WorldWideScience

Sample records for optical wireless communication

  1. Optical wireless communication in data centers

    Science.gov (United States)

    Arnon, Shlomi

    2018-01-01

    In the last decade data centers have become a crucial element in modern human society. However, to keep pace with internet data rate growth, new technologies supporting data center should develop. Integration of optical wireless communication (OWC) in data centers is one of the proposed technologies as augmented technology to the fiber network. One implementation of the OWC technology is deployment of optical wireless transceiver on top of the existing cable/fiber network as extension to the top of rack (TOR) switch; in this way, a dynamic and flexible network is created. Optical wireless communication could reduce energy consumption, increase the data rate, reduce the communication latency, increase flexibility and scalability, and reduce maintenance time and cost, in comparison to extra fiber network deployment. In this paper we review up to date literature in the field, propose an implementation scheme of OWC network, discuss ways to reduce energy consumption by parallel link communication and report preliminary measurement result of university data center environment.

  2. OPTICAL WIRELESS COMMUNICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    JOSHUA L.Y. CHIENG

    2016-02-01

    Full Text Available The growing demand of bandwidth in this modern internet age has been testing the existing telecommunication infrastructures around the world. With broadband speeds moving towards the region of Gbps and Tbps, many researches have begun on the development of using optical wireless technology as feasible and future methods to the current wireless technology. Unlike the existing radio frequency wireless applications, optical wireless uses electromagnetic spectrums that are unlicensed and free. With that, this project aim to understand and gain better understanding of optical wireless communication system by building an experimental and simulated model. The quality of service and system performance will be investigated and reviewed. This project employs laser diode as the propagation medium and successfully transferred audio signals as far as 15 meters. On its quality of service, results of the project model reveal that the bit error rate increases, signal-to-noise ratio and quality factor decreases as the link distance between the transmitter and receiver increases. OptiSystem was used to build the simulated model and MATLAB was used to assist signal-to-noise ratio calculations. By comparing the simulated and experimental receiver’s power output, the experimental model’s efficiency is at 66.3%. Other than the system’s performance, challenges and factors affecting the system have been investigated and discussed. Such challenges include beam divergence, misalignment and particle absorption.

  3. Optical wireless communications for micromachines

    Science.gov (United States)

    O'Brien, Dominic C.; Yuan, Wei Wen; Liu, Jing Jing; Faulkner, Grahame E.; Elston, Steve J.; Collins, Steve; Parry-Jones, Lesley A.

    2006-08-01

    A key challenge for wireless sensor networks is minimizing the energy required for network nodes to communicate with each other, and this becomes acute for self-powered devices such as 'smart dust'. Optical communications is a potentially attractive solution for such devices. The University of Oxford is currently involved in a project to build optical wireless links to smart dust. Retro-reflectors combined with liquid crystal modulators can be integrated with the micro-machine to create a low power transceiver. When illuminated from a base station a modulated beam is returned, transmitting data. Data from the base station can be transmitted using modulation of the illuminating beam and a receiver at the micro-machine. In this paper we outline the energy consumption and link budget considerations in the design of such micro-machines, and report preliminary experimental results.

  4. Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    KAUST Repository

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2018-01-01

    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.

  5. Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    KAUST Repository

    Saeed, Nasir

    2018-02-28

    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.

  6. Acemind new indoor full duplex optical wireless communication prototype

    Science.gov (United States)

    Bouchet, Olivier; Perrufel, Micheline; Topsu, Suat; Guan, Hongyu

    2016-09-01

    For over a century and Mr. Guglielmo Marconi invention, systems using radio waves have controlled over wireless telecommunication solutions; from Amplitude Modulation (AM) radio products to satellite communications for instance. But beyond an increasingly negative opinion face to radio waves and radio spectrum availability more and more reduced; there is an unprecedented opportunity with LED installation in displays and lighting to provide optical wireless communication solutions. As a result, technologically mature solutions are already commercially available for services such as Location Based Services (LBS), broadcast diffusion or Intelligent Transport Services (ITS). Pending finalization of the standard review process IEEE 802.15.7 r1, our paper presents the results of the European collaborative project named "ACEMIND". It offers an indoor bilateral optical wireless communication prototype having the following characteristics: use of the existing electrical infrastructure, through judicious combination with Light Fidelity (LiFi), Power Line Communication (PLC) and Ethernet to reduce the implementation cost. We propose a bilateral optical wireless communication even when the light is switched off by using Visible Light Communication (VLC) and Infra-Red Communication (IRC) combined to a remote optical switch. Dimensionally optimized LiFi module is presented in order to offer the possibility for integration inside a laptop. Finally, there is operational mechanism implementation such as OFDM/DMT to increase throughput. After the introduction, we will present the results of a market study from Orange Labs customers about their opinion on LiFi components. Then we will detail the LiFi prototype, from the physical layer aspect to MAC layer before concluding on commercial development prospects.

  7. Evaluation of coherence interference in optical wireless communication through multiscattering channels.

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-05-10

    Optical wireless communication has been the subject of much research in recent years because of the increasing interest in laser satellite-ground links and urban optical wireless communication. The major sources of performance degradation have been identified as the spatial, angular, and temporal spread of the propagating beam when the propagation channel is multiscattering, resulting in reduced power reception and intersignal interference, as well as turbulence-induced scintillations and noise due to receiver circuitry and background illumination. However, coherence effects due to multipath interference caused by a scattering propagation channel do not appear to have been treated in detail in the scientific literature. We attempt a theoretical analysis of coherence interference in optical wireless communication through scattering channels and try to quantify the resultant performance degradation for different media. We conclude that coherence interference is discernible in optical wireless communication through scattering channels and is highly dependent on the microscopic nature of the propagation medium.

  8. Data transmission techniques for short-range optical fiber and wireless communication links

    DEFF Research Database (Denmark)

    Pham, Tien Thang

    The research work described in this thesis is devoted to experimental investigation of techniques for cost-effective high-speed optical communications supporting both wired and wireless services. The main contributions of this thesis have expanded the state-of-the-art in two main areas: high......-speed optical/wireless integration and advanced modulation formats for intensity modulation with direct detection (IM/DD) optical systems. Regarding optical/wireless integration, this thesis focuses on integration of broadband ultra-wide band (UWB) and 60-GHz band wireless systems into optical fiber access...... networks to distribute wireless services in personal area networks (PANs). Photonic technologies to generate and distribute gigabit UWB and 60-GHz-band signals are proposed and demonstrated. Two novel methods are proposed and demonstrated to optically generate Federal Communications Commission (FCC...

  9. Optical wireless communications an emerging technology

    CERN Document Server

    Capsoni, Carlo; Ghassemlooy, Zabih; Boucouvalas, Anthony; Udvary, Eszter

    2016-01-01

    This book focuses on optical wireless communications (OWC), an emerging technology with huge potential for the provision of pervasive and reliable next-generation communications networks. It shows how the development of novel and efficient wireless technologies can contribute to a range of transmission links essential for the heterogeneous networks of the future to support various communications services and traffic patterns with ever-increasing demands for higher data-transfer rates. The book starts with a chapter reviewing the OWC field, which explains different sub-technologies (visible-light, ultraviolet (UV) and infrared (IR) communications) and introduces the spectrum of application areas (indoor, vehicular, terrestrial, underwater, intersatellite, deep space, etc.). This provides readers with the necessary background information to understand the specialist material in the main body of the book, which is in four parts. The first of these deals with propagation modelling and channel characterization of ...

  10. High-Capacity Hybrid Optical Fiber-Wireless Communications Links in Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan

    of broadband services access. To realize the seamless convergence between the two network segments, the lower capacity of wireless systems need to be increased to match the continuously increasing bandwidth of fiber-optic systems. The research works included in this thesis are devoted to experimental...... investigations of photonic-wireless links with record high capacities to fulfill the requirements of next generation hybrid optical fiber-wireless access networks. The main contributions of this thesis have expanded the state-of-the-art in two main areas: high speed millimeter-wave (mm-wave) communication links......Integration between fiber-optic and wireless communications systems in the "last mile" access networks is currently considered as a promising solution for both service providers and users, in terms of minimizing deployment cost, shortening upgrading period and increasing mobility and flexibility...

  11. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.; Zedini, Emna; Elafandy, Rami T.; Kammoun, Abla; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels

  12. Multi-carrier transmission for hybrid radio frequency with optical wireless communications

    Science.gov (United States)

    Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.

    2015-05-01

    Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.

  13. Underwater wireless optical communications: From system-level demonstrations to channel modelling

    KAUST Repository

    Oubei, Hassan M.

    2018-01-09

    In this paper, we discuss about recent experimental advances in underwater wireless optical communications (UWOC) over various underwater channel water types using different modulation schemes as well as modelling and describing the statistical properties of turbulence-induced fading in underwater wireless optical channels using laser beam intensity fluctuations measurements.

  14. Indoor optical wireless communication system using beam-steering by cascaded diffractive optical elements

    NARCIS (Netherlands)

    Oh, C.W.; Tangdiongga, E.; Koonen, A.M.J.; García-Blanco, S.M.; Boller, Kl.J.; Sefunc, M.A.; Geuzebroek, D.

    2014-01-01

    While the radio spectrum continues to struggle with a soaring bandwidth demand, the optical spectrum promises virtually unlimited license-free bandwidth. We report the feasibility of high-capacity point-to-point links for indoor optical wireless communication with cascaded diffractive optical

  15. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.

    2017-12-13

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels. The model shows an excellent agreement with the measured data under all channel conditions.

  16. Optical wireless communications: Theory and applications

    Science.gov (United States)

    Aminikashani, Mohammadreza

    This dissertation focuses on optical communications having recently attracted sig- nificant attentions as a promising complementary technique for radio frequency (RF) in both short- and long-range communications. These systems offer signifi- cant technical and operational advantages such as higher capacity, virtually unlim- ited reuse, unregulated spectrum and robustness to electromagnetic interference. Optical wireless communication (OWC) can be used both indoors and outdoors. Part of the dissertation contains novel results on terrestrial free-space optical (FSO) communications. FSO communication is a line-of sight technique that uses lasers for high rate wireless communication over distances up to several kilometers. In comparison to RF counterparts, a FSO link has a very high optical bandwidth available, allowing aggregate data rates on the order of Tera bits per second (1 Tera bits per second is 1000 Giga bites per second). However, FSO suffers limitations. The major limitation of the terrestrial FSO communication systems is the atmo- spheric turbulence, which produces fluctuations in the irradiance of the transmitted optical beam, as a result of random variations in the refractive index through the link. The existence of atmospheric-induced turbulence degrades the performance of FSO links particularly with a transmission distance longer than 1 kilometer. The identification of a tractable probability density function (pdf) to describe at- mospheric turbulence under all irradiance fluctuation regimes is crucial in order to study the reliability of a terrestrial FSO system. This dissertation addresses this daunting problem and proposes a novel statistical model that accurately de- scribes turbulence-induced fading under all irradiance conditions and unifies most of the proposed statistical models derived until now in the literature. The proposed model is important for the research community working on FSO communications because it allows them to fully capitalize

  17. Optimization of Wireless Optical Communication System Based on Augmented Lagrange Algorithm

    International Nuclear Information System (INIS)

    He Suxiang; Meng Hongchao; Wang Hui; Zhao Yanli

    2011-01-01

    The optimal model for wireless optical communication system with Gaussian pointing loss factor is studied, in which the value of bit error probability (BEP) is prespecified and the optimal system parameters is to be found. For the superiority of augmented Lagrange method, the model considered is solved by using a classical quadratic augmented Lagrange algorithm. The detailed numerical results are reported. Accordingly, the optimal system parameters such as transmitter power, transmitter wavelength, transmitter telescope gain and receiver telescope gain can be established, which provide a scheme for efficient operation of the wireless optical communication system.

  18. Design and Implementation of Secure and Reliable Communication using Optical Wireless Communication

    Science.gov (United States)

    Saadi, Muhammad; Bajpai, Ambar; Zhao, Yan; Sangwongngam, Paramin; Wuttisittikulkij, Lunchakorn

    2014-11-01

    Wireless networking intensify the tractability in the home and office environment to connect the internet without wires but at the cost of risks associated with stealing the data or threat of loading malicious code with the intention of harming the network. In this paper, we proposed a novel method of establishing a secure and reliable communication link using optical wireless communication (OWC). For security, spatial diversity based transmission using two optical transmitters is used and the reliability in the link is achieved by a newly proposed method for the construction of structured parity check matrix for binary Low Density Parity Check (LDPC) codes. Experimental results show that a successful secure and reliable link between the transmitter and the receiver can be achieved by using the proposed novel technique.

  19. Wireless optical telecommunications

    CERN Document Server

    Bouchet, Olivier

    2013-01-01

    Wireless optical communication refers to communication based on the unguided propagation of optical waves. The past 30 years have seen significant improvements in this technique - a wireless communication solution for the current millennium - that offers an alternative to radio systems; a technique that could gain attractiveness due to recent concerns regarding the potential effects of radiofrequency waves on human health.The aim of this book is to look at the free space optics that are already used for the exchange of current information; its many benefits, such as incorporating chan

  20. Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link

    Science.gov (United States)

    Singh, Mehtab

    2017-12-01

    Free-space optical (FSO) communication has the advantages of two of the most predominant data transmission technologies - optical fiber communication and wireless communication. Most of the technical aspects of FSO are similar to that of optical fiber communication, with major difference in the information signal propagation medium which is free space in case of FSO rather than silica glass in optical fiber communication. One of the most important applications of FSO is inter-satellite optical wireless communication (IsOWC) links which will be deployed in the future in space. The IsOWC links have many advantages over the previously existing microwave satellite communication technologies such as higher bandwidth, lower power consumption, low cost of implementation, light size, and weight. In this paper, modeling and performance analysis of a 10-Gbps inter-satellite communication link with two satellites separated at a distance of 1,200 km has been done using OPTISYSTEM simulation software. Performance has been analyzed on the basis of quality factor, signal to noise ratio (SNR), and total power of the received signal.

  1. Optical wireless communications to OC-768 and beyond

    Science.gov (United States)

    Medved, David B.; Davidovich, Leonid

    2001-10-01

    Laser and LED-based wireless communication systems are currently providing license-free interconnection for broadband voice, data and video transport. These systems allow for the immediate, reliable and low-cost extension of copper and fiber-based networks to any end user, providing efficient First Mile bypass access to high data rate backbone networks at speeds ranging from T-1 voice to full throughput ATM at 155 Mbps and up to Gigabit Ethernet. These wireless optical beams constitute a Virtual Fiber in the air, providing the capabilities of fiber in situations where wired connectivity is unavailable, impractical, expensive or slow-to-implement, while achieving a combination of low cost, speed and reliability that cannot be matched by microwave, mm wave, spread spectrum or other competing (actually complementary) wireless technologies. The carrier frequency of the optical beam is about 10,000 times higher than the highest frequencies used by the millimeter wave technology. By means of Wavelength Division Multiplexing more than 1000 independent data channels can be projected into the air on a single beam thus providing a potential bandwidth ten million times that of any RF solution. The twin barriers of physics and regulatory bureaucracy to this essentially infinite wireless bandwidth are thus eliminated by this Virtual Fiber. As user density and individual bandwidth needs escalate, the optical wireless will be the preferred medium of choice in both network and cellular interconnection. A mesh topology which integrates our optical wireless systems with the latest Optical Access switches and routing equipment will be described using case study examples from Japan to South America. As the Bandwidth Blowout continues to push the limits of electronics and especially in the case of DWDM (Dense Wavelength Division Multiples), the conventional optical wireless solutions are no longer feasible. Instead of using f.o. transceivers to convert photons to electrons and thence

  2. Performance Evaluation of High Speed Multicarrier System for Optical Wireless Communication

    Science.gov (United States)

    Mathur, Harshita; Deepa, T.; Bartalwar, Sophiya

    2018-04-01

    Optical wireless communication (OWC) in the infrared and visible range is quite impressive solution, especially where radio communication face challenges. Visible light communication (VLC) uses visible light over a range of 400 and 800 THz and is a subdivision of OWC technologies. With an increasing demand for use of wireless communications, wireless access via Wi-Fi is facing many challenges especially in terms of capacity, availability, security and efficiency. VLC uses intensity modulation and direct detection (IM/DD) techniques and hence they require the signals to certainly be real valued positive sequences. These constraints pose limitation on digital modulation techniques. These limitations result in spectrum-efficiency or power-efficiency losses. In this paper, we investigate an amplitude shift keying (ASK) based orthogonal frequency division multiplexing (OFDM) signal transmission scheme using LabVIEW for VLC technology.

  3. Impact of Various Parameters on the Performance of Inter-aircraft Optical Wireless Communication Link

    Science.gov (United States)

    Singh, Mehtab

    2017-12-01

    Optical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.

  4. High Data Rate Optical Wireless Communications Based on Ultraviolet Band

    KAUST Repository

    Sun, Xiaobin

    2017-01-01

    Optical wireless communication systems based on ultraviolet (UV)-band has a lot inherent advantages, such as low background solar radiation, low device dark noise. Besides, it also has small restrictive requirements for PAT (pointing, acquisition

  5. Subcarrier MPSK/MDPSK modulated optical wireless communications in lognormal turbulence

    KAUST Repository

    Song, Xuegui; Yang, Fan; Cheng, Julian; Alouini, Mohamed-Slim

    2015-01-01

    Bit-error rate (BER) performance of subcarrier Mary phase-shift keying (MPSK) and M-ary differential phase-shift keying (MDPSK) is analyzed for optical wireless communications over the lognormal turbulence channels. Both exact BER and approximate

  6. Convergencia de sistemas de comunicación ópticos e inalámbricos (Converged wireless and optical communication systems)

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Guerrero Gonzalez, Neil; Caballero Jambrina, Antonio

    2009-01-01

    Users of tele-information services are demanding instant access, everywhere and anytime. Wireless communication systems offers mobility and flexibility while optical fiber based systems offer large bandwidth, secure and lower power consumption for transport of tele-communication signals. None...... of the two technologies separately can satisfy the demands of user for ubiquitous and affordable access to information services. Converged optical and wireless systems offer a solution that combines the best of both technologies. This article review the trends in converged optical-wireless communication...... systems and outline the role that photonic technologies is playing in making the vision of a converged network a reality....

  7. Spherical transceivers for ultrafast optical wireless communications

    Science.gov (United States)

    Jin, Xian; Hristovski, Blago A.; Collier, Christopher M.; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F.

    2016-02-01

    Optical wireless communications (OWC) offers the potential for high-speed and mobile operation in indoor networks. Such OWC systems often employ a fixed transmitter grid and mobile transceivers, with the mobile transceivers carrying out bi-directional communication via active downlinks (ideally with high-speed signal detection) and passive uplinks (ideally with broad angular retroreflection and high-speed modulation). It can be challenging to integrate all of these bidirectional communication capabilities within the mobile transceivers, however, as there is a simultaneous desire for compact packaging. With this in mind, the work presented here introduces a new form of transceiver for bi-directional OWC systems. The transceiver incorporates radial photoconductive switches (for high-speed signal detection) and a spherical retro-modulator (for broad angular retroreflection and high-speed all-optical modulation). All-optical retromodulation are investigated by way of theoretical models and experimental testing, for spherical retro-modulators comprised of three glasses, N-BK7, N-LASF9, and S-LAH79, having differing levels of refraction and nonlinearity. It is found that the spherical retro-modulator comprised of S-LAH79, with a refractive index of n ≍ 2 and a Kerr nonlinear index of n2 ≍ (1.8 ± 0.1) × 10-15 cm2/W, yields both broad angular retroreflection (over a solid angle of 2π steradians) and ultrafast modulation (over a duration of 120 fs). Such transceivers can become important elements for all-optical implementations in future bi-directional OWC systems.

  8. Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication

    Science.gov (United States)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2015-10-01

    Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.

  9. Energy reduction using multi-channels optical wireless communication based OFDM

    Science.gov (United States)

    Darwesh, Laialy; Arnon, Shlomi

    2017-10-01

    In recent years, an increasing number of data center networks (DCNs) have been built to provide various cloud applications. Major challenges in the design of next generation DC networks include reduction of the energy consumption, high flexibility and scalability, high data rates, minimum latency and high cyber security. Use of optical wireless communication (OWC) to augment the DC network could help to confront some of these challenges. In this paper we present an OWC multi channels communication method that could lead to significant energy reduction of the communication equipment. The method is to convert a high speed serial data stream to many slower and parallel streams and vies versa at the receiver. We implement this concept of multi channels using optical orthogonal frequency division multiplexing (O-OFDM) method. In our scheme, we use asymmetrically clipped optical OFDM (ACO-OFDM). Our results show that the realization of multi channels OFDM (ACO-OFDM) methods reduces the total energy consumption exponentially, as the number of channels transmitted through them rises.

  10. BER Performance of Stratified ACO-OFDM for Optical Wireless Communications over Multipath Channel

    OpenAIRE

    Gebeyehu, Zelalem Hailu; Langat, Philip Kibet; Maina, Ciira Wa

    2018-01-01

    In intensity modulation/direct detection- (IM/DD-) based optical OFDM systems, the requirement of the input signal to be real and positive unipolar imposes a reduction of system performances. Among previously proposed unipolar optical OFDM schemes for optical wireless communications (OWC), asymmetrically clipped optical OFDM (ACO-OFDM) and direct current biased optical OFDM (DCO-OFDM) are the most accepted ones. But those proposed schemes experience either spectral efficiency loss or energy e...

  11. Diversity Order Results for MIMO Optical Wireless Communications

    KAUST Repository

    Sapenov, Yerzhan

    2017-09-21

    An optical wireless multiple-input multiple-output (MIMO) communication system employing intensity-modulation direct-detection (IM/DD) is considered. The maximal diversity order of the channel is characterized by studying the outage probability. Then, spatial repetition coding (RC) is shown to be diversity-optimal as it achieves the channel’s maximal diversity order. This diversity order is given by a simple expression which is suitable for any channel statistics of practical interest. The results are specialized to some practical channel statistics, and numerical results are provided to verify the results.

  12. Diversity Order Results for MIMO Optical Wireless Communications

    KAUST Repository

    Sapenov, Yerzhan; Chaaban, Anas; Rezki, Zouheir; Abdallah, Mohamed; Qaraqe, Khalid; Alouini, Mohamed-Slim

    2017-01-01

    An optical wireless multiple-input multiple-output (MIMO) communication system employing intensity-modulation direct-detection (IM/DD) is considered. The maximal diversity order of the channel is characterized by studying the outage probability. Then, spatial repetition coding (RC) is shown to be diversity-optimal as it achieves the channel’s maximal diversity order. This diversity order is given by a simple expression which is suitable for any channel statistics of practical interest. The results are specialized to some practical channel statistics, and numerical results are provided to verify the results.

  13. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode

    KAUST Repository

    Oubei, Hassan M.; Li, Changping; Park, Kihong; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2015-01-01

    We experimentally demonstrate a record high-speed underwater wireless optical communication (UWOC) over 7 m distance using on-off keying non-return-to-zero (OOK-NRZ) modulation scheme. The communication link uses a commercial TO-9 packaged pigtailed

  14. Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel

    KAUST Repository

    Lee, It Ee; Guo, Yujian; Ng, Tien Khee; Park, Kihong; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    Underwater wireless optical communication (UWOC) has been widely studied as a promising alternative to establish reliable short-range marine communication links. Microscopic particulates suspended in various ocean, harbor and natural waters

  15. Near-Infrared Wireless Optical Communication with Particulates In-Suspension over the Underwater Channel

    KAUST Repository

    Lee, It Ee; Guo, Yong; Ng, Tien Khee; Park, Kihong; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    We demonstrate a gigabit near-infrared-based underwater wireless optical communication link using an 808-nm laser diode to mitigate the particle scattering effect in turbid medium. An improvement in the error performance is observed with increasing

  16. Near-Infrared Wireless Optical Communication with Particulates In-Suspension over the Underwater Channel

    KAUST Repository

    Lee, It Ee

    2017-05-08

    We demonstrate a gigabit near-infrared-based underwater wireless optical communication link using an 808-nm laser diode to mitigate the particle scattering effect in turbid medium. An improvement in the error performance is observed with increasing concentrations.

  17. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    Science.gov (United States)

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  18. Bi-directional 35-Gbit/s 2D beam steered optical wireless downlink and 5-Gbit/s localized 60-GHz communication uplink for hybrid indoor wireless systems

    NARCIS (Netherlands)

    Khalid, A.M.; Baltus, P.G.M.; Dommele, A.R.; Mekonnen, K.A.; Cao, Z.; Oh, C.W.; Matters, M.K.; Koonen, A.M.J.

    2017-01-01

    We present a full-duplex dynamic indoor optical wireless system using 2D passive optical beam steering for downlink and 60-GHz communication for upstream transmission. We demonstrate 35-Gb/s NRZ-OOK downstream multicasting and 5-Gb/s NRZ-ASK upstream communication.

  19. Optimum LED wavelength for underwater optical wireless communication at turbid water

    Science.gov (United States)

    Rosenkrantz, Etai; Arnon, Shlomi

    2014-10-01

    Underwater optical wireless communication is an emerging technology, which can provide high data rate. High data rate communication is required for applications such as underwater imaging, networks of sensors and swarms of underwater vehicles. These applications pursue an affordable light source, which can be obtained by light emitting diodes (LED). LEDs offer solutions characterized by low cost, high efficiency, reliability and compactness based on off-the-shelf components such as blue and green light emitting diodes. In this paper we present our recent theoretical and experimental results in this field.

  20. Converged wireline and wireless signal transport over optical fibre access links

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Prince, Kamau; Osadchiy, Alexey Vladimirovich

    2009-01-01

    This article reviews emerging trends in converged optical-wireless communication systems and outline the role that photonic technologies are playing in making the vision of a wireline-wireless converged signal transport network a reality.......This article reviews emerging trends in converged optical-wireless communication systems and outline the role that photonic technologies are playing in making the vision of a wireline-wireless converged signal transport network a reality....

  1. Automated alignment system for optical wireless communication systems using image recognition.

    Science.gov (United States)

    Brandl, Paul; Weiss, Alexander; Zimmermann, Horst

    2014-07-01

    In this Letter, we describe the realization of a tracked line-of-sight optical wireless communication system for indoor data distribution. We built a laser-based transmitter with adaptive focus and ray steering by a microelectromechanical systems mirror. To execute the alignment procedure, we used a CMOS image sensor at the transmitter side and developed an algorithm for image recognition to localize the receiver's position. The receiver is based on a self-developed optoelectronic integrated chip with low requirements on the receiver optics to make the system economically attractive. With this system, we were able to set up the communication link automatically without any back channel and to perform error-free (bit error rate <10⁻⁹) data transmission over a distance of 3.5 m with a data rate of 3 Gbit/s.

  2. Indoor optical wireless systems : technology, trends, and applications

    NARCIS (Netherlands)

    Koonen, T.

    2018-01-01

    Indoor wireless traffic is evolving at a staggering pace, and is quickly depleting radio spectrum resources. Optical wireless communication (OWC) offers powerful solutions for resolving this imminent capacity crunch of radio-based wireless networks. OWC is not intended to fully replace radio

  3. 20-meter underwater wireless optical communication link with 15 Gbps data rate

    KAUST Repository

    Shen, Chao

    2016-10-24

    The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (∼10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion. © 2016 Optical Society of America.

  4. 20-meter underwater wireless optical communication link with 15 Gbps data rate

    KAUST Repository

    Shen, Chao; Guo, Yong; Oubei, Hassan M.; Ng, Tien Khee; Liu, Guangyu; Park, Kihong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S.

    2016-01-01

    The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (∼10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion. © 2016 Optical Society of America.

  5. The impact of LED transfer function nonlinearity on high-speed optical wireless communications based on discrete-multitone modulation

    NARCIS (Netherlands)

    Inan, B.; Lee, S.C.J.; Randel, S.; Neokosmidis, L.; Koonen, A.M.J.; Walewski, J.

    2009-01-01

    The nonlinear dependence of the optical power from white LEDs on the applied driving current and its impact on discrete-multitone modulation was investigated by use of numerical simulations for the case of optical wireless communications.

  6. Optimal training sequences for indoor wireless optical communications

    International Nuclear Information System (INIS)

    Wang, Jun-Bo; Jiao, Yuan; Song, Xiaoyu; Chen, Ming

    2012-01-01

    Since indoor wireless optical communication (WOC) systems can offer several potential advantages over their radio frequency counterparts, there has been a growing interest in indoor WOC systems. Influenced by the complicated optical propagation environment, there exist multipath propagation phenomena. In order to eliminate the effect of multipath propagation, much attention should be concentrated on the channel estimation in indoor WOC systems. This paper investigates optimal training sequences (TSs) for estimating a channel impulse response in indoor WOC systems. Based on the Cramer–Rao bound (CRB) theorem, an explicit form of search criterion is found. Optimum TSs are obtained and tabulated by computer search for different channel responses and TS lengths. Measured by mean square error (MSE) performance, channel estimation errors are also investigated. Simulation results show that the MSE of the channel estimator at the receiver can be reduced significantly by using the optimized TS set. Moreover, the longer the TS, the better the MSE performance that can be obtained when the channel order is fixed. (paper)

  7. Robust optical wireless links over turbulent media using diversity solutions

    Science.gov (United States)

    Moradi, Hassan

    Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed. Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures. This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum

  8. Study on characteristics of the aperture-averaging factor of atmospheric scintillation in terrestrial optical wireless communication

    Science.gov (United States)

    Shen, Hong; Liu, Wen-xing; Zhou, Xue-yun; Zhou, Li-ling; Yu, Long-Kun

    2018-02-01

    In order to thoroughly understand the characteristics of the aperture-averaging effect of atmospheric scintillation in terrestrial optical wireless communication and provide references for engineering design and performance evaluation of the optics system employed in the atmosphere, we have theoretically deduced the generally analytic expression of the aperture-averaging factor of atmospheric scintillation, and numerically investigated characteristics of the apertureaveraging factor under different propagation conditions. The limitations of the current commonly used approximate calculation formula of aperture-averaging factor have been discussed, and the results showed that the current calculation formula is not applicable for the small receiving aperture under non-uniform turbulence link. Numerical calculation has showed that aperture-averaging factor of atmospheric scintillation presented an exponential decline model for the small receiving aperture under non-uniform turbulent link, and the general expression of the model was given. This model has certain guiding significance for evaluating the aperture-averaging effect in the terrestrial optical wireless communication.

  9. Subcarrier MPSK/MDPSK modulated optical wireless communications in lognormal turbulence

    KAUST Repository

    Song, Xuegui

    2015-03-01

    Bit-error rate (BER) performance of subcarrier Mary phase-shift keying (MPSK) and M-ary differential phase-shift keying (MDPSK) is analyzed for optical wireless communications over the lognormal turbulence channels. Both exact BER and approximate BER expressions are presented. We demonstrate that the approximate BER, which is obtained by dividing the symbol error rate by the number of bits per symbol, can be used to estimate the BER performance with acceptable accuracy. Through our asymptotic analysis, we derive closed-form asymptotic BER performance loss expression for MDPSK with respect to MPSK in the lognormal turbulence channels. © 2015 IEEE.

  10. Optical wireless connected objects for healthcare.

    Science.gov (United States)

    Toumieux, Pascal; Chevalier, Ludovic; Sahuguède, Stéphanie; Julien-Vergonjanne, Anne

    2015-10-01

    In this Letter the authors explore the communication capabilities of optical wireless technology for a wearable device dedicated to healthcare application. In an indoor environment sensible to electromagnetic perturbations such as a hospital, the use of optical wireless links can permit reducing the amount of radio frequencies in the patient environment. Moreover, this technology presents the advantage to be secure, low-cost and easy to deploy. On the basis of commercially available components, a custom-made wearable device is presented, which allows optical wireless transmission of accelerometer data in the context of physical activity supervision of post-stroke patients in hospital. Considering patient mobility, the experimental performance is established in terms of packet loss as a function of the number of receivers fixed to the ceiling. The results permit to conclude that optical wireless links can be used to perform such mobile remote monitoring applications. Moreover, based on the measurements obtained with one receiver, it is possible to theoretically determine the performance according to the number of receivers to be deployed.

  11. Terabit Wireless Communication Challenges

    Science.gov (United States)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz

  12. Review of optical wireless communications for data centers

    Science.gov (United States)

    Arnon, Shlomi

    2017-10-01

    A data center (DC) is a facility either physical or virtual, for running applications, searching, storage, management and dissemination of information known as cloud computing, which consume a huge amount of energy. A DC includes thousands of servers, communication and storage equipment and a support system including an air conditioning system, security, monitoring equipment and electricity regulator units. Data center operators face the challenges of meeting exponentially increasing demands for network bandwidth without unreasonable increases in operation and infrastructure cost. In order to meet the requirements of moderate increase in operation and infrastructure cost technology, a revolution is required. One way to overcome the shortcomings of traditional static (wired) data center architectures is use of a hybrid network based on fiber and optical wireless communication (OWC) or free space optics (FSO). The OWC link could be deployed on top of the existing cable/fiber network layer, so that live migration could be done easily and dynamically. In that case the network topology is flexible and adapts quickly to changes in traffic, heat distribution, power consumption and characteristics of the applications. In addition, OWC could provide an easy way to maintain and scale up data centers. As a result total cost of ownership could be reduced and the return on investment could be increased. In this talk we will review the main OWC technologies applicable for data centers, indicate how energy could be saved using OWC multichannel communication and discuss the issue of OWC pointing accuracy for data center scenario.

  13. Free Space Optical Communication for Tactical Operations

    Science.gov (United States)

    2016-09-01

    higher energy level to a lower energy level. The photons are focused to optical lenses before transmission into the air medium. The primary purpose...Security of a free space optical transmission . (n.d.). SONA Optical Wireless , [Online]. Available: http://htcbn.com/HTC_Profile_CD/fSONA/APPNOTE...almost always require on-the-move wireless communications. Radio frequency (RF) communication is used to fill the gap, but RF systems are hard pressed to

  14. Underwater fiber-wireless communication with a passive front end

    Science.gov (United States)

    Xu, Jing; Sun, Bin; Lyu, Weichao; Kong, Meiwei; Sarwar, Rohail; Han, Jun; Zhang, Wei; Deng, Ning

    2017-11-01

    We propose and experimentally demonstrate a novel concept on underwater fiber-wireless (Fi-Wi) communication system with a fully passive wireless front end. A low-cost step-index (SI) plastic optical fiber (POF) together with a passive collimating lens at the front end composes the underwater Fi-Wi architecture. We have achieved a 1.71-Gb/s transmission at a mean BER of 4.97 × 10-3 (1.30 × 10-3 when using power loading) over a 50-m SI-POF and 2-m underwater wireless channel using orthogonal frequency division multiplexing (OFDM). Although the wireless part is very short, it actually plays a crucial role in practical underwater implementation, especially in deep sea. Compared with the wired solution (e.g. using a 52-m POF cable without the UWOC part), the proposed underwater Fi-Wi scheme can save optical wet-mate connectors that are sophisticated, very expensive and difficult to install in deep ocean. By combining high-capacity robust POF with the mobility and ubiquity of underwater wireless optical communication (UWOC), the proposed underwater Fi-Wi technology will find wide application in ocean exploration.

  15. Low-crosstalk full-duplex all-optical indoor wireless transmission with carrier recovery

    NARCIS (Netherlands)

    Oh, C.W.; Cao, Z.; Mekonnen, K.A.; Tangdiongga, E.; Koonen, A.M.J.

    2017-01-01

    We propose and demonstrate a novel bi-directional free-space (FS) optical wireless communication system for indoor wireless networks. A 2-D infrared beam-steered system supporting full-duplex communication of at least 10 Gb/s capacity per wireless terminal with simple NRZ-OOK modulation format is

  16. An Ultraviolet Optical Wireless Sensor Network in Multi-scattering Channels

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-10-01

    Networks of wirelessly communicating sensors are a promising technology for future data-gathering systems in both civilian and military applications including medical and environmental monitoring and surveillance, home security and industry. Optical wireless communication is a potential solution for the links, particularly thanks to the small and lightweight hardware and low power consumption. A noteworthy feature of optical wireless communication at ultraviolet wavelengths is that scattering of radiation by atmospheric particles is significant, so that the backscattering of light by these particles can function as a vehicle of communication as if numerous tiny reflecting mirrors were placed in the atmosphere. Also, almost no solar radiation penetrates the atmosphere in this spectral band, which is hence called the solar blind ultraviolet spectrum, so that very large field-of-view receivers can be used. In this paper we present a model of a non-line-of-sight (NLOS) optical wireless sensor network operating in the solar blind ultraviolet spectrum. The system feasibility is evaluated and found to facilitate miniature operational sensor networks. The problem of multi-access interference is addressed and the possibility of overcoming it using WDM diversity methods is investigated.

  17. Wireless communication technology NFC

    OpenAIRE

    MÁROVÁ, Kateřina

    2014-01-01

    Aim of this bachelor thesis is to handle the issue of new wireless communication technology NFC (Near Field Communication) including a comparison of advantages and disadvantages of NFC with other wireless technologies (Bluetooth, Wi-Fi, etc.). NFC is a technology for wireless communications between different electronic devices, one of which is typically a mobile phone. Near Field Communication allows wireless communication at very short distance by approaching or enclosing two devices and can...

  18. Terahertz communication: The opportunities of wireless technology beyond 5G

    KAUST Repository

    Elayan, Hadeel; Amin, Osama; Shubair, Raed M.; Alouini, Mohamed-Slim

    2018-01-01

    Over the past years, carrier frequencies used for wireless communications have been increasing to meet bandwidth requirements. The engineering community witnessed the development of wide radio bands such as the millimeter-wave (mmW) frequencies to fulfill the explosive growth of mobile data demand and pave the way towards 5G networks. Other research interests have been steered towards optical wireless communication to allow higher data rates, improve physical security and avoid electromagnetic interference. Nevertheless, a paradigm change in the electromagnetic wireless world has been witnessed with the exploitation of the Terahertz (THz) frequency band (0.1–10 THz). With the dawn of THz technology, which fills the gap between radio and optical frequency ranges, ultimate promise is expected for the next generation of wireless networks. In this paper, the light is shed on a number of opportunities associated with the deployment of the THz wireless links. These opportunities offer a plethora of applications to meet the future communication requirements and satisfy the ever increasing user demand of higher data rates.

  19. Terahertz communication: The opportunities of wireless technology beyond 5G

    KAUST Repository

    Elayan, Hadeel

    2018-05-17

    Over the past years, carrier frequencies used for wireless communications have been increasing to meet bandwidth requirements. The engineering community witnessed the development of wide radio bands such as the millimeter-wave (mmW) frequencies to fulfill the explosive growth of mobile data demand and pave the way towards 5G networks. Other research interests have been steered towards optical wireless communication to allow higher data rates, improve physical security and avoid electromagnetic interference. Nevertheless, a paradigm change in the electromagnetic wireless world has been witnessed with the exploitation of the Terahertz (THz) frequency band (0.1–10 THz). With the dawn of THz technology, which fills the gap between radio and optical frequency ranges, ultimate promise is expected for the next generation of wireless networks. In this paper, the light is shed on a number of opportunities associated with the deployment of the THz wireless links. These opportunities offer a plethora of applications to meet the future communication requirements and satisfy the ever increasing user demand of higher data rates.

  20. Experimental demonstration of MIMO-OFDM underwater wireless optical communication

    Science.gov (United States)

    Song, Yuhang; Lu, Weichao; Sun, Bin; Hong, Yang; Qu, Fengzhong; Han, Jun; Zhang, Wei; Xu, Jing

    2017-11-01

    In this paper, we propose and experimentally demonstrate a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) underwater wireless optical communication (UWOC) system, with a gross bit rate of 33.691 Mb/s over a 2-m water channel using low-cost blue light-emitting-diodes (LEDs) and 10-MHz PIN photodiodes. The system is capable of realizing robust data transmission within a relatively large reception area, leading to relaxed alignment requirement for UWOC. In addition, we have compared the system performance of repetition coding OFDM (RC-OFDM), Alamouti-OFDM and multiple-input single-output OFDM (MISO-OFDM) in turbid water. Results show that the Alamouti-OFDM UWOC is more resistant to delay than the RC-OFDM-based system.

  1. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate.

    Science.gov (United States)

    Shen, Chao; Guo, Yujian; Oubei, Hassan M; Ng, Tien Khee; Liu, Guangyu; Park, Ki-Hong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S

    2016-10-31

    The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (~10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion.

  2. Numerical models and experiment of air flow in a simulation box for optical wireless communications

    Directory of Open Access Journals (Sweden)

    Latal Jan

    2016-01-01

    Full Text Available In this article, the authors focused on real measurements of mechanical turbulence generated by ventilators in the simulation box for Optical Wireless Communications. The mechanical turbulences disturb the optical beam that propagates along the central axis of the simulation box. The aim of authors is to show the effect of mechanical turbulence on optical beams at different heights in the simulation box. In the Ansys Fluent, we created numerical models which were then compared with real measurements. Authors compared the real and numerical models according to statistical methods.

  3. Interconnecting wearable devices with nano-biosensing implants through optical wireless communications

    Science.gov (United States)

    Johari, Pedram; Pandey, Honey; Jornet, Josep M.

    2018-02-01

    Major advancements in the fields of electronics, photonics and wireless communication have enabled the development of compact wearable devices, with applications in diverse domains such as fitness, wellness and medicine. In parallel, nanotechnology is enabling the development of miniature sensors that can detect events at the nanoscale with unprecedented accuracy. On this matter, in vivo implantable Surface Plasmon Resonance (SPR) nanosensors have been proposed to analyze circulating biomarkers in body fluids for the early diagnosis of a myriad of diseases, ranging from cardiovascular disorders to different types of cancer. In light of these results, in this paper, an architecture is proposed to bridge the gap between these two apparently disjoint paradigms, namely, the commercial wearable devices and the advanced nano-biosensing technologies. More specifically, this paper thoroughly assesses the feasibility of the wireless optical intercommunications of an SPR-based nanoplasmonic biochip -implanted subcutaneously in the wrist-, with a nanophotonic wearable smart band which is integrated by an array of nano-lasers and photon-detectors for distributed excitation and measurement of the nanoplasmonic biochip. This is done through a link budget analysis which captures the peculiarities of the intra-body optical channel at (sub) cellular level, the strength of the SPR nanosensor reflection, as well as the capabilities of the nanolasers (emission power, spectrum) and the nano photon-detectors (sensitivity and noise equivalent power). The proposed analysis guides the development of practical communication designs between the wearable devices and nano-biosensing implants, which paves the way through early-stage diagnosis of severe diseases.

  4. All-optical delay technique for supporting multiple antennas in a hybrid optical - wireless transmission system

    DEFF Research Database (Denmark)

    Prince, Kamau; Chiuchiarelli, A; Presi, M

    2008-01-01

    We introduce a novel continuously-variable optical delay technique to support beam-forming wireless communications systems using antenna arrays. We demonstrate delay with 64-QAM modulated signals at a rate of 15 Msymbol/sec with 2.5 GHz carrier frequency.......We introduce a novel continuously-variable optical delay technique to support beam-forming wireless communications systems using antenna arrays. We demonstrate delay with 64-QAM modulated signals at a rate of 15 Msymbol/sec with 2.5 GHz carrier frequency....

  5. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  6. Terahertz wireless communication based on InP-related devices (Conference Presentation)

    Science.gov (United States)

    Lee, Eui Su; Kim, Hyun-Soo; Park, Jeong-Woo; Park, Dong Woo; Park, Kyung Hyun

    2017-02-01

    Recently, a wide interest has been gathered in using terahertz (THz) waves as the carrier waves for the next generation of broadband wireless communications. Upon this objective, the photonics technologies are very attractive for their usefulness in signal generations, modulations and detections with enhanced bandwidth and data rates, and the readiness in combining to the existing fiber-optic or wireless networks. In this paper, as a preliminary step toward the THz wireless communications, a THz wireless interconnection system with a broadband antenna-integrated uni-traveling-carrier photodiode (UTC-PD) and a Shottky-barrier diode (SBD) module will be presented. In our system, optical beating signals are generated and digitally modulated by the optical intensity modulator driven by a pulse pattern generator (PPG). As the receiver a SBD and an IF filter followed by a low-noise preamplifier and a limiting amplifier was used. With a 6-mA photocurrent of the UTC-PD which corresponds to the transmitter output power of about 30 μW at 280 GHz, an error-free (BERdefinition serial digital interface format was successfully transmitted over a wireless link.

  7. On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels

    KAUST Repository

    Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim

    2011-01-01

    Visible light communication (VLC) using optical sources which can be simultaneously utilized for illumination and communication is currently an attractive option for wireless personal area network. Improving the data rate in optical wireless

  8. Microwave photonics technologies supporting high capacity and flexible wireless communications systems

    DEFF Research Database (Denmark)

    Lu, Xiaofeng; Tatarczak, Anna; Rommel, Simon

    2015-01-01

    Emerging 5G wireless systems require technologies for increased capacity, guarantee robustness, low latency and flexibility. We review a number of approaches to provide the above based on microwave photonics and hybrid optical fiber-wireless communication techniques....

  9. Optical Coherent Receiver Enables THz Wireless Bridge

    DEFF Research Database (Denmark)

    Yu, Xianbin; Liu, Kexin; Zhang, Hangkai

    2016-01-01

    We experimentally demonstrated a 45 Gbit/s 400 GHz photonic wireless communication system enabled by an optical coherent receiver, which has a high potential in fast recovery of high data rate connections, for example, in disaster....

  10. Optimized optical wireless channel for indoor and intra-vehicle communications: power distribution and SNR analysis

    Science.gov (United States)

    Shaaban, Rana; Faruque, Saleh

    2018-01-01

    Light emitting diodes - LEDs are modernizing the indoor illumination and replacing current incandescent and fluorescent lamps rapidly. LEDs have multiple advantages such as extremely high energy efficient, longer lifespan, and lower heat generation. Due to the ability to switch to different light intensity at a very fast rate, LED has given rise to a unique communication technology (visible light communication - VLC) used for high speed data transmission. By studying various kinds of commonly used VLC channel analysis: diffuse and line of sight channels, we presented a simply improved indoor and intra-vehicle visible light communication transmission model. Employing optical wireless communications within the vehicle, not only enhance user mobility, but also alleviate radio frequency interference, and increase efficiency by lowering the complexity of copper cabling. Moreover, a solution to eliminate ambient noise caused by environmental conditions is examined by using optical differential receiver. The simulation results show the improved received power distribution and signal to noise ratio - SNR.

  11. A portable wireless data collection system by using optical power supply and photo-communication

    International Nuclear Information System (INIS)

    Nakajima, Toshiro; Shikai, Masahiro; Ikeda, Ikuo; Tochio, Atsushi

    1999-01-01

    For aiming at effective application to annual change management of patrolling inspection data and so forth, a portable wireless measuring and data collection device measurable to vibration, temperature and so forth automatically and for short time under patrolling of inspectors and collectable on sensor signals at many places, to collect field data as electronized data. This device was comprised of a sensor head to mount on an object apparatus to transmit sensor signals and a sensor terminal brought by an inspector and with functions to receive and memory a signal from the sensor head. It had a characteristics capable of wireless data collection using optical power supply and photo-communication where all of power supply to sensor head and transmission and receiving of data were conducted optically. As a result, some characteristics could be realized such as perfect realization of wireless data collection and reduction of maintenance burden without its need on installation of source, signal wire, and so forth, possibility to collect data for short time from distant place, and possibility to conduct high order treatment due to obtaining native waveform signal but no conventional numerical data, and possibility of development on apparatus diagnosis such as detection of abnormal sign and others. (G.K.)

  12. Optical wireless links with enhanced linearity and selectivity [Invited

    Science.gov (United States)

    Green, Roger J.; Sweet, C.; Idrus, S.

    2005-10-01

    Optical wireless is an attractive medium as an alternative to optical fiber communications, and also to RF, because of its high bandwidth and relative ease of use, especially when it comes to deployment in new physical situations. We describe an optical wireless link approach that offers a performance that gives analog transmission with significantly reduced distortion levels and enhanced reception sensitivity by combining a novel hybrid detector-amplifier technique. Reduction of distortion by 40 dB and improvement in sensitivity of 20-30 dB is possible, using the techniques described.

  13. Application of spinal code for performance improvement in free-space optical communications

    Science.gov (United States)

    Saiki, Naoya; Okamoto, Eiji; Takenaka, Hideki; Toyoshima, Morio

    2017-09-01

    In recent years, the demand for high-capacity communication has grown, and fiber-optic transmission is being used in wired communications to meet this demand. Similarly, free-space optics (FSO), which is an optical wireless communication technology that uses laser light, has attracted much attention and has been considered as a suitable alternative to satisfy this demand in wireless communications. Free-space optical communication uses a hundred THz frequency band and allows for high-speed and radio-regulation free transmission, which may provide a solution for the current shortage of radio frequency bands.

  14. Dust Effect on The Performance of Optical Wireless Communication System

    Directory of Open Access Journals (Sweden)

    Fadel Abdul-Zahra Murad

    2017-11-01

    Full Text Available In this paper wireless optical communication system (FSO is designed through the use of software (Optisystem . The paper also study  the effect of atmospheric dust on the performance of communication system (FSO, the effect of dust concentration on the visibility by taking a different concentrations of dust (9, 20, 40, 60, 80 100, 120 gm / month / m2 . The effect of the visibility on the attenuation of dust concentration on each of these concentrations , and calculate attenuation of dust for the  wavelengths  (784 nm, 1550 nm. The Paper also deals with effect of the transmitted laser  power on the transmitter range (propagation distance where five different values of transmitted laser power (10mw, 20mw, 30mw, 40mw, 50mw are taken  and the study calculates the maximum transmitter range of  each value of the transmitted power under the influence of attenuation atmospheric dust concentrations for each concentration of dust used and also for the two wavelengths (1550nm, 784nm.

  15. Novel 2D-sequential color code system employing Image Sensor Communications for Optical Wireless Communications

    Directory of Open Access Journals (Sweden)

    Trang Nguyen

    2016-06-01

    Full Text Available The IEEE 802.15.7r1 Optical Wireless Communications Task Group (TG7r1, also known as the revision of the IEEE 802.15.7 Visible Light Communication standard targeting the commercial usage of visible light communication systems, is of interest in this paper. The paper is mainly concerned with Image Sensor Communications (ISC of TG7r1; however, the major challenge facing ISC, as addressed in the Technical Consideration Document (TCD of TG7r1, is Image Sensor Compatibility among the variety of different commercial cameras on the market. One of the most challenging but interesting compatibility requirements is the need to support the verified presence of frame rate variation. This paper proposes a novel design for 2D-sequential color code. Compared to a QR-code-based sequential transmission, the proposed design of 2D-sequential code can overcome the above challenge that it is compatible with different frame rate variations and different shutter operations, and has the ability to mitigate the rolling effect as well as the rotating effect while effectively minimizing transmission overhead. Practical implementations are demonstrated and a performance comparison is presented.

  16. Wireless Communication Technologies

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Wireless Communication Technologies. Since 1999, the wireless LAN has experienced a tremendous growth. Reasons: Adoption of industry standards. Interoperability testing. The progress of wireless equipments to higher data rates. Rapid decrease in product ...

  17. User Needs and Advances in Space Wireless Sensing and Communications

    Science.gov (United States)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions

  18. UHD Video Transmission over Bi-Directional Underwater Wireless Optical Communication

    KAUST Repository

    Al-Halafi, Abdullah

    2018-04-02

    In this paper, we experimentally demonstrate for the first time a bi-directional underwater wireless optical communication system that is capable of transmitting an ultra high definition real-time video using a downlink channel while simultaneously receiving the feedback messages on the uplink channel. The links extend up to 4.5 m using QPSK, 16-QAM and 64-QAM modulations. The system is built using software defined platforms connected to TO-9 packaged pigtailed 520 nm directly modulated green laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter for video streaming on the downlink, and an avalanche photodiode (APD) module as the downlink receiver. The uplink channel is connected to another pigtailed 450 nm directly modulated blue LD with 1.2 GHz bandwidth as the optical uplink transmitter for the feedback channel, and to a second APD as the uplink receiver. We perform laboratory experiments on different water types. The measured throughput is 15 Mbps for QPSK, and 30 Mbps for both 16-QAM and 64-QAM. We evaluate the quality of the received live video streams using Peak Signal-to-Noise Ratio and achieve values up to 16 dB for 64-QAM when streaming UHD video in harbor II water and 22 dB in clear ocean.

  19. UHD Video Transmission over Bi-Directional Underwater Wireless Optical Communication

    KAUST Repository

    Al-Halafi, Abdullah; Shihada, Basem

    2018-01-01

    In this paper, we experimentally demonstrate for the first time a bi-directional underwater wireless optical communication system that is capable of transmitting an ultra high definition real-time video using a downlink channel while simultaneously receiving the feedback messages on the uplink channel. The links extend up to 4.5 m using QPSK, 16-QAM and 64-QAM modulations. The system is built using software defined platforms connected to TO-9 packaged pigtailed 520 nm directly modulated green laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter for video streaming on the downlink, and an avalanche photodiode (APD) module as the downlink receiver. The uplink channel is connected to another pigtailed 450 nm directly modulated blue LD with 1.2 GHz bandwidth as the optical uplink transmitter for the feedback channel, and to a second APD as the uplink receiver. We perform laboratory experiments on different water types. The measured throughput is 15 Mbps for QPSK, and 30 Mbps for both 16-QAM and 64-QAM. We evaluate the quality of the received live video streams using Peak Signal-to-Noise Ratio and achieve values up to 16 dB for 64-QAM when streaming UHD video in harbor II water and 22 dB in clear ocean.

  20. Broadcast of four HD videos with LED ceiling lighting: optical-wireless MAC

    Science.gov (United States)

    Bouchet, Olivier; Porcon, Pascal; Gueutier, Eric

    2011-09-01

    The European project "hOME Gigabit Access Network" (OMEGA) targeted various wireless and wired solutions for 1 Gbit/s connectivity in Home Area Networks (HANs). One objective was to evaluate the suitability of optical wireless technologies in two spectral regions: visible light (visible-light communications - VLC) and near infrared (infrared communications - IRC). Several demonstrators have been built, all of them largely relying on overthe- shelf components. The demonstrators included a "wide-area" VLC broadcast link based on LED ceiling lighting and a laser-based high-data-rate "wide-area" IRC prototype. In this paper we discuss an adapted optical-wireless media-access-control (OWMAC) sublayer, which was developed and implemented during the project. It is suitable for both IRC and VLC. The VLC prototype is based on DMT signal processing and provides broadcasting at { 100 Mbit/s over an area of approximately 5 m2. The IRC prototype provides {300 Mbit/s half-duplex communication over an area of approximately 30 m2. The IRC mesh network, composed of one base station and two terminals, is based on OOK modulation, multi-sector transceivers, and an ultra-fast sector switch. After a brief discussion about the design of the optical-wireless data link layer and the optical-wireless switch (OWS) card, we address the card development and implementation. We also present applications for the VLC and IRC prototypes and measurement results regarding the MAC layer.

  1. Wireless optical network for a home network

    Science.gov (United States)

    Bouchet, Olivier; Porcon, Pascal; Walewski, Joachim W.; Nerreter, Stefan; Langer, Klaus-Dieter; Fernández, Luz; Vucic, Jelena; Kamalakis, Thomas; Ntogari, Georgia; Neokosmidis, Ioannis; Gueutier, Eric

    2010-08-01

    During the European collaborative project OMEGA, two optical-wireless prototypes have been developed. The first prototype operates in the near-infrared spectral region and features Giga Ethernet connectivity, a simple transceiver architecture due to the use of on-off keying, a multi-sector transceiver, and an ultra-fast switch for sector-to-sector hand over. This full-duplex system, composed by one base station and one module, transmits data on three meters. The second prototype is a visible-light-communications system based on DMT signal processing and an adapted MAC sublayer. Data rates around to 100 Mb/s at the physical layer are achieved. This broadcast system, composed also by one base station and one module, transmits data up to two meters. In this paper we present the adapted optical wireless media-access-control sublayer protocol for visible-light communications. This protocol accommodates link adaptation from 128 Mb/s to 1024 Mb/s with multi-sector coverage, and half-duplex or full-duplex transmission.

  2. Delay-aware adaptive sleep mechanism for green wireless-optical broadband access networks

    Science.gov (United States)

    Wang, Ruyan; Liang, Alei; Wu, Dapeng; Wu, Dalei

    2017-07-01

    Wireless-Optical Broadband Access Network (WOBAN) is capacity-high, reliable, flexible, and ubiquitous, as it takes full advantage of the merits from both optical communication and wireless communication technologies. Similar to other access networks, the high energy consumption poses a great challenge for building up WOBANs. To shot this problem, we can make some load-light Optical Network Units (ONUs) sleep to reduce the energy consumption. Such operation, however, causes the increased packet delay. Jointly considering the energy consumption and transmission delay, we propose a delay-aware adaptive sleep mechanism. Specifically, we develop a new analytical method to evaluate the transmission delay and queuing delay over the optical part, instead of adopting M/M/1 queuing model. Meanwhile, we also analyze the access delay and queuing delay of the wireless part. Based on such developed delay models, we mathematically derive ONU's optimal sleep time. In addition, we provide numerous simulation results to show the effectiveness of the proposed mechanism.

  3. Simulation of Wireless Digital Communication Systems

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2004-12-01

    Full Text Available Due to the explosive demands for high speed wireless services, suchas wireless Internet, email and cellular video conferencing, digitalwireless communications has become one of the most exciting researchtopics in electrical and electronic engineering field. The never-endingdemand for such personal and multimedia services, however, demandstechnologies operating at higher data rates and broader bandwidths. Inaddition, the complexity of wireless communication and signalprocessing systems has grown considerably during the past decade.Therefore, powerful computer­aided techniques are required for theprocess of modeling, designing, analyzing and evaluating theperformance of digital wireless communication systems. In this paper wediscuss the basic propagation mechanisms affecting the performance ofwireless communication systems, and present a simple, powerful andefficient way to simulate digital wireless communication systems usingMatlab. The simulated results are compared with the theoreticalanalysis to validate the simulator. The simulator is useful inevaluating the performance of wireless multimedia services and theassociated signal processing structures and algorithms for current andnext generation wireless mobile communication systems.

  4. Optimization of visible-light optical wireless systems: Network-centric versus user-centric designs

    OpenAIRE

    Li, Xuan; Zhang, Rong; Hanzo, Lajos

    2018-01-01

    In order to counteract the explosive escalation of wireless tele-traffic, the communication spectrum has been gradually expanded from the conventional radio frequency (RF) band to the optical wireless (OW) domain. By integrating the classic RF band relying on diverse radio techniques and optical bands, the next-generation heterogeneous networks (HetNets) are expected to offer a potential solution for supporting the ever-increasing wireless tele-traffic. Owing to its abundant unlicensed spectr...

  5. Introduction to Ultra Wideband for Wireless Communications

    DEFF Research Database (Denmark)

    Nikookar, Homayoun; Prasad, Ramjee

    wireless channels, interference, signal processing as well as applications and standardization activities are addressed. Introduction to Ultra Wideband for Wireless Communications provides easy-to-understand material to (graduate) students and researchers working in the field of commercial UWB wireless......Ultra Wideband (UWB) Technology is the cutting edge technology for wireless communications with a wide range of applications. In Introduction to Ultra Wideband for Wireless Communications UWB principles and technologies for wireless communications are explained clearly. Key issues such as UWB...... communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo...

  6. Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel

    KAUST Repository

    Lee, It Ee

    2017-11-30

    Underwater wireless optical communication (UWOC) has been widely studied as a promising alternative to establish reliable short-range marine communication links. Microscopic particulates suspended in various ocean, harbor and natural waters will alter the propagation characteristics of the optical signals underwater. In this paper, we demonstrate a gigabit near-infrared (NIR)-based UWOC link using an 808-nm laser diode, to examine the feasibility of the proposed system in mitigating the particle scattering effect over turbid waters. We show that the NIR wavelengths presents greater resilience to the aqueous suspension of these micro-sized particles with a smaller scattering effect due to its longer wavelength, as evident by the smaller variations in the optical beam transmittance. It is also observed that the error performance is improved at higher concentrations albeit the significant reduction in received signal power. We further demonstrate that the overall frequency response of the system exhibits a bandwidth enhancement up to a few tens of MHz with increasing concentrations.

  7. On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels

    KAUST Repository

    Park, Kihong

    2011-07-01

    Visible light communication (VLC) using optical sources which can be simultaneously utilized for illumination and communication is currently an attractive option for wireless personal area network. Improving the data rate in optical wireless communication system is challenging due to the limited bandwidth of the optical sources. In this paper, we design the singular value decomposition (SVD)- based multiplexing multiple-input multiple-output (MIMO) system to support two data streams in optical wireless channels. Noting that the conventional allocation method in radio frequency (RF) MIMO channels cannot be applied directly to the optical intensity channels, we propose a novel method to allocate the optical power, the offset value and the modulation size for maximum sum rate under the constraints of the nonnegativity of the modulated signals, the aggregate optical power and the bit error rate (BER) requirement. The simulation results show that the proposed allocation method gives the better performance than the method to allocate the optical power equally for each data stream. © 2011 IEEE.

  8. Free Space Optical (FSO) Communications, Towards the Speeds of Wireline Networks

    KAUST Repository

    Alouini, Mohamed-Slim

    2015-01-01

    in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. Among the many proposed solutions, optical wireless communication or free-space optical (FSO) systems have gained an increasing

  9. Radio over fiber for wireless communications from fundamentals to advanced topics

    CERN Document Server

    Fernando, Xavier N

    2014-01-01

    A comprehensive evaluation of Fi-Wi,  enabling readers to design links using channel estimation and equalization algorithms  This book provides a detailed study of radio over fiber (ROF) based wireless communication systems, otherwise called fiber wireless (Fi-Wi) systems. This is an emerging hot topic where the abundant bandwidth of optical fiber is directly combined with the flexibility and mobility of wireless networks to provide broadband connectivity.  Its application is increasing because of the growing demand for broadband wireless services. In such a system the transmission of the ra

  10. Wireless Communications Device Wakeup Method and System

    NARCIS (Netherlands)

    Drago, S.; Sebastiano, F.; Leenaerts, D.M.W.; Breems, L.J.

    2008-01-01

    Abstract of WO 2009044368 Disclosed are wakeable wireless communications devices, and methods for waking wireless communications devices, for use in a wireless network of such devices. The devices communicate during respectively-designated timeslots according to a communications protocol. The

  11. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode

    KAUST Repository

    Oubei, Hassan M.

    2015-07-30

    We experimentally demonstrate a record high-speed underwater wireless optical communication (UWOC) over 7 m distance using on-off keying non-return-to-zero (OOK-NRZ) modulation scheme. The communication link uses a commercial TO-9 packaged pigtailed 520 nm laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter and an avalanche photodiode (APD) module as the receiver. At 2.3 Gbit/s transmission, the measured bit error rate of the received data is 2.23×10−4, well below the forward error correction (FEC) threshold of 2×10−3 required for error-free operation. The high bandwidth of the LD coupled with high sensitivity APD and optimized operating conditions is the key enabling factor in obtaining high bit rate transmission in our proposed system. To the best of our knowledge, this result presents the highest data rate ever achieved in UWOC systems thus far.

  12. Wireless Communications in Smart Grid

    Science.gov (United States)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  13. Gigahertz Optical Data Transmitters for Laser Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless optical communication systems have gone through considerable development in the past few years, as optical components have experiences important technologic...

  14. High Data Rate Optical Wireless Communications Based on Ultraviolet Band

    KAUST Repository

    Sun, Xiaobin

    2017-10-01

    Optical wireless communication systems based on ultraviolet (UV)-band has a lot inherent advantages, such as low background solar radiation, low device dark noise. Besides, it also has small restrictive requirements for PAT (pointing, acquisition, and tracking) because of its high atmospheric scattering with molecules and aerosols. And these advantages are driving people to explore and utilize UV band for constructing and implementing a high-data-rate, less PAT communication links, such as diffuse-line-of-sight links (diffuse-LOS) and non-line-of-sight (NLOS). The responsivity of the photodetector at UV range is far lower than that of visible range, high power UV transmitters which can be easily modulated are under investigation. These factors make it is hard to realize a high-data-rate diffuse-LOS or NLOS UV communication links. To achieve a UV link mentioned above with current devices and modulation schemes, this thesis presents some efficient modulation schemes and available devices for the time being. Besides, a demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm, and according to the measured L-I-V curve, we set the bias voltage as 7V for maximum the ac amplitude and thus get a high signal-noise-ratio (SNR) channel, and the light output power is 190 μW with such bias voltage. Besides, there is a unique silica gel lens on top of the LED to concentrate the beam. A -3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment, and 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing direction of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link

  15. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    Directory of Open Access Journals (Sweden)

    Nasir Saeed

    2017-12-01

    Full Text Available Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB is derived for localization accuracy of the proposed technique.

  16. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization.

    Science.gov (United States)

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y; Alouini, Mohamed-Slim

    2017-12-26

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  17. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    KAUST Repository

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  18. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    KAUST Repository

    Saeed, Nasir

    2017-12-26

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  19. Design of an Omnidirectional Multibeam Transmitter for High-Speed Indoor Wireless Communications

    Directory of Open Access Journals (Sweden)

    Tang Jaw-Luen

    2010-01-01

    Full Text Available For future high speed indoor wireless communication, diffuse wireless optical communications offer more robust optical links against shadowing than line-of-sight links. However, their performance may be degraded by multipath dispersion arising from surface reflections. We have developed a multipath diffusive propagation model capable of providing channel impulse responses data. It is aimed to design and simulate any multibeam transmitter under a variety of indoor environments. In this paper, a multi-beam transmitter system associated with hemisphere structure is proposed to fight against the diverse effects of multipath distortion albeit, at the cost of increased laser power and cost. Simulation results of multiple impulse responses showed that this type of multi-beam transmitter can significantly improve the performance of BER suitable for high bit rate application. We present the performance and simulation results for both line-of-sight and diffuse link configurations. We propose a design of power radiation pattern for a transmitter in achieving uniform and full coverage of power distributions for diffuse indoor optical wireless systems.

  20. Economical wireless optical ratiometric pH sensor

    International Nuclear Information System (INIS)

    Vuppu, Sandeep; Kostov, Yordan; Rao, Govind

    2009-01-01

    The development and application of a portable, wireless fluorescence-based optical pH sensor is presented. The design incorporates the MSP430 microcontroller as the control unit, an RF transceiver for wireless communication, digital filters and amplifiers and a USB-based communication module for data transmission. The pH sensor is based on ratiometric fluorescence detection from pH sensitive dye incorporated in a peel-and-stick patch. The ability of the instrument to detect the pH of the solution with contact only between the sensor patch and the solution makes it partially non-invasive. The instrument also has the ability to transmit data wirelessly, enabling its use in processes that entail stringent temperature control and sterility. The use of the microcontroller makes it a reliable, low-cost and low-power device. The luminous intensity of the light source can be digitally controlled to maximize the sensitivity of the instrument. It has a resolution of 0.05 pH. The sensor is accurate and reversible over the pH range of 6.5–9

  1. Supporting Adaptation of Wireless Communication Protocols

    International Nuclear Information System (INIS)

    Dhomeja, L.D.; Soomro, I.A.; Malkani, Y.A.

    2016-01-01

    Pervasive devices such as mobile phones and PDAs (Personal Digital Assistants) come with different wireless communication capabilities, for example, WiFi (Wireless Fidelity), Bluetooth, IrDA (Infrared), etc. In order for pervasive devices to interact with each other, they need to have matching (alike) communication capabilities, otherwise such heterogeneous devices would not be able to interact with each other. In this paper we address this issue and propose a system that makes devices with heterogeneous wireless communication capabilities communicate with each other. The proposed system supports adaptation of wireless communication protocols through a proxy, which sits between a client and a server, and supports adaptation of wireless communication protocols. Its functionality involves intercepting a request made by a client with a different wireless communication capability (e.g. Bluetooth) from what the server has (e.g. WiFi), connecting to the server and then sending results back to the client. We have tested the system by implementing a messaging service application and running it on the system. The proxy supports all Bluetooth protocols, i.e. OBEX (Object Exchange), L2CAP (Logical Link Control and Adaptation Protocol), RFCOM (Radio Frequency Communication) and WiFi protocol and can run on (J2MW (Java 2 Micro Edition) enabled mobile phones which support both Bluetooth and WiFi capabilities. (author)

  2. Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations

    KAUST Repository

    Oubei, Hassan M.; Elafandy, Rami T.; Park, Kihong; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    We experimentally evaluate the performance of underwater wireless optical communication (UWOC) links in the presence of different air bubbles. Air bubbles of different sizes and densities are generated by using an air pipe in conjunction with a submersible water pump of variable flow rate that help break up large bubbles into smaller bubbles. Received signal intensity measurements show that bubbles significantly degrade the performance of UWOC links. Large bubbles completely obstruct the optical beam and cause a deep fade. However, as the bubble size decreases, the level of deep fade also decreases because the optical beam is less susceptible to complete obstruction and more light reaches the detector. We also show that beam expansion could help mitigate the performance degradation due to the deep fade caused by air bubbles scatters in the channel.

  3. Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations

    KAUST Repository

    Oubei, Hassan M.

    2017-03-16

    We experimentally evaluate the performance of underwater wireless optical communication (UWOC) links in the presence of different air bubbles. Air bubbles of different sizes and densities are generated by using an air pipe in conjunction with a submersible water pump of variable flow rate that help break up large bubbles into smaller bubbles. Received signal intensity measurements show that bubbles significantly degrade the performance of UWOC links. Large bubbles completely obstruct the optical beam and cause a deep fade. However, as the bubble size decreases, the level of deep fade also decreases because the optical beam is less susceptible to complete obstruction and more light reaches the detector. We also show that beam expansion could help mitigate the performance degradation due to the deep fade caused by air bubbles scatters in the channel.

  4. Propagation engineering in wireless communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2016-01-01

    This book covers the basic principles for understanding radio wave propagation for common frequency bands used in radio-communications. This includes achievements and developments in propagation models for wireless communication. This book is intended to bridge the gap between the theoretical calculations and approaches to the applied procedures needed for radio links design in a proper manner. The authors emphasize propagation engineering by giving fundamental information and explain the use of basic principles together with technical achievements. This new edition includes additional information on radio wave propagation in guided media and technical issues for fiber optics cable networks with several examples and problems. This book also includes a solution manual - with 90 solved examples distributed throughout the chapters - and 158 problems including practical values and assumptions.

  5. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems

    KAUST Repository

    Oubei, Hassan M.

    2017-06-16

    In this Letter, we use laser beam intensity fluctuation measurements to model and describe the statistical properties of weak temperature-induced turbulence in underwater wireless optical communication (UWOC) channels. UWOC channels with temperature gradients are modeled by the generalized gamma distribution (GGD) with an excellent goodness of fit to the measured data under all channel conditions. Meanwhile, thermally uniform channels are perfectly described by the simple gamma distribution which is a special case of GGD. To the best of our knowledge, this is the first model that comprehensively describes both thermally uniform and gradient-based UWOC channels.

  6. Differential Amplitude Pulse-Position Modulation for Indoor Wireless Optical Communications

    Directory of Open Access Journals (Sweden)

    Sethakaset Ubolthip

    2005-01-01

    Full Text Available We propose a novel differential amplitude pulse-position modulation (DAPPM for indoor optical wireless communications. DAPPM yields advantages over PPM, DPPM, and DH-PIM in terms of bandwidth requirements, capacity, and peak-to-average power ratio (PAPR. The performance of a DAPPM system with an unequalized receiver is examined over nondispersive and dispersive channels. DAPPM can provide better bandwidth and/or power efficiency than PAM, PPM, DPPM, and DH-PIM depending on the number of amplitude levels and the maximum length of a symbol. We also show that, given the same maximum length, DAPPM has better bandwidth efficiency but requires about and more power than PPM and DPPM, respectively, at high bit rates over a dispersive channel. Conversely, DAPPM requires less power than DH-PIM . When the number of bits per symbol is the same, PAM requires more power, and DH-PIM less power, than DAPPM. Finally, it is shown that the performance of DAPPM can be improved with MLSD, chip-rate DFE, and multichip-rate DFE.

  7. Structural processing for wireless communications

    CERN Document Server

    Lu, Jianhua; Ge, Ning

    2015-01-01

    This brief presents an alternative viewpoint on processing technology for wireless communications based on recent research advances. As a lever in emerging processing technology, the structure perspective addresses the complexity and uncertainty issues found in current wireless applications. Likewise, this brief aims at providing a new prospective to the development of communication technology and information science, while stimulating new theories and technologies for wireless systems with ever-increasing complexity. Readers of this brief may range from graduate students to researchers in related fields.

  8. Wireless Augmented Reality Communication System

    Science.gov (United States)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2017-01-01

    A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.

  9. 75 FR 8400 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-02-24

    ... Communications System Server Software, Wireless Handheld Devices and Battery Packs; Notice of Investigation... within the United States after importation of certain wireless communications system server software... certain wireless communications system server software, wireless handheld devices or battery packs that...

  10. Computer-Based Wireless Advertising Communication System

    Directory of Open Access Journals (Sweden)

    Anwar Al-Mofleh

    2009-10-01

    Full Text Available In this paper we developed a computer based wireless advertising communication system (CBWACS that enables the user to advertise whatever he wants from his own office to the screen in front of the customer via wireless communication system. This system consists of two PIC microcontrollers, transmitter, receiver, LCD, serial cable and antenna. The main advantages of the system are: the wireless structure and the system is less susceptible to noise and other interferences because it uses digital communication techniques.

  11. NASA Bluetooth Wireless Communications

    Science.gov (United States)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  12. Performance Analysis of DC-offset STBCs for MIMO Optical Wireless Communications

    KAUST Repository

    Sapenov, Yerzhan

    2017-04-01

    In this report, an optical wireless multiple-input multiple-output communication system employing intensity-modulation direct-detection is considered. The performance of direct current offset space-time block codes (DC-STBC) is studied in terms of pairwise error probability (PEP). It is shown that among the class of DC-STBCs, the worst case PEP corresponding to the minimum distance between two codewords is minimized by repetition coding (RC), under both electrical and optical individual power constraints. It follows that among all DC-STBCs, RC is optimal in terms of worst-case PEP for static channels and also for varying channels under any turbulence statistics. This result agrees with previously published numerical results showing the superiority of RC in such systems. It also agrees with previously published analytic results on this topic under log-normal turbulence and further extends it to arbitrary turbulence statistics. This shows the redundancy of the time-dimension of the DCSTBC in this system. This result is further extended to sum power constraints with static and turbulent channels, where it is also shown that the time dimension is redundant, and the optimal DC-STBC has a spatial beamforming structure. Numerical results are provided to demonstrate the difference in performance for systems with different numbers of receiving apertures and different throughput.

  13. A novel power and offset allocation method for spatial multiplexing MIMO Systems in optical wireless channels

    KAUST Repository

    Park, Kihong

    2011-12-01

    We consider optical wireless communication which can be utilized for illumination and communication by relying on lighting devices. Due to the limited bandwidth of optical sources, it is challenging to achieve high data rate in optical wireless systems. In order to obtain a multiplexing gain and high spectral efficiency, we design an optical multi-input multi-output (MIMO) system utilizing a singular value decomposition-based spatial multiplexing and adaptive modulation. We note that the conventional allocation method in radio frequency MIMO channels cannot be applied directly to the optical intensity channels. In this paper, we generalize the result of power allocation method in [1] for arbitrary number of transmit and receive antennas in optical wireless MIMO systems. Based on three constraints, namely, the nonnegativity, the aggregate optical power, and the bit error rate requirement, we propose a novel method to allocate the optical power, the offset value, and the modulation size for maximum sum rate. From some selected simulation results, we show that our proposed allocation method gives a better spectral efficiency than the method that allocates the optical power equally for each data stream. © 2011 IEEE.

  14. Challenging Aspects of Terahertz Terabit Wireless Communications

    DEFF Research Database (Denmark)

    Yu, Xianbin; Galili, Michael; Jepsen, Peter Uhd

    The increasing demand on fast wireless communications, e.g. huge data file transferring and mobile broadband access, has driven wireless communication systems into a path towards Terabit era. Terahertz (THz) technology is promising due to its unique features, such as unlimited bandwidth available......, in terms of THz generation and link power budget. The THz atmospheric absorption is another critical issue to limit wireless communication range....

  15. Future of wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Barker, M

    1996-12-31

    This document reproduces slides from a conference presentation giving an overview of current and upcoming wireless communication methods of interest to Canadian electric utilities. Both voice and data communication methods are considered, including cellular telephone, satellite communications, personal communication services, regulated licensed arrowband data systems, and integrated services.

  16. European Research towards Future Wireless Communications

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge; Prasad, Ramjee; Pedersen, Gert Frølund

    2005-01-01

    This paper presents an overview of four on-going European research projects in the field of mobile and wireless communications leading to the next generations of wireless communications. The projects started in 2004. They investigate requirements and definition of access technology, network...

  17. Compact wideband CMOS receiver frontends for wireless communication

    NARCIS (Netherlands)

    Blaakmeer, S.C.

    2010-01-01

    Abstract Wireless communication is an integral part of our daily life, the mobile phone is an example of a very popular wireless communication device. A communication link consists of a transmitter, a receiver and the transmission medium, which air or vacuum for a wireless link. Part of the receiver

  18. Wireless communication for hearing aid system

    DEFF Research Database (Denmark)

    Nour, Baqer

    This thesis focuses on the wireless coupling between hearing aids close to a human head. Hearing aids constitute devices withadvanced technology and the wireless communication enables the introduction of a range of completely new functionalities. Such devices are small and the available power...... the ear-to-ear wireless communication channel by understanding the mechanisms that control the propagations of the signals and the losses. The second objective isto investigate the properties of magneto-dielectric materials and their potential in antenna miniaturization. There are three approaches...... to study the ear-to-ear wireless communication link; a theoretical approach models the human head asa sphere that has the electrical properties of the head, a numerical approach implements a more realistic geometry of the head, and an experimental approach measures directly the coupling between...

  19. 75 FR 43206 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-07-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-706] In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices and Battery Packs: Notice of Commission... United States after importation of certain wireless communications system server software, wireless...

  20. Underwater Wireless Optical Communications Systems: from System-Level Demonstrations to Channel Modeling

    KAUST Repository

    Oubei, Hassan M.

    2018-01-01

    Approximately, two-thirds of earth's surface is covered by water. There is a growing interest from the military and commercial communities in having, an efficient, secure and high bandwidth underwater wireless communication (UWC) system for tactical

  1. Wireless infrared indoor communications: how to combat the multipath distortion

    Science.gov (United States)

    Jivkova, Svetla T.; Kavehrad, Mohsen

    2001-02-01

    12 Currently, higher and higher transmission speeds are being pursuit for wireless LANs. The present investigation deals with one of the most prospective candidates for high-speed in-house wireless communications, namely, Multi-Spot Diffusing Configuration (MSDC). Since it uses optical medium for data transmission, it possesses inherent potential for achieving very high capacity level. Channel characteristics in MSDC are simulated and the causes for channel distortion are analyzed. Then, conditions for creation of a virtually ideal channel are derived. It is shown that the 3 dB-channel bandwidth can be extended up to frequencies beyond 2 GHz. The large bandwidth comes at the cost of poor power efficiency. In order to compensate for this, a novel receiver optical front-end design is proposed and its performance is analyzed. Taking advantage of unique properties of holographic optical elements, conventional optical front-end consisting of a concentrator and a filter, is replaced by a single holographic curved mirror. Utilization of such a holographic optical element improves the signal-to-shot noise ratio by up to 18.5 dB.

  2. Performance of wireless optical communication systems under polarization effects over atmospheric turbulence

    Science.gov (United States)

    Zhang, Jiankun; Li, Ziyang; Dang, Anhong

    2018-06-01

    It has been recntly shown that polarization state of propagation beam would suffer from polarization fluctuations due to the detrimental effects of atmospheric turbulence. This paper studies the performance of wireless optical communication (WOC) systems in the presence of polarization effect of atmosphere. We categorize the atmospheric polarization effect into polarization rotation, polarization-dependent power loss, and phase shift effect, with each effect described and modeled with the help of polarization-coherence theory and the extended Huygens-Fresnelprinciple. The channel matrices are derived to measure the cross-polarization interference of the system. Signal-to-noise ratio and bit error rate for polarization multiplexing system and polarization modulation system are obtained to assess the viability using the approach of M turbulence model. Monte Carlo simulation results show the performance of polarization based WOC systems to be degraded by atmospheric polarization effect, which could be evaluated precisely using the proposed model with given turbulent strengths.

  3. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    Science.gov (United States)

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  4. Getting ahead of the curve in wireless communications | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The demand for wireless communications is expected to increase significantly over ... would become more accessible to those without mobile phones, or Internet access. ... that will have a lasting impact on the field of wireless communications. ... problems: cooperative communication, coexistence of wireless systems, and ...

  5. Advanced Signal Processing for Wireless Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2000-01-01

    Full Text Available There is at present a worldwide effort to develop next-generation wireless communication systems. It is envisioned that many of the future wireless systems will incorporate considerable signal-processing intelligence in order to provide advanced services such as multimedia transmission. In general, wireless channels can be very hostile media through which to communicate, due to substantial physical impediments, primarily radio-frequency interference and time-arying nature of the channel. The need of providing universal wireless access at high data-rate (which is the aim of many merging wireless applications presents a major technical challenge, and meeting this challenge necessitates the development of advanced signal processing techniques for multiple-access communications in non-stationary interference-rich environments. In this paper, we present some key advanced signal processing methodologies that have been developed in recent years for interference suppression in wireless networks. We will focus primarily on the problem of jointly suppressing multiple-access interference (MAI and intersymbol interference (ISI, which are the limiting sources of interference for the high data-rate wireless systems being proposed for many emerging application areas, such as wireless multimedia. We first present a signal subspace approach to blind joint suppression of MAI and ISI. We then discuss a powerful iterative technique for joint interference suppression and decoding, so-called Turbo multiuser detection, that is especially useful for wireless multimedia packet communications. We also discuss space-time processing methods that employ multiple antennas for interference rejection and signal enhancement. Finally, we touch briefly on the problems of suppressing narrowband interference and impulsive ambient noise, two other sources of radio-frequency interference present in wireless multimedia networks.

  6. Introductory survey for wireless infrared communications

    Directory of Open Access Journals (Sweden)

    Munsif Ali Jatoi

    2014-08-01

    Full Text Available Wireless infrared communications can be defined as the propagation of light waves in free space using infrared radiation whose range is 400–700 nm. This range corresponds to frequencies of hundreds of terahertz, which is high for higher data rate applications. Wireless infrared is applied for higher data rates applications such as wireless computing, wireless video and wireless multimedia communication applications. Introduced by Gfeller, this field has grown with different link configurations, improved transmitter efficiency, increased receiver responsivity and various multiple access techniques for improved quality. Errors are caused because of background light, which causes degradation overall system performance. Error correction techniques are used to remove the errors caused during transmission. This study provides a brief account on field theory used for error correction in wireless infrared systems. The results are produced in terms of bit error rate and signal-to-noise ratio for various bit lengths to show the ability of encoding and decoding algorithms.

  7. Implanted Antennas in Medical Wireless Communications

    CERN Document Server

    Rahmat-Samii, Yahya; Balanis, Constantine

    2006-01-01

    Implanted Antennas in Medical Wireless Communications summarizes the results of recent research activities on the subject of implanted antennas for medical wireless communication systems. It is anticipated that in the near future sophisticated medical devices will be implanted inside the human body for medical telemetry and telemedicine. To establish effective and efficient wireless links with these devices, it is pivotal to give special attention to antenna designs that are low profile, small, safe, and cost effective. In this book, authors Yahya Rahmat-Samii and Jaehoon Kim demonstrate how a

  8. Attacks to Cryptography Protocols of Wireless Industrial Communication Systems

    Directory of Open Access Journals (Sweden)

    Tomas Ondrasina

    2010-01-01

    Full Text Available The paper deals with problems of safety and security principles within wireless industrial communication systems. First safety requirements to wireless industrial communication system, summarisation of attack methods and the available measures for risks elimination are described with orientation to safety critical applications. The mainly part is oriented to identification of risks and summarisation of defensive methods of wireless communication based on cryptographic techniques. Practical part the cryptoanalytic’s attacks to COTS (Commercial Off-The-Shelf wireless communications are mentioned based on the IEEE 802.11 standards.

  9. Get certified a guide to wireless communication engineering technologies

    CERN Document Server

    Ahson, Syed A

    2009-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) Communications Society designed the IEEE wireless communication engineering technologies (WCET) certification program to address the wireless industry's growing need for communications professionals with practical problem-solving skills in real-world situations. Individuals who achieve this prestigious certification are recognized as possessing the required knowledge, skill, and abilities to meet wireless challenges in various industry, business, corporate, and organizational settings. Presenting contributions from 50 wireless commun

  10. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication

    KAUST Repository

    Oubei, Hassan M.

    2015-08-26

    We experimentally demonstrate an underwater wireless optical communications (UWOC) employing 450-nm TO-9 packaged and fiberpigtailed laser diode (LD) directly encoded with an orthogonal frequency division multiplexed quadrature amplitude modulation (QAM-OFDM) data. A record data rate of up to 4.8 Gbit/s over 5.4-m transmission distance is achieved. By encoding the full 1.2-GHz bandwidth of the 450-nm LD with a 16-QAM-OFDM data, an error vector magnitude (EVM) of 16.5%, a signal-to-noise ratio (SNR) of 15.63 dB and a bit error rate (BER) of 2.6 × 10-3, well pass the forward error correction (FEC) criterion, were obtained. © 2015 Optical Society of America.

  11. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication

    KAUST Repository

    Oubei, Hassan M.; Duran, Jose R.; Janjua, Bilal; Wang, Huai-Yung; Tsai, Cheng-Ting; Chi, Yu-Cheih; Ng, Tien Khee; Kuo, Hao-Chung; He, Jr-Hau; Alouini, Mohamed-Slim; Lin, Gong-Ru; Ooi, Boon S.

    2015-01-01

    We experimentally demonstrate an underwater wireless optical communications (UWOC) employing 450-nm TO-9 packaged and fiberpigtailed laser diode (LD) directly encoded with an orthogonal frequency division multiplexed quadrature amplitude modulation (QAM-OFDM) data. A record data rate of up to 4.8 Gbit/s over 5.4-m transmission distance is achieved. By encoding the full 1.2-GHz bandwidth of the 450-nm LD with a 16-QAM-OFDM data, an error vector magnitude (EVM) of 16.5%, a signal-to-noise ratio (SNR) of 15.63 dB and a bit error rate (BER) of 2.6 × 10-3, well pass the forward error correction (FEC) criterion, were obtained. © 2015 Optical Society of America.

  12. Tradeoff Analysis for Combat Service Support Wireless Communications Alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Burnette, John R.; Thibodeau, Christopher C.; Greitzer, Frank L.

    2002-02-28

    As the Army moves toward more mobile and agile forces and continued sustainment of numerous high-cost legacy logistics management systems, the requirement for wireless connectivity and a wireless network to supporting organizations has become ever more critical. There are currently several Army communications initiatives underway to resolve this wireless connectivity issue. However, to fully appreciate and understand the value of these initiatives, a Tradeoff Analysis is needed. The present study seeks to identify and assess solutions. The analysis identified issues that impede Interim Brigade Combat Team (IBCT) communication system integration and outlined core requirements for sharing of logistics data between the field and Army battle command systems. Then, the analysis examined wireless communication alternatives as possible solutions for IBCT logistics communications problems. The current baseline system was compared with possible alternatives involving tactical radio systems, wireless/near term digital radio, cellular satellite, and third-generation (3G) wireless technologies. Cellular satellite and 3G wireless technologies offer clear advantages and should be considered for later IBCTs.

  13. Wireless multimedia communication systems design, analysis, and implementation

    CERN Document Server

    Rao, KR; Bakmaz, Bojan M

    2014-01-01

    Rapid progress in software, hardware, mobile networks, and the potential of interactive media poses many questions for researchers, manufacturers, and operators of wireless multimedia communication systems. Wireless Multimedia Communication Systems: Design, Analysis, and Implementation strives to answer those questions by not only covering the underlying concepts involved in the design, analysis, and implementation of wireless multimedia communication systems, but also by tackling advanced topics such as mobility management, security components, and smart grids.Offering an accessible treatment

  14. Interference-Assisted Techniques for Transmission and Multiple Access in Optical Communications

    Science.gov (United States)

    Guan, Xun

    Optical communications can be in wired or wireless form. Fiber optics communication (FOC) connects transmitters and receivers with optical fiber. Benefiting from its high bandwidth, low cost per volume and stability, it gains a significant market share in long-haul networks, access networks and data centers. Meanwhile, optical wireless communication (OWC) is also emerging as a crucial player in the communication market. In OWC, free-space optical communication (FSO) and visible light communication (VLC) are being studied and commercially deployed extensively. Interference is a common phenomenon in multi-user communication systems. In both FOC and OWC, interference has long been treated as a detrimental effect. However, it could also be beneficial to system applications. The effort of harnessing interference has spurred numerous innovations. Interesting examples are physical-layer network coding (PNC) and non-orthogonal multiple access (NOMA). The first part of this thesis in on the topic of PNC. PNC was firstly proposed in wireless communication to improve the throughput of a two-way relay network (TWRN). As a variation of network coding (NC), PNC turns the common channel interference (CCI) as a natural network coding operation. In this thesis, PNC is introduced into optical communication. Three schemes are proposed in different scenarios. Firstly, PNC is applied to a coherent optical orthogonal frequency division multiplexing (CO-OFDM) system so as to improve the throughput of the multicast network. The optical signal to noise ratio (OSNR) penalty is quite low. Secondly, we investigate the application of PNC in an OFDM passive optical network (OFDM-PON) supporting heterogeneous services. It is found that only minor receiver power penalties are observed to realize PNC-based virtual private networks (VPN), both in the wired service part and the wireless service part in an OFDM-PON with heterogeneous services. Thirdly, we innovate relay-based visible light

  15. OFDM systems for wireless communications

    CERN Document Server

    Narasimhamurthy, Adarsh

    2010-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in the standards for digital audio/video broadcasting, WiFi and WiMax. Being a frequency-domain approach to communications, OFDM has important advantages in dealing with the frequency-selective nature of high data rate wireless communication channels. As the needs for operating with higher data rates become more pressing, OFDM systems have emerged as an effective physical-layer solution.This short monograph is intended as a tutorial which highlights the deleterious aspects of the wireless channel and presents why OFDM is

  16. Performance analysis of MIMO wireless optical communication system with Q-ary PPM over correlated log-normal fading channel

    Science.gov (United States)

    Wang, Huiqin; Wang, Xue; Lynette, Kibe; Cao, Minghua

    2018-06-01

    The performance of multiple-input multiple-output wireless optical communication systems that adopt Q-ary pulse position modulation over spatial correlated log-normal fading channel is analyzed in terms of its un-coded bit error rate and ergodic channel capacity. The analysis is based on the Wilkinson's method which approximates the distribution of a sum of correlated log-normal random variables to a log-normal random variable. The analytical and simulation results corroborate the increment of correlation coefficients among sub-channels lead to system performance degradation. Moreover, the receiver diversity has better performance in resistance of spatial correlation caused channel fading.

  17. Towards Perpetual Energy Operation in Wireless Communication Systems

    KAUST Repository

    Benkhelifa, Fatma

    2017-01-01

    energy operation of wireless communication systems, energy harvesting (EH) from the radio frequency (RF) signals is one promising solution to make the wireless communication systems self-sustaining. Since RF signals are known to transmit information

  18. Fading and interference mitigation in wireless communications

    CERN Document Server

    Panic, Stefan; Anastasov, Jelena; Spalevic, Petar

    2013-01-01

    The rapid advancement of various wireless communication system services has created the need to analyze the possibility of their performance improvement. Introducing the basic principles of digital communications performance analysis and its mathematical formalization, Fading and Interference Mitigation in Wireless Communications will help you stay up to date with recent developments in the performance analysis of space diversity reception over fading channels in the presence of cochannel interference.The book presents a unified method for computing the performance of digital communication sys

  19. 2014 International Conference on Wireless Communications, Networking and Applications

    CERN Document Server

    2016-01-01

    This book is based on a series of conferences on Wireless Communications, Networking and Applications that have been held on December 27-28, 2014 in Shenzhen, China. The meetings themselves were a response to technological developments in the areas of wireless communications, networking and applications and facilitate researchers, engineers and students to share the latest research results and the advanced research methods of the field. The broad variety of disciplines involved in this research and the differences in approaching the basic problems are probably typical of a developing field of interdisciplinary research. However, some main areas of research and development in the emerging areas of wireless communication technology can now be identified. The contributions to this book are mainly selected from the papers of the conference on wireless communications, networking and applications and reflect the main areas of interest: Section 1 - Emerging Topics in Wireless and Mobile Computing and Communications...

  20. Propagation Engineering in Wireless Communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2012-01-01

    Wireless communications has seen explosive growth in recent decades, in a realm that is both broad and rapidly expanding to include satellite services, navigational aids, remote sensing, telemetering, audio and video broadcasting, high-speed data communications, mobile radio systems and much more. Propagation Engineering in Wireless Communications deals with the basic principles of radiowaves propagation for frequency bands used in radio-communications, offering descriptions of new achievements and newly developed propagation models. The book bridges the gap between theoretical calculations and approaches, and applied procedures needed for advanced radio links design. The primary objective of this two-volume set is to demonstrate the fundamentals, and to introduce propagation phenomena and mechanisms that engineers are likely to encounter in the design and evaluation of radio links of a given type and operating frequency. Volume one covers basic principles, along with tropospheric and ionospheric propagation,...

  1. Wireless communications resource management

    CERN Document Server

    Lee, B; Seo, H

    2009-01-01

    Wireless technologies continue to evolve to address the insatiable demand for faster response times, larger bandwidth, and reliable transmission. Yet as the industry moves toward the development of post 3G systems, engineers have consumed all the affordable physical layer technologies discovered to date. This has necessitated more intelligent and optimized utilization of available wireless resources. Wireless Communications Resource Managem ent, Lee, Park, and Seo cover all aspects of this critical topic, from the preliminary concepts and mathematical tools to detailed descriptions of all the resource management techniques. Readers will be able to more effectively leverage limited spectrum and maximize device battery power, as well as address channel loss, shadowing, and multipath fading phenomena.

  2. Biomonitoring with Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Budinger, Thomas F.

    2003-03-01

    This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein or specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.

  3. Bounds on Minimum Energy per Bit for Optical Wireless Relay Channels

    Directory of Open Access Journals (Sweden)

    A. D. Raza

    2014-09-01

    Full Text Available An optical wireless relay channel (OWRC is the classical three node network consisting of source, re- lay and destination nodes with optical wireless connectivity. The channel law is assumed Gaussian. This paper studies the bounds on minimum energy per bit required for reliable communication over an OWRC. It is shown that capacity of an OWRC is concave and energy per bit is monotonically increasing in square of the peak optical signal power, and consequently the minimum energy per bit is inversely pro- portional to the square root of asymptotic capacity at low signal to noise ratio. This has been used to develop upper and lower bound on energy per bit as a function of peak signal power, mean to peak power ratio, and variance of channel noise. The upper and lower bounds on minimum energy per bit derived in this paper correspond respectively to the decode and forward lower bound and the min-max cut upper bound on OWRC capacity

  4. Experimental validation of wireless communication with chaos

    International Nuclear Information System (INIS)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-01-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  5. Experimental validation of wireless communication with chaos

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian [Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xian University of Technology, Xian 710048 (China); Baptista, Murilo S.; Grebogi, Celso [Institute for Complex System and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2016-08-15

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  6. Experimental validation of wireless communication with chaos.

    Science.gov (United States)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  7. Collaborative Algortihms for Communication in Wireless Sensor Networks

    NARCIS (Netherlands)

    Nieberg, T.; Dulman, S.O.; Havinga, Paul J.M.; van Hoesel, L.F.W.; Wu Jian, W.J.

    In this paper, we present the design of the communication in a wireless sensor network. The resource limitations of a wireless sensor network, especially in terms of energy, require an integrated, and collaborative approach for the different layers of communication. In particular, energy-efficient

  8. Collaborative Algorithms for Communication in Wireless Sensor Networks

    NARCIS (Netherlands)

    Nieberg, T.; Dulman, S.O.; Havinga, Paul J.M.; van Hoesel, L.F.W.; Wu Jian, W.J.; Basten, Twan; Geilen, Marc; de Groot, Harmke

    2003-01-01

    In this paper, we present the design of the communication in a wireless sensor network. The resource limitations of a wireless sensor network, especially in terms of energy, require an integrated, and collaborative approach for the different layers of communication. In particular, energy-efficient

  9. Wireless communications networks for the smart grid

    CERN Document Server

    Ho, Quang-Dung; Rajalingham, Gowdemy; Le-Ngoc, Tho

    2014-01-01

    This brief presents a comprehensive review of the network architecture and communication technologies of the smart grid communication network (SGCN). It then studies the strengths, weaknesses and applications of two promising wireless mesh routing protocols that could be used to implement the SGCN. Packet transmission reliability, latency and robustness of these two protocols are evaluated and compared by simulations in various practical SGCN scenarios. Finally, technical challenges and open research opportunities of the SGCN are addressed. Wireless Communications Networks for Smart Grid provi

  10. The Prospects of Ultra-Broadband THz Wireless Communications

    DEFF Research Database (Denmark)

    Yu, Xianbin; Chen, Ying; Galili, Michael

    2014-01-01

    Wireless communications have entered into a path towards Terabit era, to accommodate the increasing demands on fast wireless access, e.g. huge data file transferring and fast mobile data access. Terahertz (THz) technology is considered feasible to carry ultrafast data signals, as it offers up...... to a few THz bandwidths. This paper overviews the prospects of Tbit/s wireless data rate and their potential applications. Technically, this talk reviews the key technologies and challenges to achieve an ultrafast wireless system operating in the THz frequency band, from viewpoint of communication......, in terms of ultrafast THz generation/THz detection and link power budget....

  11. Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today's crowded marketplace

    Science.gov (United States)

    Carbonneau, Theresa H.; Wisely, David R.

    1998-01-01

    Never before has the opportunity for terrestrial optical wireless communications links been so great. The high data rates attainable, up to OC-24, make it a very attractive and cost effective alternative to traditional fiber optic and microwave links. With today's demand for interactive multimedia-based applications, such as video conferencing and telemedicine, optical wireless products are the only ones that can provide the needed bandwidth in situations when it is too costly or impossible to install fiber optic cable. Recent developments in laser and optics technologies, in addition to auto beam tracking, permit transmission units to achieve excellent performance rates in all weather conditions.

  12. How does wireless phones effect communication and treatment in hospitals?

    DEFF Research Database (Denmark)

    Paasch, Bettina Sletten

    The use of wireless phones in hospital units are increasing, inducing practitioners to carry a working phone each. A study performed in a medical hospital unit demonstrates that wireless phones can impair communication between health care practitioners and patients (Paasch, in press). Also wireless...... phones can compromise patient safety, both by disturbing the practitioners’ concentration, causing mistakes, and by transporting bacteria between patients. This qualitative Ph.D.-study wishes to further investigate the effect of wireless phones on communication and treatment in hospital units, using...... participant observations, ethnographic interviews and video observations. The study will explore how wireless phones mediate and is mediated by practitioners communication with each other and patients. As hospitals are constructed and reconstructed by all communication within, this insight will enable...

  13. Design and Evaluation of 10-Gbps Inter-satellite Optical Wireless Communication Link for Improved Performance

    Science.gov (United States)

    Gupta, Amit; Nagpal, Shaina

    2017-05-01

    Inter-satellite optical wireless communication (IsOWC) systems can be chosen over existing microwave satellite systems for deploying in space in the future due to their high bandwidth, small size, light weight, low power and low cost. However, the IsOWC system suffers from various attenuations due to weather conditions, turbulence or scintillations which limit its performance and decreases its availability. So, in order to improve the performance, IsOWC system using directly modulated laser source is proposed in this work. The system is designed and evaluated to be suitable for high data rate transmissions up to 10 Gbps. The performance of the system is investigated in order to reduce the cost and complexity of link and improving the quality of information signal. Further the proposed IsOWC system is analysed using BER analyser, power meter and oscilloscope Visualizer.

  14. Free Space Optical (FSO) Communications, Towards the Speeds of Wireline Networks

    KAUST Repository

    Alouini, Mohamed-Slim

    2015-01-07

    Rapid increase in the use of wireless services over the last two decades has lead the problem of the radio-frequency (RF) spectrum exhaustion. More specifically, due to this RF spectrum scarcity, additional RF bandwidth allocation, as utilized in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. Among the many proposed solutions, optical wireless communication or free-space optical (FSO) systems have gained an increasing interest due to their advantages including higher bandwidth and higher capacity compared to the traditional RF communication systems. This promising technology offers full-duplex Gigabit throughput in certain applications and environment while benefiting from a huge license-free spectrum, immunity to interference, and high security. These features of FSO communication systems potentially enable solving the issues that the RF communication systems face due to the expensive and scarce RF spectrum. The first part of the talk will give an overview of FSO communication systems by offering examples of advantages and application areas of this emerging technology. In the second part of talk, we will focus on some recent results and on-going research directions in the accurate characterization of the performance of FSO systems in the presence of inevitable impairments due to atmospheric turbulence and misalignment between transmitter and receiver.

  15. SystemC modelling of wireless communication channel

    Science.gov (United States)

    Conti, Massimo; Orcioni, Simone

    2011-05-01

    This paper presents the definition in SystemC of wireless channels at different levels of abstraction. The different levels of description of the wireless channel can be easily interchanged allowing the reuse of the application and baseband layers in a high level analysis of the network or in a deep analysis of the communication between the wireless devices.

  16. Analyzing Options for Airborne Emergency Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  17. The design of the CMOS wireless bar code scanner applying optical system based on ZigBee

    Science.gov (United States)

    Chen, Yuelin; Peng, Jian

    2008-03-01

    The traditional bar code scanner is influenced by the length of data line, but the farthest distance of the wireless bar code scanner of wireless communication is generally between 30m and 100m on the market. By rebuilding the traditional CCD optical bar code scanner, a CMOS code scanner is designed based on the ZigBee to meet the demands of market. The scan system consists of the CMOS image sensor and embedded chip S3C2401X, when the two dimensional bar code is read, the results show the inaccurate and wrong code bar, resulted from image defile, disturber, reads image condition badness, signal interference, unstable system voltage. So we put forward the method which uses the matrix evaluation and Read-Solomon arithmetic to solve them. In order to construct the whole wireless optics of bar code system and to ensure its ability of transmitting bar code image signals digitally with long distances, ZigBee is used to transmit data to the base station, and this module is designed based on image acquisition system, and at last the wireless transmitting/receiving CC2430 module circuit linking chart is established. And by transplanting the embedded RTOS system LINUX to the MCU, an applying wireless CMOS optics bar code scanner and multi-task system is constructed. Finally, performance of communication is tested by evaluation software Smart RF. In broad space, every ZIGBEE node can realize 50m transmission with high reliability. When adding more ZigBee nodes, the transmission distance can be several thousands of meters long.

  18. Optical wireless networked-systems: applications to aircrafts

    Science.gov (United States)

    Kavehrad, Mohsen; Fadlullah, Jarir

    2011-01-01

    This paper focuses on leveraging the progress in semiconductor technologies to facilitate production of efficient light-based in-flight entertainment (IFE), distributed sensing, navigation and control systems. We demonstrate the ease of configuring "engineered pipes" using cheap lenses, etc. to achieve simple linear transmission capacity growth. Investigation of energy-efficient, miniaturized transceivers will create a wireless medium, for both inter and intra aircrafts, providing enhanced security, and improved quality-of-service for communications links in greater harmony with onboard systems. The applications will seamlessly inter-connect multiple intelligent devices in a network that is deployable for aircrafts navigation systems, onboard sensors and entertainment data delivery systems, and high-definition audio-visual broadcasting systems. Recent experimental results on a high-capacity infrared (808 nm) system are presented. The light source can be applied in a hybrid package along with a visible lighting LED for both lighting and communications. Also, we present a pragmatic combination of light communications through "Spotlighting" and existing onboard power-lines. It is demonstrated in details that a high-capacity IFE visible light system communicating over existing power-lines (VLC/PLC) may lead to savings in many areas through reduction of size, weight and energy consumption. This paper addresses the challenges of integrating optimized optical devices in the variety of environments described above, and presents mitigation and tailoring approaches for a multi-purpose optical network.

  19. Comparison of Broadband Wireless Access Technology for HAPS Communication

    Directory of Open Access Journals (Sweden)

    Mingxiang GUAN

    2014-03-01

    Full Text Available An information system formed by HAP (High Altitude Platform will be a new generation-system for the wireless communications and HAPS (HAP Station communication system combines the advantages of both terrestrial and satellite communication systems and avoids, to different extents, their disadvantages. Third generation (3G mobile technology which is specified by the third generation partnership project (3 GPP is definitely one of the candidates. With the success of wireless network, the IEEE 802.16 standard, with its wireless metropolitan area network (MAN air interface appears to be a strong competitor. We provide initial practical comparison of these two technologies for HAPS Communication.

  20. Ultra-Reliable Communication in 5G Wireless Systems

    DEFF Research Database (Denmark)

    Popovski, Petar

    2014-01-01

    Wireless 5G systems will not only be “4G, but faster”. One of the novel features discussed in relation to 5G is Ultra-Reliable Communication (URC), an operation mode not present in today’s wireless systems. URC refers to provision of certain level of communication service almost 100 % of the time....... Example URC applications include reliable cloud connectivity, critical connections for industrial automation and reliable wireless coordination among vehicles. This paper puts forward a systematic view on URC in 5G wireless systems. It starts by analyzing the fundamental mechanisms that constitute......-term URC (URC-S). The second dimension is represented by the type of reliability impairment that can affect the communication reliability in a given scenario. The main objective of this paper is to create the context for defining and solving the new engineering problems posed by URC in 5G....

  1. Non-line-of-sight optical wireless sensor network operating in multiscattering channel

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-11-01

    Networks of sensors are envisaged to be major participants in future data-gathering systems for civilian and military applications, including medical and environmental monitoring and surveillance, home security, agriculture, and industry. Typically, a very large number of miniature sensing and communicating nodes are distributed ad hoc at the location of interest, where they establish a network and wirelessly communicate sensed data either to one another or to a base station using various network topologies. The optical modality is a potential solution for the links, due to the small and lightweight hardware and low power consumption, as well as other special features. Notably, the backscattering of light by molecules and aerosols in the atmosphere can function as a vehicle of communication in a way similar to the deployment of numerous tiny reflecting mirrors. The scattering of light at solar-blind ultraviolet wavelengths is of particular interest since scattering by atmospheric particles is significant and ambient solar interference is minimal. In this paper we derive a mathematical model of a simple and low-cost non-line-of-sight (NLOS) optical wireless sensor network operating in the solar-blind ultraviolet spectral range. The viability and limitations of the internode link are evaluated and found to facilitate miniature operational sensor networks.

  2. Application opportunities in wireless communications. Final report

    International Nuclear Information System (INIS)

    Abbott, R.E.; Blevins, R.P.; Olmstead, C.

    1998-07-01

    This report presents the results of examinations of wireless technologies and applications that may offer potential to utilities. Five different wireless technology areas are reviewed. Three areas--Communication Networks, Monitored Security Services, and Home Automation--potentially represent new business ventures for utilities. Two areas--Automatic Vehicle Location and Automated Field-Force Management--represent wireless applications with potential for reduced operating costs and improved customer relations

  3. Spread Spectrum Techniques and their Applications to Wireless Communications

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Cianca, E.

    2005-01-01

    Spread Spectrum (SS) radio communications is on the verge of potentially explosive commercial development An SS-based multiple access, such as CDMA, has been chosen for 3G wireless communications. Other current applications of SS techniues are in Wireless LANs and Satellite Navigation Systems...

  4. The Invention of the Wireless Communication Engine

    NARCIS (Netherlands)

    van der Kooij, B.J.G.

    2017-01-01

    Wireless technology, taken for granted today, was once an innovative wonder that would forever change how the world communicates. Developed by Guglielmo Marconi in the latter half of the nineteenth century, wireless telegraphy combined advancements made by Samuel Morse, William Cooke, Charles

  5. Integrated resource management for Hybrid Optical Wireless (HOW) networks

    DEFF Research Database (Denmark)

    Yan, Ying; Yu, Hao; Wessing, Henrik

    2009-01-01

    Efficient utilization of available bandwidth over hybrid optical wireless networks is a critical issue, especially for multimedia applications with high data rates and stringent Quality of Service (QoS) requirements. In this paper, we propose an integrated resource management including an enhanced...... resource sharing scheme and an integrated admission control scheme for the hybrid optical wireless networks. It provides QoS guarantees for connections through both optical and wireless domain. Simulation results show that our proposed scheme improves QoS performances in terms of high throughput and low...

  6. Advanced communication methods developed for nuclear data communication applications

    International Nuclear Information System (INIS)

    Tiwari, Akash; Tiwari, Railesha; Tiwari, S.S.; Panday, Lokesh; Suri, Nitin; Takle, Tarun Rao; Jain, Sanjeev; Gupta, Rishi; Sharma, Dipeeka; Takle, Rahul Rao; Gautam, Rajeev; Bhargava, Vishal; Arora, Himanshu; Agarwal, Ankur; Rupesh; Chawla, Mohit; Sethi, Amardeep Singh; Gupta, Mukesh; Gupta, Ankit; Verma, Neha; Sood, Nitin; Singh, Sunil; Agarwal, Chandresh

    2004-01-01

    We conducted various experiments and tested data communications methods that may be useful for various applications in nuclear industries. We explored the following areas. I. Scientific data communication among scientists within the laboratory and inter-laboratory data exchange. 2.Data from sensors from remote and wired sensors. 3.Data from multiple sensors with small zone. 4.Data from single or multiple sensors from distances above 100 m and less than 10 km. No any single data communication method was found to be the best solution for nuclear applications and multiple modes of communication were found to be advantageous than any single mode of data communication. Network of computers in the control room and in between laboratories connected with optical fiber or an isolated Ethernet coaxial LAN was found to be optimum. Information from multiple analog process sensors in smaller zones like reactor building and laboratories on 12C LAN and short-range wireless LAN were found to be advantageous. Within the laboratory sensor data network of 12C was found to be cost effective and wireless LAN was comparatively expansive. Within a room infrared optical LAN and FSK wireless LAN were found to be highly useful in making the sensors free from wires. Direct sensor interface on FSK wireless link were found to be fast accurate, cost effective over large distance data communication. Such links are the only way to communicate from sea boy and balloons hardware. 1-wire communication network of Dallas Semiconductor USA for weather station data communication Computer to computer communication using optical LAN links has been tried, temperature pressure, humidity, ionizing radiation, generator RPM and voltage and various other analog signals were also transported o FSK optical and wireless links. Multiple sensors needed a dedicated data acquisition system and wireless LAN for data telemetry. (author)

  7. New hybrid reverse differential pulse position width modulation scheme for wireless optical communication

    Science.gov (United States)

    Liao, Renbo; Liu, Hongzhan; Qiao, Yaojun

    2014-05-01

    In order to improve the power efficiency and reduce the packet error rate of reverse differential pulse position modulation (RDPPM) for wireless optical communication (WOC), a hybrid reverse differential pulse position width modulation (RDPPWM) scheme is proposed, based on RDPPM and reverse pulse width modulation. Subsequently, the symbol structure of RDPPWM is briefly analyzed, and its performance is compared with that of other modulation schemes in terms of average transmitted power, bandwidth requirement, and packet error rate over ideal additive white Gaussian noise (AWGN) channels. Based on the given model, the simulation results show that the proposed modulation scheme has the advantages of improving the power efficiency and reducing the bandwidth requirement. Moreover, in terms of error probability performance, RDPPWM can achieve a much lower packet error rate than that of RDPPM. For example, at the same received signal power of -28 dBm, the packet error rate of RDPPWM can decrease to 2.6×10-12, while that of RDPPM is 2.2×10. Furthermore, RDPPWM does not need symbol synchronization at the receiving end. These considerations make RDPPWM a favorable candidate to select as the modulation scheme in the WOC systems.

  8. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    Science.gov (United States)

    2013-01-08

    ... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...

  9. Impact of wireless communication on multimedia application performance

    Science.gov (United States)

    Brown, Kevin A.

    1999-01-01

    Multimedia applications and specifically voice and video conferencing tools are widely used in business communications, and are quickly being discovered by the consumer market as well. At the same time, wireless communication services such as PCS voice and cellular data are becoming very popular, leading to the desire to deploy multimedia applications in the wireless environment. Wireless links, however, exhibit several characteristics which are different from traditional wired networks. These include: dynamically changing bandwidth due to mobile host movement in and out of cell where bandwidth is shared, high rates of packet corruption and subsequent loss, and frequent are lengthy disconnections due to obstacles, fading, and movement between cells. In addition, these effects are short-lived and difficult to reproduce, leading to a lack of adequate testing and analysis for applications used in wireless environments.

  10. Enabling Wireless Avionics Intra-Communications

    Science.gov (United States)

    Torres, Omar; Nguyen, Truong; Mackenzie, Anne

    2016-01-01

    The Electromagnetics and Sensors Branch of NASA Langley Research Center (LaRC) is investigating the potential of an all-wireless aircraft as part of the ECON (Efficient Reconfigurable Cockpit Design and Fleet Operations using Software Intensive, Networked and Wireless Enabled Architecture) seedling proposal, which is funded by the Convergent Aeronautics Solutions (CAS) project, Transformative Aeronautics Concepts (TAC) program, and NASA Aeronautics Research Institute (NARI). The project consists of a brief effort carried out by a small team in the Electromagnetic Environment Effects (E3) laboratory with the intention of exposing some of the challenges faced by a wireless communication system inside the reflective cavity of an aircraft and to explore potential solutions that take advantage of that environment for constructive gain. The research effort was named EWAIC for "Enabling Wireless Aircraft Intra-communications." The E3 laboratory is a research facility that includes three electromagnetic reverberation chambers and equipment that allow testing and generation of test data for the investigation of wireless systems in reflective environments. Using these chambers, the EWAIC team developed a set of tests and setups that allow the intentional variation of intensity of a multipath field to reproduce the environment of the various bays and cabins of large transport aircraft. This setup, in essence, simulates an aircraft environment that allows the investigation and testing of wireless communication protocols that can effectively be used as a tool to mitigate some of the risks inherent to an aircraft wireless system for critical functions. In addition, the EWAIC team initiated the development of a computational modeling tool to illustrate the propagation of EM waves inside the reflective cabins and bays of aircraft and to obtain quantifiable information regarding the degradation of signals in aircraft subassemblies. The nose landing gear of a UAV CAD model was used

  11. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication

    KAUST Repository

    Sun, Xiaobin; Cai, Wenqi; Alkhazragi, Omar; Ooi, Ee-Ning; He, Hongsen; Chaaban, Anas; Shen, Chao; Oubei, Hassan M.; Khan, Mohammed Zahed Mustafa; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2018-01-01

    For circumventing the alignment requirement of line-of-sight (LOS) underwater wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen

  12. A cross-layer communication framework for wireless networked control systems

    NARCIS (Netherlands)

    Israr, N.; Scanlon, W.G.; Irwin, G.W.

    2009-01-01

    This paper presents a robust, dynamic cross-layer wireless communication architecture for wireless networked control systems. Each layer in the proposed protocol architecture contributes to the overall goal of reliable, energy efficient communication. The protocol stack also features a

  13. 78 FR 13895 - Certain Wireless Communications Base Stations and Components Thereof; Institution of...

    Science.gov (United States)

    2013-03-01

    ... the sale within the United States after importation of certain wireless communications base stations... United States after importation of certain wireless communications base stations and components thereof... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-871] Certain Wireless Communications Base...

  14. Chaos-based wireless communication resisting multipath effects

    Science.gov (United States)

    Yao, Jun-Liang; Li, Chen; Ren, Hai-Peng; Grebogi, Celso

    2017-09-01

    In additive white Gaussian noise channel, chaos has been shown to be the optimal coherent communication waveform in the sense of using a very simple matched filter to maximize the signal-to-noise ratio. Recently, Lyapunov exponent spectrum of the chaotic signals after being transmitted through a wireless channel has been shown to be unaltered, paving the way for wireless communication using chaos. In wireless communication systems, inter-symbol interference caused by multipath propagation is one of the main obstacles to achieve high bit transmission rate and low bit-error rate (BER). How to resist the multipath effect is a fundamental problem in a chaos-based wireless communication system (CWCS). In this paper, a CWCS is built to transmit chaotic signals generated by a hybrid dynamical system and then to filter the received signals by using the corresponding matched filter to decrease the noise effect and to detect the binary information. We find that the multipath effect can be effectively resisted by regrouping the return map of the received signal and by setting the corresponding threshold based on the available information. We show that the optimal threshold is a function of the channel parameters and of the information symbols. Practically, the channel parameters are time-variant, and the future information symbols are unavailable. In this case, a suboptimal threshold is proposed, and the BER using the suboptimal threshold is derived analytically. Simulation results show that the CWCS achieves a remarkable competitive performance even under inaccurate channel parameters.

  15. Hadoop-Based Healthcare Information System Design and Wireless Security Communication Implementation

    Directory of Open Access Journals (Sweden)

    Hongsong Chen

    2015-01-01

    Full Text Available Human health information from healthcare system can provide important diagnosis data and reference to doctors. However, continuous monitoring and security storage of human health data are challenging personal privacy and big data storage. To build secure and efficient healthcare application, Hadoop-based healthcare security communication system is proposed. In wireless biosensor network, authentication and key transfer should be lightweight. An ECC (Elliptic Curve Cryptography based lightweight digital signature and key transmission method are proposed to provide wireless secure communication in healthcare information system. Sunspot wireless sensor nodes are used to build healthcare secure communication network; wireless nodes and base station are assigned different tasks to achieve secure communication goal in healthcare information system. Mysql database is used to store Sunspot security entity table and measure entity table. Hadoop is used to backup and audit the Sunspot security entity table. Sqoop tool is used to import/export data between Mysql database and HDFS (Hadoop distributed file system. Ganglia is used to monitor and measure the performance of Hadoop cluster. Simulation results show that the Hadoop-based healthcare architecture and wireless security communication method are highly effective to build a wireless healthcare information system.

  16. Artificial intelligence in wireless communications

    CERN Document Server

    Rondeau, Thomas W

    2009-01-01

    This cutting-edge resource offers practical overview of cognitive radio, a paradigm for wireless communications in which a network or a wireless node changes its transmission or reception parameters. The alteration of parameters is based on the active monitoring of several factors in the external and internal radio environment. This book offers a detailed description of cognitive radio and its individual parts. Practitioners learn how the basic processing elements and their capabilities are implemented as modular components. Moreover, the book explains how each component can be developed and t

  17. Receiver front-end circuits for future generations of wireless communications

    NARCIS (Netherlands)

    Sanduleanu, M.A.T.; Vidojkovic - Andjelovic, M.; Vidojkovic, V.; Roermund, van A.H.M.; Tasic, A.

    2008-01-01

    In this paper, new receiver concepts and CMOS circuits for future wireless communications applications are introduced. The concepts derived are applied to a few classes of wireless communications standards that are broad-band at radio frequencies and/or require a broad-band baseband circuitry.

  18. Fundamental Analysis of Extremely Fast Photonic THz Wireless Communication Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhang, Xianmin

    This talk will review the recent progress on developing THz communication systems for high speed wireless access, and fundamentally analyze the realistic throughput and accessible wireless range of a THz impulse radio communication link by employing a uni-travelling photodiode (UTC-PD) as emitter...

  19. Feasibility analysis of AP1000 wireless communication system and selection of technical solutions

    International Nuclear Information System (INIS)

    Zhao Xin

    2012-01-01

    This article expatiates the rationality and feasibility of AP1000 nuclear power plant adopts wireless communication system as the first choice in routine and emergency operations, compares and analysed. 5 major wireless communication technology solutions, and introduces the Wi-Fi based wireless communication system architecture. (author)

  20. The Emerging Trends in Satellite and Wireless Communications ...

    Indian Academy of Sciences (India)

    Table of contents. The Emerging Trends in Satellite and Wireless Communications Technologies · Satellite Communications · Communications Satellites for Global Coverage · Satellite Transponders · The Four Generations Of Commercial Communication Geo-Sat · PowerPoint Presentation · An Indian Scenario INSAT ...

  1. Service Class Resource Management For Green Wireless-Optical Broadband Access NetworksWOBAN

    Directory of Open Access Journals (Sweden)

    SRUTHY.S

    2015-08-01

    Full Text Available Abstract-Broadband access networks have become an essential part of worldwide communication systems because of the exponential growth of broadband services such as video on demand high definition TV internet protocol TV and video conferencing. Exponential growth in the volume of wireless data boosted by the growing popularity of mobile devices such as smartphone and tablets has forced the telecommunication industries to rethink the way networks are currently designed and to focus on the development of high-capacity mobile broadband networks. In response to this challenge researchers have been working toward the development of an integrated wireless optical broadband access network. Two major candidate technologies which are currently known for their high capacity as well as quality of service QoS for multimedia traffic are passive optical networks PON and fourth generation 4G wireless networks. PON is a wired access technology well known for its cost efficiency and high capacity whereas 4G is a wireless broadband access technology which has achieved broad market acceptance because of its ease of deployment ability to offer mobility and its cost efficiency. Integration of PON and 4G technologies in the form of wireless-optical broadband access networks offers advantages such as extension of networks in rural areas support for mobile broadband services and quick deployment of broadband networks. These two technologies however have different design architectures for handling broadband services that require quality of service. For example 4G networks use traffic classification for supporting different QoS demands whereas the PON architecture has no such mechanism to differentiate between types of traffic. These two technologies also differ in their power saving mechanisms. Propose a service class mapping for the integrated PON-4G network which is based on the MG1 queuing model and class-based power saving mechanism which significantly improves the

  2. Towards Perpetual Energy Operation in Wireless Communication Systems

    KAUST Repository

    Benkhelifa, Fatma

    2017-11-01

    Wireless is everywhere. Smartphones, tablets, laptops, implantable medical devices, and many other wireless devices are massively taking part of our everyday activities. On average, an actively digital consumer has three devices. However, most of these wireless devices are small equipped with batteries that are often limited and need to be replaced or recharged. This fact limits the operating lifetime of wireless devices and presents a major challenge in wireless communication. To improve the perpetual energy operation of wireless communication systems, energy harvesting (EH) from the radio frequency (RF) signals is one promising solution to make the wireless communication systems self-sustaining. Since RF signals are known to transmit information, it is interesting to study when RF signals are simultaneously used to transmit information and scavenge energy, namely simultaneous wireless information and power transfer (SWIPT). In this thesis, we specifically aim to study the SWIPT in multiple-input multiple-output (MIMO) relay communication systems and in cognitive radio (CR) networks. First, we study the SWIPT in MIMO relay systems where the relay harvests the energy from the source and uses partially/fully the harvested energy to forward the signal to the destination. For both the amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols, we consider the ideal scheme where both the energy and information transfer to the relay happen simultaneously, and the practical power splitting and time switching schemes. For each scheme, we aim to maximize the achievable end-to-end rate with a certain energy constraint at the relay. Furthermore, we consider the sum rate maximization problem for the multiuser MIMO DF relay broadcasting channels with multiple EH-enabled relays, and an enhanced low complex solution is proposed based on the block diagonalization method. Finally, we study the energy and data performance of the SWIPT in CR network where either the

  3. Overlapping coalition formation games in wireless communication networks

    CERN Document Server

    Wang, Tianyu; Saad, Walid; Han, Zhu

    2017-01-01

    This brief introduces overlapping coalition formation games (OCF games), a novel mathematical framework from cooperative game theory that can be used to model, design and analyze cooperative scenarios in future wireless communication networks. The concepts of OCF games are explained, and several algorithmic aspects are studied. In addition, several major application scenarios are discussed. These applications are drawn from a variety of fields that include radio resource allocation in dense wireless networks, cooperative spectrum sensing for cognitive radio networks, and resource management for crowd sourcing. For each application, the use of OCF games is discussed in detail in order to show how this framework can be used to solve relevant wireless networking problems. Overlapping Coalition Formation Games in Wireless Communication Networks provides researchers, students and practitioners with a concise overview of existing works in this emerging area, exploring the relevant fundamental theories, key techniqu...

  4. Wireless Cellular Mobile Communications

    Directory of Open Access Journals (Sweden)

    V. Zalud

    2002-12-01

    Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.

  5. Wireless Communications in Smart Rail Transportation Systems

    Directory of Open Access Journals (Sweden)

    César Briso-Rodríguez

    2017-01-01

    Full Text Available Railway, subway, airplane, and other transportation systems have drawn an increasing interest on the use of wireless communications for critical and noncritical services to improve performance, reliability, and passengers experience. Smart transportation systems require the use of critical communications for operation and control, and wideband services can be provided using noncritical communications. High speed train (HST is one of the best test cases for the analysis of communication links and specification of the general requirements for train control and supervision, passenger communications, and onboard and infrastructure wireless sensors. In this paper, we analyze in detail critical and noncritical networks mainly using the HST as a test case. First, the different types of links for smart rail transportation are described, specifying the main requirements of the transportation systems, communications, and their applications for different services. Then, we propose a network architecture and requirements of the communication technologies for critical and noncritical data. Finally, an analysis is made for the future technologies, including the fifth-generation (5G communications, millimeter wave (mmWave, terahertz (THz, and satellites for critical and high-capacity communications in transportation.

  6. Advances in analog and RF IC design for wireless communication systems

    CERN Document Server

    Manganaro, Gabriele

    2013-01-01

    Advances in Analog and RF IC Design for Wireless Communication Systems gives technical introductions to the latest and most significant topics in the area of circuit design of analog/RF ICs for wireless communication systems, emphasizing wireless infrastructure rather than handsets. The book ranges from very high performance circuits for complex wireless infrastructure systems to selected highly integrated systems for handsets and mobile devices. Coverage includes power amplifiers, low-noise amplifiers, modulators, analog-to-digital converters (ADCs) and digital-to-analog converters

  7. Pervasive Mobile and Ambient Wireless Communications COST Action 2100

    CERN Document Server

    Zanella, Alberto

    2012-01-01

    Pervasive Mobile and Ambient Wireless Communications reports the findings of COST 2100, a project of the European intergovernmental COST framework addressing various topics currently emerging in mobile and wireless communications. Drawing on experience developed in this and earlier COST projects, the text represents the final outcome of collaborative work involving more than 500 researchers in 140 institutions and 30 countries (including outside Europe). The book’s subject matter includes: • transmission techniques; • signal processing; • radio channel modelling and measurement; • radio network issues; and • recent paradigms including ultra-wideband, cooperative, vehicle-to-vehicle and body communications. The research reported comes from a variety of backgrounds: academic, equipment-manufacturing and operational. The information contained in this book will bring the study reported to a wider audience from all those spheres of work. Pervasive Mobile and Ambient Wireless Communications will be of i...

  8. 78 FR 34669 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-06-10

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  9. Collaborative communication protocols for wireless sensor networks

    NARCIS (Netherlands)

    Dulman, S.O.; van Hoesel, L.F.W.; Nieberg, T.; Havinga, Paul J.M.

    In this document, the design of communication within a wireless sensor network is discussed. The resource limitations of such a network, especially in terms of energy, require an integrated approach for all (traditional) layers of communication. We present such an integrated, collaborative approach

  10. Phase patterns of coupled oscillators with application to wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.

    2008-01-02

    Here we study the plausibility of a phase oscillators dynamical model for TDMA in wireless communication networks. We show that emerging patterns of phase locking states between oscillators can eventually oscillate in a round-robin schedule, in a similar way to models of pulse coupled oscillators designed to this end. The results open the door for new communication protocols in a continuous interacting networks of wireless communication devices.

  11. Channel coding techniques for wireless communications

    CERN Document Server

    Deergha Rao, K

    2015-01-01

    The book discusses modern channel coding techniques for wireless communications such as turbo codes, low-density parity check (LDPC) codes, space–time (ST) coding, RS (or Reed–Solomon) codes and convolutional codes. Many illustrative examples are included in each chapter for easy understanding of the coding techniques. The text is integrated with MATLAB-based programs to enhance the understanding of the subject’s underlying theories. It includes current topics of increasing importance such as turbo codes, LDPC codes, Luby transform (LT) codes, Raptor codes, and ST coding in detail, in addition to the traditional codes such as cyclic codes, BCH (or Bose–Chaudhuri–Hocquenghem) and RS codes and convolutional codes. Multiple-input and multiple-output (MIMO) communications is a multiple antenna technology, which is an effective method for high-speed or high-reliability wireless communications. PC-based MATLAB m-files for the illustrative examples are provided on the book page on Springer.com for free dow...

  12. Wireless Communications in the Era of Big Data

    OpenAIRE

    Bi, Suzhi; Zhang, Rui; Ding, Zhi; Cui, Shuguang

    2015-01-01

    © 1979-2012 IEEE. The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all aspects of wireless system design, such as spectrum efficiency, computing capabilities, and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace the big data era...

  13. Physical layer approaches for securing wireless communication systems

    CERN Document Server

    Wen, Hong

    2013-01-01

    This book surveys the outstanding work of physical-layer (PHY) security, including  the recent achievements of confidentiality and authentication for wireless communication systems by channel identification. A practical approach to building unconditional confidentiality for Wireless Communication security by feedback and error correcting code is introduced and a framework of PHY security based on space time block code (STBC) MIMO system is demonstrated.  Also discussed is a scheme which combines cryptographic techniques implemented in the higher layer with the physical layer security approach

  14. Mathematic models for a ray tracing method and its applications in wireless optical communications.

    Science.gov (United States)

    Zhang, Minglun; Zhang, Yangan; Yuan, Xueguang; Zhang, Jinnan

    2010-08-16

    This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems.

  15. Distributed wireless quantum communication networks with partially entangled pairs

    International Nuclear Information System (INIS)

    Yu Xu-Tao; Zhang Zai-Chen; Xu Jin

    2014-01-01

    Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible. (general)

  16. Low-power wireless infrared communications

    NARCIS (Netherlands)

    Otte, R.; Jong, de L.P.; Roermund, van A.H.M.

    1999-01-01

    Today, wireless infrared transmission has entered our homes, offices, industry and health care, with applications in the field of remote control, telemetry, and local communication. This book is about the underlying technology. As it is an outgrowth of my Ph.D. thesis, the emphasis is on fundamental

  17. Wireless Crew Communication Feasibility Assessment

    Science.gov (United States)

    Archer, Ronald D.; Romero, Andy; Juge, David

    2016-01-01

    Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of wireless crew communication results in increased crew task completion times and lower productivity, creates cable management issues, and increases crew frustration.

  18. Efficient Smart Antenna Systems (4G) For CDMA Wireless Communication

    OpenAIRE

    Singla, Brahm Mohinder; Kumar, Ashish

    2012-01-01

    Today, mobile communications play a central role in the voice/data network arena. With the deployment of mass scale 3G just around the corner, new directions are already being researched. In this paper we address about the 4TH G mobile communications.The Fourth Generation (4G) Mobile Communications should not focus only on the data-rate increase and new air interface.4G Mobile should instead con-verge the advanced wireless mobile communications and high-speed wireless access systems into an O...

  19. Reduced-Complexity Wireless Transceiver Architectures and Techniques for Space-Time Communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki

    2012-01-01

    The dissertation sheds light on the performance gains of multi-antenna systems when the antenna aspects and the associated signal processing and coding aspects are integrated together in a multidisciplinary approach, addressing a variety of challenging tasks pertaining to the joint design of smart...... wireless transceivers and communication techniques. These tasks are at the intersection of different scientific disciplines including signal processing, communications, antennas and propagation. Specifically, the thesis deals with reduced-complexity space-time wireless transceiver architectures...... and associated communication techniques for multi-input multi-output (MIMO) and cognitive radio (CR) systems as well as wireless sensor networks (WSNs). The low-complexity architectures are obtained by equipping the wireless transceiver with passive control ports which require the minimum amount of RF hardware...

  20. Localization of Energy Harvesting Empowered Underwater Optical Wireless Sensor Networks

    KAUST Repository

    Saeed, Nasir

    2017-12-20

    In this paper, a received signal strength (RSS) based localization technique is developed for energy harvesting underwater optical wireless sensor networks (EH-UOWSNs), where the optical noise sources and channel impairments of seawater pose significant challenges for range estimation. Energy limitation is another major problem due to the limited battery power and difficulty in replacing or recharging the battery of an underwater sensor node. In the proposed framework, sensor nodes with insufficient battery, harvest the energy and starts communicating once it has sufficient energy storage. Network localization is carried out by measuring the RSSs of active nodes, which are modeled based on the underwater optical communication channel characteristics. Thereafter, block kernel matrices are computed for the RSS based range measurements. Unlike the traditional shortest-path approach, the proposed technique reduces the shortest path estimation for each block kernel matrix. Once the complete block kernel matrices are available, a closed form localization technique is developed to find the location of every optical sensor node in the network. Furthermore, an analytical expression for Cramer Rao lower bound (CRLB) is derived as a benchmark to compare the localization performance of the proposed technique. Finally, extensive simulations show that the proposed technique outperforms the well-known network localization techniques.

  1. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  2. The field portable gamma-ray spectrometer based on wireless communication

    International Nuclear Information System (INIS)

    Wang Guangxi; Lai Wanchang; Ge Liangquan; Li Dan; Yu Xinhua; Gu Shuiliang

    2009-01-01

    It introduces a potable multi-channel γ spectrometry based on wireless communication. The author discussed the existed inconvenience in field measurement, designed the separate structure of host and detector, developed the digital γ spectrometry detector and the application software based on PDA, and completed the short-haul wireless communication between detector and host based on bluetooth technology. The entire current of the detector is less than 180 mA through test, the distance of wireless transmission can be up to 10 meters, and the speed and functions of processing spectrum are further enhanced. (authors)

  3. Electromagnetic Interference Analysis of Cabinet for Wireless HART Communication

    International Nuclear Information System (INIS)

    Choo, Jaeyul; Jeong, Sang Yong; Kim, Hyung Tae; Yu, Yeong Jin; Park, Hyun Shin; Jeong, Choong Heui

    2015-01-01

    Among the protocols of the wireless communication, the wireless HART communication using the carrier frequency of 2.4 GHz has attracted a lot of interest due to the convenient monitoring and measurement of the variables of nuclear power plants. However the application of the wireless communication to nuclear power plants poses an ongoing challenge due to the unwanted electromagnetic interference (EMI) caused by wireless devices, which would cause the detrimental malfunctioning to adjacent equipment. Especially the EMI problem in the cabinet containing digital instrument and control (I and C) devices is crucial to safety functions and should thus be treated electromagnetically before the use of the wireless communication in nuclear power plants is approved. The mode-matching method has been widely used in electromagnetic analysis due to the reduced computing time by the fast convergence in series solutions. Inspired by this, we perform the electromagnetic scattering analyses of an open cabinet using the modematching method. The resulting information of the electric (E) and magnetic (H) fields enables us to estimate how much the digital I and C in the cabinet is influenced by the external electromagnetic source. The mode-matching method was applied to the scattering analysis of the open cabinet for the digital I and C in nuclear power plants. The mathematical expressions with the unknown modal coefficients for electromagnetic field distributions were formulated based on Helmholtz's equation in conjunction with both the separation of variables and the Fourier transforms. We then determined the modal coefficients from the boundary conditions for electric and magnetic field continuities

  4. Electromagnetic Interference Analysis of Cabinet for Wireless HART Communication

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jaeyul; Jeong, Sang Yong; Kim, Hyung Tae; Yu, Yeong Jin; Park, Hyun Shin; Jeong, Choong Heui [Korea Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    Among the protocols of the wireless communication, the wireless HART communication using the carrier frequency of 2.4 GHz has attracted a lot of interest due to the convenient monitoring and measurement of the variables of nuclear power plants. However the application of the wireless communication to nuclear power plants poses an ongoing challenge due to the unwanted electromagnetic interference (EMI) caused by wireless devices, which would cause the detrimental malfunctioning to adjacent equipment. Especially the EMI problem in the cabinet containing digital instrument and control (I and C) devices is crucial to safety functions and should thus be treated electromagnetically before the use of the wireless communication in nuclear power plants is approved. The mode-matching method has been widely used in electromagnetic analysis due to the reduced computing time by the fast convergence in series solutions. Inspired by this, we perform the electromagnetic scattering analyses of an open cabinet using the modematching method. The resulting information of the electric (E) and magnetic (H) fields enables us to estimate how much the digital I and C in the cabinet is influenced by the external electromagnetic source. The mode-matching method was applied to the scattering analysis of the open cabinet for the digital I and C in nuclear power plants. The mathematical expressions with the unknown modal coefficients for electromagnetic field distributions were formulated based on Helmholtz's equation in conjunction with both the separation of variables and the Fourier transforms. We then determined the modal coefficients from the boundary conditions for electric and magnetic field continuities.

  5. A Butterfly-Shaped Wideband Microstrip Patch Antenna for Wireless Communication

    Directory of Open Access Journals (Sweden)

    Liling Sun

    2015-01-01

    Full Text Available A novel butterfly-shaped patch antenna for wireless communication is introduced in this paper. The antenna is designed for wideband wireless communications and radio-frequency identification (RFID systems. Two symmetrical quasi-circular arms and two symmetrical round holes are incorporated into the patch of a microstrip antenna to expand its bandwidth. The diameter and position of the circular slots are optimized to achieve a wide bandwidth. The validity of the design concept is demonstrated by means of a prototype having a bandwidth of about 40.1%. The return loss of the butterfly-shaped antenna is greater than 10 dB between 4.15 and 6.36 GHz. The antenna can serve simultaneously most of the modern wireless communication standards.

  6. Optical wireless link between a nanoscale antenna and a transducing rectenna.

    Science.gov (United States)

    Dasgupta, Arindam; Mennemanteuil, Marie-Maxime; Buret, Mickaël; Cazier, Nicolas; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2018-05-18

    Initiated as a cable-replacement solution, short-range wireless power transfer has rapidly become ubiquitous in the development of modern high-data throughput networking in centimeter to meter accessibility range. Wireless technology is now penetrating a higher level of system integration for chip-to-chip and on-chip radiofrequency interconnects. However, standard CMOS integrated millimeter-wave antennas have typical size commensurable with the operating wavelength, and are thus an unrealistic solution for downsizing transmitters and receivers to the micrometer and nanometer scale. Herein, we demonstrate a light-in and electrical signal-out, on-chip wireless near-infrared link between a 220 nm optical antenna and a sub-nanometer rectifying antenna converting the transmitted optical energy into direct electrical current. The co-integration of subwavelength optical functional devices with electronic transduction offers a disruptive solution to interface photons and electrons at the nanoscale for on-chip wireless optical interconnects.

  7. Energy efficiency of error correcting mechanisms for wireless communications

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    We consider the energy efficiency of error control mechanisms for wireless communication. Since high error rates are inevitable to the wireless environment, energy efficient error control is an important issue for mobile computing systems. Although good designed retransmission schemes can be optimal

  8. Study and design on USB wireless laser communication system

    Science.gov (United States)

    Wang, Aihua; Zheng, Jiansheng; Ai, Yong

    2004-04-01

    We give the definition of USB wireless laser communication system (WLCS) and the brief introduction to the protocol of USB, the standard of hardware is also given. The paper analyses the hardware and software of USB WLCS. Wireless laser communication part and USB interface circuit part are discussed in detail. We also give the periphery design of the chip AN2131Q, the control circuit to realize the transformation from parallel port to serial bus, and the circuit of laser sending and receiving of laser communication part, which are simply, cheap and workable. And then the four part of software are analyzed as followed. We have consummated the ISR in the firmware frame to develop the periphery device of USB. We have debugged and consummated the 'ezload,' and the GPD of the drivers. Windows application performs functions and schedules the corresponding API functions to let the interface practical and beautiful. The system can realize USB wireless laser communication between computers, which distance is farther than 50 meters, and top speed can be bigger than 8 Mbps. The system is of great practical sense to resolve the issues of high-speed communication among increasing districts without fiber trunk network.

  9. A review on channel models in free space optical communication systems

    Science.gov (United States)

    Anbarasi, K.; Hemanth, C.; Sangeetha, R. G.

    2017-12-01

    Free Space Optical communication (FSO) is a wireless communication technology which uses light to transmit the data in free space. FSO has advantages like unlicensed spectrum and higher bandwidth. In this paper FSO system merits and demerits, challenges in FSO, and various channel models are discussed. To mitigate the turbulence in FSO the mitigation techniques like relaying, diversity schemes and adopting different modulation techniques used in different channels are discussed and its performance comparison is given.

  10. Simulative Analysis of Inter-Satellite Optical Wireless Communication (IsOWC) Link with EDFA

    Science.gov (United States)

    Singh, Mehtab; Singh, Navpreet

    2018-04-01

    In this paper, simulative analysis and performance comparison of different EDFA (Erbium-doped fiber amplifier) configurations in a 10 Gbps inter-satellite optical wireless communication (IsOWC) link have been reported for a 5,000 km long link and 1,550 nm operating wavelength. The results show that system in which both pre-amplifier and booster amplifier stages are implemented simultaneously outperforms systems with only pre-amplifier and booster amplifier stage. From the results, it can be seen that by deploying a transmission power level of 15 dBm, a link distance of 9,600 km can be achieved with a quality factor of 6.01 dB and BER (Bit error rate) of 1.07×10-9. Also, in this paper, the performance of an 8×7 Gbps WDM-IsOWC link has been reported. The results show that by using both EDFA pre-amplifier and booster amplifier stages, a link distance of 8,000 km for each channel is achievable with desired performance levels (Q≥6 and BER≤10-9). Also, the effect of channel spacing on the performance of WDM-IsOWC link is investigated. The results show that the received signal has acceptable performance levels when the channel spacing is 100 GHz but when the channel spacing is reduced to 80 GHz, the quality of the received signal degrades and link distance decreases.

  11. Wireless communication technologies in distribution automation

    Energy Technology Data Exchange (ETDEWEB)

    Takala, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    The project examines four different wireless communication technologies: GSM short message service, NMT data calls, packet radio network, Autonet (Actionet) status message service. The targets for communication include: energy measurement, especially in the de-regulated electricity market, secondary sub-station control, fault indicators. The research concentrates on the usability of different communication technologies for different purposes. Data about response times, error rates, retry times, communication delays, costs etc. will be collected for each communication technology and comparative results will be obtained. Some field experiments and demonstrations will be made in energy measurement and distribution network remote control. The project is divided in four tasks. Each task is described briefly

  12. Wireless communication technologies in distribution automation

    Energy Technology Data Exchange (ETDEWEB)

    Takala, J [VTT Energy, Espoo (Finland)

    1997-12-31

    The project examines four different wireless communication technologies: GSM short message service, NMT data calls, packet radio network, Autonet (Actionet) status message service. The targets for communication include: energy measurement, especially in the de-regulated electricity market, secondary sub-station control, fault indicators. The research concentrates on the usability of different communication technologies for different purposes. Data about response times, error rates, retry times, communication delays, costs etc. will be collected for each communication technology and comparative results will be obtained. Some field experiments and demonstrations will be made in energy measurement and distribution network remote control. The project is divided in four tasks. Each task is described briefly

  13. On the Optimality of Repetition Coding among Rate-1 DC-offset STBCs for MIMO Optical Wireless Communications

    KAUST Repository

    Sapenov, Yerzhan

    2017-07-06

    In this paper, an optical wireless multiple-input multiple-output communication system employing intensity-modulation direct-detection is considered. The performance of direct current offset space-time block codes (DC-STBC) is studied in terms of pairwise error probability (PEP). It is shown that among the class of DC-STBCs, the worst case PEP corresponding to the minimum distance between two codewords is minimized by repetition coding (RC), under both electrical and optical individual power constraints. It follows that among all DC-STBCs, RC is optimal in terms of worst-case PEP for static channels and also for varying channels under any turbulence statistics. This result agrees with previously published numerical results showing the superiority of RC in such systems. It also agrees with previously published analytic results on this topic under log-normal turbulence and further extends it to arbitrary turbulence statistics. This shows the redundancy of the time-dimension of the DC-STBC in this system. This result is further extended to sum power constraints with static and turbulent channels, where it is also shown that the time dimension is redundant, and the optimal DC-STBC has a spatial beamforming structure. Numerical results are provided to demonstrate the difference in performance for systems with different numbers of receiving apertures and different throughput.

  14. UWB Sampler for Wireless Communications and Radar

    National Research Council Canada - National Science Library

    Han, Jeongwoo; Nguyen, Cam

    2005-01-01

    An ultra wideband (UWB) sampler, realized using step recovery and Schottky diodes on coplanar waveguide, coplanar strips and slotlines, has been developed for UWB wireless communications and radar systems...

  15. Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Dong, Ze; Zhang, Junwen; Chi, Nan; Yu, Jianguo

    2013-03-01

    We experimentally investigate the interference in multiple-input multiple-output (MIMO) wireless transmission by adjusting the relative locations of horn antennas (HAs) in a 100 GHz optical wireless integration system, which can deliver a 50 Gb/s polarization-division-multiplexing quadrature-phase-shift-keying signal over 80 km single-mode fiber-28 and a 2×2 MIMO wireless link. For the parallel 2×2 MIMO wireless link, each receiver HA can only get wireless power from the corresponding transmitter HA, while for the crossover ones, the receiver HA can get wireless power from two transmitter HAs. At the wireless receiver, polarization demultiplexing is realized by the constant modulus algorithm (CMA) in the digital-signal-processing part. Compared to the parallel case, wireless interference causes about 2 dB optical signal-to-noise ratio penalty at a bit-error ratio (BER) of 3.8×10(-3) for the crossover cases if similar CMA taps are employed. The increase in CMA tap length can reduce wireless interference and improve BER performance. Furthermore, more CMA taps should be adopted to overcome the severe wireless interference when two pairs of transmitter and receiver HAs have different wireless distances.

  16. A wireless sensor enabled by wireless power.

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  17. Approximate Inference for Wireless Communications

    DEFF Research Database (Denmark)

    Hansen, Morten

    This thesis investigates signal processing techniques for wireless communication receivers. The aim is to improve the performance or reduce the computationally complexity of these, where the primary focus area is cellular systems such as Global System for Mobile communications (GSM) (and extensions...... to the optimal one, which usually requires an unacceptable high complexity. Some of the treated approximate methods are based on QL-factorization of the channel matrix. In the work presented in this thesis it is proven how the QL-factorization of frequency-selective channels asymptotically provides the minimum...

  18. Capacity on wireless quantum cellular communication system

    Science.gov (United States)

    Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-03-01

    Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.

  19. Advancing Unmanned Aircraft Sensor Collection and Communication Capabilities with Optical Communications

    Science.gov (United States)

    Lukaczyk, T.

    2015-12-01

    Unmanned aircraft systems (UAS) are now being used for monitoring climate change over both land and seas. Their uses include monitoring of cloud conditions and atmospheric composition of chemicals and aerosols due to pollution, dust storms, fires, volcanic activity and air-sea fluxes. Additional studies of carbon flux are important for various ecosystem studies of both marine and terrestrial environments specifically, and can be related to climate change dynamics. Many measurements are becoming more complex as additional sensors become small enough to operate on more widely available small UAS. These include interferometric radars as well as scanning and fan-beam lidar systems which produce data streams even greater than those of high resolution video. These can be used to precisely map surfaces of the earth, ocean or ice features that are important for a variety of earth system studies. As these additional sensor capabilities are added to UAS the ability to transmit data back to ground or ship monitoring sites is limited by traditional wireless communication protocols. We describe results of tests of optical communication systems that provide significantly greater communication bandwidths for UAS, and discuss both the bandwidth and effective range of these systems, as well as their power and weight requirements both for systems on UAS, as well as those of ground-based receiver stations. We justify our additional use of Delay and Disruption Tolerant Networking (DTN) communication protocols with optical communication methods to ensure security and continuity of command and control operations. Finally, we discuss the implications for receiving, geo-referencing, archiving and displaying data streams from sensors communicated via optical communication to better enable real-time anomaly detection and adaptive sampling capabilities using multiple UAS or other unmanned or manned systems.

  20. Use of consumer wireless devices by South Africans with severe communication disability.

    Science.gov (United States)

    Bornman, Juan; Bryen, Diane Nelson; Moolman, Enid; Morris, John

    2016-01-01

    Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population.

  1. UST-ID robotics: Wireless communication and minimum conductor technology, and end-point tracking technology surveys

    International Nuclear Information System (INIS)

    Holliday, M.A.

    1993-10-01

    This report is a technology review of the current state-of-the-art in two technologies applicable to the Underground Storage Tank (UST) program at the Hanford Nuclear Reservation. The first review is of wireless and minimal conductor technologies for in-tank communications. The second review is of advanced concepts for independent tool-point tracking. This study addresses the need to provide wireless transmission media or minimum conductor technology for in-tank communications and robot control. At present, signals are conducted via contacting transmission media, i.e., cables. Replacing wires with radio frequencies or invisible light are commonplace in the communication industry. This technology will be evaluated for its applicability to the needs of robotics. Some of these options are radio signals, leaky coax, infrared, microwave, and optical fiber systems. Although optical fiber systems are contacting transmission media, they will be considered because of their ability to reduce the number of conductors. In this report we will identify, evaluate, and recommend the requirements for wireless and minimum conductor technology to replace the present cable system. The second section is a technology survey of concepts for independent end-point tracking (tracking the position of robot end effectors). The position of the end effector in current industrial robots is determined by computing that position from joint information, which is basically a problem of locating a point in three-dimensional space. Several approaches are presently being used in industrial robotics, including: stereo-triangulation with a theodolite network and electrocamera system, photogrammetry, and multiple-length measurement with laser interferometry and wires. The techniques that will be evaluated in this survey are advanced applications of the aforementioned approaches. These include laser tracking (3-D and 5-D), ultrasonic tracking, vision-guided servoing, and adaptive robotic visual tracking

  2. Using of wireless communication in nuclear power plants

    International Nuclear Information System (INIS)

    Ku, C. S.; Kim, B. Y.; Jeong, C. H.; Lee, K. B.; Song, T. S.

    2001-01-01

    The using of wireless communication in nuclear power plants have been limited due to the mis-operation of the safety related instrumentation and control system. If some obstacles such as electromagnetic interference are solved, the using of wireless communication in nuclear power plants recommended because of lots of benefit. In this paper, we measured the electric field intensity for the operation of a potable transceiver in the area of the PPS, PCS, CPC and main control room and provided the electric field intensity limits that a portable transceiver can be used safely near by the safety related systems without electromagnetic interference to the safety related equipment

  3. Wireless Communication over Time-Varying Channels With Limited Feedback

    NARCIS (Netherlands)

    Simon, C.

    2011-01-01

    The number of deployed wireless communication systems has grown rapidly in the last years. Their popularity is mainly due to the effortlessness with which the systems can be deployed. Further, the new generation of wireless systems, e.g., 802.11n, starts to close the performance gap to their wired

  4. 38.2-Gb/s Optical-Wireless Transmission in 75-110 GHz Based on Electrical OFDM with Optical Comb Expansion

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Beltrán, Marta

    2012-01-01

    We demonstrate scalable optical comb- and heterodyning-based generation, optical and 1.3-m wireless transmission, and electrical heterodyne detection of multiband OFDM up to 38.2 Gb/s occupying 14.4-GHz RF bandwidth, for high-capacity optical-wireless links in 75-110 GHz....

  5. Remote Access Unit for Optic-to-Wireless Conversion

    DEFF Research Database (Denmark)

    Chorchos, Łukasz; Rommel, Simon; Turkiewicz, J. P.

    . Growing demand for high speed wireless data transmission and new wireless standards like 5G force network operators to find new solutions for backhaul networks. Presently, to meet this need, attention of many researchers and top network vendors has been directed towards millimeter wave radio links....... Operation in the millimeter wave range brings new possibilities for a channel allocation as well as allows wider radio channels to be used. Moreover this frequency range is lighter licensed than regular GSM. This clearly shows a huge potential of millimeter waves for a high speed wireless data transmission...... was proposed and research projects like IPHOBAC-NG were founded. The aim of the mentioned project is to employ novel RAUs featuring opticto-wireless and wireless-to-optic conversion with a speeds of 1-10Gbit/s for broadband wireless access and up to 3Gbit/s for mobile backhaul. The RAU proposed in this paper...

  6. Integrated control platform for converged optical and wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying

    The next generation of broadband access networks is expected to be heterogeneous. Multiple wired and wireless systems can be integrated, in order to simultaneously provide seamless access with an appropriate Quality of Service (QoS). Wireless networks support ubiquitous connectivity yet low data...... rates, whereas optical networks can offer much higher data rates but only provide fixed connection structures. Their complementary characteristics make the integration of the two networks a promising trend for next generation networks. With combined strengths, the converged network will provide both...... the complementary characteristics of the optical networks and the wireless networks, addresses motivations for their interworking, discusses the current progress in hybrid network architectures as well as the functionalities of a control system, and identifies the achieved research contributions in the integrated...

  7. DWDM Fiber-Wireless Access System with Centralized Optical Frequency Comb-based RF Carrier Generation

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Beltrán, Marta; Sánchez, José

    2013-01-01

    We propose and experimentally demonstrate an optical wireless DWDM system at 60 GHz with optical incoherent heterodyne up-conversion using an optical frequency comb. Multiple users with wireline and wireless services are simultaneously supported....

  8. The Impact of Hands-On Simulation Laboratories on Teaching of Wireless Communications

    Science.gov (United States)

    Chou, Te-Shun; Vanderbye, Aaron

    2017-01-01

    Aim/Purpose: To prepare students with both theoretical knowledge and practical skills in the field of wireless communications. Background: Teaching wireless communications and networking is not an easy task because it involves broad subjects and abstract content. Methodology: A pedagogical method that combined lectures, labs, assignments, exams,…

  9. Wireless Channel Modeling Perspectives for Ultra-Reliable Communications

    DEFF Research Database (Denmark)

    Eggers, Patrick Claus F.; Popovski, Petar

    2018-01-01

    Ultra-Reliable Communication (URC) is one of the distinctive features of the upcoming 5G wireless communication. The level of reliability, going down to packet error rates (PER) of $10^{-9}$, should be sufficiently convincing in order to remove cables in an industrial setting or provide remote co...

  10. Energy scavenging system by acoustic wave and integrated wireless communication

    Science.gov (United States)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  11. Use of consumer wireless devices by South Africans with severe communication disability

    Directory of Open Access Journals (Sweden)

    Juan Bornman

    2016-02-01

    Full Text Available Background: Advancements in wireless technology (e.g. cell phones and tablets have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. Objectives: To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Method: Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. Results: All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3% needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends, for leisure activities (e.g. listening to music, watching videos, playing games, and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance. Conclusion: These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population.

  12. Convergence of Photonics and Electronics for Terahertz Wireless Communications

    DEFF Research Database (Denmark)

    Salazar, Adrian Ruiz; Rommel, Simon; Anufriyev, E.

    2016-01-01

    Terahertz wireless communications are expected to offer the required high capacity and low latency performance necessary for short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: Convergence o...... of Electronics and Photonics Technologies Enabling Terahertz Applications....

  13. 1st International Conference on Recent Cognizance in Wireless Communication & Image Processing

    CERN Document Server

    Srivastava, Vishnu; Singh, Ghanshyam; Bhatnagar, Deepak

    2016-01-01

    This volume comprises the proceedings of the International Conference on Recent Cognizance in Wireless Communication & Image Processing. It brings together content from academicians, researchers, and industry experts in areas of Wireless Communication and Image Processing. The volume provides a snapshot of current progress in computational creativity and a glimpse of future possibilities. The proceedings include two kinds of paper submissions: (i) regular papers addressing foundation issues, describing original research on creative systems development and modeling; and (ii) position papers describing work-in-progress or research directions for computational creativity. This work will be useful to professionals and researchers working in the core areas of wireless communications and image processing.

  14. How Much Longer before It All Works: What Online Searchers Should Know about Wireless Data Communications.

    Science.gov (United States)

    Bell, Steven J.

    1994-01-01

    Profiles the major wireless data communications (WDC) systems, provides an overview of how they work, and compares their communication features. Topics addressed include the market for wireless data; applications for WDC; wireless online searching; cellular data communication; packet radio; digital cellular; criteria for evaluating WDC systems;…

  15. Wireless communication technologies in distribution automation

    Energy Technology Data Exchange (ETDEWEB)

    Takala, J [VTT Energy, Espoo (Finland)

    1998-08-01

    The project started in mid 1995 and will be finished in 1997. The project examines four different wireless communication technologies: GSM short message service, NMT data calls, packet radio network and Autonet (Actionet) status message service. The targets for communication include: Energy measurement, especially in the de-regulated electricity market, secondary sub-station control and fault indicators. The research has been focused on the usability of different communication technologies for different purposes. Data about response times, reliability, error rates, retry times, communication delays, costs etc. has been collected about each communication technology and comparative results were analysed. Some field experiments and demonstrations will be made in energy measurement and distribution network remote control. The project is divided into four tasks. Each task is described briefly

  16. Cognitive Security of Wireless Communication Systems in the Physical Layer

    Directory of Open Access Journals (Sweden)

    Mustafa Harun Yılmaz

    2017-01-01

    Full Text Available While the wireless communication systems provide the means of connectivity nearly everywhere and all the time, communication security requires more attention. Even though current efforts provide solutions to specific problems under given circumstances, these methods are neither adaptive nor flexible enough to provide security under the dynamic conditions which make the security breaches an important concern. In this paper, a cognitive security (CS concept for wireless communication systems in the physical layer is proposed with the aim of providing a comprehensive solution to wireless security problems. The proposed method will enable the comprehensive security to ensure a robust and reliable communication in the existence of adversaries by providing adaptive security solutions in the communication systems by exploiting the physical layer security from different perspective. The adaptiveness relies on the fact that radio adapts its propagation characteristics to satisfy secure communication based on specific conditions which are given as user density, application specific adaptation, and location within CS concept. Thus, instead of providing any type of new security mechanism, it is proposed that radio can take the necessary precautions based on these conditions before the attacks occur. Various access scenarios are investigated to enable the CS while considering these conditions.

  17. Wireless Cellular Mobile Communications

    OpenAIRE

    Zalud, V.

    2002-01-01

    In this article is briefly reviewed the history of wireless cellular mobile communications, examined the progress in current second generation (2G) cellular standards and discussed their migration to the third generation (3G). The European 2G cellular standard GSM and its evolution phases GPRS and EDGE are described somewhat in detail. The third generation standard UMTS taking up on GSM/GPRS core network and equipped with a new advanced access network on the basis of code division multiple ac...

  18. International standards for optical wireless communications: state-of-the-art and future directions

    Science.gov (United States)

    Marciniak, Marian

    2017-10-01

    As the number of active OWC installations is growing fast, the standards for compatibility of co-existing neighbouring systems are being developed. The paper addresses the Laser Safety (IEC standards), ITU-T Study Group 15 standards (G.640 Co-location longitudinally compatible interfaces for free space optical systems), ITU-Radiocommunication Sector standards (P.1817-1 Propagation data required for the design of terrestrial free-space optical links), and the IEEE Work in Progress - standardization activity on Visible Light Communications. International standards of FSO communications have been reviewed and discussed. ITU, IEC, and IEEE International standards for Free-Space Optical links have been reviewed. The system reliability and availability as well as security issues will be addressed as well in the talk.

  19. mm-Wave Wireless Communications based on Silicon Photonics Integrated Circuits

    DEFF Research Database (Denmark)

    Rommel, Simon; Heck, Martijn; Vegas Olmos, Juan José

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency range are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Photonic integration may pave the way to practical applica...

  20. Radio propagation and adaptive antennas for wireless communication networks

    CERN Document Server

    Blaunstein, Nathan

    2014-01-01

    Explores novel wireless networks beyond 3G, and advanced 4G technologies, such as MIMO, via propagation phenomena and the fundamentals of adapted antenna usage.Explains how adaptive antennas can improve GoS and QoS for any wireless channel, with specific examples and applications in land, aircraft and satellite communications.Introduces new stochastic approach based on several multi-parametric models describing various terrestrial scenarios, which have been experimentally verified in different environmental conditionsNew chapters on fundamentals of wireless networks, cellular and non-cellular,

  1. 11th International Conference On Broad-Band Wireless Computing, Communication and Applications

    CERN Document Server

    Xhafa, Fatos; Yim, Kangbin

    2017-01-01

    The success of all-IP networking and wireless technology has changed the ways of living the people around the world. The progress of electronic integration and wireless communications is going to pave the way to offer people the access to the wireless networks on the fly, based on which all electronic devices will be able to exchange the information with each other in ubiquitous way whenever necessary. The aim of the volume is to provide latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of broadband and wireless computing. This proceedings volume presents the results of the 11th International Conference on Broad-Band Wireless Computing, Communication And Applications (BWCCA-2016), held November 5-7, 2016, at Soonchunhyang University, Asan, Korea. .

  2. Communication protocol in chassis detecting wireless transmission system based on WiFi

    Science.gov (United States)

    In chassis detecting wireless transmission system, the wireless network communication protocol plays a key role in the information exchange and synchronization between the host and chassis PDA. This paper presents a wireless network transmission protocol based on TCP/IP which makes the rules of info...

  3. Secure and Reliable Wireless Communications for Geological Repositories and Nuclear Facilities

    International Nuclear Information System (INIS)

    Twogood, R.

    2015-01-01

    There is an important need to develop new generation robust RF communication systems to support wireless communications and instrumentation control in geological repositories and nuclear facilities, such as nuclear power plants. Often these facilities have large metallic structures with electromagnetic (EM) transients from plant equipment. The ambient EMI/RFI harsh environment is responsible for degrading radio link bandwidth. Current communication systems often employ physical cables that are not only expensive to install, but deteriorate over time and are vulnerable to failures. Furthermore, conventional high-power narrowband walkie-talkies sometimes upset other electronics. On the other hand, high-quality reliable wireless communications between operators and automated control systems are critical in these facilities, as wireless sensors become more and more prevalent in these operations. In an effort to develop novel wireless communications systems, Dirac Solutions Inc. (DSI) in collaboration with Lawrence Livermore National Laboratory (LLNL), has developed high-quality ultra-wideband (UWB) hand-held communications systems that have proven to have excellent performance in ships and tunnels. The short pulse UWB RF technology, with bandwidths of many hundreds of MHz's, are non-interfering due to low average power. Furthermore, the UWB link has been shown to be highly reliable in the presence of other interfering signals. The DSI UWB communications systems can be adapted for applications in tunnels and nuclear power facilities for voice, data, and instrumentation control. In this paper we show examples of voice communication in ships with UWB walkie-talkies. We have developed novel modulation and demodulation techniques for short pulse UWB communications. The design is a low-power one and in a compact form. The communication units can be produced inexpensively in large quantities. A major application of these units might be their use by IAEA inspectors and

  4. 78 FR 6344 - Certain Wireless Communications Base Stations and Components Thereof Notice of Receipt of...

    Science.gov (United States)

    2013-01-30

    ... INTERNATIONAL TRADE COMMISSION Certain Wireless Communications Base Stations and Components.... International Trade Commission has received a complaint entitled Certain Wireless Communications Base Stations... communications base stations and components thereof. The complaint names as respondents Telefonaktiebolaget LM...

  5. Short-range wireless communication fundamentals of RF system design and application

    CERN Document Server

    Bensky, Alan

    2004-01-01

    The Complete "Tool Kit” for the Hottest Area in RF/Wireless Design!Short-range wireless-communications over distances of less than 100 meters-is the most rapidly growing segment of RF/wireless engineering. Alan Bensky is an internationally recognized expert in short-range wireless, and this new edition of his bestselling book is completely revised to cover the latest developments in this fast moving field.You'll find coverage of such cutting-edge topics as: architectural trends in RF/wireless integrated circuits compatibility and conflict issues between differen

  6. Novel Reduced-Feedback Wireless Communication Systems

    KAUST Repository

    Shaqfeh, Mohammad Obaidah

    2011-11-20

    Modern communication systems apply channel-aware adaptive transmission techniques and dynamic resource allocation in order to exploit the peak conditions of the fading wireless links and to enable significant performance gains. However, conveying the channel state information among the users’ mobile terminals into the access points of the network consumes a significant portion of the scarce air-link resources and depletes the battery resources of the mobile terminals rapidly. Despite its evident drawbacks, the channel information feedback cannot be eliminated in modern wireless networks because blind communication technologies cannot support the ever-increasing transmission rates and high quality of experience demands of current ubiquitous services. Developing new transmission technologies with reduced-feedback requirements is sought. Network operators will benefit from releasing the bandwidth resources reserved for the feedback communications and the clients will enjoy the extended battery life of their mobile devices. The main technical challenge is to preserve the prospected transmission rates over the network despite decreasing the channel information feedback significantly. This is a noteworthy research theme especially that there is no mature theory for feedback communication in the existing literature despite the growing number of publications about the topic in the last few years. More research efforts are needed to characterize the trade-off between the achievable rate and the required channel information and to design new reduced-feedback schemes that can be flexibly controlled based on the operator preferences. Such schemes can be then introduced into the standardization bodies for consideration in next generation broadband systems. We have recently contributed to this field and published several journal and conference papers. We are the pioneers to propose a novel reduced-feedback opportunistic scheduling scheme that combines many desired features

  7. Ninth International Conference on Wireless Communication and Sensor Networks

    CERN Document Server

    Tiwari, Murlidhar; Arora, Anish

    2014-01-01

    Wireless communication and sensor networks would form the backbone to create pervasive and ubiquitous environments that would have profound influence on the society and thus are important to the society. The wireless communication technologies and wireless sensor networks would encompass a wide range of domains such as HW devices such as motes, sensors and associated instrumentation, actuators, transmitters, receivers, antennas, etc., sensor network aspects such as topologies, routing algorithms, integration of heterogeneous network elements and topologies, designing RF devices and systems for energy efficiency and reliability etc. These sensor networks would provide opportunity to continuously and in a distributed manner monitor the environment and generate the necessary warnings and actions. However most of the developments have been demonstrated only in controlled and laboratory environments. So we are yet to see those powerful, ubiquitous applications for the benefit of the society. The conference and con...

  8. Application of wireless monitoring and communication systems in the power engineering

    Directory of Open Access Journals (Sweden)

    Grechikhin V. A.

    2012-06-01

    Full Text Available The article describes some achievements of modern radio electronics, which prove a huge potential of modern wireless engineering for using in the fuel-energy complex. Wireless corporation communication systems, application of short-range radar measuring systems on the power engineering objects, prospects of laser measuring systems, methods of radio thermography and radio spectroscopy, wireless acoustic-electronic sensors are discussed.

  9. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-03-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  10. Real-Time Communication in Wireless Home Networks

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.

    This paper describes a medium access protocol for real-time communication in wireless networks. Medium access is controlled by a scheduler, which utilizes a pre-emptive earliest deadline first (PEDF) scheduling algorithm. The scheduler prevents collisions in the network, where normally only

  11. Open-source telemedicine platform for wireless medical video communication.

    Science.gov (United States)

    Panayides, A; Eleftheriou, I; Pantziaris, M

    2013-01-01

    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings.

  12. Open-Source Telemedicine Platform for Wireless Medical Video Communication

    Science.gov (United States)

    Panayides, A.; Eleftheriou, I.; Pantziaris, M.

    2013-01-01

    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings. PMID:23573082

  13. Open-Source Telemedicine Platform for Wireless Medical Video Communication

    Directory of Open Access Journals (Sweden)

    A. Panayides

    2013-01-01

    Full Text Available An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN and 3.5G high-speed packet access (HSPA wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings.

  14. Access Point Security Service for wireless ad-hoc communication

    NARCIS (Netherlands)

    Scholten, Johan; Nijdam, M.

    2006-01-01

    This paper describes the design and implementation of a security solution for ad-hoc peer-to-peer communication. The security solution is based on a scenario where two wireless devices require secure communication, but share no security relationship a priori. The necessary requirements for the

  15. Cooperative Communications for Wireless Information Assurance: Secure Cooperative Communications and Testbed Development

    National Research Council Canada - National Science Library

    Li, Xiaohua

    2007-01-01

    ..., and have invented a new cooperative OFDM transmission scheme to combat transmission asynchronism. They are helpful to the development of future physical-layer wireless information assurance techniques as well as the cooperative communication techniques...

  16. 77 FR 70464 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-11-26

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... wireless communication devices, portable music and data processing devices, and tablet computers, by reason...

  17. Broadband and High power Reactive Jamming Resilient Wireless Communication

    Science.gov (United States)

    2017-10-21

    Broadband and High -power Reactive Jamming Resilient Wireless Communication The views, opinions and/or findings contained in this report are those of... available in extremely hostile environments, where FHSS and DSSS are completely defeated by a broadband and high -power reactive jammer. b. Wireless...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS

  18. Impact of RF Imperfections on 60 GHz Wireless Communication Systems

    NARCIS (Netherlands)

    Rizvi, U.H.

    2011-01-01

    Over the last couple of decades, wireless communication has proved to be a phenomenal success and has generated a booming industry with over 5 billion mobile handsets in use worldwide. This has on one end eased the life of its users while on the other end has introduced new challenges for wireless

  19. Secure Intra-Body Wireless Communications (SIWiC) System Project

    Science.gov (United States)

    Ahmad, Aftab; Doggett, Terrence P.

    2011-01-01

    SIWiC System is a project to investigate, design and implement future wireless networks of implantable sensors in the body. This futuristic project is designed to make use of the emerging and yet-to-emerge technologies, including ultra-wide band (UWB) for wireless communications, smart implantable sensors, ultra low power networking protocols, security and privacy for bandwidth and power deficient devices and quantum computing. Progress in each of these fronts is hindered by the needs of breakthrough. But, as we will see in this paper, these major challenges are being met or will be met in near future. SIWiC system is a network of in-situ wireless devices that are implanted to coordinate sensed data inside the body, such as symptoms monitoring collected internally, or biometric data collected of an outside object from within the intra-body network. One node has the capability of communicating outside the body to send data or alarm to a relevant authority, e.g., a remote physician.

  20. Optical sensing system based on wireless paired emitter detector diode device and ionogels for lab-on-a-disc water quality analysis.

    Science.gov (United States)

    Czugala, Monika; Gorkin, Robert; Phelan, Thomas; Gaughran, Jennifer; Curto, Vincenzo Fabio; Ducrée, Jens; Diamond, Dermot; Benito-Lopez, Fernando

    2012-12-07

    This work describes the first use of a wireless paired emitter detector diode device (PEDD) as an optical sensor for water quality monitoring in a lab-on-a-disc device. The microfluidic platform, based on an ionogel sensing area combined with a low-cost optical sensor, is applied for quantitative pH and qualitative turbidity monitoring of water samples at point-of-need. The autonomous capabilities of the PEDD system, combined with the portability and wireless communication of the full device, provide the flexibility needed for on-site water testing. Water samples from local fresh and brackish sources were successfully analysed using the device, showing very good correlation with standard bench-top systems.

  1. Seamless and secure communications over heterogeneous wireless networks

    CERN Document Server

    Cao, Jiannong

    2014-01-01

    This brief provides an overview of the requirements, challenges, design issues and major techniques for seamless and secure communications over heterogeneous wireless networks. It summarizes and provides detailed insights into the latest research on handoff management, mobility management, fast authentication and security management to support seamless and secure roaming for mobile clients. The reader will also learn about the challenges in developing relevant technologies and providing ubiquitous Internet access over heterogeneous wireless networks. The authors have extensive experience in im

  2. Heterogeneous wireless/wireline optical access networks with the R-EAT as backend component

    Science.gov (United States)

    Hagedorn, Klaus; Gindera, Ralf; Stohr, Andreas; Jager, Dieter

    2004-09-01

    A heterogeneous wireless/wireline optical transmission link using a reflection type electroabsorption transceiver (R-EAT) is presented. Simultaneous transmission of full-duplex broadband wireless LAN (WLAN) channels and 1Gb/s base band data is experimentally demonstrated. The system link employs sub-carrier multiplexing (SCM) and two optical channels for full duplex transmission of various analog WLAN channels and downlink digital base band data. The developed link architecture is suitable for simultaneous transmission of broadband wireline and wireless signals, it enables the coexistence and interoperability between wireline and wireless access technologies. The developed R-EAT component employed in this wireline/wireless access system, features "single-chip-component" base stations in access networks with star type topology where only a single optical fiber is used for bidirectional optical transmission. The R-EAT can be used within the optical C-band (1530- 1560nm) and is suitable for (D)WDM networks. Bit error rate measurements demonstrate the capabilities of the R-EAT for 1Gb/s base band transmission. The analog performance for WLAN transmission is characterised by a spurious free dynamic range (SFDR) of more than 75dB and 90dB for uplink and downlink transmission, respectively. The link gain for uplink and downlink transmission is -42dB and -37dB, respectively. The demonstrates the analog performances of the R-EAT for being used in wireless access networks such as W-LAN.

  3. Wireless communication, tracking in mines topic of symposium

    OpenAIRE

    Trulove, Susan

    2006-01-01

    In response to the call for increased mine safety and improved underground communications in the wake of recent mining fatalities, the Virginia Center for Coal and Energy Research at Virginia Tech is cooperating with the Virginia Department of Mines Minerals and Energy to offer a Symposium on the Capabilities and Availability of Wireless Communication and Tracking Systems for Underground Coal Mines.

  4. Streetlight Control System Based on Wireless Communication over DALI Protocol

    Science.gov (United States)

    Bellido-Outeiriño, Francisco José; Quiles-Latorre, Francisco Javier; Moreno-Moreno, Carlos Diego; Flores-Arias, José María; Moreno-García, Isabel; Ortiz-López, Manuel

    2016-01-01

    Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed. PMID:27128923

  5. Streetlight Control System Based on Wireless Communication over DALI Protocol.

    Science.gov (United States)

    Bellido-Outeiriño, Francisco José; Quiles-Latorre, Francisco Javier; Moreno-Moreno, Carlos Diego; Flores-Arias, José María; Moreno-García, Isabel; Ortiz-López, Manuel

    2016-04-27

    Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed.

  6. Experimental Evaluation of Wireless Communication Channels under Radiation Environment

    International Nuclear Information System (INIS)

    Wang, Quan; Bari, Ataul; Deng, Changjian; Li, Liquan

    2014-01-01

    Deployment of wireless systems in nuclear power plants has attracted a lot of attention recently. However, before wireless systems can be installed in a nuclear power plant, it is necessary to evaluate the effect of radiation environment on electromagnetic wave which is the communication media for all radio wave based wireless systems. This is particular important if the wireless systems are expected to work in a harsh and radioactive environment following a severe accident. This paper presents some results of an experiment for evaluating the effect of radiation on electromagnetic wave. The experiments involve placing transmitter antenna and receiver antenna in a hot cell with variable strength of radiation to study the attenuation effects of the radioactive media. The results indicate that radiation does not effect on the electromagnetic wave propagation. This fact should be considered during the design and deployment wireless systems in a potentially radioactive environment

  7. Convergence of broadband optical and wireless access networks

    Science.gov (United States)

    Chang, Gee-Kung; Jia, Zhensheng; Chien, Hung-Chang; Chowdhury, Arshad; Hsueh, Yu-Ting; Yu, Jianjun

    2009-01-01

    This paper describes convergence of optical and wireless access networks for delivering high-bandwidth integrated services over optical fiber and air links. Several key system technologies are proposed and experimentally demonstrated. We report here, for the first ever, a campus-wide field trial demonstration of radio-over-fiber (RoF) system transmitting uncompressed standard-definition (SD) high-definition (HD) real-time video contents, carried by 2.4-GHz radio and 60- GHz millimeter-wave signals, respectively, over 2.5-km standard single mode fiber (SMF-28) through the campus fiber network at Georgia Institute of Technology (GT). In addition, subsystem technologies of Base Station and wireless tranceivers operated at 60 GHz for real-time video distribution have been developed and tested.

  8. Localisation, Communication and Networking with VLC: Challenges and Opportunities

    OpenAIRE

    Zhang, Rong

    2017-01-01

    The forthcoming Fifth Generation (5G) era raises the expectation for ubiquitous wireless connectivity to enhance human experiences in information and knowledge sharing as well as in entertainment and social interactions. The promising Visible Light Communications (VLC) lies in the intersection field of optical and wireless communications, where substantial amount of new knowledge has been generated by multi-faceted investigations ranging from the understanding of optical communications and si...

  9. Mass Customization in Wireless Communication Services: Individual Service Bundles and Tariffs

    NARCIS (Netherlands)

    H. Chen (Hong); L-F. Pau (Louis-François)

    2007-01-01

    textabstractThis paper presents results on mass customization of wireless communications services and tariffs. It advocates for a user-centric view of wireless service configuration and pricing as opposed to present-day service catalog options. The focus is on design methodology and tools for such

  10. Graceful degradation of CACC performance subject to unreliable wireless communication

    NARCIS (Netherlands)

    Ploeg, J.; Semsar-Kazerooni, E.; Lijster, G.; Wouw, N. van de; Nijmeijer, H.

    2013-01-01

    Cooperative Adaptive Cruise Control (CACC) employs wireless intervehicle communication, in addition to onboard sensors, to obtain string-stable vehicle-following behavior at small intervehicle distances. As a consequence, however, CACC is vulnerable to communication impairments such as packet loss,

  11. Intrusion detection for IP-based multimedia communications over wireless networks

    CERN Document Server

    Tang, Jin

    2013-01-01

    IP-based multimedia communications have become increasingly popular in recent years. With the increasing coverage of the IEEE 802:11™ based wireless networks, IP-based multimedia communications over wireless networks are also drawing extensive attention in both academia and industry. Due to the openness and distributed nature of the protocols involved, such as the session initiation protocol (SIP) and the IEEE 802:11™ standard, it becomes easy for malicious users in the network to achieve their own gain or disrupt the service by deviating from the normal protocol behaviors. This SpringerBrief

  12. Wireless Communications for Monitoring Nuclear Material Processes part 1.: Context and Technologies

    International Nuclear Information System (INIS)

    Braina, F.; Goncalves, J.C.M.; Versino, C.; Heppleston, M.; Schoeneman, B.; Tolk, K.

    2007-01-01

    Recent advances in radio frequency communication technologies offer the motivation to consider the use of wireless communication in nuclear safeguards applications. From the Nuclear Safeguards Inspectorate' (NSI) point of view, wireless data transmission, which would be supplemental to wired communication is attractive for the ease of installation and the ability to respond to the changing requirements as the inspection approach evolves, resulting in a reduction of costs. However, for wireless technologies to be considered as a viable complement to cables, a number of concerns have to be addressed. First, nuclear operators need to be guaranteed that RF transmission will not interfere with the facilities safety and physical security systems. On their side, the NSI must be satisfied that Containment and Surveillance equipment and data transmission processes will not be affected by the other existing RF equipment. Second, it is desirable, both for the NSI and the operators, that the data being transmitted is not available for analysis by a third party. In addition, the NSI require data to be authenticated as close to the point of acquisition as possible. This paper was prepared as an account of work performed and approved by the ESARDA Working Group on Containment and Surveillance. It is the first of a suite dedicated to bridging RF technologies with safeguards monitoring applications. The paper focuses on technological issues: it introduces basic concepts underlying wireless communication, including methods for transmission, issues on power consumption, frequency, range, and considerations on interference and noise resilience. It overviews state-of-the-art wireless technologies and presents a projection on wireless capabilities that are likely to be reached in the near future

  13. Energy Efficient Four Level Cooperative Opportunistic Communication for Wireless Personal Area Networks (WPAN)

    DEFF Research Database (Denmark)

    Rohokale, Vandana M.; Inamdar, Sandeep; Prasad, Neeli R.

    2013-01-01

    For wireless sensor networks (WSN),energy is a scarce resource. Due to limited battery resources, the energy consumption is the critical issue for the transmission as well as reception of the signals in the wireless communication. WSNs are infrastructure-less shared network demanding more energy...... consumption due to collaborative transmissions. This paper proposes a new cooperative opportunistic four level model for IEEE 802.15.4 Wireless Personal Area Network (WPAN).The average per node energy consumption is observed merely about 0.17mJ for the cooperative wireless communication which proves...... the proposed mechanism to be energy efficient. This paper further proposes four levels of cooperative data transmission from source to destination to improve network coverage with energy efficiency....

  14. Automobile inspection system based on wireless communication

    Science.gov (United States)

    Miao, Changyun; Ye, Chunqing

    2010-07-01

    This paper aims to research the Automobile Inspection System based on Wireless Communication, and suggests an overall design scheme which uses GPS for speed detection and Bluetooth and GPRS for communication. The communication between PDA and PC was realized by means of GPRS and TCP/IP; and the hardware circuit and software for detection terminal were devised by means of JINOU-3264 Bluetooth Module after analyzing the Bluetooth and its communication protocol. According to the results of debugging test, this system accomplished GPRS based data communication and management as well as the real-time detection on auto safety performance parameters in crash test via PC, whereby the need for mobility and reliability was met and the efficiency and level of detection was improved.

  15. Radiation area monitoring by wireless-communicating area monitor with surveillance camera

    International Nuclear Information System (INIS)

    Shimura, Mitsuo; Kobayashi, Hiromitsu; Kitahara, Hideki; Kobayashi, Hironobu; Okamoto, Shinji

    2004-01-01

    Aiming at a dose reduction and a work efficiency improvement for nuclear power plants that have high dose regions, we have developed our system of wireless-communicating Area Monitor with Surveillance Camera, and have performed an on-site test. Now we are implementing this Area Monitor with Surveillance Camera for a use as a TV camera in the controlled-area, which enables a personal computer to simultaneously display two or more dose values and site live images on the screen. For the radiation detector of this Area Monitor System, our wireless-communicating dosimeter is utilized. Image data are transmitted via a wireless Local Area Network (LAN). As a test result, image transmission of a maximum of 20 frames per second has been realized, which shows that this concept is a practical application. Remote-site monitoring also has been realized from an office desk located within the non-controlled area, adopting a Japan's wireless phone system, PHS (Personal Handy Phone) for the transmission interface. (author)

  16. Wireless Headset Communication System

    Science.gov (United States)

    Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.

    1995-01-01

    System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.

  17. Preface for the book: Antennas And Propagation for Body-Centric Wireless Communications

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge; Prasad, Ramjee

    2006-01-01

    The book address the following subjects: Body Centric Wireless Communications possibilities, Electromagnetic properties of the body, On-body Communication Channels at high and low frequency bands, Body Centric UWB Communications, Wearable Antennas for cellular and WLAN communications, Body...

  18. Scintillation index and performance analysis of wireless optical links over non-Kolmogorov weak turbulence based on generalized atmospheric spectral model.

    Science.gov (United States)

    Cang, Ji; Liu, Xu

    2011-09-26

    Based on the generalized spectral model for non-Kolmogorov atmospheric turbulence, analytic expressions of the scintillation index (SI) are derived for plane, spherical optical waves and a partially coherent Gaussian beam propagating through non-Kolmogorov turbulence horizontally in the weak fluctuation regime. The new expressions relate the SI to the finite turbulence inner and outer scales, spatial coherence of the source and spectral power-law and then used to analyze the effects of atmospheric condition and link length on the performance of wireless optical communication links. © 2011 Optical Society of America

  19. Securing wireless communications at the physical layer

    CERN Document Server

    Liu, Ruoheng

    2009-01-01

    Throughout this book there is an underlying theme that the rich multipath environment that is typical of wireless scenarios supports the establishment of new security services at the physical layer, including new mechanisms that establish cryptographic keys, that support communication with assured confidentiality, and that can authenticate transmitters in mobile environments. The book takes a holistic approach to covering topics related to physical layer security solutions, with contributions ranging from the theoretical underpinnings behind secure communications to practical systems validatio

  20. Fundamental Limits of Parallel Optical Wireless Channels: Capacity Results and Outage Formulation

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    Multi-channel (MC) optical wireless communication (OWC) systems employing wave-division multiplexing for outdoors free-space optical communications, or multi-user timedivision multiple access for indoors visible-light communications, e.g., can be modeled as parallel channels. Multi-input multioutput OWC systems can also be transformed, possibly with some performance loss, to parallel channels using pre-/postcoding. Studying the performance of such MC-OWC systems requires characterizing the capacity of the underlying parallel channels. In this paper, upper and lower bounds on the capacity of constant parallel OWC channels with a total average intensity constraint are derived. Then, the paper focuses on finding intensity allocations that maximize the lower bounds given channel-state information at the transmitter (CSIT). Due to its nonconvexity, the KKT conditions are used to describe a list of candidate allocations. Instead searching exhaustively for the best solution, low-complexity near-optimal algorithms are proposed. The resulting optimized lower bound nearly coincides with capacity at high signal-to-noise ratio (SNR). Under a quasi-static channel model and in the absence of CSIT, outage probability upper and lower bounds are derived. Those bounds also meet at high SNR, thus characterizing the outage capacity in this regime. Finally, the results are extended to a system with both average and peak intensity constraints.

  1. Fundamental Limits of Parallel Optical Wireless Channels: Capacity Results and Outage Formulation

    KAUST Repository

    Chaaban, Anas

    2016-10-26

    Multi-channel (MC) optical wireless communication (OWC) systems employing wave-division multiplexing for outdoors free-space optical communications, or multi-user timedivision multiple access for indoors visible-light communications, e.g., can be modeled as parallel channels. Multi-input multioutput OWC systems can also be transformed, possibly with some performance loss, to parallel channels using pre-/postcoding. Studying the performance of such MC-OWC systems requires characterizing the capacity of the underlying parallel channels. In this paper, upper and lower bounds on the capacity of constant parallel OWC channels with a total average intensity constraint are derived. Then, the paper focuses on finding intensity allocations that maximize the lower bounds given channel-state information at the transmitter (CSIT). Due to its nonconvexity, the KKT conditions are used to describe a list of candidate allocations. Instead searching exhaustively for the best solution, low-complexity near-optimal algorithms are proposed. The resulting optimized lower bound nearly coincides with capacity at high signal-to-noise ratio (SNR). Under a quasi-static channel model and in the absence of CSIT, outage probability upper and lower bounds are derived. Those bounds also meet at high SNR, thus characterizing the outage capacity in this regime. Finally, the results are extended to a system with both average and peak intensity constraints.

  2. Multi-Element Free-Space Optical (FSO) Modules for Mobile-Opportunistic Networking

    Science.gov (United States)

    2016-11-14

    due to license-free spectrum, containment of beams, inherent security, energy efficient communications, and high transmission rates. We leveraged the... wireless spectrum bands in both military and civilian settings. Recent research has shown that free- space-optical (FSO), a.k.a. optical wireless ...communications is a promising complementary approach to address the exploding mobile wireless traffic demand. The major impediment for using FSO in a

  3. A 15-meter Multi-Gigabit W-band Bidirectional Wireless Bridge in Fiber-Optic Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Vegas Olmos, Juan José; Lebedev, Alexander

    2013-01-01

    . The down-converted signal is re-modulated on to the lightwave and transmit further through the fiber-optic system. In the uplink, both up-and down-conversion are performed by electrical means. Furthermore, we investigate both passive and active wireless transmitters in this work for both downlink......We present a bidirectional wireless bridge in the W-band enabling the seamless convergence between the wireless and fiber-optic access networks. In the downlink, a 16 Gbit/s QPSK signal is photonically up-converted at the wireless transmitter and electrically down-converted at the wireless receiver...... and uplink transmissions. With an active wireless transmitter, up to 15 meters wireless transmission is successfully achieved with a BER below the 7% FEC limit in the downlink....

  4. Topology and routing optimization for congestion minimization in optical wireless networks

    NARCIS (Netherlands)

    Ouveysi, I.; Shu, F.; Chen, W.; Shen, G.; Zukerman, M.

    2010-01-01

    Optical wireless networks have appealing features such as very high broadband data rates and cost effectiveness. They represent a potential alternative to the last mile (first mile) wireless access problem. However, they are also highly vulnerable to external disturbances such as adverse weather and

  5. Photonic integrated circuits for millimeter-wave wireless communications

    NARCIS (Netherlands)

    Carpintero, G.; Balakier, K.; Yang, Z.; Guzmán, R.C.; Corradi, A.; Jimenez, A.; Kervalla, G.; Fice, M.; Lamponi, M.; Chtioui, M.; Van Dijk, Frédéric; Renaud, C.C.; Wonfor, A.; Bente, E.A.J.M.; Penty, R.V.; White, I.H.; Seeds, A.J.

    2014-01-01

    This paper describes the advantages that the introduction of photonic integration technologies can bring to the development of photonic-enabled wireless communications systems operating in the millimeter wave frequency range. We present two approaches for the development of dual wavelength sources

  6. Streetlight Control System Based on Wireless Communication over DALI Protocol

    Directory of Open Access Journals (Sweden)

    Francisco José Bellido-Outeiriño

    2016-04-01

    Full Text Available Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed.

  7. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Science.gov (United States)

    2011-08-01

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and...''). The complaint further alleges that an industry in the United States exists or is in the process of...

  8. Silicon Photonics Integrated Circuits for 5th Generation mm-Wave Wireless Communications

    DEFF Research Database (Denmark)

    Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Photonic integration may pave the way to practical applicability...

  9. Microwave Photonics Techniques Supporting Flexible Wireless Communications Links

    DEFF Research Database (Denmark)

    Rommel, Simon; Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José

    Wireless data communication links supporting the next generation 5G and beyond mobile networking face a set of engineering challenges related to the mandatory operation at mmw and higher frequency bands, provide capacities above 10 Gb/s, satisfy latency, robustness, flexibility and low complexity...

  10. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2006-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  11. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2002-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  12. Experimental assessment of a wireless communications platform for the built and natural heritage

    OpenAIRE

    Martínez-Garrido, M. I.; Fort González, Rafael

    2016-01-01

    Wireless sensor networks have become extremely popular in a number of fields in recent years, the cultural heritage among them. To date, however, communications quality has not been technically validated in any of the various built (churches, museums, archaeological sites) or natural (caves, lava tubes) heritage scenarios. The present study establishes methodology for assessing the quality of wireless communications and validating the network used, both of which are essential to guaranteeing ...

  13. Experimental Demonstration of Coexistence of Microwave Wireless Communication and Power Transfer Technologies for Battery-Free Sensor Network Systems

    Directory of Open Access Journals (Sweden)

    Satoshi Yoshida

    2013-01-01

    Full Text Available This paper describes experimental demonstrations of a wireless power transfer system equipped with a microwave band communication function. Battery charging using the system is described to evaluate the possibility of the coexistence of both wireless power transfer and communication functions in the C-band. A battery-free wireless sensor network system is demonstrated, and a high-power rectifier for the system is also designed and evaluated in the S-band. We have confirmed that microwave wireless power transfer can coexist with communication function.

  14. Centralized optical-frequency-comb-based RF carrier generator for DWDM fiber-wireless access systems

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Beltran, Marta; Sanchez, Jose

    2014-01-01

    In this paper, we report on a gigabit capacity fiber-wireless system that enables smooth integration between high-speed wireless networks and dense wavelength-division-multiplexing (DWDM) access networks. By employing a centralized optical frequency comb, both the wireline and the wireless services...

  15. A Survey of Wireless Communications for the Electric Power System

    Energy Technology Data Exchange (ETDEWEB)

    Akyol, Bora A.; Kirkham, Harold; Clements, Samuel L.; Hadley, Mark D.

    2010-01-27

    A key mission of the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the security and reliability of the nation’s energy infrastructure. Improving the security of control systems, which enable the automated control of our energy production and distribution, is critical for protecting the energy infrastructure and the integral function that it serves in our lives. The DOE-OE Control Systems Security Program provides research and development to help the energy industry actively pursue advanced security solutions for control systems. The focus of this report is analyzing how, where, and what type of wireless communications are suitable for deployment in the electric power system and to inform implementers of their options in wireless technologies. The discussions in this report are applicable to enhancing both the communications infrastructure of the current electric power system and new smart system deployments. The work described in this report includes a survey of the following wireless technologies: • IEEE 802.16 d and e (WiMAX) • IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s • Wireless sensor protocols that use parts of the IEEE 802.15.4 specification: WirelessHART, International Society of Automation (ISA) 100.11a, and Zigbee • The 2, 3, and 4 generation (G )cellular technologies of GPRS/EDGE/1xRTT, HSPA/EVDO, and Long-Term Evolution (LTE)/HSPA+UMTS.

  16. Digital signal processing for wireless communication using Matlab

    CERN Document Server

    Gopi, E S

    2016-01-01

    This book examines signal processing techniques used in wireless communication illustrated by using the Matlab program. The author discusses these techniques as they relate to Doppler spread; delay spread; Rayleigh and Rician channel modeling; rake receiver; diversity techniques; MIMO and OFDM -based transmission techniques; and array signal processing. Related topics such as detection theory, link budget, multiple access techniques, and spread spectrum are also covered.   ·         Illustrates signal processing techniques involved in wireless communication using Matlab ·         Discusses multiple access techniques such as Frequency division multiple access, Time division multiple access, and Code division multiple access ·         Covers band pass modulation techniques such as Binary phase shift keying, Differential phase shift keying, Quadrature phase shift keying, Binary frequency shift keying, Minimum shift keying, and Gaussian minimum shift keying.

  17. Full-duplex wireless communications systems self-interference cancellation

    CERN Document Server

    Le-Ngoc, Tho

    2017-01-01

    This book introduces the development of self-interference (SI)-cancellation techniques for full-duplex wireless communication systems. The authors rely on estimation theory and signal processing to develop SI-cancellation algorithms by generating an estimate of the received SI and subtracting it from the received signal. The authors also cover two new SI-cancellation methods using the new concept of active signal injection (ASI) for full-duplex MIMO-OFDM systems. The ASI approach adds an appropriate cancelling signal to each transmitted signal such that the combined signals from transmit antennas attenuate the SI at the receive antennas. The authors illustrate that the SI-pre-cancelling signal does not affect the data-bearing signal. This book is for researchers and professionals working in wireless communications and engineers willing to understand the challenges of deploying full-duplex and practical solutions to implement a full-duplex system. Advanced-level students in electrical engineering and computer ...

  18. A Review on Radio-Over-Fiber Technology-Based Integrated (Optical/Wireless) Networks

    Science.gov (United States)

    Rajpal, Shivika; Goyal, Rakesh

    2017-06-01

    In the present paper, radio-over-fiber (RoF) technology has been proposed, which is the integration of the optical and radio networks. With a high transmission capacity, comparatively low cost and low attenuation, optical fiber provides an ideal solution for accomplishing the interconnections. In addition, a radio system enables the significant mobility, flexibility and easy access. Therefore, the system integration can meet the increasing demands of subscribers for voice, data and multimedia services that require the access network to support high data rates at any time and any place inexpensively. RoF has the potentiality to the backbone of the wireless access network and it has gained significant momentum in the last decade as a potential last-mile access scheme. This paper gives the comprehensive review of RoF technology used in the communication system. Concept, applications, advantages and limitations of RoF technology are also discussed in this paper.

  19. 75 FR 6704 - In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital...

    Science.gov (United States)

    2010-02-10

    ... States after importation of certain mobile telephones and wireless communication devices featuring... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-663] In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital Cameras, and Components Thereof; Notice of...

  20. 75 FR 65654 - In the Matter of: Certain Mobile Telephones and Wireless Communication Devices Featuring Digital...

    Science.gov (United States)

    2010-10-26

    ... States after importation of certain mobile telephones and wireless communication devices featuring... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-703] In the Matter of: Certain Mobile Telephones and Wireless Communication Devices Featuring Digital Cameras, and Components Thereof;Notice of...

  1. A scalable and continuous-upgradable optical wireless and wired convergent access network.

    Science.gov (United States)

    Sung, J Y; Cheng, K T; Chow, C W; Yeh, C H; Pan, C-L

    2014-06-02

    In this work, a scalable and continuous upgradable convergent optical access network is proposed. By using a multi-wavelength coherent comb source and a programmable waveshaper at the central office (CO), optical millimeter-wave (mm-wave) signals of different frequencies (from baseband to > 100 GHz) can be generated. Hence, it provides a scalable and continuous upgradable solution for end-user who needs 60 GHz wireless services now and > 100 GHz wireless services in the future. During the upgrade, user only needs to upgrade their optical networking unit (ONU). A programmable waveshaper is used to select the suitable optical tones with wavelength separation equals to the desired mm-wave frequency; while the CO remains intact. The centralized characteristics of the proposed system can easily add any new service and end-user. The centralized control of the wavelength makes the system more stable. Wired data rate of 17.45 Gb/s and w-band wireless data rate up to 3.36 Gb/s were demonstrated after transmission over 40 km of single-mode fiber (SMF).

  2. Distributed wireless quantum communication networks

    International Nuclear Information System (INIS)

    Yu Xu-Tao; Xu Jin; Zhang Zai-Chen

    2013-01-01

    The distributed wireless quantum communication network (DWQCN) has a distributed network topology and transmits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum teleportation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entanglement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay. (general)

  3. RFID-over-Fiber system for agricultural exploitations - Wireless track and trace with range extension using optical fiber

    DEFF Research Database (Denmark)

    Madsen, Peter; Suhr, Lau Frejstrup; Cavalcante, Lucas Costa Pereira

    2015-01-01

    This paper proposes and demonstrates an RFIDover-Fiber wireless track and trace system using active RFID tags and operating over distances up to 30 km of optical fiber and 35 meters of wireless readability......This paper proposes and demonstrates an RFIDover-Fiber wireless track and trace system using active RFID tags and operating over distances up to 30 km of optical fiber and 35 meters of wireless readability...

  4. 75 FR 8112 - In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital...

    Science.gov (United States)

    2010-02-23

    ... importation of certain mobile telephones and wireless communication devices featuring digital cameras, and... importation of certain mobile telephones or wireless communication devices featuring digital cameras, or... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-703] In the Matter of Certain Mobile Telephones...

  5. On Radio over Fiber for Heterogeneous Wireless Networks

    DEFF Research Database (Denmark)

    Riaz, M. Tahir; Nielsen, Rasmus Hjorth; Pedersen, Jens Myrup

    2009-01-01

    The paper provides an overview of the radio over fiber (RoF) technology and its potential use in heterogeneous wireless networks. Wireless communications have seen a huge growth in the last decade. It has been estimated that five in every six people in the entire world will have a mobile phone...... in 2010. The vast growing use of Internet on the mobile devices has also been increased significantly. In order to provide a broadband access for mobile communications, a new wireless infrastructure (fiber optic networks for distributed, extendible heterogeneous radio architectures and service...... provisioning - FUTON) based on RoF technology has been introduced. The project adopts centralized processing of radio signals for number of wireless base stations can enhance the network performance in terms of bandwidth, and QoS parameters. The simplified remote access units (RAU) are expected to not only...

  6. Advanced relay technologies in next generation wireless communications

    CERN Document Server

    Krikidis, Ioannis

    2016-01-01

    This book details the use of the cooperative networks/relaying approach in new and emerging telecommunications technologies such as full-duplex radio, massive multiple-input multiple-output (MIMO), network coding and spatial modulation, and new application areas including visible light communications (VLC), wireless power transfer, and 5G.

  7. Review of Key Technologies of 5G Wireless Communication System

    Directory of Open Access Journals (Sweden)

    Shi Sha

    2015-01-01

    Full Text Available The 5th generation mobile communication system (5G is oriented towards a new generation of mobile communication system to the year of 2020 and beyond, and its development is still at the exploratory stage. Combining the latest trends in mobile communication development at home and abroad, in this article, we describe the key technologies of driving the 5G research direction. Furthermore, the technical innovation of 5G comes from both wireless and network technologies. In the field of wireless technologies, massive multiple-input multiple-output (MIMO, ultra-wideband spectral, ultra-dense heterogeneous networks, have already become the focus of global industry. In the field of network technologies, a new network architecture based on software-defined networking (SDN becomes the prevailing view worldwide. Additionally, there are some other potential technologies for 5G, such as NOMA, FBMC, mm Waves, and Multi-carrier technology aggregation.

  8. Realization of Timed Reliable Communication over Off-The-Shelf Wireless Technologies

    DEFF Research Database (Denmark)

    Malinowsky, B.; Groenbaek, Jesper; Schwefel, Hans-Peter

    2013-01-01

    Industrial and safety-critical applications pose strict requirements for timeliness and reliability for the communication solution. Thereby the use of off-the-shelf (OTS) wireless communication technologies can be attractive to achieve low cost and easy deployment. This paper presents and analyse...

  9. Cooperative Wireless Communications and Physical Layer Security : State of the Art

    DEFF Research Database (Denmark)

    Rohokale, Vandana M.; Prasad, Neeli R.; Prasad, Ramjee

    2012-01-01

    in the mobile equipment is not feasible due to resource constraints. Cooperative wireless communication (CWC) is the upcoming virtual MIMO technique to combat fading and achieve diversity through user cooperation. Physical layer security (PLS) is the imminent security guarantee for the cooperative communication....

  10. Reliability Improved Cooperative Communication over Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhuangbin Chen

    2017-10-01

    Full Text Available With the development of smart devices and connection technologies, Wireless Sensor Networks (WSNs are becoming increasingly intelligent. New or special functions can be obtained by receiving new versions of program codes to upgrade their software systems, forming the so-called smart Internet of Things (IoT. Due to the lossy property of wireless channels, data collection in WSNs still suffers from a long delay, high energy consumption, and many retransmissions. Thanks to wireless software-defined networks (WSDNs, software in sensors can now be updated to help them transmit data cooperatively, thereby achieving more reliable communication. In this paper, a Reliability Improved Cooperative Communication (RICC data collection scheme is proposed to improve the reliability of random-network-coding-based cooperative communications in multi-hop relay WSNs without reducing the network lifetime. In WSNs, sensors in different positions can have different numbers of packets to handle, resulting in the unbalanced energy consumption of the network. In particular, nodes in non-hotspot areas have up to 90% of their original energy remaining when the network dies. To efficiently use the residual energy, in RICC, high data transmission power is adopted in non-hotspot areas to achieve a higher reliability at the cost of large energy consumption, and relatively low transmission power is adopted in hotspot areas to maintain the long network lifetime. Therefore, high reliability and a long network lifetime can be obtained simultaneously. The simulation results show that compared with other scheme, RICC can reduce the end-to-end Message Fail delivering Ratio (MFR by 59.4%–62.8% under the same lifetime with a more balanced energy utilization.

  11. Getting ahead of the curve in wireless communications | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC Research Chair in Wireless Communications Indian Institute of Technology ... of Engineering and Technology, UK, and the Institution of Electronics and ... He has also received a number of best paper awards and is the Area Editor for ...

  12. ICSW2AN : An Inter-vehicle Communication System Using Mobile Access Point over Wireless Wide Area Networks

    Science.gov (United States)

    Byun, Tae-Young

    This paper presents a prototype of inter-vehicle communication system using mobile access point that internetworks wired or wireless LAN and wireless WAN anywhere. Implemented mobile access point can be equipped with various wireless WAN interfaces such as WCDMA and HSDPA. Mobile access point in the IP mechanism has to process connection setup procedure to one wireless WAN. To show the applicability of the mobile access point to inter-vehicle communication, a simplified V2I2V-based car communication system called ICSW2AN is implemented to evaluate major performance metrics by road test. In addition, results of road test for traffic information service are investigated in view of RTT, latency and server processing time. The experimental result indicates that V2I2V-based car communication system sufficiently can provide time-tolerant traffic information to moving vehicles while more than two mobile devices in restricted spaces such as car, train and ship access wireless Internet simultaneously.

  13. Vision communications based on LED array and imaging sensor

    Science.gov (United States)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  14. K-best decoders for 5G+ wireless communication

    CERN Document Server

    Rahman, Mehnaz

    2017-01-01

    This book discusses new, efficient and hardware realizable algorithms that can attain the performance of beyond 5G wireless communication. The authors explain topics gradually, stepping from basic MIMO detection to optimized schemes for both hard and soft domain MIMO detection and also to the feasible VLSI implementation, scalable to any MIMO configuration (including massive MIMO, used in satellite/space communication). The techniques described in this book enable readers to implement real designs, with reduced computational complexity and improved performance.

  15. Design and realization of temperature measurement system based on optical fiber temperature sensor for wireless power transfer

    Science.gov (United States)

    Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen

    2018-02-01

    The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.

  16. Wireless data transmission for high energy physics applications

    Science.gov (United States)

    Dittmeier, Sebastian; Brenner, Richard; Dancila, Dragos; Dehos, Cedric; De Lurgio, Patrick; Djurcic, Zelimir; Drake, Gary; Gonzalez Gimenez, Jose Luis; Gustafsson, Leif; Kim, Do-Won; Locci, Elizabeth; Pfeiffer, Ullrich; Röhrich, Dieter; Rydberg, Anders; Schöning, André; Siligaris, Alexandre; Soltveit, Hans Kristian; Ullaland, Kjetil; Vincent, Pierre; Rodriguez Vazquez, Pedro; Wiedner, Dirk; Yang, Shiming

    2017-08-01

    Silicon tracking detectors operated at high luminosity collider experiments pose a challenge for current and future readout systems regarding bandwidth, radiation, space and power constraints. With the latest developments in wireless communications, wireless readout systems might be an attractive alternative to commonly used wired optical and copper based readout architectures. The WADAPT group (Wireless Allowing Data and Power Transmission) has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.

  17. 12.5 Gb/s multi-channel broadcasting transmission for free-space optical communication based on the optical frequency comb module.

    Science.gov (United States)

    Tan, Jun; Zhao, Zeping; Wang, Yuehui; Zhang, Zhike; Liu, Jianguo; Zhu, Ninghua

    2018-01-22

    A wide-spectrum, ultra-stable optical frequency comb (OFC) module with 100 GHz frequency intervals based on a quantum dot mode locked (QDML) laser is fabricated by our lab, and a scheme with 12.5 Gb/s multi-channel broadcasting transmission for free-space optical (FSO) communication is proposed based on the OFC module. The output power of the OFC is very stable, with the specially designed circuit and the flatness of the frequency comb over the span of 6 nm, which can be limited to 1.5 dB. Four channel wavelengths are chosen to demonstrate one-to-many channels for FSO communication, like optical wireless broadcast. The outdoor experiment is established to test the bit error rate (BER) and eye diagrams with 12.5 Gb/s on-off keying (OOK). The indoor experiment is used to test the highest traffic rate, which is up to 21 Gb/s for one-hop FSO communication. To the best of our knowledge, this scheme is the first to propose the realization of one-to-many broadcasting transmission for FSO communication based on the OFC module. The advantages of integration, miniaturization, channelization, low power consumption, and unlimited bandwidth of one-to-many broadcasting communication scheme, shows promising results on constructing the future space-air-ground-ocean (SAGO) FSO communication networks.

  18. Wireless communication with implanted medical devices using the conductive properties of the body.

    Science.gov (United States)

    Ferguson, John E; Redish, A David

    2011-07-01

    Many medical devices that are implanted in the body use wires or wireless radiofrequency telemetry to communicate with circuitry outside the body. However, the wires are a common source of surgical complications, including breakage, infection and electrical noise. In addition, radiofrequency telemetry requires large amounts of power and results in low-efficiency transmission through biological tissue. As an alternative, the conductive properties of the body can be used to enable wireless communication with implanted devices. In this article, several methods of intrabody communication are described and compared. In addition to reducing the complications that occur with current implantable medical devices, intrabody communication can enable novel types of miniature devices for research and clinical applications.

  19. Closed-loop multiple antenna aided wireless communications using limited feedback

    OpenAIRE

    Yang, Du

    2010-01-01

    The aim of this thesis is to study the design of closed-loop multiple antenna aided wireless communications relying on limited feedback. Multiple antennas may be employed either/both at the transmitter or/and at the receiver, here the latter periodically feeds back some information about the time-varying wireless channel using a limited number of bits. Furthermore, the transmitter then pre-processes the signals to be transmitted according to the received feedback information. This closed-loop...

  20. Energy efficiency in wireless communication systems

    Science.gov (United States)

    Caffrey, Michael Paul; Palmer, Joseph McRae

    2012-12-11

    Wireless communication systems and methods utilize one or more remote terminals, one or more base terminals, and a communication channel between the remote terminal(s) and base terminal(s). The remote terminal applies a direct sequence spreading code to a data signal at a spreading factor to provide a direct sequence spread spectrum (DSSS) signal. The DSSS signal is transmitted over the communication channel to the base terminal which can be configured to despread the received DSSS signal by a spreading factor matching the spreading factor utilized to spread the data signal. The remote terminal and base terminal can dynamically vary the matching spreading factors to adjust the data rate based on an estimation of operating quality over time between the remote terminal and base terminal such that the amount of data being transmitted is substantially maximized while providing a specified quality of service.

  1. WMSA for wireless communication applications

    Energy Technology Data Exchange (ETDEWEB)

    Vats, Monika; Agarwal, Alok, E-mail: alokagarwal26@yahoo.com; Kumar, Ravindra [Dept. of Electronics & Electrical Engineering, Lingaya’s University Faridabad (India)

    2016-03-09

    Modified rectangular compact microstrip patch antenna having finite ground plane is proposed in this paper. Wideband Microstrip Antenna (WMSA) is achieved by corner cut and inserting air gaps inside the edges of the radiating patch having finite ground plane. The obtained impedance bandwidth for 10 dB return loss for the operating frequency f{sub 0} = 2.09 GHz is 28.7 % (600 MHz), which is very high as compared to the bandwidth obtained for the conventional microstrip antenna. Compactness with wide bandwidth of this antenna is practically useful for the wireless communication systems.

  2. High speed optical wireless data transmission system for particle sensors in high energy physics

    Science.gov (United States)

    Ali, W.; Corsini, R.; Ciaramella, E.; Dell'Orso, R.; Messineo, A.; Palla, F.

    2015-08-01

    High speed optical fiber or copper wire communication systems are frequently deployed for readout data links used in particle physics detectors. Future detector upgrades will need more bandwidth for data transfer, but routing requirements for new cables or optical fiber will be challenging due to space limitations. Optical wireless communication (OWC) can provide high bandwidth connectivity with an advantage of reduced material budget and complexity of cable installation and management. In a collaborative effort, Scuola Superiore Sant'Anna and INFN Pisa are pursuing the development of a free-space optical link that could be installed in a future particle physics detector or upgrade. We describe initial studies of an OWC link using the inner tracker of the Compact Muon Solenoid (CMS) detector as a reference architecture. The results of two experiments are described: the first to verify that the laser source transmission wavelength of 1550 nm will not introduce fake signals in silicon strip sensors while the second was to study the source beam diameter and its tolerance to misalignment. For data rates of 2.5 Gb/s and 10 Gb/s over a 10 cm working distance it was observed that a tolerance limit of ±0.25 mm to ±0.8 mm can be obtained for misaligned systems with source beam diameters of 0.38 mm to 3.5 mm, respectively.

  3. Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation

    Science.gov (United States)

    Huang, Aiping; Tao, Linwei; Niu, Yilong

    2018-04-01

    In this paper, we investigate the performance of underwater wireless optical multiple-input multiple-output communication system combining spatial modulation (SM-UOMIMO) with flag dual amplitude pulse position modulation (FDAPPM). Channel impulse response for coastal and harbor ocean water links are obtained by Monte Carlo (MC) simulation. Moreover, we obtain the closed-form and upper bound average bit error rate (BER) expressions for receiver diversity including optical combining, equal gain combining and selected combining. And a novel adaptive power allocation algorithm (PAA) is proposed to minimize the average BER of SM-UOMIMO system. Our numeric results indicate an excellent match between the analytical results and numerical simulations, which confirms the accuracy of our derived expressions. Furthermore, the results show that adaptive PAA outperforms conventional fixed factor PAA and equal PAA obviously. Multiple-input single-output system with adaptive PAA obtains even better BER performance than MIMO one, at the same time reducing receiver complexity effectively.

  4. Localization and Communication for UWB-based Wireless Sensor Networks

    NARCIS (Netherlands)

    Wang, Y.

    2011-01-01

    The great demand for location-aware wireless sensor networks (WSNs) motivates the research in this thesis. The unique characteristics of WSNs impose numerous challenges on localization and communication. In this thesis, we handle some key challenges and provide affordable solutions. Impulse radio

  5. CMOS front ends for millimeter wave wireless communication systems

    CERN Document Server

    Deferm, Noël

    2015-01-01

    This book focuses on the development of circuit and system design techniques for millimeter wave wireless communication systems above 90GHz and fabricated in nanometer scale CMOS technologies. The authors demonstrate a hands-on methodology that was applied to design six different chips, in order to overcome a variety of design challenges. Behavior of both actives and passives, and how to design them to achieve high performance is discussed in detail. This book serves as a valuable reference for millimeter wave designers, working at both the transistor level and system level.   Discusses advantages and disadvantages of designing wireless mm-wave communication circuits and systems in CMOS; Analyzes the limitations and pitfalls of building mm-wave circuits in CMOS; Includes mm-wave building block and system design techniques and applies these to 6 different CMOS chips; Provides guidelines for building measurement setups to evaluate high-frequency chips.  

  6. Emulation Platform for Cyber Analysis of Wireless Communication Network Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Van Leeuwen, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eldridge, John M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Wireless networking and mobile communications is increasing around the world and in all sectors of our lives. With increasing use, the density and complexity of the systems increase with more base stations and advanced protocols to enable higher data throughputs. The security of data transported over wireless networks must also evolve with the advances in technologies enabling more capable wireless networks. However, means for analysis of the effectiveness of security approaches and implementations used on wireless networks are lacking. More specifically a capability to analyze the lower-layer protocols (i.e., Link and Physical layers) is a major challenge. An analysis approach that incorporates protocol implementations without the need for RF emissions is necessary. In this research paper several emulation tools and custom extensions that enable an analysis platform to perform cyber security analysis of lower layer wireless networks is presented. A use case of a published exploit in the 802.11 (i.e., WiFi) protocol family is provided to demonstrate the effectiveness of the described emulation platform.

  7. Improved Image Encryption for Real-Time Application over Wireless Communication Networks using Hybrid Cryptography Technique

    Directory of Open Access Journals (Sweden)

    Kazeem B. Adedeji

    2016-12-01

    Full Text Available Advances in communication networks have enabled organization to send confidential data such as digital images over wireless networks. However, the broadcast nature of wireless communication channel has made it vulnerable to attack from eavesdroppers. We have developed a hybrid cryptography technique, and we present its application to digital images as a means of improving the security of digital image for transmission over wireless communication networks. The hybrid technique uses a combination of a symmetric (Data Encryption Standard and asymmetric (Rivest Shamir Adleman cryptographic algorithms to secure data to be transmitted between different nodes of a wireless network. Three different image samples of type jpeg, png and jpg were tested using this technique. The results obtained showed that the hybrid system encrypt the images with minimal simulation time, and high throughput. More importantly, there is no relation or information between the original images and their encrypted form, according to Shannon’s definition of perfect security, thereby making the system much more secure.

  8. Radio-over-fibre technology for broadband wireless communication systems

    NARCIS (Netherlands)

    Ng'Oma, A.

    2005-01-01

    Wireless coverage of the end-user domain, be it outdoors or indoors (in-building), is poised to become an essential part of broadband communication networks. In order to offer integrated broadband services (combining voice, data, video, multimedia services, and new value added services), these

  9. Low power radio communication platform for wireless sensor network

    NARCIS (Netherlands)

    Dutta, R.; Bentum, Marinus Jan; van der Zee, Ronan A.R.; Kokkeler, Andre B.J.

    2009-01-01

    Wireless sensor networks are predicted to be the most versatile, popular and useful technology in the near future. A large number of applications are targeted which will hugely benefit from a network of tiny computers with few sensors, radio communication platform, intelligent networking and

  10. Performance Analysis of Rayleigh Fading and Cochannel Interference in Wireless Communication

    National Research Council Canada - National Science Library

    Gao, Chunjun

    2000-01-01

    ...) performance of adaptive arrays for wireless communications over fading channels in the presence of cochannel interference, particularly the case when the number of interference sources exceeds...

  11. Adaptive Space-Time, Processing for High Performance, Robust Military Wireless Communications

    National Research Council Canada - National Science Library

    Haimovich, Alexander

    2000-01-01

    ...: (I) performance of adaptive arrays for wireless communications over fading channels in the presence of cochannel interference particularly the case when the number of interference sources exceeds...

  12. Bidirectional fiber-wireless and fiber-VLLC transmission system based on an OEO-based BLS and a RSOA.

    Science.gov (United States)

    Lu, Hai-Han; Li, Chung-Yi; Lu, Ting-Chien; Wu, Chang-Jen; Chu, Chien-An; Shiva, Ajay; Mochii, Takao

    2016-02-01

    A bidirectional fiber-wireless and fiber-visible-laser-light-communication (VLLC) transmission system based on an optoelectronic oscillator (OEO)-based broadband light source (BLS) and a reflective semiconductor optical amplifier (RSOA) is proposed and experimentally demonstrated. Through an in-depth observation of such bidirectional fiber-wireless and fiber-VLLC transmission systems, good bit error rate performances are obtained over a 40 km single-mode fiber and a 10 m RF/optical wireless transport. Such a bidirectional fiber-wireless and fiber-VLLC transmission system is an attractive option for providing broadband integrated services.

  13. Simultaneous Wireless Power Transfer and Data Communication Using Synchronous Pulse-Controlled Load Modulation.

    Science.gov (United States)

    Mao, Shitong; Wang, Hao; Zhu, Chunbo; Mao, Zhi-Hong; Sun, Mingui

    2017-10-01

    Wireless Power Transfer (WPT) and wireless data communication are both important problems of research with various applications, especially in medicine. However, these two problems are usually studied separately. In this work, we present a joint study of both problems. Most medical electronic devices, such as smart implants, must have both a power supply to allow continuous operation and a communication link to pass information. Traditionally, separate wireless channels for power transfer and communication are utilized, which complicate the system structure, increase power consumption and make device miniaturization difficult. A more effective approach is to use a single wireless link with both functions of delivering power and passing information. We present a design of such a wireless link in which power and data travel in opposite directions. In order to aggressively miniaturize the implant and reduce power consumption, we eliminate the traditional multi-bit Analog-to-Digital Converter (ADC), digital memory and data transmission circuits all together. Instead, we use a pulse stream, which is obtained from the original biological signal, by a sigma-delta converter and an edge detector, to alter the load properties of the WPT channel. The resulting WPT signal is synchronized with the load changes therefore requiring no memory elements to record inter-pulse intervals. We take advantage of the high sensitivity of the resonant WPT to the load change, and the system dynamic response is used to transfer each pulse. The transient time of the WPT system is analyzed using the coupling mode theory (CMT). Our experimental results show that the memoryless approach works well for both power delivery and data transmission, providing a new wireless platform for the design of future miniaturized medical implants.

  14. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  15. A New Closed Form Approximation for BER for Optical Wireless Systems in Weak Atmospheric Turbulence

    Science.gov (United States)

    Kaushik, Rahul; Khandelwal, Vineet; Jain, R. C.

    2018-04-01

    Weak atmospheric turbulence condition in an optical wireless communication (OWC) is captured by log-normal distribution. The analytical evaluation of average bit error rate (BER) of an OWC system under weak turbulence is intractable as it involves the statistical averaging of Gaussian Q-function over log-normal distribution. In this paper, a simple closed form approximation for BER of OWC system under weak turbulence is given. Computation of BER for various modulation schemes is carried out using proposed expression. The results obtained using proposed expression compare favorably with those obtained using Gauss-Hermite quadrature approximation and Monte Carlo Simulations.

  16. Accurate measurement of RF exposure from emerging wireless communication systems

    International Nuclear Information System (INIS)

    Letertre, Thierry; Toffano, Zeno; Monebhurrun, Vikass

    2013-01-01

    Isotropic broadband probes or spectrum analyzers (SAs) may be used for the measurement of rapidly varying electromagnetic fields generated by emerging wireless communication systems. In this paper this problematic is investigated by comparing the responses measured by two different isotropic broadband probes typically used to perform electric field (E-field) evaluations. The broadband probes are submitted to signals with variable duty cycles (DC) and crest factors (CF) either with or without Orthogonal Frequency Division Multiplexing (OFDM) modulation but with the same root-mean-square (RMS) power. The two probes do not provide accurate enough results for deterministic signals such as Worldwide Interoperability for Microwave Access (WIMAX) or Long Term Evolution (LTE) as well as for non-deterministic signals such as Wireless Fidelity (WiFi). The legacy measurement protocols should be adapted to cope for the emerging wireless communication technologies based on the OFDM modulation scheme. This is not easily achieved except when the statistics of the RF emission are well known. In this case the measurement errors are shown to be systematic and a correction factor or calibration can be applied to obtain a good approximation of the total RMS power.

  17. 77 FR 43858 - Certain Mobile Telephones and Wireless Communication Devices Featuring Digital Cameras, and...

    Science.gov (United States)

    2012-07-26

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-703] Certain Mobile Telephones and Wireless Communication Devices Featuring Digital Cameras, and Components Thereof; Determination To Review... importation, and the sale within the United States after importation of certain mobile telephones and wireless...

  18. 78 FR 69018 - Improving the Resiliency of Mobile Wireless Communications Networks; Reliability and Continuity...

    Science.gov (United States)

    2013-11-18

    ... consumers value overall network reliability and quality in selecting mobile wireless service providers, they...-125] Improving the Resiliency of Mobile Wireless Communications Networks; Reliability and Continuity... (Reliability NOI) in 2011 to ``initiate a comprehensive examination of issues regarding the reliability...

  19. In-Pipe Wireless Communication for Underground Sampling and Testing

    NARCIS (Netherlands)

    Nguyen, Nhan D.T.; Le, Duc V.; Meratnia, Nirvana; Havinga, Paul J.M.

    2017-01-01

    In this paper, we present an effective and low- cost wireless communication system for extremely long and narrow pipes that can replay the extant wire system in underground sensor network applications such as soil sampling and testing with the Cone Penetration Test (CPT), the most widely used

  20. Digital Video Imagery and Wireless Communications for Land-Based Reconnaissance Missions

    National Research Council Canada - National Science Library

    Munroe, James

    1999-01-01

    .... This thesis explores, analyzes, and performs a proof-of-concept implementation for a real-time digital video reconnaissance system from forward locations to the rear using wireless communication...

  1. Study on the Effect of Frequency on Conductivity of Underground Strata in Coal Mine Through-the-earth Wireless Communication

    OpenAIRE

    Jinyi TAO; Yuchen ZHANG

    2014-01-01

    The relationship of conductivity and the frequency, which is of decisive significance in through-the-earth wireless communication in coal mine, is closely related to the options of frequency range in coal mine wireless communication. When through-the-earth wireless communication is applied, the electromagnetic waves need to spread in the semi-conductive medium rocks. The main factors affecting the electromagnetic wave propagation in rocks is the rock strata electromagnetic parameters. These p...

  2. Light fidelity (Li-Fi): towards all-optical networking

    Science.gov (United States)

    Tsonev, Dobroslav; Videv, Stefan; Haas, Harald

    2013-12-01

    Motivated by the looming radio frequency (RF) spectrum crisis, this paper aims at demonstrating that optical wireless communication (OWC) has now reached a state where it can demonstrate that it is a viable and matured solution to this fundamental problem. In particular, for indoor communications where most mobile data traffic is consumed, light fidelity (Li-Fi) which is related to visible light communication (VLC) offers many key advantages, and effective solutions to the issues that have been posed in the last decade. This paper discusses all key component technologies required to realize optical cellular communication systems referred to here as optical attocell networks. Optical attocells are the next step in the progression towards ever smaller cells, a progression which is known to be the most significant contributor to the improvements in network spectral efficiencies in RF wireless networks.

  3. Optical Non-Orthogonal Multiple Access for Visible Light Communication

    OpenAIRE

    Marshoud, Hanaa; Muhaidat, Sami; Sofotasios, Paschalis C.; Hussain, Sajjad; Imran, Muhammad Ali; Sharif, Bayan S.

    2017-01-01

    The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards the development of key enabling techniques for the next generation wireless networks. In this respect, visible light communication (VLC) has recently emerged as a new communication paradigm that is capable of providing ubiquitous connectivity by c...

  4. Wireless Communication Into MBB Heliostat Fields

    International Nuclear Information System (INIS)

    Garcia Navajas, G.

    2002-01-01

    Autonomous heliostats fields are a priority objective long time pursued by PSA. Removal of all the electric cables, trenches and related components will really mean an important cosi reduction in civil works and investment for future Solar Thermal Power Plants. Several previous developments have been required before making autonomous-heliostat fields an eventual reality. First, a new local control has been designed to adapt all heliostat components to work on 24Vdc supplied by a photovoltaic panel. Second, a specific radio modem has been designed for wireless Communications. In April 1999, the first autonomous heliostat was started up and main results were reported at the 10 SolarPACES International Symposium. The objective, fixed within the project SIREC fimded with theFEDER European Regional Development Program, has been to scale these concepts to a mini-field to demonstrate the feasibility of the wireless communication and operation with 20 MBB heliostats located at the North side of CRS facilities of PSA. A specific radio modem has been designed for this application thanks to the scientific cooperation agreement between the University of Almeria and CIEMAT. 50% of the heliostat field has been implemented with a commercial radio-modem and the other 50% with specific radio-modems to compare the performance and capabilities. The capacities of both systems will be analysed and the main data obtained from the test campaign carried out, will be showed. (Author) 12 refs

  5. Final report : mobile surveillance and wireless communication systems field operational test. Volume 1, Executive summary

    Science.gov (United States)

    1999-03-01

    This study focused on assessing the application of traffic monitoring and management systems which use transportable surveillance and ramp meter trailers, video image processors, and wireless communications. The mobile surveillance and wireless commu...

  6. LiFi: transforming fibre into wireless

    Science.gov (United States)

    Yin, Liang; Islim, Mohamed Sufyan; Haas, Harald

    2017-01-01

    Light-fidelity (LiFi) uses energy-efficient light-emitting diodes (LEDs) for high-speed wireless communication, and it has a great potential to be integrated with fibre communication for future gigabit networks. However, by making fibre communication wireless, multiuser interference arises. Traditional methods use orthogonal multiple access (OMA) for interference avoidance. In this paper, multiuser interference is exploited with the use of non-orthogonal multiple access (NOMA) relying on successive interference cancellation (SIC). The residual interference due to imperfect SIC in practical scenarios is characterized with a proportional model. Results show that NOMA offers 5 -10 dB gain on the equivalent signal-to-interference-plus-noise ratio (SINR) over OMA. The bit error rate (BER) performance of direct current optical orthogonal frequency division multiplexing (DCO-OFDM) is shown to be significantly improved when SIC is used.

  7. Phase-Modulated Optical Communication Systems

    CERN Document Server

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  8. Performance Comparison Of Triangle Antenna of 60 GHz for 5G Wireless Communication Network

    Directory of Open Access Journals (Sweden)

    Aishah A.S.

    2017-01-01

    Full Text Available In this paper microstrip triangle with slot antenna for 5G wireless communication network are proposed. The microstip triangle antenna is design and operating 60 GHz milimeter-wave frequency band and it's suitable for 5G wireless communication. The substrates are chosen in the design, which are RogerRT5880 with copper thickness 0.035 mm to analyze their effect toward milimeter-wave performance on the designed. The designed and analysis is performed by using CST Microwave Studio. The lowest return loss of the antenna is -24.75dB which is triangle with slot and the maximum gain obtained is 6.82 db at the 59.68GHz for this antenna. The antenna is considering the gain, return loss and size, the microstrip antenna can be a suitable candidate for the 5G wireless application for short range high speed communication.

  9. Propagation channel characterization, parameter estimation, and modeling for wireless communications

    CERN Document Server

    Yin, Xuefeng

    2016-01-01

    Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...

  10. Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    Science.gov (United States)

    Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.

    2005-01-01

    Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.

  11. IO-Link Wireless enhanced factory automation communication for Industry 4.0 applications

    Directory of Open Access Journals (Sweden)

    R. Heynicke

    2018-03-01

    Full Text Available In the context of the Industry 4.0 initiative, Cyber-Physical Production Systems (CPPS or Cyber Manufacturing Systems (CMS can be characterized as advanced networked mechatronic production systems gaining their added value by interaction with the ambient Industrial Internet of Things (IIoT. In this context appropriate communication technologies and standards play a vital role to realize the manifold potential improvements in the production process. One of these standards is IO-Link. In 2016 more than 5 million IO-Link nodes have been produced and delivered, still gaining increasing acceptance for the communication between sensors, actuators and the control level. The steadily increasing demand for more flexibility in automation solutions can be fulfilled using wireless technologies. With the wireless extension for the IO-Link standard, which will be presented in this article, maximum cycle times of 5 ms can be achieved with a probability that this limit will be exceeded to be at maximum one part per billion. Also roaming capabilities, wireless coexistence mechanisms and the possibility to include battery-powered or energy-harvesting sensors with very limited energy resources in the realtime network were defined. For system planning, setup, operation and maintenance, the standard engineering tools of IO-Link can be employed so that the backward compatibility with wired IO-Link solutions can be guaranteed. Interoperability between manufacturers is a key requirement for any communication standard, thus a procedure for IO-Link Wireless testing is also suggested.

  12. Energy neutral and low power wireless communications

    Science.gov (United States)

    Orhan, Oner

    Wireless sensor nodes are typically designed to have low cost and small size. These design objectives impose restrictions on the capacity and efficiency of the transceiver components and energy storage units that can be used. As a result, energy becomes a bottleneck and continuous operation of the sensor network requires frequent battery replacements, increasing the maintenance cost. Energy harvesting and energy efficient transceiver architectures are able to overcome these challenges by collecting energy from the environment and utilizing the energy in an intelligent manner. However, due to the nature of the ambient energy sources, the amount of useful energy that can be harvested is limited and unreliable. Consequently, optimal management of the harvested energy and design of low power transceivers pose new challenges for wireless network design and operation. The first part of this dissertation is on energy neutral wireless networking, where optimal transmission schemes under different system setups and objectives are investigated. First, throughput maximization for energy harvesting two-hop networks with decode-and-forward half-duplex relays is studied. For a system with two parallel relays, various combinations of the following four transmission modes are considered: Broadcast from the source, multi-access from the relays, and successive relaying phases I and II. Next, the energy cost of the processing circuitry as well as the transmission energy are taken into account for communication over a broadband fading channel powered by an energy harvesting transmitter. Under this setup, throughput maximization, energy maximization, and transmission completion time minimization problems are studied. Finally, source and channel coding for an energy-limited wireless sensor node is investigated under various energy constraints including energy harvesting, processing and sampling costs. For each objective, optimal transmission policies are formulated as the solutions of a

  13. Cyber Security Evaluation of the Wireless Communication for the Mobile Safeguard Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, S.; Kim, Y.S.; Ye, S.H.

    2015-01-01

    This paper introduces cyber security evaluation results and a design of the wireless communication technology to apply to safeguard systems in nuclear power plants. While wireless communication technologies can generally make mobility and efficiency on plant operation, those have seldom been installed on the nuclear I&C systems due to the negative concern of unexpected outcomes that stem from electromagnetic interference and cyber attack. New design of advanced digital safeguard and I&C systems uses computer-based systems for the safeguard and safety functions. On the other hand, those are being exposed to various types of new and existing cyber threats, vulnerabilities and risks which significantly increase the likelihood that those could be compromised. In order to employ the wireless communication technology in safeguard function, licencees assess and manage the potential for adverse effects on safeguard and safety functions so as to provide high assurance that critical functions are properly protected cyber attack. It is expected that the safeguard function, specifically on the area of real-time monitoring, logging, can be enhanced by employing the mobile safeguard devices (: smart phone, laptop, smart pad, etc). In this paper, we deal with the cyber security evaluation, which consists of threat analysis, vulnerability test, establishment of security plan, and design solutions for the wireless communication on the basis of IEEE 802.11(Wi-Fi) protocol. Proposed evaluation and design solution could be a basis for the design of wireless communication and mobile safeguard systems in nuclear power plants. (author)

  14. The development of display device for radioactive information using wireless communication

    International Nuclear Information System (INIS)

    Kim, Jung Taek; Park, Won Man; Lee, Bong Jae; Lim, Yoo Chung

    1998-06-01

    The improvement in the nuclear industry makes that it is important to protect personnel and equipment form radiation, because they have many chance to treat radioactive material. The head office on a prevention and an emergency measure for a radioactive release is necessary. In this study, display device for radioactive information using wireless communication has been developed to display a radioactivity using radio frequency modem. Therefore, the unlocated head office can be operated in a portable environment using a notebook PC or a compact display device. Korea Atomic Energy Research Institute, which runs a research reactor, HANARO, needs the head office on a prevention and an emergency measure for a radioactive release. The display device for radioactive information using wireless communication to be developed in this study, can be used to the head office as a display device not to pay additional cost. This study has developed the display device for radioactive information using wireless communication, Remote Radiation Display System(RRDS), which transmits every 10 second a radioactive information to be displayed to RMT(Radiation Monitoring Terminal) of Radiation Monitoring System in HANARO. In this study, first, a configuration of hardware and software in HANARO RMS has been reviewed. Second, a RS-2322C serial communication program to transmit a radioactive information in HARARO RMS to RRDS using radio frequency modem has been developed. Finally, a RS-2322C serial communication program to receive a radioactive information in HANARO RMS from RRDS using radio frequency modem and GUI program to display the received information to RRDS has been developed. (author). 19 refs., 3 tabs., 25 figs

  15. Low Power Consumption Wireless Sensor Communication System Integrated with an Energy Harvesting Power Source

    OpenAIRE

    Vlad MARSIC; Alessandro GIULIANO; Meiling ZHU

    2013-01-01

    This paper presents the testing results of a wireless sensor communication system with low power consumption integrated with an energy harvesting power source. The experiments focus on the system’s capability to perform continuous monitoring and to wirelessly transmit the data acquired from the sensors to a user base station, for realization of completely battery-free wireless sensor system. Energy harvesting technologies together with system design optimization for power consumption minimiza...

  16. 30-Gb/s bidirectional transparent optical transmission with an MMF access and an indoor optical wireless link

    NARCIS (Netherlands)

    Chen, H.; Boom, van den H.P.A.; Tangdiongga, E.; Koonen, A.M.J.

    2012-01-01

    This letter describes a 30-Gb/s bidirectional transparent optical transmission, over a 4.4-km multimode fiber (MMF) in combination with an indoor optical wireless (OW) link, which could provide limited mobility. Due to MMF's advantages, such as lower installation costs and easy maintenance, it is

  17. Progress on the Development of Future Airport Surface Wireless Communications Network

    Science.gov (United States)

    Kerczewski, Robert J.; Budinger, James M.; Brooks, David E.; Franklin, Morgan; DeHart, Steve; Dimond, Robert P.; Borden, Michael

    2009-01-01

    Continuing advances in airport surface management and improvements in airport surface safety are required to enable future growth in air traffic throughout the airspace, as airport arrival and departure delays create a major system bottleneck. These airport management and safety advances will be built upon improved communications, navigation, surveillance, and weather sensing, creating an information environment supporting system automation. The efficient movement of the digital data generated from these systems requires an underlying communications network infrastructure to connect data sources with the intended users with the required quality of service. Current airport surface communications consists primarily of buried copper or fiber cable. Safety related communications with mobile airport surface assets occurs over 25 kHz VHF voice and data channels. The available VHF spectrum, already congested in many areas, will be insufficient to support future data traffic requirements. Therefore, a broadband wireless airport surface communications network is considered a requirement for the future airport component of the air transportation system. Progress has been made on defining the technology and frequency spectrum for the airport surface wireless communications network. The development of a test and demonstration facility and the definition of required testing and standards development are now underway. This paper will review the progress and planned future work.

  18. Wireless and wireline service convergence in next generation optical access networks - the FP7 WISCON project

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Pang, Xiaodan; Lebedev, Alexander

    2014-01-01

    The next generation of information technology demands both high capacity and mobility for applications such as high speed wireless access capable of supporting broadband services. The transport of wireless and wireline signals is converging into a common telecommunication infrastructure....... In this paper, we will present the Marie Curie Framework Program 7 project “Wireless and wireline service convergence in next generation optical access networks” (WISCON), which focuses on the conception and study of novel architectures for wavelength-division-multiplexing (WDM) optical multi-modulation format...

  19. Low-SNR Capacity of Parallel IM-DD Optical Wireless Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    The capacity of parallel intensity-modulation and direct-detection (IM-DD) optical wireless channels with total average intensity and per-channel peak intensity constraints is studied. The optimal intensity allocation at low signal-to-noise ratio

  20. Study on Communication Mode of Wireless Sensor Networks Based on Effective Result

    International Nuclear Information System (INIS)

    Shi, J F; Zhong, X X; Chen, S

    2006-01-01

    The key challenge in wireless sensor networks is maximizing network lifetime. It will significantly reduce energy consumption of communication and prolong networks lifetime to choose appropriate communication mode. In this paper, energy model and communication topology are proposed, and then from the viewpoint of effective result, expression for communication energy cost of single sensor node and overall system in different communication mode is derived, impact that sensor nodes amount, communication radius and propagation loss exponent pose on communication mode based on simulations is analyzed, and the justification for choosing communication mode is summarized

  1. Load balancing in integrated optical wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars; Wong, S-W.

    2010-01-01

    In this paper, we tackle the load balancing problem in Integrated Optical Wireless Networks, where cell breathing technique is used to solve congestion by changing the coverage area of a fully loaded cell tower. Our objective is to design a load balancing mechanism which works closely...... with the integrated control scheme so as to maximize overall network throughput in the integrated network architecture. To the best of our knowledge no load balancing mechanisms, especially based on the Multi-Point Control Protocol (MPCP) defined in the IEEE 802.3ah, have been proposed so far. The major research...... issues are outlined and a cost function based optimization model is developed for power management. In particularly, two alternative feedback schemes are proposed to report wireless network status. Simulation results show that our proposed load balancing mechanism improves network performances....

  2. 15 Gbit/s indoor optical wireless systems employing fast adaptation and imaging reception in a realistic environment

    Science.gov (United States)

    Alsaadi, Fuad E.

    2016-03-01

    Optical wireless systems are promising candidates for next-generation indoor communication networks. Optical wireless technology offers freedom from spectrum regulations and, compared to current radio-frequency networks, higher data rates and increased security. This paper presents a fast adaptation method for multibeam angle and delay adaptation systems and a new spot-diffusing geometry, and also considers restrictions needed for complying with eye safety regulations. The fast adaptation algorithm reduces the computational load required to reconfigure the transmitter in the case of transmitter and/or receiver mobility. The beam clustering approach enables the transmitter to assign power to spots within the pixel's field of view (FOV) and increases the number of such spots. Thus, if the power per spot is restricted to comply with eye safety standards, the new approach, in which more spots are visible within the FOV of the pixel, leads to enhanced signal-to-noise ratio (SNR). Simulation results demonstrate that the techniques proposed in this paper lead to SNR improvements that enable reliable operation at data rates as high as 15 Gbit/s. These results are based on simulation and not on actual measurements or experiments.

  3. Radio-frequency transparent demodulation for broadband hybrid wireless-optical links

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Alemany, Ruben

    2010-01-01

    A novel demodulation technique which is transparent to radio-frequency (RF) carrier frequency is presented and experimentally demonstrated for multigigabit wireless signals. The presented demodulation technique employs optical single-sideband filtering, coherent detection, and baseband digital si...

  4. Indoor Airborne Ultrasonic Wireless Communication Using OFDM Methods.

    Science.gov (United States)

    Jiang, Wentao; Wright, William M D

    2017-09-01

    Concerns still exist over the safety of prolonged exposure to radio frequency (RF) wireless transmissions and there are also potential data security issues due to remote signal interception techniques such as Bluesniping. Airborne ultrasound may be used as an alternative to RF for indoor wireless communication systems for securely transmitting data over short ranges, as signals are difficult to intercept from outside the room. Two types of air-coupled capacitive ultrasonic transducer were used in the implementation of an indoor airborne wireless communication system. One was a commercially available SensComp series 600 ultrasonic transducer with a nominal frequency of 50 kHz, and the other was a prototype transducer with a high- k dielectric layer operating at higher frequencies from 200 to 400 kHz. Binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), and quadrature amplitude modulation (QAM)-based orthogonal frequency division multiplexing modulation methods were successfully implemented using multiple orthogonal subchannels. The modulated ultrasonic signal packets were synchronized using a wireless link, and a least-squares channel estimation algorithm was used to compensate the phase and amplitude distortion introduced by the air channel. By sending and receiving the ultrasonic signals using the SensComp transducers, the achieved maximum system data rate was up to 180 kb/s using 16-QAM with ultrasonic channels from 55 to 99 kHz, over a line-of-sight transmission distance of 6 m with no detectable errors. The transmission range could be extended to 9 and 11 m using QPSK and BPSK modulation schemes, respectively. The achieved data rates for the QPSK and BPSK schemes were 90 and 45 kb/s using the same bandwidth. For the high- k ultrasonic transducers, a maximum data rate up to 800 kb/s with no measurable errors was achieved up to a range of 0.7 m. The attainable transmission ranges were increased to 1.1 and 1.2 m with data rates of 400 and 200 kb

  5. A Trace-Driven Analysis of Wireless Group Communication Mechanisms

    Directory of Open Access Journals (Sweden)

    Surendar Chandra

    2012-08-01

    Full Text Available Wireless access is increasingly ubiquitous while mobile devices that use them are resource rich. These trends allow wireless users to collaborate with each other. We investigate various group communication paradigms that underly collaboration applications. We synthesize durations when members collaborate using wireless device availability traces. Wireless users operate from a variety of locations. Hence, we analyzed the behavior of wireless users in universities, corporations, conference venues, and city-wide hotspots. We show that the availability durations are longer in corporations followed by university and then in hotspots. The number of simultaneously available wireless users is small in all the scenarios. The session lengths are becoming smaller while the durations between sessions are becoming larger. We observed user churn in all the scenarios. We show that synchronous mechanisms require less effort to maintain update synchronicity among the group members. However, distributed mechanisms require a large number of replicas in order to propagate updates among the users. For asynchronous mechanisms, we show that pull-based mechanisms naturally randomize the times when updates are propagated and thus achieve better performance than push based mechanisms.We develop an adaptive approach that customizes the update frequency using the last session duration and show that this mechanism exhibits good performance when the required update frequency intervals are large. We also show that for a given number of gossips, it is preferable to propagate updates to all available nodes rather than increasing the frequency while correspondingly reducing the number of nodes to propagate updates.We develop a middleware to illustrate the practicality of our approach.

  6. Receiver Front-End Circuits for Future Generations of Wireless Communications

    NARCIS (Netherlands)

    Sanduleanu, M.A.T.; Vidojkovic - Andjelovic, M.; Vidojkovic, V.; Roermund, van A.H.M.; Tasic, A.

    2007-01-01

    In this paper, new receiver concepts and CMOS circuits for future wireless communications standards are introduced. Tradeoffs between technology, performance and circuit choices of the RF front-end circuits are discussed. In particular, power consumption, noise figure and linearity trade-offs in

  7. PPM-based relay communication schemes for wireless body area networks

    NARCIS (Netherlands)

    Zhang, P.; Willems, F.M.J.; Huang, Li

    2012-01-01

    This paper investigates cooperative communication schemes based on a single relay with pulse-position modulation (PPM) signaling, for enhancing energy efficiency of wireless body area networks (WBANs) in noncoherent channel settings. We explore cooperation between the source and the relay such that

  8. Communication techniques and challenges for wireless food quality monitoring.

    Science.gov (United States)

    Jedermann, Reiner; Pötsch, Thomas; Lloyd, Chanaka

    2014-06-13

    Remote measurement of product core temperature is an important prerequisite to improve the cool chain of food products and reduce losses. This paper examines and shows possible solutions to technical challenges that still hinder practical applications of wireless sensor networks in the field of food transport supervision. The high signal attenuation by water-containing products limits the communication range to less than 0.5 m for the commonly used 2.4 GHz radio chips. By theoretical analysis of the dependency of signal attenuation on the operating frequency, we show that the signal attenuation can be largely reduced by the use of 433 MHz or 866 MHz devices, but forwarding of messages over multiple hops inside a sensor network is mostly unavoidable to guarantee full coverage of a packed container. Communication protocols have to provide compatibility with widely accepted standards for integration into the global Internet, which has been achieved by programming an implementation of the constrained application protocol for wireless sensor nodes and integrating into IPv6-based networks. The sensor's battery lifetime can be extended by optimizing communication protocols and by in-network pre-processing of the sensor data. The feasibility of remote freight supervision was demonstrated by our full-scale 'Intelligent Container' prototype.

  9. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Tubel

    2003-10-14

    The fourth quarter of the project was dedicated to the manufacturing of the mechanical system for wireless communications and the power generation module and inspection pre assembly of the mechanical components. Another emphasis for the quarter was the development of filter control and signal detection software. The tasks accomplished during this report period were: (1) Dimensional issues were resolved and revised drawings for manufacturing of the wireless communications gauge and power generator were completed and sent to a machine shop for manufacturing. (2) Finalized the requirements and fittings and connections for testing the tool in the Halliburton flow loop. (3) The new acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly will be outsourced for plastic coating in preparation for hostile environment use. (4) The acoustic two-way communications development continued to progress. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the acoustic generator assembly was manufactured and was successfully tested. Spring mandrel design showed increased acoustic output on the pipe and was implemented. (6) PCBA board carrier with board set was tested for function and fit and is 100% complete. (7) Filter control software is complete and software to allow modification of communication parameters dynamically is 50% complete. (8) All mechanical parts to assemble the wireless gauge and power generator have been received and verified to be within specification. (9) Acoustic generator has been assembled in the tool mandrel and tested successfully. (10) The circuit required to harvest the power generated downhole has been designed and the power generator

  10. Design Criteria for Wireless Mesh Communications in Underground Coal Mines

    OpenAIRE

    Griffin, Kenneth Reed

    2009-01-01

    The Mine Improvement and New Emergency Response (MINER) Act of 2006 was enacted in response to several coal mining accidents that occurred in the beginning of 2006. The MINER Act does not just require underground mines to integrate wireless communication and tracking systems, but aims to overall enhance health and safety in mining at both surface and underground operations. In 2006, the underground communication technologies available to the mining industry had inherent problems that limited ...

  11. The SafeCOP ECSEL Project: Safe Cooperating Cyber-Physical Systems Using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Hansson, Hans

    2016-01-01

    This paper presents an overview of the ECSEL project entitled "Safe Cooperating Cyber-Physical Systems using Wireless Communication" (SafeCOP), which runs during the period 2016 -- 2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...... detection of abnormal behaviour, triggering if needed a safe degraded mode. SafeCOP will also develop methods and tools, which will be used to produce safety assurance evidence needed to certify cooperative functions. SafeCOP will extend current wireless technologies to ensure safe and secure cooperation...

  12. Implementation of Wireless Communications Systems on FPGA-Based Platforms

    Directory of Open Access Journals (Sweden)

    Voros NS

    2007-01-01

    Full Text Available Wireless communications are a very popular application domain. The efficient implementation of their components (access points and mobile terminals/network interface cards in terms of hardware cost and design time is of great importance. This paper describes the design and implementation of the HIPERLAN/2 WLAN system on a platform including general purpose microprocessors and FPGAs. Detailed implementation results (performance, code size, and FPGA resources utilization are presented. The main goal of the design case presented is to provide insight into the design aspects of a complex system based on FPGAs. The results prove that an implementation based on microprocessors and FPGAs is adequate for the access point part of the system where the expected volumes are rather small. At the same time, such an implementation serves as a prototyping of an integrated implementation (System-on-Chip, which is necessary for the mobile terminals of a HIPERLAN/2 system. Finally, firmware upgrades were developed allowing the implementation of an outdoor wireless communication system on the same platform.

  13. Novel Reduced-Feedback Wireless Communication Systems

    KAUST Repository

    Shaqfeh, Mohammad Obaidah; Alnuweiri, Hussein; Alouini, Mohamed-Slim

    2011-01-01

    We have recently contributed to this field and published several journal and conference papers. We are the pioneers to propose a novel reduced-feedback opportunistic scheduling scheme that combines many desired features including fairness in resources distribution across the active terminals and distributed processing at the MAC layer level. In addition our scheme operates close to the upper capacity limits of achievable transmission rates over wireless links. We have also proposed another hybrid scheme that enables adjusting the feedback load flexibly based on rates requirements. We are currently investigating other novel ideas to design reduced-feedback communication systems.

  14. A Novel Optical Sensor Platform Designed for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Yang, Shuo; Zhou, Bochao; Sun, Tong; Grattan, Kenneth T V

    2013-01-01

    This paper presents a novel design of an optical sensor platform, enabling effective integration of a number of optical fibre ('wired') sensors with wireless sensor networks (WSNs). In this work, a fibre Bragg grating-based temperature sensor with low power consumption is specially designed as a sensing module and integrated successfully into a WSN, making full use of the advantages arising from both the advanced optical sensor designs and the powerful network functionalities resident in WSNs. The platform is expected to make an important impact on many applications, where either the conventional optical sensor designs or WSNs alone cannot meet the requirements.

  15. IP communication optimization for 6LoWPAN-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Li MA

    2014-07-01

    Full Text Available The emergence of 6LoWPAN makes it possible that Wireless Sensor Networks access to the Internet. However, the cost of IP communication between 6LoWPAN wireless sensor node and external internet node is still relatively high. This paper proposed a new addressing configuration and compression scheme in 6LoWPAN network called IPHC-NAT, which largely reduced the proportion of the IP header in 6LoWPAN packet, designed and constructed a bidirectional data transmission gateway to connect 6LoWPAN wireless sensor node with IPv6 client. The experimental results show the feasibility of the design of IPHC-NAT and the data transmission efficiency has significantly been improved compared to the original 6LoWPAN network.

  16. Multiple Timescale Energy Scheduling for Wireless Communication with Energy Harvesting Devices

    Directory of Open Access Journals (Sweden)

    H. Xiao

    2012-09-01

    Full Text Available The primary challenge in wireless communication with energy harvesting devices is to efficiently utilize the harvesting energy such that the data packet transmission could be supported. This challenge stems from not only QoS requirement imposed by the wireless communication application, but also the energy harvesting dynamics and the limited battery capacity. Traditional solar predictable energy harvesting models are perturbed by prediction errors, which could deteriorate the energy management algorithms based on this models. To cope with these issues, we first propose in this paper a non-homogenous Markov chain model based on experimental data, which can accurately describe the solar energy harvesting process in contrast to traditional predictable energy models. Due to different timescale between the energy harvesting process and the wireless data transmission process, we propose a general framework of multiple timescale Markov decision process (MMDP model to formulate the joint energy scheduling and transmission control problem under different timescales. We then derive the optimal control policies via a joint dynamic programming and value iteration approach. Extensive simulations are carried out to study the performances of the proposed schemes.

  17. Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks.

    Science.gov (United States)

    Ghani, Anwar; Naqvi, Husnain; Sher, Muhammad; Khan, Muazzam Ali; Khan, Imran; Irshad, Azeem

    2016-01-01

    Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network's life time.

  18. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    Science.gov (United States)

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  19. Installation of secure, always available wireless LAN systems as a component of the hospital communication infrastructure.

    Science.gov (United States)

    Hanada, Eisuke; Kudou, Takato; Tsumoto, Shusaku

    2013-06-01

    Wireless technologies as part of the data communication infrastructure of modern hospitals are being rapidly introduced. Even though there are concerns about problems associated with wireless communication security, the demand is remarkably large. In addition, insuring that the network is always available is important. Herein, we discuss security countermeasures and points to insure availability that must be taken to insure safe hospital/business use of wireless LAN systems, referring to the procedures introduced at Shimane University Hospital. Security countermeasures differ according to their purpose, such as for preventing illegal use or insuring availability, both of which are discussed. It is our hope that this information will assist others in their efforts to insure safe implementation of wireless LAN systems, especially in hospitals where they have the potential to greatly improve information sharing and patient safety.

  20. Wireless Sensor Network Based Smart Grid Communications: Cyber Attacks, Intrusion Detection System and Topology Control

    Directory of Open Access Journals (Sweden)

    Lipi Chhaya

    2017-01-01

    Full Text Available The existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Wireless sensor networks (WSNs are small micro electrical mechanical systems that are deployed to collect and communicate the data from surroundings. WSNs can be used for monitoring and control of smart grid assets. Security of wireless sensor based communication network is a major concern for researchers and developers. The limited processing capabilities of wireless sensor networks make them more vulnerable to cyber-attacks. The countermeasures against cyber-attacks must be less complex with an ability to offer confidentiality, data readiness and integrity. The address oriented design and development approach for usual communication network requires a paradigm shift to design data oriented WSN architecture. WSN security is an inevitable part of smart grid cyber security. This paper is expected to serve as a comprehensive assessment and analysis of communication standards, cyber security issues and solutions for WSN based smart grid infrastructure.

  1. Power Analysis of an Enterprise Wireless Communication Architecture

    Science.gov (United States)

    2017-09-01

    command and control, C2, Internet of Things , IoT, model based systems engineering, MBSE, marine air-ground task force, MAGTF, command control and...Electronics Engineers InTop Integrated Topside IPS Instructions per Second IoT Internet of Things JTNC Joint Tactical Networking Center L-RTac...wireless communications in the military increases the amount of energy needed for missions. The Internet of Things (IoT) movement (Thomas, McPherson, and

  2. A low-cost, portable optical sensing system with wireless communication compatible of real-time and remote detection of dissolved ammonia

    Science.gov (United States)

    Deng, Shijie; Doherty, William; McAuliffe, Michael AP; Salaj-Kosla, Urszula; Lewis, Liam; Huyet, Guillaume

    2016-06-01

    A low-cost and portable optical chemical sensor based ammonia sensing system that is capable of detecting dissolved ammonia up to 5 ppm is presented. In the system, an optical chemical sensor is designed and fabricated for sensing dissolved ammonia concentrations. The sensor uses eosin as the fluorescence dye which is immobilized on the glass substrate by a gas-permeable protection layer. A compact module is developed to hold the optical components, and a battery powered micro-controller system is designed to read out and process the data measured. The system operates without the requirement of laboratory instruments that makes it cost effective and highly portable. Moreover, the calculated results in the system can be transmitted to a PC wirelessly, which allows the remote and real-time monitoring of dissolved ammonia.

  3. Wireless communication capability of a reconfigurable plasma antenna

    International Nuclear Information System (INIS)

    Kumar, Rajneesh; Bora, Dhiraj

    2011-01-01

    A 30 cm long plasma column is excited by a surface wave, which acts as a plasma antenna. Using plasma properties (pattern formation/striations in plasmas) single plasma antenna can be transformed into array, helical, and spiral plasma antenna. Experiments are carried out to study the power patterns, directivity, and half power beam width of such different plasma antennas. Moreover, field properties of plasma and copper antenna are studied. Further, wireless communication and jamming capability of plasma antenna are tested. Findings of this study suggest that directivity and communication range can be increased by converting single plasma antenna in to array/helical/spiral plasma antenna. Field frequencies of plasma antenna determine the communication and jamming of radio frequency waves. Therefore, this study invokes applications of pattern formation or striations of plasmas in plasma antenna technology.

  4. Experimental and simulation analysis of the W-band SC-FDMA hybrid optical-wireless transmission

    DEFF Research Database (Denmark)

    Dogadaev, Anton Konstantinovich; Pang, Xiaodan; Deng, Lei

    2014-01-01

    We report on the experimental demonstration of the W-band hybrid optical-wireless SC-FDMA with 1.49 Gbit/s transmission over up to 2.3 m of air propagation. Provided simulation performance analysis proves a potential to reach 12.1 Gbit/s.......We report on the experimental demonstration of the W-band hybrid optical-wireless SC-FDMA with 1.49 Gbit/s transmission over up to 2.3 m of air propagation. Provided simulation performance analysis proves a potential to reach 12.1 Gbit/s....

  5. An improved broadband E patch microstrip antenna for wireless communications

    Science.gov (United States)

    Bzeih, Amer; Chahine, Soubhi Abou; Kabalan, Karim Y.; El-Hajj, Ali; Chehab, Ali

    2007-12-01

    A broadband probe-fed microstrip antenna with E-shaped patch on a single-layer air substrate is investigated. Bandwidth enhancement of the antenna is achieved by inserting two parallel slots into its radiating patch. The effects of the antenna parameters are analyzed, and their optimal values for broadband operation are obtained. The design parameters are formulated as a function of the center frequency, and the empirical equations are validated by simulation. A 51.5% enhanced E patch antenna for modern wireless communications (Personal Communications Service, Digital Cellular System, Universal Mobile Telecommunications System, Wireless Local Area Network 802.11 b/g, and Bluetooth) is designed, simulated, fabricated, and measured. A comparison between simulated and measured results is presented, and it showed satisfactory agreement. Moreover, the effect of incorporating more parallel slots into the radiating patch is investigated. The antenna is designed and simulated for different scenarios (four slots, six slots, and eight slots), where a bandwidth of 57% is achieved in the eight-slot design.

  6. Enabling MEMS technologies for communications systems

    Science.gov (United States)

    Lubecke, Victor M.; Barber, Bradley P.; Arney, Susanne

    2001-11-01

    Modern communications demands have been steadily growing not only in size, but sophistication. Phone calls over copper wires have evolved into high definition video conferencing over optical fibers, and wireless internet browsing. The technology used to meet these demands is under constant pressure to provide increased capacity, speed, and efficiency, all with reduced size and cost. Various MEMS technologies have shown great promise for meeting these challenges by extending the performance of conventional circuitry and introducing radical new systems approaches. A variety of strategic MEMS structures including various cost-effective free-space optics and high-Q RF components are described, along with related practical implementation issues. These components are rapidly becoming essential for enabling the development of progressive new communications systems technologies including all-optical networks, and low cost multi-system wireless terminals and basestations.

  7. Study on the Effect of Frequency on Conductivity of Underground Strata in Coal Mine Through-the-earth Wireless Communication

    Directory of Open Access Journals (Sweden)

    Jinyi TAO

    2014-09-01

    Full Text Available The relationship of conductivity and the frequency, which is of decisive significance in through-the-earth wireless communication in coal mine, is closely related to the options of frequency range in coal mine wireless communication. When through-the-earth wireless communication is applied, the electromagnetic waves need to spread in the semi-conductive medium rocks. The main factors affecting the electromagnetic wave propagation in rocks is the rock strata electromagnetic parameters. These parameters are magnetic permeability m (H/m, dielectric constant e (F/m and electrical conductivity s (S/m. In these parameters, electrical conductivity is not constant. Under the influence of various factors, it will be great changes. This paper, for the specific circumstances of coal mine rock, discuses and conduct dada mining the effect frequency on the electrical conductivity of underground rock in coal mine with through-the-earth wireless communication.

  8. Convergence of photonics and electronics for Terahertz wireless communications – the ITN CELTA project

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2016-01-01

    Terahertz wireless communications is expected to offer the required high capacity and low latency performance required from short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: convergence of...... of electronics and photonics technologies enabling Terahertz applications...

  9. Advanced digital optical communications

    CERN Document Server

    Binh, Le Nguyen

    2015-01-01

    This book provides a fundamental understanding of digital communication applications in optical communication technologies. Emphasizing operation principles versus mathematical analysis, the Second Edition includes new coverage of superchannel optical transmission systems, metropolitan and long-haul optical systems and networks, and Nyquist pulse shaping and high spectral efficiency of optical transmission systems, as well as new homework problems and examples. Featuring theoretical foundations as well as practical case studies, the text focuses on enhancements to digital technologies that are

  10. Wireless and photonic high-speed communication technologies, circuits and design tools

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Jiang, Chenhui

    2009-01-01

    were reported. These communication systems present new challenges for circuit designers. The presentation will be devoted to technologies and various aspects of circuit design for 100 G applications. We will present overview on wired and wireless systems demonstrating the challenges of this research...... including design challenges, relevant trade-offs and the present bottlenecks. Different system architectures will be presented with their impact on component requirements. Similarities and differences of wired and wireless applications will be pointed out. Design methodologies, necessary tools and circuit...... are fundamental to emerging consumer and professional applications. These systems start to emerge as near future applications and are subject of ongoing research activities in Europe, for example within the EU FP6 GIBON project. Wireless systems with over 100 GHz carriers as well as first over 100-G fibre systems...

  11. Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach

    Science.gov (United States)

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732

  12. Cooperative MIMO communication at wireless sensor network: an error correcting code approach.

    Science.gov (United States)

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.

  13. High-rate wireless data communications: An underwater acoustic communications framework at the physical layer

    Directory of Open Access Journals (Sweden)

    Bessios Anthony G.

    1996-01-01

    Full Text Available A variety of signal processing functions are performed by Underwater Acoustic Systems. These include: 1 detection to determine presence or absence of information signals in the presence of noise, or an attempt to describe which of a predetermined finite set of possible messages { m i , i , ... , M } the signal represents; 2 estimation of some parameter θ ˆ associated with the received signal (i.e. range, depth, bearing angle, etc.; 3 classification and source identification; 4 dynamics tracking; 5 navigation (collision avoidance and terminal guidance; 6 countermeasures; and 7 communications. The focus of this paper is acoustic communications. There is a global current need to develop reliable wireless digital communications for the underwater environment, with sufficient performance and efficiency to substitute for costly wired systems. One possible goal is a wireless system implementation that insures underwater terminal mobility. There is also a vital need to improve the performance of the existing systems in terms of data-rate, noise immunity, operational range, and power consumption, since, in practice, portable high-speed, long range, compact, low-power systems are desired. We concede the difficulties associated with acoustic systems and concentrate on the development of robust data transmission methods anticipating the eventual need for real time or near real time video transmission. An overview of the various detection techniques and the general statistical digital communication problem is given based on a statistical decision theory framework. The theoretical formulation of the underwater acoustic data communications problem includes modeling of the stochastic channel to incorporate a variety of impairments and environmental uncertainties, and proposal of new compensation strategies for an efficient and robust receiver design.

  14. Digital Communication Devices Based on Nonlinear Dynamics and Chaos

    National Research Council Canada - National Science Library

    Larson, Lawrence

    2003-01-01

    The final report of the ARO MURI "Digital Communications Based on Chaos and Nonlinear Dynamics" contains research results in the areas of chaos and nonlinear dynamics applied to wireless and optical communications...

  15. Converged wireline and wireless signal distribution in optical fiber access networks

    DEFF Research Database (Denmark)

    Prince, Kamau

    This thesis presents results obtained during the course of my doctoral studies into the transport of fixed and wireless signaling over a converged otpical access infrastructure. In the formulation, development and assessment of a converged paradigma for multiple-services delivery via optical access...... networking infrastructure, I have demonstrated increased functionalities with existing optical technologies and commercially available optoelectronic devices. I have developed novel systems for extending the range of optical access systems, and have demonstrated the repurposing of standard digital devices...

  16. On the average capacity and bit error probability of wireless communication systems

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2011-01-01

    Analysis of the average binary error probabilities and average capacity of wireless communications systems over generalized fading channels have been considered separately in the past. This paper introduces a novel moment generating function

  17. Seamless Translation of Optical Fiber PolMux-OFDM into a 2x2 MIMO Wireless Transmission Enabled by Digital Training-Based Fiber-Wireless Channel Estimation

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Zhao, Ying; Deng, Lei

    2011-01-01

    We propose and demonstrate a 2 × 2 multiple-input multiple-output (MIMO) wireless over fiber transmission system. Seamless translation of two orthogonal frequency division multiplexing (OFDM) signals on dual optical polarization states into wireless MIMO transmission at 795.5 Mbit/s net data rate...

  18. Fibre-optic communications

    CERN Document Server

    Lecoy, Pierre

    2010-01-01

    This book describes in a comprehensive manner the components and systems of fiber optic communications and networks. The first section explains the theory of multimode and single-mode fibers, then the technological features, including manufacturing, cabling, and connecting. The second section describes the various components (passive and active optical components, integrated optics, opto-electronic transmitters and receivers, and optical amplifiers) used in fiber optic systems. Finally, the optical transmission system design is explained, and applications to optical networks and fiber optic se

  19. Spectrum Scarcity and Free Space Optical Communications

    KAUST Repository

    Alouini, Mohamed-Slim

    2014-01-01

    Exact and asymptotic studies of the average error probability of wireless communication systems over generalized fading channels have been extensively pursued over the last two decades. In contrast, studies and results dealing with the channel

  20. Compact antennas for wireless communications and terminals theory and design

    CERN Document Server

    Laheurte, Jean-Marc

    2012-01-01

    Compact Antennas for Wireless Communications and Terminals deals with compact microwave antennas and, more specifically, with the planar version of these antennas. Planar antennas are the most appropriate type of antenna in modern communication systems and more generally in all applications requiring miniaturization, integration and conformation such as in mobile phone handsets.The book is suitable for students, engineers and scientists eager to understand the principles of planar and small antennas, their design and fabrication issues, and modern aspects such as UWB antennas, recon

  1. On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels

    KAUST Repository

    Park, Kihong

    2013-04-01

    In this paper, we consider resource allocation method in the visible light communication. It is challenging to achieve high data rate due to the limited bandwidth of the optical sources. In order to increase the spectral efficiency, we design a suitable multiple-input multiple-output (MIMO) system utilizing spatial multiplexing based on singular value decomposition and adaptive modulation. More specifically, after explaining why the conventional allocation method in radio frequency MIMO channels cannot be applied directly to the optical intensity channels, we theoretically derive a power allocation method for an arbitrary number of transmit and receive antennas for optical wireless MIMO systems. Based on three key constraints: the nonnegativity of the intensity-modulated signal, the aggregate optical power budget, and the bit error rate requirement, we propose a novel method to allocate the optical power, the offset value, and the modulation size. Based on some selected simulation results, we show that our proposed allocation method gives a better spectral efficiency at the expense of an increased computational complexity in comparison to a simple method that allocates the optical power equally among all the data streams. © 2013 IEEE.

  2. On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels

    KAUST Repository

    Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim

    2013-01-01

    In this paper, we consider resource allocation method in the visible light communication. It is challenging to achieve high data rate due to the limited bandwidth of the optical sources. In order to increase the spectral efficiency, we design a suitable multiple-input multiple-output (MIMO) system utilizing spatial multiplexing based on singular value decomposition and adaptive modulation. More specifically, after explaining why the conventional allocation method in radio frequency MIMO channels cannot be applied directly to the optical intensity channels, we theoretically derive a power allocation method for an arbitrary number of transmit and receive antennas for optical wireless MIMO systems. Based on three key constraints: the nonnegativity of the intensity-modulated signal, the aggregate optical power budget, and the bit error rate requirement, we propose a novel method to allocate the optical power, the offset value, and the modulation size. Based on some selected simulation results, we show that our proposed allocation method gives a better spectral efficiency at the expense of an increased computational complexity in comparison to a simple method that allocates the optical power equally among all the data streams. © 2013 IEEE.

  3. Novel method for water vapour monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2010-09-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good correlation with surface station humidity measurements (comparisons were performed for several links, found at different locations, during different time periods, showing correlations in the range of 0.5-0.9).

  4. Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme.

    Science.gov (United States)

    Lu, Hai-Han; Li, Chung-Yi; Chen, Hwan-Wei; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Yang, Zih-Yi; Lin, Xin-Yao

    2016-07-25

    A bidirectional fiber-wireless and fiber-invisible laser light communication (IVLLC) integrated system that employs polarization-orthogonal modulation scheme for hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and demonstrated. To our knowledge, it is the first one that adopts a polarization-orthogonal modulation scheme in a bidirectional fiber-wireless and fiber-IVLLC integrated system with hybrid CATV/MW/MMW/BB signal. For downlink transmission, carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) perform well over 40-km single-mode fiber (SMF) and 10-m RF/50-m optical wireless transport scenarios. For uplink transmission, good BER performance is obtained over 40-km SMF and 50-m optical wireless transport scenario. Such a bidirectional fiber-wireless and fiber-IVLLC integrated system for hybrid CATV/MW/MMW/BB signal transmission will be an attractive alternative for providing broadband integrated services, including CATV, Internet, and telecommunication services. It is shown to be a prominent one to present the advancements for the convergence of fiber backbone and RF/optical wireless feeder.

  5. Selection of bi-level image compression method for reduction of communication energy in wireless visual sensor networks

    Science.gov (United States)

    Khursheed, Khursheed; Imran, Muhammad; Ahmad, Naeem; O'Nils, Mattias

    2012-06-01

    Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board computation unit, communication component and energy source. Compared to the traditional wireless sensor network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on two dimensional data (images) which requires higher processing power and communication bandwidth. Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be effective in reducing communication cost in WVSN. In this paper, we have compared the compression efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the compression algorithms which can efficiently compress bi-level images and their computational complexity is suitable for computational platform used in WVSNs. These results can be used as a road map for selection of compression methods for different sets of constraints in WVSN.

  6. Optical Switching for Dynamic Distribution of Wireless-over-Fiber Signals

    DEFF Research Database (Denmark)

    Rodes Lopez, Guillermo Arturo; Vegas Olmos, Juan José; Karinou, Fotini

    2012-01-01

    In this paper, we report on an experimental validation of dynamic distribution of wireless-over-fiber by employing optical switching using semiconductor optical amplifiers; the rest of the network was designed according to the channel distribution over the optical spectra required by the optical...... switch. An experimental validation was also conducted. The experiment consists of a four wavelength division multiplexed (WDM) channel system operating on a WiMax frequency band, and employing an orthogonal frequency-division multiplexing (OFDM) modulation at 625 Mbit/s per channel, transmission...... of the data over 20 km of optical fiber, and active switching in a one-by-sixteen active optical switch. The results show a negligible power penalty on each channel, for both the best and the worst case in terms of inter-channel crosstalk....

  7. Confidence Intervals Verification for Simulated Error Rate Performance of Wireless Communication System

    KAUST Repository

    Smadi, Mahmoud A.; Ghaeb, Jasim A.; Jazzar, Saleh; Saraereh, Omar A.

    2012-01-01

    In this paper, we derived an efficient simulation method to evaluate the error rate of wireless communication system. Coherent binary phase-shift keying system is considered with imperfect channel phase recovery. The results presented demonstrate

  8. End-to-end Configuration of Wireless Realtime Communication over Heterogeneous Protocols

    DEFF Research Database (Denmark)

    Malinowsky, B.; Grønbæk, Jesper; Schwefel, Hans-Peter

    2015-01-01

    This paper describes a wireless real-time communication system design using two Time Division Multiple Access (TDMA) protocols. Messages are subject to prioritization and queuing. For this interoperation scenario, we show a method for end-to-end configuration of protocols and queue sizes. Such co...

  9. Transceiver optics for interplanetary communications

    Science.gov (United States)

    Roberts, W. T.; Farr, W. H.; Rider, B.; Sampath, D.

    2017-11-01

    In-situ interplanetary science missions constantly push the spacecraft communications systems to support successively higher downlink rates. However, the highly restrictive mass and power constraints placed on interplanetary spacecraft significantly limit the desired bandwidth increases in going forward with current radio frequency (RF) technology. To overcome these limitations, we have evaluated the ability of free-space optical communications systems to make substantial gains in downlink bandwidth, while holding to the mass and power limits allocated to current state-of-the-art Ka-band communications systems. A primary component of such an optical communications system is the optical assembly, comprised of the optical support structure, optical elements, baffles and outer enclosure. We wish to estimate the total mass that such an optical assembly might require, and assess what form it might take. Finally, to ground this generalized study, we should produce a conceptual design, and use that to verify its ability to achieve the required downlink gain, estimate it's specific optical and opto-mechanical requirements, and evaluate the feasibility of producing the assembly.

  10. Convergent optical wired and wireless long-reach access network using high spectral-efficient modulation.

    Science.gov (United States)

    Chow, C W; Lin, Y H

    2012-04-09

    To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.

  11. [Wireless Passive Body Sensor for Temperature Monitoring Using Near Field Communication Technology].

    Science.gov (United States)

    Shi, Bo; Zhang, Li; Zhang, Genxuan; Tsau, Young; Zhang, Sai; Li, Lei

    2017-01-01

    In this study, we designed a wireless body temperature sensor (WBTS) based on near field communication (NFC) technology. Just attaching the WBTS to a mobile phone with NFC function, the real-time body temperature of human subjects can be acquired by an application program without seperate power supply. The WBTS is mainly composed of a digital body temperature probe (d-BTP), a NFC unit and an antenna. The d-BTP acquires and processes body temperature data through a micro control er, and the NFC unit and antenna are used for wireless energy transmission and data communication between the mobile phone and WBTS. UART communication protocol is used in the communication between the d-BTP and NFC unit, and data compression technique is adopted for improving transmission efficiency and decreasing power loss. In tests, the error of WBTS is ±0.1 oC, in range of 32 oC to 42 oC. The WBTS has advantages of high accuracy, low power loss, strong anti-interference ability, dispensation with independent power supply etc., and it can be integrated into wearable apparatuses for temperature monitoring and health management.

  12. A Survey on M2M Systems for mHealth: A Wireless Communications Perspective

    Directory of Open Access Journals (Sweden)

    Elli Kartsakli

    2014-09-01

    Full Text Available In the new era of connectivity, marked by the explosive number of wireless electronic devices and the need for smart and pervasive applications, Machine-to-Machine (M2M communications are an emerging technology that enables the seamless device interconnection without the need of human interaction. The use of M2M technology can bring to life a wide range of mHealth applications, with considerable benefits for both patients and healthcare providers. Many technological challenges have to be met, however, to ensure the widespread adoption of mHealth solutions in the future. In this context, we aim to provide a comprehensive survey on M2M systems for mHealth applications from a wireless communication perspective. An end-to-end holistic approach is adopted, focusing on different communication aspects of the M2M architecture. Hence, we first provide a systematic review ofWireless Body Area Networks (WBANs, which constitute the enabling technology at the patient’s side, and then discuss end-to-end solutions that involve the design and implementation of practical mHealth applications. We close the survey by identifying challenges and open research issues, thus paving the way for future research opportunities.

  13. Reliable and energy-efficient communications for wireless biomedical implant systems.

    Science.gov (United States)

    Ntouni, Georgia D; Lioumpas, Athanasios S; Nikita, Konstantina S

    2014-11-01

    Implant devices are used to measure biological parameters and transmit their results to remote off-body devices. As implants are characterized by strict requirements on size, reliability, and power consumption, applying the concept of cooperative communications to wireless body area networks offers several benefits. In this paper, we aim to minimize the power consumption of the implant device by utilizing on-body wearable devices, while providing the necessary reliability in terms of outage probability and bit error rate. Taking into account realistic power considerations and wireless propagation environments based on the IEEE P802.l5 channel model, an exact theoretical analysis is conducted for evaluating several communication scenarios with respect to the position of the wearable device and the motion of the human body. The derived closed-form expressions are employed toward minimizing the required transmission power, subject to a minimum quality-of-service requirement. In this way, the complexity and power consumption are transferred from the implant device to the on-body relay, which is an efficient approach since they can be easily replaced, in contrast to the in-body implants.

  14. Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas.

    Science.gov (United States)

    Yang, Yuanqing; Li, Qiang; Qiu, Min

    2016-01-19

    Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits.

  15. A Model for QoS - Aware Wireless Communication in Hospitals.

    Science.gov (United States)

    Alavikia, Zahra; Khadivi, Pejman; Hashemi, Masoud Reza

    2012-01-01

    In the recent decade, research regarding wireless applications in electronic health (e-Health) services has been increasing. The main benefits of using wireless technologies in e-Health applications are simple communications, fast delivery of medical information, reducing treatment cost and also reducing the medical workers' error rate. However, using wireless communications in sensitive healthcare environment raises electromagnetic interference (EMI). One of the most effective methods to avoid the EMI problem is power management. To this end, some of methods have been proposed in the literature to reduce EMI effects in health care environments. However, using these methods may result in nonaccurate interference avoidance and also may increase network complexity. To overcome these problems, we introduce two approaches based on per-user location and hospital sectoring for power management in sensitive healthcare environments. Although reducing transmission power could avoid EMI, it causes a number of successful message deliveries to the access point to decrease and, hence, the quality of service requirements cannot be meet. In this paper, we propose the use of relays for decreasing the probability of outage in the aforementioned scenario. Relay placement is the main factor to enjoy the usefulness of relay station benefits in the network and, therefore, we use the genetic algorithm to compute the optimum positions of a fixed number of relays. We have considered delay and maximum blind point coverage as two main criteria in relay station problem. The performance of the proposed method in outage reduction is investigated through simulations.

  16. Final report : mobile surveillance and wireless communication systems field operational test. Volume 2, FOT objectives, organization, system design, results, conclusions, and recommendations

    Science.gov (United States)

    1999-03-01

    The Mobile Surveillance and Wireless Communication Systems Field Operational Test (FOT) evaluated the performance of wireless traffic detection and communications systems in areas where permanent detectors, electrical power, and landline communicatio...

  17. FireFly: reconfigurable optical wireless networking data centers

    Science.gov (United States)

    Kavehrad, Mohsen; Deng, Peng; Gupta, H.; Longtin, J.; Das, S. R.; Sekar, V.

    2017-01-01

    We explore a novel, free-space optics based approach for building data center interconnects. Data centers (DCs) are a critical piece of today's networked applications in both private and public sectors. The key factors that have driven this trend are economies of scale, reduced management costs, better utilization of hardware via statistical multiplexing, and the ability to elastically scale applications in response to changing workload patterns. A robust DC network fabric is fundamental to the success of DCs and to ensure that the network does not become a bottleneck for high-performance applications. In this context, DC network design must satisfy several goals: high performance (e.g., high throughput and low latency), low equipment and management cost, robustness to dynamic traffic patterns, incremental expandability to add new servers or racks, and other practical concerns such as cabling complexity, and power and cooling costs. Current DC network architectures do not seem to provide a satisfactory solution, with respect to the above requirements. In particular, traditional static (wired) networks are either overprovisioned or oversubscribed. Recent works have tried to overcome the above limitations by augmenting a static (wired) "core" with some flexible links (RF-wireless or optical). These augmented architectures show promise, but offer only incremental improvement in performance. Specifically, RFwireless based augmented solutions also offer only limited performance improvement, due to inherent interference and range constraints of RF links. This paper explores an alternative design point—a fully flexible and all-wireless DC interrack network based on free-space optical (FSO) links. We call this FireFly as in; Free-space optical Inter-Rack nEtwork with high FLexibilitY. We will present our designs and tests using various configurations that can help the performance and reliability of the FSO links.

  18. THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band

    DEFF Research Database (Denmark)

    Jia, Shi; Yu, Xianbin; Hu, Hao

    2016-01-01

    forward error correction (HD-FEC) threshold of 3.8e-3 with 7% overhead. In addition, we also successfully demonstrate hybrid photonic wireless transmission of 40 Gbit/s 16-QAM signal at carrier frequencies of 400 GHz and 425 GHz over 30 km standard single mode fiber (SSMF) between the optical baseband...... signal transmitter and the THz wireless transmitter with negligible induced power penalty.......We propose and experimentally demonstrate THz photonic wireless communication systems with 16-QAM modulation in the 375-450 GHz band. The overall throughput reaches as high as 80 Gbit/s by exploiting four THz channels with 5 Gbaud 16-QAM baseband modulation per channel. We create a coherent optical...

  19. Mutual-Information-Based Incremental Relaying Communications for Wireless Biomedical Implant Systems

    Directory of Open Access Journals (Sweden)

    Yangzhe Liao

    2018-02-01

    Full Text Available Network lifetime maximization of wireless biomedical implant systems is one of the major research challenges of wireless body area networks (WBANs. In this paper, a mutual information (MI-based incremental relaying communication protocol is presented where several on-body relay nodes and one coordinator are attached to the clothes of a patient. Firstly, a comprehensive analysis of a system model is investigated in terms of channel path loss, energy consumption, and the outage probability from the network perspective. Secondly, only when the MI value becomes smaller than the predetermined threshold is data transmission allowed. The communication path selection can be either from the implanted sensor to the on-body relay then forwards to the coordinator or from the implanted sensor to the coordinator directly, depending on the communication distance. Moreover, mathematical models of quality of service (QoS metrics are derived along with the related subjective functions. The results show that the MI-based incremental relaying technique achieves better performance in comparison to our previous proposed protocol techniques regarding several selected performance metrics. The outcome of this paper can be applied to intra-body continuous physiological signal monitoring, artificial biofeedback-oriented WBANs, and telemedicine system design.

  20. Use of consumer wireless devices by South Africans with severe communication disability

    OpenAIRE

    Juan Bornman; Diane Nelson Bryen; Enid Moolman; John Morris

    2016-01-01

    Background: Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. Objectives: To describe the nature and frequency with which South African adults with severe communicatio...

  1. Advances in body-centric wireless communication applications and state-of-the-art

    CERN Document Server

    Abbasi, Qammer H; Qaraqe, Khalid; Alomainy, Akram

    2016-01-01

    This book brings together contributions from a multidisciplinary team of researchers in the field of wireless and mobile communications, signal processing and medical measurements, to present the underlying theory, implementation challenges and applications of this exciting new technology.

  2. Challenge Study: A Project-Based Learning on a Wireless Communication System at Technical High School

    Science.gov (United States)

    Terasawa, Ikuo

    2016-01-01

    The challenge study is a project based learning curriculum at Technical High School aimed at the construction of a wireless communication system. The first period was engineering issues in the construction of an artificial satellite and the second period was a positional locating system based on the general purpose wire-less device--ZigBee device.…

  3. A Hub Matrix Theory and Applications to Wireless Communications

    Directory of Open Access Journals (Sweden)

    Kung HT

    2007-01-01

    Full Text Available This paper considers communications and network systems whose properties are characterized by the gaps of the leading eigenvalues of for a matrix . It is shown that a sufficient and necessary condition for a large eigen-gap is that is a "hub" matrix in the sense that it has dominant columns. Some applications of this hub theory in multiple-input and multiple-output (MIMO wireless systems are presented.

  4. Probabilistic Location-based Routing Protocol for Mobile Wireless Sensor Networks with Intermittent Communication

    Directory of Open Access Journals (Sweden)

    Sho KUMAGAI

    2015-02-01

    Full Text Available In a sensor network, sensor data messages reach the nearest stationary sink node connected to the Internet by wireless multihop transmissions. Recently, various mobile sensors are available due to advances of robotics technologies and communication technologies. A location based message-by-message routing protocol, such as Geographic Distance Routing (GEDIR is suitable for such mobile wireless networks; however, it is required for each mobile wireless sensor node to know the current locations of all its neighbor nodes. On the other hand, various intermittent communication methods for a low power consumption requirement have been proposed for wireless sensor networks. Intermittent Receiver-driven Data Transmission (IRDT is one of the most efficient methods; however, it is difficult to combine the location based routing and the intermittent communication. In order to solve this problem, this paper proposes a probabilistic approach IRDT-GEDIR with the help of one of the solutions of the secretaries problem. Here, each time a neighbor sensor node wakes up from its sleep mode, an intermediate sensor node determines whether it forwards its buffered sensor data messages to it or not based on an estimation of achieved pseudo speed of the messages. Simulation experiments show that IRDT-GEDIR achieves higher pseudo speed of sensor data message transmissions and shorter transmission delay than achieves shorter transmission delay than the two naive combinations of IRDT and GEDIR in sensor networks with mobile sensor nodes and a stationary sink node. In addition, the guideline of the estimated numbers of the neighbor nodes of each intermediate sensor node is provided based on the results of the simulation experiments to apply the probabilistic approach IRDT-GEDIR.

  5. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication

    KAUST Repository

    Sun, Xiaobin

    2018-05-04

    For circumventing the alignment requirement of line-of-sight (LOS) underwater wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen as a figure-of-merit for link performance in this investigation, which considers the effects of geometries, water turbidity, and transmission wavelength. The experiments suggest that path loss decreases with smaller azimuth angles, higher water turbidity, and shorter wavelength due in part to enhanced scattering utilizing 375-nm radiation. We highlighted that it is feasible to extend the current findings for long distance NLOS UWOC link in turbid water, such as harbor water.

  6. A full-duplex CATV/wireless-over-fiber lightwave transmission system.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Ying, Cheng-Ling; Cheng, Chun-Jen; Lin, Che-Yu; Wan, Zhi-Wei; Chen, Jian-Hua

    2015-04-06

    A full-duplex CATV/wireless-over-fiber lightwave transmission system consisting of one broadband light source (BLS), two optical interleavers (ILs), one intensity modulator, and one phase modulator is proposed and experimentally demonstrated. The downstream light is optically promoted from 10Gbps/25GHz microwave (MW) data signal to 10Gbps/100GHz and 10Gbps/50GHz millimeter-wave (MMW) data signals in fiber-wireless convergence, and intensity-modulated with 50-550 MHz CATV signal. For up-link transmission, the downstream light is phase-remodulated with 10Gbps/25GHz MW data signal in fiber-wireless convergence. Over a 40-km single-mode fiber (SMF) and a 10-m radio frequency (RF) wireless transport, bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed to perform well in such full-duplex CATV/wireless-over-fiber lightwave transmission systems. This full-duplex 100-GHz/50-GHz/25-GHz/550-MHz lightwave transmission system is an attractive alternative. This transmission system not only presents its advancement in the integration of fiber backbone and CATV/wireless feeder networks, but also it provides the advantages of a communication channel for higher data rates and bandwidth.

  7. The Wireless ATM Architecture

    Directory of Open Access Journals (Sweden)

    R. Palitefka

    1998-06-01

    Full Text Available An overview of the proposed wireless ATM structure is provided. Wireless communication have been developed to a level where offered services can now be extended beyond voice and data. There are already wireless LANs, cordless systems offering data services and mobile data. Wireless LAN systems are basically planned for local, on-promises and in-house networking providing short distance radio or infrared links between computer system. The main challenge of wireless ATM is to harmonise the development of broadband wireless system with service B -ISDN/ATM and ATM LANs, and offer multimedia multiservice features for the support of time-sensitive voice communication, video, desktop multimedia applications, and LAN data traffic for the wireless user.

  8. Communication on SWIPT and EH Using Electromagnetic Behaviour for Power Allocation in Wireless Networks

    Science.gov (United States)

    Khan, Sohel Rana; Ajij, Sayyad

    2017-12-01

    This review paper focuses on the basic relations between wireless power transfer, wireless information transfer and combined phenomenon of simultaneous wireless information and power transfer. The authors reviewed and discussed electromagnetic fields behaviour (EMB) for enhancing the power allocation strategies (PAS) in energy harvesting (EH) wireless communication systems. Further, this paper presents relations between Friis transmission equation and Maxwell's equations to be used in propagation models for reduction in specific absorption rate (SAR). This paper provides a review of various methods and concepts reported in earlier works. This paper also reviews Poynting vector and power densities along with boundary conditions for antennas and human body. Finally, this paper explores the usage of electromagnetic behaviour for the possible enhancement in power saving methods for electromagnetic behaviour centered-wireless energy harvesting (EMBC-WEH). At the same time, possibilities of PAS for reduction in SAR are discussed.

  9. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    Science.gov (United States)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  10. Optical Switching for Dynamic Distribution of Wireless-Over-Fiber Signals in Active Optical Networks

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Rodes, Guillermo; Tafur Monroy, Idelfonso

    2012-01-01

    In this paper, we report on an experimental validation of dynamic distribution of wireless-over-fiber by employing optical switching using semiconductor optical amplifiers; we also provide a channel distribution scheme and a generic topology for such an optical switch. The experiment consists...... of a four wavelength-division-multiplexed channel system operating on a WiMax frequency band and employing an orthogonal-frequency-division-multiplexing modulation at 625 Mbits/s per channel, transmission of the data over 20 km of optical fiber, and active switching in a 1 × 16 active optical switch....... The results show a negligible power penalty on each channel for both the best and the worst case in terms of inter-channel crosstalk. The presented system is highly scalable both in terms of port count and throughput, a desirable feature in highly branched access networks, and is modulation- and frequency...

  11. Efficient and scalable IPv6 communication functions for wireless outdour lighting networks

    NARCIS (Netherlands)

    Mamo, S.T.

    2014-01-01

    Outdoor lighting today is becoming increasingly network-connected. The rapid development in wireless communication technologies makes this progress faster and competitive. Philips Research and Philips Lighting are part of the leading forces in exploration and development of a wide spectrum of

  12. Improving the physical layer security of wireless communication networks using spread spectrum coding and artificial noise approach

    CSIR Research Space (South Africa)

    Adedeji, K

    2016-09-01

    Full Text Available at the application layer to protect the messages against eavesdropping. However, the evolution of strong deciphering mechanisms has made conventional cryptography-based security techniques ineffective against attacks from an intruder. Figure 1: Layer protocol... communication networks with passive and active eavesdropper,” IEEE Globecom; Wireless Communication System, pp. 4868-4873, 2012. [9] Y. Zou, X. Wang and W. Shen, “Optimal relay selection for physical layer security in cooperative wireless networks,” IEEE...

  13. Atmospheric free-space coherent optical communications with adaptive optics

    Science.gov (United States)

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  14. RF and microwave engineering fundamentals of wireless communications

    CERN Document Server

    Gustrau, Frank

    2012-01-01

    This book provides a fundamental and practical introduction to radio frequency and microwave engineering and physical aspects of wireless communication In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage waves, transmission lines, passive circuits, antennas, radio wave propagation. Up-to-date RF design tools like RF circuit simulation, EM simulation and computerized smith charts, are used in various examples to demonstrate how these methods can be applied effectively in RF engineering

  15. Compact mobile-reader system for two-way wireless communication, tracking and status monitoring for transport safety and security

    Science.gov (United States)

    Tsai, Han-Chung; Liu, Yung Y.; Lee, Hok L.; Craig, Brian; Byrne, Kevin; Mittal, Ketan; Scherer, Justin C.

    2016-12-06

    A system for monitoring a plurality radio frequency identification tags is described. The system uses at least one set of radio frequency identification tags. Each tag is attached to a container and includes several sensors for detecting physical conditions of said container. The system includes at least one autonomous intermediate reader in wireless communication with the frequency identification tags. The intermediate reader includes external wireless communication system, intermediate reader logic controller, and a self-contained rechargeable power supply. The system uses a central status reporting system in communication the intermediate reader.

  16. Full-duplex optical communication system

    Science.gov (United States)

    Shay, Thomas M. (Inventor); Hazzard, David A. (Inventor); Horan, Stephen (Inventor); Payne, Jason A. (Inventor)

    2004-01-01

    A method of full-duplex electromagnetic communication wherein a pair of data modulation formats are selected for the forward and return data links respectively such that the forward data electro-magnetic beam serves as a carrier for the return data. A method of encoding optical information is used wherein right-hand and left-hand circular polarizations are assigned to optical information to represent binary states. An application for an earth to low earth orbit optical communications system is presented which implements the full-duplex communication and circular polarization keying modulation format.

  17. Dynamic spectrum auction in wireless communication

    CERN Document Server

    Chen, Yanjiao

    2015-01-01

    This brief explores current research on dynamic spectrum auctions, focusing on fundamental auction theory, characteristics of the spectrum market, spectrum auction architecture and possible auction mechanisms. The brief explains how dynamic spectrum auctions, which enable new users to gain spectrum access and existing spectrum owners to obtain financial benefits, can greatly improve spectrum efficiency by resolving the artificial spectrum shortage. It examines why operators and users face significant challenges due to specialty of the spectrum market and the related requirements imposed on the auction mechanism design. Concise and up-to-date, Dynamic Spectrum Auction in Wireless Communication is designed for researchers and professionals in computer science or electrical engineering. Students studying networking will also find this brief a valuable resource.

  18. Fiber-FSO/wireless convergent systems based on dual-polarization and one optical sideband transmission schemes

    Science.gov (United States)

    Huang, Xu-Hong; Lu, Hai-Han; Li, Chung-Yi; Wang, Yun-Chieh; Chang, Jen-Chieh; Jheng, Yu-Bo; Tsai, Wen-Shing

    2018-06-01

    A bidirectional fiber-free-space optical (FSO)/wireless convergent system that uses dual-polarization and one optical sideband transmission schemes for hybrid vestigial sideband (VSB)–four-level pulse amplitude modulation (PAM4)/millimeter-wave signal transmission is proposed and demonstrated. Using a dual-polarization scheme, one optical sideband that is modulated by a 56 Gb s‑1 VSB–PAM4 signal (x-polarization) and another optical sideband that is modulated by a 10 Gbps data stream (y-polarization) are separated and polarized orthogonally. One optical sideband modulated by a 10 Gbps data stream (y-polarization) is delivered to efficaciously suppress the dispersion-induced limitation due to a span of 40 km single-mode fiber (SMF) and the distortion due to the beating among multiple sidebands. The proposed bidirectional fiber-FSO/wireless convergent system is a prominent one for providing broadband integrated services, such as the Internet, telecommunication, and 5G mobile networks.

  19. Low Power Consumption Wireless Sensor Communication System Integrated with an Energy Harvesting Power Source

    Directory of Open Access Journals (Sweden)

    Vlad MARSIC

    2013-01-01

    Full Text Available This paper presents the testing results of a wireless sensor communication system with low power consumption integrated with an energy harvesting power source. The experiments focus on the system’s capability to perform continuous monitoring and to wirelessly transmit the data acquired from the sensors to a user base station, for realization of completely battery-free wireless sensor system. Energy harvesting technologies together with system design optimization for power consumption minimization ensure the system’s energy autonomous capability demonstrated in this paper by presenting the promising testing results achieved following its integration with structural health monitoring and body area network applications.

  20. Secure and Authenticated Data Communication in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Omar Alfandi

    2015-08-01

    Full Text Available Securing communications in wireless sensor networks is increasingly important as the diversity of applications increases. However, even today, it is equally important for the measures employed to be energy efficient. For this reason, this publication analyzes the suitability of various cryptographic primitives for use in WSNs according to various criteria and, finally, describes a modular, PKI-based framework for confidential, authenticated, secure communications in which most suitable primitives can be employed. Due to the limited capabilities of common WSN motes, criteria for the selection of primitives are security, power efficiency and memory requirements. The implementation of the framework and the singular components have been tested and benchmarked in our testbed of IRISmotes.

  1. Real-Time Video Transmission Over Different Underwater Wireless Optical Channels Using a Directly Modulated 520  nm Laser Diode

    KAUST Repository

    Al-Halafi, Abdullah; Oubei, Hassan M.; Ooi, Boon S.; Shihada, Basem

    2017-01-01

    We experimentally demonstrate high-quality real-time video streaming over an underwater wireless optical communication (UWOC) link up to 5 m distance using phase-shift keying (PSK) modulation and quadrature amplitude modulation (QAM) schemes. The communication system uses software defined platforms connected to a commercial TO-9 packaged pigtailed 520 nm directly modulated laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter and an avalanche photodiode (APD) module as the receiver. To simulate various underwater channels, we perform laboratory experiments on clear, coastal, harbor I, and harbor II ocean water types. The measured bit error rates of the received video streams are 1.0×10−9 for QPSK, 4-QAM, and 8-QAM and 9.9×10−9 for 8-PSK. We further evaluate the quality of the received live video images using structural similarity and achieve values of about 0.9 for the first three water types, and about 0.7 for harbor II. To the best of our knowledge, these results present the highest quality video streaming ever achieved in UWOC systems that resemble communication channels in real ocean water environments.

  2. Real-Time Video Transmission Over Different Underwater Wireless Optical Channels Using a Directly Modulated 520  nm Laser Diode

    KAUST Repository

    Al-Halafi, Abdullah

    2017-09-13

    We experimentally demonstrate high-quality real-time video streaming over an underwater wireless optical communication (UWOC) link up to 5 m distance using phase-shift keying (PSK) modulation and quadrature amplitude modulation (QAM) schemes. The communication system uses software defined platforms connected to a commercial TO-9 packaged pigtailed 520 nm directly modulated laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter and an avalanche photodiode (APD) module as the receiver. To simulate various underwater channels, we perform laboratory experiments on clear, coastal, harbor I, and harbor II ocean water types. The measured bit error rates of the received video streams are 1.0×10−9 for QPSK, 4-QAM, and 8-QAM and 9.9×10−9 for 8-PSK. We further evaluate the quality of the received live video images using structural similarity and achieve values of about 0.9 for the first three water types, and about 0.7 for harbor II. To the best of our knowledge, these results present the highest quality video streaming ever achieved in UWOC systems that resemble communication channels in real ocean water environments.

  3. Flash floods warning technique based on wireless communication networks data

    Science.gov (United States)

    David, Noam; Alpert, Pinhas; Messer, Hagit

    2010-05-01

    Flash floods can occur throughout or subsequent to rainfall events, particularly in cases where the precipitation is of high-intensity. Unfortunately, each year these floods cause severe property damage and heavy casualties. At present, there are no sufficient real time flash flood warning facilities found to cope with this phenomenon. Here we show the tremendous potential of flash floods advanced warning based on precipitation measurements of commercial microwave links. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. We present the flash flood warning potential of the wireless communication system for two different cases when floods occurred at the Judean desert and at the northern Negev in Israel. In both cases, an advanced warning regarding the hazard could have been announced based on this system. • This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08). This work was also supported by a grant from the Yeshaya Horowitz Association, Jerusalem. Additional support was given by the PROCEMA-BMBF project and by the GLOWA-JR BMBF project.

  4. Polarization division multiple access with polarization modulation for LOS wireless communications

    Directory of Open Access Journals (Sweden)

    Cao Bin

    2011-01-01

    Full Text Available Abstract In this paper, we discuss a potential multiple access and modulation scheme based on polarized states (PS of electromagnetic (EM waves for line-of-sight (LOS communications. The proposed scheme is theoretic different from the existing polar modulation for EDGE and WCDMA systems. We propose the detailed bit representation (modulation and multiple access scheme using PS. Because of the inflexibility of polarization information in the time and frequency domains, as well as independence of frequency and space, the polarization information can be used independently for wireless communications, i.e., another independent resource domain that can be utilized. Due to the independence between the PS and the specific features of signals (such as waveform, bandwidth and data rate, the discussed polarization division multiple access (PDMA and polarization modulation (PM are expected to improve the spectrum utilization effectively. It is proved that the polarization filtering technique can be adopted in the PDMA-PM wireless communications to separate the multiuser signals and demodulate the bit information representing by PS for desired user. Some theoretical analysis is done to demonstrate the feasibility of the proposed scheme, and the simulation results are made to evaluate the performance of the suggested system.

  5. Low power design of wireless endoscopy compression/communication architecture

    Directory of Open Access Journals (Sweden)

    Zitouni Abdelkrim

    2018-05-01

    Full Text Available A wireless endoscopy capsule represents an efficient device interesting on the examination of digestive diseases. Many performance criteria’s (silicon area, dissipated power, image quality, computational time, etc. need to be deeply studied.In this paper, our interest is the optimization of the indicated criteria. The proposed methodology is based on exploring the advantages of the DCT/DWT transforms by combining them into single architecture. For arithmetic operations, the MCLA technique is used. This architecture integrates also a CABAC entropy coder that supports all binarization schemes. AMBA/I2C architecture is developed for assuring optimized communication.The comparisons of the proposed architecture with the most popular methods explained in related works show efficient results in terms dissipated power, hardware cost, and computation speed. Keywords: Wireless endoscopy capsule, DCT/DWT image compression, CABAC entropy coder, AMBA/I2C multi-bus architecture

  6. Doubling transmission capacity in optical wireless system by antenna horizontal- and vertical-polarization multiplexing.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Dong, Ze; Chi, Nan

    2013-06-15

    We experimentally demonstrate 2×56 Gb/s two-channel polarization-division-multiplexing quadrature-phase-shift-keying signal delivery over 80 km single-mode fiber-28 and 2 m Q-band (33-50 GHz) wireless link, adopting antenna horizontal- (H-) and vertical-polarization (V-polarization) multiplexing. At the wireless receiver, classic constant-modulus-algorithm equalization based on digital signal processing can realize polarization demultiplexing and remove the crosstalk at the same antenna polarization. By adopting antenna polarization multiplexing, the signal baud rate and performance requirements for optical and wireless devices can be reduced but at the cost of double antennas and devices, while wireless transmission capacity can also be increased but at the cost of stricter requirements for V-polarization. The isolation is only about 19 dB when V-polarization deviation approaches 10°, which will affect high-speed (>50 Gb/s) wireless delivery.

  7. Low-Power Wireless Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg

    Advancements in wireless communication and electronics improving form factor and hardware capabilities has expanded the applicability of wireless sensor networks. Despite these advancements, devices are still limited in terms of energy which creates the need for duty-cycling and low-power protocols...... peripherals need to by duty-cycled and the low-power wireless radios are severely influenced by the environmental effects causing bursty and unreliable wireless channels. This dissertation presents a communication stack providing services for low-power communication, secure communication, data collection......, and network management which enables construction of low-power wireless sensor network applications. More specifically, these services are designed with the extreme low-power scenarios of the SensoByg project in mind and are implemented as follows. First, low-power communication is implemented with Auto...

  8. Single- and Multiband OFDM Photonic Wireless Links in the 75−110 GHz Band Employing Optical Combs

    DEFF Research Database (Denmark)

    Beltrán, M.; Deng, Lei; Pang, Xiaodan

    2012-01-01

    , allowing the cost and energy efficiency of the system to be increased and supporting different users in the system. Four channels at 9.6 Gb/s/ch in 14.4-GHz bandwidth are generated and transmitted over up to 1.3-m wireless distance. The transmission of a 9.6-Gb/s single-channel signal occupying 3.2-GHz......The photonic generation of electrical orthogonal frequency-division multiplexing (OFDM) modulated wireless signals in the 75−110 GHz band is experimentally demonstrated employing in-phase/quadrature electrooptical modulation and optical heterodyn upconversion. The wireless transmission of 16......-quadrature-amplitude-modulation OFDM signals is demonstrated with a bit error rate performance within the forward error correction limits. Signals of 19.1 Gb/s in 6.3-GHz bandwidth are transmitted over up to 1.3-m wireless distance. Optical comb generation is further employed to support different channels...

  9. Low-SNR Capacity of Parallel IM-DD Optical Wireless Channels

    KAUST Repository

    Chaaban, Anas

    2016-11-29

    The capacity of parallel intensity-modulation and direct-detection (IM-DD) optical wireless channels with total average intensity and per-channel peak intensity constraints is studied. The optimal intensity allocation at low signal-to-noise ratio (SNR) is derived, leading to the capacity-achieving onoff keying (OOK) distribution. Interestingly, while activating the strongest channel is optimal if (i) the peak intensity is fixed, this is not the case if (ii) the peak intensity is proportional to the average intensity. The minimum average optical intensity per bit is also studied, and is characterized for case (i) where it is achievable at low SNR. However, in case (ii), the average optical intensity per bit grows indefinitely as SNR decreases, indicating that lower optical intensity per bit can be achieved at moderate SNR than at low SNR.

  10. OPTICAL COMMUNICATION: Simulation of autosoliton optical pulses in high-speed fibreoptic communication systems

    Science.gov (United States)

    Latkin, A. I.

    2005-03-01

    The propagation of a pulse in a fibreoptic communication link with periodically included regenerators — nonlinear optical loop mirrors, is studied. The autosoliton propagation regime of the optical pulse is revealed. It is shown that the inclusion of a ring mirror to the communication link leads to a substantial increase in the transmission distance of the pulse at a small negative average dispersion in the link.

  11. Miniaturised wireless smart tag for optical chemical analysis applications.

    Science.gov (United States)

    Steinberg, Matthew D; Kassal, Petar; Tkalčec, Biserka; Murković Steinberg, Ivana

    2014-01-01

    A novel miniaturised photometer has been developed as an ultra-portable and mobile analytical chemical instrument. The low-cost photometer presents a paradigm shift in mobile chemical sensor instrumentation because it is built around a contactless smart card format. The photometer tag is based on the radio-frequency identification (RFID) smart card system, which provides short-range wireless data and power transfer between the photometer and a proximal reader, and which allows the reader to also energise the photometer by near field electromagnetic induction. RFID is set to become a key enabling technology of the Internet-of-Things (IoT), hence devices such as the photometer described here will enable numerous mobile, wearable and vanguard chemical sensing applications in the emerging connected world. In the work presented here, we demonstrate the characterisation of a low-power RFID wireless sensor tag with an LED/photodiode-based photometric input. The performance of the wireless photometer has been tested through two different model analytical applications. The first is photometry in solution, where colour intensity as a function of dye concentration was measured. The second is an ion-selective optode system in which potassium ion concentrations were determined by using previously well characterised bulk optode membranes. The analytical performance of the wireless photometer smart tag is clearly demonstrated by these optical absorption-based analytical experiments, with excellent data agreement to a reference laboratory instrument. © 2013 Elsevier B.V. All rights reserved.

  12. Performance evaluation of modulation and multiple access schemes in ultraviolet optical wireless connections for two atmosphere thickness cases.

    Science.gov (United States)

    Raptis, Nikos; Pikasis, Evangelos; Syvridis, Dimitris

    2016-08-01

    The exploitation of optical wireless communication channels in a non-line-of-sight regime is studied for point-to-point and networking configurations considering the use of light-emitting diodes. Two environments with different scattering center densities are considered, assuming operation at 265 nm. The bit error rate performance of both pulsed and multicarrier modulation schemes is examined, using numerical approaches. In the networking scenario, a central node only receives data, one node transmits useful data, and the rest of them act as interferers. The performance of the desirable node's transmissions is evaluated. The access to the medium is controlled by a code division multiple access scheme.

  13. Digital Photonic Receivers for Wireless and Wireline Optical Fiber Transmission Links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil

    services. The experimental demonstration supported the following transmissions systems: a baseband, 5 Gbps, intensity modulation system employing a directly modulated vertical cavity surface emitting laser (VCSEL), a baseband 20 Gbps non-return-to-zero quadrature phase-shift keying (NRZ-QPSK) system...... receivers in hybrid wireless and wireline optical fiber transmission links. Furthermore, the digital signal processing framework presented in this thesis can be extended to design probabilistic-based digital photonic receivers that can find applications in cognitive heterogeneous reconfigurable optical...

  14. 1st International Conference on Intelligent Communication, Control and Devices

    CERN Document Server

    Choudhury, Sushabhan

    2017-01-01

    The book presents high-quality research papers presented at the first international conference, ICICCD 2016, organised by the Department of Electronics, Instrumentation and Control Engineering of University of Petroleum and Energy Studies, Dehradun on 2nd and 3rd April, 2016. The book is broadly divided into three sections: Intelligent Communication, Intelligent Control and Intelligent Devices. The areas covered under these sections are wireless communication and radio technologies, optical communication, communication hardware evolution, machine-to-machine communication networks, routing techniques, network analytics, network applications and services, satellite and space communications, technologies for e-communication, wireless Ad-Hoc and sensor networks, communications and information security, signal processing for communications, communication software, microwave informatics, robotics and automation, optimization techniques and algorithms, intelligent transport, mechatronics system, guidance and navigat...

  15. The Most Possible Scheme of Joint Service Detection for the Next Wireless Communication Technologies

    Directory of Open Access Journals (Sweden)

    Firdaus Firdaus

    2013-03-01

    Full Text Available The era of beyond third generation wireless communication is highly heterogeneous in that it comprises several radio access technologies that need to be joined into a single multimode terminal. In this respect, this paper introduces a common service recognition system for the next wireless communication technologies i.e. Long Term Evolution (LTE, WiMAX or IEEE 802.16, and Wireless Local Area Network (WLAN or IEEE 802.11. It is done in physical layer as one of multimode terminal ability regardless network cooperation existence. We investigated on the preamble and synchronization signals as indicators of the available services instead of carrier frequency detection. To detect these signals, we proposed a time domain detection system consisting of auto-correlation, cross-correlation, and a peak period detection. Based on complexity analysis, this paper proposes the most possible scheme with lower complexity than cross-correlation implementation. Moreover, the fixed point simulation results show that the proposed system satisfies the minimum receiver sensitivity requirements that specified in the standards.

  16. Development of wireless communication system in real-time internal radiation dose measurement system using magnetic field

    International Nuclear Information System (INIS)

    Sato, Fumihiro; Shinohe, Kohta; Takura, Tetsuya; Matsuki, Hidetoshi; Yamada, Syogo; Sato, Tadakuni

    2009-01-01

    In radiation therapy, excessive radiation occurs because the actual delivered dose to the tumor is unknown. To overcome this problem, we need a system in which the delivered dose is measured inside the body, and the dose data are transmitted from the inside to the outside of the body. In this study, a wireless communication system, using magnetic fields was studied, and an internal circuit for obtaining radiation dose data from an x-ray detector was examined. As a result, a communication distance of 200 mm was obtained. An internal circuit was developed, and a signal transmission experiment was performed using the wireless communication system. As a result, the radiation dose data from an x-ray detector was transmitted over a communication distance of 200 mm, and the delivered dose was determined from the received signal

  17. Tantalisingly Close: An Archaeology of Communication Desires in Discourses of Mobile Wireless Media

    NARCIS (Netherlands)

    de Vries, I.O.

    2008-01-01

    While many studies on mobile wireless communication devices predominantly take a micro-scale approach and concentrate their often ethnographically informed focus on use values, social implications, conversation strategies, changing norms and ethics, culture-dependent domestication, and so forth,

  18. Capacity bounds for the 2-user Gaussian IM-DD optical multiple-access channel

    KAUST Repository

    Al-Ebraheemy, Omer M. S.; Chaaban, Anas; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2016-01-01

    Optical wireless communications (OWC) is a potential solution for coping with the mismatch between the users growing demand for higher data-rates and the wireless network capabilities. In this paper, a multi-user OWC scenario is studied from

  19. A Rapid Prototyping Environment for Wireless Communication Embedded Systems

    Directory of Open Access Journals (Sweden)

    Bryan A. Jones

    2003-05-01

    Full Text Available This paper introduces a rapid prototyping methodology which overcomes important barriers in the design and implementation of digital signal processing (DSP algorithms and systems on embedded hardware platforms, such as cellular phones. This paper describes rapid prototyping in terms of a simulation/prototype bridge and in terms of appropriate language design. The simulation/prototype bridge combines the strengths of simulation and of prototyping, allowing the designer to develop and evaluate next-generation communications systems, partly in simulation on a host computer and partly as a prototype on embedded hardware. Appropriate language design allows designers to express a communications system as a block diagram, in which each block represents an algorithm specified by a set of equations. Software tools developed for this paper implement both concepts, and have been successfully used in the development of a next-generation code division multiple access (CDMA cellular wireless communications system.

  20. Communication with diode laser: short distance line of sight communication using fiber optics

    International Nuclear Information System (INIS)

    Mirza, A.H.

    1999-01-01

    The objective of this project is to carry audio signal from transmitting station to a short distance receiving station along line of sight and also communication through fiber optics is performed, using diode laser light as carrier. In this project optical communication system, modulation techniques, basics of laser and causes of using diode laser are discussed briefly. Transmitter circuit and receiver circuit are fully described. Communication was performed using pulse width modulation technique. Optical fiber communication have many advantages over other type of conventional communication techniques. This report contains the description of optical fiber communication and compared with other communication systems. (author)

  1. A Novel Dual Separate Paths (DSP) Algorithm Providing Fault-Tolerant Communication for Wireless Sensor Networks.

    Science.gov (United States)

    Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon

    2017-07-25

    Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.

  2. Communication Optimizations for a Wireless Distributed Prognostic Framework

    Science.gov (United States)

    Saha, Sankalita; Saha, Bhaskar; Goebel, Kai

    2009-01-01

    Distributed architecture for prognostics is an essential step in prognostic research in order to enable feasible real-time system health management. Communication overhead is an important design problem for such systems. In this paper we focus on communication issues faced in the distributed implementation of an important class of algorithms for prognostics - particle filters. In spite of being computation and memory intensive, particle filters lend well to distributed implementation except for one significant step - resampling. We propose new resampling scheme called parameterized resampling that attempts to reduce communication between collaborating nodes in a distributed wireless sensor network. Analysis and comparison with relevant resampling schemes is also presented. A battery health management system is used as a target application. A new resampling scheme for distributed implementation of particle filters has been discussed in this paper. Analysis and comparison of this new scheme with existing resampling schemes in the context for minimizing communication overhead have also been discussed. Our proposed new resampling scheme performs significantly better compared to other schemes by attempting to reduce both the communication message length as well as number total communication messages exchanged while not compromising prediction accuracy and precision. Future work will explore the effects of the new resampling scheme in the overall computational performance of the whole system as well as full implementation of the new schemes on the Sun SPOT devices. Exploring different network architectures for efficient communication is an importance future research direction as well.

  3. Interactive computation of coverage regions for indoor wireless communication

    Science.gov (United States)

    Abbott, A. Lynn; Bhat, Nitin; Rappaport, Theodore S.

    1995-12-01

    This paper describes a system which assists in the strategic placement of rf base stations within buildings. Known as the site modeling tool (SMT), this system allows the user to display graphical floor plans and to select base station transceiver parameters, including location and orientation, interactively. The system then computes and highlights estimated coverage regions for each transceiver, enabling the user to assess the total coverage within the building. For single-floor operation, the user can choose between distance-dependent and partition- dependent path-loss models. Similar path-loss models are also available for the case of multiple floors. This paper describes the method used by the system to estimate coverage for both directional and omnidirectional antennas. The site modeling tool is intended to be simple to use by individuals who are not experts at wireless communication system design, and is expected to be very useful in the specification of indoor wireless systems.

  4. Interactive educational technologies as a method of communicative competency development of optical and fiber optic communication systems specialists

    Science.gov (United States)

    Matveeva, Tatiana U.; Osadchiy, Igor S.; Husnutdinova, Marina N.

    2017-04-01

    The article examines the process of formation of communicative competencies of optic and fiber optic communication systems specialists; the role of communicative competencies is examined in the structure of professionally important skills, together with the contents of professional activity. The stages of empirical research into formation of communicative competencies have been presented, and the values of statistical reliability of data have been provided. The model of formation of communicative competency using interactive technology has been developed based on the research done, and main stages of model implementation and motives of formation of communicative competency have been highlighted. A scheme of "Communicative competence as a base of future success" training session has been suggested as one of the basic interactive technologies. Main components of education that are used during the stages of the training cycle have been examined. The statistical data on the effectiveness of use of interactive educational technologies has been presented; it allowed development of communicative competency of specialists in the field of optical and fiber optic communication system.

  5. Radial transfer of tracking data with wireless links

    CERN Document Server

    Pelikan, Daniel; Brenner, Richard; Dancila, Dragos; Gustafsson, Leif

    2014-01-01

    Wireless data transfer has revolutionized the consumer mar ket for the last decade giving products equipped with transmitters and receiver for wireless data t ransfer. Wireless technology has fea- tures attractive for data transfer in future tracking detec tors. The removal of wires and connectors for data links is certainly beneficial both for the material b udget and the reliability of the system. One other advantage is the freedom of routing signals which t oday is particularly complicated when bringing the data the first 50 cm outside the tracker. Wit h wireless links intelligence can be built into a tracker by introducing communication betwee n tracking layers within a Region Of Interest which would allow the construction of track primit ives in real time. The wireless signal is transmitted by a passive antenna structure which is a radiat ion hard and much less complex object than an optical link. Due to the requirement of high data rate s in detectors a high bandwidth is required. The frequency band aro...

  6. Wireless mesh networks.

    Science.gov (United States)

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  7. Fiber Wireless Transmission of 8.3 Gb/s/ch QPSK-OFDM Signals in 75-110 GHz Band

    DEFF Research Database (Denmark)

    Deng, Lei; Beltrán Ramírez, Marta; Pang, Xiaodan

    2012-01-01

    In this paper, we present a scalable high speed Wband (75-110 GHz) fiber wireless communication system. By using an optical frequency comb generator, 3-channel 8.3 Gb/s/ch optical orthogonal frequency division multiplexing (OOFDM) baseband signals in a 15 GHz bandwidth are seamlessly translated f...

  8. Modified Hermite Pulse-Based Wideband Communication for High-Speed Data Transfer in Wireless Sensor Applications

    Directory of Open Access Journals (Sweden)

    Kushal P. Pradhan

    2017-12-01

    Full Text Available With technological advances in the field of communication, the need for reliable high-speed data transfer is increasing. The deployment of large number of wireless sensors for remote monitoring and control and streaming of high definition video, voice and image data, etc. are imposing a challenge to the existing network bandwidth allocation for reliable communication. Two novel schemes for ultra-wide band (UWB communication technology have been proposed in this paper with the key objective of intensifying the data rate by taking advantage of the orthogonal properties of the modified Hermite pulse (MHP. In the first scheme, a composite pulse is transmitted and in the second scheme, a sequence of multi-order orthogonal pulses is transmitted in the place of a single UWB pulse. The MHP pulses exhibit a mutually orthogonal property between different ordered pulses and due to this property, simultaneous transmission is achieved without collision in the UWB system, resulting in an increase in transmission capacity or improved bit error rate. The proposed schemes for enhanced data rate will offer high volume data monitoring, assessment, and control of wireless devices without overburdening the network bandwidth and pave the way for new platforms for future high-speed wireless sensor applications.

  9. Accuracy Enhancements for Positioning of Mobile Devices in Wireless Communication Networks

    DEFF Research Database (Denmark)

    Figueiras, Joao

    of the physical length of the communication links. Since these solutions do not require integration of additional hardware into the mobile nodes, they are cheap and simple to implement. As a price to pay, accuracy is typically lower in comparison to dedicated positioning systems. Thus, an important challenge...... communication among users, cooperative positioning strategies aim at localizing devices as a group and not as individuals. In order to reach this goal it is necessary to combine measurements from two domains: device-to-device links and cellular links. Since this combination of information......Positioning of mobile devices in wireless communication networks is nowadays being intensively investigated due to the combined benefit of location information and communication. Typical solutions for such scenario rely on robust algorithms that estimate position from indirect measurements...

  10. Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.

    Science.gov (United States)

    Prakash, R; Balaji Ganesh, A; Sivabalan, Somu

    2017-05-01

    The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.

  11. An InP HBT sub-harmonic mixer for E-band wireless communication

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor

    2010-01-01

    This paper reports on a novel balanced HBT subharmonic mixer (SHM) for E-band wireless communication. An LO spiral type Marchand balun is integrated with the SHM. The SHM has been fabricated in a InP double heterojunction bipolar transistor (DHBT) circuit-oriented technology with fT /fmax = 180GHz...

  12. Multiband carrierless amplitude/phase modulation for ultra-wideband high data rate wireless communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Altabas, Jose A.

    2016-01-01

    We report on the first experimental demonstration of carrierless amplitude/phase modulation in a flexible multiband approach for ultrawideband high-data-rate wireless communications. An effective bitrate of 2 GB/s is achieved while complying with the restrictions on the effective radiated power...

  13. On the Effect of Security and Communication Factors in the Reliability of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Damian Rusinek

    2014-03-01

    Full Text Available The ensuring reliability of wireless sensor networks (WSN is one of most important problems to be solved. In this article, the influence of the security and communication factors in the reliability of Wireless Sensor Networks was analyzed. Balancing security against performance in WSN is another issue to be solved. These factors should be considered during security analysis of quality of protection of realized protocol. In the article, we analyze wireless sensor network where hierarchical topologies is implemented with high performance routing sensors that forward big amount of data. We present the experiment results which were performed by high-performance Imote2 sensor platform and TinyOS operating system.

  14. Beaconless Pointing for Deep-Space Optical Communication

    Science.gov (United States)

    Swank, Aaron J.; Aretskin-Hariton, Eliot; Le, Dzu K.; Sands, Obed S.; Wroblewski, Adam

    2016-01-01

    Free space optical communication is of interest to NASA as a complement to existing radio frequency communication methods. The potential for an increase in science data return capability over current radio-frequency communications is the primary objective. Deep space optical communication requires laser beam pointing accuracy on the order of a few microradians. The laser beam pointing approach discussed here operates without the aid of a terrestrial uplink beacon. Precision pointing is obtained from an on-board star tracker in combination with inertial rate sensors and an outgoing beam reference vector. The beaconless optical pointing system presented in this work is the current approach for the Integrated Radio and Optical Communication (iROC) project.

  15. 75 FR 68619 - In the Matter of Certain Wireless Communication Devices, Portable Music and Data Processing...

    Science.gov (United States)

    2010-11-08

    ... Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of... within the United States after importation of certain wireless communication devices, portable music and...''). The complaint further alleges that an industry in the United States exists as required by subsection...

  16. Essentials of modern optical fiber communication

    CERN Document Server

    Noé, Reinhold

    2016-01-01

    This is a concise introduction into optical fiber communication. It covers important aspects from the physics of optical wave propagation and amplification to the essentials of modulation formats and receivers. The combination of a solid coverage of necessary fundamental theory with an in-depth discussion of recent relevant research results enables the reader to design modern optical fiber communication systems. The book serves both graduate students and professionals. It includes many worked examples with solutions for lecturers. For the second edition, Reinhold Noé made many changes and additions throughout the text so that this concise book presents the essentials of optical fiber communication in an easy readable and understandable way.

  17. Reconfigurable Magneto-Electric Dipole Antennas for Base Stations in Modern Wireless Communication Systems

    Directory of Open Access Journals (Sweden)

    Lei Ge

    2018-01-01

    Full Text Available Magneto-electric (ME dipole antennas, with the function of changing the antenna characteristics, such as frequency, polarization, or radiation patterns, are reviewed in this paper. The reconfigurability is achieved by electrically altering the states of diodes or varactors to change the surface currents distributions or reflector size of the antenna. The purpose of the designs is to obtain agile antenna characteristics together with good directive radiation performances, such as low cross-polarization level, high front-to-back ratio, and stable gain. By reconfiguring the antenna capability to support more than one wireless frequency standard, switchable polarizations, or cover tunable areas, the reconfigurable ME dipole antennas are able to switch functionality as the mission changes. Therefore, it can help increase the communication efficiency and reduce the construction cost. This shows very attractive features in base station antennas of modern wireless communication applications.

  18. Optical space communication: An overview

    International Nuclear Information System (INIS)

    Jain, V.K.

    1994-01-01

    In this paper, importance of the optical space communication has been highlighted. Its merits and demerits over the conventional microwave system has been presented. In contrast to coherent systems, use of an optical preamplifier in direct detection system has been emphasized. Status of some of the ongoing/future space communication projects has been given. (author). 9 refs, 5 figs

  19. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.

    Science.gov (United States)

    DeHennis, Andrew; Getzlaff, Stefan; Grice, David; Mailand, Marko

    2016-01-01

    This paper presents an integrated circuit (IC) that merges integrated optical and temperature transducers, optical interface circuitry, and a near-field communication (NFC)-enabled digital, wireless readout for a fully passive implantable sensor platform to measure glucose in people with diabetes. A flip-chip mounted LED and monolithically integrated photodiodes serve as the transduction front-end to enable fluorescence readout. A wide-range programmable transimpedance amplifier adapts the sensor signals to the input of an 11-bit analog-to-digital converter digitizing the measurements. Measurement readout is enabled by means of wireless backscatter modulation to a remote NFC reader. The system is able to resolve current levels of less than 10 pA with a single fluorescent measurement energy consumption of less than 1 μJ. The wireless IC is fabricated in a 0.6-μm-CMOS process and utilizes a 13.56-MHz-based ISO15693 for passive wireless readout through a NFC interface. The IC is utilized as the core interface to a fluorescent, glucose transducer to enable a fully implantable sensor-based continuous glucose monitoring system.

  20. Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks.

    Science.gov (United States)

    Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo

    2014-04-21

    Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.

  1. A Model for QoS – Aware Wireless Communication in Hospitals

    Science.gov (United States)

    Alavikia, Zahra; Khadivi, Pejman; Hashemi, Masoud Reza

    2012-01-01

    In the recent decade, research regarding wireless applications in electronic health (e-Health) services has been increasing. The main benefits of using wireless technologies in e-Health applications are simple communications, fast delivery of medical information, reducing treatment cost and also reducing the medical workers’ error rate. However, using wireless communications in sensitive healthcare environment raises electromagnetic interference (EMI). One of the most effective methods to avoid the EMI problem is power management. To this end, some of methods have been proposed in the literature to reduce EMI effects in health care environments. However, using these methods may result in nonaccurate interference avoidance and also may increase network complexity. To overcome these problems, we introduce two approaches based on per-user location and hospital sectoring for power management in sensitive healthcare environments. Although reducing transmission power could avoid EMI, it causes a number of successful message deliveries to the access point to decrease and, hence, the quality of service requirements cannot be meet. In this paper, we propose the use of relays for decreasing the probability of outage in the aforementioned scenario. Relay placement is the main factor to enjoy the usefulness of relay station benefits in the network and, therefore, we use the genetic algorithm to compute the optimum positions of a fixed number of relays. We have considered delay and maximum blind point coverage as two main criteria in relay station problem. The performance of the proposed method in outage reduction is investigated through simulations. PMID:23493832

  2. Electronic Devices, Methods, and Computer Program Products for Selecting an Antenna Element Based on a Wireless Communication Performance Criterion

    DEFF Research Database (Denmark)

    2014-01-01

    A method of operating an electronic device includes providing a plurality of antenna elements, evaluating a wireless communication performance criterion to obtain a performance evaluation, and assigning a first one of the plurality of antenna elements to a main wireless signal reception...... and transmission path and a second one of the plurality of antenna elements to a diversity wireless signal reception path based on the performance evaluation....

  3. Decentralized Control of Unmanned Aerial Robots for Wireless Airborne Communication Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2010-09-01

    Full Text Available This paper presents a cooperative control strategy for a team of aerial robotic vehicles to establish wireless airborne communication networks between distributed heterogeneous vehicles. Each aerial robot serves as a flying mobile sensor performing a reconfigurable communication relay node which enabls communication networks with static or slow-moving nodes on gorund or ocean. For distributed optimal deployment of the aerial vehicles for communication networks, an adaptive hill-climbing type decentralized control algorithm is developed to seek out local extremum for optimal localization of the vehicles. The sensor networks estabilished by the decentralized cooperative control approach can adopt its configuraiton in response to signal strength as the function of the relative distance between the autonomous aerial robots and distributed sensor nodes in the sensed environment. Simulation studies are conducted to evaluate the effectiveness of the proposed decentralized cooperative control technique for robust communication networks.

  4. A Formal Approach to the Selection by Minimum Error and Pattern Method for Sensor Data Loss Reduction in Unstable Wireless Sensor Network Communications

    OpenAIRE

    Kim, Changhwa; Shin, DongHyun

    2017-01-01

    There are wireless networks in which typically communications are unsafe. Most terrestrial wireless sensor networks belong to this category of networks. Another example of an unsafe communication network is an underwater acoustic sensor network (UWASN). In UWASNs in particular, communication failures occur frequently and the failure durations can range from seconds up to a few hours, days, or even weeks. These communication failures can cause data losses significant enough to seriously damage...

  5. Shed a light of wireless technology on portable mobile design of NIRS

    Science.gov (United States)

    Sun, Yunlong; Li, Ting

    2016-03-01

    Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.

  6. SHER: A Colored Petri Net Based Random Mobility Model for Wireless Communications

    Science.gov (United States)

    Khan, Naeem Akhtar; Ahmad, Farooq; Khan, Sher Afzal

    2015-01-01

    In wireless network research, simulation is the most imperative technique to investigate the network’s behavior and validation. Wireless networks typically consist of mobile hosts; therefore, the degree of validation is influenced by the underlying mobility model, and synthetic models are implemented in simulators because real life traces are not widely available. In wireless communications, mobility is an integral part while the key role of a mobility model is to mimic the real life traveling patterns to study. The performance of routing protocols and mobility management strategies e.g. paging, registration and handoff is highly dependent to the selected mobility model. In this paper, we devise and evaluate the Show Home and Exclusive Regions (SHER), a novel two-dimensional (2-D) Colored Petri net (CPN) based formal random mobility model, which exhibits sociological behavior of a user. The model captures hotspots where a user frequently visits and spends time. Our solution eliminates six key issues of the random mobility models, i.e., sudden stops, memoryless movements, border effect, temporal dependency of velocity, pause time dependency, and speed decay in a single model. The proposed model is able to predict the future location of a mobile user and ultimately improves the performance of wireless communication networks. The model follows a uniform nodal distribution and is a mini simulator, which exhibits interesting mobility patterns. The model is also helpful to those who are not familiar with the formal modeling, and users can extract meaningful information with a single mouse-click. It is noteworthy that capturing dynamic mobility patterns through CPN is the most challenging and virulent activity of the presented research. Statistical and reachability analysis techniques are presented to elucidate and validate the performance of our proposed mobility model. The state space methods allow us to algorithmically derive the system behavior and rectify the

  7. mm-Wave Hybrid Photonic Wireless Links for Ultra-High Speed Wireless Transmissions

    DEFF Research Database (Denmark)

    Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency range are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Large FCC spectrum allocations for wireless transmission...

  8. Capacity bounds for the 2-user Gaussian IM-DD optical multiple-access channel

    KAUST Repository

    Al-Ebraheemy, Omer M. S.

    2016-11-01

    Optical wireless communications (OWC) is a potential solution for coping with the mismatch between the users growing demand for higher data-rates and the wireless network capabilities. In this paper, a multi-user OWC scenario is studied from an in formation-theoretic perspective. The studied network consists of two users communicating simultaneously with one access point using OWC, thus establishing an optical uplink channel. The capacity of this network is an important metric which reflects the highest possible communication rates that can be achieved over this channel. Capacity outer and inner bounds are derived, and are shown to be fairly tight in the high signal-to-noise ratio regime. © 2016 IEEE.

  9. Integration of a prototype wireless communication system with micro-electromechanical temperature and humidity sensor for concrete pavement health monitoring

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2015-12-01

    Full Text Available In recent years, structural health monitoring and management (SHMM has become a popular approach and is considered essential for achieving well-performing, long-lasting, sustainable transportation infrastructure systems. Key requirements in ideal SHMM of road infrastructure include long-term, continuous, and real-time monitoring of pavement response and performance under various pavement geometry-materials-loading configurations and environmental conditions. With advancements in wireless technologies, integration of wireless communications into sensing device is considered an alternate and superior solution to existing time- and labor-intensive wired sensing systems in meeting the requirements of an ideal SHMM. This study explored the development and integration of a wireless communications sub-system into a commercial off-the-shelf micro-electromechanical sensor-based concrete pavement monitoring system. A success-rate test was performed after the wireless transmission system was buried in the concrete slab, and the test results indicated that the system was able to provide reliable communications at a distance of more than 46 m (150 feet. This will be a useful feature for highway engineers performing routine pavement scans from the pavement shoulder without the need for traffic control or road closure.

  10. Communication and Powering Scheme for Wireless and Battery-Less Measurement

    Directory of Open Access Journals (Sweden)

    A. Boura

    2012-04-01

    Full Text Available The paper presents solution for wireless and battery-less measurement in the enclosed areas. The principle is based on passive RFID, nevertheless this paper is focused on high power-demanding applications such as MEMS accelerometers, gas sensors, piezoresistive strain gauges, etc. Standard FRID communication scheme (sensing the input current change on the primary side cannot be used in this case, because the communication channel is overloaded by the high power load. Paper presents possible solution which is based on the dual frequency scheme – one frequency for powering and other for the communication. This is ensuring capability for measurement up to several centimeters on the frequency bands 125 kHz and 375 kHz. It can be suitable for continual measurement in isolated systems such as the rotating objects, concrete walls, enclosed plastic barrels, high temperature chambers etc.

  11. Wireless Powered Cooperative Communications: Power-Splitting Relaying With Energy Accumulation (Author’s Manuscript)

    Science.gov (United States)

    2016-03-21

    decreasing power usage, while improving the transmission performance. A key concern of the energy harvesting enabled coop- erative relay communication is the...improving transmission performance via an efficient utiliza- tion of harvested power has been widely studied for conven- tional energy harvesting techniques...can be used as energy sources for cooperative nodes. Moreover, it has been illustrated in [6] that wireless -powered cooperative relay communications

  12. Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link.

    Science.gov (United States)

    Fang, Yuan; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan

    2014-01-27

    We experimentally demonstrated full-duplex bidirectional transmission of 10-Gb/s millimeter-wave (mm-wave) quadrature phase shift keying (QPSK) signal in E-band (71-76 GHz and 81-86 GHz) optical wireless link. Single-mode fibers (SMF) are connected at both sides of the antenna for uplink and downlink which realize 40-km SMF and 2-m wireless link for bidirectional transmission simultaneously. We utilized multi-level modulation format and coherent detection in such E-band optical wireless link for the first time. Mm-wave QPSK signal is generated by photonic technique to increase spectrum efficiency and received signal is coherently detected to improve receiver sensitivity. After the coherent detection, digital signal processing is utilized to compensate impairments of devices and transmission link.

  13. Autonomous system for wireless network communication powered by photovoltaic solar energy; Sistema autonomo de comunicacao sem fio em malha alimentado por energia solar fotovoltaica

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Rafael Herrero

    2009-07-01

    The wireless mesh network communication technology, based on the IEEE802.11 standard, has been a relevant technology solution for wireless networking in the recent years. However, even with the elimination of cables for data communication, the wireless mesh networks have to be connected to a voltage source using an electrical cable that may not be available at the local installation. In this scenario, being Brazil a country located in a tropical zone that receives large annual solar irradiation, the conversion of photons to electricity can be an alternative to eliminate the needs of wiring to the mesh access points. This work contributes to the development of autonomous wireless mesh communication systems powered by solar energy, with easy installation in urban or rural areas. This work also describes its evaluations in aspects such as autonomy, wireless coverage, number of users supported, installation height and throughput. (author)

  14. Wireless Connectivity to ATM Communication Grid

    National Research Council Canada - National Science Library

    Rajaravivarma, Veeramuthu

    1998-01-01

    The AFOSR funds were used to purchase a 12 port Fore ATM switch, ATM network interface cards, a SUN UltraSPARC workstation, Lucent WavePoint wireless bridge, and Lucent WaveLAN wireless network interface cards...

  15. Wired and wireless convergent extended-reach optical access network using direct-detection of all-optical OFDM super-channel signal.

    Science.gov (United States)

    Chow, C W; Yeh, C H; Sung, J Y; Hsu, C W

    2014-12-15

    We propose and demonstrate the feasibility of using all-optical orthogonal frequency division multiplexing (AO-OFDM) for the convergent optical wired and wireless access networks. AO-OFDM relies on all-optically generated orthogonal subcarriers; hence, high data rate (> 100 Gb/s) can be easily achieved without hitting the speed limit of electronic digital-to-analog and analog-to-digital converters (DAC/ADC). A proof-of-concept convergent access network using AO-OFDM super-channel (SC) is demonstrated supporting 40 - 100 Gb/s wired and gigabit/s 100 GHz millimeter-wave (MMW) ROF transmissions.

  16. SIMO optical wireless links with nonzero boresight pointing errors over M modeled turbulence channels

    Science.gov (United States)

    Varotsos, G. K.; Nistazakis, H. E.; Petkovic, M. I.; Djordjevic, G. T.; Tombras, G. S.

    2017-11-01

    Over the last years terrestrial free-space optical (FSO) communication systems have demonstrated an increasing scientific and commercial interest in response to the growing demands for ultra high bandwidth, cost-effective and secure wireless data transmissions. However, due the signal propagation through the atmosphere, the performance of such links depends strongly on the atmospheric conditions such as weather phenomena and turbulence effect. Additionally, their operation is affected significantly by the pointing errors effect which is caused by the misalignment of the optical beam between the transmitter and the receiver. In order to address this significant performance degradation, several statistical models have been proposed, while particular attention has been also given to diversity methods. Here, the turbulence-induced fading of the received optical signal irradiance is studied through the M (alaga) distribution, which is an accurate model suitable for weak to strong turbulence conditions and unifies most of the well-known, previously emerged models. Thus, taking into account the atmospheric turbulence conditions along with the pointing errors effect with nonzero boresight and the modulation technique that is used, we derive mathematical expressions for the estimation of the average bit error rate performance for SIMO FSO links. Finally, proper numerical results are given to verify our derived expressions and Monte Carlo simulations are also provided to further validate the accuracy of the analysis proposed and the obtained mathematical expressions.

  17. NASA's current activities in free space optical communications

    Science.gov (United States)

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  18. Fibre optic communication key devices

    CERN Document Server

    Grote, Norbert

    2017-01-01

    The book gives an in-depth description of key devices of current and next generation fibre optic communication networks. Devices treated include semiconductor lasers, optical amplifiers, modulators, wavelength filters and other passives, detectors, all-optical switches, but relevant properties of optical fibres and network aspects are included as well. The presentations include the physical principles underlying the various devices, technologies used for their realization, typical performance characteristics and limitations, but development trends towards more advanced components are also illustrated. This new edition of a successful book was expanded and updated extensively. The new edition covers among others lasers for optical communication, optical switches, hybrid integration, monolithic integration and silicon photonics. The main focus is on Indium phosphide-based structures but silicon photonics is included as well. The book covers relevant principles, state-of-the-art implementations, status of curren...

  19. Talk is cheap: Wireless communications changing the oilpatch

    Energy Technology Data Exchange (ETDEWEB)

    Stastny, P.

    2004-03-01

    The role of cellular phones and satellite phones in the oil and natural gas industry in Canada is discussed. Cellular phones are particularly well adapted to the remote environment in which much of the industry is situated. Satellite phones are less common but they are used to fill in the gaps where cellular networks are not available. In such situations the field worker is equipped with two phones, a cellular phone and a satellite phone, each with its own number, or he carries a Globalstar phone, which combines both under operating modes using the same telephone number. The most cost-effective communication in remote areas relies on a three-watt analog booster that connects to a cell phone; a digital three-watt booster is not far down the road as the ultimate means of communication in remote environments, particularly for handling data. The digital cellular network can reach a maximum threshold of 80,000 baud (versus only 9,600 baud for analog). The demand for wireless services for wireless e-mail and Web-assisted GPS position location applications, and the sheer number of people with cellular phones are the most significant drivers of the push towards digital networks. Digital picture cell phones are also likely to find applications in troubleshooting and other areas of the oilpatch. In some areas however, satellite phones may be the only option. The low earth orbit (LEO) Globalstar is a particularly good example of satellite phone systems; it offers significant advantages in terms of voice quality, with practically limitless geographic coverage. By contrast, GEO (Geostationary Earth Orbit) systems are better suited to handling high-speed data, television transmission and other wideband applications.

  20. Wireless Data Acquisition of Transient Signals for Mobile Spectrometry Applications.

    Science.gov (United States)

    Trzcinski, Peter; Weagant, Scott; Karanassios, Vassili

    2016-05-01

    Wireless data acquisition using smartphones or handhelds offers increased mobility, it provides reduced size and weight, it has low electrical power requirements, and (in some cases) it has an ability to access the internet. Thus, it is well suited for mobile spectrometry applications using miniaturized, field-portable spectrometers, or detectors for chemical analysis in the field (i.e., on-site). There are four main wireless communications standards that can be used for wireless data acquisition, namely ZigBee, Bluetooth, Wi-Fi, and UWB (ultra-wide band). These are briefly reviewed and are evaluated for applicability to data acquisition of transient signals (i.e., time-domain) in the field (i.e., on-site) from a miniaturized, field-portable photomultiplier tube detector and from a photodiode array detector installed in a miniaturized, field-portable fiber optic spectrometer. These are two of the most widely used detectors for optical measurements in the ultraviolet-visible range of the spectrum. A miniaturized, 3D-printed, battery-operated microplasma-on-a-chip was used for generation of transient optical emission signals. Elemental analysis from liquid microsamples, a microplasma, and a handheld or a smartphone will be used as examples. Development and potential applicability of wireless data acquisition of transient optical emission signals for taking part of the lab to the sample types of mobile, field-portable spectrometry applications will be discussed. The examples presented are drawn from past and ongoing work in the authors' laboratory. A handheld or a smartphone were used as the mobile computing devices of choice. © The Author(s) 2016.