flat metallic surfaces a series of reflection minima appear in reflection spectra. Numerical simulations revealed that the structure can support two types of surface modes: surface plasmon-polaritons bound at the metallic surface and guided modes confined to the array of latex spheres, or their hybrids. Both experimental and theoretical results indicated that these surface modes show well-defined band structures due to the introduced periodicity by the monolayer array of latex spheres.

  10. High speed low power optical detection of sub-wavelength scatterer

    NARCIS (Netherlands)

    Roy, S.; Bouwens, M.A.J.; Wei, L.; Pereira, S.F.; Urbach, H.P.; Walle, P. van der

    2015-01-01

    Optical detection of scatterers on a flat substrate, generally done using dark field microscopy technique, is challenging since it requires high power illumination to obtain sufficient SNR (Signal to Noise Ratio) to be able to detect sub-wavelength particles. We developed a bright field technique,

  11. Method for improving the spectral flatness of the supercontinuum at 1.55 μm in tapered microstructured optical fibers

    International Nuclear Information System (INIS)

    Vukovic, N.; Broderick, N. G. R.

    2010-01-01

    We propose a method for enhancing the flatness of a supercontinuum centered at 1.55 μm by the use of specially designed tapered microstructured optical fibers (MOFs). Based on the procedure presented one can determine the linear taper profile parameters and the optimum launching conditions needed to achieve the broadest supercontinuum spectra (SC) and the best spectra flatness. We quantify the maximally broad and flat SC using the calculated standard deviation of the spectra at the required wavelength range and show that it is possible to obtain significantly better results than those obtained by using an untapered fiber.

  12. Method for improving the spectral flatness of the supercontinuum at 1.55 {mu}m in tapered microstructured optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, N; Broderick, N G. R. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2010-10-15

    We propose a method for enhancing the flatness of a supercontinuum centered at 1.55 {mu}m by the use of specially designed tapered microstructured optical fibers (MOFs). Based on the procedure presented one can determine the linear taper profile parameters and the optimum launching conditions needed to achieve the broadest supercontinuum spectra (SC) and the best spectra flatness. We quantify the maximally broad and flat SC using the calculated standard deviation of the spectra at the required wavelength range and show that it is possible to obtain significantly better results than those obtained by using an untapered fiber.

  13. Flat knitting of a light emitting textile with optical fibres

    DEFF Research Database (Denmark)

    Heimdal, Elisabeth Jacobsen

    2009-01-01

    Knitted products have a flexibility that offers many attractive possibilities. Combined with technical fibres, this gives interesting and innovative possibilities. Many technical fibres and yarns has however properties such as high stiffness and brittleness which are difficult to process in the p......Knitted products have a flexibility that offers many attractive possibilities. Combined with technical fibres, this gives interesting and innovative possibilities. Many technical fibres and yarns has however properties such as high stiffness and brittleness which are difficult to process...... in the practice of weft knitting. This paper is about the experimental product development of a light radiating textile lamp in which optical fibres are used as the only illumination source. The lampshade is produced on an electronic flat knitting machine with special equipment suitable for the feeding of yarn...... with high stiffness. The work was divided in two parts: exploring the possibilities to knit the desired shape on one hand and experimenting about knitting with optical fibres as a weft insertion on the other hand. The method is an inductive approach; a literature survey, information from suppliers...

  14. Flat-field response and geometric distortion measurements of optical streak cameras

    International Nuclear Information System (INIS)

    Montgomery, D.S.; Drake, R.P.; Jones, B.A.; Wiedwald, J.D.

    1987-01-01

    To accurately measure pulse amplitude, shape, and relative time histories of optical signals with an optical streak camera, it is necessary to correct each recorded image for spatially-dependent gain nonuniformity and geometric distortion. Gain nonuniformities arise from sensitivity variations in the streak-tube photocathode, phosphor screen, image-intensifier tube, and image recording system. By using a 1.053-μm, long-pulse, high-power laser to generate a spatially and temporally uniform source as input to the streak camera, the combined effects of flat-field response and geometric distortion can be measured under the normal dynamic operation of cameras with S-1 photocathodes. Additionally, by using the same laser system to generate a train of short pulses that can be spatially modulated at the input of the streak camera, the authors can create a two-dimensional grid of equally-spaced pulses. This allows a dynamic measurement of the geometric distortion of the streak camera. The author discusses the techniques involved in performing these calibrations, present some of the measured results for LLNL optical streak cameras, and will discuss software methods to correct for these effects

  15. Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests

    Directory of Open Access Journals (Sweden)

    Xijia Gu

    2010-08-01

    Full Text Available We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor.

  16. Near-field flat focusing mirrors

    Science.gov (United States)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  17. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system.

    Science.gov (United States)

    Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola

    2014-02-10

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.

  18. Gallium nitride on gallium oxide substrate for integrated nonlinear optics

    KAUST Repository

    Awan, Kashif M.; Dolgaleva, Ksenia; Mumthaz Muhammed, Mufasila; Roqan, Iman S.

    2017-01-01

    Gallium Nitride (GaN), being a direct bandgap semiconductor with a wide bandgap and high thermal stability, is attractive for optoelectronic and electronic applications. Furthermore, due to its high optical nonlinearity — the characteristic of all 111-V semiconductors — GaN is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a plethora of apphcations, ranging from on-chip wavelength conversion to quantum computing. Although GaN devices are in commercial production, it still suffers from lack of a suitable substrate material to reduce structural defects like high densities of threading dislocations (TDs), stacking faults, and grain boundaries. These defects significandy deteriorate the optical quality of the epi-grown GaN layer, since they act as non-radiative recombination centers. Recent studies have shown that GaN grown on (−201) β-Gallium Oxide (Ga2O3) has superior optical quality due to a better lattice matching as compared to GaN grown on Sapphire (Al2O3) [1-3]. In this work, we report on the fabrication of GaN waveguides on GaiOj substrate and their optical characterization to assess their feasibihty for efficient four-wave mixing (FWM).

  19. Gallium nitride on gallium oxide substrate for integrated nonlinear optics

    KAUST Repository

    Awan, Kashif M.

    2017-11-22

    Gallium Nitride (GaN), being a direct bandgap semiconductor with a wide bandgap and high thermal stability, is attractive for optoelectronic and electronic applications. Furthermore, due to its high optical nonlinearity — the characteristic of all 111-V semiconductors — GaN is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a plethora of apphcations, ranging from on-chip wavelength conversion to quantum computing. Although GaN devices are in commercial production, it still suffers from lack of a suitable substrate material to reduce structural defects like high densities of threading dislocations (TDs), stacking faults, and grain boundaries. These defects significandy deteriorate the optical quality of the epi-grown GaN layer, since they act as non-radiative recombination centers. Recent studies have shown that GaN grown on (−201) β-Gallium Oxide (Ga2O3) has superior optical quality due to a better lattice matching as compared to GaN grown on Sapphire (Al2O3) [1-3]. In this work, we report on the fabrication of GaN waveguides on GaiOj substrate and their optical characterization to assess their feasibihty for efficient four-wave mixing (FWM).

  20. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    Science.gov (United States)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  1. Mechanically flexible optically transparent porous mono-crystalline silicon substrate

    KAUST Repository

    Rojas, Jhonathan Prieto; Syed, Ahad A.; Hussain, Muhammad Mustafa

    2012-01-01

    For the first time, we present a simple process to fabricate a thin (≥5μm), mechanically flexible, optically transparent, porous mono-crystalline silicon substrate. Relying only on reactive ion etching steps, we are able to controllably peel off a thin layer of the original substrate. This scheme is cost favorable as it uses a low-cost silicon <100> wafer and furthermore it has the potential for recycling the remaining part of the wafer that otherwise would be lost and wasted during conventional back-grinding process. Due to its porosity, it shows see-through transparency and potential for flexible membrane applications, neural probing and such. Our process can offer flexible, transparent silicon from post high-thermal budget processed device wafer to retain the high performance electronics on flexible substrates. © 2012 IEEE.

  2. Research on high-efficiency polishing technology of photomask substrate

    Science.gov (United States)

    Zhao, Shijie; Xie, Ruiqing; Zhou, Lian; Liao, Defeng; Chen, Xianhua; Wang, Jian

    2018-03-01

    A method of photomask substrate fabrication is demonstrated ,that the surface figure and roughness of fused silica will converge to target precision rapidly with the full aperture polishing. Surface figure of optical flats in full aperture polishing processes is primarily dependent on the surface profile of polishing pad, therefor, a improved function of polishing mechanism was put forward based on two axis lapping machine and technology experience, and the pad testing based on displacement sensor and the active conditioning method of the pad is applied in this research. Moreover , the clamping deformation of the thin glass is solved by the new pitch dispensing method. The experimental results show that the surface figure of the 152mm×152mm×6.35mm optical glass is 0.25λ(λ=633nm) and the roughness is 0.32nm ,which has meet the requirements of mask substrate for 90 45nm nodes.

  3. Optical characterization of directly deposited graphene on a dielectric substrate

    DEFF Research Database (Denmark)

    Kaplas, Tommi; Karvonen, Lasse; Ahmadi, Sepehr

    2016-01-01

    By using scanning multiphoton microscopy we compare the nonlinear optical properties of the directly deposited and transferred to the dielectric substrate graphene. The direct deposition of graphene on oxidized silicon wafer was done by utilizing sacrificial copper catalyst film. We demonstrate...

  4. Flat oysters in the Eierlandse Gat, Wadden Sea

    NARCIS (Netherlands)

    Have, van der T.M.; Kamermans, P.; Zee, van der E.M.

    2018-01-01

    This report presents the results of a short survey of flat oysters (Ostrea edulis) in the Western Wadden Sea. Ten sites were visited and flat oysters were found on nine locations in the Eijerlandse gat. Empty cockleshells and live and dead Pacific oysters provided the main settlement substrate. The

  5. Flat-Passband 3 × 3 Interleaving Filter Designed With Optical Directional Couplers in Lattice Structure

    Science.gov (United States)

    Wang, Qi Jie; Zhang, Ying; Soh, Yeng Chai

    2005-12-01

    This paper presents a novel lattice optical delay-line circuit using 3 × 3 directional couplers to implement three-port optical interleaving filters. It is shown that the proposed circuit can deliver three channels of 2pi/3 phase-shifted interleaving transmission spectra if the coupling ratios of the last two directional couplers are selected appropriately. The other performance requirements of an optical interleaver can be achieved by designing the remaining part of the lattice circuit. A recursive synthesis design algorithm is developed to calculate the design parameters of the lattice circuit that will yield the desired filter response. As illustrative examples, interleavers with maximally flat-top passband transmission and with given transmission performance on passband ripples and passband bandwidth, respectively, are designed to verify the effectiveness of the proposed design scheme.

  6. Standard test method for measurement of roll wave optical distortion in heat-treated flat glass

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method is applicable to the determination of the peak-to-valley depth and peak-to-peak distances of the out-of-plane deformation referred to as roll wave which occurs in flat, heat-treated architectural glass substrates processed in a heat processing continuous or oscillating conveyance oven. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This test method does not address other flatness issues like edge kink, ream, pocket distortion, bow, or other distortions outside of roll wave as defined in this test method. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  7. Optically active vibrational modes of PPV derivatives on textile substrate

    International Nuclear Information System (INIS)

    Silva, M.A.T. da; Dias, I.F.L.; Santos, E.P. dos; Martins, A.A.; Duarte, J.L.; Laureto, E.; Reis, G.A. dos; Guimarães, P.S.S.; Cury, L.A.

    2013-01-01

    In this work, MEH-PPV and BDMO-PPV films were deposited by spin-coating on “dirty” textile substrates of canvas, nylon, canvas with resin, jeans and on glass and the temperature dependence of the optical properties of them was studied by photoluminescence and Raman (300 K) techniques. The temperature dependence of the energy, of the half line width at half height of the purely electronic peak, of the integrated PL intensity and of the Huang-Rhys factor, S=I (01) /I (00) , were obtained directly from the PL spectrum. For an analysis of the vibrational modes involved, Raman measurements were performed on substrates with and without polymers deposited and the results compared with those found in the literature. The films of MEH-PPV and BDMO-PPV showed optical properties similar to those films deposited on other substrates such as glass, metals, etc. It was observed an inversion of the first vibrational band in relation to the purely electronic peak with increasing temperature in the films deposited on nylon and canvas. The vibrational modes obtained by Raman were used to compose the simulation of the PL line shape of BDMO-PPV films on canvas and nylon, using a model proposed by Lin [29]. - Highlights: ► MEH-PPV and BDMO-PPV films were deposited by spin-coating on dirty textile. ► Their properties were studied by photoluminescence and Raman techniques. ► We observed inversion of first vibrational band in relation to purely electronic peak. ► Optically active vibrational modes of PPV derivatives were studied.

  8. Noise origin of Co-Cr-Ta films on ultra-flat glass-ceramic and Si substrates for longitudinal recording disks

    International Nuclear Information System (INIS)

    Noda, Kohki; Kadokura, Sadao; Naoe, Masahiko

    2001-01-01

    Co 85 Cr 13 Ta 2 /Cr bilayered films for longitudinal recording disks were deposited by plasma-enhanced facing targets sputtering apparatus on 2.5 in and ultra-flat disk substrates of glass-ceramic and single-crystal silicon. Their noise and read/write characteristics were almost comparable with those of the high-performance disks using Co-Cr-Pt films, with coercivity H c of 2.4 kOe, as a reference disk, even though the Co-Cr-Ta films exhibited macroscopic H c of only 800 Oe. Co 85 Cr 13 Ta 2 films are known as low-noise media. This study addresses the problem of how to obtain low-noise media, using excellent sputtering apparatus and disk substrate materials, to allow practical applications in ultra-high-density recording systems, including 1 in microdrives for mobile applications

  9. Convergent Polishing: A Simple, Rapid, Full Aperture Polishing Process of High Quality Optical Flats & Spheres

    Science.gov (United States)

    Suratwala, Tayyab; Steele, Rusty; Feit, Michael; Dylla-Spears, Rebecca; Desjardin, Richard; Mason, Dan; Wong, Lana; Geraghty, Paul; Miller, Phil; Shen, Nan

    2014-01-01

    Convergent Polishing is a novel polishing system and method for finishing flat and spherical glass optics in which a workpiece, independent of its initial shape (i.e., surface figure), will converge to final surface figure with excellent surface quality under a fixed, unchanging set of polishing parameters in a single polishing iteration. In contrast, conventional full aperture polishing methods require multiple, often long, iterative cycles involving polishing, metrology and process changes to achieve the desired surface figure. The Convergent Polishing process is based on the concept of workpiece-lap height mismatch resulting in pressure differential that decreases with removal and results in the workpiece converging to the shape of the lap. The successful implementation of the Convergent Polishing process is a result of the combination of a number of technologies to remove all sources of non-uniform spatial material removal (except for workpiece-lap mismatch) for surface figure convergence and to reduce the number of rogue particles in the system for low scratch densities and low roughness. The Convergent Polishing process has been demonstrated for the fabrication of both flats and spheres of various shapes, sizes, and aspect ratios on various glass materials. The practical impact is that high quality optical components can be fabricated more rapidly, more repeatedly, with less metrology, and with less labor, resulting in lower unit costs. In this study, the Convergent Polishing protocol is specifically described for fabricating 26.5 cm square fused silica flats from a fine ground surface to a polished ~λ/2 surface figure after polishing 4 hr per surface on a 81 cm diameter polisher. PMID:25489745

  10. Structural, optical and electrical characteristics of ITO thin films deposited by sputtering on different polyester substrates

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.

    2008-01-01

    Indium tin oxide (ITO) thin films were deposited by sputtering at room temperature on glass and different polyester substrates; namely polyarylate (PA), polycarbonate (PC) and polyethylene terephtalate (PET). The influence of the substrate on the structural, optical and electrical characteristics of the ITO layers was investigated. The sputtered films exhibited crystallization in the (2 2 2) orientation, with higher mean crystallite size and lower structural distortion onto PET than onto PA, PC or glass substrates. ITO films deposited onto PET showed also higher band gap energy, higher carrier concentration and lower resistivity than the ITO layers onto the other tested substrates. These optical and electrical characteristics have been related to the structural distortion that was found dependent on the specific polyester substrate

  11. Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants

    International Nuclear Information System (INIS)

    Hutter, Tanya; Elliott, Stephen R; Mahajan, Sumeet

    2013-01-01

    In this paper, we study the local-field enhancement in a system of a metallic nanoparticle placed very near to a dielectric substrate. In such systems, intense electric fields are localized in the gap between the particle and the substrate, creating a ‘hot-spot’ under appropriate excitation conditions. We use finite-element numerical simulations in order to study the field enhancement in this dielectric–metal system. More specifically, we show how the optical properties of the dielectric substrate (n and k) affect the plasmonic field enhancement in the nano-gap. We also analyze the degree of field confinement in the gap and discuss it in the context of utilization for surface-enhanced Raman scattering. We finally show the fields generated by real substrates and compare them to metallic ones. (paper)

  12. Effect of substrate temperature on the optical parameters of thermally evaporated Ge-Se-Te thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Pankaj, E-mail: pks_phy@yahoo.co.i [Department of Physics, Jaypee University of Information Technology, Waknaghat, Solan, H.P. 173215 India (India); Katyal, S.C. [Department of Physics, Jaypee University of Information Technology, Waknaghat, Solan, H.P. 173215 India (India)

    2009-05-01

    Thin films of Ge{sub 10}Se{sub 90-x}Te{sub x} (x = 0, 10, 20, 30, 40, 50) glassy alloys were deposited at three substrate temperatures (303 K, 363 K and 423 K) using conventional thermal evaporation technique at base pressure of {approx} 10{sup -4} Pa. X-ray diffraction results show that films deposited at 303 K are of amorphous nature while films deposited at 363 K and 423 K are of polycrystalline nature. The optical parameters, refractive index and optical gap have been derived from the transmission spectra (using UV-Vis-NIR spectrophotometer) of the thin films in the spectral region 400-1500 nm. This has been observed that refractive index values remain almost constant while the optical gap is found to decrease considerably with the increase of substrate temperature. The decrease in optical gap is explained on the basis of change in nature of films, from amorphous to polycrystalline state, with the increase of substrate temperature. The optical gap has also been observed to decrease with the increase of Te content.

  13. Reflectivity and surface roughness of multilayer-coated substrate recovery layers for EUV lithographic optics

    NARCIS (Netherlands)

    Nedelcu, I.; van de Kruijs, R.W.E.; Yakshin, A. E.; von Blanckenhagen, G.; F. Bijkerk,

    2008-01-01

    We investigated the use of separation, or substrate recovery, layers (SRLs), to enable the reuse of optical substrates after the deposition of multilayer reflective coatings, in particular Mo/Si multilayers as used for EUV lithography. An organic material (polyimide), known from other work to reduce

  14. Influence of substrate temperature on the optical and electrical properties magnetron sputtering ITO films

    International Nuclear Information System (INIS)

    Khripunov, G.S.; Yurchenko, G.V.

    1999-01-01

    Electrical and optical properties of ITO films obtained at substrate temperature from 200 degree C to 500 degree C by magnetron sputtering of target 95% In 2 O 3 - 5% SnO 2 were studied. It was shown that the ITO film obtained at the substrate temperature 300 i N have optimum combination of the optical and electrical characteristics: resistivity 2.1 centre dot 10 -4 Ω cm, transmittance in visible spectral range about 88% at the thickness film 0.61 μ, factor of quality reaches 8.2 centre dot 10 -2 Ω 1

  15. Cryogenic Q-factor measurement of optical substrates for optimization of gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, S [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Nawrodt, R [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Zimmer, A [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Schnabel, R [Max-Planck-Institut fuer Gravitationsphysik, Universitaet Hannover, Callinstrasse 38, D-30167 Hannover (Germany); Vodel, W [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Seidel, P [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany)

    2006-05-15

    Future generations of gravitational wave interferometers are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of end mirrors and beam splitters that occurs in the optical substrates as well as in the dielectric coatings. A possible method for minimizing thermal noise is cooling to cryogenic temperatures, maximizing the mechanical quality factor Q, and maximizing the eigenfrequencies of the substrate. We present experimental details of a new cryogenic apparatus that is suitable for the measurement of the temperature-dependent Q-factor of reflective, transmissive as well as nano-structured grating optics down to 5 K. In particular, the SQUID-based and the optical interferometric approaches to the measurement of the amplitude of vibrating test bodies are compared and the method of ring-down recording is described.

  16. Wetting of flat gradient surfaces.

    Science.gov (United States)

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Influence of substrate material on the microstructure and optical properties of hot wall deposited SnS thin films

    International Nuclear Information System (INIS)

    Bashkirov, S.A.; Gremenok, V.F.; Ivanov, V.A.; Shevtsova, V.V.; Gladyshev, P.P.

    2015-01-01

    Tin monosulfide SnS raises an interest as a promising material for photovoltaics. The influence of the substrate material on the microstructure and optical properties of SnS thin films with [111] texture obtained by hot wall vacuum deposition on glass, molybdenum and indium tin oxide substrates is reported. The lattice parameters for layers grown on different substrates were determined by X-ray diffraction and their deviations from the data reported in the literature for single α-SnS crystals were discussed. The change in the degree of preferred orientation of the films depending on the substrate material is observed. The direct nature of the optical transitions with the optical band gap of 1.15 ± 0.01 eV is reported. - Highlights: • SnS thin films were hot wall deposited on glass, molybdenum and indium tin oxide. • Physical properties of the films were studied with respect to the substrate type. • The SnS lattice parameter deviations were observed and the explanation was given. • The direct optical transitions with the band gap of 1.15 ± 0.01 eV were observed

  18. Effect of substrate temperatures on the optical properties of evaporated Sc2O3 thin films

    International Nuclear Information System (INIS)

    Liu Guanghui; Jin Yunxia; He Hongbo; Fan Zhengxiu

    2010-01-01

    Scandium oxide (Sc 2 O 3 ) films were deposited by electron beam evaporation with substrate temperatures varying from 50 to 350 o C. X-ray diffraction, scanning electron microscopy, spectrometer, and optical profilograph were employed to investigate the structural and optical properties of the films. The refractive index and extinction coefficient were calculated from the transmittance and reflectance spectra, and then the energy band gaps were deduced and discussed. Laser induced damage threshold of the films were also characterized. Optical and structural properties of Sc 2 O 3 films were found to be sensitive to substrate temperature.

  19. Deformation of nanotubes in peeling contact with flat substrate: An in situ electron microscopy nanomechanical study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoming; Zheng, Meng; Wei, Qing; Ke, Changhong, E-mail: cke@binghamton.edu [Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902-6000 (United States); Signetti, Stefano [Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento (Italy); Pugno, Nicola M. [Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento (Italy); Centre for Materials and Microsystems, Fondazione Bruno Kessler, Povo (Trento) (Italy); School of Engineering and Materials Science, Queen Mary University of London, London (United Kingdom)

    2016-04-21

    Peeling of one-dimensional (1D) nanostructures from flat substrates is an essential technique in studying their adhesion properties. The mechanical deformation of the nanostructure in the peeling experiment is critical to the understanding of the peeling process and the interpretation of the peeling measurements, but it is challenging to measure directly and quantitatively at the nanoscale. Here, we investigate the peeling deformation of a bundled carbon nanotube (CNT) fiber by using an in situ scanning electron microscopy nanomechanical peeling technique. A pre-calibrated atomic force microscopy cantilever is utilized as the peeling force sensor, and its back surface acts as the peeling contact substrate. The nanomechanical peeling scheme enables a quantitative characterization of the deformational behaviors of the CNT fiber in both positive and negative peeling configurations with sub-10 nm spatial and sub-nN force resolutions. Nonlinear continuum mechanics models and finite element simulations are employed to interpret the peeling measurements. The measurements and analysis reveal that the structural imperfections in the CNT fiber may have a substantial influence on its peeling deformations and the corresponding peeling forces. The research findings reported in this work are useful to the study of mechanical and adhesion properties of 1D nanostructures by using nanomechanical peeling techniques.

  20. Hierarchical macroscopic fibrillar adhesives: in situ study of buckling and adhesion mechanisms on wavy substrates.

    Science.gov (United States)

    Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard

    2015-10-23

    Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.

  1. Fabrication of Chitosan-gold Nanocomposites Combined with Optical Fiber as SERS Substrates to Detect Dopamine Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jaewook; Kang, Ikjoong [Gachon Univ., Seongnam (Korea, Republic of)

    2014-01-15

    This research was aimed to fabricate an optical fiber-based SERS substrate which can detect dopamine neurotransmitters. Chitosan nanoparticles (NPs) were firstly anchored on the surface of optical fiber, and then gold layer was subseque N{sub T}ly deposited on the anchored chitosan NPs via electroless plating method. Finally, chitosan-gold nanocomposites combined with optical fiber reacted with dopamine molecules of 100-1500 mg/ day which is a standard daily dose for Parkinson's disease patientss. The amplified Raman signal at 1348 cm{sup -1} obtained from optical fiber-based SERS substrate was plotted versus dopamine concentrations (1-10 mM), demonstrating an approximate linearity of Y = 303.03X + 2385.8 (R{sup 2} = 0.97) with narrow margin errors. The optical fiber-based Raman system can be potentially applicable to in-vitro (or in-vivo) detection of probe molecules.

  2. Structural, electrical, and optical properties of polycrystalline NbO_2 thin films grown on glass substrates by solid phase crystallization

    International Nuclear Information System (INIS)

    Nakao, Shoichiro; Kamisaka, Hideyuki; Hirose, Yasushi; Hasegawa, Tetsuya

    2017-01-01

    We investigated the structural, electrical, and optical properties of polycrystalline NbO_2 thin films on glass substrates. The NbO_2 films were crystallized from amorphous precursor films grown by pulsed laser deposition at various oxygen partial pressures (P_O_2). The electrical and optical properties of the precursor films systematically changed with P_O_2, demonstrating that the oxygen content of the precursor films can be finely controlled with P_O_2. The precursors were crystallized into polycrystalline NbO_2 films by annealing under vacuum at 600 C. The NbO_2 films possessed extremely flat surfaces with branching patterns. Even optimized films showed a low resistivity (ρ) of 2 x 10"2 Ω cm, which is much lower than the bulk value of 1 x 10"4 Ω cm, probably because of the inferior crystallinity of the films compared with that of a bulk NbO_2 crystal. Both oxygen-rich and -poor NbO_2 films showed lower ρ than that of the stoichiometric film. The NbO_2 film with the highest ρ showed an indirect bandgap of 0.7 eV. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Nonflat equilibrium liquid shapes on flat surfaces.

    Science.gov (United States)

    Starov, Victor M

    2004-01-15

    The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.

  4. Effect of substrate temperature and deposition rate on the morphology and optical properties of Ti films

    Energy Technology Data Exchange (ETDEWEB)

    Einollahzadeh-Samadi, M.; Dariani, R.S., E-mail: dariani@alzahra.ac.ir

    2013-09-01

    Titanium films are deposited on transparent fluorine-doped tin oxide (FTO) glass substrates by DC magnetron sputtering process. Influences imposed by sputtering rate and substrate temperature on surface morphology and optical properties of the deposited Ti films are investigated. We observed that all the sputtered films exhibit uniform and compact surface morphology without peeling and cracking. Morphology of the films is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD). The optical properties of the films are investigated using UV–vis spectroscopy. The morphological studies indicate that by increasing the substrate temperature from room temperature to 250 °C and/or decreasing sputtering rate from 660 Å/min to 540 Å/min the surface roughness decreased from 73.4 to 31.0 nm and the grain size increases from 50.76 nm to 163.93 nm. An important effect of the root mean square (RMS) surface roughness and grain size is modification of the films optical properties. In fact, an enhancement of refractive index n for the Ti films deposited at high substrate temperature and/or high deposition rate is observed, that is attributed to reduction of RMS roughness. This effect is attributed to increment of fractional volume which leads to an increase in density of deposited film. Thus, by controlling the sputtering conditions one can reach to the desired morphological and optical properties.

  5. Atomically flat platinum films grown on synthetic mica

    Science.gov (United States)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2018-04-01

    Atomically flat platinum thin films were heteroepitaxially grown on synthetic fluorophlogopite mica [KMg3(AlSi3O10)F2] by van der Waals epitaxy. Platinum films deposited on a fluorophlogopite mica substrate by inductively coupled plasma-assisted sputtering with oxygen introduction on a synthetic mica substrate resulted in the growth of twin single-crystalline epitaxial Pt(111) films.

  6. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dewani, Aliya A., E-mail: a.ashraf@griffith.edu.au; O’Keefe, Steven G.; Thiel, David V.; Galehdar, Amir [School Of Electrical Engineering, Griffith University, Brisbane, 4111 (Australia)

    2015-02-15

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  7. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    Directory of Open Access Journals (Sweden)

    Aliya A. Dewani

    2015-02-01

    Full Text Available A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm, flexible transparent plastic substrate (relative permittivity 3.2. It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  8. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    Science.gov (United States)

    Dewani, Aliya A.; O'Keefe, Steven G.; Thiel, David V.; Galehdar, Amir

    2015-02-01

    A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm), flexible transparent plastic substrate (relative permittivity 3.2). It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing) to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  9. Impact of optical properties of front glass substrates on Cu(In,Ga)Se{sub 2} solar cells using lift-off process

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Akihiro, E-mail: ro005080@ed.ritsumei.ac.jp [College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-0058 (Japan); Abe, Yasuhiro [Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga 525-0058 (Japan); Minemoto, Takashi [College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-0058 (Japan)

    2013-11-01

    Transmittance of a front glass is one of the important factors in the development of high efficiency superstrate-type Cu(In,Ga)Se{sub 2} (CIGS) solar cells. In this study, we investigated the impact of optical properties of the front glass on the solar cell performance of the CIGS solar cells fabricated using the lift-off process. First, optical properties of quartz substrates and soda-lime glass (SLG) substrates with various thicknesses were investigated. Although optical properties of the SLG substrates depend on the thickness, those of the quartz substrates hardly depend on the thickness. Secondly, the superstrate-type CIGS solar cells were fabricated using 1-mm-thick SLG or 1-mm-thick quartz substrates. As a result, the short-circuit current density of the superstrate-type CIGS solar cell with 1-mm-thick quartz substrate was approximately 7% higher than that with 1-mm-thick SLG substrate, and its conversion efficiency was 7.1%. The external quantum efficiency of the solar cells was also improved using the quartz substrate as a front glass because transmittance and absorptance of the quartz substrate were superior to those of the SLG substrate. We therefore conclude that optical properties of the front glasses play an important role in the improvement of the superstrate-type solar cells. - Highlights: • Superstrate type Cu(In,Ga)Se{sub 2} solar cells are fabricated by lift-off process. • Various glasses are used as front glass for lift-off. • The impact of optical properties of the glasses on cell performance is investigated. • Quartz front glass gives 7% higher short-circuit current than soda-lime glass. • High transmittance is desired for front glass.

  10. Substrate-dependent cell elasticity measured by optical tweezers indentation

    Science.gov (United States)

    Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-01-01

    In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).

  11. Laser illuminated flat panel display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  12. Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation

    Science.gov (United States)

    Zhang, Bo; Cui, Qingfeng; Piao, Mingxu

    2018-05-01

    The effect of substrate material selection for multilayer diffractive optical elements (MLDOEs) on polychromatic integral diffraction efficiency (PIDE) is studied in the oblique incident situation. A mathematical model of substrate material selection is proposed to obtain the high PIDE with large incident angle. The extended expression of the microstructure heights with consideration of incident angle is deduced to calculate the PIDE difference Δ η bar(λ) for different substrate material combinations. The smaller value of Δ η bar(λ) indicates the more optimal substrate material combination in a wide incident angle range. Based on the deduced mathematical model, different MLDOEs are analyzed in visible and infrared wavebands. The results show that the three-layer DOEs can be applied in larger incident angle situation than the double-layer DOEs in visible waveband. When the two substrate materials are the same, polycarbonate (PC) is more reasonable than poly(methyl methacrylate) (PMMA) as the middle filling optical material for the three-layer DOEs. In the infrared waveband, the PIDE decreases in the LWIR are obviously smaller than that in the MWIR for the same substrate material combination, and the PIDE cannot be calculated when the incident angle larger than critical angle. The analysis results can be used to guide the hybrid optical system design with MLDOEs.

  13. Structural, electrical, and optical properties of polycrystalline NbO{sub 2} thin films grown on glass substrates by solid phase crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), Kawasaki (Japan); Kamisaka, Hideyuki [Department of Chemistry, The University of Tokyo (Japan); Hirose, Yasushi; Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), Kawasaki (Japan); Department of Chemistry, The University of Tokyo (Japan)

    2017-03-15

    We investigated the structural, electrical, and optical properties of polycrystalline NbO{sub 2} thin films on glass substrates. The NbO{sub 2} films were crystallized from amorphous precursor films grown by pulsed laser deposition at various oxygen partial pressures (P{sub O2}). The electrical and optical properties of the precursor films systematically changed with P{sub O2}, demonstrating that the oxygen content of the precursor films can be finely controlled with P{sub O2}. The precursors were crystallized into polycrystalline NbO{sub 2} films by annealing under vacuum at 600 C. The NbO{sub 2} films possessed extremely flat surfaces with branching patterns. Even optimized films showed a low resistivity (ρ) of 2 x 10{sup 2} Ω cm, which is much lower than the bulk value of 1 x 10{sup 4} Ω cm, probably because of the inferior crystallinity of the films compared with that of a bulk NbO{sub 2} crystal. Both oxygen-rich and -poor NbO{sub 2} films showed lower ρ than that of the stoichiometric film. The NbO{sub 2} film with the highest ρ showed an indirect bandgap of 0.7 eV. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    Science.gov (United States)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  15. Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity

    Science.gov (United States)

    Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.

    2002-01-01

    Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.

  16. Single-mode optical waveguides on native high-refractive-index substrates

    Directory of Open Access Journals (Sweden)

    Richard R. Grote

    2016-10-01

    Full Text Available High-refractive-index semiconductor optical waveguides form the basis for modern photonic integrated circuits (PICs. However, conventional methods for achieving optical confinement require a thick lower-refractive-index support layer that impedes large-scale co-integration with electronics and limits the materials on which PICs can be fabricated. To address this challenge, we present a general architecture for single-mode waveguides that confine light in a high-refractive-index material on a native substrate. The waveguide consists of a high-aspect-ratio fin of the guiding material surrounded by lower-refractive-index dielectrics and is compatible with standard top-down fabrication techniques. This letter describes a physically intuitive, semi-analytical, effective index model for designing fin waveguides, which is confirmed with fully vectorial numerical simulations. Design examples are presented for diamond and silicon at visible and telecommunications wavelengths, respectively, along with calculations of propagation loss due to bending, scattering, and substrate leakage. Potential methods of fabrication are also discussed. The proposed waveguide geometry allows PICs to be fabricated alongside silicon CMOS electronics on the same wafer, removes the need for heteroepitaxy in III-V PICs, and will enable wafer-scale photonic integration on emerging material platforms such as diamond and SiC.

  17. Silica-based microstructures on nonplanar substrates by femtosecond laser-induced nonlinear lithography

    International Nuclear Information System (INIS)

    Mizoshiri, M; Nishiyama, H; Hirata, Y; Nishii, J

    2009-01-01

    We developed a technique for the formation of nonplanar surfaces of inorganic optical materials by a combined process of nonlinear lithography and plasma etching. This technique can be used to fabricate structures even on non-flat substrates, which is difficult using current semiconductor technology. Three-dimensional patterns were written directly inside a positive-tone photoresist using femtosecond laser-induced nonlinear optical absorption. The patterns were then transferred to underlying nonplanar substrates by the ion beam etching technique. For the lithographic process, we obtained a minimum feature size of 900 nm, which is below the diffraction limit. We demonstrated the fabrication of silica-based hybrid diffractive-refractive lenses. Fresnel zone plates with smooth surfaces were obtained on convex microlenses. When a 633-nm-wavelength He-Ne laser was coupled normally to the hybrid lens, the primary focal length was measured as 630 μm. This hybridization shifted the focal length by 200 μm, which agreed with the theoretical value. Our process is useful for the precise fabrication of nonplanar structures based on inorganic materials.

  18. Micro knife-edge optical measurement device in a silicon-on-insulator substrate.

    Science.gov (United States)

    Chiu, Yi; Pan, Jiun-Hung

    2007-05-14

    The knife-edge method is a commonly used technique to characterize the optical profiles of laser beams or focused spots. In this paper, we present a micro knife-edge scanner fabricated in a silicon-on-insulator substrate using the micro-electromechanical-system technology. A photo detector can be fabricated in the device to allow further integration with on-chip signal conditioning circuitry. A novel backside deep reactive ion etching process is proposed to solve the residual stress effect due to the buried oxide layer. Focused optical spot profile measurement is demonstrated.

  19. Structural and optical characterization of GaN heteroepitaxial films on SiC substrates

    International Nuclear Information System (INIS)

    Morse, M.; Wu, P.; Choi, S.; Kim, T.H.; Brown, A.S.; Losurdo, M.; Bruno, G.

    2006-01-01

    We have estimated the threading dislocation density and type via X-ray diffraction and Williamson-Hall analysis to elicit qualitative information directly related to the electrical and optical quality of GaN epitaxial layers grown by PAMBE on 4H- and 6H-SiC substrates. The substrate surface preparation and buffer choice, specifically: Ga flashing for SiC oxide removal, controlled nitridation of SiC, and use of AlN buffer layers all impact the resultant screw dislocation density, but do not significantly influence the edge dislocation density. We show that modification of the substrate surface strongly affects the screw dislocation density, presumably due to impact on nucleation during the initial stages of heteroepitaxy

  20. Structural and optical characterization of GaN heteroepitaxial films on SiC substrates

    Energy Technology Data Exchange (ETDEWEB)

    Morse, M. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States) and Department of Physics, Duke University, 128 Hudson Hall, Durham, NC (United States)]. E-mail: michael.morse@duke.edu; Wu, P. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Department of Physics, Duke University, 128 Hudson Hall, Durham, NC (United States); Choi, S. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Department of Physics, Duke University, 128 Hudson Hall, Durham, NC (United States); Kim, T.H. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Department of Physics, Duke University, 128 Hudson Hall, Durham, NC (United States); Brown, A.S. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States) and Department of Physics, Duke University, 128 Hudson Hall, Durham, NC (United States)]. E-mail: abrown@ee.duke.edu; Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona, 4-70126 Bari (Italy); Bruno, G. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona, 4-70126 Bari (Italy)

    2006-10-31

    We have estimated the threading dislocation density and type via X-ray diffraction and Williamson-Hall analysis to elicit qualitative information directly related to the electrical and optical quality of GaN epitaxial layers grown by PAMBE on 4H- and 6H-SiC substrates. The substrate surface preparation and buffer choice, specifically: Ga flashing for SiC oxide removal, controlled nitridation of SiC, and use of AlN buffer layers all impact the resultant screw dislocation density, but do not significantly influence the edge dislocation density. We show that modification of the substrate surface strongly affects the screw dislocation density, presumably due to impact on nucleation during the initial stages of heteroepitaxy.

  1. Investigation on nonlinear optical properties of MoS2 nanoflakes grown on silicon and quartz substrates

    Science.gov (United States)

    Bayesteh, Samaneh; Zahra Mortazavi, Seyedeh; Reyhani, Ali

    2018-05-01

    In this study, MoS2 nanoflakes were directly grown on different substrates—Si/SiO2 and quartz—by one-step thermal chemical vapor deposition using MoO3 and sulfide powders as precursors. Scanning electron microscopy and x-ray diffraction patterns demonstrated the formation of MoS2 structures on both substrates. Moreover, UV-visible and photoluminescence analysis confirmed the formation of MoS2 few-layer structures. According to Raman spectroscopy, by assessment of the line width and frequency shift differences between the and A 1g, it was inferred that the MoS2 grown on the silicon substrate was monolayer and that grown on the quartz substrate was multilayer. In addition, open-aperture and close-aperture Z-scan techniques were employed to study the nonlinear optical properties including nonlinear absorption and nonlinear refraction of the grown MoS2. All experiments were performed using a diode laser with a wavelength of 532 nm as the light source. It is noticeable that both samples demonstrate obvious self-defocusing behavior. The monolayer MoS2 grown on the silicon substrate displayed considerable two-photon absorption while, the multilayer MoS2 synthesized on the quartz exhibited saturable absorption. In general, few-layered MoS2 would be useful for the development of nanophotonic devices like optical limiters, optical switchers, etc.

  2. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates

    International Nuclear Information System (INIS)

    Tseng, Kun-San; Lo, Yu-Lung

    2013-01-01

    The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target–substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target–substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target–substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target–substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target–substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.

  3. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates

    Science.gov (United States)

    Tseng, Kun-San; Lo, Yu-Lung

    2013-11-01

    The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target-substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target-substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target-substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target-substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target-substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.

  4. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Kun-San [Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lo, Yu-Lung, E-mail: loyl@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan (China)

    2013-11-15

    The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target–substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target–substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target–substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target–substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target–substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.

  5. Growth, Structural and Optical Characterization of ZnO Nanotubes on Disposable-Flexible Paper Substrates by Low-Temperature Chemical Method

    Directory of Open Access Journals (Sweden)

    M. Y. Soomro

    2012-01-01

    Full Text Available We report the synthesis of vertically aligned ZnO nanotubes (NTs on paper substrates by low-temperature hydrothermal method. The growth of ZnO NTs on the paper substrate is discussed; further, the structural and optical properties are investigated by scanning electron microscope (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, energy-dispersive X-ray spectroscopy (EDS, and cathodoluminescence (CL, and it was found that the ZnO NTs on paper substrate fulfill the structural and optical properties of ZnO NTs grown on other conventional substrates. This will be more beneficial in future usage of ZnO NTs in different fields and applications. Particularly, this approach opens the ways in research and development for high volume manufacturing of low-cost, flexible optoelectronics devices on disposable paper substrates and can be used in the future miniaturization trends.

  6. Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors

    Science.gov (United States)

    Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.

    2015-10-01

    Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.

  7. Optically transparent boron-doped nanocrystalline diamond films for spectroelectrochemical measurements on different substrates

    International Nuclear Information System (INIS)

    Sobaszek, M.; Bogdanowicz, R.; Pluciński, J.; Siuzdak, K.; Skowroński, Ł.

    2016-01-01

    Fabrication process of optically transparent boron nanocrystalline diamond (B- NCD) electrode on silicon and quartz substrate was shown. The B-NCD films were deposited on the substrates using Microwave Plasma Assisted Chemical Vapor Deposition (MWPACVD) at glass substrate temperature of 475 °C. A homogenous, continuous and polycrystalline surface morphology with high sp 3 content in B-NCD films and film thickness depending from substrate in the range of 60-300 nm was obtained. The high refraction index and transparency in visible (VIS) wavelength range was achieved. Moreover, cyclic voltammograms (CV) were recorded to determine reaction reversibility at the B-NCD electrode. CV measurements in aqueous media consisting of 1 mM K 3 [Fe(CN) 6 ] in 0.5 M Na 2 SO 4 demonstrated relatively fast kinetics expressed by a redox peak splitting below 503 mV for B-NCD/silicon and 110 mv for B-NCD/quartz

  8. Investigation on synthesis of Bi-based thin films on flat sputter-deposited Ag film by melting process

    International Nuclear Information System (INIS)

    Su Yanjing; Satoh, Yoshimasa; Arisawa, Shunichi; Awane, Toru; Fukuyo, Akihiro; Takano, Yoshihiko; Ishii, Akira; Hatano, Takeshi; Togano, Kazumasa

    2003-01-01

    We report on the fabrication of ribbon-like thin films on flat sputter-deposited Ag films whose surface smoothness remained within the order of tens of nm. It was found that the addition of Pb to the starting material improves the wettability of molten phase and facilitates the growth of Bi-2212 ribbon-like thin films on a flat Ag substrate, and that the increase of Ca and Cu in starting material suppresses the intergrowth of the Bi-2201 phase in ribbon-like thin films. By using (Bi,Pb)-2246 powders, with nominal composition of Bi 1.6 Pb 0.4 Sr 1.6 Ca 3.2 Cu 4.8 O y , as the starting material, the superconducting Bi-2212 ribbon-like thin films with an onset T c at 74 K on a very flat Ag substrate were successfully synthesized. Additionally, the growth mechanism of ribbon-like thin films on flat Ag substrate was investigated by in situ high temperature microscope observation

  9. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Li, Yufeng; Wang, Shuai; Feng, Lungang; Xiong, Han; Yun, Feng, E-mail: fyun2010@mail.xjtu.edu.cn [Key Laboratory of Physical Electronics and Devices of Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics and Information Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Solid-State Lighting Engineering Research Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Su, Xilin [Shaanxi Supernova Lighting Technology Co., Ltd., Xi’an, Shaanxi 710075 (China)

    2016-07-15

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ∼20% and the luminance intensity has improved by 128%. Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.

  10. Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics.

    Science.gov (United States)

    Wilke, Rudeger H T; Johnson-Wilke, Raegan L; Cotroneo, Vincenzo; Davis, William N; Reid, Paul B; Schwartz, Daniel A; Trolier-McKinstry, Susan

    2013-05-10

    Piezoelectric PbZr(0.52)Ti(0.48)O(3) (PZT) thin films deposited on thin glass substrates have been proposed for adjustable optics in future x-ray telescopes. The light weight of these x-ray optics enables large collecting areas, while the capability to correct mirror figure errors with the PZT thin film will allow much higher imaging resolution than possible with conventional lightweight optics. However, the low strain temperature and flexible nature of the thin glass complicate the use of chemical-solution deposition due to warping of the substrate at typical crystallization temperatures for the PZT. RF magnetron sputtering enabled preparation of PZT films with thicknesses up to 3 μm on Schott D263 glass substrates with much less deformation. X-ray diffraction analysis indicated that the films crystallized with the perovskite phase and showed no indication of secondary phases. Films with 1 cm(2) electrodes exhibited relative permittivity values near 1100 and loss tangents below 0.05. In addition, the remanent polarization was 26 μC/cm(2) with coercive fields of 33 kV/cm. The transverse piezoelectric coefficient was as high as -6.1±0.6 C/m(2). To assess influence functions for the x-ray optics application, the piezoelectrically induced deflection of individual cells was measured and compared with finite-element-analysis calculations. The good agreement between the results suggests that actuation of PZT thin films can control mirror figure errors to a precision of about 5 nm, allowing sub-arcsecond imaging.

  11. Flat radio-spectrum galaxies and BL Lacs I. Core properties

    NARCIS (Netherlands)

    Dennett-Thorpe, J; Marcha, MJ

    This paper concerns the relationship of BL Lacs and flat-spectrum weak emission-line galaxies. We compare the weak emission-line galaxies and the BL Lacs in a sample of 57 flat-spectrum objects (Marcha et al. 1996), using high-frequency radio and non-thermal optical flux densities, spectral indices

  12. High-density near-field optical disc recording using phase change media and polycarbonate substrate

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Ishimoto, Tsutomu; Kondo, Takao; Nakaoki, Ariyoshi; Furuki, Motohiro; Takeda, Minoru; Akiyama, Yuji; Shimouma, Takashi; Yamamoto, Masanobu

    2004-09-01

    We developed a high density near field optical recording disc system with a solid immersion lens and two laser sources. In order to realize the near field optical recording, we used a phase change recording media and a molded polycarbonate substrate. The near field optical pick-up consists of a solid immersion lens with numerical aperture of 1.84. The clear eye pattern of 90.2 GB capacity (160nm track pitch and 62 nm per bit) was observed. The jitter using a limit equalizer was 10.0 % without cross-talk. The bit error rate using an adaptive PRML with 8 taps was 3.7e-6 without cross-talk. We confirmed that the near field optical disc system is a promising technology for a next generation high density optical disc system.

  13. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    Science.gov (United States)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  14. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-05-01

    Full Text Available In this study, the nanosphere lithography (NSL method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz and 1.68 (SF5 glass, the nanoparticle arrays would have better refractive index sensitivity (RIS and figure of merit (FOM. Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  15. Structural and optical characteristics of in-situ sputtered highly oriented 15R-SiC thin films on different substrates

    Science.gov (United States)

    Mourya, Satyendra; Jaiswal, Jyoti; Malik, Gaurav; Kumar, Brijesh; Chandra, Ramesh

    2018-01-01

    In this work, we have reported the in-situ fabrication of nanocrystalline rhombohedral silicon carbide (15R-SiC) thin films by RF-magnetron sputtering at 800 °C substrate temperature. The structural and optical properties were investigated for the films grown on four different substrates (ZrO2, MgO, SiC, and Si). The contact angle measurement was performed on all the substrates to investigate the role of interfacial surface energy in nucleation and growth of the films. The XRD measurement revealed the growth of (1 0 10) orientation for all the samples and demonstrated better crystallinity on Si substrate, which was further corroborated by the TEM results. The Raman spectroscopy confirmed the growth of rhombohedral phase with 15R polytype. Surface characteristics of the films have been investigated by energy dispersive x-ray spectroscopy, FTIR, and atomic force microscope (AFM) to account for chemical composition, bonding, and root mean square surface roughness (δrms). The optical dispersion behavior of 15R-SiC thin films was examined by variable angle spectroscopic ellipsometry in the wide spectral range (246-1688 nm), including the surface characteristics in the optical model. The non-linear optical parameters (χ3 and n2) of the samples have been calculated by the Tichy and Ticha relation using a single effective oscillator model of Wemple and Didomenico. Additionally, our optical results provided an alternative way to measure the ratio of carrier concentration to the effective mass (N/m*). These investigated optical parameters allow one to design and fabricate optoelectronic, photonic, and telecommunication devices for deployment in extreme environment.

  16. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    Science.gov (United States)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  17. INFLUENCE OF SUBSTRATE TEMPERATURE ON STRUCTURAL, ELECTRICAL AND OPTICAL PROPERTIES OF ITO THIN FILMS PREPARED BY RF MAGNETRON SPUTTERING

    OpenAIRE

    BO HE; LEI ZHAO; JING XU; HUAIZHONG XING; SHAOLIN XUE; MENG JIANG

    2013-01-01

    In this paper, we investigated indium-tin-oxide (ITO) thin films on glass substrates deposited by RF magnetron sputtering using ceramic target to find the optimal condition for fabricating optoelectronic devices. The structural, electrical and optical properties of the ITO films prepared at various substrate temperatures were investigated. The results indicate the grain size increases with substrate temperature increases. As the substrate temperature grew up, the resistivity of ITO films grea...

  18. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: oleg.titov@ga.gov.au [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  19. Structural and optical properties of ZnO rods hydrothermally formed on polyethersulfone substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Mi; Jang, Jin Tak; Kim, Chang Yong; Ryu, Hyuk Hyun [Inje University, Gimhae (Korea, Republic of); Lee, Won Jae [Dong-Eui University, Busan (Korea, Republic of); Chang, Ji Ho [Korea Maritime University, Busan (Korea, Republic of); Son, Chang Sik [Silla University, Busan (Korea, Republic of); Choi, Hee Lack [Pukyong National University, Busan (Korea, Republic of)

    2012-06-15

    Various unique ZnO morphologies, such as cigar-like and belt-like structures and microrod and nanorod structures, were formed on flexible polyethersulfone (PES) substrates by using a low temperature hydrothermal route. The structural properties of ZnO depended highly on the precursor concentration. The effect of a thin ZnO seed layer deposited the on PES substrate by using atomic layer deposition on the structural and the optical properties of ZnO hydrothermally grown on the ZnO seed layer/PES substrates was studied. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements were employed to analyze the characteristics of hydrothermally-grown ZnO. The diameter of the ZnO nanorods grown on the ZnO seed layer/PES substrates increased with increasing precursor concentration from 0.025 to 0.125 M due to the Ostwald ripening process. ZnO hydrothermally-grown on the ZnO seed layer/PES substrates at a low precursor concentration showed better structural properties than ZnO formed without a seed layer. Well-formed ZnO nanorods deposited on the ZnO seed layer/PES substrates showed two PL peaks, one in the ultraviolet and the other in the visible region, whereas horizontally positioned ZnO formed on the PES substrate in the absence of a seed layer emitted only one broad PL peak in the violet region. The ZnO grown on PES substrates in this work can be used as high-quality transparent electrodes for solar cells fabricated on flexible substrates.

  20. Structural and optical properties of ZnO rods hydrothermally formed on polyethersulfone substrates

    International Nuclear Information System (INIS)

    Shin, Chang Mi; Jang, Jin Tak; Kim, Chang Yong; Ryu, Hyuk Hyun; Lee, Won Jae; Chang, Ji Ho; Son, Chang Sik; Choi, Hee Lack

    2012-01-01

    Various unique ZnO morphologies, such as cigar-like and belt-like structures and microrod and nanorod structures, were formed on flexible polyethersulfone (PES) substrates by using a low temperature hydrothermal route. The structural properties of ZnO depended highly on the precursor concentration. The effect of a thin ZnO seed layer deposited the on PES substrate by using atomic layer deposition on the structural and the optical properties of ZnO hydrothermally grown on the ZnO seed layer/PES substrates was studied. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements were employed to analyze the characteristics of hydrothermally-grown ZnO. The diameter of the ZnO nanorods grown on the ZnO seed layer/PES substrates increased with increasing precursor concentration from 0.025 to 0.125 M due to the Ostwald ripening process. ZnO hydrothermally-grown on the ZnO seed layer/PES substrates at a low precursor concentration showed better structural properties than ZnO formed without a seed layer. Well-formed ZnO nanorods deposited on the ZnO seed layer/PES substrates showed two PL peaks, one in the ultraviolet and the other in the visible region, whereas horizontally positioned ZnO formed on the PES substrate in the absence of a seed layer emitted only one broad PL peak in the violet region. The ZnO grown on PES substrates in this work can be used as high-quality transparent electrodes for solar cells fabricated on flexible substrates.

  1. Optical monitoring systems for thermal spray processes: droplets behavior and substrate pre-treatments

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.

    2017-11-01

    Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.

  2. Deposition of an Ultraflat Graphene Oxide Nanosheet on Atomically Flat Substrates

    Science.gov (United States)

    Khan, M. Z. H.; Shahed, S. M. F.; Yuta, N.; Komeda, T.

    2017-07-01

    In this study, graphene oxide (GO) sheets produced in the form of stable aqueous dispersions were deposited on Au (111), freshly cleaved mica, and highly oriented pyrolytic graphite (HOPG) substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study the presence and distinct contact of GO sheets on the substrates. It was revealed from the topography images that high-quality ultraflat GO monolayer sheets formed on the substrates without distinct cracking/wrinkling or folding. GO sheets with apparent height variation observed by microscopy also indicate ultraflat deposition with clear underlying steps. It was observed that ultrasonication and centrifuge steps prior to deposition were very effective for getting oxidation debris (OD)-free ultraflat single monolayer GO nanosheets onto substrates and that the process depends on the concentration of supplied GO solutions.

  3. Emission of a propagation invariant flat-top beam from a microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, Darryl [Council for Scientific and Industrial Research, National Laser Centre, P.O. Box 395, Pretoria 0001 (South Africa); Harfouche, A. [Faculté de Physique, Université des Sciences et de la Technologie Houari Boumédiène, B.P. no 32, El Alia, 16111 Algiers (Algeria); Fromager, Michael; Ait-Ameur, Kamel [Centre de Recherche sur les Ions, les Matériaux et la Photonique, Unité Mixte de Recherche de Recherche 6252, Commissariat à l’Energie Atomique, Centre National de la Recherche Scientifique, Université de Caen Basse Normandie, Ecole Nationale Supérieure des Ingénieurs de Caen, Boulevard Maréchal Juin, F14050 Caen (France); Forbes, Andrew, E-mail: andrew.forbes@wits.ac.za [School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa)

    2016-02-15

    Light beams with a flat-top intensity profile have found many applications in both pure and applied studies, but are not the natural modes of conventional light sources such as lasers. Moreover, such light beams are also not the eigenmodes of the wave equation in a vacuum and so change their intensity profile dramatically during propagation. Here we overcome both these limitations and create a propagation invariant flat-top beam from a microchip laser. By optical feedback into the excited medium we are able to create emission that is an incoherent mix of two spatial modes, a Gaussian and a donut, so that the sum is a flat-top beam that maintains its shape to infinity. Such miniature sources that emit structured light will be attractive for integrated light-based technologies. - Highlights: • First demonstration of the generation of a flat-top beam from a microchip laser. • The flat-top beam is shape-invariant during propagation. • By optical feedback we can select the desired shape from the microchip laser.

  4. Emission of a propagation invariant flat-top beam from a microchip laser

    International Nuclear Information System (INIS)

    Naidoo, Darryl; Harfouche, A.; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2016-01-01

    Light beams with a flat-top intensity profile have found many applications in both pure and applied studies, but are not the natural modes of conventional light sources such as lasers. Moreover, such light beams are also not the eigenmodes of the wave equation in a vacuum and so change their intensity profile dramatically during propagation. Here we overcome both these limitations and create a propagation invariant flat-top beam from a microchip laser. By optical feedback into the excited medium we are able to create emission that is an incoherent mix of two spatial modes, a Gaussian and a donut, so that the sum is a flat-top beam that maintains its shape to infinity. Such miniature sources that emit structured light will be attractive for integrated light-based technologies. - Highlights: • First demonstration of the generation of a flat-top beam from a microchip laser. • The flat-top beam is shape-invariant during propagation. • By optical feedback we can select the desired shape from the microchip laser.

  5. Porous silicon-VO{sub 2} based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.; Basurto, M. A.; Agarwal, V., E-mail: vagarwal@uaem.mx [Centro de Investigación en Ingeniería y Ciencias Aplicadas, Instituto de Investigación en Ciencias Básicas y Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. 62209 (Mexico); Campos, J. [Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Mor. 62580 (Mexico); Jiménez Sandoval, S. [Laboratorio de Investigación en Materiales, Centro de Investigación y estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Qro. 76001 (Mexico)

    2015-10-07

    Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching with temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.

  6. Robust plasmonic substrates

    DEFF Research Database (Denmark)

    Kostiučenko, Oksana; Fiutowski, Jacek; Tamulevicius, Tomas

    2014-01-01

    Robustness is a key issue for the applications of plasmonic substrates such as tip-enhanced Raman spectroscopy, surface-enhanced spectroscopies, enhanced optical biosensing, optical and optoelectronic plasmonic nanosensors and others. A novel approach for the fabrication of robust plasmonic...... substrates is presented, which relies on the coverage of gold nanostructures with diamond-like carbon (DLC) thin films of thicknesses 25, 55 and 105 nm. DLC thin films were grown by direct hydrocarbon ion beam deposition. In order to find the optimum balance between optical and mechanical properties...

  7. A flat spectral Faraday filter for sodium lidar.

    Science.gov (United States)

    Yang, Yong; Cheng, Xuewu; Li, Faquan; Hu, Xiong; Lin, Xin; Gong, Shunsheng

    2011-04-01

    We report a flat spectral Faraday anomalous dispersion optical filter (FS-FADOF) for sodium lidar. The physical and technical considerations for obtaining a FS-FADOF with a 3.5 GHz flat spectral transmission function are presented. It was found that the effective transmission of this filter was much higher (>94%) and more uniform than that of the ultranarrowband FADOF, and therefore were less sensitive to laser-frequency drift. Thus, the FS-FADOF can improve lidar efficiency and precision.

  8. Modeling of the rough spherical nanoparticles manipulation on a substrate based on the AFM nanorobot

    Science.gov (United States)

    Zakeri, M.; Faraji, J.

    2014-12-01

    In this paper, dynamic behavior of the rough spherical micro/nanoparticles during pulling/pushing on the flat substrate has been investigated and analyzed. For this purpose, at first, two hexagonal roughness models (George and Cooper) were studied and then evaluations for adhesion force were determined for rough particle manipulation on flat substrate. These two models were then changed by using of the Rabinovich theory. Evaluations were determined for contact adhesion force between rough particle and flat substrate; depth of penetration evaluations were determined by the Johnson-Kendall-Roberts contact mechanic theory and the Schwartz method and according to Cooper and George roughness models. Then, the novel contact theory was used to determine a dynamic model for rough micro/nanoparticle manipulation on flat substrate. Finally, simulation of particle dynamic behavior was implemented during pushing of rough spherical gold particles with radii of 50, 150, 400, 600, and 1,000 nm. Results derived from simulations of particles with several rates of roughness on flat substrate indicated that compared to results for flat particles, inherent roughness on particles might reduce the rate of critical force needed for sliding and rolling given particles. Given a fixed radius for roughness value and increased roughness height, evaluations for sliding and rolling critical forces showed greater reduction. Alternately, the rate of critical force was shown to reduce relative to an increased roughness radius. With respect to both models, based on the George roughness model, the predicted rate of adhesion force was greater than that determined in the Cooper roughness model, and as a result, the predicted rate of critical force based on the George roughness model was closer to the critical force value of flat particle.

  9. Effect of substrate temperature on structural, optical and electrical properties of pulsed laser ablated nanostructured indium oxide films

    International Nuclear Information System (INIS)

    Beena, D.; Lethy, K.J.; Vinodkumar, R.; Mahadevan Pillai, V.P.; Ganesan, V.; Phase, D.M.; Sudheer, S.K.

    2009-01-01

    Nanocrystalline indium oxide (INO) films are deposited in a back ground oxygen pressure at 0.02 mbar on quartz substrates at different substrate temperatures (T s ) ranging from 300 to 573 K using pulsed laser deposition technique. The films are characterized using GIXRD, XPS, AFM and UV-visible spectroscopy to study the effect of substrate temperature on the structural and optical properties of films. The XRD patterns suggest that the films deposited at room temperature are amorphous in nature and the crystalline nature of the films increases with increase in substrate temperature. Films prepared at T s ≥ 473 K are polycrystalline in nature (cubic phase). Crystalline grain size calculation based on Debye Scherrer formula indicates that the particle size enhances with the increase in substrate temperature. Lattice constant of the films are calculated from the XRD data. XPS studies suggest that all the INO films consist of both crystalline and amorphous phases. XPS results show an increase in oxygen content with increase in substrate temperature and reveals that the films deposited at higher substrate temperatures exhibit better stoichiometry. The thickness measurements using interferometric techniques show that the film thickness decreases with increase in substrate temperature. Analysis of the optical transmittance data of the films shows a blue shift in the values of optical band gap energy for the films compared to that of the bulk material owing to the quantum confinement effect due to the presence of quantum dots in the films. Refractive index and porosity of the films are also investigated. Room temperature DC electrical measurements shows that the INO films investigated are having relatively high electrical resistivity in the range of 0.80-1.90 Ωm. Low temperature electrical conductivity measurements in the temperature range of 50-300 K for the film deposited at 300 K give a linear Arrhenius plot suggesting thermally activated conduction. Surface

  10. Non-intrusive measurements of frictional forces between micro-spheres and flat surfaces

    Science.gov (United States)

    Lin, Wei-Hsun; Daraio, Chiara; Daraio's Group Team

    2014-03-01

    We report a novel, optical pump-probe experimental setup to study micro-friction phenomena between micro-particles and a flat surface. We present a case study of stainless steel microspheres, of diameter near 250 μm, in contact with different surfaces of variable roughness. In these experiments, the contact area between the particles and the substrates is only a few nanometers wide. To excite the particles, we deliver an impulse using a pulsed, high-power laser. The reaction force resulting from the surface ablation induced by the laser imparts a controlled initial velocity to the target particle. This initial velocity can be varied between 10-5 to 1 m/s. We investigate the vibrating and rolling motions of the micro-particles by detecting their velocity and displacement with a laser vibrometer and a high-speed microscope camera. We calculate the effective Hamaker constant from the vibrating motion of a particle, and study its relation to the substrate's surface roughness. We analyze the relation between rolling friction and the minimum momentum required to break surface bonding forces. This non-contact and non-intrusive technique could be employed to study a variety of contact and tribology problems at the microscale.

  11. Nanowires and nanoneedles nucleation on vicinal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: zhangxubetter@gmail.com [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China); Xie, Dan; Huang, Genling [Zhengzhou Railway Vocational and Technical College, Zhengzhou 450052 (China); Sun, Xiao-Hong [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-01-01

    An analytic stress-driven nucleation model of nanowires (NWs) and nanoneedles (NNs) growing on a mismatched vicinal substrate is proposed. It is demonstrated that the formation enthalpy of NWs and NNs is a function of three independent variables, the base radius, aspect ratio and miscut angle of the vicinal surface. Theoretical analysis shows that the minimum nucleation barrier of an island decreases with increment of substrate misorientation, which means the nucleation of islands on a vicinal substrate is more favorable than that on a flat substrate.

  12. Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates

    KAUST Repository

    Wang, Zhuo

    2018-01-04

    Monolayer two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have a very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150-nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20-nm-wide gold trenches on flexible substrates, reporting ~7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 104 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 nm to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such fully open, flat and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.

  13. Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates

    KAUST Repository

    Wang, Zhuo; Dong, Zhaogang; Zhu, Hai; Jin, Lei; Chiu, Ming-Hui; Li, Lain-Jong; Xu, Qing-Hua; Eda, Goki; Maier, Stefan A.; Wee, Andrew T. S.; Qiu, Cheng-Wei; Yang, Joel K.W.

    2018-01-01

    Monolayer two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have a very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150-nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20-nm-wide gold trenches on flexible substrates, reporting ~7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 104 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 nm to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such fully open, flat and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.

  14. Extracting flat-field images from scene-based image sequences using phase correlation

    Energy Technology Data Exchange (ETDEWEB)

    Caron, James N., E-mail: Caron@RSImd.com [Research Support Instruments, 4325-B Forbes Boulevard, Lanham, Maryland 20706 (United States); Montes, Marcos J. [Naval Research Laboratory, Code 7231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States); Obermark, Jerome L. [Naval Research Laboratory, Code 8231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States)

    2016-06-15

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method uses sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.

  15. Graphene on insulating crystalline substrates

    International Nuclear Information System (INIS)

    Akcoeltekin, S; El Kharrazi, M; Koehler, B; Lorke, A; Schleberger, M

    2009-01-01

    We show that it is possible to prepare and identify ultra-thin sheets of graphene on crystalline substrates such as SrTiO 3 , TiO 2 , Al 2 O 3 and CaF 2 by standard techniques (mechanical exfoliation, optical and atomic force microscopy). On the substrates under consideration we find a similar distribution of single layer, bilayer and few-layer graphene and graphite flakes as with conventional SiO 2 substrates. The optical contrast C of a single graphene layer on any of those substrates is determined by calculating the optical properties of a two-dimensional metallic sheet on the surface of a dielectric, which yields values between C = -1.5% (G/TiO 2 ) and C = -8.8% (G/CaF 2 ). This contrast is in reasonable agreement with experimental data and is sufficient to make identification by an optical microscope possible. The graphene layers cover the crystalline substrate in a carpet-like mode and the height of single layer graphene on any of the crystalline substrates as determined by atomic force microscopy is d SLG = 0.34 nm and thus much smaller than on SiO 2 .

  16. High-quality graphene flakes exfoliated on a flat hydrophobic polymer

    DEFF Research Database (Denmark)

    Pedrinazzi, Paolo; Caridad, José M.; Mackenzie, David M. A.

    2018-01-01

    the environment of the graphene flake is completely changed, by encapsulating preselected flakes between hexagonal boron nitride layers. The exfoliation of clean, pristine graphene layers directly on flat polymer substrates enables high performance, supported, and non-encapsulated graphene devices for flexible...

  17. Surface enhanced Raman spectroscopy on a flat graphene surface

    Science.gov (United States)

    Xu, Weigao; Ling, Xi; Xiao, Jiaqi; Dresselhaus, Mildred S.; Kong, Jing; Xu, Hongxing; Liu, Zhongfan; Zhang, Jin

    2012-01-01

    Surface enhanced Raman spectroscopy (SERS) is an attractive analytical technique, which enables single-molecule sensitive detection and provides its special chemical fingerprints. During the past decades, researchers have made great efforts towards an ideal SERS substrate, mainly including pioneering works on the preparation of uniform metal nanostructure arrays by various nanoassembly and nanotailoring methods, which give better uniformity and reproducibility. Recently, nanoparticles coated with an inert shell were used to make the enhanced Raman signals cleaner. By depositing SERS-active metal nanoislands on an atomically flat graphene layer, here we designed a new kind of SERS substrate referred to as a graphene-mediated SERS (G-SERS) substrate. In the graphene/metal combined structure, the electromagnetic “hot” spots (which is the origin of a huge SERS enhancement) created by the gapped metal nanoislands through the localized surface plasmon resonance effect are supposed to pass through the monolayer graphene, resulting in an atomically flat hot surface for Raman enhancement. Signals from a G-SERS substrate were also demonstrated to have interesting advantages over normal SERS, in terms of cleaner vibrational information free from various metal-molecule interactions and being more stable against photo-induced damage, but with a comparable enhancement factor. Furthermore, we demonstrate the use of a freestanding, transparent and flexible “G-SERS tape” (consisting of a polymer-layer-supported monolayer graphene with sandwiched metal nanoislands) to enable direct, real time and reliable detection of trace amounts of analytes in various systems, which imparts high efficiency and universality of analyses with G-SERS substrates. PMID:22623525

  18. Ring resonator optical modes in InGaN/GaN structures grown on micro-cone-patterned sapphire substrates

    Science.gov (United States)

    Kazanov, D. R.; Pozina, G.; Jmerik, V. N.; Shubina, T. V.

    2018-03-01

    Molecular beam epitaxy (MBE) of III-nitride compounds on specially prepared cone-shaped patterned substrates is being actively developed nowadays, especially for nanophotonic applications. This type of substrates enables the successful growth of hexagonal nanorods (NRs). The insertion of an active quantum-sized region of InGaN inside a GaN NR allows us to enhance the rate of optical transitions by coupling them with resonant optical modes in the NR. However, we have observed the enhancement of emission not only from the NR but also around the circumference region of the cone-shaped base. We have studied this specific feature and demonstrated its impact on the output signal.

  19. The micro-optic photovoltaic behavior of solar cell along with microlens curved glass substrate

    International Nuclear Information System (INIS)

    Xie, Jin; Wu, Keke; Cheng, Jian; Li, Ping; Zheng, Jiahua

    2015-01-01

    Highlights: • A microlens array may be micro-ground on curved photovoltaic glass substrate. • Its micro-optical structure absorbs and scatters the inclined light to solar cell. • It increases conversion efficiency and fill factor in weak and inclined lights. • It improves electricity generation by about 4 times in scattered cloudy daylight. • It produces stronger electricity generation in cloudy day than in sunny day. - Abstract: A hybrid of microlens structure and curved surface may produce high value-added micro-optic performance. Hence, the microlens array is proposed on macro curved glass substrate of thin film solar cell. The objective is to understand how the micro-optic behavior of microlens curved array influences indoor power conversion efficiency and outdoor electricity generation. First, the absorptivities of visible light and infrared light were analyzed in connection with the curved microlens sizes; then the microlens curved glass substrate was fabricated by a Computer Numerical Control (CNC) micro-grinding with micro diamond wheel V-tip; finally, its photovoltaic properties and electricity generation were measured, respectively. It is shown that the microlens curved surface may strongly absorb and scatter light to solar cell. It increases the absorptivity of visible light against plane surface, but it decreases the one of infrared light against microlens surface. When it is applied to solar cell, it enhances the power conversion efficiency by 3.4–10.6% under oblique illumination. When it is applied to solar device, it increases the electricity generation of daylight by 119–106% against microlens surface and by 260–419% against traditional plane surface, respectively. The surprising finding is that it produces much larger electricity generation during cloudy day than during sunny day, but traditional plane surface does not so

  20. Optical and electrical characteristics of zirconium oxide thin films deposited on silicon substrates by spray pyrolysis

    International Nuclear Information System (INIS)

    Aguilar-Frutis, M.; Araiza, J.J.; Falcony, C.; Garcia, M.

    2002-01-01

    The optical and electrical characteristics of zirconium oxide thin films deposited by spray pyrolysis on silicon substrates are reported. The films were deposited from a spraying solution of zirconium acetylacetonate in N,N-dimethylformamide using an ultrasonic mist generator on (100) Si substrates. The substrate temperature during deposition was in the range of 400 to 600 grad C. Deposition rates up to 16 A/sec were obtained depending on the spraying solution concentration and on the substrate temperature. A refraction index of the order of 2.0 was measured on these films by ellipsometry. The electrical characteristics of the films were determined from the capacitance and current versus voltage measurements. The addition of water mist during the spraying deposition process was also studied in the characteristics of the films. (Authors)

  1. Initial idea to use optical flats for x-ray fluorescence analysis and recent applications to diffraction studies

    International Nuclear Information System (INIS)

    Horiuchi, T.

    1993-01-01

    Described in this work is the initial idea of using an optical flat for X-ray fluorescence analysis based upon studies of anomalous surface reflection (ASR). To develop total-reflection X-ray fluorescence analysis (TXRF) as one of the most powerful tools for microchemical analysis, various experiments such as the micro-determinations of uranium in sea-water, iron in human blood and rare earth elements in hot spring-water were attempted. Furthermore, the physically interesting experiment on Compton scattering under total-reflection conditions was conducted. Recent applications of the total-reflection phenomenon to diffraction studies, i.e. total-reflection X-ray diffraction (TXRD), are also presented. (author)

  2. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    International Nuclear Information System (INIS)

    Meral, Kadem; Arik, Mustafa; Onganer, Yavuz

    2016-01-01

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasing the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.

  3. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Meral, Kadem, E-mail: kademm@atauni.edu.tr; Arik, Mustafa, E-mail: marik@tatauni.edu.tr; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum (Turkey)

    2016-04-18

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasing the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.

  4. Optical response of large-area aluminum-coated nano-bucket arrays on flexible PET substrates

    Science.gov (United States)

    Hohertz, Donna; Chuo, Yindar; Omrane, Badr; Landrock, Clint; Kavanagh, Karen L.

    2014-09-01

    The high-cost of fabrication of nanohole arrays for extraordinary optical transmission, surface-plasmon-resonance-based sensors, inhibits their widespread commercial adoption. Production typically involves the application of small-area patterning techniques, such as focused-ion-beam milling, and electron-beam lithography onto high-cost gold-coated substrates. Moving to lower-cost manufacturing is a critical step for applications such as the detection of environmental oil-leaks, or water quality assurance. In these applications, the sensitivity requirements are relatively low, and a bio-compatible inert surface, such as gold, is unnecessary. We report on the optical response of aluminum-coated nano-bucket arrays fabricated on flexible polyethylene terephthalate substrates. The arrays are fabricated using an economical roll-to-roll UV-casting process from large sheets of nickel templates generated from master quartz stamps. The nano-featured surface is subsequently coated with 50 nm of thermally-evaporated aluminum. The roll-to-roll production process has a 97% yield over a 600 m roll producing nano-buckets with 240 nm diameters, 300 nm deep, with a 70° taper. When exposed to a series of refractive index standards (glucose solutions), changes in the locations of the resonance transmission peaks result in optical sensitivities as high as 390 ± 20 nm/RIU. The peak transmission is approximately 5% of illumination, well within the sensitivity requirements of most common low-cost detectors.

  5. Propagation dynamics of off-axis symmetrical and asymmetrical vortices embedded in flat-topped beams

    Science.gov (United States)

    Zhang, Xu; Wang, Haiyan

    2017-11-01

    In this paper, propagation dynamics of off-axis symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams have been explored numerically based on rigorous scalar diffraction theory. The distribution properties of phase and intensity play an important role in driving the propagation dynamics of OVs. Numerical results show that the single off-axis vortex moves in a straight line. The displacement of the single off-axis vortex becomes smaller, when either the order of flatness N and the beam size ω0are increased or the off-axis displacement d is decreased. In addition, the phase singularities of high order vortex beams can be split after propagating a certain distance. It is also demonstrated that the movement of OVs are closely related with the spatial symmetrical or asymmetrical distribution of vortex singularities field. Multiple symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams can interact and rotate. The investment of the propagation dynamics of OVs may have many applications in optical micro-manipulation and optical tweezers.

  6. Bunch rotation tests at SPS flat top for the AWAKE experiment

    CERN Document Server

    Argyropoulos, T; Bohl, T; Esteban Müller, J F; Petrenko, A; Shaposhnikova, E; Timko, H

    2013-01-01

    This note summarises the results of two MDs on bunch rotation at SPS flat top. The first MD was carried out on 11th July 2012 with the Q26 optics, while the second MD on the 30th October 2012 used the Q20 optics. To obtain a short bunch length, which is important for the plasma wake-field acceleration project AWAKE, the bunches have been rotated in longitudinal phase space on the SPS flat top. The aim of the MDs was to obtain first estimates of what bunch length, intensity, and transverse emittances - which are crucial for the project - can be achieved for high-intensity single bunches.

  7. Generation of ultra-wide and flat optical frequency comb based on electro absorption modulator

    Science.gov (United States)

    Ujjwal; Thangaraj, Jaisingh

    2018-05-01

    A novel technique is proposed for the generation of ultra-wide and flat optical frequency comb (OFC) based on serially cascading three stages of electro absorption modulators (EAMs) through sinusoidal radio frequency (RF) signals by setting frequencies at f GHz, f/2 GHz and f/4 GHz. Here, the first stage acts as subcarrier generator, the second stage acts as subcarrier doubler, and the third stage acts as subcarrier quadrupler. In addition, a higher number of subcarriers can easily be generated by adjusting the driving sinusoidal RF signal. In this paper, cascading three stages of EAMs driven by 50 GHz, 25 GHz and 12.5 GHz clock sources, we obtain 272 subcarriers with spacing of 2.5 GHz and power deviation within 1 dB. Theoretical analysis of serially cascaded EAMs for subcarrier generation is also investigated. Principal analysis and simulation of this technique are demonstrated.

  8. Reflection from a flat dielectric film with negative refractive index

    OpenAIRE

    Hillion, Pierre

    2007-01-01

    We analyse the reflection of a TM electromagnetic field first on a flat dielectric film and second on a Veselago film with negative refractive index, both films being deposited on a metallic substrat acting as a mirror. An incident harmonic plane wave generates inside a conventional dielectric film a refracted propagating wave and an evanescent wave that does not contribute to reflection on the metallic substrat so that part of the information conveyed by the incident field is lost. At the op...

  9. Diffractive flat panel solar concentrators of a novel design.

    Science.gov (United States)

    de Jong, Ties M; de Boer, Dick K G; Bastiaansen, Cees W M

    2016-07-11

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the principles of nonimaging optics, while the thickness of the device is minimized due to the use of total internal reflection.

  10. Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1−x Snx films on Si substrate

    International Nuclear Information System (INIS)

    Mahmodi, H; Hashim, M R

    2017-01-01

    In this study, Ge 1−x Sn x alloy films are co-sputtered on Si(100) substrates using RF magnetron sputtering at different substrate temperatures. Scanning electron micrographs, atomic force microscopy (AFM), Raman spectroscopy, and x-ray photoemission spectroscopy (XPS) are conducted to investigate the effect of substrate temperature on the structural and optical properties of grown GeSn alloy films. AFM results show that RMS surface roughness of the films increases from 1.02 to 2.30 nm when raising the substrate temperature. This increase could be due to Sn surface segregation that occurs when raising the substrate temperature. Raman spectra exhibits the lowest FWHM value and highest phonon intensity for a film sputtered at 140 °C. The spectra show that decreasing the deposition temperature to 140 °C improves the crystalline quality of the alloy films and increases nanocrystalline phase formation. The results of Raman spectra and XPS confirm Ge–Sn bond formation. The optoelectronic characteristics of fabricated metal-semiconductor-metal photodetectors on sputtered samples at room temperature (RT) and 140 °C are studied in the dark and under illumination. The sample sputtered at 140 °C performs better than the RT sputtered sample. (paper)

  11. A genetic algorithm approach for evaluation of optical functions of very thin tantalum pentoxide films on Si substrate

    International Nuclear Information System (INIS)

    Sharlandjiev, P S; Nazarova, D I

    2013-01-01

    The optical characteristics of tantalum pentoxide films, deposited on Si(100) substrate by reactive sputtering, are studied. These films are investigated as high-kappa materials for the needs of nano-electronics, i.e. design of dynamic random access memories, etc. One problem in their implementation is that metal oxides are thermodynamically unstable with Si and an interfacial layer is formed between the oxide film and the silicon substrate during the deposition process. Herein, the center of attention is on the optical properties of that interfacial layer, which is studied by spectral photometric measurements. The evaluation of the optical parameters of the structure is fulfilled with the genetic algorithm approach. The spectral range of evaluation covers deep UV to NIR. The equivalent physical thickness (2.5 nm) and the equivalent refractive index of the interfacial layer are estimated from 236 to 750 nm as well as the thickness of the tantalum pentoxide film (9.5 nm). (paper)

  12. Flat Engineered Multichannel Reflectors

    Directory of Open Access Journals (Sweden)

    V. S. Asadchy

    2017-09-01

    Full Text Available Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.

  13. Flat Engineered Multichannel Reflectors

    Science.gov (United States)

    Asadchy, V. S.; Díaz-Rubio, A.; Tcvetkova, S. N.; Kwon, D.-H.; Elsakka, A.; Albooyeh, M.; Tretyakov, S. A.

    2017-07-01

    Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.

  14. Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials

    Science.gov (United States)

    Ma, Teng

    In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously

  15. Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-Performance Pressure-Sensitive Sensors.

    Science.gov (United States)

    Song, Xuefen; Sun, Tai; Yang, Jun; Yu, Leyong; Wei, Dacheng; Fang, Liang; Lu, Bin; Du, Chunlei; Wei, Dapeng

    2016-07-06

    Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of 80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer.

  16. On-Line Flatness Measurement in the Steelmaking Industry

    Directory of Open Access Journals (Sweden)

    Rubén Usamentiaga

    2013-08-01

    Full Text Available Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain.

  17. On-Line Flatness Measurement in the Steelmaking Industry

    Science.gov (United States)

    Molleda, Julio; Usamentiaga, Rubén; Garcίa, Daniel F.

    2013-01-01

    Shape is a key characteristic to determine the quality of outgoing flat-rolled products in the steel industry. It is greatly influenced by flatness, a feature to describe how the surface of a rolled product approaches a plane. Flatness is of the utmost importance in steelmaking, since it is used by most downstream processes and customers for the acceptance or rejection of rolled products. Flatness sensors compute flatness measurements based on comparing the length of several longitudinal fibers of the surface of the product under inspection. Two main different approaches are commonly used. On the one hand, most mechanical sensors measure the tensile stress across the width of the rolled product, while manufacturing and estimating the fiber lengths from this stress. On the other hand, optical sensors measure the length of the fibers by means of light patterns projected onto the product surface. In this paper, we review the techniques and the main sensors used in the steelmaking industry to measure and quantify flatness defects in steel plates, sheets and strips. Most of these techniques and sensors can be used in other industries involving rolling mills or continuous production lines, such as aluminum, copper and paper, to name a few. Encompassed in the special issue, State-of-the-Art Sensors Technology in Spain 2013, this paper also reviews the most important flatness sensors designed and developed for the steelmaking industry in Spain. PMID:23939583

  18. Guided-mode resonant solar cells and flat-top reflectors: Analysis, design, fabrication and characterization

    Science.gov (United States)

    Khaleque, Tanzina

    This dissertation addresses the guided-mode resonance (GMR) effect and its applications. In particular, this study presents theoretical analysis and corresponding experiments on two important GMR devices that can be broadly described as GMR-enabled thin-film solar cells and flat-top reflectors. The GMR-induced enhanced absorption of input light is observed and quantified in a fabricated nano-patterned amorphous silicon (a-Si) thin-film. Compared to a reference homogeneous thin-film of a-Si, approximately 50% integrated absorbance enhancement is achieved in the patterned structure. This result motivates the application of these resonance effects in thin-film solar cells where enhanced solar absorbance is a crucial requirement. Light trapping in thin-film solar cells through the GMR effect is theoretically explained and experimentally demonstrated. Nano-patterned solar cells with 300-nm periods in one-dimensional gratings are designed, fabricated, and characterized. Compared to a planar reference solar cell, around 35% integrated absorption enhancement is observed over the 450--750-nm wavelength range. This light-management method results in enhanced short-circuit current density of 14.8 mA/cm 2, which is a ˜40% improvement over planar solar cells. The experimental demonstration proves the potential of simple and well-designed guided-mode resonant features in thin-film solar cells. In order to complement the research on GMR thin-film solar cells, a single-step, low-cost fabrication method for generating resonant nano-grating patterns on poly-methyl-methacrylate (PMMA; plexiglas) substrates using thermal nano-imprint lithography is reported. The imprinted structures of both one and two dimensional nano-grating patterns with 300 nm period are fabricated. Thin films of indium-tin-oxide and silicon are deposited over patterned substrates and the absorbance of the films is measured. Around 25% and 45% integrated optical absorbance enhancement is observed over the 450-nm

  19. The role of the substrate in Graphene/Silicon photodiodes

    Science.gov (United States)

    Luongo, G.; Giubileo, F.; Iemmo, L.; Di Bartolomeo, A.

    2018-01-01

    The Graphene/Silicon (Gr/Si) junction can function as a Schottky diode with performances strictly related to the quality of the interface. Here, we focus on the substrate geometry and on its effects on Gr/Si junction physics. We fabricate and study the electrical and optical behaviour of two types of devices: one made of a Gr/Si planar junction, the second realized with graphene on an array of Si nanotips. We show that the Gr/Si flat device exhibits a reverse photocurrent higher than the forward current and achieves a photoresponsivity of 2.5 A/W. The high photoresponse is due to the charges photogenerated in Si below a parasitic graphene/SiO2/Si structure, which are injected into the Gr/Si junction region. The other device with graphene on Si-tips displays a reverse current that grows exponentially with the bias. We explain this behaviour by taking into account the tip geometry of the substrate, which magnifies the electric field and shifts the Fermi level of graphene, thus enabling fine-tuning of the Schottky barrier height. The Gr/Si-tip device achieves a higher photoresponsivity, up to 3 A/W, likely due to photocharge internal multiplication.

  20. Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization

    Science.gov (United States)

    Kessler, Felipe; Muñoz, Pablo A. R.; Phelan, Ciaran; Romani, Eric C.; Larrudé, Dunieskys R. G.; Freire, Fernando L.; Thoroh de Souza, Eunézio A.; de Matos, Christiano J. S.; Fechine, Guilhermino J. M.

    2018-05-01

    Here, we report on a method that allows graphene produced by chemical vapor deposition (CVD) to be directly transferred to an optically transparent photo resin, by in situ photo-polymerization of the latter, with high efficiency and low contamination. Two photocurable resins, A and B, with different viscosities but essentially the same chemical structure, were used. Raman spectroscopy and surface energy results show that large continuous areas of graphene were transferred with minimal defects to the lower viscosity resin (B), due to the better contact between the resin and graphene. As a proof-of-principle optical experiment, graphene on the polymeric substrate was subjected to high-intensity femtosecond infrared pulses and third-harmonic generation was observed with no noticeable degradation of the sample. A sheet third-order susceptibility χ (3) = 0.71 ×10-28m3V-2 was obtained, matching that of graphene on a glass substrate. These results indicate the suitability of the proposed transfer method, and of the photo resin, for the production of nonlinear photonic components and devices.

  1. Manufacturing of polymer optical waveguides using self-assembly effect on pre-conditioned 3D-thermoformed flexible substrates

    Science.gov (United States)

    Hoffmann, Gerd-Albert; Wolfer, Tim; Zeitler, Jochen; Franke, Jörg; Suttmann, Oliver; Overmeyer, Ludger

    2017-02-01

    Optical data communication is increasingly interesting for many applications in industrial processes. Therefore mass production is required to meet the requested price and lot sizes. Polymer optical waveguides show great promises to comply with price requirements while providing sufficient optical quality for short range data transmission. A high efficient fabrication technology using polymer materials could be able to create the essential backbone for 3D-optical data transmission in the future. The approach for high efficient fabrication technology of micro optics described in this paper is based on a self-assembly effect of fluids on preconditioned 3D-thermoformed polymer foils. Adjusting the surface energy on certain areas on the flexible substrate by flexographic printing mechanism is presented in this paper. With this technique conditioning lines made of silicone containing UV-varnish are printed on top of the foils and create gaps with the exposed substrate material in between. Subsequent fabrication processes are selected whether the preconditioned foil is coated with acrylate containing waveguide material prior or after the thermoforming process. Due to the different surface energy this material tends to dewet from the conditioning lines. It acts like regional barriers and sets the width of the arising waveguides. With this fabrication technology it is possible to produce multiple waveguides with a single coating process. The relevant printing process parameters that affect the quality of the generated waveguides are discussed and results of the produced waveguides with width ranging from 10 to 300 μm are shown.

  2. Titanium based flat heat pipes for computer chip cooling

    Science.gov (United States)

    Soni, Gaurav; Ding, Changsong; Sigurdson, Marin; Bozorgi, Payam; Piorek, Brian; MacDonald, Noel; Meinhart, Carl

    2008-11-01

    We are developing a highly conductive flat heat pipe (called Thermal Ground Plane or TGP) for cooling computer chips. Conventional heat pipes have circular cross sections and thus can't make good contact with chip surface. The flatness of our TGP will enable conformal contact with the chip surface and thus enhance cooling efficiency. Another limiting factor in conventional heat pipes is the capillary flow of the working fluid through a wick structure. In order to overcome this limitation we have created a highly porous wick structure on a flat titanium substrate by using micro fabrication technology. We first etch titanium to create very tall micro pillars with a diameter of 5 μm, a height of 40 μm and a pitch of 10 μm. We then grow a very fine nano structured titania (NST) hairs on all surfaces of the pillars by oxidation in H202. In this way we achieve a wick structure which utilizes multiple length scales to yield high performance wicking of water. It's capable of wicking water at an average velocity of 1 cm/s over a distance of several cm. A titanium cavity is laser-welded onto the wicking substrate and a small quantity of water is hermetically sealed inside the cavity to achieve a TGP. The thermal conductivity of our preliminary TGP was measured to be 350 W/m-K, but has the potential to be several orders of magnitude higher.

  3. Optical NIR-VIS-VUV constants of advanced substrates for thin-film devices

    Czech Academy of Sciences Publication Activity Database

    Chernova, Ekaterina; Brooks, Christopher D.; Chvostová, Dagmar; Bryknar, Z.; Dejneka, Alexandr; Tyunina, Marina

    2017-01-01

    Roč. 7, č. 11 (2017), s. 3844-3862 ISSN 2159-3930 R&D Projects: GA ČR GA15-13778S; GA MŠk EF15_008/0000162; GA ČR GA15-15123S Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : ellipsometry * epitaxy * optical properties * single-crystal substrates * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.591, year: 2016

  4. Design trade study for a 4-meter off-axis primary mirror substrate and mount for the Habitable-zone Exoplanet Direct Imaging Mission

    Science.gov (United States)

    Arnold, William R.; Stahl, H. Philip

    2017-09-01

    An extensive trade study was conducted to evaluate primary mirror substrate design architectures for the HabEx mission baseline 4-meter off-axis telescope. The study's purpose is not to produce a final design, but rather to established a design methodology for matching the mirror's properties (mass and stiffness) with the mission's optical performance specifications (static dynamic wavefront error, WFE). The study systematically compares the effect of proven design elements (closed-back vs open-back vs partial-back; meniscus vs flat back vs shaped back; etc.), which can be implemented with proven space mirror materials (ULE and Zerodur), on static and dynamic WFE. Additionally, the study compares static and dynamic WFE of each substrate point design integrated onto three and six point mounts.

  5. Substrate Misorientation Effects On (A1,Ga)As And (Al,Ga)As/GaAs Structures Grown By Molecular Beam Epitaxy

    Science.gov (United States)

    Tsui, Raymond K.; Kramer, Gary D.; Curless, J. A.; Peffley, Marilyn S.

    1987-04-01

    (Al,Ga)As layers have rough surface morphologies when deposited under certain growth conditions in molecular beam epitaxy (MBE). This leads to poor interfaces between (A1,Ga)- As and GaAs and degraded performance in heterojunction devices. We have observed that by misorienting the substrate slightly from (100), in a manner specific to the growth conditions, smooth (Al,Ga)As layers 3-4 μm thick can be grown at a rate of ≍ 1 μm/h for various AlAs mole fractions, x. Similar conditions for nominal (100) result in a rough, textured morphology. Experiments were carried out using flat substrates of specific misorientations as well as lens-shaped substrates. The lenticular substrates allowed all orientations within 14° of (100) [i.e., out to (511)] to be evaluated in one growth run. Deposition conditions that were varied included x, substrate temperature, and V/III beam flux ratio. Smooth layers obtained using optimal misorientations showed superior optical characteris-tics as determined from low-temperature photoluminescence (PL) measurements. The 4.2K PL spectra of smooth layers exhibit well-resolved exciton-related peaks, and do not have the deeper-level defect-related peaks observed in the spectra of rough layers. Single quantum well structures with A10.3Ga0.7As barriers and a 100 A-wide GaAs well deposited on mis-oriented substrates also have superior optical properties compared to a structure grown on nominal (100). Such findings may have significant implications for the performance of heterojunction device structures grown by MBE.

  6. Optical vortex beams: Generation, propagation and applications

    Science.gov (United States)

    Cheng, Wen

    An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.

  7. Influence of substrate temperature and annealing on structural and optical properties of TiO{sub 2} films deposited by reactive e-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Pjević, D., E-mail: dejanp@vinca.rs [VINČA Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Marinković, T.; Savić, J.; Bundaleski, N.; Obradović, M.; Milosavljević, M. [VINČA Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001 Belgrade (Serbia); Kulik, M. [Frank Laboratory of Neutron Physics, JINR, Joliot-Curie St. 6, Dubna 141980, Moscow Region (Russian Federation)

    2015-09-30

    The influence of deposition and post-deposition annealing parameters on the structure and optical properties of TiO{sub 2} thin films synthesized by reactive e-beam evaporation is reported. Pure Ti (99.9%) was evaporated in oxygen atmosphere to form thin films on Si (100) and glass substrates. Depositions were conducted on substrates held at room temperature and at 200–400 °C heated substrates. Post-deposition annealing was done for 3 h at 500 °C in air. Compositional and structural studies were performed by Rutherford backscattering spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy, and optical properties were studied by ultraviolet–visible spectroscopy and analytically by pointwise unconstrained minimization approach method. It was found that both the structure and optical properties of the films are strongly influenced by the deposition and processing parameters. All deposited samples showed good stoichiometry of Ti:O ~ 1:2. Depending on the substrate temperature and oxygen pressure in the chamber during the deposition, anatase–rutile mixed films were obtained, and in some cases TiO and Ti{sub 2}O{sub 3} phases were observed. Substrate deposition temperature appears to play the major role on the final structure of the films, while post-deposition annealing adds up for the lack of oxygen in some cases and invokes crystal grain growth of already initiated phases. The results can be interesting towards the development of TiO{sub 2} thin films with defined structure and optical properties. - Highlights: • TiO{sub 2} films were deposited by reactive e-beam evaporation. • Structure and properties were studied as a function of deposition temperature. • Stoichiometry of as-deposited films was Ti:O ~ 1:2, containing different Ti-O phases. • Post-deposition annealing yielded phase transformation, affecting the properties. • Refractive index increases with the substrate deposition temperature.

  8. Flat spectrum T Tauri stars: The case for infall

    Science.gov (United States)

    Calvet, Nuria; Hartmann, Lee; Kenyon, S. J.; Whitney, B. A.

    1994-01-01

    We show that the mid- to far-infrared fluxes of 'flat spectrum' T Tauri stars can be explained by radiative equilibrium emission from infalling dusty envelopes. Infall eliminates the need for accretion disks with non-standard temperature distributions. The simplicity and power of this explanantion indicates that models employing 'active' disks, in which the temperature distribution is a parameterized power law, should be invoked with caution. Infall also naturally explains the scattered light nebulae detected around many flat spectrum sources. To match the observed spectra, material must fall onto a disk rather than the central star, as expected for collapse of a rotating molecular cloud. It may be necessary to invoke cavities in the envelopes to explain the strength of optical and near-infrared emission; these cavities could be produced by the powerful bipolar outflows commonly observed from young stars. If viewed along the cavity, a source may be lightly extincted at visual wavelengths, while still accreting substantial amounts of material from the envelope. Infall may also be needed to explain the infrared-bright companions of many optical T Tauri stars. This picture suggests that many of the flat spectrum sources are 'protostars'-young stellar objects surrounded by dust infalling envelopes of substantial mass.

  9. Flat beams in the SLC

    International Nuclear Information System (INIS)

    Adolphsen, C.; Barklow, T.; Burke, D.; Decker, F.J.; Emma, P.; Hildreth, M.; Himel, T.; Krejcik, P.; Limberg, T.; Minty, M.

    1993-01-01

    The Stanford Linear Collider was designed to operate with round beams; horizontal and vertical emittance made equal in the damping rings. The main motivation was to facilitate the optical matching through beam lines with strong coupling elements like the solenoid spin rotator magnets and the SLC arcs. Tests in 1992 showed that open-quote flat close-quote beams with a vertical to horizontal emittance ratio of around 1/10 can be successfully delivered to the end of the linac. Techniques developed to measure and control the coupling of the SLC arcs allow These beams to be transported to the Interaction Point (IP). Before flat beams could be used for collisions with polarized electrons, a new method of rotating the electron spin orientation with vertical arc orbit bumps had to be developed. Early in the 1993 run, the SLC was switched to open-quote flat close-quote beam operation. Within a short time the peak luminosity of the previous running cycle was reached and then surpassed. The average daily luminosity is now a factor of about two higher than the best achieved last year. In the following the authors present an overview of the problems encountered and their solutions for different parts of the SLC

  10. Impact of the substrate misorientation and its preliminary etching on the structural and optical properties of integrated GaAs/Si MOCVD heterostructures

    Science.gov (United States)

    Seredin, P. V.; Lenshin, A. S.; Zolotukhin, D. S.; Arsentyev, I. N.; Zhabotinskiy, A. V.; Nikolaev, D. N.

    2018-03-01

    This is the first attempt to make a report regarding the control of the structural and optical functional characteristics of integrated GaAs/Si heterostructures owing to the employment of preliminary etched misoriented Si substrates. The epitaxial GaAs layer on silicon substrates with no formation of the antiphase domains can be grown using substrates deviating less than 4°-6° from the singular (100) plane or without the use of a transition layer of GaAs nano-stakes. Preliminary etching of the Si substrate made it easier to acquire an epitaxial GaAs film in a single-crystalline state with a significantly less relaxation factor MOCVD, which positively influences on the structural performance of the film. These data agree with the results of Infrared reflection spectroscopy as well as Photoluminescence and UV-Vis spectroscopy. The optical properties of the integrated GaAs/Si (100) heterostructures in the IR and UV spectral regions were also identified by means of the relaxation coefficients.

  11. Milestone Report for High NA Optics Development International Sematech Project L1TH 112 Milestone4a: Specification Package for the Polished Mirror Substrate M1

    International Nuclear Information System (INIS)

    Taylor, J.S.; Hale, L.

    1999-01-01

    The key task in initiating the fabrication of mirror substrates for the new High NA Camera is in preparing the specification package that details the substrate geometry and the specifications for the optical surface. This specification package has been completed for substrate M1, and the vendor has begun optical fabrication. In addition, mounting hardware has been designed and fabricated, and substrates have been bonded to the kinematic mounts. The design of the secondary substrate, M2, is underway, but will depend upon details of the PO Box actuation system and space constraints. Sufficient details of the M2 design to enable the vendor to procure material will be determined during October, while the final details of the mounting surfaces will be completed prior to the end of Q4 1999. The geometry of the Ml substrate is compatible with our planned approach for fixturing the optic within the PO Box and within metrology tools. The completion of this specification package required detailed consideration of: the mounting approach within the PO Box, degrees of actuation required for PO Box alignment, space constraints imposed by the vendor's metrology, requirements for LLNL metrology, and datum definitions needed for mechanical assembly of the PO Box. In addition, each of the degrees of freedom of the substrate has been properly constrained, and shown to be sufficiently insensitive to disturbance forces for minimizing deformation. An approach to fixturing has been adopted that extends beyond the approach taken for the Engineering Test Stand (ETS). For the ETS, each substrate, including spares, has dedicated mounting hardware that is used exclusively for each element. In exchange for a reduced risk of mounting-induced deformation, this incurred substantial expense and precluded optics from using interchangeable tooling. For the current High NA camera, we have adopted an approach that employs interchangeable mounting hardware that can be used for any of the substrates

  12. Antireflective conducting nanostructures with an atomic layer deposited an AlZnO layer on a transparent substrate

    International Nuclear Information System (INIS)

    Park, Hyun-Woo; Ji, Seungmuk; Herdini, Diptya Suci; Lim, Hyuneui; Park, Jin-Seong; Chung, Kwun-Bum

    2015-01-01

    Graphical abstract: - Highlights: • We investigated the antireflective conducting nanostructures on a transparent substrate using atomic layer deposited AlZnO films. • The conformal AlZnO layer on a transparent nanostructured substrate exhibited 5.52 × 10 −4 Ω cm in resistivity and 88% in average visible transmittance. • The improvement of transparency was explained by the gradual changes of the refractive index in the film depth direction. • The decrease in electrical resistivity is strongly correlated to the increased surface area with the nanostructure and the change of chemical bonding states. - Abstract: The antireflective conducting nanostructures on a transparent substrate were shown to have enhanced optical and electrical properties via colloidal lithography and atomic layer deposition. The conformal AlZnO layer on a transparent nanostructured substrate exhibited 5.52 × 10 −4 Ω cm in resistivity and 88% in average visible transmittance, both of which were superior to those of a flat transparent conducting substrate. The improvement of transparency was explained by the gradual changes of the refractive index in the film depth direction. The decrease in electrical resistivity is strongly correlated to the increased surface area with the nanostructure and the change of chemical bonding states.

  13. Optically controlled electrophoresis with a photoconductive substrate

    Science.gov (United States)

    Inami, Wataru; Nagashima, Taiki; Kawata, Yoshimasa

    2018-05-01

    A photoconductive substrate is used to perform electrophoresis. Light-induced micro-particle flow manipulation is demonstrated without using a fabricated flow channel. The path along which the particles were moved was formed by an illuminated light pattern on the substrate. Because the substrate conductivity and electric field distribution can be modified by light illumination, the forces acting on the particles can be controlled. This technique has potential applications as a high functionality analytical device.

  14. Diffractive flat panel solar concentrators of a novel design

    NARCIS (Netherlands)

    De Jong, T.M.; de Boer, D.K.G.; Bastiaansen, C.W.M.

    2016-01-01

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the

  15. Influence of substrate temperature on the electronic and optical properties of Cr doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sagar; Gupta, Ratnesh, E-mail: gratnesh-ioi@yahoo.com [School of Instrumentation, Devi Ahilya University, Khandwa Road, Indore-452001 (India); Gupta, M. [UGC-DAE CSR Indore Centre, Indore 452 001 (India)

    2016-05-23

    We report the effects of substrate temperature on electrical and optical properties of the Cr-doped TiO{sub 2} film by pulsed laser deposition on Si(100). X-ray reflectivity pattern suggest that the single layer film have been deposited. Total thickness of 86 nm have been obtained. UV-Vis reflectance technique has been used to obtain its optical properties. From the Tauc plot, the bandgap for the film deposited at 150°C is higher compared to the film deposited at lower temperature.

  16. Specialty flat-top beam delivery fibers with controlled beam parameter product

    Science.gov (United States)

    Jollivet, C.; Farley, K.; Conroy, M.; Abramczyk, J.; Belke, S.; Becker, F.; Tankala, K.

    2016-03-01

    Beam delivery fibers have been used widely for transporting the optical beams from the laser to the subject of irradiation in a variety of markets including industrial, medical and defense applications. Standard beam delivery fibers range from 50 to 1500 μm core diameter and are used to guide CW or pulsed laser light, generated by solid state, fiber or diode lasers. Here, we introduce a novel fiber technology capable of simultaneously controlling the beam profile and the angular divergence of single-mode (SM) and multi-mode (MM) beams using a single-optical fiber. Results of beam transformation from a SM to a MM beam with flat-top intensity profile are presented in the case of a controlled BPP at 3.8 mm*mrad. The scaling capabilities of this flat-top fiber design to achieve a range of BPP values while ensuring a flat-top beam profile are discussed. In addition, we demonstrate, for the first time to the best of our knowledge, the homogenizer capabilities of this novel technology, able to transform random MM beams into uniform flat-top beam profiles with very limited impact on the beam brightness. This study is concluded with a discussion on the scalability of this fiber technology to fit from 50 up to 1500 μm core fibers and its potential for a broader range of applications.

  17. Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates.

    Science.gov (United States)

    Huang, Jia-Qi; Zhang, Qiang; Xu, Guang-Hui; Qian, Wei-Zhong; Wei, Fei

    2008-10-29

    In this paper, hydrophobic carbon nanotube (CNT) arrays, ropes, and agglomerates were synthesized through self-organization on quartz substrates with different micro-structures under the same growth condition. On a flat substrate, a uniform woven structure was formed which resulted in a synchronous growth into an array. When the substrate with 10 µm round concaves distributed on the surface was adopted, the woven structure was sporadic and a CNT cluster was grown in the concave. With further growth, CNT ropes were self-organized. Subsequently, when the substrate consisting of irregular ∼100 nm gaps was used, the initial woven structure was high density, thus resulting in the formation of CNT agglomerates. Study results showed that CNT arrays grown on the flat substrate were of the highest purity and had a contact angle of 153.8 ± 0.9°. Thus, the self-organization behavior among CNTs was in situ modulated by different substrate morphology without further treatments. This provides us with an additional understanding of the self-organization of CNTs during growth, as well as strategies for the controllable synthesis of CNTs with fixed properties.

  18. Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates

    International Nuclear Information System (INIS)

    Huang Jiaqi; Zhang Qiang; Xu Guanghui; Qian Weizhong; Wei Fei

    2008-01-01

    In this paper, hydrophobic carbon nanotube (CNT) arrays, ropes, and agglomerates were synthesized through self-organization on quartz substrates with different micro-structures under the same growth condition. On a flat substrate, a uniform woven structure was formed which resulted in a synchronous growth into an array. When the substrate with 10 μm round concaves distributed on the surface was adopted, the woven structure was sporadic and a CNT cluster was grown in the concave. With further growth, CNT ropes were self-organized. Subsequently, when the substrate consisting of irregular ∼100 nm gaps was used, the initial woven structure was high density, thus resulting in the formation of CNT agglomerates. Study results showed that CNT arrays grown on the flat substrate were of the highest purity and had a contact angle of 153.8 ± 0.9 0 . Thus, the self-organization behavior among CNTs was in situ modulated by different substrate morphology without further treatments. This provides us with an additional understanding of the self-organization of CNTs during growth, as well as strategies for the controllable synthesis of CNTs with fixed properties.

  19. Detection of flat colorectal polyps at screening CT colonography in comparison with conventional polypoid lesions

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Takashi; Urata, Joji [Diagnostic Imaging Center, Saiseikai Kumamoto Hospital, Kumamoto (Japan); Mitsuzaki, Katsuhiko; Matsuda, Katsuhiko; Kawakami, Megumi [Medical Examination Center, Saiseikai Kumamoto Hospital, Kumamoto (Japan); Utsunomiya, Daisuke; Yamamura, Sadahiro; Yamashita, Yasuyuki [Diagnostic Radiology, Faculty of Life Sciences, Kumamoto Univ., Kumamoto (Japan)], e-mail: utsunomi@kumamoto-u.ac.jp

    2012-09-15

    Background: Although the screening of small, flat polyps is clinically important, the role of CT colonography (CTC) screening in their detection has not been thoroughly investigated. Purpose: To evaluate the detection capability and usefulness of CTC in the screening of flat and polypoid lesions by comparing CTC with optic colonoscopy findings as the gold standard. Material and Methods: We evaluated the CTC detection capability for flat colorectal polyps with a flat surface and a height not exceeding 3 mm (n = 42) by comparing to conventional polypoid lesions (n = 418) according to the polyp diameter. Four types of reconstruction images including multiplanar reconstruction, volume rendering, virtual gross pathology, and virtual endoscopic images were used for visual analysis. We compared the abilities of the four reconstructions for polyp visualization. Results: Detection sensitivity for flat polyps was 31.3 %, 44.4 %, and 87.5 % for lesions measuring 2-3 mm, 4-5 mm, and {>=}6 mm, respectively; the corresponding sensitivity for polypoid lesions was 47.6 %, 79.0 %, and 91.7 %. The overall sensitivity for flat lesions (47.6%) was significantly lower than polypoid lesions (64.1%). Virtual endoscopic imaging showed best visualization among the four reconstructions. Colon cancers were detected in eight patients by optic colonoscopy, and CTC detected colon cancers in all eight patients. Conclusion: CTC using 64-row multidetector CT is useful for colon cancer screening to detect colorectal polyps while the detection of small, flat lesions is still challenging.

  20. MAPLE deposition of 3D micropatterned polymeric substrates for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Paun, Irina Alexandra, E-mail: irina.paun@physics.pub.ro [National Institute for Laser, Plasma and Radiation Physics, RO-077125, Magurele, Bucharest (Romania); Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042, Bucharest (Romania); Mihailescu, Mona [Faculty of Applied Sciences, University Politehnica of Bucharest, RO-060042, Bucharest (Romania); Calenic, Bogdan [Department of Biochemistry, Faculty of Dentistry, UMF Carol Davila, Bucharest (Romania); Luculescu, Catalin Romeo [National Institute for Laser, Plasma and Radiation Physics, RO-077125, Magurele, Bucharest (Romania); Greabu, Maria [Department of Biochemistry, Faculty of Dentistry, UMF Carol Davila, Bucharest (Romania); Dinescu, Maria, E-mail: dinescum@nipne.ro [National Institute for Laser, Plasma and Radiation Physics, RO-077125, Magurele, Bucharest (Romania)

    2013-08-01

    3D micropatterned poly(lactide-co-glycolide)/polyurethane (PLGA/PU) substrates were produced by MAPLE deposition through masks and used for regulating the behavior of oral keratinocyte stem cells in response to topography. Flat PLGA/PU substrates were produced for comparison. 3D imaging of the PLGA/PU substrates and of the cultured cells was performed by Digital Holographic Microscopy. The micropatterns were in the shape of squares of 50 × 50 and 80 × 80 μm{sup 2} areas, ∼1.8 μm in height and separated by 20 μm wide channels. It was found that substrate topography guided the adhesion of the cultured cells: on the smooth substrates the cells adhered randomly and showed no preferred orientation; in contrast, on the micropatterned substrates the cells adhered preferentially onto the squares and not in the separating channels. Furthermore, key properties of the cells (size, viability, proliferation rate and stem cell marker expression) did not show any dependence on substrate topography. The size of the cultured cells, their viability, the proportions of actively/slow proliferating cells, as well as the stem cell markers expressions, were similar for both flat and micropatterned substrates. Finally, it was found that the cells cultured on the PLGA/PU substrates deposited by MAPLE exhibited similar properties as the controls (i.e. cells cultured on glass slides), indicating the capability of the former to preserve the properties of the keratinocyte stem cells.

  1. Effects of substrate temperature on sprayed ZnO thin films optical and morphological properties in terms of Amlouk-Boubaker opto-thermal expansivity psi{sub AB}

    Energy Technology Data Exchange (ETDEWEB)

    Amlouk, A.; Boubaker, K. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Amlouk, M., E-mail: mmbb11112000@yahoo.f [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia)

    2009-08-12

    In this study, ZnO thin films have been grown using spray pyrolysis technique on glass substrates under various substrate temperature (400, 420, 440, 460, 480 and 500 deg. C). The Precursors were Propan-2-ol C{sub 3}H{sub 8}O and zinc acetate zinc Zn(CH{sub 3}CO{sub 2}){sub 2} in acidified medium (acetic acid CH{sub 3}CO{sub 2}H, pH = 5). XRD analyses yielded a strong (0 0 2) X-ray diffraction line for low substrate temperatures (400-420 deg. C). This c-axis preferential orientation was not observed for substrate temperature beyond 440 deg. C. Atomic Force Microscopy (AFM) analyses monitored clusters with variable shapes (pyramidal for high temperatures and rounded concentrated ones for temperatures below 440 deg. C). Finally, the optical measurements were carried out via transmittance T(lambda) and reflectance R(lambda) spectra inside 250-2500 nm domain. Thanks to optical measurements, the conjoint optical and thermal properties were deduced using the Amlouk-Boubaker opto-thermal expansively psi{sub AB}.

  2. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    Science.gov (United States)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  3. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    Science.gov (United States)

    Wolfe, Jesse D [Fairfield, CA; Theiss, Steven D [Woodbury, MN; Carey, Paul G [Mountain View, CA; Smith, Patrick M [San Ramon, CA; Wickbold, Paul [Walnut Creek, CA

    2006-09-26

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  4. Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs.

    Science.gov (United States)

    Hong, Sanghyun; Lundstrom, Troy; Ghosh, Ranajay; Abdi, Hamed; Hao, Ji; Jeoung, Sun Kyoung; Su, Paul; Suhr, Jonghwan; Vaziri, Ashkan; Jalili, Nader; Jung, Yung Joon

    2016-12-14

    We have created a multifunctional dry adhesive film with transferred vertically aligned carbon nanotubes (VA-CNTs). This unique VA-CNT film was fabricated by a multistep transfer process, converting the flat and uniform bottom of VA-CNTs grown on atomically flat silicon wafer substrates into the top surface of an adhesive layer. Unlike as-grown VA-CNTs, which have a nonuniform surface, randomly entangled CNT arrays, and a weak interface between the CNTs and substrates, this transferred VA-CNT film shows an extremely high coefficient of static friction (COF) of up to 60 and a shear adhesion force 30 times higher (12 N/cm 2 ) than that of the as-grown VA-CNTs under a very small preloading of 0.2 N/cm 2 . Moreover, a near-zero normal adhesion force was observed with 20 mN/cm 2 preloading and a maximum 100-μm displacement in a piezo scanner, demonstrating ideal properties for an artificial gecko foot. Using this unique structural feature and anisotropic adhesion properties, we also demonstrate effective removal and assembly of nanoparticles into organized micrometer-scale circular and line patterns by a single brushing of this flat and uniform VA-CNT film.

  5. The sensitivity of graphene “snap-through” to substrate geometry

    KAUST Repository

    Wagner, Till J. W.

    2012-01-01

    We study theoretically the deposition of few layer graphene sheets onto a grooved substrate incorporating adhesion between substrate and sheet. We develop a model to understand the equilibrium of the sheet allowing for partial conformation of sheet to substrate. This model gives physical insight into recent observations of snap-through from flat to conforming states and emphasizes the crucial role of substrate shape in determining the nature of this transition. Our analytical results are consistent with numerical simulations using a van der Waals-like interaction. Finally, we propose a substrate shape that should exhibit a continuous, rather than snap-through, transition. © 2012 American Institute of Physics.

  6. Owhership of flats

    OpenAIRE

    Přibil, Jan

    2012-01-01

    Ownership of Flats Summary In his diploma thesis "Ownership of Flats", the author focuses on applicable law of flat ownership in the Czech Republic, especially the Flat Ownership Act 72/1994 Sb. The author puts the contemporary regulation in historical context; he describes the theoretical principles underlining the current applicable law and defines in detail the basic legal terms used by the Flat Ownership Act. Original and derivative forms of flat ownership acquisition are explained, namel...

  7. The research of optical windows used in aircraft sensor systems

    International Nuclear Information System (INIS)

    Zhou Feng; Li Yan; Tang Tian-Jin

    2012-01-01

    The optical windows used in aircrafts protect their imaging sensors from environmental effects. Considering the imaging performance, flat surfaces are traditionally used in the design of optical windows. For aircrafts operating at high speeds, the optical windows should be relatively aerodynamic, but a flat optical window may introduce unacceptably high drag to the airframes. The linear scanning infrared sensors used in aircrafts with, respectively, a flat window, a spherical window and a toric window in front of the aircraft sensors are designed and compared. Simulation results show that the optical design using a toric surface has the integrated advantages of field of regard, aerodynamic drag, narcissus effect, and imaging performance, so the optical window with a toric surface is demonstrated to be suited for this application. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Substrate Dependence of the Freezing Dynamics of Supercooled Water Films: A High-Speed Optical Microscope Study.

    Science.gov (United States)

    Pach, E; Rodriguez, L; Verdaguer, A

    2018-01-18

    The freezing of supercooled water films on different substrates was investigated using a high-speed camera coupled to an optical microscope, obtaining details of the freezing process not described in the literature before. We observed the two well known freezing stages (fast dendritic growth and slow freezing of the water liquid left after the dendritic growth), but we separated the process into different phenomena that were studied separately: two-dimensional dendrite growth on the substrate interface, vertical dendrite growth, formation and evolution of ice domains, trapping of air bubbles and freezing of the water film surface. We found all of these processes to be dependent on both the supercooling temperature and the substrate used. Ice dendrite (or ice front) growth during the first stage was found to be dependent on thermal properties of the substrate but could not be unequivocally related to them. Finally, for low supercooling, a direct relationship was observed between the morphology of the dendrites formed in the first stage, which depends on the substrate, and the roughness and the shape of the surface of the ice, when freezing of the film was completed. This opens the possibility of using surfaces and coatings to control ice morphology beyond anti-icing properties.

  9. Impact of severe cracked germanium (111 substrate on aluminum indium gallium phosphate light-emitting-diode’s electro-optical performance

    Directory of Open Access Journals (Sweden)

    Annaniah Luruthudass

    2016-01-01

    Full Text Available Cracked die is a serious failure mode in the Light Emitting Diode (LED industry – affecting LED quality and long-term reliability performance. In this paper an investigation has been carried out to find the correlation between severe cracked germanium (Ge substrate of an aluminum indium gallium phosphate (AlInGaP LED and its electro-optical performance after the Temperature Cycle (TC test. The LED dice were indented at several bond forces using a die bonder. The indented dice were analysed using a Scanning Electron Microscope (SEM. The result showed that severe cracks were observed at 180 gF onward. As the force of indentation increases, crack formation also becomes more severe thus resulting in the chipping of the substrate. The cracked dies were packaged and the TC test was performed. The results did not show any electro-optical failure or degradation, even after a 1000 cycle TC test. Several mechanically cross-sectioned cracked die LEDs, were analysed using SEM and found that no crack reached the active layer. This shows that severely cracked Ge substrate are able to withstand a −40°C/+100°C TC test up to 1000 cycles and LED optical performance is not affected. A small leakage current was observed in all of the cracked die LEDs in comparison to the reference unit. However, this value is smaller than the product specification and is of no concern.

  10. Attenuated phase-shift mask (PSM) blanks for flat panel display

    Science.gov (United States)

    Kageyama, Kagehiro; Mochizuki, Satoru; Yamakawa, Hiroyuki; Uchida, Shigeru

    2015-10-01

    The fine pattern exposure techniques are required for Flat Panel display applications as smart phone, tablet PC recently. The attenuated phase shift masks (PSM) are being used for ArF and KrF photomask lithography technique for high end pattern Semiconductor applications. We developed CrOx based large size PSM blanks that has good uniformity on optical characteristics for FPD applications. We report the basic optical characteristics and uniformity, stability data of large sized CrOx PSM blanks.

  11. Random source generating far field with elliptical flat-topped beam profile

    International Nuclear Information System (INIS)

    Zhang, Yongtao; Cai, Yangjian

    2014-01-01

    Circular and rectangular multi-Gaussian Schell-model (MGSM) sources which generate far fields with circular and rectangular flat-topped beam profiles were introduced just recently (Sahin and Korotkova 2012 Opt. Lett. 37 2970; Korotkova 2014 Opt. Lett. 39 64). In this paper, a random source named an elliptical MGSM source is introduced. An analytical expression for the propagation factor of an elliptical MGSM beam is derived. Furthermore, an analytical propagation formula for an elliptical MGSM beam passing through a stigmatic ABCD optical system is derived, and its propagation properties in free space are studied. It is interesting to find that an elliptical MGSM source generates a far field with an elliptical flat-topped beam profile, being qualitatively different from that of circular and rectangular MGSM sources. The ellipticity and the flatness of the elliptical flat-topped beam profile in the far field are determined by the initial coherence widths and the beam index, respectively. (paper)

  12. A 45° saw-dicing process applied to a glass substrate for wafer-level optical splitter fabrication for optical coherence tomography

    Science.gov (United States)

    Maciel, M. J.; Costa, C. G.; Silva, M. F.; Gonçalves, S. B.; Peixoto, A. C.; Ribeiro, A. Fernando; Wolffenbuttel, R. F.; Correia, J. H.

    2016-08-01

    This paper reports on the development of a technology for the wafer-level fabrication of an optical Michelson interferometer, which is an essential component in a micro opto-electromechanical system (MOEMS) for a miniaturized optical coherence tomography (OCT) system. The MOEMS consists on a titanium dioxide/silicon dioxide dielectric beam splitter and chromium/gold micro-mirrors. These optical components are deposited on 45° tilted surfaces to allow the horizontal/vertical separation of the incident beam in the final micro-integrated system. The fabrication process consists of 45° saw dicing of a glass substrate and the subsequent deposition of dielectric multilayers and metal layers. The 45° saw dicing is fully characterized in this paper, which also includes an analysis of the roughness. The optimum process results in surfaces with a roughness of 19.76 nm (rms). The actual saw dicing process for a high-quality final surface results as a compromise between the dicing blade’s grit size (#1200) and the cutting speed (0.3 mm s-1). The proposed wafer-level fabrication allows rapid and low-cost processing, high compactness and the possibility of wafer-level alignment/assembly with other optical micro components for OCT integrated imaging.

  13. Investigation on nonlinear optical properties of MoS2 nanoflake, grown on silicon and quartz substrates

    Science.gov (United States)

    Bayesteh, S.; Mortazavi, S. Z.; Reyhani, A.

    2018-03-01

    In this study, MoS2 was directly synthesized by one-step thermal chemical vapour deposition (TCVD), on different substrates including Si/SiO2 and quartz, using MoO3 and sulfide powders as precursor. The XRD patterns demonstrate the high crystallinity of MoS2 on Si/SiO2 and quartz substrates. SEM confirmed the formation of MoS2 grown on both substrates. According to line width and frequency difference between the E1 2g and A1g in Raman spectroscopy, it is inferred that the MoS2 grown on Si/SiO2 substrate is monolayer and the MoS2 grown on quartz substrate is multilayer. Moreover, by assessment of MoS2 nanoflake band gap via UV-visible analysis, it verified the formation of few layer structures. In addition, the open-aperture and close-aperture Z-scan techniques were employed to study the nonlinear optical properties including nonlinear absorption and nonlinear refraction of the synthesized MoS2. All experiments were performed using a diode laser with a wavelength of 532 nm as light source. The monolayer MoS2 synthesized on Si/SiO2, display considerable two-photon absorption. However, the multilayer MoS2 synthesized on quartz displayed saturable absorption (SA). It is noticeable that both samples demonstrate obvious self-defocusing behaviour.

  14. Modeling on the cathodoluminescence properties of the thin film phosphors for field emission flat panel displays

    Science.gov (United States)

    Cho, Kyu-Gong

    2000-12-01

    In order to investigate the effects of the film roughness with the fundamental luminance parameters of thin film phosphors, Y2 O3:Eu films with different thickness and roughness values were deposited on various substrate materials using a pulsed laser deposition technique under a controlled experimental procedure. The best luminous efficiency was observed from the Y2O3:Eu films on quartz substrates due to the smaller refractive index and low absorption characteristics of the quartz substrates which produce a larger amount of total internal reflection in the film and low loss of light intensity during the multiple internal reflections. The trapped light inside the film can escape the film more easily due to rougher film surface. The better epitaxial growth capability of the Y2O 3:Eu films with the LaAlO3 substrates resulted in higher luminous efficiency in the small surface roughness region. Higher luminous efficiency was observed in reflection mode than in transmission mode due to the contribution of diffusely scattered light at the air-film interface. A new theoretical model based on the diffraction scattering theory of light, the steady-state diffusion condition of carriers and the Kanaya-Okayama's electron- beam-solid interaction range satisfactorily explains all the experimental results mentioned above. The model also provides solid understandings on the cathodoluminescence properties of the thin film phosphors with the effects of other single or multiple luminance parameters. The parameters encountered for the model are surface roughness, electron-beam-solid interaction, surface recombination rate of carriers, charge carrier diffusion properties, multiple scattering at the interfaces (air- film, film-substrate, and substrate-air), optical properties of the material, film thickness, and substrate type. The model supplies a general solution in both qualitative and quantitative ways to estimate the luminance properties of the thin film phosphors and it can be

  15. Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sayantan; Alford, T. L. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA and School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States)

    2013-06-28

    Silver doped cupric oxide thin films are prepared on polyethylene naphthalate (flexible polymer) substrates. Thin films Ag-doped CuO are deposited on the substrate by co-sputtering followed by microwave assisted oxidation of the metal films. The low temperature tolerance of the polymer substrates led to the search for innovative low temperature processing techniques. Cupric oxide is a p-type semiconductor with an indirect band gap and is used as selective absorption layer solar cells. X-ray diffraction identifies the CuO phases. Rutherford backscattering spectrometry measurements confirm the stoichiometry of each copper oxide formed. The surface morphology is determined by atomic force microscopy. The microstructural properties such as crystallite size and the microstrain for (-111) and (111) planes are calculated and discussed. Incorporation of Ag led to the lowering of band gap in CuO. Consequently, it is determined that Ag addition has a strong effect on the structural, morphological, surface, and optical properties of CuO grown on flexible substrates by microwave annealing. Tauc's plot is used to determine the optical band gap of CuO and Ag doped CuO films. The values of the indirect and direct band gap for CuO are found to be 2.02 eV and 3.19 eV, respectively.

  16. Iron films deposited on porous alumina substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro, E-mail: yyasu@rs.kagu.tus.ac.jp; Tanabe, Kenichi; Nishida, Naoki [Tokyo University of Science (Japan); Kobayashi, Yoshio [The University of Electro-Communications (Japan)

    2016-12-15

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 – 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  17. Optical XOR gate

    Science.gov (United States)

    Vawter, G. Allen

    2013-11-12

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  18. Development study of the X-ray scattering properties of a group of optically polished flat samples. [for soft X ray telescopes

    Science.gov (United States)

    Froechtenigt, J. F.

    1974-01-01

    Four optically polished flat samples were tested at wavelengths of 8.34 A, 13.3 A, and 44 A and 0.5 deg, 0.92 deg, 1.5 deg, 2.0 deg and 4.0 deg angle of incidence. The four samples were also tested at 8.34 A and 0.92 deg angle of incidence for three additional angular orientations about an axis normal to the sample surface: 45 deg, 90 deg and 180 deg from the 0 deg position. The tests indicate that the scattering was greater at 44 A than at 13.3 A and 8.34 A. The orientation tests indicated that no great irregularities were present.

  19. Probing neural cell behaviors through micro-/nano-patterned chitosan substrates

    International Nuclear Information System (INIS)

    Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Chen, Wen-Shiang; Wang, Yang-Kao; Cheng, Chao-Min

    2015-01-01

    In this study, we describe the development of surface-modified chitosan substrates to examine topographically related Neuro-2a cell behaviors. Different functional groups can be modified on chitosan surfaces to probe Neuro-2a cell morphology. To prepare chitosan substrates with micro/nano-scaled features, we demonstrated an easy-to-handle method that combined photolithography, inductively coupled plasma reactive ion etching, Ag nanoparticle-assisted etching, and solution casting. The results show that Neuro-2a cells preferred to adhere to a flat chitosan surface rather than a nanotextured chitosan surface as evidenced by greater immobilization and differentiation, suggesting that surface topography is crucial for neural patterning. In addition, we developed chitosan substrates with different geometric patterns and flat region depth; this allowed us to re-arrange or re-pattern Neuro-2a cell colonies at desired locations. We found that a polarity-induced micropattern provided the most suitable surface pattern for promoting neural network formation on a chitosan substrate. The cellular polarity of single Neuro-2a cell spreading correlated to a diamond-like geometry and neurite outgrowth was induced from the corners toward the grooves of the structures. This study provide greater insight into neurobiology, including neurotransmitter screening, electrophysiological stimulation platforms, and biomedical engineering. (paper)

  20. Influence of Substrate Temperature on Structural, Electrical and Optical Properties of Ito Thin Films Prepared by RF Magnetron Sputtering

    Science.gov (United States)

    He, Bo; Zhao, Lei; Xu, Jing; Xing, Huaizhong; Xue, Shaolin; Jiang, Meng

    2013-10-01

    In this paper, we investigated indium-tin-oxide (ITO) thin films on glass substrates deposited by RF magnetron sputtering using ceramic target to find the optimal condition for fabricating optoelectronic devices. The structural, electrical and optical properties of the ITO films prepared at various substrate temperatures were investigated. The results indicate the grain size increases with substrate temperature increases. As the substrate temperature grew up, the resistivity of ITO films greatly decreased. The ITO film possesses high quality in terms of electrode functions, when substrate temperature is 480°C. The resistivity is as low as 9.42 × 10-5 Ω•cm, while the carrier concentration and mobility are as high as 3.461 × 1021 atom/cm3 and 19.1 cm2/Vṡs, respectively. The average transmittance of the film is about 95% in the visible region. The novel ITO/np-Silicon frame, which prepared by RF magnetron sputtering at 480°C substrate temperature, can be used not only for low-cost solar cell, but also for high quantum efficiency of UV and visible lights enhanced photodetector for various applications.

  1. Beam shaping optics to enhance performance of interferometry techniques in grating manufacture

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2018-02-01

    Improving of industrial holographic and interferometry techniques is of great importance in interference lithography, computer-generated holography, holographic data storage, interferometry recording of Bragg gratings as well as gratings of various types in semiconductor industry. Performance of mentioned techniques is essentially enhanced by providing a light beam with flat phase front and flat-top irradiance distribution. Therefore, transformation of Gaussian distribution of a TEM00 laser to flat-top (top hat, uniform) distribution is an important optical task. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality demanding holography and interferometry. As a solution it is suggested to apply refractive field mapping beam shaping optics πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. High optical quality of resulting flat-top beam allows applying additional optical components to build various imaging optical systems for variation of beam size and shape to fulfil requirements of a particular application. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in holography and laser interference lithography. Examples of real implementations and experimental results will be presented as well.

  2. Substrate temperature dependent structural, optical and electrical properties of amorphous InGaZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.F.; He, G., E-mail: ganghe01@issp.ac.cn; Gao, J.; Zhang, J.W.; Xiao, D.Q.; Jin, P.; Deng, B.

    2015-05-25

    Highlights: • Amorphous IGZO films are obtained by sputtering at various substrate temperatures. • Higher substrate temperatures lead to lower band gaps and high refractive index. • High temperature results in lower resistivity and larger charge carrier content. • Increased oxygen vacancies attributes to the reduced band gap. • Increased In content in IGZO films leads to the improved electrical properties. - Abstract: The effects of substrate temperature (T{sub s}) on the electrical and optical properties of amorphous InGaZnO thin films deposited by sputtering have been investigated. As T{sub s} increased from RT to 400 °C, all the films remained amorphous, the transmission in the visible region increased from 92.8% to 93.54%, and the band gap decreased from 3.42 eV to 3.31 eV. Based on Cauchy–Urbach model, the optical properties of all samples were analyzed by spectroscope ellipsometry (SE) and increase in refractive index has been detected with the increase in T{sub s}. Results of Hall measurement showed that substrate temperature have remarkable influence on the resistivity (ρ), carrier concentration (n), and carrier mobility (μ) of IGZO films. As T{sub s} increased from RT to 400 °C, ρ decreased from 46.6 to 0.24 Ω cm, and then increased to 1.11 Ω cm at T{sub s} of 400 °C, and n increase from 5.67 × 10{sup 15} to 7.33 × 10{sup 18} cm{sup −3}. Investigation of X-ray photoelectron spectroscopy (XPS) indicated that as T{sub s} increased, an O 1s component representing the oxygen vacancies increased in amount and that the intensity ratio of In/Ga increased but that of Zn/Ga decreased. The analysis suggests that the increase of oxygen vacancies could explain the increase in n and reduction in ρ and that the compositional change could explain the change of E{sub g}.

  3. The Tully-Fisher relation for flat galaxies

    Science.gov (United States)

    Makarov, D. I.; Zaitseva, N. A.; Bizyaev, D. V.

    2018-06-01

    We construct a multiparametric Tully-Fisher (TF) relation for a large sample of edge-on galaxies from the Revised Flat Galaxy Catalog using H I data from the EDD database and parameters from the EGIS catalog. We incorporate a variety of additional parameters including structural parameters of edge-on galaxies in different bandpasses. Besides the rotation curve maximum, only the H I-to-optical luminosity ratio and optical colours play a statistically significant role in the multiparametric TF relation. We are able to decrease the standard deviation of the multiparametric TF relation down to 0.32 mag, which is at the level of best modern samples of galaxies used for studies of the matter motion in the Universe via the TF-relation.

  4. The Optical and Electrical Properties of ZnO/Ag/ZnO Films on Flexible Substrate

    Science.gov (United States)

    Yu, Xiaojing; Zhang, Dongyan; Wang, Pangpang; Murakami, Ri-Ichi; Ding, Bingjun; Song, Xiaoping

    The deposition of ZnO/Ag/ZnO film on polyethylene terephthalate (PET) substrate was fabricated by DC magnetron sputtering method. The thicknesses of ZnO layers were 30 nm and Ag films' thicknesses were changed from 1 nm to 6 nm by controlled the sputtering time. This kind of film can be used as transparent conductive oxide (TCO) materials. The electrical and optical properties of composite layers were determined by Ag films. The optimum sputtering time of Ag thin films was found to be 20 s for the high optical transmittance with good electrical conductivity. The ZnO/Ag(20 s)/ZnO layer, which has high optical transmittance of 73% at 550 nm, shows sheet resistance as low as 6.7 ohm/sq. These multilayer transparent films had low electrical resistance as the widely used transparent conductive oxide electrodes. SEM, XRD, the UV-Vis-NIR and Hall Effect measurement system were used to characterize properties of fabricated films. The reasons for the change of transmittance and resistance will also be interpreted.

  5. Selectively coated high efficiency glazing for solar-thermal flat-plate collectors

    International Nuclear Information System (INIS)

    Ehrmann, N.; Reineke-Koch, R.

    2012-01-01

    In order to increase the efficiency of solar-thermal flat-plate collectors at temperatures above 100 °C or with low solar irradiation, we implement a double glazing with a low-emitting (low-e) coating on the inner pane to improve the insulation of the transparent cover. Since commercially available low-e glazing provides only insufficient solar transmittance for the application in thermal flat-plate collectors we are developing a sputter-deposited low e-coating system based on transparent conductive oxides which provides a high solar transmittance of 85% due to additional antireflective coatings and the use of low-iron glass substrates. Durability tests of the developed coating system show that our low e-coating system is well suitable even at high temperatures, humidity and condensation.

  6. The effect of substrate temperature on the microstructural, electrical and optical properties of Sn-doped indium oxide thin films

    Science.gov (United States)

    Raoufi, Davood; Taherniya, Atefeh

    2015-06-01

    In this work, Sn doping In2O3 (ITO) thin films with a thickness of 200 nm were deposited on glass substrates by electron beam evaporation (EBE) method at different substrate temperatures. The crystal structure of these films was studied by X-ray diffraction technique. The sheet resistance was measured by a four-point probe. Van der Pauw method was used to measure carrier density and mobility of ITO films. The optical transmittance spectra were recorded in the wavelength region of 300-800 nm. Scanning electron microscope (SEM) has been used for the surface morphology analysis. The prepared ITO films exhibited body-centered cubic (BCC) structure with preferred orientation of growth along the (2 2 2) crystalline plane. The grain size of the films increases by rising the substrate temperature. Transparency of the films, over the visible light region, is increased with increasing the substrate temperature. It is found that the electrical properties of ITO films are significantly affected by substrate temperature. The electrical resistivity decreases with increasing substrate temperature, whereas the carrier density and mobility are enhanced with an increase in substrate temperature. The evaluated values of energy band gap Eg for ITO films were increase from 3.84 eV to 3.91 eV with increasing the substrate temperatures from 200 °C to 500 °C. The SEM micrographs of the films revealed a homogeneous growth without perceptible cracks with particles which are well covered on the substrate.

  7. Effect of substrate baking temperature on zinc sulfide and germanium thin films optical parameters

    Science.gov (United States)

    Liu, Fang; Gao, Jiaobo; Yang, Chongmin; Zhang, Jianfu; Liu, Yongqiang; Liu, Qinglong; Wang, Songlin; Mi, Gaoyuan; Wang, Huina

    2016-10-01

    ZnS and Ge are very normal optical thin film materials in Infrared wave. Studying the influence of different substrate baking temperature to refractive index and actual deposition rates is very important to promote optical thin film quality. In the same vacuum level, monitoring thickness and evaporation rate, we use hot evaporation to deposit ZnS thin film materials and use ion-assisted electron beam to deposit Ge thin film materials with different baking temperature. We measure the spectral transmittance with the spectrophotometer and calculate the actual deposition rates and the refractive index in different temperature. With the higher and higher temperature in a particular range, ZnS and Ge refractive index become higher and actual deposition rates become smaller. The refractive index of Ge film material change with baking temperature is more sensitive than ZnS. However, ZnS film actual deposition rates change with baking temperature is more sensitive than Ge.

  8. Optical and electro-catalytic properties of bundled ZnO nanowires grown on a ITO substrate

    International Nuclear Information System (INIS)

    Xia Cao; Wang Ning; Wang Long

    2010-01-01

    Bundled wurtzite zinc oxide (ZnO) nanowires were fabricated in a facile manner on an ITO-conducting substrate via a microemulsion route without using any hard template or external electric/magnetic field. Structure and properties of the as-prepared ZnO electrode were investigated using scanning electron microscopy, X-ray diffraction, photoluminescence, Raman spectroscopy, as well as electrochemical tests. The ZnO electrode shows excellent optical and electrocatalytic ability, which may find further applications such as optoelectronics or as sensors as well as other modern industrial areas.

  9. Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate

    KAUST Repository

    Qin, Yong; Yang, Rusen; Wang, Zhong Lin

    2008-01-01

    A general method is presented for growing laterally aligned and patterned ZnO nanowire (NW) arrays on any substrate as long as it is flat. The orientation control is achieved using the combined effect from ZnO seed layer and the catalytically

  10. Dispersion properties and low infrared optical losses in epitaxial AlN on sapphire substrate in the visible and infrared range

    International Nuclear Information System (INIS)

    Soltani, A.; Stolz, A.; Gerbedoen, J.-C.; Rousseau, M.; Bourzgui, N.; De Jaeger, J.-C.; Charrier, J.; Mattalah, M.; Barkad, H. A.; Mortet, V.; BenMoussa, A.

    2014-01-01

    Optical waveguiding properties of a thick wurtzite aluminum nitride highly [002]-textured hetero-epitaxial film on (001) basal plane of sapphire substrate are studied. The physical properties of the film are determined by X-ray diffraction, atomic force microscopy, microRaman, and photocurrent spectroscopy. The refractive index and the thermo-optic coefficients are determined by m-lines spectroscopy using the classical prism coupling technique. The optical losses of this planar waveguide are also measured in the spectral range of 450–1553 nm. The lower value of optical losses is equal to 0.7 dB/cm at 1553 nm. The optical losses due to the surface scattering are simulated showing that the contribution is the most significant at near infrared wavelength range, whereas the optical losses are due to volume scattering and material absorption in the visible range. The good physical properties and the low optical losses obtained from this planar waveguide are encouraging to achieve a wide bandgap optical guiding platform from these aluminum nitride thin films

  11. Dispersion properties and low infrared optical losses in epitaxial AlN on sapphire substrate in the visible and infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, A., E-mail: ali.soltani@iemn.univ-lille1.fr; Stolz, A.; Gerbedoen, J.-C.; Rousseau, M.; Bourzgui, N.; De Jaeger, J.-C. [Institut d' Électronique, Microélectronique et Nanotechnologie, UMR-CNRS 8520, PRES Université Lille Nord de France, Cité Scientifique, Avenue Poincaré, CS 60069, 59652 Villeneuve d' Ascq Cedex (France); Charrier, J. [Fonctions Optiques pour les Technologies de l' informatiON, UMR-CNRS 6082, ENSSAT 6, rue de Kerampont, CS 80518, 22305 Lannion Cedex (France); Mattalah, M. [Laboratoire de Microélectronique, Université Djilali Liabes, 22000 Sidi Bel Abbes (Algeria); Barkad, H. A. [Institut Universitaire Technologique Industriel, Université de Djibouti, Avenue Georges Clémenceau, BP 1904 Djibouti (Djibouti); Mortet, V. [Institute of Physics of Academy of Sciences of Czech Republic, Fyzikální ústav AV CR, v.v.i., Na Slovance 1999/2 (Czech Republic); BenMoussa, A. [Solar Terrestrial Center of Excellence, Royal Observatory of Belgium, Circular 3, B-1180 Brussels (Belgium)

    2014-04-28

    Optical waveguiding properties of a thick wurtzite aluminum nitride highly [002]-textured hetero-epitaxial film on (001) basal plane of sapphire substrate are studied. The physical properties of the film are determined by X-ray diffraction, atomic force microscopy, microRaman, and photocurrent spectroscopy. The refractive index and the thermo-optic coefficients are determined by m-lines spectroscopy using the classical prism coupling technique. The optical losses of this planar waveguide are also measured in the spectral range of 450–1553 nm. The lower value of optical losses is equal to 0.7 dB/cm at 1553 nm. The optical losses due to the surface scattering are simulated showing that the contribution is the most significant at near infrared wavelength range, whereas the optical losses are due to volume scattering and material absorption in the visible range. The good physical properties and the low optical losses obtained from this planar waveguide are encouraging to achieve a wide bandgap optical guiding platform from these aluminum nitride thin films.

  12. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors

    Science.gov (United States)

    Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.

  13. [Design of flat field holographic concave grating for near-infrared spectrophotometer].

    Science.gov (United States)

    Xiang, Xian-Yi; Wen, Zhi-Yu

    2008-07-01

    Near-infrared spectrum analysis can be used to determine the nature or test quantitatively some chemical compositions by detecting molecular double frequency and multiple frequency absorption. It has been used in agriculture, biology, petrifaction, foodstuff, medicament, spinning and other fields. Near-infrared spectrophotometer is the main apparatus for near-infrared spectrum analysis, and the grating is the most important part of the apparatus. Based on holographic concave grating theory and optic design software CODE V, a flat field holographic concave grating for near-infrared spectrophotometer was designed from primary structure, which relied on global optimization of the software. The contradiction between wide spectrum bound and limited spectrum extension was resolved, aberrations were reduced successfully, spectrum information was utilized fully, and the optic structure of spectrometer was highly efficient. Using CODE V software, complex high-order aberration equations need not be solved, the result can be evaluated quickly, flat field and resolving power can be kept in balance, and the work efficiency is also enhanced. A paradigm of flat field holographic concave grating is given, it works between 900 nm to 1 700 nm, the diameter of the concave grating is 25 mm, and F/ # is 1. 5. The design result was analyzed and evaluated. It was showed that if the slit source, whose width is 50 microm, is used to reconstruction, the theoretic resolution capacity is better than 6.3 nm.

  14. Design and fabrication of substrates with microstructures for bio-applications through the modified optical disc process

    Science.gov (United States)

    Chiu, Kuo-Chi; Chang, Sheng-Li; Huang, Chu-Yu; Guan, Hann-Wen

    2011-05-01

    The modified optical disc process has been investigated and demonstrated to enable fast prototyping in fabricating molds and replicating substrates with various microstructures including micro-chambers and micro-channels. A disc-like microfluidic device was created and the testing results showed good performance in bonding and packaging. The switching of the nozzle-like micro-valve was also validated to work well. Furthermore, the relevant procedures of liquid samples loading, separating and mixing were also accomplished through food experiments.

  15. Effects of pre-strain applied at a polyethylene terephthalate substrate before the coating of TiO2 film on the coating film quality and optical performance

    International Nuclear Information System (INIS)

    Li, Tse-Chang; Wu, Bo-Hsiung; Lin, Jen-Fin

    2011-01-01

    A mold was designed to create various strains in polyethylene terephthalate (PET) substrates before the deposition of TiO 2 film to simulate deposition process on a cylindrical drum. The residual stress of the PET substrate with TiO 2 film significantly increased with increasing strain, decreasing the radius of curvature. Compared to the as-received PET substrate, there was a noticeable increase in the surface roughness in the PET/TiO 2 specimens when a large strain was applied. The formation of voids or cavities in the TiO 2 layer significantly increased the roughness of the specimen. The mean cavity size and depth increased with increasing strain. For strains ≤ 4%, the specimen's hardness and Young's modulus factored by the voids/cavities increased with increasing surface roughness. The optical absorption increased with increasing surface roughness before becoming asymptotic to a constant value. The strain applied to the PET substrate before TiO 2 deposition greatly affects the optical reflection, transmittance, and absorption.

  16. Polymeric flat focal field arrayed waveguide grating using electron-beam direct writing

    Science.gov (United States)

    Lu, Si; Yan, Yingbai; Jin, Guofan; Wong, W. H.; Pun, E. Y. B.

    2004-06-01

    A four-channel 400-GHz spacing flat focal field arrayed waveguide grating (AWG) demultiplexer is designed based on polymeric optical waveguide. The waveguide core-layer material is a newly developed negative tone epoxy Novolak resin (ENR) polymer with ultravoilet (UV) cured resin Norland optical adhesive 61 (NOA61) as the cladding layer. The device is fabricated using electron-beam direct writing, which has less processing steps than the reported polymeric AWGs. The experimental result is presented.

  17. Manufacturing method of enamel substrate for solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Jun; Fukamachi, Kazuhiko; Takahashi, Hiroshi

    1987-12-01

    This invention is an inexpensive manufacturing method of an enamel substrate which improved such defects as crack and stripping, and gives both flatness and pliability of the substrate surface. In other words, in forming a glass layer fritted on at least one surface of a stainless steel strake, frit with the content of SiO/sub 2/ 40-65%, Na/sub 2/O 10-30%, B/sub 2/O/sub 3/ 6-20%, PbO 10-35% is used, wherein SiO/sub 2/ gives flexibility, Na/sub 2/O and B/sub 2/O/sub 3/ increases thermal expansion coefficient, and B/sub 2/O/sub 3/ further endows elastic flexibility to the baked surface. PbO enhances the elasticity of the glass layer. Frit with additional content of K/sub 2/O (2-5%), TiO/sub 2/ (5-8%), CaO (0.5-3.0%) gives further effect. Addition of 1-5 parts of colloidal silica per 100 pts of frit gives an effect with good flatness in spite of thin glass layer. ( 3 tabs )

  18. Enhanced optical output power of InGaN/GaN light-emitting diodes grown on a silicon (111) substrate with a nanoporous GaN layer.

    Science.gov (United States)

    Lee, Kwang Jae; Chun, Jaeyi; Kim, Sang-Jo; Oh, Semi; Ha, Chang-Soo; Park, Jung-Won; Lee, Seung-Jae; Song, Jae-Chul; Baek, Jong Hyeob; Park, Seong-Ju

    2016-03-07

    We report the growth of InGaN/GaN multiple quantum wells blue light-emitting diodes (LEDs) on a silicon (111) substrate with an embedded nanoporous (NP) GaN layer. The NP GaN layer is fabricated by electrochemical etching of n-type GaN on the silicon substrate. The crystalline quality of crack-free GaN grown on the NP GaN layer is remarkably improved and the residual tensile stress is also decreased. The optical output power is increased by 120% at an injection current of 20 mA compared with that of conventional LEDs without a NP GaN layer. The large enhancement of optical output power is attributed to the reduction of threading dislocation, effective scattering of light in the LED, and the suppression of light propagation into the silicon substrate by the NP GaN layer.

  19. Strain transfer through film-substrate interface and surface curvature evolution during a tensile test

    Science.gov (United States)

    He, Wei; Han, Meidong; Goudeau, Philippe; Bourhis, Eric Le; Renault, Pierre-Olivier; Wang, Shibin; Li, Lin-an

    2018-03-01

    Uniaxial tensile tests on polyimide-supported thin metal films are performed to respectively study the macroscopic strain transfer through an interface and the surface curvature evolution. With a dual digital image correlation (DIC) system, the strains of the film and the substrate can be simultaneously measured in situ during the tensile test. For the true strains below 2% (far beyond the films' elastic limit), a complete longitudinal strain transfer is present irrespective of the film thickness, residual stresses and microstructure. By means of an optical surface profiler, the three-dimensional (3D) topography of film surface can be obtained during straining. As expected, the profile of the specimen center remains almost flat in the tensile direction. Nevertheless, a relatively significant curvature evolution (of the same order with the initial curvature induced by residual stresses) is observed along the transverse direction as a result of a Poisson's ratio mismatch between the film and the substrate. Furthermore, finite element method (FEM) has been performed to simulate the curvature evolution considering the geometric nonlinearity and the perfect strain transfer at the interface, which agrees well with the experimental results.

  20. Direct transfer of graphene films for polyurethane substrate

    Energy Technology Data Exchange (ETDEWEB)

    Vilani, C.; Romani, E.C.; Larrudé, D.G. [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ (Brazil); Barbosa, Gelza M. [Diretoria de Sistemas de Armas da Marinha, Marinha do Brasil, 20010-00 Rio de Janeiro, RJ (Brazil); Freire, F.L., E-mail: lazaro@vdg.fis.puc-rio.br [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ (Brazil); Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro, RJ (Brazil)

    2015-11-30

    Highlights: • Graphene was prepared by CVD using copper foils as substrates. • Monolayer, bilayer and multilayer graphene were transferred to PU. • Samples were characterized by Raman and optical spectroscopies. • PU/monolayer graphene has transmittance around 80% in visible range. - Abstract: We have proposed the direct transfer of large-area graphene films grown by chemical vapor deposition to polymeric substrate by evaporating of solvents of polyurethane/tetrahydrofurane solution. The graphene films on polyurethane substrates were characterized by Raman spectroscopy, optical and atomic force microscopies and UV–vis spectroscopy measurements. The Raman spectra revealed that it is possible to transfer in a controlled manner monolayer, bilayer and multilayer graphene films over polyurethane substrate.

  1. Direct transfer of graphene films for polyurethane substrate

    International Nuclear Information System (INIS)

    Vilani, C.; Romani, E.C.; Larrudé, D.G.; Barbosa, Gelza M.; Freire, F.L.

    2015-01-01

    Highlights: • Graphene was prepared by CVD using copper foils as substrates. • Monolayer, bilayer and multilayer graphene were transferred to PU. • Samples were characterized by Raman and optical spectroscopies. • PU/monolayer graphene has transmittance around 80% in visible range. - Abstract: We have proposed the direct transfer of large-area graphene films grown by chemical vapor deposition to polymeric substrate by evaporating of solvents of polyurethane/tetrahydrofurane solution. The graphene films on polyurethane substrates were characterized by Raman spectroscopy, optical and atomic force microscopies and UV–vis spectroscopy measurements. The Raman spectra revealed that it is possible to transfer in a controlled manner monolayer, bilayer and multilayer graphene films over polyurethane substrate.

  2. Femtosecond laser writing of a flat-top interleaver via cascaded Mach-Zehnder interferometers.

    Science.gov (United States)

    Ng, Jason C; Li, Chengbo; Herman, Peter R; Qian, Li

    2012-07-30

    A flat-top interleaver consisting of cascaded Mach-Zehnder interferometers (MZIs) was fabricated in bulk glass by femtosecond laser direct writing. Spectral contrast ratios of greater than 15 dB were demonstrated over a 30 nm bandwidth for 3 nm channel spacing. The observed spectral response agreed well with a standard transfer matrix model generated from responses of individual optical components, demonstrating the possibility for multi-component optical design as well as sufficient process accuracy and fabrication consistency for femtosecond laser writing of advanced optical circuits in three dimensions.

  3. Thermo-kinetic properties of the new materials for functional layers of flat heating elements

    OpenAIRE

    Kovbasyuk, Taras; Shapran, Yuliia

    2015-01-01

    Thermokinetic properties of the dielectric coatings on the basis of glass-ceramic system PbO-ZnO-B2O3-SiO2-Al2O3 (Sytal-Tsement) on a stainless steel substrate were studied. The advantages and disadvantages in comparison with modern functional layers of flat heating elements were analyzed.

  4. Impact of deposition temperature on the properties of SnS thin films grown over silicon substrate—comparative study of structural and optical properties with films grown on glass substrates

    Science.gov (United States)

    Assili, Kawther; Alouani, Khaled; Vilanova, Xavier

    2017-11-01

    Tin sulfide (SnS) thin films were chemically deposited over silicon substrate in a temperature range of 250 °C-400 °C. The effects of deposition temperature on the structural, morphological and optical properties of the films were evaluated. All films present an orthorhombic SnS structure with a preferred orientation along (040). High absorption coefficients (in the range of 105 cm-1) were found for all obtained films with an increase in α value when deposition temperature decreases. Furthermore, the effects of substrate type were investigated based on comparison between the present results and those obtained for SnS films grown under the same deposition conditions but over glass substrate. The results suggest that the formation of SnS films onto glass substrate is faster than onto silicon substrate. It is found that the substrate nature affects the orientation growth of the films and that SnS films deposited onto Si present more defects than those deposited onto glass substrate. The optical transmittance is also restricted by the substrate type, mostly below 1000 nm. The obtained results for SnS films onto silicon suggest their promising integration within optoelectronic devices.

  5. Microscale optical cryptography using a subdiffraction-limit optical key

    Science.gov (United States)

    Ogura, Yusuke; Aino, Masahiko; Tanida, Jun

    2018-04-01

    We present microscale optical cryptography using a subdiffraction-limit optical pattern, which is finer than the diffraction-limit size of the decrypting optical system, as a key and a substrate with a reflectance distribution as an encrypted image. Because of the subdiffraction-limit spatial coding, this method enables us to construct a secret image with the diffraction-limit resolution. Simulation and experimental results demonstrate, both qualitatively and quantitatively, that the secret image becomes recognizable when and only when the substrate is illuminated with the designed key pattern.

  6. Wet chemical deposition of single crystalline epitaxial manganite thin films with atomically flat surface

    International Nuclear Information System (INIS)

    Mishra, Amita; Dutta, Anirban; Samaddar, Sayanti; Gupta, Anjan K.

    2013-01-01

    We report the wet chemical deposition of single crystalline epitaxial thin films of the colossal magneto-resistive manganite La 0.67 Sr 0.33 MnO 3 on the lattice-matched (001)-face of a La 0.3 Sr 0.7 Al 0.65 Ta 0.35 O 3 substrate. Topographic images of these films taken with a scanning tunneling microscope show atomically flat terraces separated by steps of monatomic height. The resistivity of these films shows an insulator-metal transition at 310 K, nearly coincident with the Curie temperature of 340 K, found from magnetization measurements. The films show a magnetoresistance of 7% at 300 K and 1.2 T. Their saturation magnetization value at low temperatures is consistent with that of the bulk. - Highlights: ► Wet chemical deposition of La 0.67 Sr 0.33 MnO 3 (LSMO) on a lattice-matched substrate. ► Single crystalline epitaxial LSMO films obtained. ► Flat terraces separated by monatomic steps observed by scanning tunneling microscope

  7. Thermal casting of polymers in centrifuge for producing X-ray optics

    Science.gov (United States)

    Hill, Randy M [Livermore, CA; Decker, Todd A [Livermore, CA

    2012-03-27

    An optic is produced by the steps of placing a polymer inside a rotateable cylindrical chamber, the rotateable cylindrical chamber having an outside wall, rotating the cylindrical chamber, heating the rotating chamber forcing the polymer to the outside wall of the cylindrical chamber, allowing the rotateable cylindrical chamber to cool while rotating producing an optic substrate with a substrate surface, sizing the optic substrate, and coating the substrate surface of the optic substrate to produce the optic with an optic surface.

  8. Concept, design and capability analysis of the new Deflectometric Flatness Reference at PTB

    International Nuclear Information System (INIS)

    Schulz, M.; Ehret, G.; Stavridis, M.; Elster, C.

    2010-01-01

    At PTB, a new setup for the highly accurate topography measurement of nearly flat optical surfaces is now under construction. The so-called Deflectometric Flatness Reference (DFR) is designed to measure in the direct deflectometric mode by applying an autocollimator and a scanning pentaprism, and in the difference deflectometric mode corresponding to the Extended Shear Angle Difference (ESAD) principle invented by PTB. With the new DFR instrument, horizontally as well as vertically orientated specimens with dimensions of up to 1 m and a mass of up to 120 kg will be measurable. The design of the new instrument is supported by employing a comprehensive simulation environment developed for dimensional measuring machines. The mechanical and optical concept is illustrated together with the current design of the DFR setup. Results from the simulations are presented to derive requirements for tolerated mechanical stage deviations and alignment accuracies.

  9. Flat microwave photonic filter based on hybrid of two filters

    International Nuclear Information System (INIS)

    Qi, Chunhui; Pei, Li; Ning, Tigang; Li, Jing; Gao, Song

    2010-01-01

    A new microwave photonic filter (MPF) hybrid of two filters that can realize both multiple taps and a flat bandpass or bandstop response is presented. Based on the phase character of a Mach–Zehnder modulator (MZM), a two taps finite impulse response (FIR) filter is obtained as the first part. The second part is obtained by taking full advantage of the wavelength selectivity of the fiber Bragg grating (FBG) and the gain of a erbium-doped fiber (EDF). Combining the two filters, the flat bandpass or bandstop response is realized by changing the coupler's factor k, the reflectivity of FBG1 R 1 or the gain of the EDF g. Optimizing the system parameters, a flat bandpass response with amplitude depth of more than 45 dB is obtained at k = 0.5, R 1 = 0.33, g = 10, and a flat bandstop response is also obtained at k = 0.4, R 1 = 0.5, g = 2. In addition, the free-spectral range (FSR) can be controlled by changing the length of the EDF and the length difference between two MZMs. The method is proved feasible by some experiments. Such a method offers realistic solutions to support future radio-frequency (RF) optical communication systems

  10. Highly efficient and reliable high power LEDs with patterned sapphire substrate and strip-shaped distributed current blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengjun [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Yuan, Shu; Liu, Yingce [Quantum Wafer Inc., Foshan 528251 (China); Guo, L. Jay [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 (United States); Liu, Sheng, E-mail: victor_liu63@126.com [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Ding, Han [State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-15

    Graphical abstract: - Highlights: • TEM is used to characterize threading dislocation existing in GaN epitaxial layer. • Effect of threading dislocation on optical and electrical of LEDs is discussed. • Strip-shaped SiO{sub 2} DCBL is designed to improve current spreading performance of LEDs. - Abstract: We demonstrated that the improvement in optical and electrical performance of high power LEDs was achieved using cone-shaped patterned sapphire substrate (PSS) and strip-shaped SiO{sub 2} distributed current blocking layer (DCBL). We found through transmission electron microscopy (TEM) observation that densities of both the screw dislocation and edge dislocation existing in GaN epitaxial layer grown on PSS were much less than that of GaN epitaxial layer grown on flat sapphire substrate (FSS). Compared to LED grown on FSS, LED grown on PSS showed higher sub-threshold forward-bias voltage and lower reverse leakage current, resulting in an enhancement in device reliability. We also designed a strip-shaped SiO{sub 2} DCBL beneath a strip-shaped p-electrode, which prevents the current from being concentrated on regions immediately adjacent the strip-shaped p-electrode, thereby facilitating uniform current spreading into the active region. By implementing strip-shaped SiO{sub 2} DCBL, light output power of high power PSS-LED chip could be further increased by 13%.

  11. Development of flat panel X-ray detector utilizing a CdZnTe film as conversion layer

    International Nuclear Information System (INIS)

    Tokuda, Satoshi; Kishihara, Hiroyuki; Kaino, Masatomo; Sato, Toshiyuki

    2006-01-01

    A polycrystalline CdZnTe film formed by the CSS (closed-spaced sublimation) method is one of the most promising materials as a conversion layer of next-generation highly efficient flat-panel X-ray detectors. Therefore, we have developed a prototype of a new flat-panel X-ray detector (a sensing region of 3 inches by 3 inches) with the film and evaluated its commercial feasibility. This paper describes evaluation of the physical and imaging properties of the prototype and explains the features of the CdZnTe film and the construction, specifications, and fabrication procedures of the prototype. Also included in this paper are formation of a semiconductor thin film barrier layer by the CBD (chemical bath deposition) method and conjunction of a sensor substrate and a TFT array substrate with the bump electrodes formed by screen printing, both of which we have developed during the course of the development of the prototype. (author)

  12. Effect of Top-Region Area of Flat-Top Pyramid Patterned Sapphire Substrate on the Optoelectronic Performance of GaN-Based Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Hsu-Hung Hsueh

    2016-01-01

    Full Text Available The flat-top pyramid patterned sapphire substrates (FTP-PSSs have been prepared for the growth of GaN epilayers and the fabrication of lateral-type light-emitting diodes (LEDs with an emission wavelength of approximately 470 nm. Three kinds of FTP-PSSs, which were denoted as FTP-PSS-A, FTP-PSS-B, and FTP-PSS-C, respectively, were formed through the sequential wet etching processes. The diameters of circle areas on the top regions of these three FTP-PSSs were 1, 2, and 3 μm, respectively. Based on the X-ray diffraction results, the full-width at half-maximum values of rocking curves at (002 plane for the GaN epilayers grown on conventional sapphire substrate (CSS, FTP-PSS-A, FTP-PSS-B, and FTP-PSS-C were 412, 238, 346, and 357 arcsec, while these values at (102 plane were 593, 327, 352, and 372 arcsec, respectively. The SpeCLED-Ratro simulation results reveal that the LED prepared on FTP-PSS-A has the highest light extraction efficiency than that of the other devices. At an injection current of 350 mA, the output powers of LEDs fabricated on CSS, FTP-PSS-A, FTP-PSS-B, and FTP-PSS-C were 157, 254, 241, and 233 mW, respectively. The results indicate that both the crystal quality of GaN epilayer and the light extraction of LED can be improved via the use of FTP-PSS, especially for the FTP-PSS-A.

  13. Optical characterization and bandgap engineering of flat and wrinkle-textured FA0.83Cs0.17Pb(I1-xBrx)3 perovskite thin films

    Science.gov (United States)

    Tejada, A.; Braunger, S.; Korte, L.; Albrecht, S.; Rech, B.; Guerra, J. A.

    2018-05-01

    The complex refractive indices of formamidinium cesium lead mixed-halide [FA0.83Cs0.17Pb(I1- xBrx)3] perovskite thin films of compositions ranging from x = 0 to 0.4, with both flat and wrinkle-textured surface topographies, are reported. The films are characterized using a combination of variable angle spectroscopic ellipsometry and spectral transmittance in the wavelength range of 190 nm to 850 nm. Optical constants, film thicknesses and roughness layers are obtained point-by-point by minimizing a global error function, without using optical dispersion models, and including topographical information supplied by a laser confocal microscope. To evaluate the bandgap engineering potential of the material, the optical bandgaps and Urbach energies are then accurately determined by applying a band fluctuation model for direct semiconductors, which considers both the Urbach tail and the fundamental band-to-band absorption region in a single equation. With this information, the composition yielding the optimum bandgap of 1.75 eV for a Si-perovskite tandem solar cell is determined.

  14. Measurement of an Evaporating Drop on a Reflective Substrate

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2004-01-01

    A figure depicts an apparatus that simultaneously records magnified ordinary top-view video images and laser shadowgraph video images of a sessile drop on a flat, horizontal substrate that can be opaque or translucent and is at least partially specularly reflective. The diameter, contact angle, and rate of evaporation of the drop as functions of time can be calculated from the apparent diameters of the drop in sequences of the images acquired at known time intervals, and the shadowgrams that contain flow patterns indicative of thermocapillary convection (if any) within the drop. These time-dependent parameters and flow patterns are important for understanding the physical processes involved in the spreading and evaporation of drops. The apparatus includes a source of white light and a laser (both omitted from the figure), which are used to form the ordinary image and the shadowgram, respectively. Charge-coupled-device (CCD) camera 1 (with zoom) acquires the ordinary video images, while CCD camera 2 acquires the shadowgrams. With respect to the portion of laser light specularly reflected from the substrate, the drop acts as a plano-convex lens, focusing the laser beam to a shadowgram on the projection screen in front of CCD camera 2. The equations for calculating the diameter, contact angle, and rate of evaporation of the drop are readily derived on the basis of Snell s law of refraction and the geometry of the optics.

  15. Real-time optical modelling and investigation of inorganic nano-layer growth onto flexible polymeric substrates

    International Nuclear Information System (INIS)

    Laskarakis, A.; Georgiou, D.; Logothetidis, S.

    2010-01-01

    A major factor for the achievement of the desirable performance, efficiency and lifetime of flexible organic electronic devices is the optimization of the encapsulation layers that protect the device active layers by atmospheric gas molecule permeation. The active layers consisted of small molecule and/or polymer organic semiconductors as well as the organic conductors need to be encapsulated into a transparent medium that will provide the necessary protection and maintain their charge generation and transport characteristics. The encapsulation layers are generally consisted of inorganic thin films (silicon oxide-SiO x and aluminium oxide-AlO x ) deposited onto the polymeric substrates, such as PolyEthylene Terephthalate (PET). In this work, in situ and real-time Spectroscopic Ellipsometry in the ultraviolet spectral region has been implemented in order to investigate the growth of inorganic SiO x and AlO x nano-layers onto PET flexible polymeric substrates as well as the PET/inorganic interface effects during the early stages of growth. The analysis of the pseudodielectric function that was measured in real-time in very short time scales (in the order of hundreds of ms) has provided detailed information on the time evolution of the thickness and deposition rate of the inorganic nano-layers during their growth process as well as on their optical and electronic properties. This work proposes a methodology for using real-time optical monitoring technique with the aim to tailor and control the functionality of these materials for application in flexible electronic devices.

  16. Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere

    Science.gov (United States)

    Ata, Yalçın; Baykal, Yahya

    2017-10-01

    Turbulence affects optical propagation, and, as a result, the intensity is attenuated along the path of propagation. The attenuation becomes significant when the turbulence becomes stronger. Transmittance is a measure indicating how much power is collected at the receiver after the optical wave propagates in the turbulent medium. The on-axis transmittance is formulated when a flat-topped optical beam propagates in a marine atmosphere experiencing anisotropic non-Kolmogorov turbulence. Variations in the transmittance are evaluated versus the beam source size, beam number, link distance, power law exponent, anisotropy factor, and structure constant. It is found that larger beam source sizes and beam numbers yield higher transmittance values; however, as the link distance, power law exponent, anisotropy factor, or structure constant increase, transmittance values are lowered. Our results will help in the performance evaluations of optical wireless communication and optical imaging systems operating in a marine atmosphere.

  17. Identifying suitable substrates for high-quality graphene-based heterostructures

    Science.gov (United States)

    Banszerus, L.; Janssen, H.; Otto, M.; Epping, A.; Taniguchi, T.; Watanabe, K.; Beschoten, B.; Neumaier, D.; Stampfer, C.

    2017-06-01

    We report on a scanning confocal Raman spectroscopy study investigating the strain-uniformity and the overall strain and doping of high-quality chemical vapour deposited (CVD) graphene-based heterostuctures on a large number of different substrate materials, including hexagonal boron nitride (hBN), transition metal dichalcogenides, silicon, different oxides and nitrides, as well as polymers. By applying a hBN-assisted, contamination free, dry transfer process for CVD graphene, high-quality heterostructures with low doping densities and low strain variations are assembled. The Raman spectra of these pristine heterostructures are sensitive to substrate-induced doping and strain variations and are thus used to probe the suitability of the substrate material for potential high-quality graphene devices. We find that the flatness of the substrate material is a key figure for gaining, or preserving high-quality graphene.

  18. Heterogeneous nucleation on convex spherical substrate surfaces: A rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived.

    Science.gov (United States)

    Qian, Ma; Ma, Jie

    2009-06-07

    Fletcher's spherical substrate model [J. Chem. Phys. 29, 572 (1958)] is a basic model for understanding the heterogeneous nucleation phenomena in nature. However, a rigorous thermodynamic formulation of the model has been missing due to the significant complexities involved. This has not only left the classical model deficient but also likely obscured its other important features, which would otherwise have helped to better understand and control heterogeneous nucleation on spherical substrates. This work presents a rigorous thermodynamic formulation of Fletcher's model using a novel analytical approach and discusses the new perspectives derived. In particular, it is shown that the use of an intermediate variable, a selected geometrical angle or pseudocontact angle between the embryo and spherical substrate, revealed extraordinary similarities between the first derivatives of the free energy change with respect to embryo radius for nucleation on spherical and flat substrates. Enlightened by the discovery, it was found that there exists a local maximum in the difference between the equivalent contact angles for nucleation on spherical and flat substrates due to the existence of a local maximum in the difference between the shape factors for nucleation on spherical and flat substrate surfaces. This helps to understand the complexity of the heterogeneous nucleation phenomena in a practical system. Also, it was found that the unfavorable size effect occurs primarily when R<5r( *) (R: radius of substrate and r( *): critical embryo radius) and diminishes rapidly with increasing value of R/r( *) beyond R/r( *)=5. This finding provides a baseline for controlling the size effects in heterogeneous nucleation.

  19. Afocal viewport optics for underwater imaging

    Science.gov (United States)

    Slater, Dan

    2014-09-01

    A conventional camera can be adapted for underwater use by enclosing it in a sealed waterproof pressure housing with a viewport. The viewport, as an optical interface between water and air needs to consider both the camera and water optical characteristics while also providing a high pressure water seal. Limited hydrospace visibility drives a need for wide angle viewports. Practical optical interfaces between seawater and air vary from simple flat plate windows to complex water contact lenses. This paper first provides a brief overview of the physical and optical properties of the ocean environment along with suitable optical materials. This is followed by a discussion of the characteristics of various afocal underwater viewport types including flat windows, domes and the Ivanoff corrector lens, a derivative of a Galilean wide angle camera adapter. Several new and interesting optical designs derived from the Ivanoff corrector lens are presented including a pair of very compact afocal viewport lenses that are compatible with both in water and in air environments and an afocal underwater hyper-hemispherical fisheye lens.

  20. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    International Nuclear Information System (INIS)

    Zhao Wei; Li Dan; Reznik, Alla; Lui, B.J.M.; Hunt, D.C.; Rowlands, J.A.; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-01-01

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d Se and the applied electric field E Se of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E Se dependence of both avalanche gain and optical quantum efficiency of an 8 μm HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E Se : (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 μm can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy

  1. Magnetohydrodynamic boundary layer flow past a porous substrate with Beavers-Joseph boundary condition

    International Nuclear Information System (INIS)

    Jat, R.N.; Chaudhary, Santosh

    2009-01-01

    The flow of an electrically conducting fluid past a porous substrate attached to the flat plate with Beavers-Joseph boundary condition under the influence of a uniform transverse magnetic field has been studied. Taking suitable similar variables, the momentum equation is transformed to ordinary differential equation and solved by standard techniques. The energy equation is solved by considering two boundary layers, one in the porous substrate and the other above the porous substrate. The velocity and temperature distributions along with Nusselt number are discussed numerically and presented through graphs. (author)

  2. Sensitive rapid analysis of iodine-labelled protein mixture on flat substrates with high spatial resolution

    International Nuclear Information System (INIS)

    Zanevskij, Yu.V.; Ivanov, A.B.; Movchan, S.A.; Peshekhonov, V.D.; Chan Dyk Tkhan'; Chernenko, S.P.; Kaminir, L.B.; Krejndlin, Eh.Ya.; Chernyj, A.A.

    1983-01-01

    Usability of rapid analysis by electrophoresis of the admixture of I 125 -labelled proteins on flat samples by means of URAN type installation developed using a multiwire proportional chamber is studied. The sensitivity of the method is better than 200 cpm/cm 2 and the spatial resolution is approximately 1 mm. The procedure of the rapid analysis is no longer than several tens of minutes

  3. Influences of cloud heterogeneity on cirrus optical properties retrieved from the visible and near-infrared channels of MODIS/SEVIRI for flat and optically thick cirrus clouds

    International Nuclear Information System (INIS)

    Zhou, Yongbo; Sun, Xuejin; Zhang, Riwei; Zhang, Chuanliang; Li, Haoran; Zhou, Junhao; Li, Shaohui

    2017-01-01

    The influences of three-dimensional radiative effects and horizontal heterogeneity effects on the retrieval of cloud optical thickness (COT) and effective diameter (De) for cirrus clouds are explored by the SHDOM radiative transfer model. The stochastic cirrus clouds are generated by the Cloudgen model based on the Atmospheric Radiation Measurement program data. Incorporating a new ice cloud spectral model, we evaluate the retrieval errors for two solar zenith angles (SZAs) (30° and 60°), four solar azimuth angles (0°, 45°, 90°, and 180°), and two sensor settings (Moderate Resolution Imaging Spectrometer (MODIS) onboard Aqua and Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard METEOSAT-8). The domain-averaged relative error of COT (μ) ranges from −24.1 % to -1.0 % (SZA = 30°) and from −11.6 % to 3.3 % (SZA = 60°), with the uncertainty within 7.5 % to –12.5 % (SZA = 30°) and 20.0 % - 27.5 % (SZA = 60°). For the SZA of 60° only, the relative error and uncertainty are parameterized by the retrieved COT by linear functions, providing bases to correct the retrieved COT and estimate their uncertainties. Besides, De is overestimated by 0.7–15.0 μm on the domain average, with the corresponding uncertainty within 6.7–26.5 μm. The retrieval errors show no discernible dependence on solar azimuth angle due to the flat tops and full coverage of the cirrus samples. The results are valid only for the two samples and for the specific spatial resolution of the radiative transfer simulations. - Highlights: • The retrieved cloud optical properties for 3-D cirrus clouds are evaluated. • The cloud optical thickness and uncertainty could be corrected and estimated. • On the domain average, the effective diameter of ice crystal is overestimated. • The optical properties show non-obvious dependence on the solar azimuth angle.

  4. Research on precision grinding technology of large scale and ultra thin optics

    Science.gov (United States)

    Zhou, Lian; Wei, Qiancai; Li, Jie; Chen, Xianhua; Zhang, Qinghua

    2018-03-01

    The flatness and parallelism error of large scale and ultra thin optics have an important influence on the subsequent polishing efficiency and accuracy. In order to realize the high precision grinding of those ductile elements, the low deformation vacuum chuck was designed first, which was used for clamping the optics with high supporting rigidity in the full aperture. Then the optics was planar grinded under vacuum adsorption. After machining, the vacuum system was turned off. The form error of optics was on-machine measured using displacement sensor after elastic restitution. The flatness would be convergenced with high accuracy by compensation machining, whose trajectories were integrated with the measurement result. For purpose of getting high parallelism, the optics was turned over and compensation grinded using the form error of vacuum chuck. Finally, the grinding experiment of large scale and ultra thin fused silica optics with aperture of 430mm×430mm×10mm was performed. The best P-V flatness of optics was below 3 μm, and parallelism was below 3 ″. This machining technique has applied in batch grinding of large scale and ultra thin optics.

  5. Effect of substrate temperature on the structure, electrical and optical properties of Mo doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guifeng; Zhao, Xiaoli; Zhang, Hui; Wang, He; Liu, Feifei; Zhang, Xiaoqiang [Key Lab. for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Gao, Jianbo [China Institute of Atomic Energy, Beijing 102413 (China); Zhao, Yanmin; Zhang, Chao [No. 18TH Research Institute, China Electronics Technology Group Corporation, Tianjin 300384 (China); Tao, Junguang, E-mail: taojunguang@163.com [Key Lab. for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-09-15

    Highlights: • MZO thin films were prepared by RF magnetron sputtering from ZnO target and DC magnetron sputtering from Mo target. • All films are polycrystalline with preferential c-axis growth. • The various properties of films fabricated at varied substrate temperature have been studied. • The valence of the Mo ions in the ZnO matrix is mixture of +5 and +6. - Abstract: Mo-doped ZnO (MZO) transparent conductive thin films were prepared on glass substrate under various substrate temperature from 50 °C to 200 °C. The microstructural, electrical and optical properties of the MZO films were investigated by X-ray diffraction (XRD), Hall effect and UV–vis spectrophotometer. Based on XRD measurements, all films are polycrystalline with preferential c-axis growth. The lowest resistivity was obtained to be 2.8 × 10{sup −3} Ω·cm. According to X-ray photoelectron spectroscopy (XPS) measurement, the valence of the Mo ions in the ZnO matrix is a mixture of +5 and +6. In addition, the transmittance of the film is ∼80% throughout the visible light region. Our results indicate that the MZO films are suitable for potential transparent optoelectronic applications.

  6. A study of optical design and optimization of laser optics

    Science.gov (United States)

    Tsai, C.-M.; Fang, Yi-Chin

    2013-09-01

    This paper propose a study of optical design of laser beam shaping optics with aspheric surface and application of genetic algorithm (GA) to find the optimal results. Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using collimated laser beam light, aspheric lenses in order to achieve best results.

  7. Modification of Bi:YIG film properties by substrate surface ion pre-treatment

    International Nuclear Information System (INIS)

    Shaposhnikov, A.N.; Prokopov, A.R.; Karavainikov, A.V.; Berzhansky, V.N.; Mikhailova, T.V.; Kotov, V.A.; Balabanov, D.E.; Sharay, I.V.; Salyuk, O.Y.; Vasiliev, M.; Golub, V.O.

    2014-01-01

    Highlights: • Effects of substrates ion beam treatment on magnetoptical properties Bi:YIG films. • Substrate surface damage results in sign inversion of the magneto-optical effects. • Atomically smooth films growth takes place on low energy ions treated substrates. • High energy ions treatment results in selective nucleation mechanism of the growth. - Abstract: The effect of a controlled ion beam pre-treatment of (1 1 1)-oriented Gd 3 Ga 5 O 12 substrates on the magneto-optical properties and surface morphology of the ultrathin bismuth-substituted yttrium–iron garnet films with a composition Bi 2.8 Y 0.2 Fe 5 O 12 was studied. It has been shown that the observed sign inversion of magneto-optical effects (Faraday rotation and magnetic circular dichroism) observed in films that were deposited on the GGG substrate pre-treated by 1 keV and 4 keV Ar + ion beams is a result of the substrate surface amorphization caused by the ion bombardment

  8. Optical feedback structures and methods of making

    Science.gov (United States)

    None

    2014-11-18

    An optical resonator can include an optical feedback structure disposed on a substrate, and a composite including a matrix including a chromophore. The composite disposed on the substrate and in optical communication with the optical feedback structure. The chromophore can be a semiconductor nanocrystal. The resonator can provide laser emission when excited.

  9. Controlling optical properties of periodic gold nanoparticle arrays by changing the substrate, topologic shapes of nanoparticles, and polarization direction of incident light

    International Nuclear Information System (INIS)

    Ting, Li; Li, Yu; Zhi-Xin, Lu; Gang, Song; Kai, Zhang

    2011-01-01

    The effects of various parameters including thickness and dielectric constants of substrates, shapes of nanoparticles, and polarization direction of incident light, on the extinction spectra of periodic gold nanoparticle arrays are investigated by the full-vectorial three-dimensional (3D) finite difference time domain (FDTD) method. The calculated results show that the substrate affects the extinction spectra by coupling the fields co-excited by the substrate and gold nanoparticles. Extinction spectra are influenced by the shapes of the nanoparticles, but there are no obvious changes in extinction spectra for similar shapes. The polarization direction of incident light has a great influence on the extinction spectra. The implications of these results are discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Proposed cryogenic Q-factor measurement of mirror substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, Sandor; Zimmer, Anja; Vodel, Wolfgang; Thuerk, Matthias; Schmidl, Frank; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany)

    2004-03-07

    The thermal noise of optical components (e.g., end mirrors, beam splitters) is one of the limiting factors of the sensitivity of most of the present interferometric gravitational wave detectors, and it will be limiting in the advanced detectors now being designed. This thermal noise occurs mainly in the optical substrates and their mirror coatings. One possible method for minimizing thermal noise is cooling to cryogenic temperatures, maximizing the mechanical Q and maximizing the eigenfrequencies of the substrate. A new cryogenic apparatus for investigations of the temperature dependency of the Q-factor of several substrate materials down to 4.2 K is proposed. Possible methods of mode excitation and ring down measurement are discussed.

  11. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants

    International Nuclear Information System (INIS)

    Goßler, Christian; Bierbrauer, Colin; Moser, Rüdiger; Kunzer, Michael; Holc, Katarzyna; Pletschen, Wilfried; Köhler, Klaus; Wagner, Joachim; Schwarz, Ulrich T; Schwaerzle, Michael; Ruther, Patrick; Paul, Oliver; Neef, Jakob; Keppeler, Daniel; Hoch, Gerhard; Moser, Tobias

    2014-01-01

    Currently available cochlear implants are based on electrical stimulation of the spiral ganglion neurons. Optical stimulation with arrays of micro-sized light-emitting diodes (µLEDs) promises to increase the number of distinguishable frequencies. Here, the development of a flexible GaN-based micro-LED array as an optical cochlear implant is reported for application in a mouse model. The fabrication of 15 µm thin and highly flexible devices is enabled by a laser-based layer transfer process of the GaN-LEDs from sapphire to a polyimide-on-silicon carrier wafer. The fabricated 50 × 50 µm 2 LEDs are contacted via conducting paths on both p- and n-sides of the LEDs. Up to three separate channels could be addressed. The probes, composed of a linear array of the said µLEDs bonded to the flexible polyimide substrate, are peeled off the carrier wafer and attached to flexible printed circuit boards. Probes with four µLEDs and a width of 230 µm are successfully implanted in the mouse cochlea both in vitro and in vivo. The LEDs emit 60 µW at 1 mA after peel-off, corresponding to a radiant emittance of 6 mW mm −2 . (paper)

  12. New trends in space x-ray optics

    Science.gov (United States)

    Hudec, R.; Maršíková, V.; Pína, L.; Inneman, A.; Skulinová, M.

    2017-11-01

    The X-ray optics is a key element of various X-ray telescopes, X-ray microscopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non- Wolter X-ray optics designs for the future. Future large space X-ray telescopes (such as IXO) require precise and light-weight X-ray optics based on numerous thin reflecting shells. Novel approaches and advanced technologies are to be exploited and developed. In this contribution, we refer on results of tested X-ray mirror shells produced by glass thermal forming (GTF) and by shaping Si wafers. Both glass foils and Si wafers are commercially available, have excellent surface

  13. Optical properties of m-plane GaN grown on patterned Si(112) substrates by MOCVD using a two-step approach

    Science.gov (United States)

    Izyumskaya, N.; Okur, S.; Zhang, F.; Monavarian, M.; Avrutin, V.; Özgür, Ü.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.

    2014-03-01

    Nonpolar m-plane GaN layers were grown on patterned Si (112) substrates by metal-organic chemical vapor deposition (MOCVD). A two-step growth procedure involving a low-pressure (30 Torr) first step to ensure formation of the m-plane facet and a high-pressure step (200 Torr) for improvement of optical quality was employed. The layers grown in two steps show improvement of the optical quality: the near-bandedge photoluminescence (PL) intensity is about 3 times higher than that for the layers grown at low pressure, and deep emission is considerably weaker. However, emission intensity from m-GaN is still lower than that of polar and semipolar (1 100 ) reference samples grown under the same conditions. To shed light on this problem, spatial distribution of optical emission over the c+ and c- wings of the nonpolar GaN/Si was studied by spatially resolved cathodoluminescence and near-field scanning optical microscopy.

  14. Effect of vacuum annealing and substrate temperature on structural and optical properties of ZnIn2Se4 thin films

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.

    2013-09-01

    Zinc indium selenide (ZnIn2Se4) thin films were prepared by the thermal evaporation technique with high deposition rate. The effect of thermal annealing in vacuum on the crystallinity of the as-deposited films was studied at different temperatures (523, 573 and 623 K). The effect of substrate temperature (623 K) for different thickness values (173, 250, 335 and 346 nm) on the optical parameters of ZnIn2Se4 was also studied. The structural studies showed nanocrystalline nature of the room temperature (300 K) deposited films with crystallite size of about a few nanometers. The crystallite size increased up to 31 nm with increasing the annealing temperature in vacuum. From the reflection and transmission data, the refractive index n and the extinction coefficient k were estimated for ZnIn2Se4 thin films and they were found to be independent of film thickness. Analysis of the absorption coefficient data of the as-deposited films revealed the existence of allowed direct and indirect transitions with optical energy gaps of 2.21 eV and 1.71 eV, respectively. These values decreased with increasing annealing temperature. At substrate temperature of 623 K, the direct band gap increased to 2.41 eV whereas the value of indirect band gap remained nearly unchanged. The dispersion analysis showed that the values of the oscillator energy Eo, dispersion energy Ed, dielectric constant at infinite frequency ε∞, and lattice dielectric constant εL were changed appreciably under the effect of annealing and substrate temperature. The covalent nature of structure was studied as a function of the annealing and substrate temperature using an empirical relation for the dispersion energy Ed. Generalized Miller's rule and linear refractive index were used to estimate the nonlinear susceptibility and nonlinear refractive index of the thin films.

  15. Fibre Optic Gyroscope Developments Using Integrated Optic Components

    Science.gov (United States)

    Minford, W. J.; DePaula, R. M.

    1988-09-01

    The sensing of rotation using counterpropagating optical beams in a fiber loop (the SAGNAC effect) has gone through extensive developments and demonstrations since first proved feasible by Vali and Shorthilll in 1976. The interferometric fiber gyroscope minimum configuration2 which uses a common input-output port and single-mode filter was developed to provide the extreme high stability necessary to reach the sensitivities at low rotation rates attainable with current state-of-the-art detectors. The simplicity and performance of this configuration has led to its acceptance and wide-spread use. In order to increase the mechanical stability of this system, all single-mode fiber components are employed and a further advancement to integrated optics has enabled most of the optical functions to be placed on a single mass-producible substrate. Recent improvements in the components (eg polarization maintaining fiber and low coherence sources) have further enhanced the performance of the minimum configuration gyro. This presentation focused on the impact of LiNbO3 integrated optic components on gyroscope developments. The use of Ti-indiffused LiNbO3 waveguide optical circuits in interferometric fiber optic gyroscopes has taken two directions: to utilize only the phase modulator, or to combine many of the minimum configuration optical functions on the electro-optic substrate. The high-bandwidth phase modulator is the driving force for using LiNbO3 waveguide devices. This device allows both biasing the gyro for maximum sensitivity and closing the loop via frequency shifting, for example, thus increasing the dynamic range of the gyro and the linearity of the scale factor. Efforts to implement most of the minimum configuration optical functions onto a single LiNbO3 substrate have been led by Thomson CSF.3 They have demonstrated an interferometric gyroscope with excellent performance using a LiNbO3 optical circuit containing a Y-splitter, phase modulator, and surface

  16. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  17. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  18. Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Petra Fiala

    2017-08-01

    Full Text Available Dimensional measurements on nano-objects by atomic force microscopy (AFM require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO2 coated substrates confirmed the suitability of this technique.

  19. Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy.

    Science.gov (United States)

    Fiala, Petra; Göhler, Daniel; Wessely, Benno; Stintz, Michael; Lazzerini, Giovanni Mattia; Yacoot, Andrew

    2017-01-01

    Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO 2 coated substrates confirmed the suitability of this technique.

  20. One-step femtosecond laser welding and internal machining of three glass substrates

    Science.gov (United States)

    Tan, Hua; Duan, Ji'an

    2017-05-01

    In this paper, it demonstrated one-step femtosecond laser welding and internal machining of three fused silica substrates in the optical- and non-optical-contact regimes by focusing 1030-nm laser pulses at the middle of the second substrate. Focusing laser pulses within the second glass in optical-contact and non-optical-contact samples induces permanent internal structural modification, leading to the three glass substrates bonding together simultaneously. The bonding mechanism is based on the internal modification of glass, and this mechanism is different from that of ordinary glass welding at the interface. Welding-spot size is affected by not only the gap distance (ablation effect) and heat transmission, but also by gravity through examining the sizes of the welding spots on the four contact welding surfaces. The maximum bonding strength of the lower interface (56.2 MPa) in the optical-contact regime is more than double that (27.6 MPa) in the non-optical-contact regime.

  1. Design of doubly focusing, tunable (5 to 30 keV), wide-bandpass optics made from layered synthetic microstructures

    International Nuclear Information System (INIS)

    Bilderback, D.H.; Lairson, B.M.; Barbee, T.W. Jr.; Ice, G.E.; Sparks, C.J. Jr.

    1982-01-01

    Layered Synthetic Microstructures (LSMs) show great promise as focusing, high-throughput, hard x-ray monochromators. Experimental reflectivity vs. energy curves have been obtained on carbon-tungsten and carbon-molybdenum LSMs of up to 260 layers in thickness. Reflectivities for three flat LSMs with different bandpasses were 70% with δE/E = 5.4%, 66% with δE/E = 1.4%, and 19% with δE/E = 0.6%. A new generation of variable bandwidth optics using two successive LSMs is proposed. The first element will be an LSM deposited on a substrate that can be water cooled as it intercepts direct radiation from a storage ring. It can be bent for vertical focusing. The bandpass can be adjusted by choosing interchangeable first elements from an assortment of LSM's with different bandpasses (for example, δE/E = 0.005, 0.01, 0.02, 0.05, 0.1). The second LSM will consist of a multilayered structure with a 10% bandpass built onto a flexible substrate that can be bent for sagittal focusing. The result will be double focusing optics with an adjustable energy bandpass that are tunable from 5 to 30 keV

  2. Environmental testing of flat plate solar cell modules

    Science.gov (United States)

    Griffith, J.; Dumas, L.; Hoffman, A.

    1978-01-01

    Commercially available flat-plate solar cell modules have been subjected to a variety of environmental tests designed to simulate service conditions. Among the tests are those simulating heat and rain, wind-driven rains, humidity and freezing, humidity and heat, humidity with a voltage bias, salt fog, hail impact, and fungus infestation. Tests for optical surface soiling and the combined effects of temperature, humidity and UV irradiation are under development. A correlation has been demonstrated between degradation caused by the qualification tests and such observed field effects as power loss.

  3. Development of a selective thin film and of a hermetically sealed flat plate solar collector with gas filling

    Science.gov (United States)

    Zernial, W.

    1982-12-01

    The industrial productibility of a selective absorbing thin film was investigated on the basis of reactive cathodic sputtering of Ni. On substrates of 1.8 sq m of Al, Cu, steel and stainless steel, solar absorption values up to 97% were achieved at emissivities of 5 to 10%. A prototype flat plate collector for high temperatures with two covers and hermetical sealing was developed. The technical data of the collector were measured, dependent on the selectivity of the absorber, gas fillings of dry air, argon or SF6 and the geometry and were compared with those of an evacuated flat plate collector. A hermetical sealed double flat plate collector for low temperatures was developed which has the advantage of lower no load temperatures and higher energy gain for heating swimming pool water compared with a conventional flat plate collector. The insolation values on collectors were measured and were used for a calculation of the energy gains of different collector types.

  4. Indium-bump-free antimonide superlattice membrane detectors on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zamiri, M., E-mail: mzamiri@chtm.unm.edu, E-mail: skrishna@chtm.unm.edu; Klein, B.; Schuler-Sandy, T.; Dahiya, V.; Cavallo, F. [Center for High Technology Materials, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Myers, S. [SKINfrared, LLC, Lobo Venture Lab, 801 University Blvd., Suite 10, Albuquerque, New Mexico 87106 (United States); Krishna, S., E-mail: mzamiri@chtm.unm.edu, E-mail: skrishna@chtm.unm.edu [Center for High Technology Materials, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States); SKINfrared, LLC, Lobo Venture Lab, 801 University Blvd., Suite 10, Albuquerque, New Mexico 87106 (United States)

    2016-02-29

    We present an approach to realize antimonide superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN superlattices are grown on top of a 60 nm Al{sub 0.6}Ga{sub 0.4}Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxial-lift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy, and photoluminescence. The interface between the transferred pixels and the new substrate was abrupt, and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.

  5. Substrate-Dependent Differences in the Crystal Structures and Optical Properties of ZnSe Nanowires

    Directory of Open Access Journals (Sweden)

    Keumyoung Seo

    2015-01-01

    Full Text Available The optical and structural properties of ZnSe nanowires directly grown on three different substrates, SiO2, ITO, and graphene, were investigated. ZnSe nanowires grown on graphene and SiO2 were found to have cubic structures, while ZnSe nanowires grown on ITO had a mixed cubic and hexagonal structure. The main peaks in the photoluminescence spectra of ZnSe nanowires grown on SiO2, ITO, and graphene were located at 459, 627, and 627/460 nm, respectively. In addition, a field-emission light-emitting device was fabricated using ZnSe nanowires as a phosphor and graphene as an electrode. The device showed a red emission peak with Commission Internationale de L’Eclairage coordinates of (0.621, 0.315.

  6. Kovar Micro Heat Pipe Substrates for Microelectronic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David A.; Burchett, Steven N.; Kravitz, Stanley H.; Robino, Charles V.; Schmidt, Carrie; Tigges, Chris P.

    1999-04-01

    We describe the development of a new technology for cooling microelectronics. This report documents the design, fabrication, and prototype testing of micro scale heat pipes embedded in a flat plate substrate or heat spreader. A thermal model tuned to the test results enables us to describe heat transfer in the prototype, as well as evaluate the use of this technology in other applications. The substrate walls are Kovar alloy, which has a coefficient of thermal expansion close to that of microelectronic die. The prototype designs integrating micro heat pipes with Kovar enhance thermal conductivity by more than a factor of two over that of Kovar alone, thus improving the cooling of micro-electronic die.

  7. Design and analysis of all-dielectric subwavelength focusing flat lens

    Science.gov (United States)

    Turduev, M.; Bor, E.; Kurt, H.

    2017-09-01

    In this letter, we numerically designed and experimentally demonstrated a compact photonic structure for the subwavelength focusing of light using all-dielectric absorption-free and nonmagnetic scattering objects distributed in an air medium. In order to design the subwavelength focusing flat lens, an evolutionary algorithm is combined with the finite-difference time-domain method for determining the locations of cylindrical scatterers. During the multi-objective optimization process, a specific objective function is defined to reduce the full width at half maximum (FWHM) and diminish side lobe level (SLL) values of light at the focal point. The time-domain response of the optimized flat lens exhibits subwavelength light focusing with an FWHM value of 0.19λ and an SLL value of 0.23, where λ denotes the operating wavelength of light. Experimental analysis of the proposed flat lens is conducted in a microwave regime and findings exactly verify the numerical results with an FWHM of 0.192λ and an SLL value of 0.311 at the operating frequency of 5.42 GHz. Moreover, the designed flat lens provides a broadband subwavelength focusing effect with a 9% bandwidth covering frequency range of 5.10 GHz-5.58 GHz, where corresponding FWHM values remain under 0.21λ. Also, it is important to note that the designed flat lens structure performs a line focusing effect. Possible applications of the designed structure in telecom wavelengths are speculated upon for future perspectives. Namely, the designed structure can perform well in photonic integrated circuits for different fields of applications such as high efficiency light coupling, imaging and optical microscopy, with its compact size and ability for strong focusing.

  8. Growth and characterization of AlxGa1-xN LEO substrates

    International Nuclear Information System (INIS)

    Paek, H.S.; Sakong, T.; Lee, S.N.; Son, J.K.; Ryu, H.Y.; Nam, O.H.; Park, Y.

    2006-01-01

    We have studied the effect of Al composition on the properties of Al x Ga 1-x N LEO substrates. Al x Ga 1-x N LEO substrates were prepared on stripe-patterned 2μm-thick undoped GaN/sapphire substrates by metalorganic chemical vapor deposition. To investigate the dislocation and crack density, and the surface morphology of Al x Ga 1-x N LEO substrates with different Al compositions, photoluminescence and optical microscope were used. At a 1% of Al composition, we obtained crack-free and mirror-like substrates having a low dislocation density of ∼1E6cm -2 . We expect considerable reduction in threshold current density to be achieved from blue-violet laser diodes grown on Al x Ga 1-x N LEO substrates because of the increased optical gain, as compared to the laser diodes grown on Al-free LEO substrates

  9. Modification of Bi:YIG film properties by substrate surface ion pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikov, A.N.; Prokopov, A.R.; Karavainikov, A.V.; Berzhansky, V.N.; Mikhailova, T.V. [Taurida National V.I. Vernadsky University, Vernadsky Avenue, 4, Simferopol, 95007 (Ukraine); Kotov, V.A. [V.A. Kotelnikov Institute of Radio Engineering and Electronics, RAS, 11 Mohovaya Street, Moscow, 125009 (Russian Federation); Balabanov, D.E. [Moscow Institute of Physics and Technology, Dolgoprudny, 141700 (Russian Federation); Sharay, I.V.; Salyuk, O.Y. [Institute of Magnetism, NAS of Ukraine, 03142, Kiev (Ukraine); Vasiliev, M. [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027 (Australia); Golub, V.O., E-mail: v_o_golub@yahoo.com [Institute of Magnetism, NAS of Ukraine, 03142, Kiev (Ukraine)

    2014-07-01

    Highlights: • Effects of substrates ion beam treatment on magnetoptical properties Bi:YIG films. • Substrate surface damage results in sign inversion of the magneto-optical effects. • Atomically smooth films growth takes place on low energy ions treated substrates. • High energy ions treatment results in selective nucleation mechanism of the growth. - Abstract: The effect of a controlled ion beam pre-treatment of (1 1 1)-oriented Gd{sub 3}Ga{sub 5}O{sub 12} substrates on the magneto-optical properties and surface morphology of the ultrathin bismuth-substituted yttrium–iron garnet films with a composition Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} was studied. It has been shown that the observed sign inversion of magneto-optical effects (Faraday rotation and magnetic circular dichroism) observed in films that were deposited on the GGG substrate pre-treated by 1 keV and 4 keV Ar{sup +} ion beams is a result of the substrate surface amorphization caused by the ion bombardment.

  10. A multi-ring optical packet and circuit integrated network with optical buffering.

    Science.gov (United States)

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  11. Effects of the crystallographic orientation of the Al2O3 substrate on the structural and the optical properties of ZnO thin films

    International Nuclear Information System (INIS)

    Lee, Chongmu; Park, Yeonkyu; Kim, Kyungha

    2006-01-01

    The structure and the optical properties of ZnO thin films grown on (0002) C-plane, (1120) A-plane, and (1012) R-plane sapphire substrates by using atomic layer epitaxy (ALE) were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and photoluminescence analysis (PL) techniques. The ZnO film grown on the C-plane sapphire substrate has the smallest full width at half maximum (FWHM) values for both the X-ray (0002) diffraction peak and the photoluminescence peak for near-band-edge emission whereas that grown on the R-plane sapphire substrate has the largest FWHM values. On the other hand, the ZnO film grown on the C-plane sapphire substrate has the strong texture of the c-axis but the roughest surface while those grown on the R- and the C-plane sapphire substrates have smoother surfaces but do not have the texture of the c-axis.

  12. Effects of growth duration on the structural and optical properties of ZnO nanorods grown on seed-layer ZnO/polyethylene terephthalate substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.I.; Shin, C.M.; Heo, J.H. [Department of Nano Systems Engineering, Center for Nano Manufacturing Inje University, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, H., E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing Inje University, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, W.J. [Department of Nano Engineering, Dong-Eui University, Busan 614-714 (Korea, Republic of); Chang, J.H. [Major of Nano Semiconductor, Korea Maritime University, Busan 606-791 (Korea, Republic of); Son, C.S. [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Yun, J. [Department of Nano Science and Engineering, Institute of Advanced Materials Kyungnam University, Changwon, Gyeongnam 631-701 (Korea, Republic of)

    2011-10-01

    Well-aligned single crystalline zinc oxide (ZnO) nanorods were successfully grown, by hydrothermal synthesis at a low temperature, on flexible polyethylene terephthalate (PET) substrates with a seed layer. Photoluminescence (PL), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) measurements were used to analyze the optical and structural properties of ZnO nanorods grown for various durations from 0.5 h to 10 h. Regular and well-aligned ZnO nanorods with diameters ranging from 62 nm to 127 nm and lengths from 0.3 {mu}m to 1.65 {mu}m were formed after almost 5 h of growth. The growth rate of ZnO grown on PET substrates is lower than that grown on Si (1 0 0) substrates. Enlarged TEM images show that the tips of the ZnO nanorods grown for 6 h have a round shape, whereas the tips grown for 10 h are sharpened. The crystal properties of ZnO nanorods can be tuned by using the growth duration as a growth condition. The XRD and PL results indicate that the structural and optical properties of the ZnO nanorods are most improved after 5 h and 6 h of growth, respectively.

  13. Rigorous vector wave propagation for arbitrary flat media

    Science.gov (United States)

    Bos, Steven P.; Haffert, Sebastiaan Y.; Keller, Christoph U.

    2017-08-01

    Precise modelling of the (off-axis) point spread function (PSF) to identify geometrical and polarization aberrations is important for many optical systems. In order to characterise the PSF of the system in all Stokes parameters, an end-to-end simulation of the system has to be performed in which Maxwell's equations are rigorously solved. We present the first results of a python code that we are developing to perform multiscale end-to-end wave propagation simulations that include all relevant physics. Currently we can handle plane-parallel near- and far-field vector diffraction effects of propagating waves in homogeneous isotropic and anisotropic materials, refraction and reflection of flat parallel surfaces, interference effects in thin films and unpolarized light. We show that the code has a numerical precision on the order of 10-16 for non-absorbing isotropic and anisotropic materials. For absorbing materials the precision is on the order of 10-8. The capabilities of the code are demonstrated by simulating a converging beam reflecting from a flat aluminium mirror at normal incidence.

  14. Effect of substrate temperature on the morphology, structural and optical properties of Zn1-xCoxO thin films

    International Nuclear Information System (INIS)

    Yang, S.Y.; Man, B.Y.; Liu, M.; Chen, C.S.; Gao, X.G.; Wang, C.C.; Hu, B.

    2011-01-01

    Zn 1-x Co x O thin films with c-axis preferred orientation were deposited on sapphire (0 0 0 1) by pulsed laser deposition (PLD) technique at different substrate temperatures in an oxygen-deficient ambient. The effect of substrate temperature on the microstructure, morphology and the optical properties of the Zn 1-x Co x O thin films was studied by means of X-ray diffraction (XRD), atomic force microscopy (AFM), UV-visible-NIR spectrophotometer, fluorescence spectrophotometer. The results showed that the crystallization of the films was promoted as substrate temperature rose. The structure of the samples was not distorted by the Co incorporating into ZnO lattice. The surface roughness of all samples decreased as substrate temperature increased. The Co concentration in the film was higher than in the target. Emission peak near band edge emission of ZnO from the PL spectra of the all samples was quenched because the dopant complexes acted as non-radiative centers. While three emission bands located at 409 nm (3.03 eV), 496 nm (2.5 eV) and 513 nm (2.4 eV) were, respectively, observed from the PL spectra of the four samples. The three emission bands were in relation to Zn interstitials, Zn vacancies and the complex of V O and Zn i (V O Zn i ). The quantity of the Zn interstitials maintained invariable basically, while the quantity of the V O Zn i slightly decreased as substrate temperature increased.

  15. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    International Nuclear Information System (INIS)

    Zhang, Xingyu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chakravarty, Swapnajit; Chen, Ray T.

    2015-01-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB

  16. Optical and terahertz measurement techniques for flat-faced pharmaceutical tablets: a case study of gloss, surface roughness and bulk properties of starch acetate tablets

    International Nuclear Information System (INIS)

    Juuti, M; Tuononen, H; Kontturi, V; Peiponen, K-E; Prykäri, T; Alarousu, E; Myllylä, R; Kuosmanen, M; Ketolainen, J

    2009-01-01

    Surface and bulk properties of flat-faced starch acetate tablets were studied. For surface quality inspection optical coherence tomography and recently developed diffractive glossmeter were utilized. Both these optical devices together provide local information on surface roughness and gloss of a tablet over a measured area. The concepts of mean topography and mean gloss profile for surface quality of a tablet are introduced. It was observed that the surface quality of the tablet varies, and compression at high pressure may not guarantee a good surface quality of the tablet. Using novel statistical parameters for gloss and relevant surface roughness parameter, it is possible to get more comprehensive quantitative data on the surface condition of a tablet. THz spectrometer was utilized for detection of THz pulse delay in transmission measurement mode from the tablets. The delay time and thickness ratio of the tablet are consistent with the porosity of the tablet as a function of compression pressure. We suggest that the multimeasurement scheme using three different devices helps tablet makers to better assess bulk and surface quality of their products

  17. Creating flat design websites

    CERN Document Server

    Pratas, Antonio

    2014-01-01

    This book contains practical, step-by-step tutorials along with plenty of explanation about designing your flat website. Each section is introduced sequentially, building up your web design skills and completing your website.Creating Flat Design Websites is ideal for you if you are starting on your web development journey, but this book will also benefit seasoned developers wanting to start developing in flat.

  18. 40 CFR 230.42 - Mud flats.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Mud flats. 230.42 Section 230.42... Aquatic Sites § 230.42 Mud flats. (a) Mud flats are broad flat areas along the sea coast and in coastal rivers to the head of tidal influence and in inland lakes, ponds, and riverine systems. When mud flats...

  19. Flat-port connectors

    KAUST Repository

    Alrashed, Mohammed

    2017-05-26

    Disclosed are various embodiments for connectors used with electronic devices, such as input and/or output ports to connect peripheral equipment or accessories. More specifically, various flat-port are provided that can be used in place of standard connectors including, but not limited to, audio jacks and Universal Serial Bus (USB) ports. The flat-port connectors are an alternate connection design to replace the traditional receptacle port (female-port), making the device more sealed creation more dust and water resistant. It is unique in the way of using the outer surfaces of the device for the electrical connection between the ports. Flat-port design can allow the manufacture of extremely thin devices by eliminating the side ports slots that take a lot of space and contribute to the increase thickness of the device. The flat-port receptacle improves the overall appearance of the device and makes it more resistant to dust and water.

  20. Flat-space singletons

    International Nuclear Information System (INIS)

    Fronsdal, C.

    1987-01-01

    Singletons exist, as particles and as local fields, only in 3+2 de Sitter space. Their kinematical properties make them natural candidates for constituents of massless fields, and perhaps for quarks. It is interesting to find out how to describe this type of compositeness in flat space. A theory of interacting singleton fields in de Sitter space is now available, and in this paper we study the flat-space limit of the Green's functions of that theory. The flat-space limit is an autonomous theory of Green's functions, but is not an operator field theory. The three-point function is calculated and its flat-space limit is found to reveal glimpses of a physical interpretation. Causal and spectral properties are in accord with the tenets of axiomatic field theory. The theory is a generalization of local field theory, in which photons appear as composite objects although the physical S matrix is the same as in conventional QED

  1. Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation

    Science.gov (United States)

    Pillers, Michelle A.; Shute, Rebecca; Farchone, Adam; Linder, Keenan P.; Doerfler, Rose; Gavin, Corey; Goss, Valerie; Lieberman, Marya

    2015-01-01

    The designed nature and controlled, one-pot synthesis of DNA origami provides exciting opportunities in many fields, particularly nanoelectronics. Many of these applications require interaction with and adhesion of DNA nanostructures to a substrate. Due to its atomically flat and easily cleaned nature, mica has been the substrate of choice for DNA origami experiments. However, the practical applications of mica are relatively limited compared to those of semiconductor substrates. For this reason, a straightforward, stable, and repeatable process for DNA origami adhesion on derivatized silicon oxide is presented here. To promote the adhesion of DNA nanostructures to silicon oxide surface, a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) is deposited from an aqueous solution that is compatible with many photoresists. The substrate must be cleaned of all organic and metal contaminants using Radio Corporation of America (RCA) cleaning processes and the native oxide layer must be etched to ensure a flat, functionalizable surface. Cleanrooms are equipped with facilities for silicon cleaning, however many components of DNA origami buffers and solutions are often not allowed in them due to contamination concerns. This manuscript describes the set-up and protocol for in-lab, small-scale silicon cleaning for researchers who do not have access to a cleanroom or would like to incorporate processes that could cause contamination of a cleanroom CMOS clean bench. Additionally, variables for regulating coverage are discussed and how to recognize and avoid common sample preparation problems is described. PMID:26274888

  2. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates

    KAUST Repository

    Xu, Xinpeng; Liu, Chun; Qian, Tiezheng

    2012-01-01

    profiles of liquid-gas flows on non-isothermal, heterogeneous solid substrates is still absent. The purpose of this work is to construct a continuum model for simulating the liquid-gas flows on solid surfaces that are flat and rigid, and may involve

  3. Effects of substrate heating and vacuum annealing on optical and electrical properties of alumina-doped ZnO films deposited by DC magnetron sputtering

    Science.gov (United States)

    Tang, Chien-Jen; Wang, Chun-Yuan; Jaing, Cheng-Chung

    2011-10-01

    Alumina-doped zinc oxide (AZO) films have wide range of applications in optical and optoelectronic devices. AZO films have advantage in high transparency, high stability to hydrogen plasma and low cost to alternative ITO film. AZO film was prepared by direct-current (DC) magnetron sputtering from ceramic ZnO:Al2O3 target. The AZO films were compared in two different conditions. The first is substrate heating process, in which AZO film was deposited by different substrate temperature, room temperature, 150 °C and 250 °C. The second is vacuum annealing process, in which AZO film with deposited at room temperature have been annealed at 250 °C and 450 °C in vacuum. The optical properties, electrical properties, grain size and surface structure properties of the films were studied by UV-VIS-NIR spectrophotometer, Hall effect measurement equipment, x-ray diffraction, and scanning electron microscopy. The resistivity, carrier mobility, carrier concentration, and grain size of AZO films were 1.92×10-3 Ω-cm, 6.38 cm2/Vs, 5.08×1020 #/cm3, and 31.48 nm respectively, in vacuum annealing of 450 °C. The resistivity, carrier mobility, carrier concentration, and grain size of AZO films were 8.72×10-4 Ω-cm, 6.32 cm2/Vs, 1.13×1021 #/cm3, and 31.56 nm, respectively, when substrate temperature was at 250 °C. Substrate heating process is better than vacuum annealed process for AZO film deposited by DC Magnetron Sputtering.

  4. The thermoluminescence response of Ge-doped flat fibre for proton beam measurements: A preliminary study

    International Nuclear Information System (INIS)

    Hassan, M F; Fadzil, M S Ahmad; Noor, N Mohd; Abdul Rahman, W N Wan; Tominaga, T; Geso, M; Akasaka, H; Bradley, D A

    2017-01-01

    The aim of this study was to investigate the thermoluminescence (TL) response of fabricated 2.3 mol% and 6.0 mol% germanium (Ge) doped flat optical fibres to proton irradiation. The fundamental dosimetric characteristics of the fibres have been investigated including dose linearity, reproducibility and fading. The thermoluminescent dosimeters (TLDs) were used as a reference dosimeter to allow the relative response of the fibres. The results show that Ge-doped flat fibres offer excellent dose linearity over the dose range from 1 Gy up to 10 Gy with correlation of determination (R 2 ) of 0.99. The fibres also demonstrated good reproducibility within the standard deviation (SD) of 0.86% to 6.41%. After 96 days post-irradiation, TLD-100 chips gave rise to the least loss in TL signal at around 18% followed by fabricated 2.3 mol% Ge-doped flat fibres about 24%. This preliminary study has demonstrated that the proposed fabricated Ge-doped flat fibre offers a promising potential for use in proton beam measurements. (paper)

  5. Effects of the position substrate upon the structural behaviour, electrical and optical properties of zinc-oxide films used in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bouderbala, M.; Hamzaoui, S.; Stambouli, A.B.; Bouziane, H. [USTO, Lab. de Microscopie Electronique, Oran (Algeria)

    1999-12-01

    The preparation by the rf sputtering technique and characterisation of ZnO thin films used as windows in solar cells are described. The electrical behaviour and structural spectra clearly show an important effect of the substrate position with respect to the target. In fact, among all the studied substrate positions, only the samples facing the target are randomly oriented having the mixed orientation (100), (002) and (101). All the others have the c(002)-axis orientation. The scanning electron-microscope observations confirm the X-ray analysis results. The last samples have a resistivity as low as 10{sup -3} {omega}cm while the randomly-oriented, ones have a large resistivity of about 10{sup 2}-10{sup 3} {omega}cm. These latter show, in their transmittance characteristics, a slight shift towards higher wavelengths. However, no effect is noticed when the other samples are optically assessed. Consequently, the optical gap is found to be about 3.38 eV for the conducting films and 3.3 eV for the ones having a higher resistivity. The average transmittance in the visible range is around 85-90% for all the samples. (Author)

  6. Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate

    KAUST Repository

    Qin, Yong

    2008-12-04

    A general method is presented for growing laterally aligned and patterned ZnO nanowire (NW) arrays on any substrate as long as it is flat. The orientation control is achieved using the combined effect from ZnO seed layer and the catalytically inactive Cr (or Sn) layer for NW growth. The growth temperature (< 100 °C) is so low that the method can be applied to a wide range of substrates that can be inorganic, organic, single crystal, polycrystal, or amorphous. The laterally aligned ZnO NW arrays can be employed for various applications, such as gas sensor, field effect transistor, nanogenerator, and flexible electronics. © 2008 American Chemical Society.

  7. Measuring the Flatness of Focal Plane for Very Large Mosaic CCD Camera

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; Estrada, Juan; Cease, Herman; Diehl, H.Thomas; Flaugher, Brenna L.; Kubik, Donna; Kuk, Keivin; Kuropatkine, Nickolai; Lin, Huan; Montes, Jorge; Scarpine, Vic; /Fermilab

    2010-06-08

    Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k x 2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 years starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.

  8. Optical and electrical properties of semiconducting BaSi2 thin films on Si substrates grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Morita, K.; Inomata, Y.; Suemasu, T.

    2006-01-01

    The electrical properties and optical absorption (OA) spectra of undoped BaSi 2 films grown by molecular beam epitaxy were investigated The electron density and mobility of BaSi 2 grown epitaxially on Si(111) were 5 x 10 15 cm -3 and 820 cm 2 /V.s at room temperature, respectively. The conduction-band discontinuity at the BaSi 2 /Si heterojunction was estimated to be 0.7 eV from the current-voltage characteristics of n-BaSi 2 /n-Si isotype diodes. OA spectra were measured on polycrystalline BaSi 2 films grown on transparent fused silica substrates with predeposited polycrystalline Si layer. The indirect absorption edge was derived to be 1.3 eV, and the optical absorption coefficient reached 10 5 cm -1 at 1.5 eV

  9. Figure correction of multilayer coated optics

    Science.gov (United States)

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  10. A study of optical design and optimization applied to lens module of laser beam shaping of advanced modern optical device

    Science.gov (United States)

    Tsai, Cheng-Mu; Fang, Yi-Chin; Chen, Zhen Hsiang

    2011-10-01

    This study used the aspheric lens to realize the laser flat-top optimization, and applied the genetic algorithm (GA) to find the optimal results. Using the characteristics of aspheric lens to obtain the optimized high quality Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using two aspheric lenses in the aspheric surface optical system to complete 80% spot narrowing under standard deviation of 0.6142.

  11. Flat slices in Minkowski space

    Science.gov (United States)

    Murchadha, Niall Ó.; Xie, Naqing

    2015-03-01

    Minkowski space, flat spacetime, with a distance measure in natural units of d{{s}2}=-d{{t}2}+d{{x}2}+d{{y}2}+d{{z}2}, or equivalently, with spacetime metric diag(-1, +1, +1, +1), is recognized as a fundamental arena for physics. The Poincaré group, the set of all rigid spacetime rotations and translations, is the symmetry group of Minkowski space. The action of this group preserves the form of the spacetime metric. Each t = constant slice of each preferred coordinate system is flat. We show that there are also nontrivial non-singular representations of Minkowski space with complete flat slices. If the embedding of the flat slices decays appropriately at infinity, the only flat slices are the standard ones. However, if we remove the decay condition, we find non-trivial flat slices with non-vanishing extrinsic curvature. We write out explicitly the coordinate transformation to a frame with such slices.

  12. Effect of Solution Molarity, Substrate Temperature and Spray Time on The Structural and Optical Properties Of ZnO Thin Films Deposited By Spray Pyrolysis

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Hashem, H. M.; El-Sayed, S. M.; Ashour, A.H.; Abdel-Haleem, S.M.

    2013-01-01

    Zinc oxide thin films were deposited on a glass substrate by spray pyrolysis technique using solution of zinc acetate and air as the carrier gas. Effects of solution molarity, substrate temperature and spray time on films properties were investigated. All films deposited were characterized using X-ray diffraction for structural characterization and UV-VIS transmission spectrophotometry for optical properties. According to the analytical method, the type of crystal lattice was found to be hexagonal and X-ray diffraction (XRD) patterns showed that the films deposited were polycrystalline with (002) plane as preferential orientation. The values of lattice constant, grain size, micro strain and dislocation density of all samples were calculated. In addition, Optical behaviors of film samples were analyzed by obtaining transmission spectra, in the wavelength range of 350-800 nm. The UV-VIS spectroscopy shows the high transparency of ZnO films in the UV region. An optimization of the films has been carried out to determine the best preparation conditions.

  13. A study of the optical properties and adhesion of zinc sulfide anti-reflection thin film coated on a germanium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Firoozifar, S.A.R. [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Behjat, A., E-mail: abehjat@yazduni.ac.ir [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Photonics Research Group, Engineering Research Center, Yazd University, Yazd (Iran, Islamic Republic of); Kadivar, E. [Physics Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Ghorashi, S.M.B.; Zarandi, M. Borhani [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of)

    2011-11-01

    To conduct this study, zinc sulfide (ZnS) thin films deposited on germanium (Ge) substrates were prepared by an evaporation method. The effects of deposition rate and annealing on the optical properties and adhesion of the ZnS thin films were investigated. The transmission intensity and the X-ray diffraction (XRD) pattern of the samples showed that the transmittance of the samples decreases by increasing the evaporation rates. However, with the increase of the annealing temperature, crystallinity of the thin films improves which, in turn, results in the enhancement of the transmission intensity in a far infrared region. The maximum grain size was obtained at the annealing temperature of 225 deg. C. Our experimental results also show that evaporation rate and annealing influences the adhesion of ZnS thin films to Ge substrates.

  14. Pulse shaping using the optical Fourier transform technique - for ultra-high-speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael

    2009-01-01

    This paper reports on the generation of a 1.6 ps FWHM flat-top pulse using the optical Fourier transform technique. The pulse is validated in a 320 Gbit/s demultiplexing experiment.......This paper reports on the generation of a 1.6 ps FWHM flat-top pulse using the optical Fourier transform technique. The pulse is validated in a 320 Gbit/s demultiplexing experiment....

  15. The development and characterization of sol-gel substrates for chemical and optical applications

    Science.gov (United States)

    Powers, Kevin William

    1998-12-01

    The sol gel process can be used to make monolithic porous glass for various scientific and engineering uses. The porosity of the material imparts a large surface area which is advantageous in applications such as catalyst supports or in the study of surface mediated chemical reactions. The chemical stability and transparency of the porous glass also make it suitable for use in the emerging field of optical sensors. In this study fluoride catalysis is used to produce sol gel monoliths with pore radii of up to 400 Angstroms, four times larger than any previously reported using conventional drying techniques. Gel monoliths with pore radii of 200 Angstroms were found to have the best combination of surface area, pore volume and optical transparency. Typical monoliths have surface areas of 150 m2/g and pore volumes of 1.60 cm3/g with good transparency. The monoliths are chemically stable, have good mechanical strength and can be easily rehydrated without cracking. The substrates are also suitable for sintering into dense high purity silica glass with little tendency towards foaming. An in-depth study of the catalytic effect of fluoride on the sol gel process is also included. It has been theorized that fluoride serves to expand the coordination sphere of the silicon center making it more subject to nucleophilic attack. In this work an ion-specific fluoride electrode is used to monitor free fluoride concentrations in HF catalyzed sols while silicic acid is added in the form of tetramethoxysilane (TMOS). It is found that fluoride is rapidly bound by the silicic acid in a ratio of four to one, indicating the formation of silicon tetrafluoride. A concurrent decrease in pH suggests that a pentacoordinate species is formed that is more stable than previously thought. A polymerization mechanism is proposed that explains the hydrophobicity of fluoride catalyzed gels and the difficulty in retaining structural fluoride in fluoride catalyzed sol gel glasses. Finally, several

  16. Three-beam interferogram analysis method for surface flatness testing of glass plates and wedges

    Science.gov (United States)

    Sunderland, Zofia; Patorski, Krzysztof

    2015-09-01

    When testing transparent plates with high quality flat surfaces and a small angle between them the three-beam interference phenomenon is observed. Since the reference beam and the object beams reflected from both the front and back surface of a sample are detected, the recorded intensity distribution may be regarded as a sum of three fringe patterns. Images of that type cannot be succesfully analyzed with standard interferogram analysis methods. They contain, however, useful information on the tested plate surface flatness and its optical thickness variations. Several methods were elaborated to decode the plate parameters. Our technique represents a competitive solution which allows for retrieval of phase components of the three-beam interferogram. It requires recording two images: a three-beam interferogram and the two-beam one with the reference beam blocked. Mutually subtracting these images leads to the intensity distribution which, under some assumptions, provides access to the two component fringe sets which encode surfaces flatness. At various stages of processing we take advantage of nonlinear operations as well as single-frame interferogram analysis methods. Two-dimensional continuous wavelet transform (2D CWT) is used to separate a particular fringe family from the overall interferogram intensity distribution as well as to estimate the phase distribution from a pattern. We distinguish two processing paths depending on the relative density of fringe sets which is connected with geometry of a sample and optical setup. The proposed method is tested on simulated data.

  17. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    Science.gov (United States)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  18. A flat array large telescope concept for use on the moon, earth, and in space

    Science.gov (United States)

    Woodgate, Bruce E.

    1991-01-01

    An astronomical optical telescope concept is described which can provide very large collecting areas, of order 1000 sq m. This is an order of magnitude larger than the new generation of telescopes now being designed and built. Multiple gimballed flat mirrors direct the beams from a celestial source into a single telescope of the same aperture as each flat mirror. Multiple images of the same source are formed at the telescope focal plane. A beam combiner collects these images and superimposes them into a single image, onto a detector or spectrograph aperture. This telescope could be used on the earth, the moon, or in space.

  19. Enhanced columnar structure in CsI layer by substrate patterning

    Energy Technology Data Exchange (ETDEWEB)

    Jing, T.; Cho, G.; Drewery, J.; Kaplan, S.N.; Mireshghi, A.; Perez-Mendez, V.; Wildermuth, D. [Lawrence Berkeley Lab., CA (United States); Fujieda, I. [Xerox Palo Alto Research Center, CA (United States)

    1991-10-01

    Columnar structure in evaporated CsI layers can be controlled by patterning substrates as well as varying evaporation conditions. Mesh-patterned substrates with various dimensions were created by spin-coating polyimide on glass or amorphous silicon substrates and defining patterns with standard photolithography technique. CsI(Tl) layers 200--1000 {mu}m were evaporated. Scintillation properties of these evaporated layers, such as light yield and speed, were equivalent to those of the source materials. Spatial resolution of X-ray detectors consisting of these layers and a linear array of X-ray detectors consisting of these layers and a linear array of Si photodiodes was evaluated by exposing them to a 25{mu}m narrow beam of X-ray. The results obtained with 200{mu}m thick CsI layers coupled to a linear photodiode array with 20 dots/mm resolution showed that the spatial resolution of CsI(Tl) evaporated on patterned substrates was about 75 {mu}m FWHM, whereas that on CsI(Tl) on flat substrates was about 230 {mu}m FWHM. Micrographs taken by SEM revealed that these layers retained the well-defined columnar structure originating from substrate patterns. Adhesion and light transmission of CsI(Tl) were also improved by patterning the substrate.

  20. Controlled elaboration of large-area plasmonic substrates by plasma process

    International Nuclear Information System (INIS)

    Pugliara, A; Despax, B; Makasheva, K; Bonafos, C; Carles, R

    2015-01-01

    Elaboration in a controlled way of large-area and efficient plasmonic substrates is achieved by combining sputtering of silver nanoparticles (AgNPs) and plasma polymerization of the embedding dielectric matrix in an axially asymmetric, capacitively coupled RF discharge maintained at low gas pressure. The plasma parameters and deposition conditions were optimized according to the optical response of these substrates. Structural and optical characterizations of the samples confirm the process efficiency. The obtained results indicate that to deposit a single layer of large and closely situated AgNPs, a high injected power and short sputtering times must be privileged. The plasma-elaborated plasmonic substrates appear to be very sensitive to any stimuli that affect their plasmonic response. (paper)

  1. An experimental study of the supersonic, dual, coaxial jets impinging on an inclined flat plate

    International Nuclear Information System (INIS)

    Kim, Jung Bae; Lee, Jun Hee; Woo, Sun Hoon; Kim, Heuy Dong

    2002-01-01

    The impinging supersonic jets have been applied for rocket launching system, thrust control, gas turbine blade cooling, etc. Recently the supersonic, dual, coaxial jets are being extensively used in many diverse fields of industrial processes since they lead to more improved performance, compared with the conventional supersonic jets impinging on an object. In the present study, experimentation is carried out to investigate the supersonic, dual, coaxial jets impinging on an inclined flat plate. A convergent-divergent nozzle with a design Mach number of 2.0 and annular sonic nozzle are used to make the dual, coaxial jet flows. The angle of the impinging flat plate is varied from 30 .deg. to 60 .deg. and the distance between the dual coaxial nozzle and flat plate is also varied. Detailed pressures on the impinging plate are measured to analyze the flow fields, which are also visualized using Schlieren optical method

  2. Gas microstrip detectors on polymer, silicon and glass substrates

    International Nuclear Information System (INIS)

    Barasch, E.F.; Demroff, H.P.; Drew, M.M.; Elliott, T.S.; Gaedke, R.M.; Goss, L.T.; Kasprowicz, T.B.; Lee, B.; Mazumdar, T.K.; McIntyre, P.M.; Pang, Y.; Smith, D.D.; Trost, H.J.; Vanstraelen, G.; Wahl, J.

    1993-01-01

    We present results on the performance of Gas Microstrip Detectors on various substrates. These include a 300 μm anode-anode pitch pattern on Tempax borosilicate glass and ABS/copolyether, a 200 μm pattern on Upilex ''S'' polyimide, Texin 4215, Tedlar, ion-implanted Kapton, orientation-dependent etched flat-topped silicon (''knife-edge chamber''), and iron-vanadium glass, and a 100 μm pitch pattern on Upilex ''S'' and ion-implanted Kapton. (orig.)

  3. Optical measurement of thermal deformation of multilayer optics under synchrotron radiation

    International Nuclear Information System (INIS)

    Revesz, P.; Kazimirov, A.; Bazarov, I.

    2007-01-01

    An in situ optical technique to visualize surface distortions of the first monochromator crystal under synchrotron beam heat loading has been developed and applied to measure surface profiles of multilayer optics under white wiggler beam at the CHESS A2 beamline. Two identical multilayer structures deposited on Si and SiC substrates have been tested. Comparison of the reconstructed 3D heatbump profiles showed the surface distortions of the multilayer on SiC a factor of two smaller than the same multilayer on a Si substrate

  4. Optical measurement of thermal deformation of multilayer optics under synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, P. [Cornell University, CHESS, Ithaca, NY 14850 (United States)], E-mail: pr20@cornell.edu; Kazimirov, A.; Bazarov, I. [Cornell University, CHESS, Ithaca, NY 14850 (United States)

    2007-11-11

    An in situ optical technique to visualize surface distortions of the first monochromator crystal under synchrotron beam heat loading has been developed and applied to measure surface profiles of multilayer optics under white wiggler beam at the CHESS A2 beamline. Two identical multilayer structures deposited on Si and SiC substrates have been tested. Comparison of the reconstructed 3D heatbump profiles showed the surface distortions of the multilayer on SiC a factor of two smaller than the same multilayer on a Si substrate.

  5. Template-assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates

    Science.gov (United States)

    Guiliani, Jason; Cadena, John; Monton, Carlos

    2018-02-01

    We present a variant of the template-assisted electrodeposition method that enables the synthesis of large arrays of nanowires (NWs) on flat and curved substrates. This method uses ultra-thin (50 nm-10 μm) anodic aluminum oxide membranes as a template. We have developed a procedure that uses a two-polymer protective layer to transfer these templates onto almost any surface. We have applied this technique to the fabrication of large arrays of Ni and segmented composition Ni/Au NWs on silicon wafers, Cu tapes, and thin (0.2 mm) Cu wires. In all cases, a complete coverage with NWs is achieved. The magnetic properties of these samples show an accentuated in-plane anisotropy which is affected by the form of the substrate (flat or curve) and the length of the NWs. Unlike current lithography techniques, the fabrication method proposed here allows the integration of complex nanostructures into devices, which can be fabricated on unconventional surfaces.

  6. Structural and optical properties of GaN thin films grown on Al2O3 substrates by MOCVD at different reactor pressures

    International Nuclear Information System (INIS)

    Guillén-Cervantes, A.; Rivera-Álvarez, Z.; López-López, M.; Ponce-Pedraza, A.; Guarneros, C.; Sánchez-Reséndiz, V.M.

    2011-01-01

    GaN thin films grown by MOCVD on (0 0 0 1) Al 2 O 3 substrates at different growth pressures were characterized by field-emission scanning electron microscopy, atomic force microscopy, micro-Raman, and photoluminescence at room temperature. It was found that there is an optimum pressure of 76 Torr at which the structural and optical properties of the GaN samples are superior. On the other hand samples grown at higher pressure exhibited hexagonal surface pits and surface spirals. The results showed that the growth pressure strongly influences the morphology, and significantly affects the structural and optical properties of the GaN epilayers.

  7. Diffractive optics and nanophotonics resolution below the diffraction limit

    CERN Document Server

    Minin, Igor

    2016-01-01

    In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible.  With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Tera...

  8. Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Købler, Carsten; Jensen, Mikkel Ravn Boye

    2013-01-01

    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold...... substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition...

  9. Effect of Etching on the Optical, Morphological Properties of Ag Thin Films for SERS Active Substrates

    Directory of Open Access Journals (Sweden)

    Desapogu Rajesh

    2013-01-01

    Full Text Available Structural, optical, and morphological properties of Ag thin films before and after etching were investigated by using X-ray diffraction, UV-Vis spectrophotometer, and field emission scanning electron microscopy (FESEM. The HNO3 roughened Ag thin films exhibit excellent enhancement features and better stability than pure Ag thin films. Further, the Ag nanostructures are covered with Rhodamine 6G (Rh6G and then tested with surface enhanced raman spectroscopy (SERS for active substrates. Etched Ag films were found to exhibit a strong SERS effect and excellent thermal stability. Hence, the present method is found to be useful in the development of plasmon-based analytical devices, especially SERS-based biosensors.

  10. Flat or curved thin optical display panel

    Science.gov (United States)

    Veligdan, J.T.

    1995-01-10

    An optical panel includes a plurality of waveguides stacked together, with each waveguide having a first end and an opposite second end. The first ends collectively define a first face, and the second ends collectively define a second face of the panel. The second face is disposed at an acute face angle relative to the waveguides to provide a panel which is relatively thin compared to the height of the second face. In an exemplary embodiment for use in a projection TV, the first face is substantially smaller in height than the second face and receives a TV image, with the second face defining a screen for viewing the image enlarged. 7 figures.

  11. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  12. Significant effect of substrate temperature on the phase structure, optical and electrical properties of RF sputtered CIGS films

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhou; Yan Yong; Li Shasha; Zhang Yanxia; Yan Chuanpeng; Liu Lian; Zhang Yong [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Superconductivity and New energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhao Yong, E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Superconductivity and New energy R and D Center (SNERDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Secondary phase exist in the RF sputtered CIGS films as it deposited at 150 Degree-Sign C and 500 Degree-Sign C. Black-Right-Pointing-Pointer CIGS films deposited beyond 350 Degree-Sign C show (1 1 2) prefer orientation. Black-Right-Pointing-Pointer E{sub g} of the CIGS films increased with the increase of substrate temperature. Black-Right-Pointing-Pointer Conductivity of the films is affected by 'variable range hopping' mechanism. - Abstract: This work studied the effect of substrate temperature on the phase structure, optical and electrical properties of the one-step radio frequency sputtered Cu(In,Ga)Se{sub 2} (CIGS) thin films. X-ray diffraction (XRD) analysis revealed that all the deposited CIGS films are chalcopyrite phase with polycrystalline structure. The films deposited beyond the substrate temperature of 350 Degree-Sign C show (1 1 2) prefer orientation. Raman spectra reveal that the 150 Degree-Sign C deposited CIGS film coexists with Cu{sub 2-x}Se phase and the 500 Degree-Sign C deposited film contains ordered defect compound (ODC) phase. With the increase of substrate temperature, energy band gap of the CIGS film increase from 0.99 to 1.27 eV. Films deposited at higher temperature exhibit larger electrical conductivity. Conductivity of the CIGS films is dominated by 'variable range hopping' mechanism. The disorder in our CIGS the films is associated with the formation of intrinsic defects such as V{sub Se} and In{sub Cu} for their low formation energy.

  13. Optical flare observed in the flaring gamma-ray blazar Ton 599

    Science.gov (United States)

    Pursimo, Tapio; Sagues, Ana; Telting, John; Ojha, Roopesh

    2017-11-01

    We report optical photometry of the flat spectrum radio quasar Ton 599, obtained with the 2.56m Nordic Optical Telescope in La Palma, to look for any enhanced optical activity associated with a recent flare in the daily averaged gamma-ray flux (ATel#10931, ATel#10937).

  14. A new method for measuring bioturbation rates in sandy tidal flat sediments based on luminescence dating

    DEFF Research Database (Denmark)

    Madsen, Anni T.; Murray, Andrew S.; Jain, Mayank

    2011-01-01

    The rates of post-depositional mixing by bioturbation have been investigated using Optically Stimulated Luminescence (OSL) dating in two sediment cores (BAL2 and BAL5), retrieved from a sandy tidal flat in the Danish part of the Wadden Sea. A high-resolution chronology, consisting of thirty-six OSL...

  15. Rectangular optical filter based on high-order silicon microring resonators

    Science.gov (United States)

    Bao, Jia-qi; Yu, Kan; Wang, Li-jun; Yin, Juan-juan

    2017-07-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 μm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  16. Rectangular optical filter based on high-order silicon microring resonators

    Institute of Scientific and Technical Information of China (English)

    BAO Jia-qi; YU Kan; WANG Li-jun; YIN Juan-juan

    2017-01-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network.The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response.In general,the spectrum response rectangular degree of the single MRR is very low,so it cannot be used in the DWDM system.Using the high-order MRRs,the bandwidth of flat-top pass band,the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously.In this paper,a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated.Using 15 coupled race-track MRRs with 10 μm in radius,the 3 dB flat-top pass band of 2 nm,the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  17. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    Science.gov (United States)

    Ciszek, Theodore F.

    1994-01-01

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate.

  18. Effects of the substrate temperature on the properties of CuIn5S8 thin films

    International Nuclear Information System (INIS)

    Gannouni, M.; Kanzari, M.

    2011-01-01

    Structural, optical and electrical properties of CuIn 5 S 8 thin films grown by thermal evaporation have been studied relating the effects of substrate heating conditions of these properties. The CuIn 5 S 8 thin films were carried out at substrate temperatures in the temperature range 100-300 deg. C. The effects of heated substrate on their physico-chemical properties were investigated using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), optical transmission and hot probe method. X-ray diffraction revealed that the films are strong preferred orientation along the (3 1 1) plane upon substrate temperature 200 deg. C and amorphous for the substrate temperatures below 200 deg. C. No secondary phases are observed for all the films. The composition is greatly affected by heated substrate. From the optical transmission and reflection, an important absorption coefficient exceeds 10 5 cm -1 at 800 nm was found. As increasing the substrate temperature, the optical energy band gap decreases from 1.70 eV for the unheated films to 1.25 eV for the deposited films at 300 deg. C. It was found that CuIn 5 S 8 thin film is an n-type semiconductor at 250 deg. C.

  19. Note: reliable and reusable ultrahigh vacuum optical viewports.

    Science.gov (United States)

    Arora, P; Sen Gupta, A

    2012-04-01

    We report a simple technique for the realization of ultrahigh vacuum optical viewports. The technique relies on using specially designed thin copper knife-edges and using a thin layer of Vacseal(®) on tip of the knife-edges between the optical flat and the ConFlat(®) (CF) flange. The design of the windows is such that it gives uniform pressure on the flat without breaking it. The assembled window is a complete unit, which can be mounted directly onto a CF flange of the vacuum chamber. It can be removed and reused without breaking the window seal. The design is reliable as more than a dozen such windows have survived several bake out and cooling cycles and have been leak tested up to 10(-11) Torr l/s level with a commercial Helium leak detector. The advantages of this technique are ease of assembly and leak proof sealing that survives multiple temperature cycling making the windows reliable and reusable. © 2012 American Institute of Physics

  20. Electro-optic properties of epitaxial Sr0.6Ba0.4Nb2O6 films grown on MgO substrates using LixNi2-xO buffer layer

    Science.gov (United States)

    Li, X. T.; Du, P. Y.; Ye, H.; Mak, C. L.; Wong, K. H.

    2008-08-01

    Textured LixNi2-xO (LNO) thin films have been fabricated on (001)MgO substrates by pulsed laser deposition technique. The as-deposited LNO films shows a conductivity of 2.5×10-3 Ω m and possess a transmittance of about 35% in the visible region. Subsequent deposition of Sr0.6Ba0.4Nb2O6 (SBN60) thin film on these LNO-coated MgO substrates resulted in a textured SBN layer with a orientation perpendicular to the substrate plane. Phi scans on the (221) plane of the SBN layer indicated that the films have two in-plane orientations with respect to the substrate. The SBN unit cells were rotated in the plane of the film by ± 8.2° as well as ± 45° with respect to the LNO/MgO substrate. Besides the highly (00l)-orientation, the SBN films also exhibited a dense microstructure as shown by scanning electron microscopy. The electro-optic coefficient (r33) of the SBN film was measured to be 186 pm/V. On the basis of our results, we have demonstrated that the LNO film can be used as a buffer layer as well as a transparent bottom electrode for waveguide applications. The SBN/LNO heterostructure is also a suitable candidate for integrated electro-optics devices.

  1. Microstructure and adhesion strength of Sn-9Zn-xAg lead-free solders wetted on Cu substrate

    International Nuclear Information System (INIS)

    Chang, T.-C.; Chou, S.-M.; Hon, M.-H.; Wang, M.-C.

    2006-01-01

    The microstructure and adhesion strength of the Sn-9Zn-xAg lead-free solders wetted on Cu substrates have been investigated by differential scanning calorimetry, optical microscopy, scanning electron microscopy, energy dispersive spectrometry and pull-off testing. The liquidus temperatures of the Sn-9Zn-xAg solder alloys are 222.1, 226.7, 231.4 and 232.9 deg. C for x = 2.5, 3.5, 5.0 and 7.5 wt%, respectively. A flat interface can be obtained as wetted at 350 deg. C at a rate of 11.8 mm/s. The adhesion strength of the Sn-9Zn-xAg/Cu interfaces decreases from 23.09 ± 0.31 to 12.32 ± 1.40 MPa with increasing Ag content from 2.5 to 7.5 wt% at 400 deg. C. After heat treatment at 150 deg. C, the adhesion strength of the Sn-9Zn-xAg/Cu interface decreases with increasing aging time

  2. Evaluation of current and temperature effects on optical performance of InGaAlP thin-film SMD LED mounted on different substrate packages

    International Nuclear Information System (INIS)

    Raypah, Muna E.; Devarajan, Mutharasu; Sulaiman, Fauziah

    2017-01-01

    The relationship between the photometric, electric, and thermal parameters of light-emitting diodes (LEDs) is important for optimizing the LED illumination design. Indium gallium aluminium phosphide (InGaAlP)-based thin-film surface-mounted device (SMD) LEDs have attracted wide attention in research and development due to their portability and miniaturization. We report the optical characterization of InGaAlP thin-film SMD LED mounted on FR4, 2 W, and 5 W aluminum (Al) packages. The optical and thermal parameters of LED are determined at different injection currents and ambient temperatures by combining the T3ster (thermal transient tester) and TeraLED (thermal and radiometric characterization of power LEDs) systems. Analysis shows that LED on a 5 W Al substrate package obtains the highest luminous and optical efficiency. (paper)

  3. Characterization of black and white chromium electrodeposition films. Surface and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, M.; Palomar-Pardave, M. [Departamento de Materiales, UAM-Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, Mexico D.F. 02200 (Mexico); Barrera, E. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana - Iztapalapa, Av. Rafael Atlixco No. 186, Col. Vicentina, Mexico, D.F. 09340 (Mexico); Huerta, L.; Muhl, S. [Instituto de Investigaciones en Materiales, UNAM, Mexico, D.F. 04510 (Mexico)

    2003-11-01

    Thin films of black and white chromium have been prepared by electrodeposition on stainless steel substrates. The potentiodynamic and potentiostatic technique was used in order to prepare these materials. XRD, XPS, SEM and spectral reflectance in the UV-Visible-near IR and medium IR ranges, for both films coatings were characterized. From the SEM analysis, it was found while the black chromium has a lamellar morphology that leads to a strong dispersion level, the white one has a flat morphology. The chemical composition of these thin films was determined by XRD and XPS technique. The XRD results showed that in both cases chromium is the main bulk chemical compound in both films. However, from XPS analysis of these surfaces, it was possible to determine that the most external layers of the films are made of different kinds of chromium compounds. The black chromium film has better optical properties to transform solar energy into thermal energy, and these properties remain practically constant even when heat treated to a high temperature, 400 C. On the other hand the white chromium film is a better substrate for hydrogen evolution reactions than the black one.

  4. Electrical and optical properties of nitrogen doped SnO2 thin films deposited on flexible substrates by magnetron sputtering

    International Nuclear Information System (INIS)

    Fang, Feng; Zhang, Yeyu; Wu, Xiaoqin; Shao, Qiyue; Xie, Zonghan

    2015-01-01

    Graphical abstract: The best SnO 2 :N TCO film: about 80% transmittance and 9.1 × 10 −4 Ω cm. - Highlights: • Nitrogen-doped tin oxide film was deposited on PET by RF-magnetron sputtering. • Effects of oxygen partial pressure on the properties of thin films were investigated. • For SnO 2 :N film, visible light transmittance was 80% and electrical resistivity was 9.1 × 10 −4 Ω cm. - Abstract: Nitrogen-doped tin oxide (SnO 2 :N) thin films were deposited on flexible polyethylene terephthalate (PET) substrates at room temperature by RF-magnetron sputtering. Effects of oxygen partial pressure (0–4%) on electrical and optical properties of thin films were investigated. Experimental results showed that SnO 2 :N films were amorphous state, and O/Sn ratios of SnO 2 :N films were deviated from the standard stoichiometry 2:1. Optical band gap of SnO 2 :N films increased from approximately 3.10 eV to 3.42 eV as oxygen partial pressure increased from 0% to 4%. For SnO 2 :N thin films deposited on PET, transmittance was about 80% in the visible light region. The best transparent conductive oxide (TCO) deposited on flexible PET substrates was SnO 2 :N thin films preparing at 2% oxygen partial pressure, the transmittance was about 80% and electrical conductivity was about 9.1 × 10 −4 Ω cm

  5. Morphology and transmittance of porous alumina on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo Peitao, E-mail: guopeitao@hotmail.com [Wuhan University of Technology. Wuhan (China); Xia Zhilin [Wuhan University of Technology. Wuhan (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Xiangtan (China); Xue Yiyu [Wuhan University of Technology. Wuhan (China); Huang Caihua [China Three Gorges University, Yichang (China); Zhao Lixin [Wuhan University of Technology. Wuhan (China)

    2011-02-01

    The porous optical film has higher threshold of laser-induced damage than densified films, for the study of mechanism of laser-induced damage of porous optical film with ordered pore structure. Porous anodic alumina (PAA) film with high transmittance on glass substrate has been prepared. Aluminum film was deposited on glass substrate by means of resistance and electron beam heat (EBH) evaporation. Porous alumina was prepared in oxalic acid solution under different anodizing conditions. At normal incidence, the optical transmittance spectrum over 300-1000 nm spectra region was obtained by spectrophotometer. SEM was introduced to analysis the morphology of the porous alumina film. The pore aperture increased with the increase of anodizing voltage, which resulted in a rapid decrease of the pore concentration and the optical thickness of porous alumina film. Damage morphology of porous alumina film is found to be typically defects initiated, and the defect is the pore presented on the film.

  6. The substrate matters in the Raman spectroscopy analysis of cells

    Science.gov (United States)

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R. T.

    2015-08-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  7. Microwave GaAs Integrated Circuits On Quartz Substrates

    Science.gov (United States)

    Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara

    1994-01-01

    Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.

  8. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    International Nuclear Information System (INIS)

    Tanaka, M; Katsuya, Y; Matsushita, Y

    2013-01-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe 2 O 4 and Fe 3 O 4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe 2+ /Fe 3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  9. MULTI-ZONE ANTIREFLECTION COATING ON A SUBSTRATE MADE OF OPTICAL ZINC SULPHIDE

    Directory of Open Access Journals (Sweden)

    T. D. Tan

    2014-01-01

    Full Text Available The paper deals with creation technique for a multi-zone antireflection coating on a substrate made of the optical zinc sulphide ZnS. The coating effectively operates simultaneously in the following spectral ranges: visible region of 450 - 700 nm, in the near infrared region of 1000 - 1100 nm, at the wavelength of 1.55 μm, and in the mid-infrared (IR spectrum of 3 - 5 microns. Reflection coefficient in the range of 450 - 700 nm is not more than 2%, in the range of 1000 - 1100 nm is less than 0.5%, in the range of 1500 - 1700 nm is close to 1.5% and in the range of 3 - 5 μm is equal to 0.6%. Analysis results of the deviation impact in the thickness of layers on the value changing of the energy reflection coefficient in the considered areas are given. Deviation in the thickness of the layer, contiguous with the air, is shown to have the greatest effect on the spectral characteristics of the obtained coating. Refractive index deviation for this layer influences the magnitude of the residual reflection.

  10. Highly oriented poly(di-n-alkylsilylene) films on oriented PTFE substrates

    NARCIS (Netherlands)

    Frey, H.H.; Frey, Holger; Sheiko, Sergej; Sheiko, S.; Moller, M.; Möller, Martin; Wittmann, Jean-Claude; Lot, Bernard

    1993-01-01

    Highly oriented polysilylene layers have potential applications in electrophotography, nonlinear optics, display fabrication, and microlithography. The preparation of such layers by crystallization on a highly oriented PTFE substrate is reported, and their assessment by optical birefringence,

  11. Channel surface plasmons in a continuous and flat graphene sheet

    Science.gov (United States)

    Chaves, A. J.; Peres, N. M. R.; da Costa, D. R.; Farias, G. A.

    2018-05-01

    We derive an integral equation describing surface-plasmon polaritons in graphene deposited on a substrate with a planar surface and a dielectric protrusion in the opposite surface of the dielectric slab. We show that the problem is mathematically equivalent to the solution of a Fredholm equation, which we solve exactly. In addition, we show that the dispersion relation of the channel surface plasmons is determined by the geometric parameters of the protrusion alone. We also show that such a system supports both even and odd modes. We give the electrostatic potential and the intensity plot of the electrostatic field, which clearly show the transverse localized nature of the surface plasmons in a continuous and flat graphene sheet.

  12. Crystals with an Open Wave-Vector Surface: Peculiarities of Reflection and Possibilities of Designing Flat Lenses

    International Nuclear Information System (INIS)

    Eritsyan, O. S.; Lalayan, A. A.; Arakelyan, O. M.; Papoyan, A. A.; Kostanyan, R. B.

    2010-01-01

    The frequency dependence of the reflection coefficient of MgF 2 crystal in the frequency range of 200-800 cm -1 at different orientations of the optical axis has been investigated. The experimental data are compared with the calculation results. This comparison confirms that the wave vectors for the extraordinary wave have an open surface. This makes it possible to focus a divergent beam refracted at a flat boundary ori- ented perpendicularly to the optical crystal axis. The focusing effect of a plane-parallel MgF 2 crystal plate is calculated.

  13. Long-range Rocky Flats utilization study

    International Nuclear Information System (INIS)

    1983-02-01

    The purpose of this Study was to provide information concerning the Rocky Flats Plant and its operations that will be useful to the Nation's decision-makers in determining the long-range future of the Plant. This Study was conducted under the premise that national defense policy must be supported and, accordingly, the capabilities at Rocky Flats must be maintained there or at some other location(s). The Study, therefore, makes no attempt to speculate on how possible future changes in national defense policy might affect decisions regarding the utilization of Rocky Flats. Factors pertinent to decisions regarding Rocky Flats, which are included in the Study, are: physical condition of the Plant and its vulnerabilities to natural phenomena; risks associated with plutonium to Plant workers and the public posed by postulated natural phenomena and operational accidents; identification of alternative actions regarding the future use of the Rocky Flats Plant with associated costs and time scales; local socioeconomic impacts if Rocky Flats operations were relocated; and potential for other uses if Rocky Flats facilities were vacated. The results of the tasks performed in support of this Study are summarized in the context of these five factors

  14. Weather resistance of inkjet prints on plastic substrates

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2015-06-01

    Full Text Available The development of wide format inkjet printers made the technology available for large area commercials. Outdoor advertising uses a wide range of substrate including paperboard, vinyl, canvas, mesh; the material of the substrate itself has to endure the physical and chemical effects of local weather. Weather elements (humidity, wind, solar irradiation degrade printed products inevitably; plastic products have better resistance against them, than paper based substrates. Service life of the printed product for outdoor application is a key parameter from the customer’s point of view. There are two ways to estimate expected lifetime: on site outdoor testing or laboratory testing. In both cases weathering parameters can be monitored, however laboratory testing devices may produce the desired environmental effects and thus accelerate the aging process. Our research objective was to evaluate the effects of artificial weathering on prints produced by inkjet technology on plastic substrates. We used a large format CMYK inkjet printer (Mutoh Rockhopper II, with Epson DX 4 print heads to print our test chart on two similar substrates (PVC coated tarpaulins with grammages 400 g/m2 and 440 g/m2. Specimen were aged in an Atlas Suntest XLS+ material tester device for equal time intervals. We measured and calculated the gradual changes of the optical properties (optical density, tone value, colour shifts of the test prints.

  15. Semiconductor-based, large-area, flexible, electronic devices on {110} oriented substrates

    Science.gov (United States)

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110} textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  16. Growth of pentacene on α -Al2O3 (0001) studied by in situ optical spectroscopy

    Science.gov (United States)

    Zhang, Lei; Fu, X.; Hohage, M.; Zeppenfeld, P.; Sun, L. D.

    2017-09-01

    The growth of pentacene thin films on a sapphire α -Al2O3 (0001) surface was investigated in situ using differential reflectance spectroscopy (DRS). Two different film structures are observed depending on the substrate temperature. If pentacene is deposited at room temperature, a wetting layer consisting of flat-lying molecules is formed after which upright-standing molecular layers with a herringbone structure start to grow. At low substrate temperature of 100 K, the long molecular axis of the pentacene molecules remains parallel to the surface plane throughout the entire growth regime up to rather large thicknesses. Heating thin films deposited at 100 K to room temperature causes the pentacene molecules beyond the wetting layer to stand up and assemble into a herringbone structure. Another interesting observation is the dewetting of the first flat-lying monolayer upon exposure to air, leading to the condensation of islands consisting of upright-standing molecules. Our results emphasize the interplay between growth kinetics and thermodynamics and its influence on the molecular orientation in organic thin films.

  17. Bent approximations to synchrotron radiation optics

    International Nuclear Information System (INIS)

    Heald, S.

    1981-01-01

    Ideal optical elements can be approximated by bending flats or cylinders. This paper considers the applications of these approximate optics to synchrotron radiation. Analytic and raytracing studies are used to compare their optical performance with the corresponding ideal elements. It is found that for many applications the performance is adequate, with the additional advantages of lower cost and greater flexibility. Particular emphasis is placed on obtaining the practical limitations on the use of the approximate elements in typical beamline configurations. Also considered are the possibilities for approximating very long length mirrors using segmented mirrors

  18. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2016-05-01

    Full Text Available In this study, Ga2O3-doped ZnO (GZO thin films were deposited on glass and flexible polyimide (PI substrates at room temperature (300 K, 373 K, and 473 K by the radio frequency (RF magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002 peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared.

  19. Trajectory Optimization for Differential Flat Systems

    OpenAIRE

    Kahina Louadj; Benjamas Panomruttanarug; Alexandre Carlos Brandao Ramos; Felix Mora-Camino

    2016-01-01

    International audience; The purpose of this communication is to investigate the applicability of Variational Calculus to the optimization of the operation of differentially flat systems. After introducingcharacteristic properties of differentially flat systems, the applicability of variational calculus to the optimization of flat output trajectories is displayed. Two illustrative examples are also presented.

  20. Athermalization of resonant optical devices via thermo-mechanical feedback

    Science.gov (United States)

    Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.

    2016-01-19

    A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.

  1. Label-Free Raman Hyperspectral Imaging of Single Cells Cultured on Polymer Substrates.

    Science.gov (United States)

    Sinjab, Faris; Sicilia, Giovanna; Shipp, Dustin W; Marlow, Maria; Notingher, Ioan

    2017-12-01

    While Raman hyperspectral imaging has been widely used for label-free mapping of biomolecules in cells, these measurements require the cells to be cultured on weakly Raman scattering substrates. However, many applications in biological sciences and engineering require the cells to be cultured on polymer substrates that often generate large Raman scattering signals. Here, we discuss the theoretical limits of the signal-to-noise ratio in the Raman spectra of cells in the presence of polymer signals and how optical aberrations may affect these measurements. We show that Raman spectra of cells cultured on polymer substrates can be obtained using automatic subtraction of the polymer signals and demonstrate the capabilities of these methods in two important applications: tissue engineering and in vitro toxicology screening of drugs. Apart from their scientific and technological importance, these applications are examples of the two most common measurement configurations: (1) cells cultured on an optically thick polymer substrate measured using an immersion/dipping objective; and (2) cells cultured on a transparent polymer substrate and measured using an inverted optical microscope. In these examples, we show that Raman hyperspectral data sets with sufficient quality can be successfully acquired to map the distribution of common biomolecules in cells, such as nucleic acids, proteins, and lipids, as well as detecting the early stages of apoptosis. We also discuss strategies for further improvements that could expand the application of Raman hyperspectral imaging on polymer substrates even further in biomedical sciences and engineering.

  2. Rocky Flats Compliance Program

    International Nuclear Information System (INIS)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE's strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP

  3. Effects of the substrate temperature on the properties of CuIn{sub 5}S{sub 8} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gannouni, M., E-mail: gm_mounir@yahoo.fr [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs - ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs - ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2011-10-01

    Structural, optical and electrical properties of CuIn{sub 5}S{sub 8} thin films grown by thermal evaporation have been studied relating the effects of substrate heating conditions of these properties. The CuIn{sub 5}S{sub 8} thin films were carried out at substrate temperatures in the temperature range 100-300 deg. C. The effects of heated substrate on their physico-chemical properties were investigated using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), optical transmission and hot probe method. X-ray diffraction revealed that the films are strong preferred orientation along the (3 1 1) plane upon substrate temperature 200 deg. C and amorphous for the substrate temperatures below 200 deg. C. No secondary phases are observed for all the films. The composition is greatly affected by heated substrate. From the optical transmission and reflection, an important absorption coefficient exceeds 10{sup 5} cm{sup -1} at 800 nm was found. As increasing the substrate temperature, the optical energy band gap decreases from 1.70 eV for the unheated films to 1.25 eV for the deposited films at 300 deg. C. It was found that CuIn{sub 5}S{sub 8} thin film is an n-type semiconductor at 250 deg. C.

  4. Performance of the APS optical slope measuring system

    International Nuclear Information System (INIS)

    Qian, Jun; Sullivan, Joe; Erdmann, Mark; Khounsary, Ali; Assoufid, Lahsen

    2013-01-01

    An optical slope measuring system (OSMS) was recently brought into operation at the Advanced Photon Source of the Argonne National Laboratory. This system is equipped with a precision autocollimator and a very accurate mirror-based pentaprism on a scanning stage and kept in an environment-controlled enclosure. This system has the capability to measure precision optics with sub-microradian rms slope errors as documented with a series of tests demonstrating accuracy, stability, reliability and repeatability. Measurements of a flat mirror with 0.2 μrad rms slope error are presented which show that the variation of the slope profile measurements with the mirror setting at different locations along the scanning direction is only 60 nrad and the corresponding height error profile has 2 nm rms. -- Highlights: ► This is the first time to present the APS OSMS in publication. ► The APS OSMS is capable to measure flat and near flat mirrors with slope error <100 nrad rms. ► The accuracy of the slope error measurements of a 350 mm long mirror is less than 60 nrad rms

  5. Compound semiconductor optical waveguide switch

    Science.gov (United States)

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  6. 49 CFR 231.6 - Flat cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified for...

  7. Real-time observation of growth and orientation of Sm-Ba-Cu-O phases on a Sm-211 whisker substrate by high-temperature optical microscopy

    Czech Academy of Sciences Publication Activity Database

    Sun, J.L.; Huang, Y.B.; Cheng, L.; Yao, X.; Lai, Y.J.; Jirsa, Miloš

    2009-01-01

    Roč. 9, č. 2 (2009), 898-902 ISSN 1528-7483 R&D Projects: GA ČR GA202/08/0722 Institutional research plan: CEZ:AV0Z10100520 Keywords : high-temperature optical microscopy * growth and orientation of Sm-Ba-Cu-O phases * Sm-211 whisker substrate Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.162, year: 2009

  8. Influence of Ni doping on phase transformation and optical properties of TiO2 films deposited on quartz substrates by sol-gel process

    International Nuclear Information System (INIS)

    Tian Jianjun; Deng Hongmei; Sun Lin; Kong Hui; Yang Pingxiong; Chu Junhao

    2012-01-01

    The Ni-doped TiO 2 films were synthesized on quartz substrates by the sol-gel method. Results from X-ray diffraction and Raman spectra indicate that Ni doping catalyzes the anatase-to-rutile transformation. When Ni content is up to 10 mol%, the transformation has been finished. The dielectric functions of Ni-doped TiO 2 films were extracted by fitting transmittance spectra according to the Adachi's dielectric function model. The optical band gap decreases from 3.64 eV to 3.51 eV with increasing Ni content. The results suggest that the acceleration of phase change and variation of optical properties may be related to defects due to Ni doping.

  9. Silicon-integrated thin-film structure for electro-optic applications

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  10. Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies

    Science.gov (United States)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.

  11. Influence of substrate on structural, morphological and optical ...

    Indian Academy of Sciences (India)

    Administrator

    differences in crystallite sizes, microstrain and texture coefficient with respect to the employed substrates. The morphology of ... perties of ZnO thin films, the real effect on the structural ... related to the piezoelectric property, which is an impor- tant issue on ..... ceramics (New York: Springer Berlin Heidelberg) 2nd edn. Bai S N ...

  12. The substrate effect in electron energy-loss spectroscopy of localized surface plasmons in gold and silver nanoparticles

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Christensen, Thomas; Beleggia, Marco

    2017-01-01

    , as in optical measurements, the substrate material can modify the acquired signal. Here, we have investigated how the EELS signal recorded from supported silver and gold spheroidal nanoparticles at different electron beam impact parameter positions is affected by the choice of a dielectric substrate material...... and thickness. Consistent with previous optical studies, the presence of a dielectric substrate is found to redshift localized surface plasmons, increase their line-widths, and lead to increased prominence of higher order modes. The extent of these modifications heightens with increasing substrate permittivity...

  13. Silica-on-silicon optical couplers and coupler based optical filters

    DEFF Research Database (Denmark)

    Leick, Lasse

    2002-01-01

    is not an adequate description of the waveguides. A simple application for an optical couplers is as a 980/1550 nm mulitmplexer for erbium doped wavguide amplifiers. A numerical analysis shows that a directional coupler has acceptable specifications, whereas a mulit mode interference coupler does not. The wavelength......This work concerns modeling and chracterization of non ampligying silica-on-silicon optical components for wavelength division mulitplexed networks. Emphasis is placed on optical couplers and how they can be used as building blocks for devices with a larger complexity. It has been investigated how...... to construct wavelength flattened and process tolerant couplers. A thorough comparison between directional couplers, multi mode interference couplers and interferometer-based couplers has been performed. Numerically all these architectures have the ability to obtain similar wavelength-flatness, but the multi...

  14. Self-organized, effective medium black silicon antireflection structures for silicon optics in the mid-infrared

    Science.gov (United States)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    Thanks to its high quality and low cost, silicon is the material of choice for optical devices operating in the mid-infrared (MIR; 2 μm to 6 μm wavelength). Unfortunately in this spectral region, the refractive index is comparably high (about 3.5) and leads to severe reflection losses of about 30% per interface. In this work, we demonstrate that self-organized, statistical Black Silicon structures, fabricated by Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE), can be used to effectively suppress interface reflection. More importantly, it is shown that antireflection can be achieved in an image-preserving, non-scattering way. This enables Black Silicon antireflection structures (ARS) for imaging applications in the MIR. It is demonstrated that specular transmittances of 97% can be easily achieved on both flat and curved substrates, e.g. lenses. Moreover, by a combined optical and morphological analysis of a multitude of different Black Silicon ARS, an effective medium criterion for the examined structures is derived that can also be used as a design rule for maximizing sample transmittance in a desired wavelength range. In addition, we show that the mechanical durability of the structures can be greatly enhanced by coating with hard dielectric materials like diamond-like carbon (DLC), hence enabling practical applications. Finally, the distinct advantages of statistical Black Silicon ARS over conventional AR layer stacks are discussed: simple applicability to topological substrates, absence of thermal stress and cost-effectiveness.

  15. Optical properties of a-plane (Al, Ga)N/GaN multiple quantum wells grown on strain engineered Zn1-xMgxO layers by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Xia, Y.; Vinter, B.; Chauveau, J.-M.; Brault, J.; Nemoz, M.; Teisseire, M.; Leroux, M.

    2011-01-01

    Nonpolar (1120) Al 0.2 Ga 0.8 N/GaN multiple quantum wells (MQWs) have been grown by molecular beam epitaxy on (1120) Zn 0.74 Mg 0.26 O templates on r-plane sapphire substrates. The quantum wells exhibit well-resolved photoluminescence peaks in the ultra-violet region, and no sign of quantum confined Stark effect is observed in the complete multiple quantum well series. The results agree well with flat band quantum well calculations. Furthermore, we show that the MQW structures are strongly polarized along the [0001] direction. The origin of the polarization is discussed in terms of the strain anisotropy dependence of the exciton optical oscillator strengths.

  16. Spectral and optical performance of electrochromic poly(3,4-ethylenedioxythiophene) (PEDOT) deposited on transparent conducting oxide coated glass and polymer substrates

    International Nuclear Information System (INIS)

    Sindhu, S.; Narasimha Rao, K.; Ahuja, Sharath; Kumar, Anil; Gopal, E.S.R.

    2006-01-01

    Electrochromic devices utilizing conjugated polymers as electrochromic layers have gained increasing attention owing to their optical properties, fast switching times and contrast ratios. Polyethylenedioxythiophene (PEDOT) is an excellent material from its electrochromic properties, high conductivity and high stability in the doped form. Aqueous dispersions of PEDOT were either spin coated or electro-polymerized on transparent conducting oxide coated glass and polyethylene tetraphthalate (PET) film substrates. The spectro- and opto-electrochemical studies of the films on transparent conducting oxide coated glass/PET substrates were performed. These films have application in the fabrication of electrochromic windows (smart windows). Smart window devices having excellent switching characteristics over wide range of temperature are used for glazing applications. The aerospace industry is interested in the development of visors and windows that can control glare for pilots and passengers, especially if the coatings can be made on curved surfaces and electrically conducting

  17. Effect of substrate temperature on structural and optical properties of nitrogen doped SnO2 thin film

    International Nuclear Information System (INIS)

    Thakur, Anup; Kumar, Varinder; Kang, Se Jun; Lee, Ik-Jae; Gautam, Sanjeev; Chae, K. H.; Shin, Hyun Joon

    2014-01-01

    Nitrogen doped SnO 2 thin films (thickness ∼ 250 nm) were deposited at different substrate temperature by radio frequency (rf) sputtering method. Crystal structure, morphology and optical properties of these films were investigated by x-ray diffraction (XRD), atomic force microscopy (AFM) and UV-VIS-NIR spectrophotometer, respectively. XRD measurement suggests that the film deposited at room temperature was amorphous in nature and films deposited at higher temperature were crystalline in nature. The film deposited at RT and 200 °C have transparency more than 90% in visible region but the film deposited at 400 °C has lesser transparency. Red shift was observed in the absorption edge may be due to decrease in ionicity due to the formation of the Sn-N bond

  18. Effect of Ag film thickness on the optical and the electrical properties in CuAlO2/Ag/CuAlO2 multilayer films grown on glass substrates

    International Nuclear Information System (INIS)

    Oh, Dohyun; No, Young Soo; Kim, Su Youn; Cho, Woon Jo; Kwack, Kae Dal; Kim, Tae Whan

    2011-01-01

    Research highlights: The CuAlO 2 /Ag/CuAlO 2 multilayer films were grown on glass substrates using radio-frequency magnetron sputtering at room temperature. Effects of Ag film thickness on the optical and the electrical properties in CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates were investigated. X-ray diffraction patterns showed that the phase of the CuAlO 2 layer was amorphous. Atomic force microscopy images showed that Ag films with a thickness of a few nanometers had island structures. The morphology Ag films with a thickness of 8 nm was uniform. The morphology of the Ag films inserted in the CuAlO 2 films significantly affected the optical transmittance and the resistivity of the CuAlO 2 films deposited on glass substrates. The maximum transmittance of the CuAlO 2 /Ag/CuAlO 2 multilayer films with a thickness of 8 nm was 89.16%. The resistivity of the CuAlO 2 /Ag/CuAlO 2 multilayer films with an Ag film thickness of 18 nm was as small as about 2.8 x 10 -5 Ω cm. The resistivity of the CuAlO 2 /Ag/CuAlO 2 multilayer films was decreased as a result of the thermal annealing treatment. These results indicate that CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates hold promise for potential applications as TCO films in solar cells. - Abstract: Effects of Ag film thickness on the optical and the electrical properties in CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates were investigated. Atomic force microscopy images showed that Ag films with a thickness of a few nanometers had island structures. X-ray diffraction patterns showed that the phase of the CuAlO 2 layer was amorphous. The resistivity of the 40 nm-CuAlO 2 /18 nm-Ag/40 nm-CuAlO 2 multilayer films was 2.8 x 10 -5 Ω cm, and the transmittance of the multilayer films with an Ag film thickness of 8 nm was approximately 89.16%. These results indicate that CuAlO 2 /Ag/CuAlO 2 multilayer films grown on glass substrates hold promise for potential applications as

  19. Fabrication of non-hexagonal close packed colloidal array on a substrate by transfer

    Science.gov (United States)

    Banik, Meneka; Mukherjee, Rabibrata

    Self-organized colloidal arrays find application in fabrication of solar cells with advanced light management strategies. We report a simple spincoating based approach for fabricating two dimensional colloidal crystals with hexagonal and non-hexagonal close packed assembly on flat and nanopatterned substrates. The non-HCP arrays were fabricated by spin coating the particles onto soft lithographically fabricated substrates. The substrate patterns impose directionality to the particles by confining them within the grooves. We have developed a technique by which the HCP and non-HCP arrays can be transferred to any surface. For this purpose the colloidal arrays were fabricated on a UV degradable PMMA layer, resulting in transfer of the particles on UV exposure. This allows the colloidal structures to be transported across substrates irrespective of their surface energy, wettability or morphology. Since the particles are transferred without exposing it to any kind of chemical or thermal environment, it can be utilized for placing particles on top of thin film solar cells for improving their absorption efficiency.

  20. Optical properties of gold island films-a spectroscopic ellipsometry study

    Energy Technology Data Exchange (ETDEWEB)

    Loncaric, Martin, E-mail: mloncaric@irb.hr; Sancho-Parramon, Jordi; Zorc, Hrvoje

    2011-02-28

    Metal island films of noble metals are obtained by deposition on glass substrates during the first stage of evaporation process when supported metal nanoparticles are formed. These films show unique optical properties, owing to the localized surface plasmon resonance of free electrons in metal nanoparticles. In the present work we study the optical properties of gold metal island films deposited on glass substrates with different mass thicknesses at different substrate temperatures. The optical characterization is performed by spectroscopic ellipsometry at different angles of incidence and transmittance measurements at normal incidence in the same point of the sample. Fitting of the ellipsometric data allows determining the effective optical constants and thickness of the island film. A multiple oscillator approach was used to successfully represent the dispersion of the effective optical constants of the films.

  1. Preparation of surface enhanced Raman substrate and its characterization

    Science.gov (United States)

    Liu, Y.; Wang, J. Y.; Wang, J. Q.

    2017-10-01

    Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.

  2. Flat-roof phenomenon of dynamic equilibrium phase in the negative bias temperature instability effect on a power MOSFET

    International Nuclear Information System (INIS)

    Zhang Yue; Zhuo Qing-Qing; Liu Hong-Xia; Ma Xiao-Hua; Hao Yue

    2014-01-01

    The effect of the static negative bias temperature (NBT) stress on a p-channel power metal—oxide—semiconductor field-effect transistor (MOSFET) is investigated by experiment and simulation. The time evolution of the negative bias temperature instability (NBTI) degradation has the trend predicted by the reaction—diffusion (R—D) model but with an exaggerated time scale. The phenomena of the flat-roof section are observed under various stress conditions, which can be considered as the dynamic equilibrium phase in the R—D process. Based on the simulated results, the variation of the flat-roof section with the stress condition can be explained. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ficek, M.; Sobaszek, M.; Gnyba, M. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Ryl, J. [Department of Electrochemistry, Corrosion and Material Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk (Poland); Gołuński, Ł. [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Smietana, M.; Jasiński, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw (Poland); Caban, P. [Institute of Electronic Materials Technology, 133 Wolczynska St., 01-919 Warsaw (Poland); Bogdanowicz, R., E-mail: rbogdan@eti.pg.gda.pl [Department of Metrology and Optoelectronics, Gdansk University of Technology, 11/12G. Narutowicza St., 80-233 Gdansk (Poland); Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-11-30

    Highlights: • Growth of 60% of transmittance diamond films with resistivity as low as 48 Ω cm. • Two step seeding process of fused silica: plasma hydrogenation and wet seeding. • Nanodiamond seeding density of 2 × 10{sup 10} cm{sup −2} at fused silica substrates. • High refractive index (2.4 @550 nm) was achieved for BDD films deposited at 500 °C. - Abstract: This paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density. First, the substrates undergo the hydrogen plasma treatment then spin-coating seeding using a dispersion consisting of detonation nanodiamond in dimethyl sulfoxide with polyvinyl alcohol was applied. Such an approach results in seeding density of 2 × 10{sup 10} cm{sup −2}. The scanning electron microscopy images showed homogenous, continuous and polycrystalline surface morphology with minimal grain size of 200 nm for highly boron doped films. The sp{sup 3}/sp{sup 2} ratio was calculated using Raman spectra deconvolution method. A high refractive index (range of 2.0–2.4 @550 nm) was achieved for BDD films deposited at 500 °C. The values of extinction coefficient were below 0.1 at λ = 550 nm, indicating low absorption of the film. The fabricated BDD thin films displayed resistivity below 48 Ohm cm and transmittance over 60% in the visible wavelength range.

  4. In-Fiber Subpicosecond Pulse Shaping for Nonlinear Optical Telecommunication Data Processing at 640 Gbit/s

    Directory of Open Access Journals (Sweden)

    J. Azaña

    2012-01-01

    Full Text Available We review recent work on all-fiber (long-period fiber grating devices for optical pulse shaping, particularly flat-top pulse generation, down to the subpicosecond range and their application for nonlinear switching (demultiplexing of optical time-division multiplexed (OTDM data signals in fiber-optic telecommunication links operating up to 640 Gbit/s. Experiments are presented demonstrating error-free 640-to-10 Gbit/s demultiplexing of the 64 tributary channels using the generated flat-top pulses for temporal gating in a Kerr-effect-based nonlinear optical loop mirror. The use of flat-top pulses has critical benefits in the demultiplexing process, including a significantly increased timing-jitter tolerance (up to ~500 fs, i.e., 30% of the bit period and the associated improvement in the bit-error-rate performance (e.g., with a sensitivity increase of up to ~13 dB as compared with the use of Gaussian-like gating pulses. Long-period fiber grating pulse shapers with reduced polarization dependence are fabricated and successfully used for polarization-independent 640-to-10 Gbit/s demultiplexing experiments.

  5. Micromirror Arrays for Adaptive Optics; TOPICAL

    International Nuclear Information System (INIS)

    Carr, E.J.

    2000-01-01

    The long-range goal of this project is to develop the optical and mechanical design of a micromirror array for adaptive optics that will meet the following criteria: flat mirror surface ((lambda)/20), high fill factor ( and gt; 95%), large stroke (5-10(micro)m), and pixel size(approx)-200(micro)m. This will be accomplished by optimizing the mirror surface and actuators independently and then combining them using bonding technologies that are currently being developed

  6. Carrier for registration of optical images and holographic information

    International Nuclear Information System (INIS)

    Andries, A.; Bivol, V.; Iovu, M.

    2000-01-01

    The invention relates to the field of registration of optical information including the holographic one and may be used in the holography, cinematography, micro- and optical electronics, computer engineering. Summary of the invention consists in, that in the carrier containing a dielectric substrate on which there are placed in sequence the first electrode, photoinjection substrate, registration substrate of the chalcogenide vitreous semiconductor and the second electrode, the photoinjection substrate is fabricated of the monocrystalline germanium of the n-type conductivity and the relation of the registration substrate conductivity, during illumination to the photoinjection substrate conductivity in darkness is 0,001. The technical result consists in increasing the carrier photosensibility and in diffraction effectiveness of the information registered on the carrier

  7. Exact piecewise flat gravitational waves

    NARCIS (Netherlands)

    van de Meent, M.

    2011-01-01

    We generalize our previous linear result (van de Meent 2011 Class. Quantum Grav 28 075005) in obtaining gravitational waves from our piecewise flat model for gravity in 3+1 dimensions to exact piecewise flat configurations describing exact planar gravitational waves. We show explicitly how to

  8. CW substrate-free metal-cavity surface microemitters at 300 K

    International Nuclear Information System (INIS)

    Lu, Chien-Yao; Chang, Shu-Wei; Chuang, Shun Lien; Germann, Tim D; Pohl, Udo W; Bimberg, Dieter

    2011-01-01

    In this paper substrate-free metal-cavity surface microemitters are demonstrated. The optical cavity is formed by a metal reflector, metal-surrounded sidewall and n-doped distributed-Bragg reflector, which provides optical feedback and carrier injection. We describe a simple design principle with the modal properties modified by geometry and metal-insulator cladding. Both resonant cavity light-emitting diodes (1.85 µm diameter and 0.6 µm height) and lasers (2.0 µm diameter and 2.5 µm height) are successfully fabricated and characterized. These two types of devices operate at room temperature under continuous-wave (CW) operation. Since the devices are substrate-free, they can be bonded to any substrates. From the threshold currents of the lasers, we obtain a high characteristic temperature of 425 K in the range of 10–27 °C. We also discuss a general approach to improve the diffraction from small-aperture devices

  9. A wideband optical monitor for a planetary-rotation coating-system

    International Nuclear Information System (INIS)

    Campanelli, M.B.; Smith, D.J.

    1998-01-01

    A substrate-specific, through-planet, wideband optical coating monitor is being developed to increase production yield and the understanding of physical vapor deposition (PVD) coatings fabricated in the Optical Manufacturing Laboratory at the University of Rochester's Laboratory for Laser Energetics. In-situ wideband optical monitoring of planetary rotation systems allows direct monitoring of large, expensive substrates with complex layering schemes. The optical monitor discussed here is under development for coating several large (e.g., 80.7 x 41.7 x 9.0 cm) polarizers for the National Ignition Facility. Wideband optical monitoring of the production substrates is used in concert with an array of crystal monitors for process control, film parameter evaluation, and error detection with associated design reoptimization. The geometry of a planetary rotation system, which produces good uniformity across large substrates, makes optical monitoring more difficult. Triggering and timing techniques for data acquisition become key to the process because the optical coating is available only intermittently for monitoring. Failure to properly consider the effects of the system dynamics during data retrieval and processing may result in significant decreases in the spectral data's reliability. Improved data accuracy allows better determination of film thicknesses, indices, and inhomogeneities and enables in-situ error detection for design reoptimization

  10. Successful closure of treatment-naïve, flat edge (Type II, full-thickness macular hole using inverted internal limiting membrane flap technique

    Directory of Open Access Journals (Sweden)

    Hussain N

    2016-10-01

    Full Text Available Nazimul Hussain,1 Anjli Hussain2 1Department of Ophthalmology, Al Zahra Hospital, 2Al Zahra Medical Center, Dubai, United Arab Emirates Objective: The objective of this study was to present the outcome of the internal limiting membrane (ILM peeling flap technique for a treatment-naïve, flat edge (Type II, full-thickness macular hole (MH. Methods: A 52-year-old man presented with complaints of decreased vision and seeing black spot. He was diagnosed to have a flat edge, full-thickness MH, which was confirmed by optical coherence tomography (OCT. He underwent 23G vitrectomy with brilliant blue G-assisted inverted ILM peeling with an inverted flap over the hole followed by fluid gas exchange. Results: Postoperative follow-up until 3 months showed successful closure of the MH, which was confirmed by OCT. The best-corrected visual acuity improved from baseline 6/60 to 6/12 at the final follow-up. Conclusion: Using the inverted ILM flap technique, a treatment-naïve, flat edge (Type II, full thickness MH achieved successful anatomical and functional outcomes. Keywords: macular hole, inverted ILM, optical coherence tomography

  11. Exact optics - III. Schwarzschild's spectrograph camera revised

    Science.gov (United States)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  12. Flat-panel electronic displays: a triumph of physics, chemistry and engineering.

    Science.gov (United States)

    Hilsum, Cyril

    2010-03-13

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III-V or II-VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X-Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs.

  13. Rigidity of generalized Bach-flat vacuum static spaces

    Science.gov (United States)

    Yun, Gabjin; Hwang, Seungsu

    2017-11-01

    In this paper, we study the structure of generalized Bach-flat vacuum static spaces. Generalized Bach-flat metrics are considered as extensions of both Einstein and Bach-flat metrics. First, we prove that a compact Riemannian n-manifold with n ≥ 4 which is a generalized Bach-flat vacuum static space is Einstein. A generalized Bach-flat vacuum static space with the potential function f having compact level sets is either Ricci-flat or a warped product with zero scalar curvature when n ≥ 5, and when n = 4, it is Einstein if f has its minimum. Secondly, we consider critical metrics for another quadratic curvature functional involving the Ricci tensor, and prove similar results. Lastly, by applying the technique developed above, we prove Besse conjecture when the manifold is generalized Bach-flat.

  14. Controlling the interparticle spacing of Au-salt loaded micelles and Au nanoparticles on flat surfaces.

    Science.gov (United States)

    Bansmann, J; Kielbassa, S; Hoster, H; Weigl, F; Boyen, H G; Wiedwald, U; Ziemann, P; Behm, R J

    2007-09-25

    The self-organization of diblock copolymers into micellar structures in an appropriate solvent allows the deposition of well ordered arrays of pure metal and alloy nanoparticles on flat surfaces with narrow distributions in particle size and interparticle spacing. Here we investigated the influence of the materials (substrate and polymer) and deposition parameters (temperature and emersion velocity) on the deposition of metal salt loaded micelles by dip-coating from solution and on the order and inter-particle spacing of the micellar deposits and thus of the metal nanoparticle arrays resulting after plasma removal of the polymer shell. For identical substrate and polymer, variation of the process parameters temperature and emersion velocity enables the controlled modification of the interparticle distance within a certain length regime. Moreover, also the degree of hexagonal order of the final array depends sensitively on these parameters.

  15. The adaptation of methods in multilayer optics for the calculation of specular neutron reflection

    International Nuclear Information System (INIS)

    Penfold, J.

    1988-10-01

    The adaptation of standard methods in multilayer optics to the calculation of specular neutron reflection is described. Their application is illustrated with examples which include a glass optical flat and a deuterated Langmuir-Blodgett film. (author)

  16. Accurate Measurement of the Optical Constants n and k for a Series of 57 Inorganic and Organic Liquids for Optical Modeling and Detection.

    Science.gov (United States)

    Myers, Tanya L; Tonkyn, Russell G; Danby, Tyler O; Taubman, Matthew S; Bernacki, Bruce E; Birnbaum, Jerome C; Sharpe, Steven W; Johnson, Timothy J

    2018-04-01

    For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties that include chemical structure, optical band strength, volatility, and viscosity. By obtaining the optical constants, one can model most optical phenomena in media and at interfaces including reflection, refraction, and dispersion. Based on the works of others, we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organic, and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for dimethyl methylphosphonate (DMMP) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.

  17. Effects of Gold Substrates on the Intrinsic and Extrinsic Activity of High-Loading Nickel-Based Oxyhydroxide Oxygen Evolution Catalysts

    DEFF Research Database (Denmark)

    Chakthranont, Pongkarn; Kibsgaard, Jakob; Gallo, Alessandro

    2017-01-01

    We systematically investigate the effects of Au substrates on the oxygen evolution activities of cathodically electrodeposited nickel oxyhydroxide (NiOOH), nickel–iron oxyhydroxide (NiFeOOH), and nickel–cerium oxyhydroxide (NiCeOOH) at varying loadings from 0 to 2000 nmol of metal/cm2. We determi...... high geometric current densities on flat substrates. By investigating the mass and site specific activities as a function of loading, we bridge the practical geometric activity to the fundamental intrinsic activity....

  18. AlGaN/GaN HEMT structures on ammono bulk GaN substrate

    International Nuclear Information System (INIS)

    Kruszewski, P; Prystawko, P; Krysko, M; Smalc-Koziorowska, J; Leszczynski, M; Kasalynas, I; Nowakowska-Siwinska, A; Plesiewicz, J; Dwilinski, R; Zajac, M; Kucharski, R

    2014-01-01

    The work shows a successful fabrication of AlGaN/GaN high electron mobility transistor (HEMT) structures on the bulk GaN substrate grown by ammonothermal method providing an ultralow dislocation density of 10 4  cm −2  and wafers of size up to 2 inches in diameter. The AlGaN layers grown by metalorganic chemical vapor phase epitaxy method demonstrate atomically smooth surface, flat interfaces with reproduced low dislocation density as in the substrate. The test electronic devices—Schottky diodes and transistors—were designed without surface passivation and were successfully fabricated using mask-less laser-based photolithography procedures. The Schottky barrier devices demonstrate exceptionally low reverse currents smaller by a few orders of magnitude in comparison to the Schottky diodes made of AlGaN/GaN HEMT on sapphire substrate. (paper)

  19. Microstructure of nitrides grown on inclined c-plane sapphire and SiC substrate

    International Nuclear Information System (INIS)

    Imura, M.; Honshio, A.; Miyake, Y.; Nakano, K.; Tsuchiya, N.; Tsuda, M.; Okadome, Y.; Balakrishnan, K.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I.

    2006-01-01

    High-quality (112-bar 0) GaN layers with atomically flat surface have been grown on a precisely offset-angle-controlled (11-bar 02) sapphire substrate by metal-organic vapor phase epitaxy (MOVPE). Insertion of AlGaN layer between underlying AlN layer and GaN was found to improve crystalline quality of upper GaN layer. In addition, a combination of high growth condition followed and epitaxial lateral overgrowth has been employed for the growth of GaN and this helped in reducing the dislocation density in the resultant layers. GaN and AlN were grown on (303-bar 8) SiC substrates by MOVPE and sublimation methods, respectively. The crystal orientation of GaN and AlN could be just aligned to that of the substrate. Microstructure analysis of the layers was also carried out by transmission electron microscopy

  20. Microstructure, electrical and optical characteristics of Mg(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} thin films grown on Si substrate by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Ching-Fang, E-mail: cftseng@nuu.edu.tw; Chen, Wen-Shiush; Lee, Chih-Wen

    2011-05-31

    Optical properties and microstructures of Mg(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} thin films prepared by sol-gel method on n-type Si(100) substrates at different annealing temperatures have been investigated. The surface structural and morphological characteristics analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscope (AFM) were found to be sensitive to the deposition conditions, such as annealing temperature (600-800 deg. C). The optical transmittance spectra of the Mg(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} thin films were measured by using UV-visible recording spectro-photometer. The diffraction pattern showed that the deposited films exhibited a polycrystalline microstructure. All films exhibited Mg(Zr{sub 0.05}Ti{sub 0.95})O{sub 3} peaks orientation perpendicular to the substrate surface and the grain size with the increase in the annealing temperature. The dependence of the microstructure and dielectric characteristics on annealing temperature was also investigated.

  1. Individual energy savings for individual flats in blocks of flats

    DEFF Research Database (Denmark)

    Nielsen, Anker; Rose, Jørgen

    2014-01-01

    and 1980. Normally, we expect the reduction in energy consumption to be around 20% for a 2 °C lower temperature, but for an inner flat the reduction can be up to 71%. The owners of the adjoining flats get an increase in energy demand of 10 to 20% each. They will not be able to figure out whether...... this is because the neighbour maintains a low temperature or the fact that they maintain a higher temperature. The best solution is to keep your own indoor temperature low. We can also turn the problem around: if you maintain a higher temperature than your neighbours, then you will pay part of their heating bill....

  2. Properties of nickel films growth by radio frequency magnetron sputtering at elevated substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Muslim, Noormariah, E-mail: 14h8702@ubd.edu.bn [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam); Soon, Ying Woan [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam); Physical and Geological Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam); Lim, Chee Ming; Voo, Nyuk Yoong [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam)

    2016-08-01

    Pure nickel (Ni) thin films of thicknesses of 100 nm were deposited on glass substrates by radio frequency magnetron sputtering at a power of 100 W and at various substrate temperatures i.e., room temperature, 100, 200, and 300 °C. The crystalline structure, surface topography, surface morphology, electrical resistivity, and optical properties of the deposited films were studied. The properties of the Ni films could be controlled by altering the substrate temperature. Specifically, the films featured a face-centered cubic crystalline structure with predominant (111) crystallite orientation at all the substrate temperatures employed, as observed from the X-ray diffraction analysis. Films deposited at substrate temperatures greater than 200 °C additionally displayed crystalline (200) and (220) diffraction peaks. The surface morphology analysis revealed that the grain size of the Ni thin films increased with increasing substrate temperatures employed. This increase was accompanied with a decrease in the resistivity of the Ni films. The surface roughness of the films increased with increasing substrate temperatures employed, as observed from the atomic force microscopy analysis. - Highlights: • RF magnetron sputtering is a good alternative method to deposit Ni films. • Properties of Ni films could be controlled simply by tuning substrate temperatures. • Crystallite size and surface roughness increased with substrate temperatures. • Electrical resistivity reduced with increasing substrate temperatures. • Optical properties also changed with substrate temperatures.

  3. Flat dielectric metasurface lens array for three dimensional integral imaging

    Science.gov (United States)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  4. Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics.

    Science.gov (United States)

    Languy, Fabian; Habraken, Serge

    2011-07-15

    Solar concentrators made of a single refractive primary optics are limited to a concentration ratio of about 1000× [Opt. Express 19, A280 (2011)], due only to longitudinal chromatic aberration, while mirrors are limited to ∼46,000× by the angular size of the Sun. To reduce the chromatic aberration while keeping cost-effective systems for concentrated photovoltaics, a study of four different kinds of flat Fresnel doublets made of polycarbonates and polymethyl methacrylate is presented. It reveals that Fresnel doublets may have fewer optical losses than non-Fresnel doublets, with a lower lateral chromatic split allowing for even higher concentration ratio. © 2011 Optical Society of America

  5. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates

    International Nuclear Information System (INIS)

    Yu, Ying; Zhan, Qingfeng; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Wang, Baomin; Li, Run-Wei; Wei, Jinwu; Wang, Jianbo; Xie, Shuhong

    2015-01-01

    Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices

  6. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates

    Science.gov (United States)

    Yu, Ying; Zhan, Qingfeng; Wei, Jinwu; Wang, Jianbo; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Xie, Shuhong; Wang, Baomin; Li, Run-Wei

    2015-04-01

    Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices.

  7. F2-laser patterning of indium tin oxide (ITO) thin film on glass substrate

    International Nuclear Information System (INIS)

    Xu, M.Y.; Li, J.; Herman, P.R.; Lilge, L.D.

    2006-01-01

    This paper reports the controlled micromachining of 100 nm thick indium tin oxide (ITO) thin films on glass substrates with a vacuum-ultraviolet 157 nm F 2 laser. Partial to complete film removal was observed over a wide fluence window from 0.49 J/cm 2 to an optimized single pulse fluence of 4.5 J/cm 2 for complete film removal. Optical microscopy, atomic force microscopy, and energy dispersive X-ray analysis show little substrate or collateral damage by the laser pulse which conserved the stoichiometry, optical transparency and electrical conductivity of ITO coating adjacent to the trenches. At higher fluence, a parallel micron sized channel can be etched in the glass substrate. The high photon energy and top-hat beam homogenized optical system of the F 2 laser opens new means for direct structuring of electrodes and microchannels in biological microfluidic systems or in optoelectronics. (orig.)

  8. Harmonic manifolds with minimal horospheres are flat

    Indian Academy of Sciences (India)

    Abstract. In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting ...

  9. Harmonic Manifolds with Minimal Horospheres are Flat

    Indian Academy of Sciences (India)

    In this note we reprove the known theorem: Harmonic manifolds with minimal horospheres are flat. It turns out that our proof is simpler and more direct than the original one. We also reprove the theorem: Ricci flat harmonic manifolds are flat, which is generally affirmed by appealing to Cheeger–Gromov splitting theorem.

  10. Near-field enhanced optical tweezers utilizing femtosecond-laser nanostructured substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kotsifaki, D. G., E-mail: dkotsif@eie.gr; Kandyla, M. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vasileos Constantinou Avenue, 11635 Athens (Greece); Lagoudakis, P. G. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-11-23

    We present experimental evidence of plasmonic-enhanced optical tweezers, of polystyrene beads in deionized water in the vicinity of metal-coated nanostructures. The optical tweezers operate with a continuous wave near-infrared laser. We employ a Cu/Au bilayer that significantly improves dissipation of heat generated by the trapping laser beam and avoid de-trapping from heat convection currents. We investigate the improvement of the optical trapping force and the effective trapping quality factor, and observe an exponential distance dependence of the trapping force from the nanostructures, indicative of evanescent plasmonic enhancement.

  11. High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates

    OpenAIRE

    Neto, Ana I.; Custódio, Catarina A.; Wenlong Song; Mano, J. F.

    2011-01-01

    We propose a new low cost platform for high-throughput analysis that permits screening the biological performance of independent combinations of biomaterials, cells and culture media. Patterned superhydrophobic flat substrates with controlled wettable spots are used to produce microarray chips for accelerated multiplexing evaluation. This work was partially supported by Fundação para a Ciência e Tecnologia (FCT) under project PTDC/FIS/68517/2006.

  12. Optical behaviour of sprayed tin sulphide thin films

    International Nuclear Information System (INIS)

    Reddy, N. Koteeswara; Reddy, K.T. Ramakrishna

    2006-01-01

    SnS films have been grown by spray pyrolysis technique on Corning 7059 glass substrates at different substrate temperatures that vary in the range of 100-450deg. C, keeping the other deposition parameters constant. The optical properties of the films were systematically studied using the optical transmittance and reflectance data. The optical absorption coefficient and optical energy band gap of the films were evaluated. The variation of refractive index and extinction coefficient with photon energy for the films grown at different temperatures were studied. The SnS films grown at the substrate temperature range 300-375deg. C, were showed an absorption coefficient >10 4 cm -1 with the energy band gap 1.32eV, measured at room temperature. For these films, the material properties such as the dielectric constants (n, n 0 , k, ε 0 and ε ∞ ), plasma frequency (ω p ), hole effective mass (m h *) and carrier density (N opt ) were also evaluated

  13. Study on the electrical and optical properties of Ag/Al-doped ZnO coatings deposited by electron beam evaporation

    International Nuclear Information System (INIS)

    Sahu, D.R.; Lin, S.-Y.; Huang, J.-L.

    2007-01-01

    A layer of silver was deposited onto the surface of glass substrates, coated with AZO (Al-doped ZnO), to form Ag/AZO film structures, using e-beam evaporation techniques. The electrical and optical properties of AZO, Ag and Ag/AZO film structures were studied. The deposition of Ag layer on the surface of AZO films resulted in lowering the effective electrical resistivity with a slight reduction of their optical transmittance. Ag (11 nm)/AZO (25 nm) film structure, with an accuracy of ±0.5 nm for the thickness shows a sheet resistance as low as 5.6 ± 0.5 Ω/sq and a transmittance of about 66 ± 2%. A coating consisting of AZO (25 nm)/Ag (11 nm)/AZO (25 nm) trilayer structure, exhibits a resistance of 7.7 ± 0.5 Ω/sq and a high transmittance of 85 ± 2%. The coatings have satisfactory properties of low resistance, high transmittance and highest figure of merit for application in optoelectronics devices including flat displays, thin films transistors and solar cells as transparent conductive electrodes

  14. Transient behaviors of ZnO thin films on a transparent, flexible polyethylene terephthalate substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jun [Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of); Lee, Ho Seok [Department of Materials Science and Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Noh, Jin-Seo, E-mail: jinseonoh@gachon.ac.kr [Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of)

    2016-03-31

    Thickness-dependent electrical, structural, and optical properties of zinc oxide (ZnO) thin films on polyethylene terephthalate (PET) substrates have been investigated in the very thin thickness range of 20 to 120 nm. In this thickness range, the electrical resistance of ZnO film increased with an increase in film thickness. This unusual transition behavior was explained in terms of structural evolution from Zn-phase-incorporating non-crystalline ZnO to hexagonal-structured ZnO. A critical thickness for the full development of hexagonal ZnO crystal was estimated at approximately 80 nm in this study. ZnO thin films on PET substrates exhibit a high optical transmittance of > 70% and good endurance to bending cycles over the measured thickness range. The results of this study indicate that a trade-off should be sought between structural, electrical, optical, and mechanical properties for practical applications of very thin ZnO films on organic substrates. - Highlights: • Very thin ZnO films were sputter-deposited on the PET substrate. • The ZnO film resistance increases with an increase in film thickness until saturation. • Hexagonal crystal structures gradually develop with increasing film thickness. • A Zn phase appears in a 20-nm-thick ZnO film. • ZnO films show high optical transmittance of > 80% and good endurance to bending.

  15. Transient behaviors of ZnO thin films on a transparent, flexible polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Kim, Yong Jun; Lee, Ho Seok; Noh, Jin-Seo

    2016-01-01

    Thickness-dependent electrical, structural, and optical properties of zinc oxide (ZnO) thin films on polyethylene terephthalate (PET) substrates have been investigated in the very thin thickness range of 20 to 120 nm. In this thickness range, the electrical resistance of ZnO film increased with an increase in film thickness. This unusual transition behavior was explained in terms of structural evolution from Zn-phase-incorporating non-crystalline ZnO to hexagonal-structured ZnO. A critical thickness for the full development of hexagonal ZnO crystal was estimated at approximately 80 nm in this study. ZnO thin films on PET substrates exhibit a high optical transmittance of > 70% and good endurance to bending cycles over the measured thickness range. The results of this study indicate that a trade-off should be sought between structural, electrical, optical, and mechanical properties for practical applications of very thin ZnO films on organic substrates. - Highlights: • Very thin ZnO films were sputter-deposited on the PET substrate. • The ZnO film resistance increases with an increase in film thickness until saturation. • Hexagonal crystal structures gradually develop with increasing film thickness. • A Zn phase appears in a 20-nm-thick ZnO film. • ZnO films show high optical transmittance of > 80% and good endurance to bending.

  16. Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films

    Science.gov (United States)

    Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna

    2017-11-01

    Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.

  17. Minimizing measurement uncertainties of coniferous needle-leaf optical properties, part I: methodological review

    NARCIS (Netherlands)

    Yanez Rausell, L.; Schaepman, M.E.; Clevers, J.G.P.W.; Malenovsky, Z.

    2014-01-01

    Optical properties (OPs) of non-flat narrow plant leaves, i.e., coniferous needles, are extensively used by the remote sensing community, in particular for calibration and validation of radiative transfer models at leaf and canopy level. Optical measurements of such small living elements are,

  18. Determining thin film properties by fitting optical transmittance

    International Nuclear Information System (INIS)

    Klein, J.D.; Yen, A.; Cogan, S.F.

    1990-01-01

    The optical transmission spectra of rf sputtered tungsten oxide films on glass substrates were modeled to determine absorption edge behavior, film thickness, and index of refraction. Removal of substrate reflection and absorption phenomena from the experimental spectra allowed direct examination of thin film optical characteristics. The interference fringe pattern allows determination of the film thickness and the dependence of the real index of refraction on wavelength. Knowledge of the interference fringe behavior in the vicinity of the absorption edge was found essential to unambiguous determination of the optical band gap. In particular, the apparently random deviations commonly observed in the extrapolation of as-acquired data are eliminated by explicitly considering interference fringe phenomena. The multivariable optimization fitting scheme employed allows air-film-substrate reflection losses to be compensated without making reflectance measurements

  19. Optics Designs of Final-Focus Systems for Future LHC Upgrades

    CERN Document Server

    Abelleira, J L; Zimmermann, Frank; Rivkin, Leonid

    2014-01-01

    The main topic of the thesis is the study of a novel option for the high-luminosity upgrade of the Large Hadron Collider (LHC) comprising a large Piwinski angle, flat beams, and crab waists. Flat beams and crab waists are not only pre-requisites for a crab-waist scheme, but, even by themselves; each of these two elements alone could boost the luminosity of the existing collider as built. The new optics involves an upgrade of the interaction region of the two high-luminosity experiments, ATLAS and CMS, in order to provide them with a substantially higher luminosity. To this end, a flat-beam optics scenario has been explored for the High Luminosity LHC (HL-LHC), with a much reduced vertical beta function at the interaction point (IP), $\\beta_y^*$. In addition, a large Piwinski angle is considered. Advantages of a large Piwinski angle include a reduction in the hourglass effect over the length of the collision area, which allows for the significant $\\beta_y^*$ decrease. In addition there is a reduction of the be...

  20. A Rapid Method for Deposition of Sn-Doped GaN Thin Films on Glass and Polyethylene Terephthalate Substrates

    Science.gov (United States)

    Pat, Suat; Özen, Soner; Korkmaz, Şadan

    2018-01-01

    We report the influence of Sn doping on microstructure, surface, and optical properties of GaN thin films deposited on glass and polyethylene terephthalate (PET) substrate. Sn-doped GaN thin films have been deposited by thermionic vacuum arc (TVA) at low temperature. TVA is a rapid deposition technology for thin film growth. Surface and optical properties of the thin films were presented. Grain size, height distribution, roughness values were determined. Grain sizes were calculated as 20 nm and 13 nm for glass and PET substrates, respectively. Nano crystalline forms were shown by field emission scanning electron microscopy. Optical band gap values were determined by optical methods and photoluminescence measurement. The optical band gap values of Sn doped GaN on glass and PET were determined to be approximately ˜3.40 eV and ˜3.47 eV, respectively. As a result, TVA is a rapid and low temperature deposition technology for the Sn doped GaN deposited on glass and PET substrate.

  1. Optical and electro-optic anisotropy of epitaxial PZT thin films

    Science.gov (United States)

    Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang

    2015-07-01

    Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.

  2. Understanding the elastic relaxation mechanisms of strain in Ge islands on pit-patterned Si(001) substrates

    International Nuclear Information System (INIS)

    Vastola, G; Montalenti, F; Miglio, Leo

    2008-01-01

    Substrate pre-patterning is a new and effective route for growing ordered arrays of heteroepitaxial nanoislands. Here, by exploiting elasticity theory solved by using finite element methods, we show why islands growing inside pits are better relaxed with respect to the flat-substrate case. Pit pre-patterning is demonstrated to be more important than previously realized, allowing for further degrees of freedom in controlling not only positioning but also shape, strain, and coherence of the growing islands. Our results offer a solid interpretation for the recent experimental results obtained by the group of Professor Guenther Bauer.

  3. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    International Nuclear Information System (INIS)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C.N.; Mihailescu, I.N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A.C.; Luculescu, C.R.; Craciun, V.

    2012-01-01

    Highlights: ► TCO thin films were grown by PLD on PET substrate at low temperature. ► We found that the quality of TCO on PET substrate depends on the target–substrate distance. ► TCO with high transparency (>95%) and reduced electrical resistivity (∼5 × 10 −4 Ω cm) were obtained. ► Optimized TCO films deposited on PET were free of any cracks. - Abstract: The influence of target–substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10 −4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  4. Thin SiGe virtual substrates for Ge heterostructures integration on silicon

    International Nuclear Information System (INIS)

    Cecchi, S.; Chrastina, D.; Frigerio, J.; Isella, G.; Gatti, E.; Guzzi, M.; Müller Gubler, E.; Paul, D. J.

    2014-01-01

    The possibility to reduce the thickness of the SiGe virtual substrate, required for the integration of Ge heterostructures on Si, without heavily affecting the crystal quality is becoming fundamental in several applications. In this work, we present 1 μm thick Si 1−x Ge x buffers (with x > 0.7) having different designs which could be suitable for applications requiring a thin virtual substrate. The rationale is to reduce the lattice mismatch at the interface with the Si substrate by introducing composition steps and/or partial grading. The relatively low growth temperature (475 °C) makes this approach appealing for complementary metal-oxide-semiconductor integration. For all the investigated designs, a reduction of the threading dislocation density compared to constant composition Si 1−x Ge x layers was observed. The best buffer in terms of defects reduction was used as a virtual substrate for the deposition of a Ge/SiGe multiple quantum well structure. Room temperature optical absorption and photoluminescence analysis performed on nominally identical quantum wells grown on both a thick graded virtual substrate and the selected thin buffer demonstrates a comparable optical quality, confirming the effectiveness of the proposed approach

  5. Transport processes in intertidal sand flats

    Science.gov (United States)

    Wu, Christy

    2010-05-01

    Methane rich sulfate depleted seeps are observed along the low water line of the intertidal sand flat Janssand in the Wadden Sea. It is unclear where in the flat the methane is formed, and how it is transported to the edge of the sand flat where the sulfidic water seeps out. Methane and sulfate distributions in pore water were determined along transects from low water line toward the central area of the sand flat. The resulting profiles showed a zone of methane-rich and sulfate-depleted pore water below 2 m sediment depth. Methane production and sulfate reduction are monitored over time for surface sediments collected from the upper flat and seeping area. Both activities were at 22 C twice as high as at 15 C. The rates in sediments from the central area were higher than in sediments from the methane seeps. Methanogenesis occurred in the presence of sulfate, and was not significantly accelerated when sulfate was depleted. The observations show a rapid anaerobic degradation of organic matter in the Janssand. The methane rich pore water is obviously transported with a unidirectional flow from the central area of the intertidal sand flat toward the low water line. This pore water flow is driven by the pressure head caused by elevation of the pore water relative to the sea surface at low tide (Billerbeck et al. 2006a). The high methane concentration at the low water line accumulates due to a continuous outflow of pore water at the seepage site that prevents penetration of electron acceptors such as oxygen and sulfate to reoxidize the reduced products of anaerobic degradation (de Beer et al. 2006). It is, however, not clear why no methane accumulates or sulfate is depleted in the upper 2 m of the flats.

  6. Development of reaction-sintered SiC mirror for space-borne optics

    Science.gov (United States)

    Yui, Yukari Y.; Kimura, Toshiyoshi; Tange, Yoshio

    2017-11-01

    We are developing high-strength reaction-sintered silicon carbide (RS-SiC) mirror as one of the new promising candidates for large-diameter space-borne optics. In order to observe earth surface or atmosphere with high spatial resolution from geostationary orbit, larger diameter primary mirrors of 1-2 m are required. One of the difficult problems to be solved to realize such optical system is to obtain as flat mirror surface as possible that ensures imaging performance in infrared - visible - ultraviolet wavelength region. This means that homogeneous nano-order surface flatness/roughness is required for the mirror. The high-strength RS-SiC developed and manufactured by TOSHIBA is one of the most excellent and feasible candidates for such purpose. Small RS-SiC plane sample mirrors have been manufactured and basic physical parameters and optical performances of them have been measured. We show the current state of the art of the RS-SiC mirror and the feasibility of a large-diameter RS-SiC mirror for space-borne optics.

  7. Photodeposited diffractive optical elements of computer generated masks

    International Nuclear Information System (INIS)

    Mirchin, N.; Peled, A.; Baal-Zedaka, I.; Margolin, R.; Zagon, M.; Lapsker, I.; Verdyan, A.; Azoulay, J.

    2005-01-01

    Diffractive optical elements (DOE) were synthesized on plastic substrates using the photodeposition (PD) technique by depositing amorphous selenium (a-Se) films with argon lasers and UV spectra light. The thin films were deposited typically onto polymethylmethacrylate (PMMA) substrates at room temperature. Scanned beam and contact mask modes were employed using computer-designed DOE lenses. Optical and electron micrographs characterize the surface details. The films were typically 200 nm thick

  8. TRIBOLOGY OF BIO-INSPIRED NANOWRINKLED FILMS ON ULTRASOFT SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Juergen M. Lackner

    2013-03-01

    Full Text Available Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum with high elasticity of the bulk (epidermis, dermis, hypodermis. The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue: Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high

  9. Tribology of bio-inspired nanowrinkled films on ultrasoft substrates.

    Science.gov (United States)

    Lackner, Juergen M; Waldhauser, Wolfgang; Major, Lukasz; Teichert, Christian; Hartmann, Paul

    2013-01-01

    Biomimetic design of new materials uses nature as antetype, learning from billions of years of evolution. This work emphasizes the mechanical and tribological properties of skin, combining both hardness and wear resistance of its surface (the stratum corneum) with high elasticity of the bulk (epidermis, dermis, hypodermis). The key for combination of such opposite properties is wrinkling, being consequence of intrinsic stresses in the bulk (soft tissue): Tribological contact to counterparts below the stress threshold for tissue trauma occurs on the thick hard stratum corneum layer pads, while tensile loads smooth out wrinkles in between these pads. Similar mechanism offers high tribological resistance to hard films on soft, flexible polymers, which is shown for diamond-like carbon (DLC) and titanium nitride thin films on ultrasoft polyurethane and harder polycarbonate substrates. The choice of these two compared substrate materials will show that ultra-soft substrate materials are decisive for the distinct tribological material. Hierarchical wrinkled structures of films on these substrates are due to high intrinsic compressive stress, which evolves during high energetic film growth. Incremental relaxation of these stresses occurs by compound deformation of film and elastic substrate surface, appearing in hierarchical nano-wrinkles. Nano-wrinkled topographies enable high elastic deformability of thin hard films, while overstressing results in zigzag film fracture along larger hierarchical wrinkle structures. Tribologically, these fracture mechanisms are highly important for ploughing and sliding of sharp and flat counterparts on hard-coated ultra-soft substrates like polyurethane. Concentration of polyurethane deformation under the applied normal loads occurs below these zigzag cracks. Unloading closes these cracks again. Even cyclic testing do not lead to film delamination and retain low friction behavior, if the adhesion to the substrate is high and the initial

  10. Low concentrator PV optics optimization

    Science.gov (United States)

    Sharp, Leonard; Chang, Ben

    2008-08-01

    Purpose: Cost reduction is a major focus of the solar industry. Thin film technologies and concentration systems are viable ways to reducing cost, with unique strengths and weakness for both. Most of the concentrating PV work focuses on high concentration systems for reducing energy cost. Meanwhile, many believe that low concentrators provide significant cost reduction potential while addressing the mainstream PV market with a product that acts as a flat panel replacement. This paper analyzes the relative benefit of asymmetric vs. symmetric optics for low-concentrators in light of specific PV applications. Approach: Symmetric and asymmetric concentrating PV module performance is evaluated using computer simulation to determine potential value across various geographic locations and applications. The selected optic design is modeled against standard cSi flat panels and thin film to determine application fit, system level energy density and economic value. Results: While symmetric designs may seem ideal, asymmetric designs have an advantage in energy density. Both designs are assessed for aperture, optimum concentration ratio, and ideal system array configuration. Analysis of performance across climate specific effects (diffuse, direct and circumsolar) and location specific effects (sunpath) are also presented. The energy density and energy production of low concentrators provide a compelling value proposition. More significantly, the choice of optics for a low concentrating design can affect real world performance. With the goal of maximizing energy density and return on investment, this paper presents the advantages of asymmetric optic concentration and illustrates the value of this design within specific PV applications.

  11. High-performance flexible thin-film transistors fabricated using print-transferrable polycrystalline silicon membranes on a plastic substrate

    International Nuclear Information System (INIS)

    Qin, Guoxuan; Yuan, Hao-Chih; Ma, Zhenqiang; Yang, Hongjun; Zhou, Weidong

    2011-01-01

    Inexpensive polycrystalline Si (poly-Si) with large grain size is highly desirable for flexible electronics applications. However, it is very challenging to directly deposit high-quality poly-Si on plastic substrates due to processing constrictions, such as temperature tolerance and residual stress. In this paper, we present our study on poly-Si membranes that are stress free and most importantly, are transferrable to any substrate including a low-temperature polyethylene terephthalate (PET) substrate. We formed poly-Si-on-insulator by first depositing small-grain size poly-Si on an oxidized Si wafer. We then performed high-temperature annealing for recrystallization to obtain larger grain size. After selective doping on the poly-Si-on-insulator, buried oxide was etched away. By properly patterning the poly-Si layer, residual stress in the released poly-Si membranes was completely relaxed. The flat membrane topology allows the membranes to be print transferred to any substrates. High-performance TFTs were demonstrated on the transferred poly-Si membranes on a PET substrate

  12. Flat synchronizations in spherically symmetric space-times

    International Nuclear Information System (INIS)

    Herrero, Alicia; Morales-Lladosa, Juan Antonio

    2010-01-01

    It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-LemaItre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.

  13. Geometric Phase Generated Optical Illusion.

    Science.gov (United States)

    Yue, Fuyong; Zang, Xiaofei; Wen, Dandan; Li, Zile; Zhang, Chunmei; Liu, Huigang; Gerardot, Brian D; Wang, Wei; Zheng, Guoxing; Chen, Xianzhong

    2017-09-12

    An optical illusion, such as "Rubin's vase", is caused by the information gathered by the eye, which is processed in the brain to give a perception that does not tally with a physical measurement of the stimulus source. Metasurfaces are metamaterials of reduced dimensionality which have opened up new avenues for flat optics. The recent advancement in spin-controlled metasurface holograms has attracted considerate attention, providing a new method to realize optical illusions. We propose and experimentally demonstrate a metasurface device to generate an optical illusion. The metasurface device is designed to display two asymmetrically distributed off-axis images of "Rubin faces" with high fidelity, high efficiency and broadband operation that are interchangeable by controlling the helicity of the incident light. Upon the illumination of a linearly polarized light beam, the optical illusion of a 'vase' is perceived. Our result provides an intuitive demonstration of the figure-ground distinction that our brains make during the visual perception. The alliance between geometric metasurface and the optical illusion opens a pathway for new applications related to encryption, optical patterning, and information processing.

  14. Temperature dependence of the optical properties of ion-beam sputtered ZrN films

    Energy Technology Data Exchange (ETDEWEB)

    Larijani, M.M. [NSTRI, AEOI, Radiation Applications Research School, Karaj (Iran, Islamic Republic of); Kiani, M. [Azad University, South Tehran Branch, Department of Physics, Tehran (Iran, Islamic Republic of); Jafari-Khamse, E. [NSTRI, AEOI, Radiation Applications Research School, Karaj (Iran, Islamic Republic of); University of Kashan, Department of Physics, Kashan (Iran, Islamic Republic of); Fathollahi, V. [Nuclear Science Research School, NSTRI, Tehran (Iran, Islamic Republic of)

    2014-11-15

    The reflectivity of sputtered Zirconium nitride films on glass substrate has been investigated in the spectral energy range of 0.8-6.1 eV as a function of deposition temperature varying between 373 and 723 K. Optical constants of the prepared films have been determined using the Drude analysis. Experimental results showed strong dependency of optical properties of the films, such as optical resistivity on the substrate temperature. The temperature increase of the substrate has shown an increase in both the plasmon frequency and electron scattering time. The electrical behavior of the films showed a good agreement between their optical and electrical resistivity. (orig.)

  15. TRANSVERSE MODES FOR FLAT INTER-BUNCH WAKES*

    CERN Document Server

    Burov, A

    2013-01-01

    If inter-bunch wake fields are flat, i.e. their variations over a bunch length can be neglected, all coherent modes have the same coupled-bunch structure, provided the bunches can be treated as identical by their inner qualities (train theorem). If a flat feedback is strong enough, the transverse modes are single-bunch, provided the inter-bunch wakes are also flat (damper theorem).

  16. F-doped SnO2 thin films grown on flexible substrates at low temperatures by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kim, H.; Auyeung, R.C.Y.; Pique, A.

    2011-01-01

    Fluorine-doped tin oxide (SnO 2 :F) films were deposited on polyethersulfone plastic substrates by pulsed laser deposition. The electrical and optical properties of the SnO 2 :F films were investigated as a function of deposition conditions such as substrate temperature and oxygen partial pressure during deposition. High quality SnO 2 :F films were achieved under an optimum oxygen pressure range (7.4-8 Pa) at relatively low growth temperatures (25-150 deg. C). As-deposited films exhibited low electrical resistivities of 1-7 mΩ-cm, high optical transmittance of 80-90% in the visible range, and optical band-gap energies of 3.87-3.96 eV. Atomic force microscopy measurements revealed a reduced root mean square surface roughness of the SnO 2 :F films compared to that of the bare substrates indicating planarization of the underlying substrate.

  17. Development of Slewing Mirror Telescope Optical System for the UFFO-pathfinder

    DEFF Research Database (Denmark)

    Jeong, S.; Nam, J.W.; Ahn, K.-B.

    2013-01-01

    The Slewing Mirror Telescope (SMT) is the UV/optical telescope of UFFO-pathfinder. The SMT optical system is a Ritchey-Chrétien (RC) telescope of 100 mm diameter pointed by means of a gimbal-mounted flat mirror in front of the telescope. The RC telescope has a 17 × 17arcmin2 in Field of View and ...

  18. Organic against inorganic electrodes grown onto polymer substrates for flexible organic electronics applications

    International Nuclear Information System (INIS)

    Logothetidis, S.; Laskarakis, A.

    2009-01-01

    One of the most challenging topics in the area of organic electronic devices is the growth of transparent electrodes onto flexible polymeric substrates that will be characterized by enhanced conductivity in combination with high optical transparency. An essential aspect for these materials is their synthesis and/or microstructure which define the transparency, the stability and the interfacial chemistry which in turn determine the performance and stability of the organic electronic devices, such as organic light emitting diodes, organic photovoltaics, etc. In this work, we will discuss the latest advances in the growth of organic (e.g. PEDOT:PSS) and inorganic (e.g. zinc oxide-ZnO, indium tin oxide-ITO) conductive materials and their deposition onto flexible polymeric substrates. We will compare the optical, structural, nano-mechanical and nano-topographical properties of the inorganic and organic materials and we investigate the effect of their structure on their properties and functionality. In the case of the organic conductive materials, we will discuss the effects of PEDOT:PSS weight ratios and the various spin speeds on their optical and electrical properties. Furthermore, in the case of ZnO the growth mechanisms, interface phenomena, crystallinity and optical properties of ZnO thin films grown onto polymer and hybrid (inorganic-organic) flexible substrates will be also discussed.

  19. Large core plastic planar optical splitter fabricated by 3D printing technology

    Science.gov (United States)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  20. Integrated Micro-Optical Fluorescence Detection System for Microfluidic Electrochromatography

    International Nuclear Information System (INIS)

    ALLERMAN, ANDREW A.; ARNOLD, DON W.; ASBILL, RANDOLPH E.; BAILEY, CHRISTOPHER G.; CARTER, TONY RAY; KEMME, SHANALYN A.; MATZKE, CAROLYN M.; SAMORA, SALLY; SWEATT, WILLIAM C.; WARREN, MIAL E.; WENDT, JOEL R.

    1999-01-01

    The authors describe the design and microfabrication of an extremely compact optical system as a key element in an integrated capillary-channel electrochromatograph with laser induced fluorescence detection. The optical design uses substrate-mode propagation within the fused silica substrate. The optical system includes a vertical cavity surface-emitting laser (VCSEL) array, two high performance microlenses and a commercial photodetector. The microlenses are multilevel diffractive optics patterned by electron beam lithography and etched by reactive ion etching in fused silica. Two generations of optical subsystems are described. The first generation design is integrated directly onto the capillary channel-containing substrate with a 6 mm separation between the VCSEL and photodetector. The second generation design separates the optical system onto its own module and the source to detector length is further compressed to 3.5 mm. The systems are designed for indirect fluorescence detection using infrared dyes. The first generation design has been tested with a 750 nm VCSEL exciting a 10(sup -4) M solution of CY-7 dye. The observed signal-to-noise ratio of better than 100:1 demonstrates that the background signal from scattered pump light is low despite the compact size of the optical system and meets the system sensitivity requirements

  1. Far-infrared properties of optically selected quasars

    International Nuclear Information System (INIS)

    Edelson, R.A.

    1986-01-01

    The far-infrared properties of 10, optically selected quasars were studied on the basis of pointed IRAS observations and ground-based near-infrared and radio measurements. Nine of these quasars were detected in at least three IRAS bands. The flat spectral energy distributions characterizing these optically selected quasars together with large 60-100-micron luminosities suggest that the infrared emission is dominated by nonthermal radiation. Seven of the nine quasars with far-infrared detections were found to have low-frequency turnovers. 12 references

  2. Molecular-beam epitaxial growth of insulating AlN on surface-controlled 6H-SiC substrate by HCl gas etching

    International Nuclear Information System (INIS)

    Onojima, Norio; Suda, Jun; Matsunami, Hiroyuki

    2002-01-01

    Insulating AlN layers were grown on surface-controlled 6H-SiC subtrates by molecular-beam epitaxy (MBE) using elemental Al and rf plasma-excited nitrogen (N*). HCl gas etching was introduced as an effective pretreatment method of substrate for MBE growth of AlN. 6H-SiC substrates pretreated by HCl gas etching had no surface polishing scratches and an atomically flat surface. In addition, evident ( 3 √x 3 √)R30 deg. surface reconstruction was observed even before thermal cleaning. AlN layers grown on this substrate had no defects related to surface polishing scratches and excellent insulating characteristics

  3. Role of the substrate in monolithic AlGaAs nonlinear nanoantennas

    Directory of Open Access Journals (Sweden)

    Gili Valerio Flavio

    2017-06-01

    Full Text Available We report the effect of the aluminum oxide substrate on the emission of monolithic AlGaAs-on-insulator nonlinear nanoantennas. By coupling nonlinear optical measurements with electron diffraction and microscopy observations, we find that the oxidation-induced stress causes negligible crystal deformation in the AlGaAs nanostructures and only plays a minor role in the polarization state of the harmonic field. This result highlights the reliability of the wet oxidation of thick AlGaAs optical substrates and further confirms the bulk χ(2 origin of second harmonic generation at 1.55 μm in these nanoantennas, paving the way for the development of AlGaAs-on-insulator monolithic metasurfaces.

  4. Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo; Ramos, Ana Paula

    2016-01-01

    Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films. (paper)

  5. SU-E-I-11: Cascaded Linear System Model for Columnar CsI Flat Panel Imagers with Depth Dependent Gain and Blur

    International Nuclear Information System (INIS)

    Peng, B; Lubinsky, A; Zheng, H; Zhao, W; Teymurazyan, A

    2014-01-01

    Purpose: To implement a depth dependent gain and blur cascaded linear system model (CLSM) for optimizing columnar structured CsI indirect conversion flat panel imager (FPI) for advanced imaging applications. Methods: For experimental validation, depth dependent escape efficiency, e(z), was extracted from PHS measurement of different CsI scintillators (thickness, substrate and light output). The inherent MTF and DQE of CsI was measured using high resolution CMOS sensor. For CLSM, e(z) and the depth dependent MTF(f,z), were estimated using Monte Carlo simulation (Geant4) of optical photon transport through columnar CsI. Previous work showed that Monte Carlo simulation for CsI was hindered by the non-ideality of its columnar structure. In the present work we allowed variation in columnar width with depth, and assumed diffusive reflective backing and columns. Monte Carlo simulation was performed using an optical point source placed at different depth of the CsI layer, from which MTF(z,f) and e(z) were computed. The resulting e(z) with excellent matching with experimental measurements were then applied to the CLSM, Monte Carlo simulation was repeated until the modeled MTF, DQE(f) also match experimental measurement. Results: For a 150 micron FOS HL type CsI, e(z) varies between 0.56 to 0.45, and the MTF at 14 cycles/mm varies between 62.1% to 3.9%, from the front to the back of the scintillator. The overall MTF and DQE(f) at all frequencies are in excellent agreement with experimental measurements at all frequencies. Conclusion: We have developed a CLSM for columnar CsI scintillators with depth dependent gain and MTF, which were estimated from Monte Carlo simulation with novel optical simulation settings. Preliminary results showed excellent agreement between simulation results and experimental measurements. Future work is aimed at extending this approach to optimize CsI screen optic design and sensor structure for achieving higher DQE(f) in cone-beam CT, which uses

  6. Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films

    Directory of Open Access Journals (Sweden)

    C. W. Su

    2013-07-01

    Full Text Available An experimental approach of inclined incidence magneto-optic Faraday effect observed in the polar plane is applied. Three samples containing ferromagnetic cobalt ultrathin films on a semiconductor zinc oxide (0001 single crystal substrate with in-plane and out-of-plane anisotropy are evaluated. Through the fine adjustment of crossed polarizers in the magneto-optic effect measurement completely recorded the detail optical and magneto-optical responses from the birefringent crystal substrate and the magnetic film, especially for the signal induced from the substrate with uniaxial optical axis. The angle dependency of interference phenomena periodically from the optical and magneto-optical responses is attributed to the birefringence even in the absence of a magnetic field. The new type of observation finds that the transmission Faraday intensity in the oblique incidence includes a combination of polarization rotations, which results from optical compensation from the substrate and magneto-optical Faraday effects from the film. The samples grown at different rates and examined by this method exhibit magnetic structure discriminations. This result can be applied in the advanced polarized-light technologies to enhance the spatial resolution of magnetic surfaces with microstructural information under various magnetic field direction.

  7. Characterization of ZnO:SnO{sub 2} (50:50) thin film deposited by RF magnetron sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Cynthia, S. R.; Sanjeeviraja, C.; Ponmudi, S. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi-630004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi-630004 (India)

    2016-05-06

    Zinc oxide (ZnO) and tin oxide (SnO{sub 2}) thin films have attracted significant interest recently for use in optoelectronic application such as solar cells, flat panel displays, photonic devices, laser diodes and gas sensors because of their desirable electrical and optical properties and wide band gap. In the present study, thin films of ZnO:SnO{sub 2} (50:50) were deposited on pre-cleaned microscopic glass substrate by RF magnetron sputtering technique. The substrate temperature and RF power induced changes in structural, surface morphological, compositional and optical properties of the films have been studied.

  8. Growth of InN films on spinel substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, K. [Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Megruro-ku, Tokyo 153-8505 (Japan); Ohta, J.; Fujioka, H. [Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Megruro-ku, Tokyo 153-8505 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kanagawa 213-0012 (Japan); Oshima, M. [Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2007-10-15

    We have grown InN films on MgAl{sub 2}O{sub 4}(111) substrates with atomically flat surfaces using pulsed laser deposition (PLD) and compared their structural properties with those grown on (Mn,Zn)Fe{sub 2}O{sub 4}(111) substrates. It has been revealed that InN(0001) films grow on MgAl{sub 2}O{sub 4}(111) with an in-plane epitaxial relationship of InN[1 anti 100]//MgAl{sub 2}O{sub 4}[1 anti 10], achieving a lattice mismatch minimum. The InN films exhibited a clear sixfold rotational symmetry, without 30 rotational domains and with a full width at half maximum value of the InN 0002 rocking curve being 17.5 arcmin. Comparison between InN films grown on MgAl{sub 2}O{sub 4} and those on (Mn,Zn)Fe{sub 2}O{sub 4} led us to conclude that suppression of the interfacial reactions between the InN films and the substrate is inherently important to obtain high quality InN on substrates with a spinel structure. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Flat detectors and their clinical applications

    International Nuclear Information System (INIS)

    Spahn, Martin

    2005-01-01

    Diagnostic and interventional flat detector X-ray systems are penetrating the market in all application segments. First introduced in radiography and mammography, they have conquered cardiac and general angiography and are getting increasing attention in fluoroscopy. Two flat detector technologies prevail. The dominating method is based on an indirect X-ray conversion process, using cesium iodide scintillators. It offers considerable advantages in radiography, angiography and fluoroscopy. The other method employs a direct converter such as selenium which is particularly suitable for mammography. Both flat detector technologies are based on amorphous silicon active pixel matrices. Flat detectors facilitate the clinical workflow in radiographic rooms, foster improved image quality and provide the potential to reduce dose. This added value is based on their large dynamic range, their high sensitivity to X-rays and the instant availability of the image. Advanced image processing is instrumental in these improvements and expand the range of conventional diagnostic methods. In angiography and fluoroscopy the transition from image intensifiers to flat detectors is facilitated by ample advantages they offer, such as distortion-free images, excellent coarse contrast, large dynamic range and high X-ray sensitivity. These characteristics and their compatibility with strong magnetic fields are the basis for improved diagnostic methods and innovative interventional applications. (orig.)

  10. Digital optical processing of optical communications: towards an Optical Turing Machine

    Science.gov (United States)

    Touch, Joe; Cao, Yinwen; Ziyadi, Morteza; Almaiman, Ahmed; Mohajerin-Ariaei, Amirhossein; Willner, Alan E.

    2017-01-01

    Optical computing is needed to support Tb/s in-network processing in a way that unifies communication and computation using a single data representation that supports in-transit network packet processing, security, and big data filtering. Support for optical computation of this sort requires leveraging the native properties of optical wave mixing to enable computation and switching for programmability. As a consequence, data must be encoded digitally as phase (M-PSK), semantics-preserving regeneration is the key to high-order computation, and data processing at Tb/s rates requires mixing. Experiments have demonstrated viable approaches to phase squeezing and power restoration. This work led our team to develop the first serial, optical Internet hop-count decrement, and to design and simulate optical circuits for calculating the Internet checksum and multiplexing Internet packets. The current exploration focuses on limited-lookback computational models to reduce the need for permanent storage and hybrid nanophotonic circuits that combine phase-aligned comb sources, non-linear mixing, and switching on the same substrate to avoid the macroscopic effects that hamper benchtop prototypes.

  11. Digital optical processing of optical communications: towards an Optical Turing Machine

    Directory of Open Access Journals (Sweden)

    Touch Joe

    2017-01-01

    Full Text Available Optical computing is needed to support Tb/s in-network processing in a way that unifies communication and computation using a single data representation that supports in-transit network packet processing, security, and big data filtering. Support for optical computation of this sort requires leveraging the native properties of optical wave mixing to enable computation and switching for programmability. As a consequence, data must be encoded digitally as phase (M-PSK, semantics-preserving regeneration is the key to high-order computation, and data processing at Tb/s rates requires mixing. Experiments have demonstrated viable approaches to phase squeezing and power restoration. This work led our team to develop the first serial, optical Internet hop-count decrement, and to design and simulate optical circuits for calculating the Internet checksum and multiplexing Internet packets. The current exploration focuses on limited-lookback computational models to reduce the need for permanent storage and hybrid nanophotonic circuits that combine phase-aligned comb sources, non-linear mixing, and switching on the same substrate to avoid the macroscopic effects that hamper benchtop prototypes.

  12. Effects of the oxygen fraction and substrate bias power on the electrical and optical properties of silicon oxide films by plasma enhanced chemical vapour deposition using TMOS/O2 gas

    International Nuclear Information System (INIS)

    Bang, S B; Chung, T H; Kim, Y; Kang, M S; Kim, J K

    2004-01-01

    Thin oxide films are deposited from tetramethoxysilane in an inductively coupled oxygen glow discharge supplied with radio frequency power. The chemical bonding states of deposited films are analysed by Fourier transform infrared spectroscopy. The deposition rate and optical properties are determined from spectroscopic ellipsometry. Capacitance-voltage measurements are performed in MOS capacitors to obtain the electrical properties of the deposited films. With these tools, the effects of the substrate bias power and the oxygen mole fraction in the gas on the properties of the film are investigated. The refractive index first decreases with an increase in the oxygen mole fraction, and then increases again, showing a behaviour opposite to that of the deposition rate. The deposition rate increases with increasing substrate bias power and then saturates, while the refractive index increases slightly with an increase in the substrate bias power. The fixed oxide charge density decreases with increasing oxygen fraction and with increasing substrate bias power, while the interface trap density increases with increasing oxygen fraction and with increasing substrate bias power

  13. Laser Doppler thermometry in flat flames

    NARCIS (Netherlands)

    Maaren, van A.; Goey, de L.P.H.

    1994-01-01

    Laser Doppler Velocimetry measurements are performed in flat flames, stabilized on a newly developed flat-flame burner. It is shown that the velocity component perpendicular to the main flow direction, induced by expansion in the reaction zone and buoyancy in the burnt gas, is significant. A method

  14. Recent optical activity of the blazar OT 355

    Science.gov (United States)

    Bachev, R.; Kurtenkov, A.; Nikolov, Y.; Spassov, B.; Boeva, S.; Latev, G.; Dimitrova, R. V. Munoz

    2017-06-01

    The Flat Spectrum Radio Quasar OT 355 (also known as 7C 173240.70+385949.00, z=0.975) was typically observed to be in the optical between 16th and 21th magnitude (CRTS, http://nesssi.cacr.caltech.edu/catalina/20011332/113321380764100137p.html).

  15. Interfacial Effects on the Spherulitic Morphology of Isotactic Polystyrene Thin Films on Liquid Substrates

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2016-01-01

    Full Text Available The influence of interfaces on the morphology of flat spherulites of isotactic polystyrene (iPS grown in thin films on liquid substrates was investigated. Amorphous iPS thin films spin-cast from a solution were annealed for cold crystallization on glycerol and silicone oil (nonsolvents for iPS. The number density of grown spherulites was revealed to be higher on the glycerol substrate than on the silicone oil substrate. This implies that the primary nucleation rate of crystallization is greater at the iPS/glycerol interface than at the iPS/silicone oil interface. The results may be consistent with the previous findings that concern the molecular interaction between atactic polystyrene and nonsolvents at the interface. In some cases, holes were formed in the thin films during the cold crystallization due to dewetting, which also significantly affect the spherulite morphology via, for example, transcrystallization.

  16. Fiber optic pressure sensors in skin-friction measurements

    Science.gov (United States)

    Cuomo, F. W.

    1986-01-01

    A fiber optic lever sensing technique that can be used to measure normal pressure as well as shear stresses is discussed. This method uses three unequal fibers combining small size and good sensitivity. Static measurements appear to confirm the theoretical models predicted by geometrical optics and dynamic tests performed at frequencies up to 10 kHz indicate a flat response within this frequency range. These sensors are intended for use in a low speed wind tunnel environment.

  17. An Al₂O₃ Gating Substrate for the Greater Performance of Field Effect Transistors Based on Two-Dimensional Materials.

    Science.gov (United States)

    Yang, Hang; Qin, Shiqiao; Zheng, Xiaoming; Wang, Guang; Tan, Yuan; Peng, Gang; Zhang, Xueao

    2017-09-22

    We fabricated 70 nm Al₂O₃ gated field effect transistors based on two-dimensional (2D) materials and characterized their optical and electrical properties. Studies show that the optical contrast of monolayer graphene on an Al₂O₃/Si substrate is superior to that on a traditional 300 nm SiO₂/Si substrate (2.4 times). Significantly, the transconductance of monolayer graphene transistors on the Al₂O₃/Si substrate shows an approximately 10-fold increase, due to a smaller dielectric thickness and a higher dielectric constant. Furthermore, this substrate is also suitable for other 2D materials, such as WS₂, and can enhance the transconductance remarkably by 61.3 times. These results demonstrate a new and ideal substrate for the fabrication of 2D materials-based electronic logic devices.

  18. Molecular dynamics study of the effect of substrate temperature and Ar ion assisted deposition on the deposition of amorphous TiO_2 films

    International Nuclear Information System (INIS)

    Chen, Xian; Zhang, Jing; Zhao, Yu-Qing

    2017-01-01

    Highlights: • The surface roughness of a-TiO_2 films is decreased with the increment of the Ar ion assisted energy. • The surface roughness of a-TiO_2 films is decreased with higher substrate temperature when the substrate has an island structure. • The assisted Ar ion has power of making a flat surface and increasing the local temperature. • The assisted Ar ion will influence the growth mode with the change of surface atom mobility. • The Volmer-Weber (island) growth mode is inhibited with a high assisted Ar ion energy. - Abstract: This paper has investigated the impact of the substrate temperature and Ar ion assisted deposition on the surface structure formation mechanism and the film properties during the amorphous TiO_2 thin film deposition process with the molecular dynamics simulation method. The results show that the reduction of the surface roughness happen when the energy of Ar ions assisted is increased or the substrate temperature rises, and also the film density on surface is changed with the increasing of Ar ions energy and substrate temperature. It is also found that the Volmer-Weber (island) growth mode of films is promoted by the lower Ar ion energy and higher substrate temperature when the substrate has an island structure. The assisted Ar ion has power of making a flat surface and increasing the local temperature. Besides, it will influence the growth mode with the change of surface atom mobility. With a high assisted Ar ion energy the Volmer-Weber (island) growth mode is inhibited, which will be conducive to the formation of more smooth film surface.

  19. Multilayer optics for x-ray analysis: design - fabrication - application

    International Nuclear Information System (INIS)

    Dietsch, R.; Holz, Th.; Bruegemann, L.

    2002-01-01

    substrate dimensions. Magnetron sputtering and e-beam evaporation are well established deposition techniques to fabricate X-ray optical multilayers. For specific layer material combinations and tailored thickness profiles, Pulsed Laser Deposition (PLD) has become an interesting alternative to these predominant technologies. As a result of the accuracy achieved with PLD, gradient multilayers of different material combinations can be deposited both on flat and on pre-curved substrates. For several years, Ni/C- Goebel-Mirrors are well established in X-ray diffraction using Cu Kα-radiation. Intensities of more then 10 9 cps together with a low beam divergence Δφ 1 ) : l(Cu Kβ) > 10 6 are realized with the Twin Goebel-Mirror arrangement (TGM). The TGM arrangement is also available for Mo Kα-radiation. A combination of a graded multilayer mirror for Mo Kα-radiation and a Germanium channel cut monochromator is capable of providing monochromatic Mo Kα 1 - radiation. There are further applications of multilayer optics in the high energy range for synchrotron, medical and astrophysical investigations. In surface analyses like AES and SIMS, these nanometer-multilayers can also be used to study depth resolution effects in depth profiling analysis. Copyright (2002) Australian X-ray Analytical Association Inc

  20. Graphene substrates enhance optical transfection efficiency in pluripotent stem cells

    CSIR Research Space (South Africa)

    Khanyile, T

    2013-09-01

    Full Text Available Studies directed at investigating the role of nanomaterial substrates with varying properties in tissue engineering research are essential. In this research arena, pluripotent stem cells are popular for their self renewing ability and are widely...

  1. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    International Nuclear Information System (INIS)

    Gartia, Manas Ranjan; Hsiao, Austin; Logan Liu, G; Sivaguru, Mayandi; Chen Yi

    2011-01-01

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  2. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gartia, Manas Ranjan [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Hsiao, Austin; Logan Liu, G [Department of Bioengineering, University of Illinois, Urbana, IL 61801 (United States); Sivaguru, Mayandi [Institute for Genomic Biology, University of Illinois, Urbana, IL 61801 (United States); Chen Yi, E-mail: loganliu@illinois.edu [Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States)

    2011-09-07

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  3. Direct observation for atomically flat and ordered vertical {111} side-surfaces on three-dimensionally figured Si(110) substrate using scanning tunneling microscopy

    Science.gov (United States)

    Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu

    2017-11-01

    A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.

  4. Atomically Thin Mica Flakes and Their Application as Ultrathin Insulating Substrates for Graphene

    NARCIS (Netherlands)

    Castellanos-Gomez, Andres; Wojtaszek, Magdalena; Tombros, Nikolaos; Agrait, Nicolas; van Wees, Bart J.; Rubio-Bollinger, Gabino; Agraït, Nicolás

    2011-01-01

    By mechanical exfoliation, it is possible to deposit atomically thin mica flakes down to single-monolayer thickness on SiO(2)/Si wafers. The optical contrast of these mica flakes on top of a SiO(2)/Si substrate depends on their thickness, the illumination wavelength, and the SiO(2) substrate

  5. Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers.

    Science.gov (United States)

    Yousafzai, Muhammad Sulaiman; Coceano, Giovanna; Bonin, Serena; Niemela, Joseph; Scoles, Giacinto; Cojoc, Dan

    2017-07-26

    The mechanical properties of cells are influenced by their microenvironment. Here we report cell stiffness alteration by changing the cell substrate stiffness for isolated cells and cells in contact with other cells. Polydimethylsiloxane (PDMS) is used to prepare soft substrates with three different stiffness values (173, 88 and 17kPa respectively). Breast cancer cells lines, namely HBL-100, MCF-7 and MDA-MB-231 with different level of aggressiveness are cultured on these substrates and their local elasticity is investigated by vertical indentation of the cell membrane. Our preliminary results show an unforeseen behavior of the MDA-MB-231 cells. When cultured on glass substrate as isolated cells, they are less stiff than the other two types of cells, in agreement with the general statement that more aggressive and metastatic cells are softer. However, when connected to other cells the stiffness of MDA-MB-231 cells becomes similar to the other two cell lines. Moreover, the stiffness of MDA-MB-231 cells cultured on soft PDMS substrates is significantly higher than the stiffness of the other cell types, demonstrating thus the strong influence of the environmental conditions on the mechanical properties of the cells. Copyright © 2017. Published by Elsevier Ltd.

  6. An epidemiologic study of flat foot in Iran

    Directory of Open Access Journals (Sweden)

    Alamy B

    1997-07-01

    Full Text Available Among 880 studied feet of 7-14 years old children 6.9% suffered mild and severe flat foot. 53.8% of the affected children were symptomatic. As 40.1% of the general population experiences symptoms, in a small proportion of affected persons, symptoms are due to flat foot. The prevalence of symptoms rises with increasing severity of the disorder. In this article, reviewing general aspects of flat food, prevalence and other epidemiological aspects of flat foot for the first time in Iran have been presented

  7. Substrate dependent physical properties of evaporated CdO thin films for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Anuradha; Chander, S.; Patel, S.L. [Department of Physics, Mohanlal Sukhadia University, Udaipur-313001 (India); Rangra, K.J. [Sensors and Transducers Group, CSIR-CEERI, Pilani-333031 (India); Dhaka, M.S., E-mail: msdhaka75@yahoo.co.in [Department of Physics, Mohanlal Sukhadia University, Udaipur-313001 (India)

    2017-06-15

    Highlights: • Substrate dependent physical properties of CdO thin films are carried out. • XRD patterns reveal that the films have cubic structure of space group Fm3m. • Optical direct band gap is found to vary with the substrates. • SEM images show that the films are compact and homogeneous. • I–V characteristics show ohmic behavior of the deposited CdO films. - Abstract: In this study, CdO thin films were grown by e-beam evaporation technique on glass, indium tin oxide (ITO), fluorine-doped tin oxide (FTO) and silicon (Si) wafer. The deposited films were analyzed by X-ray diffraction (XRD), UV–Vis spectrophotometer, scanning electron microscopy, energy dispersive spectroscopy (EDS) and source meter (current–voltage) for structural, optical, surface morphological, elemental and electrical analysis, respectively. The films have single phase of cubic structure (space group Fm3m) with (200) preferred orientation. The structural parameters viz. inter-planar spacing, grain size, lattice constant, internal strain and dislocation density are calculated and found to vary with the nature of the substrates. The optical band gap was found in the range 2.24–3.95 eV and strongly dependents on the substrates. The SEM analysis shows that the films are compact, homogeneous and have granular structure without any defects like pin holes and cracks. The EDS spectra confirmed the presence of cadmium (Cd) and oxygen (O) in the films deposited on different substrates. The current–voltage characteristics of the films show ohmic behavior.

  8. Studies on the Optical Properties and Surface Morphology of Cobalt Phthalocyanine Thin Films

    Directory of Open Access Journals (Sweden)

    Benny Joseph

    2008-01-01

    Full Text Available Thin films of Cobalt Phthalocyanine (CoPc are fabricated at a base pressure of 10-5 m.bar using Hind-Hivac thermal evaporation plant. The films are deposited on to glass substrates at various temperatures 318, 363, 408 and 458K. The optical absorption spectra of these thin films are measured. The present studies reveal that the optical band gap energies of CoPc thin films are almost same on substrate temperature variation. The structure and surface morphology of the films deposited on glass substrates of temperatures 303, 363 and 458K are studied using X-ray diffractograms and Scanning Electron Micrographs (SEM, which show that there is a change in the crystallinity and surface morphology due to change in the substrate temperatures. Full width at half maximum (FWHM intensity of the diffraction peaks is also found reduced with increasing substrate temperatures. Scanning electron micrographs show that these crystals are needle like, which are interconnected at high substrate temperatures. The optical band gap energy is almost same on substrate temperature variation. Trap energy levels are also observed for these films.

  9. A digital transducer and digital microphone using an optical technique

    Science.gov (United States)

    Ghelmansarai, F. A.

    1996-09-01

    A transducer is devised to measure pressure, displacements or angles by optical means. This transducer delivers a digital output without relying on interferometry techniques or analogue-to-digital converters. This device is based on an optical scanner and an optical detector. An inter-digital photoconductive detector (IDPC) is employed that delivers a series of pulses, whose number depends on the scan length. A pre-objective scanning configuration is used that allows for the possibility of a flat image plane. The optical scanner provides scanning of IDPC and the generated scan length is proportional to the measurand.

  10. Realistic reflectance spectrum of thin films covering a transparent optically thick substrate

    Energy Technology Data Exchange (ETDEWEB)

    Cesaria, M., E-mail: maura.cesaria@le.infn.it; Caricato, A. P.; Martino, M. [Department of Mathematics and Physics “Ennio De Giorgi,” University of Salento, Via Arnesano, I-73100 Lecce (Italy)

    2014-07-21

    A spectrophotometric strategy is presented and discussed for calculating realistically the reflectance spectrum of an absorbing film deposited over a thick transparent or semi-transparent substrate. The developed route exploits simple mathematics, has wide range of applicability (high-to-weak absorption regions and thick-to-ultrathin films), rules out numerical and curve-fitting procedures as well as model-functions, inherently accounts for the non-measurable contribution of the film-substrate interface as well as substrate backside, and describes the film reflectance spectrum as determined by the experimental situation (deposition approach and parameters). The reliability of the method is tested on films of a well-known material (indium tin oxide) by deliberately changing film thickness and structural quality through doping. Results are found consistent with usual information yielded by reflectance, its inherent relationship with scattering processes and contributions to the measured total reflectance.

  11. High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling

    NARCIS (Netherlands)

    Veerman, J.A.; Otter, A.M.; Kuipers, L.; van Hulst, N.F.

    1998-01-01

    We have improved the optical characteristics of aluminum-coated fiber probes used in near-field scanning optical microscopy by milling with a focused ion beam. This treatment produces a flat-end face free of aluminum grains, containing a well- defined circularly-symmetric aperture with controllable

  12. Instability of flat space at finite temperature

    International Nuclear Information System (INIS)

    Gross, D.J.; Perry, M.J.; Yaffe, L.G.

    1982-01-01

    The instabilities of quantum gravity are investigated using the path-integral formulation of Einstein's theory. A brief review is given of the classical gravitational instabilities, as well as the stability of flat space. The Euclidean path-integral representation of the partition function is employed to discuss the instability of flat space at finite temperature. Semiclassical, or saddle-point, approximations are utilized. We show how the Jeans instability arises as a tachyon in the graviton propagator when small perturbations about hot flat space are considered. The effect due to the Schwarzschild instanton is studied. The small fluctuations about this instanton are analyzed and a negative mode is discovered. This produces, in the semiclassical approximation, an imaginary part of the free energy. This is interpreted as being due to the metastability of hot flat space to nucleate black holes. These then evolve by evaporation or by accretion of thermal gravitons, leading to the instability of hot flat space. The nucleation rate of black holes is calculated as a function of temperature

  13. Standard Practice for Optical Distortion and Deviation of Transparent Parts Using the Double-Exposure Method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This photographic practice determines the optical distortion and deviation of a line of sight through a simple transparent part, such as a commercial aircraft windshield or a cabin window. This practice applies to essentially flat or nearly flat parts and may not be suitable for highly curved materials. 1.2 Test Method F 801 addresses optical deviation (angluar deviation) and Test Method F 2156 addresses optical distortion using grid line slope. These test methods should be used instead of Practice F 733 whenever practical. 1.3 This standard does not purport to address the safety concerns associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  14. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    Science.gov (United States)

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate

  15. Flat-panel detectors in x-ray diagnosis

    International Nuclear Information System (INIS)

    Spahn, M.; Heer, V.; Freytag, R.

    2003-01-01

    For all application segments X-ray systems with flat-panel detectors increasingly enter the market. In digital radiography, mammography and cardiologic angiography flat-panel detectors are already well established while they are made ready for market introduction in general angiography and fluoroscopy. Two flat-panel detector technologies are available. One technology is based on an indirect conversion process of X-rays while the other one uses a direct conversion method.For radiography and dynamic applications the indirect method provides substantial advantages, while the direct method has some benefits for mammography. In radiography and mammography flat-panel detectors lead to clear improvements with respect to workflow, image quality and dose reduction potentials. These improvements are fostered by the immediate availability of the image, the large dynamic range and the high sensitivity to X-rays. New applications and the use of complex image processing algorithms have the potential to enlarge the present diagnostic range of applications.Up to now, image intensifiers are still the well-established technology for angiography and fluoroscopy. Nevertheless flat-panel detectors begin to enter this field, especially in cardiologic angiography.Characteristics of flat-panel detectors such as the availability of distortion-free images, the excellent contrast resolution, the large dynamic range, the high sensitivity to X-rays and the usability in magnetic fields provide the basis for improved and new diagnostic and interventional methods. (orig.) [de

  16. Influence of substrate and film thickness on polymer LIPSS formation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jing; Nogales, Aurora; Ezquerra, Tiberio A. [Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, Madrid 28006 (Spain); Rebollar, Esther, E-mail: e.rebollar@csic.es [Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, Madrid 28006 (Spain)

    2017-02-01

    Highlights: • The estimation of temperature upon pulse accumulation shows that a small positive offset is caused by each individual pulse. • Number of pulses needed for LIPSS formation in PS thin films depends on polymer thickness. • Thermal conductivity and diffusivity of supporting substrate influence the onset for LIPSS formation and their quality. • Quality of LIPSS is affected by the substrate optical properties. - Abstract: Here we focus on the influence of both, substrate and film thickness on polymer Laser Induced Periodic Surface Structures (LIPSS) formation in polymer films. For this aim a morphological description of ripples structures generated on spin-coated polystyrene (PS) films by a linearly polarized laser beam with a wavelength of 266 nm is presented. The influence of different parameters on the quality and characteristics of the formed laser-induced periodic surface structures (LIPSS) was investigated. We found that well-ordered LIPSS are formed either on PS films thinner than 200 nm or thicker than 400 nm supported on silicon substrates as well as on thicker free standing films. However less-ordered ripples are formed on silicon supported films with intermediate thicknesses in the range of 200–380 nm. The effect of the thermal and optical properties of the substrate on the quality of LIPSS was analyzed. Differences observed in the fluence and number of pulses needed for the onset of surface morphological modifications is explained considering two main effects which are: (1) The temperature increase on polymer surface induced by the action of cumulative laser irradiation and (2) The differences in thermal conductivity between the polymer and the substrate which strongly affect the heat dissipation generated by irradiation.

  17. Ion beam modification of structural and optical properties of GeO2 thin films deposited at various substrate temperatures using pulsed laser deposition

    Science.gov (United States)

    Rathore, Mahendra Singh; Vinod, Arun; Angalakurthi, Rambabu; Pathak, A. P.; Singh, Fouran; Thatikonda, Santhosh Kumar; Nelamarri, Srinivasa Rao

    2017-11-01

    High energy heavy ion irradiation-induced modification of high quality crystalline GeO2 thin films grown at different substrate temperatures ranging from 100 to 500 °C using pulsed laser deposition has been investigated. The pristine films were irradiated with 100 MeV Ag7+ ions at fixed fluence of 1 × 1013 ions/cm2. These pristine and irradiated films have been characterized using X-ray diffraction, atomic force microscopy, Raman spectroscopy, Fourier transform infrared and photoluminescence spectroscopy. The XRD and Raman results of pristine films confirm the formation of hexagonal structure of GeO2 films, whereas the irradiation eliminates all the peaks except major GeO2 peak of (101) plane. It is evident from the XRD results that crystallite size changes with substrate temperature and SHI irradiation. The surface morphology of films was studied by AFM. The functional group of pristine and irradiated films was investigated by IR transmission spectra. Pristine films exhibited strong photoluminescence around 342 and 470 nm due to oxygen defects and a red shift in the PL bands is observed after irradiation. Possible mechanism of tuning structural and optical properties of pristine as well as irradiated GeO2 films with substrate temperature and ion beam irradiation has been reported in detail.

  18. Fabrication of Up-Conversion Phosphor Films on Flexible Substrates Using a Nanostructured Organo-Silicon.

    Science.gov (United States)

    Jeon, Young-Sun; Kim, Tae-Un; Kim, Seon-Hoon; Lee, Young-Hwan; Choi, Pil-Son; Hwang, Kyu-Seog

    2018-03-01

    Up-conversion phosphors have attracted considerable attention because of their applications in solid-state lasers, optical communications, flat-panel displays, photovoltaic cells, and biological labels. Among them, NaYF4 is reported as one of the most efficient hosts for infrared to visible photon up-conversion of Yb3+ and Er3+ ions. However, a low-temperature method is required for industrial scale fabrication of photonic and optoelectronic devices on flexible organic substrates. In this study, hexagonal β-NaYF4: 3 mol% Yb3+, 3 mol% Er3+ up-conversion phosphor using Ca2+ was prepared by chemical solution method. Then, we synthesized a nanostructured organo-silicon compound from methyl tri-methoxysilane and 3-glycidoxy-propyl-trimethoxy-silane. The transmittance of the organo-silicon compound was found to be over 90% in the wavelength range of 400~1500 nm. Then we prepared a fluoride-based phosphor paste by mixing the organo-silicon compound with Na(Ca)YF4:Yb3+, Er3+. Subsequently, this paste was coated on polyethylene terephthalate, followed by heat-treatment at 120 °C. The visible emission of the infrared detection card was found to be at 655 nm and 661 nm an excitation wavelength of 980 nm.

  19. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.

    Science.gov (United States)

    Israelsen, Nathan D; Wooley, Donald; Hanson, Cynthia; Vargis, Elizabeth

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to develop an optimized process for fabricating Raman-labeled nanoparticles for a SERS-based immunoassay on a polystyrene substrate. We have developed a method for fabricating SERS nanoparticle probes for use in a light scattering immunoassay on a polystyrene substrate. The light scattering profile of both spherical gold nanoparticle and gold nanorod SERS probes were characterized using Raman spectroscopy and optical absorbance spectroscopy. The effects of substrate interference and autofluorescence were reduced by selecting a Raman reporter with a strong light scattering response in a spectral region where interfering substrate emission peaks are minimized. Both spherical gold nanoparticles and gold nanorods SERS probes used in the immunoassay were detected at labeling concentrations in the low pM range. This analytical sensitivity falls within the typical dynamic range for direct labeling of cell-surface biomarkers using SERS probes. SERS nanoparticle probes were fabricated to produce a strong light scattering signal despite substrate interference. The optical extinction and inelastic light scattering of these probes was detected by optical absorbance spectroscopy and Raman spectroscopy, respectively. This immunoassay demonstrates the feasibility of analyzing strongly enhanced Raman signals on polystyrene, which is an

  20. General classification of a normally flat Ric- semi symmetric submanifolds

    International Nuclear Information System (INIS)

    Mirzoyan, V.A.

    2012-01-01

    It has been proved that a normally flat submanifold M in Euclidean space En satisfies the condition R(X,Y)Ricci =0 if and only if it is the open part of one of the following submanifolds: (1) normally flat two-dimensional submanifold, (2) normally flat Einstein submanifold (in particular Ricci-flat or locally Euclidean), (3) normally flat semi- Einstein submanifold, (4) normally flat interlacing product of semi-Einstein submanifolds and locally Euclidean submanifold (may be of zero dimension), (5) direct product of the above enumerated classes of submanifolds

  1. Substrate dependent hierarchical structures of RF sputtered ZnS films

    Science.gov (United States)

    Chalana, S. R.; Mahadevan Pillai, V. P.

    2018-05-01

    RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.

  2. Optical recording medium

    International Nuclear Information System (INIS)

    Andriech, A.; Bivol, V.; Tridukh, G.; Tsiuleanu, D.

    2002-01-01

    The invention relates of the micro- and optoelectronics, computer engineering ,in particular, to tjhe optical information media and may be used in hilography. Summary of the invention consists in that the optical image recording medium, containing a dielectric substrates, onto one surface of which there are placed in series a transparent electricity conducting layer, a photo sensitive recording layer of chalcogenic glass and a thin film electrode of aluminium, is provided with an optically transparent protective layer, applied into the thin film electrode. The result of the invention consists in excluding the dependence of chemical processes course into the medium upon environmental conditions

  3. Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyoshi, Yoshifumi; Nemoto, Takashi; Kurata, Hiroki, E-mail: kurata@eels.kuicr.kyoto-u.ac.jp

    2017-04-15

    In this study, electron energy-loss spectroscopy (EELS) in conjunction with scanning transmission electron microscopy (STEM) was used to investigate surface plasmons in a single silver nanoparticle (NP) on a magnesium oxide substrate, employing an incident electron trajectory parallel to the substrate surface. This parallel irradiation allowed a direct exploration of the substrate effects on localized surface plasmon (LSP) excitations as a function of the distance from the substrate. The presence of the substrate was found to lower the symmetry of the system, such that the resonance energies of LSPs were dependent on the polarization direction relative to the substrate surface. The resulting mode splitting could be detected by applying different electron trajectories, providing results similar to those previously obtained from optical studies using polarized light. However, the LSP maps obtained by STEM-EELS analysis show an asymmetric intensity distribution with the highest intensity at the top surface of the NP (that is, far from the substrate), a result that is not predicted by optical simulations. We show that modifications of the applied electric field by the substrate cause this asymmetric intensity distribution in the LSP maps.

  4. The Evaporation of Liquid Micro-Drops on the Heated Substrate

    Directory of Open Access Journals (Sweden)

    Semenov Andrey

    2017-01-01

    Full Text Available Evaporation of a heated sessile water micro-drop was studied experimentally at the substrate temperature and surrounding atmosphere from 30 to 50 °C. The studies were performed on the float glass substrate with aluminum nanocoating of optical quality. The research has shown that the specific rate of evaporation (mass loss per unit of the drop surface area increases with the decrease in droplet volume and at the last stage several times exceeds the initial value.

  5. UV-cured polymer optics

    Science.gov (United States)

    Piñón, Victor; Santiago, Freddie; Vogelsberg, Ashten; Davenport, Amelia; Cramer, Neil

    2017-10-01

    Although many optical-quality glass materials are available for use in optical systems, the range of polymeric materials is limited. Polymeric materials have some advantages over glass when it comes to large-scale manufacturing and production. In smaller scale systems, they offer a reduction in weight when compared to glass counterparts. This is especially important when designing optical systems meant to be carried by hand. We aimed to expand the availability of polymeric materials by exploring both crown-like and flint-like polymers. In addition, rapid and facile production was also a goal. By using UV-cured thiolene-based polymers, we were able to produce optical materials within seconds. This enabled the rapid screening of a variety of polymers from which we down-selected to produce optical flats and lenses. We will discuss problems with production and mitigation strategies in using UV-cured polymers for optical components. Using UV-cured polymers present a different set of problems than traditional injection-molded polymers, and these issues are discussed in detail. Using these produced optics, we integrated them into a modified direct view optical system, with the end goal being the development of drop-in replacements for glass components. This optical production strategy shows promise for use in lab-scale systems, where low-cost methods and flexibility are of paramount importance.

  6. Use of an arc plasma rotating in a magnetic field for metal coating glass substrates

    International Nuclear Information System (INIS)

    Vukanovic, V.; Butler, S.; Kapur, S.; Krakower, E.; Allston, T.; Belfield, K.; Gibson, G.

    1983-01-01

    First results are reported about deposition of metals on glass substrate using a low current arc plasma source at atmospheric pressure. The arc source consists of a graphite cathode rod placed on the axis of a graphite anode cylinder aligned in a magnetic field. The carrier gas is argon. The deposition material, zinc or gold, is evaporated from a reservoir in the cathode. Depositions on flat substrates positioned on the periphery of the rotating plasma within the anode tube and in a jet outside the anode have been investigated. The investigations are planned to lead towards laser fusion target pusher layer fabrication. This fabrication would be facilitated by a high pressure deposition process where target levitation is readily performed

  7. In situ optical diagnostic for monitoring or control of sodium diffusion in photovoltaics manufacturing

    Science.gov (United States)

    Li, Jian; Levi, Dean; Contreras, Miguel; Glynn, Stephen

    2015-09-15

    A method of fabricating a photovoltaic device 100, includes the steps of providing a glass substrate 102, depositing a molybdenum layer 104 on a surface of the glass substrate, directing light through the glass substrate to the near-substrate region of the molybdenum layer 206, detecting an optical property of the near-substrate region of the molybdenum layer after interaction with the incident light 208 and determining a density of the near-substrate region of the molybdenum layer from the detected optical property 210. A molybdenum deposition parameter may be controlled based upon the determined density of the near-substrate region of the molybdenum layer 218. A non-contact method measures a density of the near-substrate region of a molybdenum layer and a deposition chamber 300.

  8. Metasurface optics for full-color computational imaging.

    Science.gov (United States)

    Colburn, Shane; Zhan, Alan; Majumdar, Arka

    2018-02-01

    Conventional imaging systems comprise large and expensive optical components that successively mitigate aberrations. Metasurface optics offers a route to miniaturize imaging systems by replacing bulky components with flat and compact implementations. The diffractive nature of these devices, however, induces severe chromatic aberrations, and current multiwavelength and narrowband achromatic metasurfaces cannot support full visible spectrum imaging (400 to 700 nm). We combine principles of both computational imaging and metasurface optics to build a system with a single metalens of numerical aperture ~0.45, which generates in-focus images under white light illumination. Our metalens exhibits a spectrally invariant point spread function that enables computational reconstruction of captured images with a single digital filter. This work connects computational imaging and metasurface optics and demonstrates the capabilities of combining these disciplines by simultaneously reducing aberrations and downsizing imaging systems using simpler optics.

  9. 3D flat holography: entropy and logarithmic corrections

    International Nuclear Information System (INIS)

    Bagchi, Arjun; Basu, Rudranil

    2014-01-01

    We compute the leading corrections to the Bekenstein-Hawking entropy of the Flat Space Cosmological (FSC) solutions in 3D flat spacetimes, which are the flat analogues of the BTZ black holes in AdS 3 . The analysis is done by a computation of density of states in the dual 2D Galilean Conformal Field Theory and the answer obtained by this matches with the limiting value of the expected result for the BTZ inner horizon entropy as well as what is expected for a generic thermodynamic system. Along the way, we also develop other aspects of holography of 3D flat spacetimes

  10. Effect of substrate temperature on the optical, structural and morphological properties of In{sub 2}Se{sub 3} thin films grown by a two-step process

    Energy Technology Data Exchange (ETDEWEB)

    Clavijo, J; Gordillo, G [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Romero, E, E-mail: jiclavijop@unal.edu.c, E-mail: erromerom@unal.edu.c, E-mail: ggordillog@unal.edu.c

    2009-05-01

    Polycrystalline gamma - In{sub 2}Se{sub 3} thin films with adequate properties to use them as buffer layer in solar cells, were grown on corning glass substrates using a novel procedure which includes the formation of the alpha- In{sub 2}Se{sub 3} phase in a first step followed by thermal annealing in Se ambient to activate the formation of the gamma- In{sub 2}Se{sub 3} phase. X-ray diffraction (XRD) measurements revealed that the substrate temperature strongly affects the phase in which the indium selenide films grow; at substrate temperatures of around 300{sup 0}C the indium selenide grow in the alpha-In{sub 2}Se{sub 3} phase, whereas the samples deposited at temperatures between 300 and 550{sup 0}C grow with a mixture of the alpha-In{sub 2}Se{sub 3} and gamma-In{sub 2}Se{sub 3} phases. The alpha-In{sub 2}Se{sub 3} samples change into the gamma-In{sub 2}Se{sub 3} phase when subjected to heat treatment around 550{sup 0}C in Se ambient. Spectrophotometric measurements also revealed that the phase in which the indium selenide films grow, significantly affects the optical gap Eg. Eg values of 1.47 eV and 2.11 eV were determined for the alpha-In{sub 2}Se{sub 3} and gamma-In{sub 2}Se{sub 3} films respectively, indicating that this gamma-In{sub 2}Se{sub 3} compound has better properties to perform as buffer layer in thin film solar cells. The effect of substrate temperature on the structural, optical and morphological properties was investigated using XRD, spectral transmittance and atomic force microscope (AFM) measurements. Theoretical simulation of the XRD pattern carried out with the help of the PowderCell package, allowed us to identify the phases associated to the X-Ray reflections, with a good degree of confidence.

  11. Molecular dynamics study of the effect of substrate temperature and Ar ion assisted deposition on the deposition of amorphous TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian, E-mail: mus_c@qq.com [Science and Technology on Analog Integrated Circuit Laboratory, ChongQing, 401332 (China); Zhang, Jing [Science and Technology on Analog Integrated Circuit Laboratory, ChongQing, 401332 (China); Zhao, Yu-Qing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’AN, 710049 (China)

    2017-05-15

    Highlights: • The surface roughness of a-TiO{sub 2} films is decreased with the increment of the Ar ion assisted energy. • The surface roughness of a-TiO{sub 2} films is decreased with higher substrate temperature when the substrate has an island structure. • The assisted Ar ion has power of making a flat surface and increasing the local temperature. • The assisted Ar ion will influence the growth mode with the change of surface atom mobility. • The Volmer-Weber (island) growth mode is inhibited with a high assisted Ar ion energy. - Abstract: This paper has investigated the impact of the substrate temperature and Ar ion assisted deposition on the surface structure formation mechanism and the film properties during the amorphous TiO{sub 2} thin film deposition process with the molecular dynamics simulation method. The results show that the reduction of the surface roughness happen when the energy of Ar ions assisted is increased or the substrate temperature rises, and also the film density on surface is changed with the increasing of Ar ions energy and substrate temperature. It is also found that the Volmer-Weber (island) growth mode of films is promoted by the lower Ar ion energy and higher substrate temperature when the substrate has an island structure. The assisted Ar ion has power of making a flat surface and increasing the local temperature. Besides, it will influence the growth mode with the change of surface atom mobility. With a high assisted Ar ion energy the Volmer-Weber (island) growth mode is inhibited, which will be conducive to the formation of more smooth film surface.

  12. Computational Design of Flat-Band Material

    Science.gov (United States)

    Hase, I.; Yanagisawa, T.; Kawashima, K.

    2018-02-01

    Quantum mechanics states that hopping integral between local orbitals makes the energy band dispersive. However, in some special cases, there are bands with no dispersion due to quantum interference. These bands are called as flat band. Many models having flat band have been proposed, and many interesting physical properties are predicted. However, no real compound having flat band has been found yet despite the 25 years of vigorous researches. We have found that some pyrochlore oxides have quasi-flat band just below the Fermi level by first principles calculation. Moreover, their valence bands are well described by a tight-binding model of pyrochlore lattice with isotropic nearest neighbor hopping integral. This model belongs to a class of Mielke model, whose ground state is known to be ferromagnetic with appropriate carrier doping and on-site repulsive Coulomb interaction. We have also performed a spin-polarized band calculation for the hole-doped system from first principles and found that the ground state is ferromagnetic for some doping region. Interestingly, these compounds do not include magnetic element, such as transition metal and rare-earth elements.

  13. Annealing effects on the optical and morphological properties of ZnO nanorods on AZO substrate by using aqueous solution method at low temperature.

    Science.gov (United States)

    Hang, Da-Ren; Islam, Sk Emdadul; Sharma, Krishna Hari; Kuo, Shiao-Wei; Zhang, Cheng-Zu; Wang, Jun-Jie

    2014-01-01

    Vertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates were fabricated by a single-step aqueous solution method at low temperature. In order to optimize optical quality, the effects of annealing on optical and structural properties were investigated by scanning electron microscopy, X-ray diffraction, photoluminescence (PL), and Raman spectroscopy. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions. The best characteristics have been obtained by employing annealing at 400°C in air for 2 h, bringing about a sharp and intense NBE emission. The defect-related recombinations were also suppressed effectively. However, the enhancement decreases with higher annealing temperature and prolonged annealing. PL study indicates that the NBE emission is dominated by radiative recombination associated with hydrogen donors. Thus, the enhancement of NBE is due to the activation of radiative recombinations associated with hydrogen donors. On the other hand, the reduction of visible emission is mainly attributed to the annihilation of OH groups. Our results provide insight to comprehend annealing effects and an effective way to improve optical properties of low-temperature-grown ZnO NRs for future facile device applications.

  14. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Zenere, Katrina A., E-mail: oleg.titov@ga.gov.au [School of Physics, University of Sydney, NSW 2006 (Australia)

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  15. Three gradients and the perception of flat and curved surfaces.

    Science.gov (United States)

    Cutting, J E; Millard, R T

    1984-06-01

    Researchers of visual perception have long been interested in the perceived slant of a surface and in the gradients that purportedly specify it. Slant is the angle between the line of sight and the tangent to the planar surface at any point, also called the surface normal. Gradients are the sources of information that grade, or change, with visual angle as one looks from one's feet upward to the horizon. The present article explores three gradients--perspective, compression, and density--and the phenomenal impression of flat and curved surfaces. The perspective gradient is measured at right angles to the axis of tilt at any point in the optic array; that is, when looking down a hallway at the tiles of a floor receding in the distance, perspective is measured by the x-axis width of each tile projected on the image plane orthogonal to the line of sight. The compression gradient is the ratio of y/x axis measures on the projected plane. The density gradient is measured by the number of tiles per unit solid visual angle. For flat surfaces and many others, perspective and compression gradients decrease with distance, and the density gradient increases. We discuss the manner in which these gradients change for various types of surfaces. Each gradient is founded on a different assumption about textures on the surfaces around us. In Experiment 1, viewers assessed the three-dimensional character of projections of flat and curved surfaces receding in the distance. They made pairwise judgments of preference and of dissimilarity among eight stimuli in each of four sets. The presence of each gradient was manipulated orthogonally such that each stimulus had zero, one, two, or three gradients appropriate for either a flat surface or a curved surface. Judgments were made were made for surfaces with both regularly shaped and irregularly shaped textures scattered on them. All viewer assessment were then scaled in one dimension. Multiple correlation and regression on the scale values

  16. Nanopatterned Silicon Substrate Use in Heterojunction Thin Film Solar Cells Made by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Shao-Ze Tseng

    2014-01-01

    Full Text Available This paper describes a method for fabricating silicon heterojunction thin film solar cells with an ITO/p-type a-Si : H/n-type c-Si structure by radiofrequency magnetron sputtering. A short-circuit current density and efficiency of 28.80 mA/cm2 and 8.67% were achieved. Novel nanopatterned silicon wafers for use in cells are presented. Improved heterojunction cells are formed on a nanopatterned silicon substrate that is prepared with a self-assembled monolayer of SiO2 nanospheres with a diameter of 550 nm used as an etching mask. The efficiency of the nanopattern silicon substrate heterojunction cells was 31.49% greater than that of heterojunction cells on a flat silicon wafer.

  17. Flat-top passband filter based on parallel-coupled double microring resonators in silicon

    Science.gov (United States)

    Huang, Qingzhong; Xiao, Xi; Li, Yuntao; Li, Zhiyong; Yu, Yude; Yu, Jinzhong

    2009-08-01

    Optical filters with box-like response were designed and realized based on parallel-coupled double microrings in silicon-on-insulator. The properties of this design are simulated, considering the impact of the center-to-center distance of two rings, and coupling efficiency. Flat-top passband in the drop channel of the fabricated device was demonstrated with a 1dB bandwidth of 0.82nm, a 1dB/10dB bandwidth ratio of 0.51, an out of band rejection ratio of 14.6dB, as well as a free spectrum range of 13.6nm.

  18. Spin-on-glass coatings for the generation of super-polishedsubstrates for extreme ultraviolet optics

    Energy Technology Data Exchange (ETDEWEB)

    Salmassi, Farhad; Naulleau, Patrick P.; Gullikson, Eric M.

    2005-01-01

    Substrates intended for use as extreme ultraviolet (EUV) optics have extremely stringent requirements in terms of finish. These requirements can dramatically increase the cost and fabrication time, especially when non-conventional shapes, such as toroids, are required. Here we present a spin-on-glass resist process capable of generating super-polished parts from inexpensive substrates. The method has been used to render diamond-turned substrates compatible for use as EUV optics. Toroidal diamond-turned optics with starting rms roughness in the 3.3 to 3.7 nm range have been smoothed to the 0.4 to 0.6 nm range. EUV reflectometry characterization of these optics has demonstrated reflectivities of approximately 63%.

  19. Vector assembly of colloids on monolayer substrates

    Science.gov (United States)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  20. Deposition of indium tin oxide films on acrylic substrates by radiofrequency magnetron sputtering

    International Nuclear Information System (INIS)

    Chiou, B.S.; Hsieh, S.T.; Wu, W.F.

    1994-01-01

    Indium tin oxide (ITO) films were deposited onto acrylic substrates by rf magnetron sputtering. Low substrate temperature (< 80 C) and low rf power (< 28 W) were maintained during sputtering to prevent acrylic substrate deformation. The influence of sputtering parameters, such as rf power, target-to-substrate distance, and chamber pressure, on the film deposition rate, the electrical properties, as well as the optical properties of the deposited films was investigated. Both the refractive index and the extinction coefficient were derived. The high reflection at wavelengths greater than 3 μm made these sputtered ITO films applicable to infrared mirrors

  1. Optical absorption in planar graphene superlattice: The role of structural parameters

    Science.gov (United States)

    Azadi, L.; Shojaei, S.

    2018-04-01

    We theoretically studied the optically driven interband transitions in a planar graphene superlattices (PGSL) formed by patterning graphene sheet on laterally hetrostructured substrate as Sio2/hBN. A tunable optical transitions between minibands is observed based on engineering structural parameters. We derive analytically expression for optical absorption from two-band model. Considerable optical absorption is obtained for different ratios between widths of heterostructured substrate and is explained analytically from the view point of wavefunction engineering and miniband dispersion, in details. The role of different statuses of polarization as circular and linear are considered. Our study paves a way toward the control of optical properties of PGSLs to be implemented in optoelectronics devices.

  2. Thin film pc-Si by aluminium induced crystallization on metallic substrate

    Directory of Open Access Journals (Sweden)

    Cayron C.

    2013-04-01

    Full Text Available Thin film polycrystalline silicon (pc-Si on flexible metallic substrates is promising for low cost production of photovoltaic solar cells. One of the attractive methods to produce pc-Si solar cells consists in thickening a large-grained seed layer by epitaxy. In this work, the deposited seed layer is made by aluminium induced crystallization (AIC of an amorphous silicon (a-Si thin film on metallic substrates (Ni/Fe alloy initially coated with a tantalum nitride (TaN conductive diffusion barrier layer. Effect of the thermal budget on the AIC grown pc-Si seed layer was investigated in order to optimize the process (i.e. the quality of the pc-Si thin film. Structural and optical characterizations were carried out using optical microscopy, μ-Raman and Electron Backscatter Diffraction (EBSD. At optimal thermal annealing conditions, the continuous AIC grown pc-Si thin film showed an average grain size around 15 μm. The grains were preferably (001 oriented which is favorable for its epitaxial thickening. This work proves the feasibility of the AIC method to grow large grains pc-Si seed layer on TaN coated metal substrates. These results are, in terms of grains size, the finest obtained by AIC on metallic substrates.

  3. ADVANTAGES OF DIFFRACTIVE OPTICAL ELEMENTS APPLICATION IN SIMPLE OPTICAL IMAGING SYSTEMS

    Directory of Open Access Journals (Sweden)

    N. D. Zoric

    2015-01-01

    Full Text Available The paper deals with the influence of diffractive optical elements on the optical aberrations. The correction of optical aberrations was investigated in the simple optical systems with one and two lenses (singlet and doublet. The advantages of diffractive optical elements are their ability to generate arbitrary complex wave fronts from a piece of optical material that is essentially flat. The optical systems consisting of the standard surfaces were designed and optimized by using the same starting points. Further, the diffractive and aspheric surfaces were introduced into the developed systems. The resulting hybrid systems were optimized. To compare the complicity of the development of narrow field systems and wide field optical systems, the optimization has been done separately for these two types of the instruments. The optical systems were designed by using special Optical Design Software. Тhe characteristics of designed diffractive surfaces were controlled in Software DIFSYS 2.30. Due to the application of diffractive optical elements the longitudinal chromatic aberration was 5 times reduced for the narrow field systems. The absolute value of Seidel coefficient related to the spherical aberration was reduced in the range of 0.03. Considering that diffractive optical elements have the known disadvantages, like possible parasitic diffraction orders and probable decrease of the transmission, we also developed and analyzed the optical systems with combined aspheric and diffractive surfaces. A combination of the aspheric and diffractive surfaces in the optical disk system of the disk reading lens, gave cutting down of the longitudinal color aberrations almost 15 times on-axis, comparing to the lens consisting of the aspherical and standard surfaces. All of the designed diffractive optical elements possess the parameters within the fabrication limits.

  4. Optical fiber designs for beam shaping

    Science.gov (United States)

    Farley, Kevin; Conroy, Michael; Wang, Chih-Hao; Abramczyk, Jaroslaw; Campbell, Stuart; Oulundsen, George; Tankala, Kanishka

    2014-03-01

    A large number of power delivery applications for optical fibers require beams with very specific output intensity profiles; in particular applications that require a focused high intensity beam typically image the near field (NF) intensity distribution at the exit surface of an optical fiber. In this work we discuss optical fiber designs that shape the output beam profile to more closely correspond to what is required in many real world industrial applications. Specifically we present results demonstrating the ability to transform Gaussian beams to shapes required for industrial applications and how that relates to system parameters such as beam product parameter (BPP) values. We report on the how different waveguide structures perform in the NF and show results on how to achieve flat-top with circular outputs.

  5. Preparation of high magneto-optical performance and crystalline quality Ce{sub 1}Gd{sub 2}Fe{sub 5−x}Ga{sub x}O{sub 12} films on CLNGG substrate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Qiu-ping; Zheng, Ze-yuan; Lin, Nan-xi; Liu, Xiao-feng; Hong, Can-huang; Hu, Xiao-lin, E-mail: linamethyst@fzu.edu.cn; Zhuang, Nai-feng; Chen, Jian-zhong, E-mail: j.z.chen@fzu.edu.cn

    2016-11-01

    Thin films of Ce{sub 1}Gd{sub 2}Fe{sub 5−x}Ga{sub x}O{sub 12} (Ce,Ga:GIG) were prepared on Gd{sub 3}Ga{sub 5}O{sub 12} (GGG) and Ca{sub 2.90}Li{sub 0.30}Nb{sub 1.93}Ga{sub 2.76}O{sub 12} (CLNGG) substrates by using radio frequency magnetron sputtering technique. The phase, grain orientation, surface morphology, transmittance, magnetism and magnetic circular dichroism (MCD) properties of films were analyzed. And the effects of lattice mismatch and non-magnetic Ga{sup 3+}-doping were discussed. The results show that the films with higher crystallized quality and lower stress can be obtained by growing on CLNGG than on GGG. Moreover, the coercive force, magnetization, magneto-optical effect intensity and orientation of film can be effectively regulated by adjusting Ga{sup 3+}-doped concentration. - Highlights: • With excellent magneto-optical performance, Ce,Ga:GIG film has a good application prospect. • Ce,Ga:GIG film with high quality were prepared on CLNGG by RF magnetron sputtering. • Crystalline quality and morphology of films are intently related to the substrate. • Ga{sup 3+} doping obviously affect on magnetism and magneto-optical property of Ce:GIG film.

  6. Development of laser marking system with electro-optic Q-switch

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon

    1995-11-01

    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs.

  7. Development of laser marking system with electro-optic Q-switch

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Jeong Moog; Kim, Kwang Suk; Park, Seung Kyu; Baik, Sung Hoon.

    1995-11-01

    We developed a high repetition electro-optic Q switch Nd:YAG laser and scan system for laser marking. We localized the scan mirrors and their mounts. We made the database for the optical properties of commercial flat-field lenses with our optics design software. We fabricated the detailed network between the galvanometer based beam scanning system and the laser generator. To accelerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation by company researchers from the early stage. (author). 8 refs., 6 tabs., 27 figs

  8. Quartz substrate infrared photonic crystal

    Science.gov (United States)

    Ghadiri, Khosrow; Rejeb, Jalel; Vitchev, Vladimir N.

    2003-01-01

    This paper presents the fabrication of a planar photonic crystal (p2c) made of a square array of dielectric rods embedded in air, operating in the infrared spectrum. A quartz substrate is employed instead of the commonly used silicon or column III-V substrate. Our square structure has a normalized cylinder radius-to-pitch ratio of r/a = 0.248 and dielectric material contrast ɛr of 4.5. We choose a Z-cut synthetic quartz for its cut (geometry), and etching properties. Then a particular Z-axis etching process is employed in order to ensure the sharp-edged verticality of the rods and fast etching speed. We also present the computer simulations that allowed the establishment of the photonic band gaps (PBG) of our photonic crystal, as well as the actual measurements. An experimental measurement have been carried out and compared with different simulations. It was found that experimental results are in good agreement with different simulation results. Finally, a frequency selective device for optical communication based on the introduction of impurity sites in the photonic crystal is presented. With our proposed structure Optical System on a Chip (OsoC) with micro-cavity based active devices such as lasers, diodes, modulators, couplers, frequency selective emitters, add-drop filters, detectors, mux/demuxes and polarizers connected by passive waveguide links can be realized.

  9. Determination of the flat band potential for In sub 2 S sub 3 /electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Herrasti, P; Fatas, E [Universidad Autonoma, Madrid (ES). Dept. de Quimica; Herrero, J; Ortega, J [CIEMAT, Madrid (ES). Inst. de Energias Renovables

    1990-02-01

    Flat band potentials V{sub fb} of In{sub 2}S{sub 3} polycrystalline thin films obtained by chalcogenization of electroplated metallic indium films on Ti substrates with a flowing stream of H{sub 2}S gas have been obtained. The variation of this potential with different redox couples, solution concentration and pH values has been studied. Photoelectrochemical characterization of the electrodes was accomplished in aqueous polysulphide solutions and the application of the Gartner-Butler model to the semiconductor/electrolyte interface makes it possible to obtain the semiconductor energy gap. The value obtained is 2.06 eV, corresponding to a direct allowed transition. (author).

  10. Evaluation of optical properties of the amorphous carbon film on fused silica

    International Nuclear Information System (INIS)

    Baydogan, Nilguen Dogan

    2004-01-01

    Deposition was done using a pulsed filtered cathodic arc with a graphite cathode. The carbon plasma is fully ionised and condenses on the substrate, forming diamond-like material but with amorphous structure. Optical properties of amorphous carbon films on fused-silica glass were investigated and the curves of optical density have a characteristic band at approximately 950 nm. Changes of the colourimetric quantities were evaluated and compared to uncoated fused silica glass. These changes were investigated as a function of the applied substrate bias voltage using the CIE and CIELAB colour systems. It is suggested that the mechanism of absorption is related to an allowed direct transition at the amorphous carbon films on fused silica glass. The optical energy gap of the amorphous carbon film depends on the bias voltage applied to the substrate holder. The optical colour parameters and optical band gap indicated that there is a relation between the dominant wavelength of the reflectance in the visible range and the wavelength of the optical band gap

  11. Multifunctional optical sensor

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a multifunctional optical sensor, having at least 2 areas which independently react to different input parameters, the sensor comprising a substrate and a polymeric layer comprising polymerized liquid crystal monomers having an ordered morphology, wherein the color, the

  12. Electrical properties of transparent CNT and ITO coatings on PET substrate including nano-structural aspects

    Science.gov (United States)

    Park, Joung-Man; Wang, Zuo-Jia; Kwon, Dong-Jun; Gu, Ga-Young; Lawrence DeVries, K.

    2013-01-01

    Ultraviolet (UV)-visible spectra and surface resistance measurement were used to investigate optical transmittance and conductive properties of carbon nanotube (CNT) and indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates. Conductive CNT and ITO coatings were successfully fabricated on PET by a spray-coating method. Thin coatings of both materials exhibited good conductivity and transparency. Changes in electrical and optical properties of the coatings were studied as a function of the coating suspension concentration. Interfacial durability of the coatings on PET substrates was also investigated under fatigue and bending loads. CNT coated substrates, with high aspect ratios, exhibited no detectable change in surface resistance up to 2000 cyclic loadings, whereas the ITO coated substrates exhibited a substantial increase in surface resistance at 1000 loading cycles. This change in resistance is attributed to a reduction in the number and effectiveness of the electrical contact points due to the inherent brittle nature of ITO.

  13. Flat epithelial atypia and atypical ductal hyperplasia: carcinoma underestimation rate.

    Science.gov (United States)

    Ingegnoli, Anna; d'Aloia, Cecilia; Frattaruolo, Antonia; Pallavera, Lara; Martella, Eugenia; Crisi, Girolamo; Zompatori, Maurizio

    2010-01-01

    This study was carried out to determine the underestimation rate of carcinoma upon surgical biopsy after a diagnosis of flat epithelial atypia and atypical ductal hyperplasia and 11-gauge vacuum-assisted breast biopsy. A retrospective review was conducted of 476 vacuum-assisted breast biopsy performed from May 2005 to January 2007 and a total of 70 cases of atypia were identified. Fifty cases (71%) were categorized as pure atypical ductal hyperplasia, 18 (26%) as pure flat epithelial atypia and two (3%) as concomitant flat epithelial atypia and atypical ductal hyperplasia. Each group were compared with the subsequent open surgical specimens. Surgical biopsy was performed in 44 patients with atypical ductal hyperplasia, 15 patients with flat epithelial atypia, and two patients with flat epithelial atypia and atypical ductal hyperplasia. Five cases of atypical ductal hyperplasia were upgraded to ductal carcinoma in situ, three cases of flat epithelial atypia yielded one ductal carcinoma in situ and two cases of invasive ductal carcinoma, and one case of flat epithelial atypia/atypical ductal hyperplasia had invasive ductal carcinoma. The overall rate of malignancy was 16% for atypical ductal hyperplasia (including flat epithelial atypia/atypical ductal hyperplasia patients) and 20% for flat epithelial atypia. The presence of flat epithelial atypia and atypical ductal hyperplasia at biopsy requires careful consideration, and surgical excision should be suggested.

  14. Feasibility study of flexible flat-panel X-ray detectors for digital radiography

    International Nuclear Information System (INIS)

    Joe, Ok La; Yun, Seung Man; Kim, Ho Kyung

    2010-01-01

    Flexible flat-panel detectors (FPDs), which utilize both organic photodiode (OPD) and organic thin-film transistor (OTFT) technologies, are recently concerned in digital radiography. The flexible FPD has several potential advantages, such as high accessibility to patient, avoidance of geometrical burr due to the oblique angle incidence of X-ray, great reduction in manufacturing cost due to jet-printing. At once, The OPD/OTFT arrays were fabricated by jet-printing techniques, mechanical robustness due to plastic substrates, and so on. In this study, we have investigated the feasibility of flexible FPD by comparing theoretical detective quantum efficiency (DQE) with that of the conventional amorphous silicon-based FPD. We chose copper phthalocyanine-fullerene (CuPc-C60) organic materials for the construction of the flexible FPD. DQE was calculated by the linear-systems transfer theory

  15. Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.

    Science.gov (United States)

    Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H

    2017-08-02

    Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.

  16. Higher-spin algebras, holography and flat space

    Energy Technology Data Exchange (ETDEWEB)

    Sleight, C. [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 Munich (Germany); Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, 1050 Brussels (Belgium); Taronna, M. [Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, 1050 Brussels (Belgium)

    2017-02-20

    In this article we study the higher-spin algebra behind the type-A cubic couplings recently extracted from the free O(N) model in generic dimensions, demonstrating that they coincide with the known structure constants for the unique higher-spin algebra in generic dimensions. This provides an explicit check of the holographic reconstruction and of the duality between higher-spin theories and the free O(N) model in generic dimensions, generalising the result of Giombi and Yin in AdS{sub 4}. For completeness, we also address the same problem in the flat space for the cubic couplings derived by Metsaev in 1991, which are recovered from the flat limit of the AdS type-A cubic couplings. We observe that both flat and AdS{sub 4} higher-spin Lorentz subalgebras coincide, hinting towards the existence of a full higher-spin symmetry behind the flat-space cubic couplings of Metsaev.

  17. Development of Nanostructured Antireflection Coatings for Infrared and Electro-Optical Systems

    Directory of Open Access Journals (Sweden)

    Gopal G. Pethuraja

    2017-07-01

    Full Text Available Electro-optic infrared technologies and systems operating from ultraviolet (UV to long-wave infrared (LWIR spectra are being developed for a variety of defense and commercial systems applications. Loss of a significant portion of the incident signal due to reflection limits the performance of electro-optic infrared (IR sensing systems. A critical technology being developed to overcome this limitation and enhance the performance of sensing systems is advanced antireflection (AR coatings. Magnolia is actively involved in the development and advancement of nanostructured AR coatings for a wide variety of defense and commercial applications. Ultrahigh AR performance has been demonstrated for UV to LWIR spectral bands on various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings have been fabricated using a nanomanufacturable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of optical components and sensor substrates coated with AR structures have been measured and the process parameters fine-tuned to achieve a predicted high level of performance. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts on the development of nanostructured AR coatings on IR substrates.

  18. Optical response of bowtie antennas

    Science.gov (United States)

    Guo, Ying-Nan; Pan, Shi; Li, Xu-Feng; Wang, Shuo; Wang, Qiao

    2010-10-01

    Optical properties of bowtie antennas are investigated using a numerical method of finite-difference time-domain (FDTD). The optical response in the antenna feed gap is simulated as functions of its geometry parameters (flare angle, arm length, apex width, thickness, gap dimension, as well as the index of substrate), which provide a clear guideline to exploit such antenna structures in practice.

  19. Retrospective dosimetry with alumina substrate from electronic components

    International Nuclear Information System (INIS)

    Ekendahl, D.; Judas, L.

    2012-01-01

    Alumina substrate can be found in electronic components used in portable electronic devices. The material is radiation sensitive and can be applied in dosimetry using thermally or optically stimulated luminescence. Electronic portable devices such as mobile phones, USB flash discs, mp3 players, etc., which are worn close to the body, can represent personal dosemeters for members of the general public in situations of large-scale radiation accidents or malevolent acts with radioactive materials. This study investigated dosimetric properties of alumina substrates and aspects of using mobile phones as personal dosemeters. The alumina substrates exhibited favourable dosimetry characteristics. However, anomalous fading had to be properly corrected in order to achieve sufficient precision in dose estimate. Trial dose reconstruction performed by means of two mobile phones proved that mobile phones can be used for reconstruction of personal doses. (authors)

  20. Flexible Bragg reflection waveguide devices fabricated on a plastic substrate

    Science.gov (United States)

    Kim, Kyung-Jo; Yi, Jeong-Ah; Oh, Min-Cheol; Noh, Young-Ouk; Lee, Hyung-Jong

    2007-09-01

    Bragg reflecting waveguide devices are fabricated on a flexible substrate by using a post lift-off process in order to provide highly uniform grating patterns on a wide range. In this process, the flexible substrate spin-coated on silicon wafer is released after the final fabrication process of chip dicing. The fabricated flexible Bragg reflector shows very sharp transmission spectrum with 3-dB bandwidth of 0.1 nm and 10-dB bandwidth of 0.4 nm, which proves the Bragg reflector has excellent uniformity. To achieve athermal operation of the flexible Bragg reflector, thermal expansion property of the plastic substrate is controlled by the thickness of two polymer materials constructing the plastic substrate. The flexible substrate with 0.7-μm SU-8 layers sandwiching 100-μm NOA61 layer provides an optimized thermal expansion property to compensate the thermo-optic effect of the waveguide made of ZPU polymer. The temperature dependence of the Bragg reflector is decreased to -0.011 nm/°C through the incorporation of the plastic substrate.