WorldWideScience

Sample records for optical tomography activation

  1. Optical changes in cortical tissue during seizure activity using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Ornelas, Danielle; Hasan, Md.; Gonzalez, Oscar; Krishnan, Giri; Szu, Jenny I.; Myers, Timothy; Hirota, Koji; Bazhenov, Maxim; Binder, Devin K.; Park, Boris H.

    2017-02-01

    Epilepsy is a chronic neurological disorder characterized by recurrent and unpredictable seizures. Electrophysiology has remained the gold standard of neural activity detection but its resolution and high susceptibility to noise and motion artifact limit its efficiency. Optical imaging techniques, including fMRI, intrinsic optical imaging, and diffuse optical imaging, have also been used to detect neural activity yet these techniques rely on the indirect measurement of changes in blood flow. A more direct optical imaging technique is optical coherence tomography (OCT), a label-free, high resolution, and minimally invasive imaging technique that can produce depth-resolved cross-sectional and 3D images. In this study, OCT was used to detect non-vascular depth-dependent optical changes in cortical tissue during 4-aminopyridine (4-AP) induced seizure onset. Calculations of localized optical attenuation coefficient (µ) allow for the assessment of depth-resolved volumetric optical changes in seizure induced cortical tissue. By utilizing the depth-dependency of the attenuation coefficient, we demonstrate the ability to locate and remove the optical effects of vasculature within the upper regions of the cortex on the attenuation calculations of cortical tissue in vivo. The results of this study reveal a significant depth-dependent decrease in attenuation coefficient of nonvascular cortical tissue both ex vivo and in vivo. Regions exhibiting decreased attenuation coefficient show significant temporal correlation to regions of increased electrical activity during seizure onset and progression. This study allows for a more thorough and biologically relevant analysis of the optical signature of seizure activity in vivo using OCT.

  2. Detection of cortical optical changes during seizure activity using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Ornelas, Danielle; Hasan, Md.; Gonzalez, Oscar; Krishnan, Giri; Szu, Jenny I.; Myers, Timothy; Hirota, Koji; Bazhenov, Maxim; Binder, Devin K.; Park, Boris H.

    2017-02-01

    Electrophysiology has remained the gold standard of neural activity detection but its resolution and high susceptibility to noise and motion artifact limit its efficiency. Imaging techniques, including fMRI, intrinsic optical imaging, and diffuse optical imaging, have been used to detect neural activity, but rely on indirect measurements such as changes in blood flow. Fluorescence-based techniques, including genetically encoded indicators, are powerful techniques, but require introduction of an exogenous fluorophore. A more direct optical imaging technique is optical coherence tomography (OCT), a label-free, high resolution, and minimally invasive imaging technique that can produce depth-resolved cross-sectional and 3D images. In this study, we sought to examine non-vascular depth-dependent optical changes directly related to neural activity. We used an OCT system centered at 1310 nm to search for changes in an ex vivo brain slice preparation and an in vivo model during 4-AP induced seizure onset and propagation with respect to electrical recording. By utilizing Doppler OCT and the depth-dependency of the attenuation coefficient, we demonstrate the ability to locate and remove the optical effects of vasculature within the upper regions of the cortex from in vivo attenuation calculations. The results of this study show a non-vascular decrease in intensity and attenuation in ex vivo and in vivo seizure models, respectively. Regions exhibiting decreased optical changes show significant temporal correlation to regions of increased electrical activity during seizure. This study allows for a thorough and biologically relevant analysis of the optical signature of seizure activity both ex vivo and in vivo using OCT.

  3. Solar tomography adaptive optics.

    Science.gov (United States)

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  4. Identification of prefrontal cortex (BA10) activation while performing Stroop test using diffuse optical tomography

    Science.gov (United States)

    Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli

    2011-03-01

    Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.

  5. Dental Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Kun-Feng Lin

    2013-07-01

    Full Text Available This review paper describes the applications of dental optical coherence tomography (OCT in oral tissue images, caries, periodontal disease and oral cancer. The background of OCT, including basic theory, system setup, light sources, spatial resolution and system limitations, is provided. The comparisons between OCT and other clinical oral diagnostic methods are also discussed.

  6. Optical Tomography in Combustion

    DEFF Research Database (Denmark)

    Evseev, Vadim

    . JQSRT 113 (2012) 2222, 10.1016/j.jqsrt.2012.07.015] included in the PhD thesis as an attachment. The knowledge and experience gained in the PhD project is the first important step towards introducing the advanced optical tomography methods of combustion diagnostics developed in the project to future...

  7. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Andersen, Peter E.

    2015-01-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. Mapping the local reflectivity, OCT visualizes the morphology of the sample, in real time or at video rate. In addition...

  8. Amplified Dispersive Optical Tomography

    CERN Document Server

    Goda, Keisuke; Jalali, Bahram

    2008-01-01

    Optical coherence tomography (OCT) has proven to be a powerful technique for studying tissue morphology in ophthalmology, cardiology, and endomicroscopy. Its performance is limited by the fundamental trade-off between the imaging sensitivity and acquisition speed -- a predicament common in virtually all imaging systems. In this paper, we circumvent this limit by using distributed Raman post-amplification of the reflection from the sample. We combine the amplification with simultaneously performed dispersive Fourier transformation, a process that maps the optical spectrum into an easily measured time-domain waveform. The Raman amplification enables measurement of weak signals which are otherwise buried in noise. It extends the depth range without sacrificing the acquisition speed or causing damage to the sample. As proof of concept, single-shot imaging with 15 dB improvement in sensitivity at an axial scan rate of 36.6 MHz is demonstrated.

  9. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Themstrup, Lotte; Banzhaf, Christina

    2014-01-01

    as the optical analogue to ultrasound. The inherent safety of the technology allows for in vivo use of OCT in patients. The main strength of OCT is the depth resolution. In dermatology, most OCT research has turned on non-melanoma skin cancer (NMSC) and non-invasive monitoring of morphological changes......Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described...... in a number of skin diseases based on pattern recognition, and studies have found good agreement between OCT images and histopathological architecture. OCT has shown high accuracy in distinguishing lesions from normal skin, which is of great importance in identifying tumour borders or residual neoplastic...

  10. Optical Coherence Tomography

    Science.gov (United States)

    Huang, David

    Optical coherence tomography (OCT) is a new method for noninvasive cross-sectional imaging in biological systems. In OCT, the longitudinal locations of tissue structures are determined by measuring the time-of-flight delays of light backscattered from these structures. The optical delays are measured by low coherence interferometry. Information on lateral position is provided by transverse scanning of the probe beam. The two dimensional map of optical scattering from internal tissue microstructures is then represented in a false-color or grayscale image. OCT is the optical analog of ultrasonic pulse-echo imaging, but with greatly improved spatial resolutions (a few microns). This thesis describes the development of this new high resolution tomographic imaging technology and the demonstration of its use in a variety of tissues under both in vitro and in vivo conditions. In vitro OCT ranging and imaging studies were performed using human ocular and arterial tissues, two clinically relevant examples of transparent and turbid media, respectively. In the anterior eye, precise measurements of cornea and anterior chamber dimensions were made. In the arterial specimens, the differentiation between fatty -calcified and fibromuscular tissues was demonstrated. In vivo OCT imaging in the retina and optic nerve head in human subjects was also performed. The delineation of retinal layers, which has not been possible with other noninvasive imaging techniques, is demonstrated in these OCT images. OCT has high spatial resolution but limited penetration into turbid tissue. It has potential for diagnostic applications where high resolution is needed and optical access is available, such as in the eye, skin, surgically exposed tissues, and surfaces that can be reached by various catheters and endoscopic probes. In particular, the measurement of fine retinal structures promises improvements in the diagnosis and management of glaucoma, macular edema and other vitreo-retinal diseases

  11. Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Pier Alberto Testoni

    2007-01-01

    Full Text Available Optical coherence tomography (OCT is an optical imaging modality that performs high-resolution, cross-sectional, subsurface tomographic imaging of the microstructure of tissues. The physical principle of OCT is similar to that of B-mode ultrasound imaging, except that it uses infrared light waves rather than acoustic waves. The in vivo resolution is 10–25 times better (about 10 µm than with high-frequency ultrasound imaging, but the depth of penetration is limited to 1–3 mm, depending on tissue structure, depth of focus of the probe used, and pressure applied to the tissue surface. In the last decade, OCT technology has evolved from an experimental laboratory tool to a new diagnostic imaging modality with a wide spectrum of clinical applications in medical practice, including the gastrointestinal tract and pancreatico-biliary ductal system. OCT imaging from the gastrointestinal tract can be done in humans by using narrow-diameter, catheter-based probes that can be inserted through the accessory channel of either a conventional front-view endoscope, for investigating the epithelial structure of the gastrointestinal tract, or a side-view endoscope, inside a standard transparent ERCP (endoscopic retrograde cholangiopancreatography catheter, for investigating the pancreatico-biliary ductal system. The esophagus and esophagogastric junction have been the most widely investigated organs so far; more recently, duodenum, colon, and the pancreatico-biliary ductal system have also been extensively investigated. OCT imaging of the gastrointestinal wall structure is characterized by a multiple-layer architecture that permits an accurate evaluation of the mucosa, lamina propria, muscularis mucosae, and part of the submucosa. The technique may therefore be used to identify preneoplastic conditions of the gastrointestinal tract, such as Barrett's epithelium and dysplasia, and evaluate the depth of penetration of early-stage neoplastic lesions. OCT imaging

  12. Optical Tomography of MMP Activity Allows a Sensitive Noninvasive Characterization of the Invasiveness and Angiogenesis of SCC Xenografts

    Directory of Open Access Journals (Sweden)

    Wa'el Al Rawashdeh

    2014-03-01

    Full Text Available For improved tumor staging and therapy control, imaging biomarkers are of great interest allowing a noninvasive characterization of invasiveness. In squamous epithelial skin and cervix lesions, transition to invasive stages is associated with enhanced matrix metalloproteinase (MMP activity, increased angiogenesis, and worsened prognosis. Thus, we investigated MMP activity as imaging biomarker of invasiveness and the potential of optical tomography in characterizing the angiogenic and invasive behavior of skin squamous cell carcinoma (SCC xenografts. MMP activity was measured in vivo in HaCaT-ras A-5RT3 tumors at different angiogenic and invasive stages (onset of angiogenesis, intermediate and highly angiogenic, invasive stage and after 1 week of sunitinib treatment by fluorescence molecular tomography–microcomputed tomography imaging using an activatable probe. Treatment response was additionally assessed morphologically by optical coherence tomography (OCT. In vivo MMP activity significantly differed between the groups, revealing highest levels in the highly angiogenic, invasive tumors that were confirmed by immunohistochemistry. At the onset of angiogenesis with lowest MMP activity, fibroblasts were detected in the MMP-positive areas, whereas macrophages were absent. Accumulation of both cell types occurred in both invasive groups, again to a significantly higher degree at the most invasive and angiogenic stage. Sunitinib treatment significantly reduced the MMP activity and accumulation of fibroblasts and macrophages and blocked tumor invasion that was additionally visualized by OCT. Human cervical SCCs also showed high MMP activity and a similar stromal composition as the HaCaT xenografts, whereas normal tissue was negative. This study strongly suggests MMP activity as imaging biomarker and demonstrates the high sensitivity of optical tomography in determining tumor invasiveness that can morphologically be supported by OCT.

  13. Optical tomography with structured illumination.

    Science.gov (United States)

    Lukic, Vladimir; Markel, Vadim A; Schotland, John C

    2009-04-01

    We consider the image reconstruction problem for optical tomography with structured illumination. A fast image reconstruction algorithm is proposed that reduces the required number of measurements of the optical field compared to methods that utilize point-source illumination. The results are illustrated with numerical simulations.

  14. Optical Coherency Matrix Tomography

    Science.gov (United States)

    2015-10-19

    optics has been studied theoretically11, but has not been demonstrated experimentally heretofore. Even in the simplest case of two binary DoFs6 (e.g...coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two...dense coding, etc. CREOL, The College of Optics & Photonics, University of Central Florida, Orlando , Florida 32816, USA. Correspondence and requests

  15. Second harmonic optical coherence tomography

    OpenAIRE

    Jiang,Yi; Tomov, Ivan; Wang, Yimin; Chen, Zhongping

    2004-01-01

    Second harmonic optical coherence tomography, which uses coherence gating of second-order nonlinear optical response of biological tissues for imaging, is described and demonstrated. Femtosecond laser pulses were used to excite second harmonic waves from collagen harvested from rat tail tendon and a reference nonlinear crystal. Second harmonic interference fringe signals were detected and used for image construction. Because of the strong dependence of second harmonic generation on molecular ...

  16. Integrated-optics-based optical coherence tomography

    NARCIS (Netherlands)

    Nguyen, D.V.

    2013-01-01

    Optical coherence tomography (OCT) is a high resolution, imaging technique that has developed over the last 20 years from a complicated laboratory setup into a ready-to-use commercially available device. Instead of using electronic time gating as being used by ultrasound (US) imaging, in OCT, the op

  17. Hyperspectral optical diffraction tomography

    CERN Document Server

    Jung, JaeHwang; Yoon, Jonghee; Park, YongKeun

    2015-01-01

    Here, we present a novel microscopic technique for measuring wavelength-dependent three-dimensional (3-D) distributions of the refractive indices (RIs) of microscopic samples in the visible wavelengths. Employing 3-D quantitative phase microscopy techniques with a wavelength-swept source, 3-D RI tomograms were obtained in the range of 450 - 700 nm with a spectral resolution of a few nanometers. The capability of the technique was demonstrated by measuring the hyperspectral 3-D RI tomograms of polystyrene beads, human red blood cells, and hepatocytes. The results demonstrate the potential for label-free molecular specific 3-D tomography of biological samples.

  18. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Fercher, A.F.; Andersen, Peter E.

    2017-01-01

    with a resolution comparable to conventional histology, but in real time, it can be used as a biopsy technique in a wide range of biological systems to detect diseases. These include the tomographic imaging of the internal microstructure of in vivo atherosclerotic plaques, the tomographic real-time diagnostics...... for intraoperative monitoring, and in microsurgical intervention. Optical biopsy based on OCT also provides diagnostic information by differentiating the architectural morphology of urological tissue, gastrointestinal tissue, and respiratory tissue....

  19. Coherent amplified optical coherence tomography

    Science.gov (United States)

    Zhang, Jun; Rao, Bin; Chen, Zhongping

    2007-07-01

    A technique to improve the signal-to-noise ratio (SNR) of a high speed 1300 nm swept source optical coherence tomography (SSOCT) system was demonstrated. A semiconductor optical amplifier (SOA) was employed in the sample arm to coherently amplify the weak light back-scattered from sample tissue without increasing laser power illuminated on the sample. The image quality improvement was visualized and quantified by imaging the anterior segment of a rabbit eye at imaging speed of 20,000 A-lines per second. The theory analysis of SNR gain is given followed by the discussion on the technologies that can further improve the SNR gain.

  20. In Vivo Diffuse Optical Tomography and Fluorescence Molecular Tomography

    Directory of Open Access Journals (Sweden)

    Mingze Li

    2010-01-01

    Full Text Available Diffuse optical tomography (DOT and fluorescence molecular tomography (FMT are two attractive imaging techniques for in vivo physiological and psychological research. They have distinct advantages such as non-invasiveness, non-ionizing radiation, high sensitivity and longitudinal monitoring. This paper reviews the key components of DOT and FMT. Light propagation model, mathematical reconstruction algorithm, imaging instrumentation and medical applications are included. Future challenges and perspective on optical tomography are discussed.

  1. Dynamic Optical Coherence Tomography Capillaroscopy

    DEFF Research Database (Denmark)

    Ring, Hans Christian; Themstrup, Lotte; Banzhaf, Christina Alette

    2016-01-01

    status, or morphology of the deeper dermal vessels. Dynamic optical coherence tomography (D-OCT) is a recently developed OCT technique that enables detection of high-speed changes in back-scattered light caused by moving cells in vessels. The high resolution of OCT enables the detection of the papillary...... loops. OBJECTIVE To explore the potential for OCT capillaroscopy of the nailfolds using D-OCT. DESIGN, SETTING, AND PARTICIPANTS In this case series study of 4 participants, the nailfolds in 2 patients with systemic sclerosis, 1 patient with dermatomyositis, and a healthy volunteer were scanned using D...

  2. Optical Coherence Tomography: Advanced Modeling

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Thrane, Lars; Yura, Harold T.;

    2013-01-01

    Analytical and numerical models for describing and understanding the light propagation in samples imaged by optical coherence tomography (OCT) systems are presented. An analytical model for calculating the OCT signal based on the extended Huygens-Fresnel principle valid both for the single......- and multiple-scattering regimes is derived. An advanced Monte Carlo model for calculating the OCT signal is also derived, and the validity of this model is shown through a mathematical proof based on the extended Huygens-Fresnel principle. From the analytical model, an algorithm for enhancing OCT images...... is developed, the so-called true-reflection algorithm in which the OCT signal may be corrected for the attenuation caused by scattering. The algorithm is verified experimentally and by using the Monte Carlo model as a numerical tissue phantom. Applications of extraction of optical properties from tissue...

  3. Optical Microangiography Based on Optical Coherence Tomography

    Science.gov (United States)

    Reif, Roberto; Wang, Ruikang K.

    Proper homeostasis regulation of in vivo biological systems requires microvascular blood perfusion, which is the process of delivering blood into the tissue's capillary beds. Abnormal tissue vascularization has been associated with various diseases such as cancer, diabetes, neurological disorders, wounds, and inflammation. Understanding the changes in the vascular network or microangiography will have an important role in determining the causes and developing potential treatments for these diseases. Optical coherence tomography (OCT) is a noninvasive method for imaging three-dimensional biological tissues with high resolution (~10 µm) and without requiring the use of contrast agents. In this chapter we review several techniques for using OCT to determine blood flow velocities and the vessel morphology (optical microangiography). Different techniques will be discussed with a brief explanation of their limitations. Also, methods for quantifying these images are presented, as well as the depiction of several applications.

  4. Retinal Optical Coherence Tomography Imaging

    Science.gov (United States)

    Drexler, Wolfgang; Fujimoto, James G.

    The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in

  5. Imaging granulomatous lesions with optical coherence tomography

    DEFF Research Database (Denmark)

    Banzhaf, Christina; Jemec, Gregor B E

    2012-01-01

    To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT) images and compare this to previous studies of nonmelanoma skin tumors.......To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT) images and compare this to previous studies of nonmelanoma skin tumors....

  6. Anterior Segment Tomography with the Cirrus Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Eduardo B. Rodrigues

    2012-01-01

    Full Text Available Optical coherence tomography (OCT is an optical acquisition method to examine biological tissues. In recent years, OCT has become an important imaging technology used in diagnosing and following macular pathologies. Further development enabled application of optical coherence tomography in evaluation of the integrity of the nerve fiber layer, optic nerve cupping, anterior chamber angle, or corneal topography. In this manuscript we overview the use of OCT in the clinical practice to enable corneal, iris, ciliary body, and angle evaluation and diagnostics.

  7. Optical coherence tomography in dermatology

    Science.gov (United States)

    Sattler, Elke; Kästle, Raphaela; Welzel, Julia

    2013-06-01

    Optical coherence tomography (OCT) is a noninvasive diagnostic method that offers a view into the superficial layers of the skin in vivo in real-time. An infrared broadband light source allows the investigation of skin architecture and changes up to a depth of 1 to 2 mm with a resolution between 15 and 3 μm, depending on the system used. Thus OCT enables evaluation of skin lesions, especially nonmelanoma skin cancers and inflammatory diseases, quantification of skin changes, visualization of parasitic infestations, and examination of other indications such as the investigation of nails. OCT provides a quick and useful diagnostic imaging technique for a number of clinical questions and is a valuable addition or complement to other noninvasive imaging tools such as dermoscopy, high-frequency ultrasound, and confocal laser scan microscopy.

  8. Adaptive optics optical coherence tomography in glaucoma.

    Science.gov (United States)

    Dong, Zachary M; Wollstein, Gadi; Wang, Bo; Schuman, Joel S

    2017-03-01

    Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior segment of the eye. Although OCT previously captured in-vivo cross-sectional images with unparalleled high resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and retina in three-dimensions, increasing resolution down to a theoretical 3 μm(3). It is now possible to visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its limitations and barriers to widespread commercialization, the expanding role of AO in OCT is propelling this technology into clinical trials and onto becoming an invaluable modality in the clinician's arsenal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Optical Coherence Tomography (OCT) in ophthalmology: introduction.

    Science.gov (United States)

    Fujimoto, James G; Drexler, Wolfgang; Schuman, Joel S; Hitzenberger, Christoph K

    2009-03-02

    The Optical Society (OSA) is pleased to present this special issue of Optics Express on "Optical Coherence Tomography (OCT) in Ophthalmology" as part of the new Interactive Science Publishing (ISP) project. The project is being performed in collaboration with the National Library of Medicine and represents a new paradigm for the publication of digital image and large dataset information.

  10. Time-gated optical projection tomography.

    Science.gov (United States)

    Bassi, Andrea; Brida, Daniele; D'Andrea, Cosimo; Valentini, Gianluca; Cubeddu, Rinaldo; De Silvestri, Sandro; Cerullo, Giulio

    2010-08-15

    We present an imaging technique that combines optical projection tomography with ballistic imaging using ultrafast time gating. The method provides high-resolution reconstruction of scattering samples and is suitable for three-dimensional (3D) imaging of biological models.

  11. [Optical coherence tomography in solar eclipse retinopathy].

    Science.gov (United States)

    Calvo-González, C; Reche-Frutos, J; Santos-Bueso, E; Díaz-Valle, D; Benítez-del-Castillo, J M; García-Sánchez, J

    2006-05-01

    We describe the case of a patient suffering from acute visual loss soon after watching a solar eclipse. Optical coherence tomography was the main diagnostic tool used. Solar retinopathy is now an unusual cause of visual loss, although there are still some cases diagnosed, especially after viewing solar eclipses. Optical coherence tomography is suitable for detecting permanent retinal injuries related to solar exposure, with the outer retinal layers being typically affected.

  12. Second-harmonic optical coherence tomography

    Science.gov (United States)

    Jiang, Yi; Tomov, Ivan; Wang, Yimin; Chen, Zhongping

    2004-05-01

    Second-harmonic optical coherence tomography, which uses coherence gating of second-order nonlinear optical responses of biological tissues for imaging, is described and demonstrated. Femtosecond laser pulses were used to excite second-harmonic waves from collagen harvested from rat tail tendon and a reference nonlinear crystal. Second-harmonic interference fringe signals were detected and used for image construction. Because of the strong dependence of second-harmonic generation on molecular and tissue structures, this technique imparts contrast and resolution enhancement to conventional optical coherence tomography.

  13. Optical biopsy of epithelial cancers by optical coherence tomography

    NARCIS (Netherlands)

    Wessels, R.; Wessels, R.; de Bruin, D.M.; Faber, D.J.; van Leeuwen, Ton; van Beurden, M.F.B.; Ruers, Theo J.M.

    2014-01-01

    Optical coherence tomography (OCT) is an optical technique that measures the backscattering of near-infrared light by tissue. OCT yields in 2D and 3D images at micrometer-scale resolution, thus providing optical biopsies, approaching the resolution of histopathological imaging. The technique has

  14. Towards multimodal nonlinear optical tomography - experimental methodology

    Science.gov (United States)

    Vogler, N.; Medyukhina, A.; Latka, I.; Kemper, S.; Böhm, M.; Dietzek, B.; Popp, J.

    2011-08-01

    All-optical microspectroscopic and tomographic tools reveal great potential for clinical dermatologic diagnostics, i.e., investigation of human skin and skin diseases. While optical-coherence tomography has been complemented by two-photon fluorescence tomography and second-harmonic generation tomography, a joint study of various nonlinear optical microspectroscopies, i.e., application of the recently developed multimodal imaging approach, to sizable human-tissue samples has not been evaluated up to now. Here, we present such multimodal approach combining different nonlinear optical contrast mechanisms for imaging, namely two-photon excited fluorescence (TPF), second-harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS) into a joint microscopic experiment. We show the potential of imaging large skin areas and discuss the information obtained in a case study comparing normal skin and keloid tissue.

  15. Diffuse Optical Tomography for Brain Imaging: Theory

    Science.gov (United States)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  16. Optical coherence tomography in late solar retinopathy

    Directory of Open Access Journals (Sweden)

    Janković Aleksandar

    2011-01-01

    Full Text Available Introduction. Solar retinopathy refers to retinal injury induced by direct or indirect solar viewing. Case report. We presented a patient who had observed partial solar eclipse 51 year before. He had bilaterally decreased vision and scar of the macular region at the time of presentation. The basic diagnostic tool applied in the presented patient, optical coherence tomography, showed hyporeflexivity of the outer retina in the segment of retinal pigment epithelialphotoreceptors complex with atrophy and thinning of the foveolar region. Conclusion. Optical coherence tomography is a powerful, non-invasive diagnostic tool which can ease the diagnosis and estimate the level and nature of the macular region damage.

  17. Reconstructions in ultrasound modulated optical tomography

    KAUST Repository

    Allmaras, Moritz

    2011-01-01

    We introduce a mathematical model for ultrasound modulated optical tomography and present a simple reconstruction scheme for recovering the spatially varying optical absorption coefficient from scanning measurements with narrowly focused ultrasound signals. Computational results for this model show that the reconstruction of sharp features of the absorption coefficient is possible. A formal linearization of the model leads to an equation with a Fredholm operator, which explains the stability observed in our numerical experiments. © de Gruyter 2011.

  18. Optical coherence tomography: Technique and applications

    DEFF Research Database (Denmark)

    Thomsen, Jakob Borup; Sander, Birgit; Mogensen, Mette;

    2009-01-01

    Optical coherence tomography (OCT) is a noninvasive optical imaging modality providing real-time video rate images in two and three dimensions of biological tissues with micrometer resolution. OCT fills the gap between ultrasound and confocal microscopy, since it has a higher resolution than ultr...... of retinal diseases. The potential of OCT in many other applications is currently being explored, such as in developmental biology, skin cancer diagnostics, vulnerable plaque detection in cardiology, esophageal diagnostics and a number of other applications within oncology....

  19. Optical coherence tomography in conjunction with bronchoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Ascedio Jose; Takimura, Celso Kiyochi; Lemos Neto, Pedro Alves; Figueiredo, Viviane Rossi, E-mail: ascedio@gmail.com [Servico de Endoscopia Respiratoria, Hospital das Clinicas, Universidade de Sao Paulo (FM/USP), SP (Brazil)

    2012-07-01

    To evaluate the feasibility of and the potential for using optical coherence tomography in conjunction with conventional bronchoscopy in the evaluation of the airways. Methods: This was a pilot study based on an ex vivo experimental model involving three animals: one adult New Zealand rabbit and two Landrace pigs. An optical coherence tomography imaging catheter was inserted through the working channel of a flexible bronchoscope in order to reach the distal trachea of the animals. Images of the walls of the trachea were systematically taken along its entire length, from the distal to the proximal portion. Results: The imaging catheter was easily adapted to the working channel of the bronchoscope. High-resolution images of cross sections of the trachea were taken in real time, precisely delineating microstructures, such as the epithelium, submucosa, and cartilage, as well as the adventitia of the anterior and lateral tracheal walls. The corresponding layers of the epithelium, mucosa, and cartilage were clearly differentiated. The mucosa, submucosa, and trachealis muscle were clearly identified in the posterior wall. Conclusions: It is feasible to use an optical coherence tomography imaging catheter in combination with a flexible bronchoscope. Optical coherence tomography produces high resolution images that reveal the microanatomy of the trachea, including structures that are typically seen only on images produced by conventional histology. (author)

  20. Optical Coherence Tomography for Material Characterization

    NARCIS (Netherlands)

    Liu, P.

    2014-01-01

    Optical coherence tomography (OCT) is a non-invasive, contactless and high resolution imaging method, which allows the reconstruction of two or three dimensional depth-resolved images in turbid media. In the past 20 years, OCT has been extensively developed in the field of biomedical diagnostics, wh

  1. Optical tomography: forward and inverse problems

    CERN Document Server

    Arridge, Simon

    2009-01-01

    This paper is a review of recent mathematical and computational advances in optical tomography. We discuss the physical foundations of forward models for light propagation on microscopic, mesoscopic and macroscopic scales. We also consider direct and numerical approaches to the inverse problems that arise at each of these scales. Finally, we outline future directions and open problems in the field.

  2. Gabor fusion master slave optical coherence tomography

    DEFF Research Database (Denmark)

    Cernat, Ramona; Bradu, Adrian; Israelsen, Niels Møller

    2017-01-01

    This paper describes the application of the Gabor filtering protocol to a Master/Slave (MS) swept source optical coherence tomography (SS)-OCT system at 1300 nm. The MS-OCT system delivers information from selected depths, a property that allows operation similar to that of a time domain OCT syst...

  3. Functional optical coherence tomography of pigmented lesions

    NARCIS (Netherlands)

    Wessels, R.; Bruin, de D.M.; Relyveld, G.N.; Faber, D.J.; Vincent, A.D.; Sanders, J.; Leeuwen, van T.G.; Ruers, T.J.M.

    2015-01-01

    Background Cutaneous melanomas are diagnosed worldwide in 231 130 patients per year. The sensitivity and specificity of melanoma diagnosis expresses the need for an additional diagnostic method. Optical coherence tomography (OCT) has shown that it allows morphological (qualitative) description of im

  4. Optical coherence tomography as a diagnostic tool

    CSIR Research Space (South Africa)

    Singh, A

    2011-07-01

    Full Text Available Optical Coherence Tomography (OCT) has been used in biomedical applications as a method to non-invasively detect changes occurring in tissue such as the detection of skin cancer. The effect of skin tone on detection of skin cancer has however...

  5. Dynamic Optical Coherence Tomography in Dermatology

    DEFF Research Database (Denmark)

    Ulrich, Martina; Themstrup, Lotte; De Carvalho, Nathalie

    2016-01-01

    Optical coherence tomography (OCT) represents a non-invasive imaging technology, which may be applied to the diagnosis of non-melanoma skin cancer and which has recently been shown to improve the diagnostic accuracy of basal cell carcinoma. Technical developments of OCT continue to expand the app...

  6. Homodyne en face optical coherence tomography

    OpenAIRE

    Yaqoob, Zahid; Fingler, Jeff; Heng, Xin; Yang, Changhuei

    2006-01-01

    We demonstrate, for what we believe to be the first time, the use of a 3×3 fiber-optic coupler to realize a homodyne optical coherence tomography (OCT) system for en face imaging of highly scattering tissues and turbid media. The homodyne OCT setup exploits the inherent phase shifts between different output ports of a 3×3 fiber-optic coupler to extract amplitude information of a sample. Our homodyne en face OCT system features a measured resolution of 14 μm axially and 9.4 μm laterally with a...

  7. Single-Scattering Optical Tomography

    CERN Document Server

    Markel, V A; Markel, Vadim A.; Schotland, John C.

    2007-01-01

    We describe a novel tomographic imaging modality. The proposed technique utilizes visible or near-infrared light as a tissue probe in the ``mesoscopic'' scattering regime when the tissue layer exhibits sufficiently strong scattering so that its direct visual inspection is not possible, yet transmitted and reflected light are not diffuse. The forward model for light propagation in tissues is based on the scattering-order expansion of the radiative transport equation Green's function. The associated inverse problem is similar to the problem of inverting the Radon transform of x-ray tomography, except that the ray integrals are evaluated not along straight lines but along broken rays. As a result, the method does not require rotating the imaging device around the sample and taking multiple projections and, therefore, can be used in backscattering. An algebraic image reconstruction algorithm is numerically implemented using computer-generated data. An analytic image reconstruction formula analogous to the filtere...

  8. Optical tomography of the neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Hebden, Jeremy C. [University College London, Department of Medical Physics and Bioengineering, London (United Kingdom); Austin, Topun [University College London, Department of Paediatrics and Child Health, London (United Kingdom)

    2007-11-15

    A new method of assessing neurological function and pathology in the newborn infant is being developed based on the transmission of near-infrared light across the brain. Absorption by blood over a range of wavelengths reveals a strong dependency on oxygenation status, and measurements of transmitted light enable the spatial variation in the concentrations of the oxygenated and de-oxygenated forms of hemoglobin to be derived. Optical tomography has so far provided static three-dimensional maps of blood volume and oxygenation as well as dynamic images revealing the brain's response to sensory stimulation and global hemodynamic changes. The imaging modality is being developed as a safe and non-invasive tool that can be utilized at the cotside in intensive care. Optical tomography of the healthy infant brain is also providing a means of studying neurophysiological processes during early development and the potential consequences of prematurity. (orig.)

  9. The Choroid and Optical Coherence Tomography

    OpenAIRE

    Taha Sezer; Muhammet Altınışık; İbrahim Arif Koytak

    2016-01-01

    The choroid is the most vascular tissue in the eye and it plays an important role in the pathophysiology of various common chorioretinal diseases such as central serous retinopathy, age-related macular degeneration and degenerative myopia. Quantitative assessment of the choroid has been quite challenging with traditional imaging modalities such as indocyanine green angiography and ultrasonography due to limited resolution and repeatability. With the advent of optical coherence tomography (OCT...

  10. Optical tomography system for laboratory turbulence measurements

    Science.gov (United States)

    McMackin, Lenore J.; Pierson, Robert E.; Hugo, Ronald J.; Truman, C. Randall

    1998-10-01

    We describe the design and operation of a high speed optical tomography system for measuring 2D images of a dynamic phase object at a rate of 5 kHz. Data from a set of eight Hartmann wavefront sensors is back-projected to produce phase images showing the details of the inner structure of a heated air flow. Series of reconstructions at different downstream locations illustrate the development of flow structure and the effect of acoustic flow forcing.

  11. Ultrahigh Resolution Optical Coherence Tomography

    Science.gov (United States)

    Drexler, Wolfgang; Chen, Yu; Aguirre, Aaron D.; Považay, Boris; Unterhuber, Angelika; Fujimoto, James G.

    Since its invention in the late 1980s [1-4] and early 1990s [5-7], the original idea of OCT was to enable noninvasive optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology, but without the need for tissue excision and post-processing. An important advance toward this goal was the introduction of ultrahigh-resolution OCT (UHR OCT). By improving axial OCT resolution by one order of magnitude from the 10 to 15 μm to the sub-μm region [8-11], UHR OCT enables superior visualization of tissue microstructure, including all major intraretinal layers in ophthalmic applications as well as cellular resolution OCT imaging in nontransparent tissue. This chapter reviews state-of-the-art technology that enables ultrahigh-resolution OCT covering the entire wavelength region from 500 to 1,600 nm and discusses fundamental limitations of OCT image resolution.

  12. Turbidity Measurement Using An Optical Tomography System

    OpenAIRE

    Sallehuddin Bin Ibrahim

    2013-01-01

    Turbidity is used to describe water quality and it can be caused by the presence of suspended particles and organic matter such as algae, clay and silt. The measurement of turbidity level of water is vital to domestic water supplies since it is related to public health and water treatment process. This paper presents an investigation on an optical tomography system to estimate the turbidity level in a sample of water. The optical sensors consist of infrared light-emitting diodes (LED) as tran...

  13. Optical Coherence Tomography in Tissue Engineering

    Science.gov (United States)

    Zhao, Youbo; Yang, Ying; Wang, Ruikang K.; Boppart, Stephen A.

    Tissue engineering holds the promise for a therapeutic solution in regenerative medicine. The primary goal of tissue engineering is the development of physiologically functional and biocompatible tissues/organs being implanted for the repair and replacement of damaged or diseased ones. Given the complexity in the developing processes of engineered tissues, which involves multi-dimensional interactions among cells of different types, three-dimensionally constructed scaffolds, and actively intervening bioreactors, a capable real-time imaging tool is critically required for expanding our knowledge about the developing process of desired tissues or organs. It has been recognized that optical coherence tomography (OCT), an emerging noninvasive imaging technique that provides high spatial resolution (up to the cellular level) and three-dimensional imaging capability, is a promising investigative tool for tissue engineering. This chapter discusses the existing and potential applications of OCT in tissue engineering. Example OCT investigations of the three major components of tissue engineering, i.e., cells, scaffolds, and bioreactors are overviewed. Imaging examples of OCT and its enabling functions and variants, e.g., Doppler OCT, polarization-sensitive OCT, optical coherence microscopy are emphasized. Remaining challenges in the application of OCT to tissue engineering are discussed, and the prospective solutions including the combination of OCT with other high-contrast and high-resolution modalities such as two-photon fluorescence microscopy are suggested as well. It is expected that OCT, along with its functional variants, will make important contributions toward revealing the complex cellular dynamics in engineered tissues as well as help us culture demanding tissue/organ implants that will advance regenerative medicine.

  14. Evaluation of optical coherence tomography for the measurement of the effects of activators and anticoagulants on the blood coagulation in vitro.

    Science.gov (United States)

    Xu, Xiangqun; Geng, Jinhai; Liu, Gangjun; Chen, Zhongping

    2013-08-01

    Optical properties of human blood during coagulation were studied using optical coherence tomography (OCT) and the parameter of clotting time derived from the 1/e light penetration depth (d(1/e)) versus time was developed in our previous work. In this study, in order to know if a new OCT test can characterize the blood-coagulation process under different treatments in vitro, the effects of two different activators (calcium ions and thrombin) and anticoagulants, i.e., acetylsalicylic acid (ASA, a well-known drug aspirin) and melagatran (a direct thrombin inhibitor), at various concentrations are evaluated. A swept-source OCT system with a 1300 nm center wavelength is used for detecting the blood-coagulation process in vitro under a static condition. A dynamic study of d1/e reveals a typical behavior due to coagulation induced by both calcium ions and thrombin, and the clotting time is concentration-dependent. Dose-dependent ASA and melagatran prolong the clotting times. ASA and melagatran have different effects on blood coagulation. As expected, melagatran is much more effective than ASA in anticoagulation by the OCT measurements. The OCT assay appears to be a simple method for the measurement of blood coagulation to assess the effects of activators and anticoagulants, which can be used for activator and anticoagulant screening.

  15. Optical Coherence Tomography for Brain Imaging

    Science.gov (United States)

    Liu, Gangjun; Chen, Zhongping

    Recently, there has been growing interest in using OCT for brain imaging. A feasibility study of OCT for guiding deep brain probes has found that OCT can differentiate the white matter and gray matter because the white matter tends to have a higher peak reflectivity and steeper attenuation rate compared to gray matter. In vivo 3D visualization of the layered organization of a rat olfactory bulb with OCT has been demonstrated. OCT has been used for single myelin fiber imaging in living rodents without labeling. The refractive index in the rat somatosensory cortex has also been measured with OCT. In addition, functional extension of OCT, such as Doppler-OCT (D-OCT), polarization sensitive-OCT (PS-OCT), and phase-resolved-OCT (PR-OCT), can image and quantify physiological parameters in addition to the morphological structure image. Based on the scattering changes during neural activity, OCT has been used to measure the functional activation in neuronal tissues. PS-OCT, which combines polarization sensitive detection with OCT to determine tissue birefringence, has been used for the localization of nerve fiber bundles and the mapping of micrometer-scale fiber pathways in the brain. D-OCT, also named optical Doppler tomography (ODT), combines the Doppler principle with OCT to obtain high resolution tomographic images of moving constituents in highly scattering biological tissues. D-OCT has been successfully used to image cortical blood flow and map the blood vessel network for brain research. In this chapter, the principle and technology of OCT and D-OCT are reviewed and examples of potential applications are described.

  16. Optical coherence tomography findings of quinine poisoning

    Directory of Open Access Journals (Sweden)

    John Christoforidis

    2011-01-01

    Full Text Available John Christoforidis, Robert Ricketts, Theodore Loizos, Susie ChangThe Ohio State University College of Medicine, Columbus, OH, USAPurpose: To report a case of acute quinine poisoning, document acute and chronic macular changes with optical coherence tomography imaging and fluorescein angiography (FA, and to review the literature on ocular toxicity of quinine.Methods: A 32-year-old white female presented to our Emergency Department after ingesting over 7.5 g of quinine. She underwent a complete ophthalmologic examination, fluorescein angiography, Stratus time-domain optical coherence tomography (OCT, and electroretinography at 72 hours and 15 months postingestion. Stratus time-domain and Cirrus spectral-domain OCT, fundus autofluorescence, and FA were obtained at 28 months postingestion.Results: Fluorescein angiography at 72 hours postingestion revealed normal filling times and vasculature. OCT showed marked thickening of the inner retina bilaterally. At 15 and 28 months follow-up, fundus photography and fluorescein angiography demonstrated optic nerve pallor, severely attenuated retinal vessels while OCT showed inner retinal atrophy. Fundus autofluorescence did not reveal any retinal pigmentary abnormalities.Conclusions: Quinine toxicity as seen by OCT reveals increased thickness with inner retinal hyperreflectivity acutely with development of significant retinal atrophy in the long-term. Fundus autofluorescence reveals an intact retinal pigment epithelial layer at 28 months. These findings suggest that quinine poisoning may produce a direct toxic effect on the inner retina in the acute phase resulting in long-term retinal atrophy.Keywords: retinal, optical coherence tomography, quinine toxicity 

  17. Optical coherence tomography investigations of ceramic lumineers

    Science.gov (United States)

    Fernandes, Luana O.; Graça, Natalia D. R. L.; Melo, Luciana S. A.; Silva, Claudio H. V.; Gomes, Anderson S. L.

    2016-02-01

    Lumineers are veneer laminates used as an alternative for aesthetic dental solutions of the highest quality, but the only current means of its performance assessment is visual inspection. The objective of this study was to use the Optical Coherence Tomography (OCT) technique working in spectral domain to analyze in vivo in a single patient, 14 lumineers 180 days after cementation. It was possible to observe images in various kinds of changes in the cementing line and the laminate. It was concluded that the OCT is an effective and promising method to clinical evaluation of the cementing line in lumineers.

  18. Optical Coherence Tomography Angiography in Fovea Plana.

    Science.gov (United States)

    Dolz-Marco, Rosa; Phasukkijwatana, Nopasak; Sarraf, David; Freund, K Bailey

    2016-07-01

    Fovea plana is characterized by the anatomical absence of the foveal pit in eyes with normal visual function. The authors have analyzed three cases of idiopathic fovea plana with optical coherence tomography angiography (OCTA). As previously reported, the authors found the absence of a foveal avascular zone in all cases with OCTA; however, a preserved fusion of both the superficial and the deep capillary plexuses was found around the foveal center. This novel observation cannot be detected with conventional dye-based angiography, in which the deep capillary plexus is not visualized. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:670-673.].

  19. Fiber optic based optical coherence tomography (OCT) for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  20. Adaptive optics optical coherence tomography for retina imaging

    Institute of Scientific and Technical Information of China (English)

    Guohua Shi; Yun Dai; Ling Wang; Zhihua Ding; Xuejun Rao; Yudong Zhang

    2008-01-01

    When optical coherence tomography (OCT) is used for human retina imaging, its transverse resolution is limited by the aberrations of human eyes. To overcome this disadvantage, a high resolution imaging system for living human retina, which consists of a time domain OCT system and a 37-elements adaptive optics (AO) system, has been developed. The AO closed loop rate is 20 frames per second, and the OCT has a 6.7-μm axial resolution. In this paper, this system is introduced and the high resolution imaging results for retina are presented.

  1. Turbidity Measurement Using An Optical Tomography System

    Directory of Open Access Journals (Sweden)

    Sallehuddin Bin Ibrahim

    2013-10-01

    Full Text Available Turbidity is used to describe water quality and it can be caused by the presence of suspended particles and organic matter such as algae, clay and silt. The measurement of turbidity level of water is vital to domestic water supplies since it is related to public health and water treatment process. This paper presents an investigation on an optical tomography system to estimate the turbidity level in a sample of water. The optical sensors consist of infrared light-emitting diodes (LED as transmitters and photodiodes as the receivers where the projections of the sensors are designed in fan beam mode. The system was tested using a vertical flow pipe. The Independent Component Analysis (ICA method was used to display the concentration profile. Results obtained proved that the technique can provide the concentration profile representing the turbidity level of water.

  2. Two-point optical coherency matrix tomography.

    Science.gov (United States)

    Abouraddy, Ayman F; Kagalwala, Kumel H; Saleh, Bahaa E A

    2014-04-15

    The two-point coherence of an electromagnetic field is represented completely by a 4×4 coherency matrix G that encodes the joint polarization-spatial-field correlations. Here, we describe a systematic sequence of cascaded spatial and polarization projective measurements that are sufficient to tomographically reconstruct G--a task that, to the best of our knowledge, has not yet been realized. Our approach benefits from the correspondence between this reconstruction problem in classical optics and that of quantum state tomography for two-photon states in quantum optics. Identifying G uniquely determines all the measurable correlation characteristics of the field and, thus, lifts ambiguities that arise from reliance on traditional scalar descriptors, especially when the field's degrees of freedom are correlated or classically entangled.

  3. Optical Coherence Tomography Velocimetry with Complex Fluids

    Science.gov (United States)

    Malm, A.; Waigh, T. A.; Jaradat, S.; Tomlin, R.

    2015-04-01

    We present recent results obtained with an Optical Coherence Tomography Velocimetry technique. An optical interferometer measures the velocity of a sheared fluid at specific depths of the sample using the coherence length of the light source. The technique allows the dynamics of 3 pico liter volumes to be probed inside opaque complex fluids. In a study of opaque starch suspensions, classical bulk rheology experiments show non-linear shear thickening, whereas observations of the velocity profiles as a function of distance across the gap show Newtonian behavior. The ability of the technique to measure velocity fluctuations is also discussed for the case of polyacrylamide samples which were observed to display shear banding behavior. A relationship between the viscoelasticity of the sample and the size of the apparent fluctuations is observed.

  4. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  5. Functional Doppler optical coherence tomography for cortical blood flow imaging

    Science.gov (United States)

    Yu, Lingfeng; Liu, Gangjun; Nguyen, Elaine; Choi, Bernard; Chen, Zhongping

    2010-02-01

    Optical methods have been widely used in basic neuroscience research to study the cerebral blood flow dynamics in order to overcome the low spatial resolution associated with magnetic resonance imaging and positron emission tomography. Although laser Doppler imaging and laser speckle imaging can map out en face cortical hemodynamics and columns, depth resolution is not available. Two-photon microscopy has been used for mapping cortical activity. However, flow measurement requires fluorescent dye injection, which can be problematic. The noninvasive and high resolution tomographic capabilities of optical coherence tomography make it a promising technique for mapping depth resolved cortical blood flow. Here, we present a functional Doppler optical coherence tomography (OCT) imaging modality for quantitative evaluation of cortical blood flow in a mouse model. Fast, repeated, Doppler OCT scans across a vessel of interest were performed to record flow dynamic information with a high temporal resolution of the cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time, thereby providing complementary temporal flow information to the spatially distributed flow information of Doppler OCT. The proposed functional Doppler OCT imaging modality can be used to diagnose vessel stenosis/blockage or monitor blood flow changes due to pharmacological agents/neuronal activities. Non-invasive in-vivo mice experiments were performed to verify the capabilities of function Doppler OCT.

  6. Snapshot Spectral Domain Optical Coherence Tomography

    Science.gov (United States)

    Valdez, Ashley

    Optical coherence tomography systems are used to image the retina in 3D to allow ophthalmologists diagnose ocular disease. These systems yield large data sets that are often labor-intensive to analyze and require significant expertise in order to draw conclusions, especially when used over time to monitor disease progression. Spectral Domain Optical Coherence Tomography (SD-OCT) instantly acquires depth profiles at a single location with a broadband source. These systems require mechanical scanning to generate two- or three-dimensional images. Instead of mechanically scanning, a beamlet array was used to permit multiple depth measurements on the retina with a single snapshot using a 3x 3 beamlet array. This multi-channel system was designed, assembled, and tested using a 1 x 2 beamlet lens array instead of a 3 x 3 beamlet array as a proof of concept prototype. The source was a superluminescent diode centered at 840nm with a 45nm bandwidth. Theoretical axial resolution was 6.92um and depth of focus was 3.45mm. Glass samples of varying thickness ranging from 0.18mm to 1.14mm were measured with the system to validate that correct depth profiles can be acquired for each channel. The results demonstrated the prototype system performed as expected, and is ready to be modified for in vivo applicability.

  7. Near-Infrared Diffuse Optical Tomography

    Directory of Open Access Journals (Sweden)

    A. H. Hielscher

    2002-01-01

    Full Text Available Diffuse optical tomography (DOT is emerging as a viable new biomedical imaging modality. Using near-infrared (NIR light, this technique probes absorption as well as scattering properties of biological tissues. First commercial instruments are now available that allow users to obtain cross-sectional and volumetric views of various body parts. Currently, the main applications are brain, breast, limb, joint, and fluorescence/bioluminescence imaging. Although the spatial resolution is limited when compared with other imaging modalities, such as magnetic resonance imaging (MRI or X-ray computerized tomography (CT, DOT provides access to a variety of physiological parameters that otherwise are not accessible, including sub-second imaging of hemodynamics and other fast-changing processes. Furthermore, DOT can be realized in compact, portable instrumentation that allows for bedside monitoring at relatively low cost. In this paper, we present an overview of current state-of-the -art technology, including hardware and image-reconstruction algorithms, and focus on applications in brain and joint imaging. In addition, we present recent results of work on optical tomographic imaging in small animals.

  8. Optical Coherence Tomography in a Needle Format

    Science.gov (United States)

    Lorenser, Dirk; McLaughlin, Robert A.; Sampson, David D.

    In this chapter, we review the technology and applications of needle probes for optical coherence tomography (OCT). Needle probes are miniaturized fiber-optic probes that can be mounted inside hypodermic needles, allowing them to be inserted deep into the body during OCT imaging. This overcomes the very limited imaging depth of OCT of only 2-3 mm in biological tissue, enabling access to deep-tissue locations that are beyond the reach of free-space optical scan heads or catheters. This chapter provides an in-depth review of the current state-of-the art in needle probe technology, including optical design and fabrication, scan mechanisms (including three-dimensional scanning), and integration into OCT systems. It also provides an overview of emerging applications of this fascinating new imaging tool in areas such as cancer diagnosis, pulmonary imaging, imaging of the eye and imaging of the brain. Finally, two case studies are presented, illustrating needle-based OCT imaging in breast cancer and lungs.

  9. Optical coherence tomography technology and applications

    CERN Document Server

    Fujimoto, James

    2015-01-01

    Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue.  Between 30 to 40 Million OCT imaging procedures are performed per year in ophthalmology.  The overall market is estimated at more than 0.5 Billion USD.  A new generation OCT technology was developed, dramatically increasing resolution and speed, achieving in vivo optical biopsy, i.e. the visualization of tissue architectural morphology in situ and in real time.  Functional extensions of OCT technology enable non-invasive, depth resolved functional assessment and imaging of tissue.  The book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from the biomedical and clinical perspective. This second edition is widely extended and covers significantly more topics then the first edition of this book. The chapters are written leading intern...

  10. Optical Tomography Imaging in Pneumatic Conveyor

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2008-08-01

    Full Text Available This paper describes the development of a tomographic system by employing optical sensors using low cost approach. The final aim of this project is achieving real-time monitoring of solid particles having low concentration flow when conveyed in vertical pneumatic conveyor. The developed tomography system consists of 32 pairs of Light Emitting Diode (LED and silicon PIN photodiode. These sensors are used to monitor the emitted radiation for fluctuations caused by particles interfering with the beam when passing through it. A good design of sensor fixture may increase the collimating of light beam from a light source that passes through a flow regime. The obtained information from sensors provided the cross-sectional material distribution in conveyor. By using this information, the relationships between particle distribution and light attenuation effects are investigated by using computer programming to reconstruct the image. The results obtained from this investigation shows that the low cost optical sensors are suitable for monitoring low and medium concentration flowing materials. Optical sensors provide an opportunity to design sensors with a very wide bandwidth, thus enabling the measurement of high speed flowing particles or droplets.

  11. Information theoretic regularization in diffuse optical tomography.

    Science.gov (United States)

    Panagiotou, Christos; Somayajula, Sangeetha; Gibson, Adam P; Schweiger, Martin; Leahy, Richard M; Arridge, Simon R

    2009-05-01

    Diffuse optical tomography (DOT) retrieves the spatially distributed optical characteristics of a medium from external measurements. Recovering the parameters of interest involves solving a nonlinear and highly ill-posed inverse problem. This paper examines the possibility of regularizing DOT via the introduction of a priori information from alternative high-resolution anatomical modalities, using the information theory concepts of mutual information (MI) and joint entropy (JE). Such functionals evaluate the similarity between the reconstructed optical image and the prior image while bypassing the multimodality barrier manifested as the incommensurate relation between the gray value representations of corresponding anatomical features in the two modalities. By introducing structural information, we aim to improve the spatial resolution and quantitative accuracy of the solution. We provide a thorough explanation of the theory from an imaging perspective, accompanied by preliminary results using numerical simulations. In addition we compare the performance of MI and JE. Finally, we have adopted a method for fast marginal entropy evaluation and optimization by modifying the objective function and extending it to the JE case. We demonstrate its use on an image reconstruction framework and show significant computational savings.

  12. Optical tomography of the aurora and EISCAT

    Directory of Open Access Journals (Sweden)

    H. U. Frey

    Full Text Available Tomographic reconstruction of the three-dimensional auroral arc emission is used to obtain vertical and horizontal distributions of the optical auroral emission. Under the given experimental conditions with a very limited angular range and a small number of observers, algebraic reconstruction methods generally yield better results than transform techniques. Different algebraic reconstruction methods are tested with an auroral arc model and the best results are obtained with an iterative least-square method adapted from emission-computed tomography. The observation geometry used during a campaign in Norway in 1995 is tested with the arc model and root-mean-square errors, to be expected under the given geometrical conditions, are calculated. Although optimum geometry was not used, root-mean-square errors of less than 2% for the images and of the order of 30% for the distribution could be obtained. The method is applied to images from real observations. The correspondence of original pictures and projections of the reconstructed volume is discussed, and emission profiles along magnetic field lines through the three-dimensionally reconstructed arc are calibrated into electron density profiles with additional EISCAT measurements. Including a background profile and the temporal changes of the electron density due to recombination, good agreement can be obtained between measured profiles and the time-sequence of calculated profiles. These profiles are used to estimate the conductivity distribution in the vicinity of the EISCAT site. While the radar can only probe the ionosphere along the radar beam, the three-dimensional tomography enables conductivity estimates in a large area around the radar site.

    Key words. Tomography · Aurora · EISCAT · Ionosphere · Conductivity

  13. Nonlinear inversion schemes for fluorescence optical tomography.

    Science.gov (United States)

    Freiberger, Manuel; Egger, Herbert; Scharfetter, Hermann

    2010-11-01

    Fluorescence optical tomography is a non-invasive imaging modality that employs the absorption and re-emission of light by fluorescent dyes. The aim is to reconstruct the fluorophore distribution in a body from measurements of light intensities at the boundary. Due to the diffusive nature of light propagation in tissue, fluorescence tomography is a nonlinear and severely ill-posed problem, and some sort of regularization is required for a stable solution. In this paper we investigate reconstruction methods based on Tikhonov regularization with nonlinear penalty terms, namely total-variation regularization and a levelset-type method using a nonlinear parameterization of the unknown function. Moreover, we use the full threedimensional nonlinear forward model, which arises from the governing system of partial differential equations. We discuss the numerical realization of the regularization schemes by Newtontype iterations, present some details of the discretization by finite element methods, and outline the efficient implementation of sensitivity systems via adjoint methods. As we will demonstrate in numerical tests, the proposed nonlinear methods provide better reconstructions than standard methods based on linearized forward models and linear penalty terms. We will additionally illustrate, that the careful discretization of the methods derived on the continuous level allows to obtain reliable, mesh independent reconstruction algorithms.

  14. Optical coherence tomography for diagnosing periodontal disease

    Science.gov (United States)

    Colston, Bill W., Jr.; Everett, Matthew J.; Da Silva, Luiz B.; Otis, Linda L.; Nathel, Howard

    1997-05-01

    We have, in this preliminary study, investigated the use of optical coherence tomography for diagnosis of periodontal disease. We took in vitro OCT images of the dental and periodontal tissues from a young pig and compared them to histological sections. These images distinguish tooth and soft tissue relationships that are important in diagnosing and assessing periodontal disease. We have imaged the attachment of gingiva to the tooth surface and located the cemento-enamel junction. This junction is an important reference point for defining attachment level in the diagnosis of periodontal disease. the boundary between enamel and dentin is also visible for most of the length of the anatomical crown, allowing quantitation of enamel thickness and character.

  15. Cubic meter volume optical coherence tomography

    Science.gov (United States)

    WANG, ZHAO; POTSAID, BENJAMIN; CHEN, LONG; DOERR, CHRIS; LEE, HSIANG-CHIEH; NIELSON, TORBEN; JAYARAMAN, VIJAYSEKHAR; CABLE, ALEX E.; SWANSON, ERIC; FUJIMOTO, JAMES G.

    2017-01-01

    Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications. PMID:28239628

  16. The Choroid and Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Taha Sezer

    2016-01-01

    Full Text Available The choroid is the most vascular tissue in the eye and it plays an important role in the pathophysiology of various common chorioretinal diseases such as central serous retinopathy, age-related macular degeneration and degenerative myopia. Quantitative assessment of the choroid has been quite challenging with traditional imaging modalities such as indocyanine green angiography and ultrasonography due to limited resolution and repeatability. With the advent of optical coherence tomography (OCT technology, detailed visualization of the choroid in vivo is now possible. Measurements of choroidal thickness have also enabled new directions in research to study normal and pathological processes within the choroid. The aim of the present study is to review the current literature on choroidal imaging using OCT

  17. The Choroid and Optical Coherence Tomography

    Science.gov (United States)

    Sezer, Taha; Altınışık, Muhammet; Koytak, İbrahim Arif; Özdemir, Mehmet Hakan

    2016-01-01

    The choroid is the most vascular tissue in the eye and it plays an important role in the pathophysiology of various common chorioretinal diseases such as central serous retinopathy, age-related macular degeneration and degenerative myopia. Quantitative assessment of the choroid has been quite challenging with traditional imaging modalities such as indocyanine green angiography and ultrasonography due to limited resolution and repeatability. With the advent of optical coherence tomography (OCT) technology, detailed visualization of the choroid in vivo is now possible. Measurements of choroidal thickness have also enabled new directions in research to study normal and pathological processes within the choroid. The aim of the present study is to review the current literature on choroidal imaging using OCT. PMID:27800255

  18. Advanced modelling of optical coherence tomography systems

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Thrane, L.; Yura, H.T.;

    2004-01-01

    Analytical and numerical models for describing and understanding the light propagation in samples imaged by optical coherence tomography (OCT) systems are presented. An analytical model for calculating the OCT signal based on the extended Huygens–Fresnel principle valid both for the single...... and multiple scattering regimes is reviewed. An advanced Monte Carlo model for calculating the OCT signal is also reviewed, and the validity of this model is shown through a mathematical proof based on the extended Huygens–Fresnel principle. Moreover, for the first time the model is verified experimentally....... From the analytical model, an algorithm for enhancing OCT images is developed; the so-called true-reflection algorithm in which the OCT signal may be corrected for the attenuation caused by scattering. For the first time, the algorithm is demonstrated by using the Monte Carlo model as a numerical...

  19. Image Distortion of Optical Coherence Tomography

    Institute of Scientific and Technical Information of China (English)

    安源; 姚建铨

    2004-01-01

    A kind of image distortion in Optical Coherence Tomography (OCT) resulted from average refractive index changes between structures of bio-tissue is discussed for the first time.Analysis is given on following situations:1) Exact refraction index changes between microstructures;2)The gradient of average refractive index change between different tissue layers is parallel to the probe beam;3) The gradient of average refractive index change is vertical to the probe beam.The results show that the image distortion of situation 1) is usually negligible;in situation 2) there is a spread or shrink effect without relative location error; however,in situation 3) there is a significant image error inducing relative location displacement between different structures.Preliminary design to eliminate the distortion is presented,the method of which mainly based on the image classification and pixel array re-arrangement.

  20. EDITORIAL: Optical tomography and digital holography

    Science.gov (United States)

    Coupland, Jeremy; Lobera, Julia

    2008-07-01

    the resolution now places a limit on the size of the object that can be recorded. Some 60 years after the pioneering work of Gabor, digital imaging and associated computer technology offers a step change in capability with which to further exploit holography. Modern image sensors are now available with almost 30 million photosensitive elements, which corresponds to a staggering 100-fold increase compared to standard television images. At the same time personal computers have been optimized for imaging and graphics applications and this allows more sophisticated algorithms to be used in the reconstruction process. Although resolution still falls short of the materials used for optical holography, the ability to process data numerically generally outweighs this drawback and presents us with a host of new opportunities. Faced with the ability to record and process holograms numerically, it is natural to ask the question 'what information is present within recordings of scattered light?'. In fact this question could be posed by anyone using light, or indeed any other wave disturbance, for measurement purposes. For the case of optical holography, Wolf published his answer in 1969 [6], showing that for the case of weak scattering (small perturbations) and plane wave illumination, the amplitude and phase of each plane wave within the scattered field are proportional to those of a periodic variation in the refractive index contrast (i.e. a Bragg grating). This Fourier decomposition of the object was published almost simultaneously by Dandliker and Weiss [7], who also provided a graphical illustration of the technique. These works are the basis of optical tomography and provide us with the link between holographic data and 3D form. Digital holographic reconstruction and optical tomography was the theme of an international workshop [8] held in Loughborough in 2007, and many of the topics debated at the workshop have become the subject of the papers in this issue. In general

  1. Ultrathin lensed fiber-optic probe for optical coherence tomography.

    Science.gov (United States)

    Qiu, Y; Wang, Y; Belfield, K D; Liu, X

    2016-06-01

    We investigated and validated a novel method to develop ultrathin lensed fiber-optic (LFO) probes for optical coherence tomography (OCT) imaging. We made the LFO probe by attaching a segment of no core fiber (NCF) to the distal end of a single mode fiber (SMF) and generating a curved surface at the tip of the NCF using the electric arc of a fusion splicer. The novel fabrication approach enabled us to control the length of the NCF and the radius of the fiber lens independently. By strategically choosing these two parameters, the LFO probe could achieve a broad range of working distance and depth of focus for different OCT applications. A probe with 125μm diameter and lateral resolution up to 10μm was demonstrated. The low-cost, disposable and robust LFO probe is expected to have great potential for interstitial OCT imaging.

  2. Biological activity is the likely origin of the intersection between the photoreceptor inner and outer segments of the rat retina as determined by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Yamauchi Y

    2011-11-01

    Full Text Available Yasuyuki Yamauchi, Hiromichi Yagi, Yoshihiko Usui, Keisuke Kimura, Tsuyoshi Agawa, Rintaro Tsukahara, Naoyuki Yamakawa, Hiroshi GotoDepartment of Ophthalmology, Tokyo Medical University Hospital, Tokyo, JapanBackground: Recent research on macular diseases has prompted investigations into the condition of the intersection between the photoreceptor inner and outer segments (IS/OS and the relationship with retinal photoreceptor abnormalities. Although the origin of the IS/OS in optical coherence tomography (OCT images is unclear, it may be related to either the cellular activity of the photoreceptors or the structure of the OS disks. To address this question, we compared the IS/OS status in OCT images of rat retinas before and after euthanasia.Methods: OCT images were taken before and after euthanasia in four eyes of two Brown Norway rats. After the OCT images were taken, the rats were used for histopathological studies to confirm that retinal structures were intact.Results: Before euthanasia, the IS/OS and external limiting membrane (ELM line were clearly identifiable on the OCT images. However, after euthanasia, neither the IS/OS nor the ELM line was evident in three out of four eyes, and a faint IS/OS and an ELM line were identified in one eye. Histopathological analysis did not show any abnormalities in the retina in any of the four eyes.Conclusion: The origin of the IS/OS identified in OCT images is likely related to the biological activities of the photoreceptor cells.Keywords: IS/OS, OCT, histopathology, biological activity

  3. Transsynaptic retinal degeneration in optic neuropathies: optical coherence tomography study.

    Science.gov (United States)

    Sriram, Prema; Graham, Stuart L; Wang, Chenyu; Yiannikas, Con; Garrick, Raymond; Klistorner, Alexander

    2012-03-09

    Recently demonstrated neuronal loss in the inner nuclear layer of the retina in multiple sclerosis (MS) and glaucoma raises the question of a primary (possibly immune-mediated) or secondary (transsynaptic) mechanism of retinal damage in these diseases. In the present study we used optical coherence tomography to investigate retrograde retinal transsynaptic degeneration in patients with long-standing and severe loss of ganglion cells due to optic neuropathy. Fifteen eyes of glaucoma patients with visual field defect limited to upper hemifield and 15 eyes of MS patients with previous episode of optic neuritis (ON) and extensive loss of ganglion cells were imaged using spectral-domain optical coherence tomography and compared with two groups of age-matched controls. Combined retinal ganglion cell layer/inner plexiform layer (GCL/IPL) thickness and inner nuclear layer (INL) thickness were analyzed. In the glaucoma group there was a significant (P = 0.0005) reduction of GCL/IPL thickness in the lower (affected) retina compared with normal controls; however INL thickness was not statistically reduced (P = 0.49). In the MS group reduction of GCL/IPL thickness in both hemifields of ON eyes was also significant (P = 0.0001 and P < 0.0001 for inferior and superior retina respectively). However, similar to the glaucomatous eyes, there was no significant reduction of INL thickness in both hemifields (P = 0.25 and P = 0.45). This study demonstrates no significant loss of INL thickness in parts of the retina with long-standing and severe loss of retinal ganglion cells.

  4. Optical coherence tomography for endodontic imaging

    Science.gov (United States)

    van Soest, G.; Shemesh, H.; Wu, M.-K.; van der Sluis, L. W. M.; Wesselink, P. R.

    2008-02-01

    In root canal therapy, complications frequently arise as a result of root fracture or imperfect cleaning of fins and invaginations. To date, there is no imaging method for nondestructive in vivo evaluation of the condition of the root canal, during or after treatment. There is a clinical need for a technique to detect defects before they give rise to complications. In this study we evaluate the ability of optical coherence tomography (OCT) to image root canal walls, and its capacity to identify complicating factors in root canal treatment. While the potential of OCT to identify caries has been explored before, endodontic imaging has not been reported. We imaged extracted lower front teeth after endodontic preparation and correlated these images to histological sections. A 3D OCT pullback scan was made with an endoscopic rotating optical fiber probe inside the root canal. All oval canals, uncleaned fins, risk zones, and one perforation that were detected by histology were also imaged by OCT. As an example of an area where OCT has clinical potential, we present a study of vertical root fracture identification with OCT.

  5. Optical coherence tomography used for internal biometrics

    Science.gov (United States)

    Chang, Shoude; Sherif, Sherif; Mao, Youxin; Flueraru, Costel

    2007-06-01

    Traditional biometric technologies used for security and person identification essentially deal with fingerprints, hand geometry and face images. However, because all these technologies use external features of human body, they can be easily fooled and tampered with by distorting, modifying or counterfeiting these features. Nowadays, internal biometrics which detects the internal ID features of an object is becoming increasingly important. Being capable of exploring under-skin structure, optical coherence tomography (OCT) system can be used as a powerful tool for internal biometrics. We have applied fiber-optic and full-field OCT systems to detect the multiple-layer 2D images and 3D profile of the fingerprints, which eventually result in a higher discrimination than the traditional 2D recognition methods. More importantly, the OCT based fingerprint recognition has the ability to easily distinguish artificial fingerprint dummies by analyzing the extracted layered surfaces. Experiments show that our OCT systems successfully detected the dummy, which was made of plasticene and was used to bypass the commercially available fingerprint scanning system with a false accept rate (FAR) of 100%.

  6. Optical Magnetic Induction Tomography of the Heart

    Science.gov (United States)

    Marmugi, Luca; Renzoni, Ferruccio

    2016-04-01

    Atrial Fibrillation (AF) affects a significant fraction of the ageing population, causing a high level of morbidity and mortality. Despite its significance, the causes of AF are still not uniquely identified. This, combined with the lack of precise diagnostic and guiding tools, makes the clinical treatment of AF sub-optimal. We identify magnetic induction tomography as the most promising technique for the investigation of the causes of fibrillation and for its clinical practice. We therefore propose a novel optical instrument based on optical atomic magnetometers, fulfilling the requirements for diagnostic mapping of the heart’s conductivity. The feasibility of the device is here discussed in view of the final application. Thanks to the potential of atomic magnetometers for miniaturisation and extreme sensitivity at room temperature, a new generation of compact and non-invasive diagnostic instrumentation, with both bedside and intra-operative operation capability, is envisioned. Possible scenarios both in clinical practice and biomedical research are then discussed. The flexibility of the system makes it promising also for application in other fields, such as neurology and oncology.

  7. Multispectral guided fluorescence diffuse optical tomography using upconverting nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Svenmarker, Pontus, E-mail: pontus.svenmarker@physics.umu.se [Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden); Department of Physics, Umeå University, SE-901 87 Umeå (Sweden); Centre for Microbial Research (UCMR), Umeå University, SE-901 87 Umeå (Sweden); Xu, Can T.; Liu, Haichun; Wu, Xia; Andersson-Engels, Stefan [Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund (Sweden)

    2014-02-17

    We report on improved image detectability for fluorescence diffuse optical tomography using upconverting nanoparticles doped with rare-earth elements. Core-shell NaYF{sub 4}:Yb{sup 3+}/Er{sup 3+}@NaYF{sub 4} upconverting nanoparticles were synthesized through a stoichiometric method. The Yb{sup 3+}/Er{sup 3+} sensitizer-activator pair yielded two anti-Stokes shifted fluorescence emission bands at 540 nm and 660 nm, here used to a priori estimate the fluorescence source depth with sub-millimeter precision. A spatially varying regularization incorporated the a priori fluorescence source depth estimation into the tomography reconstruction scheme. Tissue phantom experiments showed both an improved resolution and contrast in the reconstructed images as compared to not using any a priori information.

  8. Evaluating the Use of Optical Coherence Tomography in Optic Neuritis

    Directory of Open Access Journals (Sweden)

    Fiona Costello

    2011-01-01

    Full Text Available Optic neuritis (ON is an inflammatory optic nerve injury, which is strongly associated with multiple sclerosis (MS. Axonal damage in the optic nerve manifests as retinal nerve fiber layer (RNFL deficits, which can be readily quantified with optical coherence tomography (OCT. The RNFL represents the most proximal region of the afferent visual pathway; and, as such, is a unique region of the central nervous system (CNS because it lacks myelin. Changes in retinal integrity can be correlated with reliable and quantifiable visual outcomes to provide a structural-functional paradigm of CNS injury. Because the eye provides a unique “view” into the effects of CNS inflammation, the ON “system model” may provide greater understanding about disease mechanisms, which underpin disability in MS. This review addresses the applications of OCT in study of ON patients, with specific reference to the published reports to date. The future role of OCT is discussed, both in terms of the potential gains and certain challenges associated with this evolving technology.

  9. Optical Biopsy Using Tissue Spectroscopy and Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Norman S Nishioka

    2003-01-01

    Full Text Available ‘Optical biopsy’ or ‘optical diagnostics’ is a technique whereby light energy is used to obtain information about the structure and function of tissues without disrupting them. In fluorescence spectroscopy, light energy (usually provided by a laser is used to excite tissues and the resulting fluorescence provides information about the target tissue. Its major gastrointestinal application has been in the evaluation of colonic polyps, in which it can reliably distinguish malignant from benign lesions. Optical coherence tomography (OCT has been used in the investigation of Barrett’s epithelium (and dysplasia, although a variety of other applications are feasible. For example, OCT could assist in the identification and staging of mucosal and submucosal neoplasms, the grading of inflammation in the stomach and intestine, the diagnosis of biliary tumours and the assessment of villous architecture. OCT differs from endoscopic ultrasound, a complementary modality, in that it has a much higher resolution but lesser depth of penetration. The images correlate with the histopathological appearance of tissues, and the addition of Doppler methods may enable it to evaluate the vascularity of tumours and the amount of blood flow in varices. Refinements in these new optical techniques will likely make them valuable in clinical practice, although their specific roles have yet to be determined.

  10. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis.

    Science.gov (United States)

    Syc, Stephanie B; Saidha, Shiv; Newsome, Scott D; Ratchford, John N; Levy, Michael; Ford, E'tona; Crainiceanu, Ciprian M; Durbin, Mary K; Oakley, Jonathan D; Meyer, Scott A; Frohman, Elliot M; Calabresi, Peter A

    2012-02-01

    Post-mortem ganglion cell dropout has been observed in multiple sclerosis; however, longitudinal in vivo assessment of retinal neuronal layers following acute optic neuritis remains largely unexplored. Peripapillary retinal nerve fibre layer thickness, measured by optical coherence tomography, has been proposed as an outcome measure in studies of neuroprotective agents in multiple sclerosis, yet potential swelling during the acute stages of optic neuritis may confound baseline measurements. The objective of this study was to ascertain whether patients with multiple sclerosis or neuromyelitis optica develop retinal neuronal layer pathology following acute optic neuritis, and to systematically characterize such changes in vivo over time. Spectral domain optical coherence tomography imaging, including automated retinal layer segmentation, was performed serially in 20 participants during the acute phase of optic neuritis, and again 3 and 6 months later. Imaging was performed cross-sectionally in 98 multiple sclerosis participants, 22 neuromyelitis optica participants and 72 healthy controls. Neuronal thinning was observed in the ganglion cell layer of eyes affected by acute optic neuritis 3 and 6 months after onset (P optica, with and without a history of optic neuritis, when compared with healthy controls (P optica and a history of optic neuritis exhibited the greatest reduction in ganglion cell layer thickness. Results from our in vivo longitudinal study demonstrate retinal neuronal layer thinning following acute optic neuritis, corroborating the hypothesis that axonal injury may cause neuronal pathology in multiple sclerosis. Further, these data provide evidence of subclinical disease activity, in both participants with multiple sclerosis and with neuromyelitis optica without a history of optic neuritis, a disease in which subclinical disease activity has not been widely appreciated. No pathology was seen in the inner or outer nuclear layers of eyes with optic

  11. Refractive index tomography based on optical coherence tomography and tomographic reconstruction algorithm

    Science.gov (United States)

    Kitazawa, Takahiro; Nomura, Takanori

    2017-09-01

    Refractive index (RI) tomography based on not quantitative phase imaging (QPI) but optical coherence tomography (OCT) is proposed. In conventional RI tomography, the phase unwrapping process deteriorates measurement accuracy owing to the unwrapping error. To eliminate the unwrapping process, the introduction of OCT is proposed, because OCT directly provides optical thickness. The proposed method can improve measurement accuracy owing to the removal of the phase unwrapping error. The feasibility of the method is confirmed by numerical simulations and optical experiments. These results show that the proposed method can reduce measurement errors even when an object shows phase changes much larger than a wavelength.

  12. Comparative study of optic disc measurement by Copernicus optical coherence tomography and Heidelberg retinal tomography.

    Science.gov (United States)

    Yang, Qing-Song; Yu, Ya-Jie; Li, Shu-Ning; Liu, Juan; Hao, Ying-Juan

    2012-08-01

    Copernicus optical coherence tomography (SOCT) is a new, ultra high-speed and high-resolution instrument available for clinical evaluation of optic nerve. The purpose of the study was to compare the agreements between SOCT and Heidelberg retinal tomography (HRT). A total of 44 healthy normal volunteers were recruited in this study. One eye in each subject was selected randomly. Agreement between SOCT and HRT-3 in measuring optic disc area was assessed using Bland-Altman plots. Relationships between measurements of optic nerve head parameter obtained by SOCT and HRT-3 were assessed by Pearson correlation. There was no significant difference in the average cup area (0.306 vs. 0.355 mm, P = 0.766), cup volume (0.158 vs. 0.130 mm, P = 0.106) and cup/disc ration (0.394 vs. 0.349 mm, P = 0.576) measured by the two instruments. However, other optic disc parameters from SOCT were significantly lower compared with HRT-3. The Bland-Altman plot revealed good agreement of cup area and cup volume measured by SOCT and HRT-3. Bad agreement of disc area, rim area, rim volume and cup/disc ratio were found between SOCT and HRT-3. The highest correlations between the two instruments were observed for cup area (r(2) = 0.783, P = 0.000) and cup/disc ratio (r(2) = 0.669, P = 0.000), whereas the lowest correlation was observed for disc area (r(2) = 0.100, P = 0.037), rim area (r(2) = 0.275, P = 0.000), cup volume (r(2) = 0.005, P = 0.391) and rim volume (r(2) = 0.021, P = 0.346). There were poor agreements between SOCT and HRT-3 for measurement of optic nerve parameters except cup area and cup volume. Measurement results of the two instruments are not interchangeable.

  13. Coherent signal processing in optical coherence tomography

    Science.gov (United States)

    Kulkarni, Manish Dinkarrao

    1999-09-01

    Optical coherence tomography (OCT) is a novel method for non-invasive sub-surface imaging of biological tissue micro-structures. OCT achieves high spatial resolution ( ~ 15 m m in three dimensions) using a fiber-optically integrated system which is suitable for application in minimally invasive diagnostics, including endoscopy. OCT uses an optical heterodyne detection technique based on white light interferometry. Therefore extremely faint reflections ( ~ 10 fW) are routinely detected with high spatial localization. The goal of this thesis is twofold. The first is to present a theoretical model for describing image formation in OCT, and attempt to enhance the current level of understanding of this new modality. The second objective is to present signal processing methods for improving OCT image quality. We present deconvolution algorithms to obtain improved longitudinal resolution in OCT. This technique may be implemented without increasing system complexity as compared to current clinical OCT systems. Since the spectrum of the light backscattered from bio-scatterers is closely associated with ultrastructural variations in tissue, we propose a new technique for measuring spectra as a function of depth. This advance may assist OCT in differentiating various tissue types and detecting abnormalities within a tissue. In addition to depth resolved spectroscopy, Doppler processing of OCT signals can also improve OCT image contrast. We present a new technique, termed color Doppler OCT (CDOCT). It is an innovative extension of OCT for performing spatially localized optical Doppler velocimetry. Micron-resolution imaging of blood flow in sub-surface vessels in living tissue using CDOCT is demonstrated. The fundamental issues regarding the trade- off between the velocity estimation precision and image acquisition rate are presented. We also present novel algorithms for high accuracy velocity estimation. In many blood vessels velocities tend to be on the order of a few cm

  14. Characterizing matrix remodeling in collagen gels using optical coherence tomography

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Hanson, Stephen R.; Jacques, Steven L.

    2010-02-01

    Optical coherence tomography (OCT) has shown promise at non-destructively characterizing engineered tissues such as collagen gels. However, as the collagen gels develop, the OCT images lose contrast of structures as the gels develop, making visual assessment difficult. Our group proposed quantitatively characterizing these gels by fitting the optical properties from the OCT signals. In this paper, we imaged collagen gels seeded with smooth muscle cells (SMCs) over a 5-day period and used the data to measure their optical properties. Our results showed that over time, the reflectivity of the samples increased 10-fold, corresponding to a decrease in anisotropy factor g, without much change in the scattering coefficient μs. Overall, the optical properties appeared to be dominated by scattering from the collagen matrix, not the cells. However, SMCs remodeled the collagen matrix, and this collagen remodeling by the cells is what causes the observed changes in optical properties. Moreover, the data showed that the optical properties were sensitive to the activity of matrix metalloproteinases (MMPs), enzymes that break down local collagen fibrils into smaller fragments. Blocking MMPs in the SMC gels greatly impeded both the remodeling process and change in optical properties at day 5. Treating day 1 acellular gels with MMP-8 for 3 hr managed to partially reproduce the remodeling observed in SMC gels at day 5. Altogether, we conclude that matrix remodeling in general, and MMPs specifically, greatly affect the local optical properties of the sample, and OCT is a unique tool that can assess MMP activity in collagen gels both non-destructively and label free.

  15. Adaptive optics optical coherence tomography at 1 MHz.

    Science.gov (United States)

    Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Miller, Donald T

    2014-12-01

    Image acquisition speed of optical coherence tomography (OCT) remains a fundamental barrier that limits its scientific and clinical utility. Here we demonstrate a novel multi-camera adaptive optics (AO-)OCT system for ophthalmologic use that operates at 1 million A-lines/s at a wavelength of 790 nm with 5.3 μm axial resolution in retinal tissue. Central to the spectral-domain design is a novel detection channel based on four high-speed spectrometers that receive light sequentially from a 1 × 4 optical switch assembly. Absence of moving parts enables ultra-fast (50ns) and precise switching with low insertion loss (-0.18 dB per channel). This manner of control makes use of all available light in the detection channel and avoids camera dead-time, both critical for imaging at high speeds. Additional benefit in signal-to-noise accrues from the larger numerical aperture afforded by the use of AO and yields retinal images of comparable dynamic range to that of clinical OCT. We validated system performance by a series of experiments that included imaging in both model and human eyes. We demonstrated the performance of our MHz AO-OCT system to capture detailed images of individual retinal nerve fiber bundles and cone photoreceptors. This is the fastest ophthalmic OCT system we know of in the 700 to 915 nm spectral band.

  16. An All-Fiber-Optic Combined System of Noncontact Photoacoustic Tomography and Optical Coherence Tomography.

    Science.gov (United States)

    Eom, Jonghyun; Shin, Jun Geun; Park, Soongho; Rim, Sunghwan; Lee, Byeong Ha

    2016-05-20

    We propose an all-fiber-based dual-modal imaging system that combines noncontact photoacoustic tomography (PAT) and optical coherence tomography (OCT). The PAT remotely measures photoacoustic (PA) signals with a 1550-nm laser on the surface of a sample by utilizing a fiber interferometer as an ultrasound detector. The fiber-based OCT, employing a swept-source laser centered at 1310 nm, shares the sample arm of the PAT system. The fiber-optic probe for the combined system was homemade with a lensed single-mode fiber (SMF) and a large-core multimode fiber (MMF). The compact and robust common probe is capable of obtaining both the PA and the OCT signals at the same position without any physical contact. Additionally, the MMF of the probe delivers the short pulses of a Nd:YAG laser to efficiently excite the PA signals. We experimentally demonstrate the feasibility of the proposed dual-modal system with a phantom made of a fishing line and a black polyethylene terephthalate fiber in a tissue mimicking solution. The all-fiber-optic system, capable of providing complementary information about absorption and scattering, has a promising potential in minimally invasive and endoscopic imaging.

  17. Motion contrast using optical coherence tomography

    Science.gov (United States)

    Fingler, Jeffrey Paul

    Diagnosis of ophthalmic diseases like age-related macular degeneration is very important for treatment of the disease as well as the development of future treatments. Optical coherence tomography (OCT) is an optical interference technique which can measure the three-dimensional structural information of the reflecting layers within a sample. In retinal imaging, OCT is used as the primary diagnostic tool for structural abnormalities such as retinal holes and detachments. The contrast within the images of this technique is based upon reflectivity changes from different regions of the retina. This thesis demonstrates the developments of methods used to produce additional contrast to the structural OCT images based on the tiny fluctuations of motion experienced by the mobile scatterers within a sample. Motion contrast was observed for motions smaller than 50 nm in images of a variety of samples. Initial contrast method demonstrations used Brownian motion differences to separate regions of a mobile Intralipid solution from a static agarose gel, chosen in concentration to minimize reflectivity contrast. Zebrafish embryos in the range of 3-4 days post fertilization were imaged using several motion contrast methods to determine the capabilities of identifying regions of vascular flow. Vasculature identification was demonstrated in zebrafish for blood vessels of all orientations as small as 10 microns in diameter. Mouse retinal imaging utilized the same motion contrast methods to determine the contrast capabilities for motions associated with vasculature within the retina. Improved contrast imaging techniques demonstrated comparable images to fluorescein angiography, the gold standard of retinal vascular imaging. Future studies can improve the demonstrated contrast analysis techniques and apply them towards human retinal motion contrast imaging for ophthalmic diagnostic purposes.

  18. Complete denture analyzed by optical coherence tomography

    Science.gov (United States)

    Negrutiu, Meda L.; Sinescu, Cosmin; Todea, Carmen; Podoleanu, Adrian G.

    2008-02-01

    The complete dentures are currently made using different technologies. In order to avoid deficiencies of the prostheses made using the classical technique, several alternative systems and procedures were imagined, directly related to the material used and also to the manufacturing technology. Thus, at the present time, there are several injecting systems and technologies on the market, that use chemoplastic materials, which are heat cured (90-100°C), in dry or wet environment, or cold cured (below 60°C). There are also technologies that plasticize a hard cured material by thermoplastic processing (without any chemical changes) and then inject it into a mold. The purpose of this study was to analyze the existence of possible defects in several dental prostheses using a non invasive method, before their insertion in the mouth. Different dental prostheses, fabricated from various materials were investigated using en-face optical coherence tomography. In order to discover the defects, the scanning was made in three planes, obtaining images at different depths, from 0,01 μm to 2 mm. In several of the investigated prostheses we found defects which may cause their fracture. These defects are totally included in the prostheses material and can not be vizualised with other imagistic methods. In conclusion, en-face OCT is an important investigative tool for the dental practice.

  19. Optical coherence tomography angiography in retinal diseases

    Directory of Open Access Journals (Sweden)

    K V Chalam

    2016-01-01

    Full Text Available Optical coherence tomography angiography (OCTA is a new, non-invasive imaging system that generates volumetric data of retinal and choroidal layers. It has the ability to show both structural and blood flow information. Split-spectrum amplitude-decorrelation angiography (SSADA algorithm (a vital component of OCTA software helps to decrease the signal to noise ratio of flow detection thus enhancing visualization of retinal vasculature using motion contrast. Published studies describe potential efficacy for OCTA in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age related macular degeneration (AMD, retinal vascular occlusions and sickle cell disease. OCTA provides a detailed view of the retinal vasculature, which allows accurate delineation of microvascular abnormalities in diabetic eyes and vascular occlusions. It helps quantify vascular compromise depending upon the severity of diabetic retinopathy. OCTA can also elucidate the presence of choroidal neovascularization (CNV in wet AMD. In this paper, we review the knowledge, available in English language publications regarding OCTA, and compare it with the conventional angiographic standard, fluorescein angiography (FA. Finally, we summarize its potential applications to retinal vascular diseases. Its current limitations include a relatively small field of view, inability to show leakage, and tendency for image artifacts. Further larger studies will define OCTA's utility in clinical settings and establish if the technology may offer a non-invasive option of visualizing the retinal vasculature, enabling us to decrease morbidity through early detection and intervention in retinal diseases.

  20. Anatomic Optical Coherence Tomography of Upper Airways

    Science.gov (United States)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  1. Angle-resolved optical coherence tomography

    Science.gov (United States)

    Desjardins, Adrien Emmanuel

    Optical coherence tomography (OCT) has emerged as a powerful tool for probing the microstructure of biological tissue non-invasively at high-speed. OCT measures depth-resolved reflectance of infrared light, generating cross-sectional images non-invasively with micron-scale resolution. As with other imaging modalities that employ coherent detection, OCT images are confounded by speckle noise. Speckle imposes a grainy texture on images that reduces the signal-to-noise ratio to near unity values. As a result, it conceals subtle differences in scattering properties known to be crucial for differentiating normal from diseased tissue states. In this thesis, we developed a novel OCT modality called "Angle-Resolved OCT" in which depth scans (A-lines) are obtained simultaneously from a broad range of backscattering angles. We demonstrated that high levels of speckle reduction can be achieved by averaging the magnitudes of A-lines corresponding to the same transverse locations. With both experimental and analytic approaches, we demonstrated that this averaging method does not lead to a substantial loss in spatial resolution. We developed two different imaging systems for performing Angle-Resolved OCT. With the first system, angular data was acquired simultaneously; with the second, it was acquired sequentially. The first system had superior speckle-reduction capabilities but image quality degraded significantly with small sample movements. The second system allowed for in vivo imaging, as demonstrated with Resolved OCT systems, the speckle-reduced images showed hitherto unprecedented delineation of tissue microstructure.

  2. Ultrahigh-resolution endoscopic optical coherence tomography

    Science.gov (United States)

    Chen, Yu; Herz, Paul R.; Hsiung, Pei-Lin; Aguirre, Aaron D.; Mashimo, Hiroshi; Desai, Saleem; Pedrosa, Macos; Koski, Amanda; Schmitt, Joseph M.; Fujimoto, James G.

    2005-01-01

    Early detection of gastrointestinal cancer is essential for the patient treatment and medical care. Endoscopically guided biopsy is currently the gold standard for the diagnosis of early esophageal cancer, but can suffer from high false negative rates due to sampling errors. Optical coherence tomography (OCT) is an emerging medical imaging technology which can generate high resolution, cross-sectional images of tissue in situ and in real time, without the removal of tissue specimen. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10 - 15 m for clinical procedures. In this study, in vivo imaging of the gastrointestinal tract is demonstrated at a three-fold higher resolution (gastro-esophageal junction and colon on animal model display tissue microstructures and architectural details at high resolution, and the features observed in the OCT images are well-matched with histology. The clinical feasibility study is conducted through delivering OCT imaging catheter using standard endoscope. OCT images of normal esophagus, Barrett's esophagus, and esophageal cancers are demonstrated with distinct features. The ability of high resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo would facilitate the development of OCT as a potential imaging modality for early detection of neoplastic changes.

  3. Optical Coherence Tomography Angiography in Retinal Diseases.

    Science.gov (United States)

    Chalam, K V; Sambhav, Kumar

    2016-01-01

    Optical coherence tomography angiography (OCTA) is a new, non-invasive imaging system that generates volumetric data of retinal and choroidal layers. It has the ability to show both structural and blood flow information. Split-spectrum amplitude-decorrelation angiography (SSADA) algorithm (a vital component of OCTA software) helps to decrease the signal to noise ratio of flow detection thus enhancing visualization of retinal vasculature using motion contrast. Published studies describe potential efficacy for OCTA in the evaluation of common ophthalmologic diseases such as diabetic retinopathy, age related macular degeneration (AMD), retinal vascular occlusions and sickle cell disease. OCTA provides a detailed view of the retinal vasculature, which allows accurate delineation of microvascular abnormalities in diabetic eyes and vascular occlusions. It helps quantify vascular compromise depending upon the severity of diabetic retinopathy. OCTA can also elucidate the presence of choroidal neovascularization (CNV) in wet AMD. In this paper, we review the knowledge, available in English language publications regarding OCTA, and compare it with the conventional angiographic standard, fluorescein angiography (FA). Finally, we summarize its potential applications to retinal vascular diseases. Its current limitations include a relatively small field of view, inability to show leakage, and tendency for image artifacts. Further larger studies will define OCTA's utility in clinical settings and establish if the technology may offer a non-invasive option of visualizing the retinal vasculature, enabling us to decrease morbidity through early detection and intervention in retinal diseases.

  4. Anterior Eye Imaging with Optical Coherence Tomography

    Science.gov (United States)

    Huang, David; Li, Yan; Tang, Maolong

    The development of corneal and anterior segment optical coherence tomography (OCT) technology has advanced rapidly in recently years. The scan geometry and imaging wavelength are both important choices to make in designing anterior segment OCT systems. Rectangular scan geometry offers the least image distortion and is now used in most anterior OCT systems. The wavelength of OCT light source affects resolution and penetration. An optimal choice of the OCT imaging wavelength (840, 1,050, or 1,310 nm) depends on the application of interest. Newer generation Fourier-domain OCT technology can provide scan speed 100-1000 times faster than the time-domain technology. Various commercial anterior OCT systems are available on the market. A wide spectrum of diagnostic and surgical applications using anterior segment OCT had been investigated, including mapping of corneal and epithelial thicknesses, keratoconus screening, measuring corneal refractive power, corneal surgery planning and evaluation in LASIK, intracorneal ring implantation, assessment of angle closure glaucoma, anterior chamber biometry and intraocular lens implants, intraocular lens power calculation, and eye bank donor cornea screening.

  5. Quantitative contrast-enhanced optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winetraub, Yonatan; SoRelle, Elliott D. [Molecular Imaging Program at Stanford, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Bio-X Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Biophysics Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Structural Biology, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Liba, Orly [Molecular Imaging Program at Stanford, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Bio-X Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Structural Biology, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Electrical Engineering, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Zerda, Adam de la [Molecular Imaging Program at Stanford, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Bio-X Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Biophysics Program, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Structural Biology, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States); Department of Electrical Engineering, Stanford University, 299 Campus Drive, Stanford, California 94305 (United States)

    2016-01-11

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within a voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.

  6. Polarization sensitive optical coherence tomography detection method

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M J; Sathyam, U S; Colston, B W; DaSilva, L B; Fried, D; Ragadio, J N; Featherstone, J D B

    1999-05-12

    This study demonstrates the potential of polarization sensitive optical coherence tomography (PS-OCT) for non-invasive in vivo detection and characterization of early, incipient caries lesions. PS-OCT generates cross-sectional images of biological tissue while measuring the effect of the tissue on the polarization state of incident light. Clear discrimination between regions of normal and demineralized enamel is first shown in PS-OCT images of bovine enamel blocks containing well-characterized artificial lesions. High-resolution, cross-sectional images of extracted human teeth are then generated that clearly discriminate between the normal and carious regions on both the smooth and occlusal surfaces. Regions of the teeth that appeared to be demineralized in the PS-OCT images were verified using histological thin sections examined under polarized light microscopy. The PS-OCT system discriminates between normal and carious regions by measuring the polarization state of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. Demineralization of enamel increases the scattereing coefficient, thus depolarizing the incident light. This study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions.

  7. Three-Dimensional Optical Coherence Tomography (3D OCT) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Applied Science Innovations, Inc. proposes to develop a new tool of 3D optical coherence tomography (OCT) for cellular level imaging at video frame rates and...

  8. Three-Dimensional Optical Coherence Tomography (3D OCT) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Applied Science Innovations, Inc. proposes a new tool of 3D optical coherence tomography (OCT) for cellular level imaging at video frame rates and dramatically...

  9. Optical coherence tomography and Doppler optical coherence tomography in the gastrointestinal tract

    Institute of Scientific and Technical Information of China (English)

    Eugen Osiac; Adrian S(a)ftoiu; Dan Ionut Gheonea; Ion Mandrila; Radu Angelescu

    2011-01-01

    Optical coherence tomography(OCT)is a noninvasive,high-resolution,high-potential imaging method that has recently been introduced into medical investigations.A growing number of studies have used this technique in the field of gastroenterology in order to assist classical analyses.Lately,3D-imaging and Doppler capabilities have been developed in different configurations,which make this type of investigation more attractive.This paper reviews the principles and characteristics of OCT and Doppler-OCT in connection with analyses of the detection of normal and pathological structures,and with the possibility to investigate angiogenesis in the gastrointestinal tract.

  10. Experimental Demonstration of Spectral Intensity Optical Coherence Tomography

    CERN Document Server

    Ryczkowski, Piotr; Friberg, Ari T; Genty, Goëry

    2015-01-01

    We demonstrate experimentally quantum-inspired, spectral-domain intensity optical coherence tomography. We show that the technique allows for both axial resolution improvement and dispersion cancellation compared to conventional optical coherence tomography. The method does not involve scanning and it works with classical light sources and standard photodetectors. The measurements are in excellent agreement with the theoretical predictions. We also propose an approach that enables the elimination of potential artifacts arising from multiple interfaces.

  11. Three-dimensional multifunctional optical coherence tomography for skin imaging

    Science.gov (United States)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  12. Optical Coherence Tomography and Optical Coherence Tomography Angiography in Monitoring Coats’ Disease

    Directory of Open Access Journals (Sweden)

    Wojciech Hautz

    2017-01-01

    Full Text Available Purpose. The aim of this study was to evaluate the usefulness of optical coherence tomography (OCT and optical coherence tomography angiography (OCTA in monitoring pediatric patients with Coats’ disease. Material and Methods. This retrospective study included 9 Caucasian patients receiving treatment for Coats’ disease at the Children’s Memorial Health Institute Ophthalmology Department between December 2014 and May 2016. The course of the disease was monitored with OCTA in combination with OCT and fluorescein angiography (FA. Results. OCT B-scans obtained in all patients correlated with FA findings. Reliable OCTA images were obtained in 8 patients. In one patient, numerous artifacts due to poor visual acuity and retinal detachment confounded the interpretation of findings. Conclusions. OCTA and OCT, in combination with FA, are useful in Coats’ disease diagnostics and treatment monitoring. As noninvasive methods, OCT and OCTA may be performed more often than FA, which enable precise monitoring of the disease and making decisions as to its further treatment.

  13. Pre-seizure state identified by diffuse optical tomography

    Science.gov (United States)

    Zhang, Tao; Zhou, Junli; Jiang, Ruixin; Yang, Hao; Carney, Paul R.; Jiang, Huabei

    2014-01-01

    In epilepsy it has been challenging to detect early changes in brain activity that occurs prior to seizure onset and to map their origin and evolution for possible intervention. Here we demonstrate using a rat model of generalized epilepsy that diffuse optical tomography (DOT) provides a unique functional neuroimaging modality for noninvasively and continuously tracking such brain activities with high spatiotemporal resolution. We detected early hemodynamic responses with heterogeneous patterns, along with intracranial electroencephalogram gamma power changes, several minutes preceding the electroencephalographic seizure onset, supporting the presence of a ``pre-seizure'' state. We also observed the decoupling between local hemodynamic and neural activities. We found widespread hemodynamic changes evolving from local regions of the bilateral cortex and thalamus to the entire brain, indicating that the onset of generalized seizures may originate locally rather than diffusely. Together, these findings suggest DOT represents a powerful tool for mapping early seizure onset and propagation pathways.

  14. Imaging Granulomatous Lesions with Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Christina Banzhaf

    2012-01-01

    Full Text Available Aim: To investigate and compare the presentation of granulomatous lesions in optical coherence tomography (OCT images and compare this to previous studies of nonmelanoma skin tumors. Methods: Two patients with granulomas, tophi and granuloma annulare (GA, respectively, were photographed digitally, OCT-scanned and biopsied in the said order. Normal skin was OCT-scanned for comparison, but not biopsied. The OCT images from each lesion were compared with their histologic images as well as with OCT images with similar characteristics obtained from nonmelanoma skin tumors. Results: The OCT images of the tophi showed hyperreflective, rounded cloud-like structures in dermis, their upper part sharply delineated by a hyporeflective fringe. The deeper areas appeared blurred. The crystalline structures were delineated by a hyporeflective fringe. OCT images of GA showed two different structures in dermis: a hyporeflective rounded one, and one that was lobulated and wing-like. Conclusion: Granulomatous tissue surrounding urate deposits appeared as a clear hyporeflective fringe surrounding a light, hyperreflective area. The urate crystals appeared as hyperreflective areas, shielding the deeper part of dermis, meaning OCT could only visualize the upper part of the lesions. The lobulated, wing-like structure in GA may resemble diffuse GA or a dense lymphocytic infiltrate as seen on histology. The rounded structure in GA may represent an actual granuloma or either diffuse GA or a dense lymphocytic infiltrate as described above. This case suggests that OCT images granulomatous tissue as absorbent, hyporeflective areas, and urate crystals appear as reflective areas, obscuring the underlying tissue. In GA a new image shape looking like a wing has been found. The frequency, specificity and sensitivity of this new pattern in OCT imaging will require further studies.

  15. En-face optical coherence tomography revival

    Science.gov (United States)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian Gh.

    2016-03-01

    Quite recently, we introduced a novel Optical Coherence Tomography (OCT) method, termed as Master Slave OCT (MS-OCT), especially to deliver en-face images. MS-OCT operates like a time domain OCT, selecting signal from a selected depth only while scanning the laser beam across the sample. Time domain OCT allows real time production of an en-face image, although relatively slowly. As a major advance, the Master Slave method allows collection of signals from any number of depths, as required by the user. MS-OCT is an OCT method that does not require resampling of data and can be used to deliver en-face images from several depths simultaneously. However, as the MS-OCT method requires important computational resources, the number of multiple depth en-face images produced in real-time is limited. Here, we demonstrate that taking advantage of the parallel processing feature of the MS-OCT technology by harnessing the capabilities of graphics processing units (GPU)s, information from 384 depth positions is acquired in one raster with real time display of 40 en-face OCT images. These exhibit comparable resolution and sensitivity to the images produced using the traditional Fourier domain based method. The GPU facilitates versatile real time selection of parameters, such as the depth positions of the 40 images out of a set of 384 depth locations, as well as their axial resolution. Here, we present in parallel with the 40 en-face OCT images of a human tooth, a confocal microscopy lookalike image, together with two B-scan OCT images along rectangular directions.

  16. Self-Optical Coherence Tomography and Angiography

    Directory of Open Access Journals (Sweden)

    Ahmad M. Mansour

    2017-02-01

    Full Text Available Purpose: To present a new concept of self-optical coherence tomography (OCT and self-OCT angiography. Methods: The operator sits in the patient seat and manipulates the instrument body via the joystick with the dominant hand, while the dominant index is ready to press the capture button and while focusing on the fixation target. One senior ophthalmologist judged various OCT machines for ease of self-scan during a major ophthalmic convention. Separately, self-scans were also captured using a single OCT machine by one senior ophthalmologist and 5 junior optometrists and the scans were analyzed for both centration and image quality value (IQV, and compared to regular scans done by an operator. Results: Ten available OCT machines were tested for their ability to allow self-OCT. Machines that had one or more features of auto-alignment, auto-focus, and auto-shoot were ideal for self-OCT or self-OCT angiography. Self-scans done by the ophthalmologist (total 27 scans of right eye, mean IQV = 32.6, and 24 left eyes, mean IQV = 37.3, done over 9 months and 5 optometrists (total 24 scans, mean 34.8 done in one session were comparable to scans (total 11, mean IQV = 38.1 done by an operator for image quality. Decentration was very common in self-scans of the macula (37% right eye and 46% left eye versus 0% for scans of the right eye done by an operator. Conclusions: Self-OCT scans of the macular region can be done with good image quality but are often decentered. Advantages include privacy, potential use by ophthalmic health professionals, airspace station officers, and possible future home self-imaging of macula.

  17. Carious growth monitoring with optical coherence tomography

    Science.gov (United States)

    Freitas, A. Z.; Zezell, D. M.; Mayer, M. P. A.; Ribeiro, A. C.; Gomes, A. S. L.; Vieira, N. D., Jr.

    2006-02-01

    Optical Coherence Tomography was used to monitor subsurface caries evolution process in vitro. Human tooth was used and bacteria were employed to induce caries lesions. Twenty-five human third molars, were used in this study. The teeth were cut longitudinally at mesio-distal direction; the surfaces were coated with nail varnish except for two squared windows (2x4 mm); at the cement-enamel junction. Artificial lesions were induced by a S. Mutans microbiological culture. The samples (N = 50) were divided into groups according to the demineralization time: 3, 5, 7, 9 and 11 days. The culture medium, was changed each 48 hours. After the demineralization process the samples were rinsed with double-deionized water and stored in a humid environment. The OCT system was implemented with average power of 96 μW in the sample arm, providing a 23 μm of axial resolution. The images were produced with lateral scans step of 10 μm. The detection system was composed by a detector, a demodulator and a computer. With the images generated by OCT it was possible to determine the lesion depth as function of sample exposition time to microbiological culture. We observed that the depth of the lesion in the root dentine increased from 70 μm to 230 μm, depending of exposure time, and follows the bacterial population growth law. This OCT system accurately depicts hard dental tissue and it was able to detect early caries in its structure, providing a powerful contactless high resolution image of lesions.

  18. Applications of Doppler optical coherence tomography

    Science.gov (United States)

    Xu, Zhiqiang

    A major development in biomedical imaging in the last decade has been optical coherence tomography (OCT). This technique enables microscale resolution, depth resolved imaging of the detailed morphology of transparent and nontransparent biological tissue in a noncontact and quasi-noninvasive way. In the first part of this dissertation, we will describe the development and the performance of our home-made OCT systems working with different wavelength regions based on free-space and optical fiber Michelson interferometers. The second part will focus on Doppler OCT (DOCT), an important extension of OCT, which enables the simultaneous evaluation of the structural information and of the fluid flow distribution at a localized position beneath the sample surface. Much effort has been spent during the past few years in our laboratory aimed at providing more accurate velocity measurements with an extended dynamic range. We also applied our technique in different research areas such as microfluidics and hemodynamics. Investigations on the optical properties of the biological tissues (such as absorption and scattering) corresponding to different center wavelengths, have been performed in our laboratory. We used a 10 femtosecond Ti:sapphire laser centered at about 810 nm associated with a free-space Michelson interferometer. The infrared sources were centered at about 1310 and 1560 nm with all-fiber interferometers. Comparative studies using three different sources for several in vitro biological tissues based on a graphical method illustrated how the optical properties affect the quality of the OCT images in terms of the penetration depth and backscattering intensity. We have shown the advantage of working with 810-nm emission wavelength for good backscattering amplitude and contrast, while sources emitting at 1570 nm give good penetration depth. The 1330-nm sources provide a good compromise between the two. Therefore, the choice of the source will ultimately determine the

  19. Accuracy of optical navigation systems for automatic head surgery: optical tracking versus optical coherence tomography

    Science.gov (United States)

    Díaz Díaz, Jesús; Riva, Mauro H.; Majdani, Omid; Ortmaier, Tobias

    2014-03-01

    The choice of a navigation system highly depends on the medical intervention and its accuracy demands. The most commonly used systems for image guided surgery (IGS) are based on optical and magnetic tracking systems. This paper compares two optical systems in terms of accuracy: state of the art triangulation-based optical tracking (OT) and optical coherence tomography (OCT). We use an experimental setup with a combined OCT and cutting laser, and an external OT. We simulate a robotic assisted surgical intervention, including planning, navigation, and processing, and compare the accuracies reached at a specific target with each navigation system.

  20. Spectral-domain optical coherence tomography on a silicon chip

    NARCIS (Netherlands)

    Akca, Bakiye Imran

    2012-01-01

    Optical coherence tomography (OCT) is a non-invasive optical technique for high-resolution cross-sectional imaging of specimens, with many applications in clinical medicine and industry (e.g. materials testing, quality assurance, and process control). Current state-of-the-art OCT systems operate in

  1. OPTICAL COHERENCE TOMOGRAPHY IN JUVENILE NEURONAL CEROID LIPOFUSCINOSIS

    DEFF Research Database (Denmark)

    Hansen, Michael S.; Hove, Marianne N; Jensen, Hanne;

    2016-01-01

    PURPOSE: To report optical coherence tomography findings obtained in two patients with juvenile neuronal ceroid lipofuscinosis. METHODS: Two case reports. RESULTS: Two 7-year-old girls presented with decreased visual acuity, clumsiness, night blindness, and behavioral problems. Optical coherence...... tomography showed an overall reduction in thickness of the central retina, as well as the outer and the inner retinal layers. The degenerative retinal changes were the same, despite different mutations in the CLN3 gene. CONCLUSION: In these rare cases of juvenile neuronal ceroid lipofuscinosis, optical...

  2. Spatial Fourier-decomposition optical fluorescen tomography-theoretical investigation

    Institute of Scientific and Technical Information of China (English)

    Cheng Liu; Dug Young Kim; Jianqiang Zhu

    2008-01-01

    A new three-dimensional (3D) optical fluorescent tomographic imaging scheme is proposed with structured illumination and spatial Fourierdomain decomposition methods for the first time. In this spatial Fourier-decomposition optical fluorescence tomography (SF-OFT), the intensity of focused excitation light from an objective lens is modulated to be a cosine function along the optical axis of the system. For a given position in a two-dimensional (2D) raster scanning process, the spatial frequency of the cosine function along the optical axis sweeps in a proper range while a series of fluorescence intensity are detected accordingly. By making an inverse discrete cosine transformation of these recorded intensity profiles, the distribution of fluorescent markers along the optical axis of a focused laser beam is obtained. A 3D optical fluorescent tomography can be achieved with this proposed SF-OFT technique with a simple 2D raster scanning process.

  3. CHOROIDAL IMAGING USING SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY

    Science.gov (United States)

    Regatieri, Caio V.; Branchini, Lauren; Fujimoto, James G.; Duker, Jay S.

    2012-01-01

    Background A structurally and functionally normal choroidal vasculature is essential for retinal function. Therefore, a precise clinical understanding of choroidal morphology should be important for understanding many retinal and choroidal diseases. Methods PUBMED (http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed) was used for most of the literature search for this article. The criterion for inclusion of an article in the references for this review was that it included materials about both the clinical and the basic properties of choroidal imaging using spectral-domain optical coherence tomography. Results Recent reports show successful examination and accurate measurement of choroidal thickness in normal and pathologic states using spectral-domain optical coherence tomography systems. This review focuses on the principles of the new technology that make choroidal imaging using optical coherence tomography possible and on the changes that subsequently have been documented to occur in the choroid in various diseases. Additionally, it outlines future directions in choroidal imaging. Conclusion Optical coherence tomography is now proven to be an effective noninvasive tool to evaluate the choroid and to detect choroidal changes in pathologic states. Additionally, choroidal evaluation using optical coherence tomography can be used as a parameter for diagnosis and follow-up. PMID:22487582

  4. Integrated modeling of the GMT laser tomography adaptive optics system

    Science.gov (United States)

    Piatrou, Piotr

    2014-08-01

    Laser Tomography Adaptive Optics (LTAO) is one of adaptive optics systems planned for the Giant Magellan Telescope (GMT). End-to-end simulation tools that are able to cope with the complexity and computational burden of the AO systems to be installed on the extremely large telescopes such as GMT prove to be an integral part of the GMT LTAO system development endeavors. SL95, the Fortran 95 Simulation Library, is one of the software tools successfully used for the LTAO system end-to-end simulations. The goal of SL95 project is to provide a complete set of generic, richly parameterized mathematical models for key elements of the segmented telescope wavefront control systems including both active and adaptive optics as well as the models for atmospheric turbulence, extended light sources like Laser Guide Stars (LGS), light propagation engines and closed-loop controllers. The library is implemented as a hierarchical collection of classes capable of mutual interaction, which allows one to assemble complex wavefront control system configurations with multiple interacting control channels. In this paper we demonstrate the SL95 capabilities by building an integrated end-to-end model of the GMT LTAO system with 7 control channels: LGS tomography with Adaptive Secondary and on-instrument deformable mirrors, tip-tilt and vibration control, LGS stabilization, LGS focus control, truth sensor-based dynamic noncommon path aberration rejection, pupil position control, SLODAR-like embedded turbulence profiler. The rich parameterization of the SL95 classes allows to build detailed error budgets propagating through the system multiple errors and perturbations such as turbulence-, telescope-, telescope misalignment-, segment phasing error-, non-common path-induced aberrations, sensor noises, deformable mirror-to-sensor mis-registration, vibration, temporal errors, etc. We will present a short description of the SL95 architecture, as well as the sample GMT LTAO system simulation

  5. Active optical zoom system

    Science.gov (United States)

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  6. Optimisation of post mortem cardiac computed tomography compared to optical coherence tomography and histopathology - Technical note

    DEFF Research Database (Denmark)

    Precht, Helle; Leth, Peter Mygind; Thygesen, Jesper

    2014-01-01

    Introduction: Coronary atherosclerosis is a leading cause of mortality. New technological developments in computed tomography (CT), including dual energy, iterative reconstructions and high definition scanning, could significantly improve the non-invasive identification of atherosclerosis plaques....... Here, a new method for optimising cardiac coronary CT with optical coherence tomography (OCT) and histopathology is presented. Materials and methods: Twenty human hearts obtained from autopsies were used. A contrast agent that solidifies after cooling was injected into the coronary arteries. CT...

  7. The Development, Commercialization, and Impact of Optical Coherence Tomography.

    Science.gov (United States)

    Fujimoto, James; Swanson, Eric

    2016-07-01

    This review was written for the special issue of IOVS to describe the history of optical coherence tomography (OCT) and its evolution from a nonscientific, historic perspective. Optical coherence tomography has become a standard of care in ophthalmology, providing real-time information on structure and function - diagnosing disease, evaluating progression, and assessing response to therapy, as well as helping to understand disease pathogenesis and create new therapies. Optical coherence tomography also has applications in multiple clinical specialties, fundamental research, and manufacturing. We review the early history of OCT describing how research and development evolves and the important role of multidisciplinary collaboration and expertise. Optical coherence tomography had its origin in femtosecond optics, but used optical communications technologies and required advanced engineering for early OCT prototypes, clinical feasibility studies, entrepreneurship, and corporate development in order to achieve clinical acceptance and clinical impact. Critical advances were made by early career researchers, clinician scientists, engineering experts, and business leaders, which enabled OCT to have a worldwide impact on health care. We introduce the concept of an "ecosystem" consisting of research, government funding, collaboration and competition, clinical studies, innovation, entrepreneurship and industry, and impact - all of which must work synergistically. The process that we recount is long and challenging, but it is our hope that it might inspire early career professionals in science, engineering, and medicine, and that the clinical and research community will find this review of interest.

  8. Mapping distributed brain function and networks with diffuse optical tomography

    Science.gov (United States)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  9. Optical coherence tomography of the prostate nerves

    Science.gov (United States)

    Chitchian, Shahab

    Preservation of the cavernous nerves during prostate cancer surgery is critical in preserving a man's ability to have spontaneous erections following surgery. These microscopic nerves course along the surface of the prostate within a few millimeters of the prostate capsule, and they vary in size and location from one patient to another, making preservation of the nerves difficult during dissection and removal of a cancerous prostate gland. These observations may explain in part the wide variability in reported sexual potency rates (9--86%) following prostate cancer surgery. Any technology capable of providing improved identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery would be of great assistance in improving sexual function after surgery, and result in direct patient benefit. Optical coherence tomography (OCT) is a noninvasive optical imaging technique capable of performing high-resolution cross-sectional in vivo and in situ imaging of microstructures in biological tissues. OCT imaging of the cavernous nerves in the rat and human prostate has recently been demonstrated. However, improvements in the OCT system and the quality of the images for identification of the cavernous nerves is necessary before clinical use. The following chapters describe complementary approaches to improving identification and imaging of the cavernous nerves during OCT of the prostate gland. After the introduction to OCT imaging of the prostate gland, the optimal wavelength for deep imaging of the prostate is studied in Chapter 2. An oblique-incidence single point measurement technique using a normal-detector scanning system was implemented to determine the absorption and reduced scattering coefficients, mua and m's , of fresh canine prostate tissue, ex vivo, from the diffuse reflectance profile of near-IR light as a function of source-detector distance. The effective attenuation coefficient, mueff, and the Optical Penetration Depth (OPD) were

  10. Optical Doppler tomography based on a field programmable gate array

    DEFF Research Database (Denmark)

    Larsen, Henning Engelbrecht; Nilsson, Ronnie Thorup; Thrane, Lars

    2008-01-01

    We report the design of and results obtained by using a field programmable gate array (FPGA) to digitally process optical Doppler tomography signals. The processor fits into the analog signal path in an existing optical coherence tomography setup. We demonstrate both Doppler frequency and envelope...... extraction using the Hilbert transform, all in a single FPGA. An FPGA implementation has certain advantages over general purpose digital signal processor (DSP) due to the fact that the processing elements operate in parallel as opposed to the DSP. which is primarily a sequential processor....

  11. Optical atomic magnetometry for magnetic induction tomography of the heart

    CERN Document Server

    Deans, Cameron; Hussain, Sarah; Renzoni, Ferruccio

    2016-01-01

    We report on the use of radio-frequency optical atomic magnetometers for magnetic induction tomography measurements. We demonstrate the imaging of dummy targets of varying conductivities placed in the proximity of the sensor, in an unshielded environment at room-temperature and without background subtraction. The images produced by the system accurately reproduce the characteristics of the actual objects. Furthermore, we perform finite element simulations in order to assess the potential for measuring low-conductivity biological tissues with our system. Our results demonstrate the feasibility of an instrument based on optical atomic magnetometers for magnetic induction tomography imaging of biological samples, in particular for mapping anomalous conductivity in the heart.

  12. High-resolution second harmonic optical coherence tomography

    Science.gov (United States)

    Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping

    2005-04-01

    A high-resolution Second Harmonic Optical Coherence Tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti:sapphire laser. An axial resolution of 4.2 μm at the second harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second harmonic generation signals that strongly depend on the orientation, polarization and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues like the rat-tail tendon. Images of highly organized collagen fibrils in the rat-tail tendon have been demonstrated.

  13. [Applications of optical coherence tomography (OCT) in neuro-ophthalmology].

    Science.gov (United States)

    Kernstock, C; Friebe, K; Tonagel, F

    2013-11-01

    Optical coherence tomography (OCT) has revolutionised ophthalmology. Due to modern instruments with extremely high resolution there are more and more applications also in neuro-ophthalmological disorders. This review gives an overview on typical changes in OCT for the following diseases: autosomal dominant optic atrophy, Leber hereditary optic neuropathy, toxic, traumatic and compressive optic neuropathy, optic nerve drusen, anterior ischaemic optic neuropathy, optic disc pit, papilledema, optic neuritis (isolated or associated with multiple sclerosis or neuromyelitis optica), neurodegenerative diseases and hereditary retinal diseases. A diagnosis exclusively based on an OCT examination is not always possible, but in several diseases there are pathognomonic changes that directly lead to the correct diagnosis. Particularly with the often complex settings in neuro-ophtalmology the OCT should be seen as a supplementary modality and not as a replacement for other techniques.

  14. Design and characterization of SiON integrated optics components for optical coherence tomography

    NARCIS (Netherlands)

    Nguyen, V. Duc; Kalkman, J.; Ismail, N.; Sun, F.; Worhoff, Kerstin; Driessen, A.; Pollnau, Markus; van Leeuwen, Ton

    2009-01-01

    Optical coherence tomography (OCT) is a technique for high resolution imaging of biological tissues with a depth range of a few millimeters. OCT is based on interferometry to enable depth ranging. Currently, optical components for OCT are rather bulky and expensive; the use of integrated optical

  15. Optical coherent tomography in diagnoses of peripheral retinal degenarations

    Directory of Open Access Journals (Sweden)

    O. G. Pozdeyeva

    2013-01-01

    Full Text Available Purpose: Studying the capabilities of optical coherence tomography (RTVue-100, OPTOVUE, USA in evaluation of peripheral retinal degenerations, vitreoretinal adhesions, adjacent vitreous body as well as measurement of morphometric data.Methods: The study included 189 patients (239 eyes with peripheral retinal degeneration. 77 men and 112 women aged 18 to 84 underwent an ophthalmologic examination since November 2012 until October 2013. The peripheral retina was visualized with the help of optical coherence tomography («RTVue-100,» USA. The fundography was carried out using a Nikon NF505‑AF (Japan fundus camera. All patients were examined with a Goldmann lens.Results: Optical coherence tomography was used to evaluate different kinds of peripheral retinal degenerations, such as lattice and snail track degeneration, isolated retinal tears, cystoid retinal degeneration, pathological hyperpigmentation, retinoschisis and cobblestone degeneration. The following morphometric data were studied: dimensions of the lesion (average length, retinal thickness along the edge of the lesion, retinal thickness at the base of the lesion and the vitreoretinal interface.Conclusion: Optical coherence tomography is a promising in vivo visualization method which is useful in evaluation of peripheral retinal degenerations, vitreoretinal adhesions and tractions. It also provides a comprehensive protocolling system and monitoring. It will enable ophthalmologists to better define laser and surgical treatment indications and evaluate therapy effectiveness.

  16. Optical coherent tomography in diagnoses of peripheral retinal degenarations

    Directory of Open Access Journals (Sweden)

    O. G. Pozdeyeva

    2014-07-01

    Full Text Available Purpose: Studying the capabilities of optical coherence tomography (RTVue-100, OPTOVUE, USA in evaluation of peripheral retinal degenerations, vitreoretinal adhesions, adjacent vitreous body as well as measurement of morphometric data.Methods: The study included 189 patients (239 eyes with peripheral retinal degeneration. 77 men and 112 women aged 18 to 84 underwent an ophthalmologic examination since November 2012 until October 2013. The peripheral retina was visualized with the help of optical coherence tomography («RTVue-100,» USA. The fundography was carried out using a Nikon NF505‑AF (Japan fundus camera. All patients were examined with a Goldmann lens.Results: Optical coherence tomography was used to evaluate different kinds of peripheral retinal degenerations, such as lattice and snail track degeneration, isolated retinal tears, cystoid retinal degeneration, pathological hyperpigmentation, retinoschisis and cobblestone degeneration. The following morphometric data were studied: dimensions of the lesion (average length, retinal thickness along the edge of the lesion, retinal thickness at the base of the lesion and the vitreoretinal interface.Conclusion: Optical coherence tomography is a promising in vivo visualization method which is useful in evaluation of peripheral retinal degenerations, vitreoretinal adhesions and tractions. It also provides a comprehensive protocolling system and monitoring. It will enable ophthalmologists to better define laser and surgical treatment indications and evaluate therapy effectiveness.

  17. Visible-Light Tomography Using an Optical Imaging-System

    NARCIS (Netherlands)

    Ingesson, L. C.; Koning, J. J.; Donne, A. J. H.; D.C. Schram,

    1992-01-01

    A system for tomography in the wavelength range 200-1 100 nm has been designed for the Rijnhuizen Tokamak Project (RTP). The plasma is viewed from five directions in one poloidal plane with a total of 80 detectors. An optical imaging system consisting of two spherical mirrors for each viewing direct

  18. Heartbeat OCT: In vivo intravascular megahertz-optical coherence tomography

    NARCIS (Netherlands)

    T. Wang (Tianshi); A.F.H. Pfeiffer (Andreas); E.S. Regar (Eveline); W. Wieser (Wolfgang); H.M.M. van Beusekom (Heleen); C.T. Lancée (Charles); T. Springeling (Tirza); I. Krabbendam (Ilona); A.F.W. van der Steen (Ton); R. Huber (Roman); G. van Soest (Gijs)

    2015-01-01

    textabstractCardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging syste

  19. TOPICAL REVIEW: Optical tomography: forward and inverse problems

    Science.gov (United States)

    Arridge, Simon R.; Schotland, John C.

    2009-12-01

    This is a review of recent mathematical and computational advances in optical tomography. We discuss the physical foundations of forward models for light propagation on microscopic, mesoscopic and macroscopic scales. We also consider direct and numerical approaches to the inverse problems that arise at each of these scales. Finally, we outline future directions and open problems in the field.

  20. Internal fingerprint zone detection in optical coherence tomography fingertip scans

    CSIR Research Space (South Africa)

    Darlow, LN

    2015-04-01

    Full Text Available Optical coherence tomography (OCT) is a high-resolution imaging technology capable of capturing a three-dimensional (3-D) representation of fingertip skin. The papillary junction—a junction layer of skin containing the same topographical features...

  1. Ultrahigh resolution optical coherence tomography using a superluminescent light source

    NARCIS (Netherlands)

    Kowalevicz, Andrew M.; Ko, Tony; Hartl, Ingmar; Fujimoto, James G.; Pollnau, Markus; Salathé, René P.

    2002-01-01

    A superluminescent Ti:Al2O3 crystal is demonstrated as a light source for ultrahigh resolution optical coherence tomography (OCT). Single spatial mode, fiber coupled output powers of ~40 μW can be generated with 138 nm bandwidth using a 5 W frequency doubled, diode pumped laser, pumping a thin Ti:Al

  2. Spectral domain optical coherence tomography and microperimetry in foveal hypoplasia

    Directory of Open Access Journals (Sweden)

    Swakshyar Saumya Pal

    2011-01-01

    Full Text Available A case of foveal hypoplasia associated with ocular albinism with anatomic and functional changes by various techniques using spectral domain optical coherence tomography (SD-OCT, microperimeter and confocal scanning laser ophthalmoscope is described. This case highlights the importance of microperimeter in detecting the functional abnormalities of vision and SD-OCT in identifying the retinal laminar abnormalities in foveal hypoplasia.

  3. Optical coherence tomography: imaging architect for dermal microdialysis in psoriasis

    Science.gov (United States)

    O'Connell, M.-L.; O'Connor, W.; Ramsay, B.; Guihen, E.; Ho, W. L.; Leahy, M. J.

    2011-03-01

    Optical coherence tomography (OCT) has been used as part of a ground breaking translational study to shed some light on one of the worlds most prevalent autoimmune diseases; psoriasis. The work successfully integrates the fields of optical imaging, biochemistry and dermatology in conducting a dermal microdialysis (DMD) trial for quantitative histamine assessment amongst a group of psoriasis sufferers. The DMD process involves temporary insertion of microscopic hollow tubes into a layer of skin to measure the levels of histamine and other important biological molecules in psoriasis. For comparison purposes, DMD catheters were implanted into healthy, peri-lesional and lesional skin regions. The catheters' entry and exit points and their precise locations in the epidermal layer of the skin were confirmed using OCT thus obtaining high resolution, wide-field images of the affected skin as well as catheter placement whilst local microdialysis enabled a tissue chemistry profile to be obtained from these three skin regions including histamine, a local immune system activator known to contribute towards itch and inflammation. Together these tools offer a synergistic approach in the clinical assessment of the disease. In addition, OCT delivered a non-invasive and rapid method for analyzing the affected skin architecture.

  4. Detection of early seizures by diffuse optical tomography

    Science.gov (United States)

    Zhang, Tao; Hajihashemi, M. Reza; Zhou, Junli; Carney, Paul R.; Jiang, Huabei

    2015-03-01

    In epilepsy it has been challenging to detect early changes in brain activity that occurs prior to seizure onset and to map their origin and evolution for possible intervention. Besides, preclinical seizure experiments need to be conducted in awake animals with images reconstructed and displayed in real-time. We demonstrate using a rat model of generalized epilepsy that diffuse optical tomography (DOT) provides a unique functional neuroimaging modality for noninvasively and continuously tracking brain activities with high spatiotemporal resolution. We developed methods to conduct seizure experiments in fully awake rats using a subject-specific helmet and a restraining mechanism. For the first time, we detected early hemodynamic responses with heterogeneous patterns several minutes preceding the electroencephalographic seizure onset, supporting the presence of a "pre-seizure" state both in anesthetized and awake rats. Using a novel time-series analysis of scattering images, we show that the analysis of scattered diffuse light is a sensitive and reliable modality for detecting changes in neural activity associated with generalized seizure. We found widespread hemodynamic changes evolving from local regions of the bilateral cortex and thalamus to the entire brain, indicating that the onset of generalized seizures may originate locally rather than diffusely. Together, these findings suggest DOT represents a powerful tool for mapping early seizure onset and propagation pathways.

  5. Characterization of the dental pulp using optical coherence tomography

    Science.gov (United States)

    Kauffman, C. M. F.; Carvalho, M. T.; Araujo, R. E.; Freitas, A. Z.; Zezell, D. M.; Gomes, A. S. L.

    2006-02-01

    The inner structure of teeth, i.e. the root canal anatomy, is very complex. However a good knowledge of endodontic architecture is the first step towards successful endodontic treatment. Optical coherence tomography (OCT) is a powerful technique to generate images of hard and soft tissue. Its images show dependency on the optical properties of the tissue under analysis. Changes in the scattering and absorption of tissues can be observed through the OCT images. In this work, we used optical coherence tomography to perform in vitro studies of the inner structure of the first molar of albino rats (Rattus norvegicus). Focusing on the pulp chamber and in the root canal, we compare the images generated with the OCT technique to the histology. We are analyzing the feasibility of OCT to help on the diagnostic of endodontic diseases.

  6. Optical Coherence Tomography to Assess Neurodegeneration in Multiple Sclerosis.

    Science.gov (United States)

    Petzold, Axel

    2016-01-01

    Retinal spectral domain optical coherence tomography (OCT) has emerged as a clinical and research tool in multiple sclerosis (MS) and optic neuritis (ON). This chapter summarizes a short OCT protocol as included in international consensus guidelines. The protocol was written for hands-on style such that both clinicians and OCT technicians can make use of it. The protocol is suitable for imaging of the optic nerve head and macular regions as a baseline for follow-up investigations, individual layer segmentation, and diagnostic assessment.

  7. Polarization-Sensitive Quantum Optical Coherence Tomography: Experiment

    CERN Document Server

    Booth, Mark C; Teich, Malvin Carl

    2010-01-01

    Polarization-sensitive quantum optical coherence tomography (PS-QOCT) makes use of a Type-II twin-photon light source for carrying out optical sectioning with polarization sensitivity. A BBO nonlinear optical crystal pumped by a Ti:sapphire psec-pulsed laser is used to confirm the theoretical underpinnings of this imaging paradigm. PS-QOCT offers even-order dispersion cancellation with simultaneous access to the group-velocity dispersion characteristics of the interstitial medium between the reflecting surfaces of the sample.

  8. Application of optical longitudinal tomography for dental introscopy

    Science.gov (United States)

    Levin, Gennady G.; Burgansky, Alexander A.; Levandovski, Alexei G.

    1997-08-01

    A new method of dental introscopy in-vitro is suggested by the authors. This method implies the usage of longitudinal tomography techniques and is characterized by non-invasive and non-harmful diagnostics features, as well as interactive regime of image reconstruction which lets an operator (doctor) to control the diagnostics process in real time. He-Ne laser emission is used for obtaining of the projections. By the means of longitudinal tomography, images of different sections of an object (tooth) can be reconstructed. An experiment was held by the authors in which 100 projections of a tooth (premolar) were obtained and images of 10 different sections were reconstructed. These images were later compared to real sections of the tooth. This experiment proved that optical longitudinal tomography can be successfully used for dental introscopy. Authors claim that optical tomographic methods can be used for diagnostics of other biological objects as well. Such objects are characterized by spatial geometrical anisotropy (tubular bones, phalanxes of fingers, penis, etc.). It is especially promising to use this method for children's dentistry. the authors discuss some features of the data acquisition system for optical longitudinal tomography. Reconstruction algorithms are described. The results of experimental reconstruction are presented and advantages of this diagnostics method are discussed.

  9. Analysis of dental abfractions by optical coherence tomography

    Science.gov (United States)

    Demjan, Enikö; Mărcăuţeanu, Corina; Bratu, Dorin; Sinescu, Cosmin; Negruţiu, Meda; Ionita, Ciprian; Topală, Florin; Hughes, Michael; Bradu, Adrian; Dobre, George; Podoleanu, Adrian Gh.

    2010-02-01

    Aim and objectives. Abfraction is the pathological loss of cervical hard tooth substance caused by biomechanical overload. High horizontal occlusal forces result in large stress concentrations in the cervical region of the teeth. These stresses may be high enough to cause microfractures in the dental hard tissues, eventually resulting in the loss of cervical enamel and dentin. The present study proposes the microstructural characterization of these cervical lesions by en face optical coherence tomography (eFOCT). Material and methods: 31 extracted bicuspids were investigated using eFOCT. 24 teeth derived from patients with active bruxism and occlusal interferences; they presented deep buccal abfractions and variable degrees of occlusal pathological attrition. The other 7 bicuspids were not exposed to occlusal overload and had a normal morphology of the dental crowns. The dental samples were investigated using an eFOCT system operating at 1300 nm (B-scan at 1 Hz and C-scan mode at 2 Hz). The system has a lateral resolution better than 5 μm and a depth resolution of 9 μm in tissue. OCT images were further compared with micro - computer tomography images. Results. The eFOCT investigation of bicuspids with a normal morphology revealed a homogeneous structure of the buccal cervical enamel. The C-scan and B-scan images obtained from the occlusal overloaded bicuspids visualized the wedge-shaped loss of cervical enamel and damage in the microstructure of the underlaying dentin. The high occlusal forces produced a characteristic pattern of large cracks, which reached the tooth surface. Conclusions: eFOCT is a promising imaging method for dental abfractions and it may offer some insight on the etiological mechanism of these noncarious cervical lesions.

  10. Evaluation of choroidal thickness in psoriasis using optical coherence tomography.

    Science.gov (United States)

    Türkcü, Fatih Mehmet; Şahin, Alparslan; Yüksel, Harun; Akkurt, Meltem; Uçmak, Derya; Çınar, Yasin; Yıldırım, Adnan; Çaça, İhsan

    2016-12-01

    The purpose of this study was to evaluate choroidal thickness (CT) in patients with psoriasis using enhanced depth imaging optical coherence tomography (EDI-OCT) and to determine its relationship with psoriasis activity indices. In this prospective study, EDI-OCT images were obtained in consecutive patients with psoriasis and in age-gender-matched healthy individuals. Comprehensive ophthalmic examination and EDI-OCT evaluation were performed. CT was measured in the subfoveal area. Correlation analyses were performed to identify the relationship of the CT with disease duration and clinical disease activity score. In total, 65 individuals were evaluated in this study, 35 with psoriasis and 30 controls. The mean disease duration of the patients with psoriasis was 15.7 ± 8.8 years (0.3-34 years). There was no difference between groups with respect to age and gender (p = 0.695 and p = 0.628, respectively). Five of the 35 patients with psoriasis had anterior uveitis. None of the patients with psoriasis had signs of posterior uveitis. CT was significantly higher in the psoriasis group than that of control subjects (p psoriasis patients. Large serial and comparative studies are necessary to evaluate EDI-OCT, an examination that may be helpful in understanding the effects of psoriasis on the eye and its pathophysiology.

  11. Digital optical tomography system for dynamic breast imaging.

    Science.gov (United States)

    Flexman, Molly L; Khalil, Michael A; Al Abdi, Rabah; Kim, Hyun K; Fong, Christopher J; Desperito, Elise; Hershman, Dawn L; Barbour, Randall L; Hielscher, Andreas H

    2011-07-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.

  12. Optical Coherence Tomography in Spontaneous Resolution of Vitreomacular Traction Syndrome

    Directory of Open Access Journals (Sweden)

    Kuo-Hsuan Hung

    2010-06-01

    Full Text Available Vitreomacular traction syndrome (VTS is a vitreoretinal interface abnormality. The disorder is caused by incomplete posterior vitreous detachment with persistent traction on the macula that produces symptoms and decreased vision. Most symptomatic eyes with VTS undergo a further decrease in visual acuity. Spontaneous complete vitreomacular separation occurs infrequently in eyes with VTS. Surgical intervention may be considered if severe metamorphopsia and decreased visual quality occur. Herein, we report 2 typical cases of idiopathic VTS with spontaneous resolution of vitreo-retinal traction demonstrated by optical coherence tomography. Optical coherence tomography is a sensitive and useful tool for the confirmation of diagnosis and for the serial anatomical evaluation of patients with VTS.

  13. Imaging cutaneous T-Cell lymphoma with optical coherence tomography

    DEFF Research Database (Denmark)

    Ring, H.C.; Hansen Stamp, I.M.; Jemec, G.B.E.

    2012-01-01

    Aim: To investigate the presentation of a patch-stage cutaneous T-cell lymphoma (CTCL) using optical coherence tomography (OCT). Methods: A patient with a patch caused by CTCL was photographed digitally, OCT-scanned and biopsied. A normal skin area adjacent to the patch was OCT-scanned for compar......Aim: To investigate the presentation of a patch-stage cutaneous T-cell lymphoma (CTCL) using optical coherence tomography (OCT). Methods: A patient with a patch caused by CTCL was photographed digitally, OCT-scanned and biopsied. A normal skin area adjacent to the patch was OCT.......13 mm. A good immediate correlation was found between histology and OCT imaging of the sample. Conclusion: The aetiology of the elongated structures is thought to be lymphomatous infiltrates. Similar findings have been described in ocular lymphoma and may therefore be an important characteristic...

  14. Analysis of multiple scattering effects in optical Doppler tomography

    DEFF Research Database (Denmark)

    Yura, H.T.; Thrane, L.; Andersen, Peter E.

    2005-01-01

    Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where...... multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed...... Doppler frequency spectrum. Thus, in the present analysis, the dependence of the mean and standard deviation of the Doppler shift on the scattering properties of the flowing medium are obtained. Taking the multiple scattering effects into account, we are able to explain previous measurements of depth...

  15. Multifocal cysticercosis with optical coherence tomography findings in a child

    Directory of Open Access Journals (Sweden)

    Manisha Agarwal

    2012-01-01

    Full Text Available We herein report a case with multifocal cysticercosis - sub-conjunctival cysticercus cyst, sub-retinal cysticercosis, and neurocysticercosis in a child. The optical coherence tomography (OCT findings of the sub-retinal cysticercus cyst are reported. He was treated with anti-helminthic drugs and oral prednisolone followed by surgical removal of the sub-retinal cyst. He subsequently underwent silicone oil removal with lens aspiration and intraocular lens implantation maintaining stable vision

  16. Dental optical tomography with upconversion nanoparticles—a feasibility study

    Science.gov (United States)

    Long, Feixiao; Intes, Xavier

    2017-06-01

    Upconversion nanoparticles (UCNPs) have the unique ability to emit multiple colors upon excitation by near-infrared (NIR) light. Herein, we investigate the potential use of UCNPs as contrast agents for dental optical tomography, with a focus on monitoring the status of fillings after dental restoration. The potential of performing tomographic imaging using UCNP emission of visible or NIR light is established. This in silico and ex vivo study paves the way toward employing UCNPs as theranostic agents for dental applications.

  17. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-11-14

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu.m. The apparatus is aggregated into a unitary piece, and a user can connect the apparatus to a user provided controller and/or light source. The light source may be a supercontinuum source.

  18. Parallel optical coherence tomography using a CCD camera

    Institute of Scientific and Technical Information of China (English)

    Junle Qu(屈军乐); Ravi S.Jonnal; Donald T. Miller

    2004-01-01

    Parallel optical coherence tomography is demonstrated using a 12-bit scientific-grade charge-coupled device array.A superluminescent diode in combination with a free-space Michelson interferometer was employed to achieve 10-μm axial resolution and 1.1-μm transverse resolution on a 902×575 μm2 field of view.We imaged a test mirror and bovine retinal tissue using a four-step phase shift method.

  19. Optical coherence tomography-based micro-particle image velocimetry.

    Science.gov (United States)

    Mujat, Mircea; Ferguson, R Daniel; Iftimia, Nicusor; Hammer, Daniel X; Nedyalkov, Ivaylo; Wosnik, Martin; Legner, Hartmut

    2013-11-15

    We present a new application of optical coherence tomography (OCT), widely used in biomedical imaging, to flow analysis in near-wall hydrodynamics for marine research. This unique capability, called OCT micro-particle image velocimetry, provides a high-resolution view of microscopic flow phenomena and measurement of flow statistics within the first millimeter of a boundary layer. The technique is demonstrated in a small flow cuvette and in a water tunnel.

  20. Polarimetry noise in fiber-based optical coherence tomography instrumentation

    Science.gov (United States)

    Zhang, Ellen Ziyi; Vakoc, Benjamin J.

    2011-01-01

    High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044

  1. Active optical clock

    Institute of Scientific and Technical Information of China (English)

    CHEN JingBiao

    2009-01-01

    This article presents the principles and techniques of active optical clock, a special laser combining the laser physics of one-atom laser, bad-cavity gas laser, super-cavity stabilized laser and optical atomic clock together. As a simple example, an active optical clock based on thermal strontium atomic beam shows a quantum-limited linewidth of 0.51 Hz, which is insensitive to laser cavity-length noise, and may surpass the recorded narrowest 6.7 Hz of Hg ion optical clock and 1.5 Hz of very recent optical lattice clock. The estimated 0.1 Hz one-second instability and 0.27 Hz uncertainty are limited only by the rela-tivistic Doppler effect, and can be improved by cold atoms.

  2. Optical Coherence Tomography in Pulmonary Medicine

    Science.gov (United States)

    Murgu, Septimiu Dan; Brenner, Matthew; Chen, Zhongping; Suter, Melissa J.

    Advances in pulmonary diagnostics and therapeutics offer a major potential for optical imaging applications both in clinical practice and research settings. Complexities of pulmonary structures and function have restricted widespread OCT investigations and clinical applications, but these will likely be overcome by developments in OCT technology [1]. Some factors that have limited adaptation of OCT into the pulmonary setting in the past have been the shallow depth of penetration, resolution limitations, relatively slow access times, need to examine large surface areas with numerous branching airways, motion artifacts, as well as a need for development of practical imaging probes to reach the relevant locations in a minimally invasive way. Considerable recent engineering and analytical advances in OCT technology [2-8] have already overcome several of these obstacles and will enable much more extensive investigations into the role for structural and functional pulmonary OCT imaging [1].

  3. Optical Coherence Tomography: Modeling and Applications

    DEFF Research Database (Denmark)

    Thrane, Lars

    in previous theoretical models of OCT systems. It is demonstrated that the shower curtain effect is of utmost importance in the theoretical description of an OCT system. The analytical model, together with proper noise analysis of the OCT system, enables calculation of the SNR, where the optical properties...... geometry, i.e., reflection geometry, is developed. As in the new OCT model, multiple scattered photons has been taken into account together with multiple scattering effects. As an important result, a novel method of creating images based on measurements of the momentum width of the Wigner phase......An analytical model is presented that is able to describe the performance of OCT systems in both the single and multiple scattering regimes simultaneously. This model inherently includes the shower curtain effect, well-known for light propagation through the atmosphere. This effect has been omitted...

  4. Toroidal optical activity

    CERN Document Server

    Raybould, T A; Papasimakis, N; Kuprov, I; Youngs, I; Chen, W T; Tsai, D P; Zheludev, N I

    2015-01-01

    Optical activity is ubiquitous across natural and artificial media and is conventionally understood in terms of scattering from electric and magnetic moments. Here we demonstrate experimentally and confirm numerically a type of optical activity that cannot be attributed to electric and magnetic multipoles. We show that our observations can only be accounted for by the inclusion of the toroidal dipole moment, the first term of the recently established peculiar family of toroidal multipoles.

  5. The diagnosis of nasopharyngeal carcinoma by optical coherence tomography (OCT)

    Science.gov (United States)

    Li, J. H.; Du, Y.

    2016-06-01

    We have attempted to explore the intrinsic differences in the optical properties of the nasopharyngeal carcinoma (NPC) and normal tissue by optical coherence tomography (OCT). OCT imaging of normal tissue provided three layers of epithelium, lamina propria, and the brighter interface of basement membrane; while carcinomas disrupted the layered construction embedded in signal-poor images. The morphologies were consistent with histological findings. Sensitivity and specificity were 90% and 100%, respectively. This pilot study demonstrates that NPC could be diagnosed by visualization, which implies that OCT might be potentially used to differentiate normal from NPC tissue in the early stage as an invasive biopsy.

  6. Modeling light–tissue interaction in optical coherence tomography systems

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Jørgensen, Thomas Martini; Thrane, Lars

    2015-01-01

    Optical coherence tomography (OCT) performs high-resolution, cross-sectional tomographic imaging of the internal tissue microstructure by measuring backscattered or backreflected light. The scope of this chapter is to present analytical and numerical models that are able to describe light......-tissue interactions and its influence on the performance of OCT systems including multiple scattering effects in heterogeneous media. In general, these models, analytical as well as numerical, may serve as important tools for improving interpretation of OCT images and also serve as prerequisites for extraction...... of tissue optical scattering parameters....

  7. A signal separation technique for sub-cellular imaging using dynamic optical coherence tomography

    CERN Document Server

    Ammari, Habib; Shi, Cong

    2016-01-01

    This paper aims at imaging the dynamics of metabolic activity of cells. Using dynamic optical coherence tomography, we introduce a new multi-particle dynamical model to simulate the movements of the collagen and the cell metabolic activity and develop an efficient signal separation technique for sub-cellular imaging. We perform a singular-value decomposition of the dynamic optical images to isolate the intensity of the metabolic activity. We prove that the largest eigenvalue of the associated Casorati matrix corresponds to the collagen. We present several numerical simulations to illustrate and validate our approach.

  8. Breast cancer detection using phase contrast diffuse optical tomography

    Science.gov (United States)

    Liang, Xiaoping; Zhang, Qizhi; Li, Changqing; Grobmyer, Stephen R.; Fajardo, Laurie L.; Jiang, Huabei

    2007-02-01

    In this report, a phase-contrast diffuse optical tomography system, which can measure the refractive indices of human breast masses in vivo, is described. To investigate the utility of phase-contrast diffuse optical tomography (PCDOT) for differentiation of malignant and benign breast masses in humans, and to compare PCDOT with conventional diffuse optical tomography (DOT) for analysis of breast masses in humans. 35 breast masses were imaged in 33 patients (mean age = 51 years; range 22-80 years) using PCDOT. Images characterizing the tissue refractive index, absorption and scattering of breast masses were obtained with a finite element-based reconstruction algorithm. The accuracies of absorption and scattering images were compared with images of refractive index in light of the pathology results. Absorption and scattering images were unable to accurately discriminate benign from malignant lesions. Malignant lesions tended to have decreased refractive index allowing them to discriminate from benign lesions in most cases. The sensitivity, specificity, false positive value, and overall accuracy for refractive index were 81.8%, 70.8%, 29.2%, and 74.3%, respectively. Overall we show that benign and malignant breast masses in humans demonstrate different refractive index and differences in refractive index properties can be used to discriminate benign from malignant masses in patients with high accuracy. This opens up a new avenue for improved breast cancer detection using NIR diffusing light.

  9. Ultrasound-modulated optical tomography at new depth

    Science.gov (United States)

    Lai, Puxiang; Xu, Xiao

    2012-01-01

    Abstract. Ultrasound-modulated optical tomography (UOT) has the potential to reveal optical contrast deep inside soft biological tissues at an ultrasonically determined spatial resolution. The optical imaging depth reported so far has, however, been limited, which prevents this technique from broader applications. Our latest experimental exploration has pushed UOT to an unprecedented imaging depth. We developed and optimized a UOT system employing a photorefractive crystal-based interferometer. A large aperture optical fiber bundle was used to enhance the efficiencies for diffuse light collection and photorefractive two-wave-mixing. Within the safety limits for both laser illumination and ultrasound modulation, the system has attained the ability to image through a tissue-mimicking phantom of 9.4 cm in thickness, which has never been reached previously by UOT. PMID:22734762

  10. Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases.

    Science.gov (United States)

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J; Elsner, Peter; Kaatz, Martin

    2009-07-01

    We report on the first clinical study based on optical coherence tomography (OCT) in combination with multiphoton tomography (MPT) and dermoscopy. 47 patients with a variety of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art OCT systems for dermatology including multibeam swept source OCT, (ii) the femtosecond laser multiphoton tomograph, and (iii) dermoscopes. Dermoscopy provides two-dimensional color images of the skin surface. OCT images reflect modifications of the intratissue refractive index whereas MPT is based on nonlinear excitation of endogenous fluorophores and second harmonic generation. A stack of cross-sectional OCT "wide field" images with a typical field of view of 5 x 2 mm(2) gave fast information on the depth and the volume of the lesion. Multiphoton tomography provided 0.36 x 0.36 mm(2) horizontal/diagonal optical sections within seconds of a particular region of interest with superior submicron resolution down to a tissue depth of 200 mum. The combination of OCT and MPT provides a unique powerful optical imaging modality for early detection of skin cancer and other skin diseases as well as for the evaluation of the efficiency of treatments.

  11. Clinical optical coherence tomography combined with multiphoton tomography for evaluation of several skin disorders

    Science.gov (United States)

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J.; Elsner, Peter; Kaatz, Martin

    2010-02-01

    The first clinical trial of optical coherence tomography (OCT) combined with multiphoton tomography (MPT) and dermoscopy is reported. State-of-the-art (i) OCT systems for dermatology (e.g. multibeam swept source OCT), (ii) the femtosecond laser multiphoton tomograph DermaInspectTM, and (iii) digital dermoscopes were applied to 47 patients with a diversity of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases. Dermoscopy, also called 'epiluminescent microscopy', provides two-dimensional color images of the skin surface. OCT imaging is based on the detection of optical reflections within the tissue measured interferometrically whereas nonlinear excitation of endogenous fluorophores and the second harmonic generation are the bases of MPT images. OCT cross sectional "wide field" image provides a typical field of view of 5 x 2 mm2 and offers fast information on the depth and the volume of the investigated lesion. In comparison, multiphoton tomography presents 0.36 x 0.36 mm2 horizontal or diagonal sections of the region of interest within seconds with submicron resolution and down to a tissue depth of 200 μm. The combination of OCT and MPT provides a synergistic optical imaging modality for early detection of skin cancer and other skin diseases.

  12. Algorithm for localized adaptive diffuse optical tomography and its application in bioluminescence tomography

    Science.gov (United States)

    Naser, Mohamed A.; Patterson, Michael S.; Wong, John W.

    2014-04-01

    A reconstruction algorithm for diffuse optical tomography based on diffusion theory and finite element method is described. The algorithm reconstructs the optical properties in a permissible domain or region-of-interest to reduce the number of unknowns. The algorithm can be used to reconstruct optical properties for a segmented object (where a CT-scan or MRI is available) or a non-segmented object. For the latter, an adaptive segmentation algorithm merges contiguous regions with similar optical properties thereby reducing the number of unknowns. In calculating the Jacobian matrix the algorithm uses an efficient direct method so the required time is comparable to that needed for a single forward calculation. The reconstructed optical properties using segmented, non-segmented, and adaptively segmented 3D mouse anatomy (MOBY) are used to perform bioluminescence tomography (BLT) for two simulated internal sources. The BLT results suggest that the accuracy of reconstruction of total source power obtained without the segmentation provided by an auxiliary imaging method such as x-ray CT is comparable to that obtained when using perfect segmentation.

  13. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography.

    Science.gov (United States)

    Cheng, Hsu-Chih; Liu, Yi-Cheng

    2010-02-10

    Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3 x 3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

  14. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsu-Chih; Liu, Yi-Cheng

    2010-02-10

    Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3x3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

  15. Passive endoscopic polarization sensitive optical coherence tomography with completely fiber based optical components

    Science.gov (United States)

    Cahill, Lucas; Lee, Anthony M. D.; Pahlevaninezhad, Hamid; Ng, Samson; MacAulay, Calum E.; Poh, Catherine; Lane, Pierre

    2015-03-01

    Polarization Sensitive Optical Coherence Tomography (PSOCT) is a functional extension of Optical Coherence Tomography (OCT) that is sensitive to well-structured, birefringent tissue such as scars, smooth muscle and cartilage. In this work, we present a novel completely fiber based swept source PSOCT system using a fiber-optic rotary pullback catheter. This PSOCT implementation uses only passive optical components and requires no calibration while adding minimal additional cost to a standard structural OCT imaging system. Due to its complete fiber construction, the system can be made compact and robust, while the fiber-optic catheter allows access to most endoscopic imaging sites. The 1.5mm diameter endoscopic probe can capture 100 frames per second at pullback speeds up to 15 mm/s allowing rapid traversal of large imaging fields. We validate the PSOCT system with known birefringent tissues and demonstrate in vivo PSOCT imaging of human oral scar tissue.

  16. Detection of coal dust in a mine using optical tomography

    Institute of Scientific and Technical Information of China (English)

    Wei Mingsheng; Tong Minming; Hao Jifei; Cai Li; Xu Jie

    2012-01-01

    A dust concentration imaging system based on optical tomography is proposed to monitor concentration variations of coal dust in a mine.Concentration profiles,rather than just a point value,of coal dust concentrations are the goal of this method.An optical sensor array is employed to realize an optical sensing field of the coal dust concentration during on-line monitoring.A novel image reconstruction algorithm,called the simultaneous iterative reconstruction technique (SIRT),is compared to the well known linear,back projection algorithm (LBP).The SIRT was applied to the present problem and tested by modeling.The disadvantage of the SIRT is a slow speed but some improvements have been made by adding a weighting function that reduces the relative error to 1.7% from 3.1% for 50 iterations.The results of image reconstruction are presented for both simulated and real objects.They prove that the optical tomography technique,based on a multi-source fan projection scheme,can be an effective approach for estimating coal dust distribution.This system can be applied in real time for continuous measurements in a mine.

  17. Objective Measurement of Vitreous Inflammation using Optical Coherence Tomography

    Science.gov (United States)

    Keane, Pearse A.; Karampelas, Michael; Sim, Dawn A.; Sadda, Srinivas R.; Tufail, Adnan; Sen, H. Nida; Nussenblatt, Robert B.; Dick, Andrew D.; Lee, Richard W.; Murray, Philip I.; Pavesio, Carlos E.; Denniston, Alastair K.

    2014-01-01

    Purpose To obtain measurements of vitreous signal intensity from optical coherence tomography (OCT) image sets in patients with uveitis, with the aim of developing an objective, quantitative marker of inflammatory activity in patients with this disease. Design Retrospective, observational case-control series. Participants Thirty patients (30 eyes), with vitreous haze secondary to intermediate, posterior, or panuveitis; twelve patients (12 eyes) with uveitis but without evidence of vitreous haze; and 18 patients (18 eyes) without intraocular inflammation or vitreoretinal disease. Methods Clinical and demographic characteristics were recorded, including visual acuity (VA), diagnosis, and anatomic type of uveitis. In each eye, the anterior chamber (AC) was graded for cellular activity and flare according to standardized protocols. The presence and severity of vitreous haze was classified according to the National Eye Institute system. Spectral domain OCT images were analyzed using custom software. This software provided an “absolute” measurement of vitreous signal intensity, which was then compared to that of the retinal pigment epithelium (RPE), generating an optical density ratio with arbitrary units (“VIT/RPE-Relative Intensity”). Main Outcome Measures Correlation between clinical vitreous haze scores and OCT-derived measurements of vitreous signal intensity. Results VIT/RPE-Relative Intensity was significantly higher in uveitic eyes with known vitreous haze (0.150) than in uveitic eyes without haze or in healthy controls (0.0767, p=0.0001). VIT/RPE-Relative intensity showed a significant, positive correlation with clinical vitreous haze scores (r=0.566, p=0.0001). Other ocular characteristics significantly associated with VIT/RPE-Relative Intensity included VA (r=0.573, p=0.0001), AC cells (r=0.613, p=0.0001), AC flare (r=0.385, p=0.003). Measurement of VIT/RPE-Relative Intensity showed a good degree of inter-grader reproducibility (95% limits of agreement

  18. Large area full-field optical coherence tomography

    Science.gov (United States)

    Chang, Shoude; Sherif, Sherif; Flueraru, Costel

    2006-09-01

    Optical Coherence Tomography (OCT) is a fundamentally new type of optical imaging technology. OCT performs high resolution, cross-sectional tomographic imaging of the internal structure in materials and biological systems. The biomedical applications of the OCT imaging systems have been developed for diagnostics of ophthalmology, dermatology, dentistry and cardiology. Most of existing OCT systems use point-scanning based technology, however, the 3-axis scanning makes the system slow and cumbersome. A few OCT systems working directly on 2D full-field images were reported, however, they are designed to work in a relatively small area, around couple of hundred microns square. In this paper, we present a design and implementation of a full-field OCT imaging system for acquiring tomography and with a working area around 15mm by 15 mm. The problems rising from full-field OCT are addressed and analyzed. The algorithms to extract the tomography are proposed. Two applications of multilayer information retrieval and 3D object imaging using full-field OCT are described.

  19. Multispectral optoacoustic tomography resolves smart probe activation in vulnerable plaques

    Science.gov (United States)

    Razansky, Daniel; Harlaar, Niels J.; Hillebrands, Jan-Luuk; Taruttis, Adrian; Herzog, Eva; Zeebregts, Clark; van Dam, Goitzen; Ntziachristos, Vasilis

    2011-03-01

    In this work, we show, for the first time to our knowledge, that multispectral optoacoustic tomography (MSOT) can deliver high resolution images of activatable molecular probe's distribution, sensitive to matrix metalloproteinases (MMP), deep within optically scattering human carotid specimen. It is further demonstrated that this method can be used in order to provide accurate maps of vulnerable plaque formations in atherosclerotic disease. Moreover, optoacoustic images can simultaneously show the underlining plaque morphology for accurate localization of MMP activity in three dimensions. This performance directly relates to small animal screening applications and to clinical potential as well.

  20. Polarization-sensitive optical coherence tomography applied to intervertebral disk

    Science.gov (United States)

    Matcher, Stephen J.; Winlove, Peter; Gangnus, Sergei V.

    2003-07-01

    Polarization-sensitive optical coherence tomography (PSOCT) is a powerful new optical imaging modality that is sensitive to the birefringence properties of tissues. It thus has potential applications in studying the large-scale ordering of collagen fibers within connective tisues and changes related to pathology. As a tissue for study by PSOCT, intervertebral disk respresents an interesting system as the collagen organization is believed to show pronounced variations with depth, on a spatial scale of about 100 μm. We have used a polarization-sensitive optical coherence tomography system to measure the birefringence properties of bovine caudal intervertebral disk and compared this with equine flexor tendon. The result for equine tendon, δ = (3.0 +/- 0.5)x10-3 at 1.3 μm, is in broad agreement with values reported for bovine tendon, while bovine intervertebral disk displays a birefringence of about half this, δ = 1.2 x 10-3 at 1.3 μm. While tendon appears to show a uniform fast-axis over 0.8 mm depth, intervertebral disk shows image contrast at all orientations relative to a linearly polarized input beam, suggesting a variation in fast-axis orientation with depth. These initial results suggest that PSOCT could be a useful tool to study collagen organization within this tissue and its variation with applied load and disease.

  1. Miniature endoscopic optical coherence tomography for calculus detection.

    Science.gov (United States)

    Kao, Meng-Chun; Lin, Chun-Li; Kung, Che-Yen; Huang, Yi-Fung; Kuo, Wen-Chuan

    2015-08-20

    The effective treatment of periodontitis involves the detection and removal of subgingival dental calculus. However, subgingival calculus is more difficult to detect than supragingival calculus because it is firmly attached to root surfaces within periodontal pockets. To achieve a smooth root surface, clinicians often remove excessive amounts of root structure because of decreased visibility. In addition, enamel pearl, a rare type of ectopic enamel formation on the root surface, can easily be confused with dental calculus in the subgingival environment. In this study, we developed a fiber-probe swept-source optical coherence tomography (SSOCT) technique and combined it with the quantitative measurement of an optical parameter [standard deviation (SD) of the optical coherence tomography (OCT) intensity] to differentiate subgingival calculus from sound enamel, including enamel pearl. Two-dimensional circumferential images were constructed by rotating the miniprobe (0.9 mm diameter) while acquiring image lines, and the adjacent lines in each rotation were stacked to generate a three-dimensional volume. In OCT images, compared to sound enamel and enamel pearls, dental calculus showed significant differences (Pcalculus.

  2. CT guided diffuse optical tomography for breast cancer imaging

    Science.gov (United States)

    Baikejiang, Reheman; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as blood, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer detection. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at wavelengths of 650 and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements, the width of measurement patch, have been investigated. Our results indicate that an EMCCD camera with air cooling is good enough for the transmission mode DOT imaging. We have also found that measurements at six projections are sufficient for DOT to reconstruct the optical targets with 4 times absorption contrast when the CT guidance is applied. Finally, we report our effort and progress on the integration of the multispectral DOT imaging system into a breast CT scanner.

  3. Optical Coherence Tomography as a Tool for Ocular Dynamics Estimation

    Directory of Open Access Journals (Sweden)

    Damian Siedlecki

    2015-01-01

    Full Text Available Purpose. The aim of the study is to demonstrate that the ocular dynamics of the anterior chamber of the eye can be estimated quantitatively by means of optical coherence tomography (OCT. Methods. A commercial high speed, high resolution optical coherence tomographer was used. The sequences of tomographic images of the iridocorneal angle of three subjects were captured and each image from the sequence was processed in MATLAB environment in order to detect and identify the contours of the cornea and iris. The data on pulsatile displacements of the cornea and iris and the changes of the depth of the gap between them were retrieved from the sequences. Finally, the spectral analysis of the changes of these parameters was performed. Results. The results of the temporal and spectral analysis manifest the ocular microfluctuation that might be associated with breathing (manifested by 0.25 Hz peak in the power spectra, heart rate (1–1.5 Hz peak, and ocular hemodynamics (3.75–4.5 Hz peak. Conclusions. This paper shows that the optical coherence tomography can be used as a tool for noninvasive estimation of the ocular dynamics of the anterior segment of the eye, but its usability in diagnostics of the ocular hemodynamics needs further investigations.

  4. Fourier phase in Fourier-domain optical coherence tomography.

    Science.gov (United States)

    Uttam, Shikhar; Liu, Yang

    2015-12-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.

  5. Electrophysiological and Anatomical Correlates of Spinal Cord Optical Coherence Tomography.

    Directory of Open Access Journals (Sweden)

    Mario E Giardini

    Full Text Available Despite the continuous improvement in medical imaging technology, visualizing the spinal cord poses severe problems due to structural or incidental causes, such as small access space and motion artifacts. In addition, positional guidance on the spinal cord is not commonly available during surgery, with the exception of neuronavigation techniques based on static pre-surgical data and of radiation-based methods, such as fluoroscopy. A fast, bedside, intraoperative real-time imaging, particularly necessary during the positioning of endoscopic probes or tools, is an unsolved issue. The objective of our work, performed on experimental rats, is to demonstrate potential intraoperative spinal cord imaging and probe guidance by optical coherence tomography (OCT. Concurrently, we aimed to demonstrate that the electromagnetic OCT irradiation exerted no particular effect at the neuronal and synaptic levels. OCT is a user-friendly, low-cost and endoscopy-compatible photonics-based imaging technique. In particular, by using a Fourier-domain OCT imager, operating at 850 nm wavelength and scanning transversally with respect to the spinal cord, we have been able to: 1 accurately image tissue structures in an animal model (muscle, spine bone, cerebro-spinal fluid, dura mater and spinal cord, and 2 identify the position of a recording microelectrode approaching and inserting into the cord tissue 3 check that the infrared radiation has no actual effect on the electrophysiological activity of spinal neurons. The technique, potentially extendable to full three-dimensional image reconstruction, shows prospective further application not only in endoscopic intraoperative analyses and for probe insertion guidance, but also in emergency and adverse situations (e.g. after trauma for damage recognition, diagnosis and fast image-guided intervention.

  6. All-optically integrated multimodality imaging system: combined photoacoustic microscopy, optical coherence tomography, and fluorescence imaging

    Science.gov (United States)

    Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2016-10-01

    We have developed a multimodality imaging system by optically integrating all-optical photoacoustic microscopy (AOPAM), optical coherence tomography (OCT) and fluorescence microscopy (FLM) to provide complementary information including optical absorption, optical back-scattering and fluorescence contrast of biological tissue. By sharing the same low-coherence Michelson interferometer, AOPAM and OCT could be organically optically combined to obtain the absorption and scattering information of the biological tissues. Also, owing to using the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence signals are obtained to present the radiative and nonradiative transition process of absorption. Simultaneously photoacoustic angiography, tissue structure and fluorescence molecular in vivo images of mouse ear were acquired to demonstrate the capabilities of the optically integrated trimodality imaging system, which can present more information to study tumor angiogenesis, vasculature, anatomical structure and microenvironments in vivo.

  7. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy

    OpenAIRE

    Fujimoto, James G.; Pitris, Costas; Boppart, Stephen A.; Brezinski, Mark E.

    2000-01-01

    Optical coherence tomography (OCT) is an emerging technology for performing high-resolution cross-sectional imaging. OCT is analogous to ultrasound imaging, except that it uses light instead of sound. OCT can provide cross-sectional images of tissue structure on the micron scale in situ and in real time. Using OCT in combination with catheters and endoscopes enables high-resolution intraluminal imaging of organ systems. OCT can function as a type of optical biopsy and is a powerful imaging te...

  8. Adaptive-optics Optical Coherence Tomography Processing Using a Graphics Processing Unit*

    Science.gov (United States)

    Shafer, Brandon A.; Kriske, Jeffery E.; Kocaoglu, Omer P.; Turner, Timothy L.; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T.

    2015-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability. PMID:25570838

  9. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    Science.gov (United States)

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  10. Application of optical coherence tomography based microangiography for cerebral imaging

    Science.gov (United States)

    Baran, Utku; Wang, Ruikang K.

    2016-03-01

    Requirements of in vivo rodent brain imaging are hard to satisfy using traditional technologies such as magnetic resonance imaging and two-photon microscopy. Optical coherence tomography (OCT) is an emerging tool that can easily reach at high speeds and provide high resolution volumetric images with a relatively large field of view for rodent brain imaging. Here, we provide the overview of recent developments of functional OCT based imaging techniques for neuroscience applications on rodents. Moreover, a summary of OCT-based microangiography (OMAG) studies for stroke and traumatic brain injury cases on rodents are provided.

  11. Ultrahigh resolution optical coherence tomography using a superluminescent light source.

    Science.gov (United States)

    Kowalevicz, Andrew; Ko, Tony; Hartl, Ingmar; Fujimoto, James; Pollnau, Markus; Salathé, René

    2002-04-08

    A superluminescent Ti:Al2O(3) crystal is demonstrated as a light source for ultrahigh resolution optical coherence tomography (OCT). Single spatial mode, fiber coupled output powers of ~40 microW can be generated with 138 nm bandwidth using a 5 W frequency doubled, diode pumped laser, pumping a thin Ti:Al2O(3) crystal. Ultrahigh resolution OCT imaging is demonstrated with 2.2 microm axial resolution in air, or 1.7 microm in tissue, with >86 dB sensitivity. This light source provides a simple and robust alternative to femtosecond lasers for ultrahigh resolution OCT imaging.

  12. Optical diffraction tomography techniques for the study of cell pathophysiology

    CERN Document Server

    Kim, Kyoohyun; Shin, Seungwoo; Lee, SangYun; Yang, Su-A; Park, YongKeun

    2016-01-01

    Three-dimensional imaging of biological cells is crucial for the investigation of cell biology, provide valuable information to reveal the mechanisms behind pathophysiology of cells and tissues. Recent advances in optical diffraction tomography (ODT) have demonstrated the potential for the study of various cells with its unique advantages of quantitative and label-free imaging capability. To provide insight on this rapidly growing field of research and to discuss its applications in biology and medicine, we present the summary of the ODT principle and highlight recent studies utilizing ODT with the emphasis on the applications to the pathophysiology of cells.

  13. Ultrasound-Modulated Optical Tomography in Reflective and Coaxial Configuration

    Institute of Scientific and Technical Information of China (English)

    傅洪波; 邢达; 曾亚光; 王毅; 陈群

    2003-01-01

    Ultrasound-modulated optical tomography affords a very promising noninvasive imaging method for biomedical diagnosis. With this technique, an ultrasound beam is focused into a scattering medium to provide an accurate localization and, simultaneously, a modulation of laser light inside the medium. Based on the high-sensitivity detection technique, we have developed a unique reflective configuration, which was more convenient and practical than other existing configurations. Furthermore, the configuration also introduced a new scheme to improve the spatial resolution in the imaging. A phantom was imaged to validate the feasibility of the proposed configuration.

  14. Quantum-optical coherence tomography with collinear entangled photons.

    Science.gov (United States)

    Lopez-Mago, Dorilian; Novotny, Lukas

    2012-10-01

    Quantum-optical coherence tomography (QOCT) combines the principles of classical OCT with the correlation properties of entangled photon pairs [Phys. Rev. A 65, 053817 (2002)]. The standard QOCT configuration is based on the Hong-Ou-Mandel interferometer, which uses entangled photons propagating in separate interferometer arms. This noncollinear configuration imposes practical limitations, e.g., misalignment due to drift and low signal-to-noise. Here, we introduce and implement QOCT based on collinear entangled photons. It makes use of a two-photon Michelson interferometer and offers several advantages, such as simplicity, robustness, and adaptability.

  15. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies

    DEFF Research Database (Denmark)

    Cruz-Herranz, Andrés; Balk, Lisanne J; Oberwahrenbrock, Timm

    2016-01-01

    OBJECTIVE: To develop consensus recommendations for reporting of quantitative optical coherence tomography (OCT) study results. METHODS: A panel of experienced OCT researchers (including 11 neurologists, 2 ophthalmologists, and 2 neuroscientists) discussed requirements for performing and reporting...... quantitative analyses of retinal morphology and developed a list of initial recommendations based on experience and previous studies. The list of recommendations was subsequently revised during several meetings of the coordinating group. RESULTS: We provide a 9-point checklist encompassing aspects deemed...... relevant when reporting quantitative OCT studies. The areas covered are study protocol, acquisition device, acquisition settings, scanning protocol, funduscopic imaging, postacquisition data selection, postacquisition data analysis, recommended nomenclature, and statistical analysis. CONCLUSIONS...

  16. Optical coherence tomography imaging of ocular and periocular tumours

    Science.gov (United States)

    Medina, Carlos A; Plesec, Thomas; Singh, Arun D

    2014-01-01

    Optical coherence tomography (OCT) has become pivotal in the practice of ophthalmology. Similar to other ophthalmic subspecialties, ophthalmic oncology has also incorporated OCT into practice. Anterior segment OCT (AS-OCT), ultra-high resolution OCT (UHR-OCT), spectral domain OCT (SD-OCT) and enhanced depth imaging OCT (EDI-OCT), have all been described to be helpful in the diagnosis, treatment planning and monitoring response of ocular and periocular tumours. Herein we discuss the role of OCT including the advantages and limitations of its use in the setting of common intraocular and adnexal tumours. PMID:24599420

  17. Optical coherence tomography in the diagnosis of basal cell carcinoma

    DEFF Research Database (Denmark)

    Hussain, Alia Arif; Themstrup, Lotte; Jemec, Gregor Borut Ernst

    2015-01-01

    Since its introduction in dermatology in the late 1990s optical coherence tomography (OCT) has been used to study many skin diseases, in particular non-melanoma skin cancer and it s precursors. Special attention has been paid to superficial basal cell carcinoma (BCC), and a number of smaller...... observational studies have been published. The diagnostic criteria for BCC of these studies are systematically reviewed. A systemic review of English language studies was performed using PubMed, Google Scholar and Royal Danish Library, to search for primary papers on OCT and BCC. The references of retrieved...

  18. Single fiber perfusion phantom for optical coherence tomography

    Science.gov (United States)

    Podlipná, Petra; Kolář, Radim

    2013-06-01

    This paper presents the successful creation of new phantom for optical coherence tomography (OCT) aimed on perfusion simulation. The phantom is created from syringe pump and polypropylene hollow fiber with porous walls embeded in the glass capillary to provide small outer environment. Its function was tested by gold nanorods as a flowing medium and imaged by commercial swept-source OCT system. Results showed that the fiber is permeable for used gold nanorods which are frequently declared as possible contrast agents for OCT and this permeability can be displayed by OCT.

  19. High Speed Optical Tomography System for Imaging Dynamic Transparent Media

    Science.gov (United States)

    McMackin, Lenore; Hugo, Ronald J.; Pierson, R. E.; Truman, C. R.

    1997-11-01

    We describe the design and operation of a high speed optical tomography system for measuring two-dimensional images of a dynamic phase object at a rate of 5 kHz. Data from a set of eight Hartmann wavefront sensors is back-projected to produce phase images showing the details of the inner structure of a heated air flow. The tomographic reconstructions have a spatial resolution of approximately 2.0 mm and can measure temperature variations across the flow with an accuracy of about 0.7 C. Series of animated reconstructions at different downstream locations illustrate the development of flow structure and the effect of acoustic flow forcing.

  20. [Optical coherence tomography in the diagnosis of achromatopsia].

    Science.gov (United States)

    Burgueño-Montañés, C; Colunga-Cueva, M

    2014-02-01

    The case of a fifty five year-old male with nyctalopia, photophobia, poor colour vision and nystagmus, is presented. The initial suspected diagnoses were achromatopsia and blue-cone monochromatism, since both are clinically indistinguishable. Optical coherence tomography (OCT) showed the characteristic foveal reflectivity pattern of achromatopsia. This diagnosis was subsequently confirmed by genetic study. OCT is a non-invasive diagnostic imaging method that allows tissue morphology to be observed with high resolution. Its use might be of great help to distinguish clinically similar diseases. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  1. Optical coherence tomography in clinical examinations of nonpigmented skin malignancies

    Science.gov (United States)

    Jensen, Laura K.; Thrane, Lars; Andersen, Peter E.; Tycho, Andreas; Pedersen, Finn; Andersson-Engels, Stefan; Bendsoe, Niels; Svanberg, Sune; Svanberg, Katarina

    2003-10-01

    Optical coherence tomography (OCT) images of basal cell carcinomas (BCCs) have been acquired using a compact handheld proble with an integrated video camera allowing the OCT images to be correlated to a skin surface image. In general the healthy tissue of the skin has an obvious stratified structure, whereas the cancerous tissue shows a more homogeneous structure. Thus it was demonstrated that it is possible to distinguish BCCs from healthy tissue by means of OCT. Furthermore different histological types of BCC were identified. Comparison of OCT images taken prior to and immediately after photodynamic theory clearly shows the tissue response to the treatment, and indicates local oedema in the treated area.

  2. Primate retina imaging with polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Ducros, Mathieu G.; Marsack, Jason D.; Rylander, H. Grady; Thomsen, Sharon L.; Milner, Thomas E.

    2001-12-01

    Polarization-sensitive optical coherence tomography (PSOCT) is applied to determine the depth-resolved polarization state of light backreflected from the eye. The birefringence of the retinal nerve fiber layer (RNFL) was observed and measured from PSOCT images recorded postmortem in a Rhesus monkey. An image-processing algorithm was developed to identify birefringent regions in acquired PSOCT retinal images and automatically determine the thickness of the RNFL. Values of the RNFL thickness determined from histology and PSOCT were compared. PSOCT may provide a new method to determine RNFL thickness and birefringence for glaucoma diagnostics.

  3. Diffuse optical tomography based on time-resolved compressive sensing

    Science.gov (United States)

    Farina, A.; Betcke, M.; Di Sieno, L.; Bassi, A.; Ducros, N.; Pifferi, A.; Valentini, G.; Arridge, S.; D'Andrea, C.

    2017-02-01

    Diffuse Optical Tomography (DOT) can be described as a highly multidimensional problem generating a huge data set with long acquisition/computational times. Biological tissue behaves as a low pass filter in the spatial frequency domain, hence compressive sensing approaches, based on both patterned illumination and detection, are useful to reduce the data set while preserving the information content. In this work, a multiple-view time-domain compressed sensing DOT system is presented and experimentally validated on non-planar tissue-mimicking phantoms containing absorbing inclusions.

  4. Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke

    National Research Council Canada - National Science Library

    Srinivasan, Vivek J; Mandeville, Emiri T; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng H; Sakadžić, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk

    2013-01-01

    .... A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described...

  5. Optical tractography of the mouse heart using polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Wang, Yuanbo; Yao, Gang

    2013-01-01

    We developed a method to image myocardial fiber architecture in the mouse heart using a Jones matrix-based polarization-sensitive optical coherence tomography (PSOCT) system. The "cross-helical" laminar structure of myocardial fibers can be clearly visualized using this technology. The obtained myocardial fiber organization agrees well with existing knowledge acquired using conventional histology and diffusion tensor magnetic resonance imaging.

  6. Quantitative characterization of developing collagen gels using optical coherence tomography

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Choudhury, Niloy; Tran, Noi T.; Hanson, Stephen R.; Jacques, Steven L.

    2010-03-01

    Nondestructive optical imaging methods such as optical coherence tomography (OCT) have been proposed for characterizing engineered tissues such as collagen gels. In our study, OCT was used to image collagen gels with different seeding densities of smooth muscle cells (SMCs), including acellular gels, over a five-day period during which the gels contracted and became turbid with increased optical scattering. The gels were characterized quantitatively by their optical properties, specified by analysis of OCT data using a theoretical model. At 6 h, seeded cell density and scattering coefficient (μs) were correlated, with μs equal to 10.8 cm-1/(106 cells/mL). Seeded cell density and the scattering anisotropy (g) were uncorrelated. Over five days, the reflectivity in SMC gels gradually doubled with little change in optical attenuation, which indicated a decrease in g that increased backscatter, but only a small drop in μs. At five days, a subpopulation of sites on the gel showed substantially higher reflectivity (approximately a tenfold increase from the first 24 h). In summary, the increased turbidity of SMC gels that develops over time is due to a change in the structure of collagen, which affects g, and not simply due to a change in number density of collagen fibers due to contraction.

  7. Time-domain diffuse optical tomography using silicon photomultipliers: feasibility study.

    Science.gov (United States)

    Di Sieno, Laura; Zouaoui, Judy; Hervé, Lionel; Pifferi, Antonio; Farina, Andrea; Martinenghi, Edoardo; Derouard, Jacques; Dinten, Jean-Marc; Mora, Alberto Dalla

    2016-11-01

    Silicon photomultipliers (SiPMs) have been very recently introduced as the most promising detectors in the field of diffuse optics, in particular due to the inherent low cost and large active area. We also demonstrate the suitability of SiPMs for time-domain diffuse optical tomography (DOT). The study is based on both simulations and experimental measurements. Results clearly show excellent performances in terms of spatial localization of an absorbing perturbation, thus opening the way to the use of SiPMs for DOT, with the possibility to conceive a new generation of low-cost and reliable multichannel tomographic systems.

  8. Early detection of tooth wear by en-face optical coherence tomography

    Science.gov (United States)

    Mărcăuteanu, Corina; Negrutiu, Meda; Sinescu, Cosmin; Demjan, Eniko; Hughes, Mike; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.

    2009-02-01

    Excessive dental wear (pathological attrition and/or abfractions) is a frequent complication in bruxing patients. The parafunction causes heavy occlusal loads. The aim of this study is the early detection and monitoring of occlusal overload in bruxing patients. En-face optical coherence tomography was used for investigating and imaging of several extracted tooth, with a normal morphology, derived from patients with active bruxism and from subjects without parafunction. We found a characteristic pattern of enamel cracks in patients with first degree bruxism and with a normal tooth morphology. We conclude that the en-face optical coherence tomography is a promising non-invasive alternative technique for the early detection of occlusal overload, before it becomes clinically evident as tooth wear.

  9. Optical coherence tomography a clinical and technical update

    CERN Document Server

    Cunha-Vaz, José

    2012-01-01

    Optical Coherence Tomography represents the ultimate noninvasive  ocular imaging technique although being in the field for over two-decades. This book encompasses both medical and technical developments and recent achievements. Here, the authors cover the field of application from the anterior to the posterior ocular segments (Part I) and present a comprehensive review on the development of OCT. Important developments towards  clinical applications are covered in Part II, ranging from the adaptive optics to the integration on a slit-lamp, and passing through new structural  and functional information extraction from OCT data. The book is intended to be informative, coherent and comprehensive for both the medical and technical communities and aims at easing the communication between the two fields and bridging the gap between the two scientific communities.

  10. Non-diffusing photochromic gel for optical computed tomography phantoms

    Science.gov (United States)

    Jordan, K.

    2013-06-01

    This study examines photochromic response in radiation sensitive hydrogels. Genipin, crosslinked, gelatin gel can support high resolution images because the chromophores do not diffuse. A low power, 633 nm He-Ne laser was used to write lines into the gels by a photobleaching reaction. Optical cone-beam computed tomography (CBCT) scans mapped the high resolution images in 3D with 0.25 mm voxel resolution. A straight line was written into a deformed gel and then readout in its relaxed, initial shape. The curved, photo-bleached line demonstrated deformable 3D dosimetry is possible with this system to the balloon edge. High resolution, photochromic images provide key information for characterizing optical CT scanners and 3D dosimeters. Many, ionizing radiation, dosimeter materials demonstrate either a photochromic or photothermal response, allowing this approach to be widely used in quantitative 3D scanning.

  11. Imaging of oral pathological tissue using optical coherence tomography

    Science.gov (United States)

    Canjau, Silvana; Todea, Carmen; Sinescu, Cosmin; Duma, Virgil-Florin; Topala, Florin I.; Podoleanu, Adrian G.

    2014-01-01

    Oral squamous cell carcinoma (OSCC) constitutes 90% of oral cancer. Early detection is a cornerstone to improve survival. Interaction of light with tissues may highlight changes in tissue structure and metabolism. We propose optical coherence tomography (OCT), as a non-invasive diagnosis method, being a new high-resolution optical technique that permits tri-dimensional (3-D), real-time imaging of near surface abnormalities in complex tissues. In this study half of the excisional biopsy was directed to the pathologist and the other half was assigned for OCT investigation. Histopathology validated the results. Areas of OSCC of the buccal mucosa were identified in the OCT images. The elements obserced included extensive epithelial down-growth, the disruption of the basement membrane, with areas of erosion, an epithelial layer that was highly variable in thickness and invasion into the sub-epithelial layers. Therefore, OCT appears to be a highly promising imaging modality.

  12. Monte Carlo Simulations of Arterial Imaging with Optical Coherence Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, P.; Estabrook, K.; Everett, M.; London, R.A.; Maitland, D.; Zimmerman, G.; Colston, B.; da Silva, L.; Sathyam, U.

    2000-02-01

    The laser-tissue interaction code LATIS [London et al., Appl. Optics 36, 9068 ( 1998)] is used to analyze photon scattering histories representative of optical coherence tomography (OCT) experiment performed at Lawrence Livermore National Laboratory. Monte Carlo photonics with Henyey-Greenstein anisotropic scattering is implemented and used to simulate signal discrimination of intravascular structure. An analytic model is developed and used to obtain a scaling law relation for optimization of the OCT signal and to validate Monte Carlo photonics. The appropriateness of the Henyey-Greenstein phase function is studied by direct comparison with more detailed Mie scattering theory using an ensemble of spherical dielectric scatterers. Modest differences are found between the two prescriptions for describing photon angular scattering in tissue. In particular, the Mie scattering phase functions provide less overall reflectance signal but more signal contrast compared to the Henyey-Greenstein formulation.

  13. Cryosurgery treatment of actinic keratoses monitored by optical coherence tomography

    DEFF Research Database (Denmark)

    Themstrup, L.; Banzhaf, C.; Jemec, G.B.E.

    2013-01-01

    Background: Optical coherence tomography (OCT) is a non-invasive optical imaging technique providing high-resolution images. OCT may be useful as a monitoring tool during treatment of actinic keratoses (AK) and skin cancer. Objective: To examine and describe how OCT skin morphology changes when...... could not be monitored by OCT. Vesicle formation after cryotherapy could be identified in OCT images. In ex vivo skin no vesicle formation occurred. Conclusion: OCT cannot monitor the freezing depth, but OCT was able to visualise AK lesions and vesicle formation shortly after cryotherapy. Results add...... the tissue is exposed to the effects of cryotherapy. Methods: Normal ex vivo skin and in vivo AK lesions were examined. Cryotherapy was applied and OCT images were acquired at defined time points. OCT morphology was described. Results: Cryotherapy treatment produced an opaque iceball, and freezing depth...

  14. Optical coherence tomography for retinal imaging in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Zimmermann H

    2014-12-01

    Full Text Available Hanna Zimmermann,1 Timm Oberwahrenbrock,1 Alexander U Brandt,1 Friedemann Paul,1–3 Jan Dörr1,2 1NeuroCure Clinical Research Center, 2Clinical and Experimental Multiple Sclerosis Research Center, 3Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany Abstract: Visual disturbances caused by inflammatory and demyelinating processes of the visual system, mainly in the optic nerve, are a common symptom in multiple sclerosis (MS. Optical coherence tomography (OCT is a tool that is increasingly used for quantifying retinal damage in MS and other neurologic diseases. Based on spectral interferometry, it uses low-coherent infrared light to generate high-resolution spatial images of the retina. The retinal nerve fiber layer (RNFL consists of unmyelinated axons that form the optic nerve, and thus represents a part of the central nervous system. OCT allows for noninvasive measurements of RNFL thickness in micrometer resolution. With the help of OCT, researchers have managed to demonstrate that eyes of MS patients show distinct RNFL thinning after an event of acute optic neuritis in MS, and even subclinical damage in eyes with no previous optic neuritis. OCT is also a useful tool in terms of providing a differential diagnosis of MS toward, for example, neuromyelitis optica, a disease that usually shows stronger retinal thinning, or Susac syndrome, which is characterized by distinct patchy thinning of the inner retinal layers. RNFL thinning is associated with magnetic resonance imaging-derived measurements of the brain, such as whole-brain atrophy, gray and white matter atrophy, and optic radiation damage. These features suggest that OCT-derived retinal measurements are a complement for measuring central nervous system neurodegeneration in the context of clinical trials – for example, with neuroprotective substances. Keywords: visual function, multiple sclerosis, optic neuritis, retinal nerve fiber layer, neuromyelitis optica

  15. Automatic segmentation of coronary morphology using transmittance-based lumen intensity-enhanced intravascular optical coherence tomography images and applying a localized level-set-based active contour method.

    Science.gov (United States)

    Joseph, Shiju; Adnan, Asif; Adlam, David

    2016-10-01

    Lumen segmentation from clinical intravascular optical coherence tomography (IV-OCT) images has clinical relevance as it provides a full three-dimensional perspective of diseased coronary artery sections. Inaccurate segmentation may occur when there are artifacts in the image, resulting from issues such as inadequate blood clearance. This study proposes a transmittance-based lumen intensity enhancement method that ensures only lumen regions are highlighted. A level-set-based active contour method that utilizes the local speckle distribution properties of the image is then employed to drive an image-specific active contour toward the true lumen boundaries. By utilizing local speckle properties, the intensity variation issues within the image are resolved. This combined approach has been successfully applied to challenging clinical IV-OCT datasets that contains multiple lumens, residual blood flow, and its shadowing artifact. A method to identify the guide-wire and interpolate the lost lumen segments has been implemented. This approach is fast and can be performed even when guide-wire boundaries are not easily identified. Lumen enhancement also makes it easy to identify vessel side branches. This automated approach is not only able to extract the arterial lumen, but also the smaller microvascular lumens that are associated with the vasa vasorum and with atherosclerotic plaque.

  16. High-speed optical coherence tomography signal processing on GPU

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiqi; Shi Guohua; Zhang Yudong, E-mail: lixiqi@yahoo.cn [Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209 (China)

    2011-01-01

    The signal processing speed of spectral domain optical coherence tomography (SD-OCT) has become a bottleneck in many medical applications. Recently, a time-domain interpolation method was proposed. This method not only gets a better signal-to noise ratio (SNR) but also gets a faster signal processing time for the SD-OCT than the widely used zero-padding interpolation method. Furthermore, the re-sampled data is obtained by convoluting the acquired data and the coefficients in time domain. Thus, a lot of interpolations can be performed concurrently. So, this interpolation method is suitable for parallel computing. An ultra-high optical coherence tomography signal processing can be realized by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This paper will introduce the signal processing steps of SD-OCT on GPU. An experiment is performed to acquire a frame SD-OCT data (400A-linesx2048 pixel per A-line) and real-time processed the data on GPU. The results show that it can be finished in 6.208 milliseconds, which is 37 times faster than that on Central Processing Unit (CPU).

  17. Molecular imaging true-colour spectroscopic optical coherence tomography

    Science.gov (United States)

    Robles, Francisco E.; Wilson, Christy; Grant, Gerald; Wax, Adam

    2011-12-01

    Molecular imaging holds a pivotal role in medicine due to its ability to provide invaluable insight into disease mechanisms at molecular and cellular levels. To this end, various techniques have been developed for molecular imaging, each with its own advantages and disadvantages. For example, fluorescence imaging achieves micrometre-scale resolution, but has low penetration depths and is mostly limited to exogenous agents. Here, we demonstrate molecular imaging of endogenous and exogenous chromophores using a novel form of spectroscopic optical coherence tomography. Our approach consists of using a wide spectral bandwidth laser source centred in the visible spectrum, thereby allowing facile assessment of haemoglobin oxygen levels, providing contrast from readily available absorbers, and enabling true-colour representation of samples. This approach provides high spectral fidelity while imaging at the micrometre scale in three dimensions. Molecular imaging true-colour spectroscopic optical coherence tomography (METRiCS OCT) has significant implications for many biomedical applications including ophthalmology, early cancer detection, and understanding fundamental disease mechanisms such as hypoxia and angiogenesis.

  18. Subluxed traumatic cataract: optical coherence tomography findings and clinical management

    Directory of Open Access Journals (Sweden)

    Kuriyan AE

    2012-12-01

    Full Text Available Ajay E Kuriyan, Harry W Flynn Jr, Sonia H YooDepartment of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FLAbstract: This case report describes the optical coherence tomography (OCT findings and clinical management of a patient with traumatic subluxed cataract. The patient presented with a traumatic subluxed cataract and vitreous prolapse into the anterior chamber. The anterior segment OCT showed vacuoles in the anterior subcapsular regions of the crystalline lens. The patient was treated with pars plana lensectomy, vitrectomy, and placement of an anterior chamber intraocular lens. The patient's best corrected visual acuity improved from hand motion at presentation to 20/25 during 3 years of follow-up. Anterior segment OCT demonstrates that the clinically visible vacuoles in traumatic cataract are located in the anterior subcapsular part of the lens. This is the first report in the literature using anterior segment OCT to visualize the subcapsular vacuolar changes in a traumatic cataract.Keywords: traumatic cataract, subluxed lens, vacuoles, anterior chamber intraocular lens, anterior segment optical coherence tomography

  19. Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography.

    Science.gov (United States)

    Zawadzki, Robert J; Choi, Stacey S; Fuller, Alfred R; Evans, Julia W; Hamann, Bernd; Werner, John S

    2009-03-02

    Ultrahigh-resolution adaptive optics-optical coherence tomography (UHR-AO-OCT) instrumentation allowing monochromatic and chromatic aberration correction was used for volumetric in vivo retinal imaging of various retinal structures including the macula and optic nerve head (ONH). Novel visualization methods that simplify AO-OCT data viewing are presented, and include co-registration of AO-OCT volumes with fundus photography and stitching of multiple AO-OCT sub-volumes to create a large field of view (FOV) high-resolution volume. Additionally, we explored the utility of Interactive Science Publishing by linking all presented AO-OCT datasets with the OSA ISP software.

  20. Spectral Shaping in Rapid Scanning Optical Delay Line of Optical Coherence Tomography

    Institute of Scientific and Technical Information of China (English)

    吴继刚; 薛平; 孙汕; 郭继华

    2003-01-01

    A small spatial optical filter is put into the rapid-scanning optical delay line (RSOD) to shape the spectrum of the reference beam in optical coherence tomography (OCT). The experimental results show that the 1ongitudinal resolution can be improved by a factor of 81% with this method, while at the same time, the signal-to-noise ratio of the OCT system is not much affected. This method can be used in OCT systems that use RSOD as the reference arm with a light source of superluminescent diodes, femtosecond lasers and crystal fibre as well.

  1. Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography

    CERN Document Server

    Yu, Hyeonseung; Jo, YoungJu; Lee, KyeoReh; Tuchin, Valery V; Jeong, Yong; Park, YongKeun

    2016-01-01

    We demonstrate that simultaneous application of optical clearing agents (OCAs) and complex wavefront shaping in optical coherence tomography (OCT) can provide significant enhancement of the penetration depth and imaging quality. OCA reduces optical inhomogeneity of a highly scattering sample, and the wavefront shaping of illumination light controls multiple scattering, resulting in an enhancement of the penetration depth and signal-to-noise ratio. A tissue phantom study shows that concurrent applications of OCA and wavefront shaping successfully operate in OCT imaging. The penetration depth enhancement is further demonstrated for ex vivo mouse ears, revealing hidden structures inaccessible with conventional OCT imaging.

  2. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    Science.gov (United States)

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  3. Large-scale optical diffraction tomography for inspection of optical plastic lenses

    CERN Document Server

    Kim, Kyoohyun; Park, YongKeun

    2015-01-01

    Herein is presented an optical diffraction tomography (ODT) technique for measuring 3-D refractive index (RI) maps of optical plastic lenses. A Mach-Zehnder interferometer was used to measure multiple complex optical fields of a plastic lens immersed in RI matching oil, at various rotational orientations. From this, ODT was used to reconstruct a 3-D RI distribution of the plastic lens with unprecedented RI sensitivity (dn = 4.21 x 10^-5) and high resolution (12.8 um). As a demonstration, 3-D RI distributions of a 2-mm-diameter borosilicate sphere and a 5-mm-diameter plastic lens

  4. Comprehensive vascular imaging using optical coherence tomography-based angiography and photoacoustic tomography

    Science.gov (United States)

    Zabihian, Behrooz; Chen, Zhe; Rank, Elisabet; Sinz, Christoph; Bonesi, Marco; Sattmann, Harald; Ensher, Jason; Minneman, Michael P.; Hoover, Erich; Weingast, Jessika; Ginner, Laurin; Leitgeb, Rainer; Kittler, Harald; Zhang, Edward; Beard, Paul; Drexler, Wolfgang; Liu, Mengyang

    2016-09-01

    Studies have proven the relationship between cutaneous vasculature abnormalities and dermatological disorders, but to image vasculature noninvasively in vivo, advanced optical imaging techniques are required. In this study, we imaged a palm of a healthy volunteer and three subjects with cutaneous abnormalities with photoacoustic tomography (PAT) and optical coherence tomography with angiography extension (OCTA). Capillaries in the papillary dermis that are too small to be discerned with PAT are visualized with OCTA. From our results, we speculate that the PA signal from the palm is mostly from hemoglobin in capillaries rather than melanin, knowing that melanin concentration in volar skin is significantly smaller than that in other areas of the skin. We present for the first time OCTA images of capillaries along with the PAT images of the deeper vessels, demonstrating the complementary effective imaging depth range and the visualization capabilities of PAT and OCTA for imaging human skin in vivo. The proposed imaging system in this study could significantly improve treatment monitoring of dermatological diseases associated with cutaneous vasculature abnormalities.

  5. Developing High-Density Diffuse Optical Tomography for Neuroimaging

    Science.gov (United States)

    White, Brian Richard

    Clinicians who care for brain-injured patients and premature infants desire a bedside monitor of brain function. A decade ago, there was hope that optical imaging would be able to fill this role, as it combined fMRI's ability to construct cortical maps with EEG's portable, cap-based systems. However, early optical systems had poor imaging performance, and the momentum for the technique slowed. In our lab, we develop diffuse optical tomography (DOT), which is a more advanced method of performing optical imaging. My research has been to pioneer the in vivo use of DOT for advanced neuroimaging by (1) quantifying the advantages of DOT through both in silico simulation and in vivo performance metrics, (2) restoring confidence in the technique with the first retinotopic mapping of the visual cortex (a benchmark for fMRI and PET), and (3) creating concepts and methods for the clinical translation of DOT. Hospitalized patients are unable to perform complicated neurological tasks, which has motivated us to develop the first DOT methods for resting-state brain mapping with functional connectivity. Finally, in collaboration with neonatologists, I have extended these methods with proof-of-principle imaging of brain-injured premature infants. This work establishes DOT's improvements in imaging performance and readies it for multiple clinical and research roles.

  6. Overview of diffuse optical tomography and its clinical applications

    Science.gov (United States)

    Hoshi, Yoko; Yamada, Yukio

    2016-09-01

    Near-infrared diffuse optical tomography (DOT), one of the most sophisticated optical imaging techniques for observations through biological tissue, allows 3-D quantitative imaging of optical properties, which include functional and anatomical information. With DOT, it is expected to be possible to overcome the limitations of conventional near-infrared spectroscopy (NIRS) as well as offering the potential for diagnostic optical imaging. However, DOT has been under development for more than 30 years, and the difficulties in development are attributed to the fact that light is strongly scattered and that diffusive photons are used for the image reconstruction. The DOT algorithm is based on the techniques of inverse problems. The radiative transfer equation accurately describes photon propagation in biological tissue, while, because of its high computation load, the diffusion equation (DE) is often used as the forward model. However, the DE is invalid in low-scattering and/or highly absorbing regions and in the vicinity of light sources. The inverse problem is inherently ill-posed and highly undetermined. Here, we first summarize NIRS and then describe various approaches in the efforts to develop accurate and efficient DOT algorithms and present some examples of clinical applications. Finally, we discuss the future prospects of DOT.

  7. Optical coherence tomography findings and retinal changes after vitrectomy for optic disc pit maculopathy

    Directory of Open Access Journals (Sweden)

    Gaurav Sanghi

    2014-01-01

    Full Text Available Purpose : To study the optical coherence tomography (OCT patterns in optic disc pit maculopathy and retinal changes after vitreous surgery. Materials and Methods : Retrospective review of consecutive cases with optic disc pit maculopathy seen at two tertiary eye institutes from January 2005 to June 2009. Results : Twenty-four eyes of 23 patients are included. The presenting visual acuity ranged from 20/400 to 20/20 (median:20/80. The median age at presentation was 24 years (range, 6-57 years. Optical coherence tomography demonstrated a combination of retinoschisis and outer layer detachment (OLD in 19 (79.17% eyes, OLD only in 3 (12.5% eyes and retinoschisis only in 2 (8.33% eyes. An obvious communication (outer layer hole between the schisis and OLD was seen in 14 (73.68% of the 19 eyes with both features. Of the 21 eyes with retinoschisis, schisis was present in multiple layers in 15 (71.43% and single layer in 6 (28.57% eyes. Eleven eyes underwent pars plana vitrectomy including creation of posterior vitreous detachment (PVD, fluid-air exchange, low intensity laser photocoagulation at the temporal edge of the optic disc pit and non-expansile perfluoropropane gas (14% injection. Five (45.45% of 11 eyes undergoing vitrectomy had complete resolution and 4 (36.36% eyes had partial resolution of maculopathy. Visual acuity improved in 8 (72.72% of 11 eyes. Conclusion : Optical coherence tomography demonstrates multiple layer schisis and outer layer detachment as main features of optic disc pit maculopathy. Vitrectomy with PVD induction, laser photocoagulation and gas tamponade results in anatomical and visual improvement in most cases with optic disc pit maculopathy.

  8. Monitoring changes of optical attenuation coefficients of acupuncture points during laser acupuncture by optical coherence tomography

    Science.gov (United States)

    Huang, Yimei; Yang, Hongqin; Wang, Yuhua; Zheng, Liqin; Xie, Shusen

    2010-11-01

    The physical properties of acupuncture point were important to discover the mechanism of acupuncture meridian. In this paper, we used an optical coherence tomography to monitor in vivo the changes of optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point during laser irradiation on Yangxi acupuncture point. The optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point were obtained by fitting the raw data according to the Beer-Lambert's law. The experimental results showed that the optical attenuation coefficient of Hegu acupuncture point decreased during the laser acupuncture, in contrast to a barely changed result in that of non-acupuncture point. The significant change of optical attenuation coefficient of Hegu acupuncture point indicated that there was a correlation between Hegu and Yangxi acupuncture points to some extent.

  9. Non-Contact Optical Fluorescence Tomography for Small Animal Imaging: System Development and Multispectral Applications

    OpenAIRE

    2010-01-01

    Optical Fluorescence Tomography (OFT) of live small animals can yield optimum 3-dimensional imaging performance when large amounts of tomographic boundary information are used for reconstruction. Commonly, multiple source-detector projection measurements distributed over the tissue surface of the imaging object are used to generate raw data for tomography. Recent advances in multispectral optical tomography, however, provide an attractive alternative method to harness tomographic boundary dat...

  10. Actively coupled optical waveguides

    OpenAIRE

    Alexeeva, N. V.; Barashenkov, I. V.; Rayanov, K.; Flach, S.

    2013-01-01

    We consider light propagation through a pair of nonlinear optical waveguides with absorption, placed in a medium with power gain. The active medium boosts the in-phase component of the overlapping evanescent fields of the guides, while the nonlinearity of the guides couples it to the damped out-of-phase component creating a feedback loop. As a result, the structure exhibits stable stationary and oscillatory regimes in a wide range of gain-loss ratios. We show that the pair of actively-coupled...

  11. Actively coupled optical waveguides

    Science.gov (United States)

    Alexeeva, N. V.; Barashenkov, I. V.; Rayanov, K.; Flach, S.

    2014-01-01

    We consider light propagation through a pair of nonlinear optical waveguides with absorption, placed in a medium with power gain. The active medium boosts the in-phase component of the overlapping evanescent fields of the guides, while the nonlinearity of the guides couples it to the damped out-of-phase component creating a feedback loop. As a result, the structure exhibits stable stationary and oscillatory regimes in a wide range of gain-loss ratios. We show that the pair of actively coupled (AC) waveguides can act as a stationary or integrate-and-fire comparator sensitive to tiny differences in their input powers.

  12. Optical properties of photoreceptor and retinal pigment epithelium cells investigated with adaptive optics optical coherence tomography

    Science.gov (United States)

    Liu, Zhuolin

    Human vision starts when photoreceptors collect and respond to light. Photoreceptors do not function in isolation though, but share close interdependence with neighboring photoreceptors and underlying retinal pigment epithelium (RPE) cells. These cellular interactions are essential for normal function of the photoreceptor-RPE complex, but methods to assess these in the living human eye are limited. One approach that has gained increased promise is high-resolution retinal imaging that has undergone tremendous technological advances over the last two decades to probe the living retina at the cellular level. Pivotal in these advances has been adaptive optics (AO) and optical coherence tomography (OCT) that together allow unprecedented spatial resolution of retinal structures in all three dimensions. Using these high-resolution systems, cone photoreceptor are now routinely imaged in healthy and diseased retina enabling fundamental structural properties of cones to be studied such as cell spacing, packing arrangement, and alignment. Other important cell properties, however, have remained elusive to investigation as even better imaging performance is required and thus has resulted in an incomplete understanding of how cells in the photoreceptor-RPE complex interact with light. To address this technical bottleneck, we expanded the imaging capability of AO-OCT to detect and quantify more accurately and completely the optical properties of cone photoreceptor and RPE cells at the cellular level in the living human retina. The first objective of this thesis was development of a new AO-OCT method that is more precise and sensitive, thus enabling a more detailed view of the 3D optical signature of the photoreceptor-RPE complex than was previously possible (Chapter 2). Using this new system, the second objective was quantifying the waveguide properties of individual cone photoreceptor inner and outer segments across the macula (Chapter 3). The third objective extended the AO

  13. Miniature optical coherence tomography system based on silicon photonics

    Science.gov (United States)

    Margallo-Balbás, Eduardo; Pandraud, Gregory; French, Patrick J.

    2008-02-01

    Optical Coherence Tomography (OCT) is a promising medical imaging technique. It has found applications in many fields of medicine and has a large potential for the optical biopsy of tumours. One of the technological challenges impairing faster adoption of OCT is the relative complexity of the optical instrumentation required, which translates into expensive and bulky setups. In this paper we report an implementation of Time Domain OCT (TD-OCT) based on a silicon photonic platform. The devices are fabricated using Silicon-On-Insulator (SOI) wafers, on which rib waveguides are defined. While most of the components needed are well-known in this technology, a fast delay line with sufficient scanning range is a specific requirement of TD-OCT. In the system reported, this was obtained making use of the thermo-optical effect of silicon. By modulating the thermal resistance of the waveguide to the substrate, it is possible to establish a trade-off between maximum working frequency and power dissipation. Within this trade-off, the systems obtained can be operated in the kHz range, and they achieve temperature shifts corresponding to scanning ranges of over 2mm. Though the current implementation still requires external sources and detectors to be coupled to the Planar Lightwave Circuit (PLC), future work will include three-dimensional integration of these components onto the substrate. With the potential to include the read-out and driving electronics on the same die, the reported approach can yield extremely compact and low-cost TD-OCT systems, enabling a wealth of new applications, including gastrointestinal pills with optical biopsy capabilities.

  14. Comparison of optic area measurement using fundus photography and optical coherence tomography between optic nerve head drusen and control subjects.

    Science.gov (United States)

    Flores-Rodríguez, Patricia; Gili, Pablo; Martín-Ríos, María Dolores; Grifol-Clar, Eulalia

    2013-03-01

    To compare optic disc area measurement between optic nerve head drusen (ONHD) and control subjects using fundus photography, time-domain optical coherence tomography (TD-OCT) and spectral-domain optical coherence tomography (SD-OCT). We also made a comparison between each of the three techniques. We performed our study on 66 eyes (66 patients) with ONHD and 70 healthy control subjects (70 controls) with colour ocular fundus photography at 20º (Zeiss FF 450 IR plus), TD-OCT (Stratus OCT) with the Fast Optic Disc protocol and SD-OCT (Cirrus OCT) with the Optic Disc Cube 200 × 200 protocol for measurement of the optic disc area. The measurements were made by two observers and in each measurement a correction of the image magnification factor was performed. Measurement comparison using the Student's t-test/Mann-Whitney U test, the intraclass correlation coefficient, Pearson/Spearman rank correlation coefficient and the Bland-Altman plot was performed in the statistical analysis. Mean and standard deviation (SD) of the optic disc area in ONHD and in controls was 2.38 (0.54) mm(2) and 2.54 (0.42) mm(2), respectively with fundus photography; 2.01 (0.56) mm(2) and 1.66 (0.37) mm(2), respectively with TD-OCT, and 2.03 (0.49) mm(2) and 1.75 (0.38) mm(2), respectively with SD-OCT. In ONHD and controls, repeatability of optic disc area measurement was excellent with fundus photography and optical coherence tomography (TD-OCT and SD-OCT), but with a low degree of agreement between both techniques. Optic disc area measurement is smaller in ONHD compared to healthy subjects with fundus photography, unlike time-domain and spectral-domain optical coherence tomography in which the reverse is true. Both techniques offer good repeatability, but a low degree of correlation and agreement, which means that optic disc area measurement is not interchangeable or comparable between techniques. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  15. Full-field optical coherence tomography apply in sphere measurements

    Science.gov (United States)

    Shi, Wei; Li, Weiwei; li, Juncheng; Wang, Jingyu; Wang, Jianguo

    2016-10-01

    The geometry of a spherical surface, for example that of a precision optic, is completely determined by the radius -of-curvature at one point and the deviation from the perfect spherical form at all other points of the sphere. Full-field Optical Coherence Tomography (FF-OCT) is a parallel detection OCT technique that utilizes a 2D detector array. This technique avoids mechanical scanning in imaging optics, thereby speeding up the imaging process and enhancing the quality of images. The current paper presents an FF-OCT instrument that is designed to be used in sphere measurement with the principle of multiple delays (MD) OCT to evaluate the curvature and radius of curved objects in single-shot imaging. The optimum combination of the MD principle with the FF-OCT method was evaluated, and the radius of a metal ball was measured with this method. The generated 2n-1 contour lines were obtained by using an MDE with n delays in a single en-face OCT image. This method of measurement, it engaged in the measurement accuracy of spherical and enriches the means of measurement, to make a spherical scan techniques flexible application.

  16. Functional imaging of small tissue volumes with diffuse optical tomography

    Science.gov (United States)

    Klose, Alexander D.; Hielscher, Andreas H.

    2006-03-01

    Imaging of dynamic changes in blood parameters, functional brain imaging, and tumor imaging are the most advanced application areas of diffuse optical tomography (DOT). When dealing with the image reconstruction problem one is faced with the fact that near-infrared photons, unlike X-rays, are highly scattered when they traverse biological tissue. Image reconstruction schemes are required that model the light propagation inside biological tissue and predict measurements on the tissue surface. By iteratively changing the tissue-parameters until the predictions agree with the real measurements, a spatial distribution of optical properties inside the tissue is found. The optical properties can be related to the tissue oxygenation, inflammation, or to the fluorophore concentration of a biochemical marker. If the model of light propagation is inaccurate, the reconstruction process will lead to an inaccurate result as well. Here, we focus on difficulties that are encountered when DOT is employed for functional imaging of small tissue volumes, for example, in cancer studies involving small animals, or human finger joints for early diagnosis of rheumatoid arthritis. Most of the currently employed image reconstruction methods rely on the diffusion theory that is an approximation to the equation of radiative transfer. But, in the cases of small tissue volumes and tissues that contain low scattering regions diffusion theory has been shown to be of limited applicability Therefore, we employ a light propagation model that is based on the equation of radiative transfer, which promises to overcome the limitations.

  17. Handheld probes and galvanometer scanning for optical coherence tomography

    Science.gov (United States)

    Duma, V.-F.; Dobre, G.; Demian, D.; Cernat, R.; Sinescu, C.; Topala, F. I.; Negrutiu, M. L.; Hutiu, Gh.; Bradu, A.; Rolland, J. P.; Podoleanu, A. G.

    2015-09-01

    As part of the ongoing effort of the biomedical imaging community to move Optical Coherence Tomography (OCT) systems from the lab to the clinical environment and produce OCT systems appropriate for multiple types of investigations in a medical department, handheld probes equipped with different types of scanners need to be developed. These allow different areas of a patient's body to be investigated using OCT with the same system and even without changing the patient's position. This paper reviews first the state of the art regarding OCT handheld probes. Novel probes with a uni-dimensional (1D) galvanometer-based scanner (GS) developed in our groups are presented. Their advantages and limitations are discussed. Aspects regarding the use of galvoscanners with regard to Micro-Electro- Mechanical Systems (MEMS) are pointed out, in relationship with our studies on optimal scanning functions of galvanometer devices in OCT. These scanning functions are briefly discussed with regard to their main parameters: profile, theoretical duty cycle, scan frequency, and scan amplitude. The optical design of the galvoscanner and refractive optics combination in the probe head, optimized for various applications, is considered. Perspectives of the field are pointed out in the final part of the paper.

  18. Optical Coherence Tomography in Patients with Chiari I Malformation

    Directory of Open Access Journals (Sweden)

    Michele Figus

    2015-01-01

    Full Text Available Background/Aims. To evaluate optic nerve head with spectral domain optical coherence tomography (OCT in patients with Chiari I malformation (CMI compared to healthy controls. Methods. Cross-sectional study. OCT of the optic nerve head of 22 patients with CMI and 22 healthy controls was quantitatively analyzed. The healthy controls were matched for age and sex with the study population. Mean retinal nerve fiber layer (RNFL thickness was calculated for both eyes; the mean thickness value was also registered for each quadrant and for each subfield of the four quadrants. Results. CMI patients showed a reduction of the RNFL thickness in both eyes. This reduction was more statistically significant (P<0.05 for the inferior quadrant in the right eye and in each quadrant than nasal one in the left eye. Conclusion. A distress of the retinal nerve fibers could explain the observed reduction of the RNFL thickness in patients with CMI; in our series the reduction of the RNFL thickness seems lower when CMI is associated with syringomyelia.

  19. Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation

    KAUST Repository

    Li, Muxingzi

    2017-04-24

    Optical Coherence Tomography (OCT) is a coherence-gated, micrometer-resolution imaging technique that focuses a broadband near-infrared laser beam to penetrate into optical scattering media, e.g. biological tissues. The OCT resolution is split into two parts, with the axial resolution defined by half the coherence length, and the depth-dependent lateral resolution determined by the beam geometry, which is well described by a Gaussian beam model. The depth dependence of lateral resolution directly results in the defocusing effect outside the confocal region and restricts current OCT probes to small numerical aperture (NA) at the expense of lateral resolution near the focus. Another limitation on OCT development is the presence of a mixture of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous papers have adopted the first Born approximation with the assumption of small perturbation of the incident field in inhomogeneous media. The Rytov method of the same order with smooth phase perturbation assumption benefits from a wider spatial range of validity. A deconvolution method for solving the inverse problem associated with the first Rytov approximation is developed, significantly reducing the defocusing effect through depth and therefore extending the feasible range of NA.

  20. Digital balanced detection for fast optical computerized tomography

    Science.gov (United States)

    Hafiz, Rehan; Ozanyan, Krikor B.

    2006-10-01

    Analogue Balanced Photo-detection has found extensive usage in high- sensitivity small signal applications e.g. coherent heterodyne detection. It is particularly effective for laser intensity noise removal. Nevertheless, the high cost of the commercially available analogue systems makes them unsuitable for multi-channel applications, such as fast tomography. In this paper a flexible, scalable, inexpensive and compact solution for multi channel digital balanced detection is presented. The proposed system has two components: an analogue front-end, comprising a differential photodiode amplifier for minimizing the external interference noise, and a digital balanced noise remover. The latter component initially calculates a balancing factor (BF) from the average power ratio of the signal and reference photocurrents, measured with the object removed from the signal path. Three digital balancing algorithms (DBAx) are considered for subsequent processing. In DBA1, BF is directly used in real-time ratiometric calculations. In DBA2, the BF is adjusted in real time by monitoring the window-averaged power of the received photocurrents. In DBA3, first the baseline is removed using differentiation and then ratiometric detection is performed. Using the digital alternative only one measurement of the reference beam is necessary for single-source, multi-channel detection systems. The data from multiple channels are processed in parallel by pipelined hardware, configured as a state machine. The proposed system leads to a fast optical computerized tomography system using digital balanced detection.

  1. Optical coherence tomography for embryonic imaging: a review

    Science.gov (United States)

    Raghunathan, Raksha; Singh, Manmohan; Dickinson, Mary E.; Larin, Kirill V.

    2016-05-01

    Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development.

  2. Towards spectral-domain optical coherence tomography on a silicon chip

    NARCIS (Netherlands)

    Akca, B.I.; Wörhoff, K.; Nguyen, V.D.; Kalkman, J.; Leeuwen, van T.G.; Ridder, de R.M.; Pollnau, M.

    2011-01-01

    Optical coherence tomography (OCT) is a widely used optical imaging technology, particularly in the medical field, since it can provide non-invasive, sub-micrometer resolution diagnostic images of tissue. Current OCT systems contain optical fibers and free-space optical components which make these i

  3. Towards spectral-domain optical coherence tomography on a silicon chip

    NARCIS (Netherlands)

    Akça, B.I.; Worhoff, Kerstin; Nguyen, V.D.; Kalkman, J.; van Leeuwen, Ton; de Ridder, R.M.; Pollnau, Markus

    2011-01-01

    Optical coherence tomography (OCT) is a widely used optical imaging technology, particularly in the medical field, since it can provide non-invasive, sub-micrometer resolution diagnostic images of tissue. Current OCT systems contain optical fibers and free-space optical components which make these i

  4. Towards spectral-domain optical coherence tomography on a silicon chip

    NARCIS (Netherlands)

    Akça, B.I.; Worhoff, Kerstin; Nguyen, V.D.; Kalkman, J.; van Leeuwen, Ton; de Ridder, R.M.; Pollnau, Markus

    Optical coherence tomography (OCT) is a widely used optical imaging technology, particularly in the medical field, since it can provide non-invasive, sub-micrometer resolution diagnostic images of tissue. Current OCT systems contain optical fibers and free-space optical components which make these

  5. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography

    OpenAIRE

    Konecky, Soren D.; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M.; Saffer, Janet R.; FREIFELDER, RICHARD; Karp, Joel S.; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G.

    2008-01-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluor...

  6. Resonant Doppler imaging with Fourier domain optical coherence tomography

    Science.gov (United States)

    Leitgeb, Rainer A.; Szklumowska, Anna; Pircher, Michael; Gotzinger, Erich; Fercher, Adolf F.

    2005-04-01

    Fourier Domain Optical Coherene Tomography (FD OCT) is a high speed imaging modality with increased sensitivity as compared to standard time domain (TD) OCT. The higher sensitivity is especially important, if strongly scattering tissue such as blood is investigated. Recently it could be shown that retinal blood flow can be assessed in-vivo by high speed FD OCT. However the detection bandwidth of color Doppler (CD) FDOCT is strongly limited due to blurring of the detected interference fringes during exposure. This leads to a loss of sensitivity for detection of fast changes in tissue. Using a moving mirror as a reference one can effectively increase the detection bandwidth for CD FDOCT and perform perfusion sectioning. The modality is called resonant CD FDOCT imaging. The principle of the method is presented and experimentally verified.

  7. Spectralis optical coherence tomography findings in Welder′s maculopathy

    Directory of Open Access Journals (Sweden)

    Aniruddha Mahindrakar

    2013-01-01

    Full Text Available Welder′s maculopathy is a form of photochemical damage to the retina and is typically characterized by involvement of the outer retinal layers. Spectral domain optical coherence tomography (SD-OCT imaging was performed in three eyes of two patients with clinical findings suggestive of Welder′s maculopathy in occupational welders. A faceted foveal lesion characterized clinical examination and the SD-OCT line scans images showed a distinct discontinuity of the photoreceptor inner and outer segment (IS/OS junction. The external limiting membrane (ELM and the retinal pigment epithelial (RPE layer remained intact at the site of IS/OS defect. SD-OCT imaging offers a noninvasive way of evaluating the microstructural changes at the fovea in Welder′s maculopathy.

  8. 4D embryonic cardiography using gated optical coherence tomography

    Science.gov (United States)

    Jenkins, M. W.; Rothenberg, F.; Roy, D.; Nikolski, V. P.; Hu, Z.; Watanabe, M.; Wilson, D. L.; Efimov, I. R.; Rollins, A. M.

    2006-01-01

    Simultaneous imaging of very early embryonic heart structure and function has technical limitations of spatial and temporal resolution. We have developed a gated technique using optical coherence tomography (OCT) that can rapidly image beating embryonic hearts in four-dimensions (4D), at high spatial resolution (10-15 μm), and with a depth penetration of 1.5 - 2.0 mm that is suitable for the study of early embryonic hearts. We acquired data from paced, excised, embryonic chicken and mouse hearts using gated sampling and employed image processing techniques to visualize the hearts in 4D and measure physiologic parameters such as cardiac volume, ejection fraction, and wall thickness. This technique is being developed to longitudinally investigate the physiology of intact embryonic hearts and events that lead to congenital heart defects.

  9. Sensing of Tooth Microleakage Based on Dental Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Chia-Wei Sun

    2015-01-01

    Full Text Available This study describes microleakage sensing based on swept-source optical coherence tomography (SS-OCT. With a handheld scanning probe, the SS-OCT system can provide portable real-time imaging for clinical diagnosis. Radiography is the traditional clinical imaging instrument used for dentistry; however, it does not provide good contrast images between filling material and the enamel of treated teeth with microleakage. The results of this study show that microleakage can be detected with oral probing using SS-OCT in vivo. The calculated microleakage length was 401 μm and the width is 148 μm, which is consistent with the related histological biopsy measurements. The diagnosis of microleakage in teeth could be useful for prevention of secondary caries in the clinical treatment plans developed in the field of oral medicine.

  10. Volumetric (3D) compressive sensing spectral domain optical coherence tomography.

    Science.gov (United States)

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-11-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality.

  11. Epidermal segmentation in high-definition optical coherence tomography.

    Science.gov (United States)

    Li, Annan; Cheng, Jun; Yow, Ai Ping; Wall, Carolin; Wong, Damon Wing Kee; Tey, Hong Liang; Liu, Jiang

    2015-01-01

    Epidermis segmentation is a crucial step in many dermatological applications. Recently, high-definition optical coherence tomography (HD-OCT) has been developed and applied to imaging subsurface skin tissues. In this paper, a novel epidermis segmentation method using HD-OCT is proposed in which the epidermis is segmented by 3 steps: the weighted least square-based pre-processing, the graph-based skin surface detection and the local integral projection-based dermal-epidermal junction detection respectively. Using a dataset of five 3D volumes, we found that this method correlates well with the conventional method of manually marking out the epidermis. This method can therefore serve to effectively and rapidly delineate the epidermis for study and clinical management of skin diseases.

  12. Optical coherence tomography for imaging of skin and skin diseases

    DEFF Research Database (Denmark)

    Mogensen, Mette; Thrane, Lars; Jørgensen, Thomas Martini

    2009-01-01

    , as have many diseases. The method can provide accurate measures of epidermal and nail changes in normal tissue. Skin cancer and other tumors, as well as inflammatory diseases, have been studied and good agreement found between OCT images and histopathological architecture. OCT also allows noninvasive......Optical coherence tomography (OCT) is an emerging imaging technology based on light reflection. It provides real-time images with up to 2-mm penetration into the skin and a resolution of approximately 10 μm. It is routinely used in ophthalmology. The normal skin and its appendages have been studied...... monitoring of morphologic changes in skin diseases and may have a particular role in the monitoring of medical treatment of nonmelanoma skin cancer. The technology is however still evolving and continued technological development will necessitate an ongoing evaluation of its diagnostic accuracy. Several...

  13. Study on cerebral microcirculation by Optical Doppler Tomography

    Institute of Scientific and Technical Information of China (English)

    MENG Jie; DING ZhiHua; YANG Yong; GUO ZhouYi

    2008-01-01

    Optical Doppler Tomography (ODT) provides a novel method to measure the blood flow velocity in vessels with the diameter at micrometer scale.Rats with cranial window are used as a model,and the changes in the blood flow velocity of cerebral arterioles in sensory cortex are measured in real time with an established ODT system,under electrical stimulation and drug administration.The results show significant differences in the blood flow velocity between experimental groups and control groups,demonstrating the feasibility of ODT in the cerebral microcircula-tion study.Compared with the conventional Doppler ultrasound,ODT provides much higher spatial resolution,and thus holds a promising future in the application of the cerebral microcirculation study,especially in the observation of the blood flow velocity in micrometer scale vessels.

  14. Optical Coherence Tomography of Retinal and Choroidal Tumors

    Directory of Open Access Journals (Sweden)

    Emil Anthony T. Say

    2011-01-01

    Full Text Available Optical coherence tomography (OCT has revolutionized the field of ophthalmology since its introduction 20 years ago. Originally intended primarily for retina specialists to image the macula, it has found its role in other subspecialties that include glaucoma, cornea, and ocular oncology. In ocular oncology, OCT provides axial resolution to approximately 7 microns with cross-sectional images of the retina, delivering valuable information on the effects of intraocular tumors on the retinal architecture. Some effects include retinal edema, subretinal fluid, retinal atrophy, photoreceptor loss, outer retinal thinning, and retinal pigment epithelial detachment. With more advanced technology, OCT now provides imaging deeper into the choroid using a technique called enhanced depth imaging. This allows characterization of the thickness and reflective quality of small (<3 mm thick choroidal lesions including choroidal nevus and melanoma. Future improvements in image resolution and depth will allow better understanding of the mechanisms of visual loss, tumor growth, and tumor management.

  15. Endoscopic optical coherence tomography: technologies and clinical applications [Invited].

    Science.gov (United States)

    Gora, Michalina J; Suter, Melissa J; Tearney, Guillermo J; Li, Xingde

    2017-05-01

    In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed.

  16. Evaluation of microfluidic channels with optical coherence tomography

    KAUST Repository

    Czajkowski, J.

    2010-06-25

    Application of time domain, ultra high resolution optical coherence tomography (UHR-OCT) in evaluation of microfluidic channels is demonstrated. Presented study was done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti:sapphire femtosecond laser, a photonic crystal fibre and modified, free-space Michelson interferometer. To show potential of the technique, microfluidic chip fabricated by VTT Center for Printed Intelligence (Oulu, Finland) was measured. Ability for full volumetric reconstruction in non-contact manner enabled complete characterization of closed entity of a microfluidic channel without contamination and harm for the sample. Measurement, occurring problems, and methods of postprocessing for raw data are described. Results present completely resolved physical structure of the channel, its spatial dimensions, draft angles and evaluation of lamination quality.

  17. Optical coherence tomography for vulnerability assessment of sandstone.

    Science.gov (United States)

    Bemand, Elizabeth; Liang, Haida

    2013-05-10

    Sandstone is an important cultural heritage material, in both architectural and natural settings, such as neolithic rock art panels. The majority of deterioration effects in porous materials such as sandstone are influenced by the presence and movement of water through the material. The presence of water within the porous network of a material results in changes in the optical coherence tomography signal intensity that can be used to monitor the wetting front of water penetration of dry porous materials at various depths. The technique is able to detect wetting front velocities from 1 cm s(-1) to 10(-6) cm s(-1), covering the full range of hydraulic conductivities likely to occur in natural sandstones from pervious to impervious.

  18. Optical coherence tomography examination of patients with hyperopic ametropic amblyopia

    Directory of Open Access Journals (Sweden)

    Hong-Chao Xu

    2013-08-01

    Full Text Available AIM: To investigate the changes of retina in amblyopic eye by measuring macular retinal thickness in hyperopicametropic amblyopic patients.METHODS: Optical coherence tomography(OCTwas used to measure the macular retinal thickness value in 17 amblyopic patients(20 eyesand 14 healthy controls(20 eyes. The result was processed as retinal thickness value and thickness map by computer. The data were analyzed by SPSS 13.0 software package. RESULTS: The retinal thickness of central sector or region in amblyopic eyes were thicker than those in normal eyes(PPP>0.05. CONCLUSION: The macular retina thickness of the central region is thicker in hyperopic ametropic amblyopic patient. OCT is a noninvasive, noncontact technique that visualizes the retinal structure in vivo, this technique may be used to find the potential initial neural site of the visual deficit in this condition.

  19. Statistical analysis of motion contrast in optical coherence tomography angiography

    CERN Document Server

    Cheng, Yuxuan; Pan, Cong; Lu, Tongtong; Hong, Tianyu; Ding, Zhihua; Li, Peng

    2015-01-01

    Optical coherence tomography angiography (Angio-OCT), mainly based on the temporal dynamics of OCT scattering signals, has found a range of potential applications in clinical and scientific researches. In this work, based on the model of random phasor sums, temporal statistics of the complex-valued OCT signals are mathematically described. Statistical distributions of the amplitude differential (AD) and complex differential (CD) Angio-OCT signals are derived. The theories are validated through the flow phantom and live animal experiments. Using the model developed in this work, the origin of the motion contrast in Angio-OCT is mathematically explained, and the implications in the improvement of motion contrast are further discussed, including threshold determination and its residual classification error, averaging method, and scanning protocol. The proposed mathematical model of Angio-OCT signals can aid in the optimal design of the system and associated algorithms.

  20. Study on cerebral microcirculation by Optical Doppler Tomography

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Optical Doppler Tomography (ODT) provides a novel method to measure the blood flow velocity in vessels with the diameter at micrometer scale. Rats with cranial window are used as a model, and the changes in the blood flow velocity of cerebral arterioles in sensory cortex are measured in real time with an established ODT system, under electrical stimulation and drug administration. The results show significant differences in the blood flow velocity between experimental groups and control groups, demonstrating the feasibility of ODT in the cerebral microcircula- tion study. Compared with the conventional Doppler ultrasound, ODT provides much higher spatial resolution, and thus holds a promising future in the application of the cerebral microcirculation study, especially in the observation of the blood flow velocity in micrometer scale vessels.

  1. Multibeam fluorescence diffuse optical tomography using upconverting nanoparticles.

    Science.gov (United States)

    Liu, Haichun; Xu, Can T; Andersson-Engels, Stefan

    2010-03-01

    Fluorescence diffuse optical tomography (FDOT) is a biomedical imaging modality that can be used for localization and quantification of fluorescent molecules inside turbid media. In this ill-posed problem, the reconstruction quality is directly determined by the amount and quality of the information obtained from the boundary measurements. Regularly, more information can be obtained by increasing the number of excitation positions in an FDOT system. However, the maximum number of excitation positions is limited by the finite size of the excitation beam. In the present work, we demonstrate a method in FDOT to exploit the unique nonlinear power dependence of upconverting nanoparticles to further increase the amount of information in a raster-scanning setup by including excitation with two beams simultaneously. We show that the additional information can be used to obtain more accurate reconstructions.

  2. Optical Coherence Tomography and Raman Spectroscopy of the retina

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J W; Zawadzki, R J; Liu, R; Chan, J; Lane, S; Werner, J S

    2009-01-16

    Imaging the structure and correlating it with the biochemical content of the retina holds promise for fundamental research and for clinical applications. Optical coherence tomography (OCT) is commonly used to image the 3D structure of the retina and while the added functionality of biochemical analysis afforded by Raman scattering could provide critical molecular signatures for clinicians and researchers, there are many technical challenges to combining these imaging modalities. We present an ex vivo OCT microscope combined with Raman spectroscopy capable of collecting morphological and molecular information about a sample simultaneously. The combined instrument will be used to investigate remaining technical challenges to combine these imaging modalities, such as the laser power levels needed to achieve a Raman signal above the noise level without damaging the sample.

  3. Optical coherence tomography of the living human kidney

    Directory of Open Access Journals (Sweden)

    Peter M. Andrews

    2014-03-01

    Full Text Available Acute tubular necrosis (ATN induced by ischemia is the most common insult to donor kidneys destined for transplantation. ATN results from swelling and subsequent damage to cells lining the kidney tubules. In this study, we demonstrate the capability of optical coherence tomography (OCT to image the renal microstructures of living human donor kidneys and potentially provide a measure to determine the extent of ATN. We also found that Doppler-based OCT (i.e., DOCT reveals renal blood flow dynamics that is another major factor which could relate to post-transplant renal function. All OCT/DOCT observations were performed in a noninvasive, sterile and timely manner on intact human kidneys both prior to (ex vivo and following (in vivo their transplantation. Our results indicate that this imaging model provides transplant surgeons with an objective visualization of the transplant kidneys prior and immediately post transplantation.

  4. Microvascular contrast enhancement in optical coherence tomography using microbubbles

    Science.gov (United States)

    Assadi, Homa; Demidov, Valentin; Karshafian, Raffi; Douplik, Alexandre; Vitkin, I. Alex

    2016-07-01

    Gas microbubbles (MBs) are investigated as intravascular optical coherence tomography (OCT) contrast agents. Agar + intralipid scattering tissue phantoms with two embedded microtubes were fabricated to model vascular blood flow. One was filled with human blood, and the other with a mixture of human blood + MB. Swept-source structural and speckle variance (sv) OCT images, as well as speckle decorrelation times, were evaluated under both no-flow and varying flow conditions. Faster decorrelation times and higher structural and svOCT image contrasts were detected in the presence of MB in all experiments. The effects were largest in the svOCT imaging mode, and uniformly diminished with increasing flow velocity. These findings suggest the feasibility of utilizing MB for tissue hemodynamic investigations and for microvasculature contrast enhancement in OCT angiography.

  5. Improving resolution of optical coherence tomography for imaging of microstructures

    Science.gov (United States)

    Shen, Kai; Lu, Hui; Wang, James H.; Wang, Michael R.

    2015-03-01

    Multi-frame superresolution technique has been used to improve the lateral resolution of spectral domain optical coherence tomography (SD-OCT) for imaging of 3D microstructures. By adjusting the voltages applied to ? and ? galvanometer scanners in the measurement arm, small lateral imaging positional shifts have been introduced among different C-scans. Utilizing the extracted ?-? plane en face image frames from these specially offset C-scan image sets at the same axial position, we have reconstructed the lateral high resolution image by the efficient multi-frame superresolution technique. To further improve the image quality, we applied the latest K-SVD and bilateral total variation denoising algorithms to the raw SD-OCT lateral images before and along with the superresolution processing, respectively. The performance of the SD-OCT of improved lateral resolution is demonstrated by 3D imaging a microstructure fabricated by photolithography and a double-layer microfluidic device.

  6. Indications of Optical Coherence Tomography in Keratoplasties: Literature Review

    Directory of Open Access Journals (Sweden)

    Thiago Trindade Nesi

    2012-01-01

    Full Text Available Optical coherence tomography (OCT of the anterior segment, in particular corneal OCT, has become a reliable tool for the cornea specialist, as it provides the acquisition of digital images at high resolution with a noncontact technology. In penetrating or lamellar keratoplasties, OCT can be used to assess central corneal thickness and pachymetry maps, as well as precise measurements of deep stromal opacities, thereby guiding the surgeon to choose the best treatment option. OCT has also been used to evaluate the keratoplasty postoperative period, for early identification of possible complications, such as secondary glaucoma or donor disc detachments in endothelial keratoplasties. Intraoperatively, OCT can be used to assess stromal bed regularity and transparency in anterior lamellar surgeries, especially for those techniques in which a bare Descemet’s membrane is the goal. The purpose of this paper is to review and discuss the role of OCT as a diagnostic tool in various types of keratoplasties.

  7. Imaging port wine stains by fiber optical coherence tomography

    Science.gov (United States)

    Zhao, Shiyong; Gu, Ying; Xue, Ping; Guo, Jin; Shen, Tingmei; Wang, Tianshi; Huang, Naiyan; Zhang, Li; Qiu, Haixia; Yu, Xin; Wei, Xunbin

    2010-05-01

    We develop a fiber optical coherence tomography (OCT) system in the clinical utility of imaging port wine stains (PWS). We use our OCT system on 41 patients with PWS to document the difference between PWS skin and contralateral normal skin. The system, which operates at 4 frames/s with axial and transverse resolutions of 10 and 9 μm, respectively, in the skin tissue, can clearly distinguish the dilated dermal blood vessels from normal tissue. We present OCT images of patients with PWS and normal human skin. We obtain the structural parameters, including epidermal thickness and diameter and depth of dilated blood vessels. We demonstrate that OCT may be a useful tool for the noninvasive imaging of PWS. It may help determine the photosensitizer dose and laser parameters in photodynamic therapy for treating port wine stains.

  8. Flow measurement using speckle in optical coherence tomography images

    Science.gov (United States)

    Barton, Jennifer K.; Stromski, Steven

    2005-04-01

    Doppler optical coherence tomography (DOCT) is a valuable tool for depth-resolved flow measurements in tissue. However, DOCT suffers from two disadvantages: it is insensitive to flow in the direction normal to the imaging beam, and it requires knowledge of the phase of the demodulated signal. We present an alternative method of extracting flow information, using speckle of conventional amplitude optical coherence tomography images. The two techniques can be shown to be essentially equivalent, with the distinction that speckle methods are sensitive to flow in all directions but do not provide information on the direction of flow. It is well known in other imaging modalities that moving scatterers cause a time-varying speckle pattern. Due to the pixel-by-pixel acquisition scheme of conventional OCT, time-varying speckle is manifested as a change of OCT image spatial speckle frequencies. We tested the ability of speckle to provide quantitative flow information using a flow phantom (a tube filled with Intralipid flowing at a constant volumetric flow rate). Initially, m-scans were taken at over the center of the tube. Images were averaged to reduce noise and the region corresponding to the center one-quarter of the tube lumen was selected. Sequential a-scans were concatenated, the Fourier transform performed, and a ratio of high to low spatial frequencies computed. We found that, over a range of velocities, this ratio bore a linear relation to flow velocity. For two-dimensional imaging, the program was modified to use a sliding window. Parabolic flow profile was visualized inside the tube. This study shows the feasibility of extracting quantitative flow data in all directions without phase information.

  9. Foveal thickness after phacoemulsification as measured by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Gerasimos Th Georgopoulos

    2008-08-01

    Full Text Available Gerasimos Th Georgopoulos, Dimitrios Papaconstantinou, Maria Niskopoulou, Marilita Moschos, Ilias Georgalas, Chrysanthi KoutsandreaGlaucoma Department, Medical School, Athens University, Athens, GreeceBackground: Despite a significant body of research, no consistency on postoperative foveal thickness as measured by optical coherence tomography (OCT, can be recorded. The purpose of our study was to evaluate the effect of uncomplicated cataract surgery in the thickness of the retina in the foveal area during the early postoperative period.Methods: In a prospective study, 79 eyes were assessed by OCT, on day 1, and weeks 2 and 4 after uncomplicated phacoemulsification with intraocular lens implantation in the Athens University Clinic. The outcome measure was the thickness of the retina in the foveal area.Results: The thickness of the retina preoperatively is significantly smaller (150.4 ± 18.8 (p < 0.05 than the thickness of the retina on day 1 (171.8 ± 21 and week 2 (159.7 ± 19 and returned to the initial levels on week 4 (152 ± 17.1. The estimated correlation coefficients between preoperative and postoperative thickness of the retina were significant (p < 0.05. Conversely, no association was found between postoperative visual acuity and thickness of the retina, neither between the phacoemulsification energy and retinal thickness. Operation time, although inversely related with postoperative visual acuity, was not associated with the thickness of the retina.Conclusions: Following phacoemulsification, an increase in the foveal thickness was detected in the early postoperative period, quantified and followed up by OCT. The foveal thickness returned to the preoperative level, 1 month following surgery in our study. No association was shown between intraoperative parameters and increased postoperative retinal thickness.Keywords: optical coherence tomography, phacoemulsification, retinal thickness

  10. Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Muhammad Faizan Shirazi

    2016-09-01

    Full Text Available An application of spectral domain optical coherence tomography (SD-OCT was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast scanning, while a stable linear motorized translational stage was used for lateral (slow scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products.

  11. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    Science.gov (United States)

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  12. Three-dimensional correction of conduction velocity in the embryonic heart using integrated optical mapping and optical coherence tomography

    Science.gov (United States)

    Ma, Pei; Wang, Yves T.; Gu, Shi; Watanabe, Michiko; Jenkins, Michael W.; Rollins, Andrew M.

    2014-07-01

    Optical mapping (OM) of cardiac electrical activity conventionally collects information from a three-dimensional (3-D) surface as a two-dimensional (2-D) projection map. When applied to measurements of the embryonic heart, this method ignores the substantial and complex curvature of the heart surface, resulting in significant errors when calculating conduction velocity, an important electrophysiological parameter. Optical coherence tomography (OCT) is capable of imaging the 3-D structure of the embryonic heart and accurately characterizing the surface topology. We demonstrate an integrated OCT/OM imaging system capable of simultaneous conduction mapping and 3-D structural imaging. From these multimodal data, we obtained 3-D activation maps and corrected conduction velocity maps of early embryonic quail hearts. 3-D correction eliminates underestimation bias in 2-D conduction velocity measurements, therefore enabling more accurate measurements with less experimental variability. The integrated system will also open the door to correlate the structure and electrophysiology, thereby improving our understanding of heart development.

  13. Neurocortical electrical activity tomography in chronic schizophrenics

    Directory of Open Access Journals (Sweden)

    Veiga Heloisa

    2003-01-01

    Full Text Available Functional imaging of brain electrical activity was performed in 25 chronic medicated schizophrenics and 40 controls, analyzing the classical frequency bands (delta, theta, alpha, and beta of 19-channel EEG during resting state to identify brain regions with deviant activity of different functional significances, using LORETA (Low Resolution Tomography and SPM99 (Statistical Parametric Mapping. Patients differed from controls due to an excess of slow activity comprising delta + theta frequency bands (inhibitory pattern located at the right middle frontal gyrus, right inferior frontal gyrus, and right insula, as well as at the bilateral anterior cingulum with a left preponderance. The high temporal resolution of EEG enables the specification of the deviations not only as an excess or a deficit of brain electrical activity, but also as inhibitory (delta, theta, normal (alpha, and excitatory (beta activities. These deviations point out to an impaired functional brain state consisting of inhibited frontal and prefrontal areas that may result in inadequate treatment of externally or internally generated information.

  14. Spectral domain optical coherence tomography morphology in optic disc pit associated maculopathy

    Directory of Open Access Journals (Sweden)

    Janusz Michalewski

    2014-01-01

    Full Text Available Purpose: Our purpose was to study the clinical manifestation and course of optic pit maculopathy using Spectral Domain Optical Coherence Tomography (SD- OCT images. Materials and Methods: We used SD-OCT to examine 20 eyes of 19 patients with a macular detachment in combination with an optic. Results: We observed five different fovea appearances in regard to fluid localization. In five eyes, we recorded changes in the fluid distribution with SD-OCT. In 17/20 eyes, we noted a communication between the perineural and subretinal and/or intraretinal space at the margin of the optic disc. Conclusion: 3-dimensional SD-OCT (3D-SDOCT scans revealed a three-fold connection, between subretinal and intraretinal space, perineural space, and the vitreous cavity. Therefore, we suppose that intraretinal or subretinal fluid in optic pit maculopathy may have both a vitreous and cerebrospinal origin. A membrane, covering the optic nerve was noted in 14 cases. Even if it seems intact in some B-scans, it is not complete in others several micrometers apart. Additionally, we observed fluid accumulation below the margin of the optic disc and hyperreflective porous tissue in the optic disc excavation. Those findings do not influence the course of maculopathy.

  15. Measuring optical properties of a blood vessel model using optical coherence tomography

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  16. Active Optics in LAMOST

    Institute of Scientific and Technical Information of China (English)

    Ding-Qiang Su; Xiang-Qun Cui

    2004-01-01

    Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)is one of the major national projects under construction in China. Active optics is one of the most important technologies for new large telescopes. It is used for correcting telescope errors generated by gravitational and thermal changes. Here,however, we use this technology to realize the configuration of LAMOST, -a task that cannot be done in the traditional way. A comprehensive and intensive research on the active optics used in LAMOST is also reported, including an open-loop control method and an auxiliary closed-loop control method. Another important development is in our pre-calibration method of open-loop control, which is with some new features: simultaneous calculation of the forces and displacements of force actuators and displacement actuators; the profile of mirror can be arbitrary;the mirror surface shape is not expressed by a fitting polynomial, but is derived from the mirror surface shape formula which is highly accurate; a proof is given that the solution of the pre-calibration method is the same as the least squares solution.

  17. Depth Compensated Spectral Domain Optical Coherence Tomography via Digital Compensation

    CERN Document Server

    Boroomand, Ameneh; Shafiee, Mohammad Javad; Bizheva, Kostadinka; Wong, Alexander

    2015-01-01

    Spectral Domain Optical Coherence Tomography (SD-OCT) is a well-known imaging modality which allows for \\textit{in-vivo} visualization of the morphology of different biological tissues at cellular level resolutions. The overall SD-OCT imaging quality in terms of axial resolution and Signal-to-Noise Ratio (SNR) degrades with imaging depth, while the lateral resolution degrades with distance from the focal plane. This image quality degradation is due both to the design of the SD-OCT imaging system and the optical properties of the imaged object. Here, we present a novel Depth Compensated SD-OCT (DC-OCT) system that integrates a Depth Compensating Digital Signal Processing (DC-DSP) module to improve the overall imaging quality via digital compensation. The designed DC-DSP module can be integrated to any SD-OCT system and is able to simultaneously compensate for the depth-dependent loss of axial and lateral resolutions, depth-varying SNR, as well as sidelobe artifact for improved imaging quality. The integrated D...

  18. Optical coherence tomography: imaging of the choroid and beyond.

    Science.gov (United States)

    Mrejen, Sarah; Spaide, Richard F

    2013-01-01

    Seventy percent of the blood flow to the eye goes to the choroid, a structure that is vitally important to the function of the retina. The in vivo structure of the choroid in health and disease is incompletely visualized with traditional imaging modalities, including indocyanine green angiography, ultrasonography, and spectral domain optical coherence tomography (OCT). Use of new OCT modalities, including enhanced depth imaging OCT, image averaging, and swept-source OCT, have led to increased visualization of the choroidal anatomy. The correlation of these new anatomical findings with other imaging modalities results increases understanding of many eye diseases and recognises of new ones. The status of the choroid appears to be a crucial determinant in the pathogenesis of diseases such as age-related choroidal atrophy, myopic chorioretinal atrophy, central serous chorioretinopathy, chorioretinal inflammatory diseases, and tumors. Extension of these imaging techniques has provided insights into abnormalities of the sclera and optic nerve. Future developments will include blood flow information, 3D rendering of various ocular structures, and the ability to evaluate changes in 3D structural information over time (4D imaging). Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Optical coherence tomography in guided surgery of GI cancer

    Science.gov (United States)

    Zagaynova, Elena V.; Abelevich, Alexander I.; Zagaynov, Vladimir E.; Gladkova, Natalia D.; Denisenko, Arkady N.; Feldchtein, Felix I.; Snopova, Ludmila B.; Kutis, Irina S.

    2005-04-01

    Optical Coherence Tomography (OCT) is a new high spatial resolution, real-time optical imaging modality, known from prior pilot studies for its high sensitivity to invasive cancer. We reported our results in an OCT feasibility study for accurate determination of the proximal border for esophageal carcinoma and the distal border for rectal carcinoma. The OCT study enrolled 19 patients with rectal adenocarcinoma and 24 patients with distal esophageal carcinoma (14 squamous cell carcinomas, 10 adenocarcinomas). During pre-surgery planning endoscopy we performed in vivo OCT imaging of the tumor border at four dial clock axes (12, 3, 6 and 9 o"clock). The OCT border then was marked by an electrocoagulator, or by a methylene blue tattoo. A cold biopsy (from the esophagus) was performed at visual and OCT borders and compared with visual and OCT readings. 27 post-surgery excised specimens were analyzed. OCT borders matched the histopathology in 94% cases in the rectum and 83.3% in the esophagus. In the cases of a mismatch between the OCT and histology borders, a deep tumor invasion occurred in the muscle layer (esophagus, rectum). Because of its high sensitivity to mucosal cancer, OCT can be used for pre-surgery planning and surgery guidance of the proximal border for esophageal carcinoma and the distal border for rectal carcinoma. However, deep invasion in the rectum or esophageal wall has to be controlled by alternative diagnostic modalities.

  20. Morphological phenotyping of mouse hearts using optical coherence tomography

    Science.gov (United States)

    Cua, Michelle; Lin, Eric; Lee, Ling; Sheng, Xiaoye; Wong, Kevin S. K.; Tibbits, Glen F.; Beg, Mirza Faisal; Sarunic, Marinko V.

    2014-11-01

    Transgenic mouse models have been instrumental in the elucidation of the molecular mechanisms behind many genetically based cardiovascular diseases such as Marfan syndrome (MFS). However, the characterization of their cardiac morphology has been hampered by the small size of the mouse heart. In this report, we adapted optical coherence tomography (OCT) for imaging fixed adult mouse hearts, and applied tools from computational anatomy to perform morphometric analyses. The hearts were first optically cleared and imaged from multiple perspectives. The acquired volumes were then corrected for refractive distortions, and registered and stitched together to form a single, high-resolution OCT volume of the whole heart. From this volume, various structures such as the valves and myofibril bundles were visualized. The volumetric nature of our dataset also allowed parameters such as wall thickness, ventricular wall masses, and luminal volumes to be extracted. Finally, we applied the entire acquisition and processing pipeline in a preliminary study comparing the cardiac morphology of wild-type mice and a transgenic mouse model of MFS.

  1. Imaging resin infiltration into non-cavitated carious lesions by optical coherence tomography.

    Science.gov (United States)

    Schneider, Hartmut; Park, Kyung-Jin; Rueger, Claudia; Ziebolz, Dirk; Krause, Felix; Haak, Rainer

    2017-05-01

    Visualisation of the etching process and resin penetration at white spot carious lesions by spectral domain optical coherence tomography (SD-OCT). The non-cavitated carious lesions (ICDAS code 2) of four visually preselected extracted human molars and premolars were verified as enamel lesions by micro computed tomography (μCT). One region of interest (ROI) per tooth was marked by two drill-holes in occlusal-cervical direction. The lesions were imaged by SD-OCT. Lesions were infiltrated (Icon, DMG) according to the manufacturer's instructions. During each treatment step and after light curing of the infiltrant, the ROIs were imaged again by SD-OCT. Teeth were sectioned through the ROIs and section layers were imaged by scanning electron microscopy in order to compare with the OCT images. The image sequences for etching and infiltration were viewed in time lapse. During the etching process, numerous bubbles formed on the lesion surface. Using OCT, the process of resin penetration into the carious lesion body became visible. The early enamel carious lesion was completely infiltrated by the resin whereas infiltration of the advanced enamel carious lesion was incomplete and inhomogeneous. Resin infiltration can be increased by optimizing the etching process. Optical coherence tomography provides information about the process and degree of resin infiltration. Active acid application before resin infiltration is recommendable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology

    Science.gov (United States)

    Harms, F.; Dalimier, E.; Vermeulen, P.; Fragola, A.; Boccara, A. C.

    2012-03-01

    Optical Coherence Tomography (OCT) is an efficient technique for in-depth optical biopsy of biological tissues, relying on interferometric selection of ballistic photons. Full-Field Optical Coherence Tomography (FF-OCT) is an alternative approach to Fourier-domain OCT (spectral or swept-source), allowing parallel acquisition of en-face optical sections. Using medium numerical aperture objective, it is possible to reach an isotropic resolution of about 1x1x1 ìm. After stitching a grid of acquired images, FF-OCT gives access to the architecture of the tissue, for both macroscopic and microscopic structures, in a non-invasive process, which makes the technique particularly suitable for applications in pathology. Here we report a multimodal approach to FF-OCT, combining two Full-Field techniques for collecting a backscattered endogeneous OCT image and a fluorescence exogeneous image in parallel. Considering pathological diagnosis of cancer, visualization of cell nuclei is of paramount importance. OCT images, even for the highest resolution, usually fail to identify individual nuclei due to the nature of the optical contrast used. We have built a multimodal optical microscope based on the combination of FF-OCT and Structured Illumination Microscopy (SIM). We used x30 immersion objectives, with a numerical aperture of 1.05, allowing for sub-micron transverse resolution. Fluorescent staining of nuclei was obtained using specific fluorescent dyes such as acridine orange. We present multimodal images of healthy and pathological skin tissue at various scales. This instrumental development paves the way for improvements of standard pathology procedures, as a faster, non sacrificial, operator independent digital optical method compared to frozen sections.

  3. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    Science.gov (United States)

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  4. Classifying murine glomerulonephritis using optical coherence tomography and optical coherence elastography.

    Science.gov (United States)

    Liu, Chih-Hao; Du, Yong; Singh, Manmohan; Wu, Chen; Han, Zhaolong; Li, Jiasong; Chang, Anthony; Mohan, Chandra; Larin, Kirill V

    2016-08-01

    Acute glomerulonephritis caused by antiglomerular basement membrane marked by high mortality. The primary reason for this is delayed diagnosis via blood examination, urine analysis, tissue biopsy, or ultrasound and X-ray computed tomography imaging. Blood, urine, and tissue-based diagnoses can be time consuming, while ultrasound and CT imaging have relatively low spatial resolution, with reduced sensitivity. Optical coherence tomography is a noninvasive and high-resolution imaging technique that provides superior spatial resolution (micrometer scale) as compared to ultrasound and CT. Changes in tissue properties can be detected based on the optical metrics analyzed from the OCT signals, such as optical attenuation and speckle variance. Furthermore, OCT does not rely on ionizing radiation as with CT imaging. In addition to structural changes, the elasticity of the kidney can significantly change due to nephritis. In this work, OCT has been utilized to quantify the difference in tissue properties between healthy and nephritic murine kidneys. Although OCT imaging could identify the diseased tissue, its classification accuracy is clinically inadequate. By combining optical metrics with elasticity, the classification accuracy improves from 76% to 95%. These results show that OCT combined with OCE can be a powerful tool for identifying and classifying nephritis. Therefore, the OCT/OCE method could potentially be used as a minimally invasive tool for longitudinal studies during the progression and therapy of glomerulonephritis as well as complement and, perhaps, substitute highly invasive tissue biopsies. Elastic-wave propagation in mouse healthy and nephritic kidneys.

  5. Ceramic and polymeric dental onlays evaluated by photo-elasticity, optical coherence tomography, and micro-computed tomography

    Science.gov (United States)

    Sinescu, Cosmin; Negrutiu, Meda; Topala, Florin; Ionita, Ciprian; Negru, Radu; Fabriky, Mihai; Marcauteanu, Corina; Bradu, Adrian; Dobre, George; Marsavina, Liviu; Rominu, Mihai; Podoleanu, Adrian

    2011-10-01

    Dental onlays are restorations used to repair rear teeth that have a mild to moderate amount of decay. They can also be used to restore teeth that are cracked or fractured if the damage is not severe enough to require a dental crown. The use of onlays requires less tooth reduction than does the use of metal fillings. This allows dentists to conserve more of a patient's natural tooth structure in the treatment process. The aims of this study are to evaluate the biomechanical comportment of the dental onlays, by using the 3D photo elasticity method and to investigate the integrity of the structures and their fitting to the dental support. For this optical coherence tomography and micro-computed tomography were employed. Both methods were used to investigate 37 dental onlays, 17 integral polymeric and 20 integral ceramic. The results permit to observe materials defects inside the ceramic or polymeric onlays situate in the biomechanically tensioned areas that could lead to fracture of the prosthetic structure. Marginal fitting problems of the onlays related to the teeth preparations were presented in order to observe the possibility of secondary cavities. The resulted images from the optical coherence tomography were verified by the micro-computed tomography. In conclusion, the optical coherence tomography can be used as a clinical method in order to evaluate the integrity of the dental ceramic and polymeric onlays and to investigate the quality of the marginal fitting to the teeth preparations.

  6. Optically active quantum dots

    Science.gov (United States)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  7. Donor disc attachment assessment with intraoperative spectral optical coherence tomography during descemet stripping automated endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Edward Wylegala

    2013-01-01

    Full Text Available Optical coherence tomography has already been proven to be useful for pre- and post-surgical anterior eye segment assessment, especially in lamellar keratoplasty procedures. There is no evidence for intraoperative usefulness of optical coherence tomography (OCT. We present a case report of the intraoperative donor disc attachment assessment with spectral-domain optical coherence tomography in case of Descemet stripping automated endothelial keratoplasty (DSAEK surgery combined with corneal incisions. The effectiveness of the performed corneal stab incisions was visualized directly by OCT scan analysis. OCT assisted DSAEK allows the assessment of the accuracy of the Descemet stripping and donor disc attachment.

  8. Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D; Olivier, S; Jones, S; Zawadzki, R; Evans, J; Choi, S; Werner, J

    2008-02-04

    We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of the trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.

  9. Ex vivo imaging of human thyroid pathology using integrated optical coherence tomography and optical coherence microscopy

    Science.gov (United States)

    Zhou, Chao; Wang, Yihong; Aguirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.

    2010-01-01

    We evaluate the feasibility of optical coherence tomography (OCT) and optical coherence microscopy (OCM) for imaging of benign and malignant thyroid lesions ex vivo using intrinsic optical contrast. 34 thyroid gland specimens are imaged from 17 patients, covering a spectrum of pathology ranging from normal thyroid to benign disease/neoplasms (multinodular colloid goiter, Hashimoto's thyroiditis, and follicular adenoma) and malignant thyroid tumors (papillary carcinoma and medullary carcinoma). Imaging is performed using an integrated OCT and OCM system, with sections. Characteristic features that suggest malignant lesions, such as complex papillary architecture, microfollicules, psammomatous calcifications, or replacement of normal follicular architecture with sheets/nests of tumor cells, can be identified from OCT and OCM images and are clearly differentiable from normal or benign thyroid tissues. With further development of needle-based imaging probes, OCT and OCM could be promising techniques to use for the screening of thyroid nodules and to improve the diagnostic specificity of fine needle aspiration evaluation.

  10. Optical coherence tomography in the diagnosis and management of optic neuritis and multiple sclerosis.

    Science.gov (United States)

    Costello, Fiona E; Klistorner, Alexander; Kardon, Randy

    2011-07-01

    Optic neuritis (ON) is an inflammatory optic nerve injury, which is strongly associated with multiple sclerosis (MS). Optical coherence tomography (OCT) has the potential to provide a reliable means of capturing axonal deficits, which can be paired to tests of visual function to provide a structural-functional paradigm of brain injury. In this respect, the eye provides a unique view into the effects of central nervous system inflammation, which may enhance the understanding of disease mechanisms that contribute to neurological disability in MS. This review addresses the published experience with OCT in the diagnosis and treatment of patients with ON and MS, and discusses the applications of OCT in ongoing clinical trials. The potential gains and limitations of spectral-domain OCT as an evolving technology and surrogate marker of axonal brain injury are also discussed. Copyright 2011, SLACK Incorporated.

  11. Profile and Determinants of Retinal Optical Intensity in Normal Eyes with Spectral Domain Optical Coherence Tomography.

    Directory of Open Access Journals (Sweden)

    Binyao Chen

    Full Text Available To investigate the profile and determinants of retinal optical intensity in normal subjects using 3D spectral domain optical coherence tomography (SD OCT.A total of 231 eyes from 231 healthy subjects ranging in age from 18 to 80 years were included and underwent a 3D OCT scan. Forty-four eyes were randomly chosen to be scanned by two operators for reproducibility analysis. Distribution of optical intensity of each layer and regions specified by the Early Treatment of Diabetic Retinopathy Study (ETDRS were investigated by analyzing the OCT raw data with our automatic graph-based algorithm. Univariate and multivariate analyses were performed between retinal optical intensity and sex, age, height, weight, spherical equivalent (SE, axial length, image quality, disc area and rim/disc area ratio (R/D area ratio.For optical intensity measurements, the intraclass correlation coefficient of each layer ranged from 0.815 to 0.941, indicating good reproducibility. Optical intensity was lowest in the central area of retinal nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer and photoreceptor layer, except for the retinal pigment epithelium (RPE. Optical intensity was positively correlated with image quality in all retinal layers (0.5530.05. There was no relationship between retinal optical intensity and sex, height, weight, SE, axial length, disc area and R/D area ratio.There was a specific pattern of distribution of retinal optical intensity in different regions. The optical intensity was affected by image quality and age. Image quality can be used as a reference for normalization. The effect of age needs to be taken into consideration when using OCT for diagnosis.

  12. Choroidal thinning in high myopia measured by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Ikuno Y

    2013-05-01

    Full Text Available Yasushi Ikuno, Satoko Fujimoto, Yukari Jo, Tomoko Asai, Kohji NishidaDepartment of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, JapanPurpose: To investigate the rate of choroidal thinning in highly myopic eyes.Patients and methods: A retrospective observational study of 37 eyes of 26 subjects (nine males and 17 females, mean age 39.6 ± 7.7 years with high myopia but no pathologies who had undergone spectral domain optical coherence tomography and repeated the test 1 year later (1 ± 0.25 year at Osaka University Hospital, Osaka, Japan. Patients older than 50 years with visual acuity worse than 20/40 or with whitish chorioretinal atrophy involving the macula were excluded. Two masked raters measured the choroidal thicknesses (CTs at the foveda, 3 mm superiorly, inferiorly, temporally, and nasally on the images and averaged the values. The second examination was about 365 days after the baseline examination. The CT reduction per year (CTRPY was defined as (CT 1 year after - baseline CT/days between the two examinations × 365. The retinal thicknesses were also investigated.Results: The CTRPY at the fovea was −1.0 ± 22.0 µm (range –50.2 to 98.5 at the fovea, –6.5 ± 24.3 µm (range −65.8 to 90.2 temporally, –0.5 ± 22.3 µm (range –27.1 to 82.5 nasally, –9.7 ± 21.7 µm (range –40.1 to 60.1 superiorly, and –1.4 ± 25.5 µm (range –85.6 to 75.2 inferiorly. There were no significant differences in the CTRPY at each location (P = 0.34. The CT decreased significantly (P < 0.05 only superiorly. The superior CTRPY was negatively correlated with the axial length (P < 0.05. The retinal thickness at the fovea did not change. Stepwise analysis for CTRPY selected axial length (P = 0.04, R2 = 0.13 and age (P = 0.08, R2 = 0.21 as relevant factors.Conclusions: The highly myopic choroid might gradually thin and be affected by many factors. Location and axial length are key factors to regulate the rate of choroidal

  13. Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography

    NARCIS (Netherlands)

    van der Meer, F.J.; Faber, D.J.; Aalders, M.C.G.; Poot, A.A.; Vermes, I.; van Leeuwen, T.G.

    2010-01-01

    Optical coherence tomography (OCT) was used to determine optical properties of pelleted human fibroblasts in which necrosis or apoptosis had been induced. We analysed the OCT data, including both the scattering properties of the medium and the axial point spread function of the OCT system. The optic

  14. Fourier optics analysis of phase-mask-based path-length-multiplexed optical coherence tomography.

    Science.gov (United States)

    Yin, Biwei; Dwelle, Jordan; Wang, Bingqing; Wang, Tianyi; Feldman, Marc D; Rylander, Henry G; Milner, Thomas E

    2015-11-01

    Optical coherence tomography (OCT) is an imaging technique that constructs a depth-resolved image by measuring the optical path-length difference between broadband light backscattered from a sample and a reference surface. For many OCT sample arm optical configurations, sample illumination and backscattered light detection share a common path. When a phase mask is placed in the sample path, features in the detected signal are observed, which suggests that an analysis of a generic common path OCT imaging system is warranted. In this study, we present a Fourier optics analysis using a Fresnel diffraction approximation of an OCT system with a path-length-multiplexing element (PME) inserted in the sample arm optics. The analysis may be generalized for most phase-mask-based OCT systems. A radial-angle-diverse PME is analyzed in detail, and the point spread function, coherent transfer function, sensitivity of backscattering angular diversity detection, and signal formation in terms of sample spatial frequency are simulated and discussed. The analysis reveals important imaging features and application limitations of OCT imaging systems with a phase mask in the sample path optics.

  15. Region-of-interest diffuse optical tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Saikia, Manob Jyoti; Kanhirodan, Rajan, E-mail: rajan@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2016-01-15

    Diffuse optical tomography (DOT) using near-infrared light is a promising tool for non-invasive imaging of deep tissue. This technique is capable of quantitative reconstruction of absorption (μ{sub a}) and scattering coefficient (μ{sub s}) inhomogeneities in the tissue. The rationale for reconstructing the optical property map is that the absorption coefficient variation provides diagnostic information about metabolic and disease states of the tissue. The aim of DOT is to reconstruct the internal tissue cross section with good spatial resolution and contrast from noisy measurements non-invasively. We develop a region-of-interest scanning system based on DOT principles. Modulated light is injected into the phantom/tissue through one of the four light emitting diode sources. The light traversing through the tissue gets partially absorbed and scattered multiple times. The intensity and phase of the exiting light are measured using a set of photodetectors. The light transport through a tissue is diffusive in nature and is modeled using radiative transfer equation. However, a simplified model based on diffusion equation (DE) can be used if the system satisfies following conditions: (a) the optical parameter of the inhomogeneity is close to the optical property of the background, and (b) μ{sub s} of the medium is much greater than μ{sub a} (μ{sub s} > > μ{sub a}). The light transport through a highly scattering tissue satisfies both of these conditions. A discrete version of DE based on finite element method is used for solving the inverse problem. The depth of probing light inside the tissue depends on the wavelength of light, absorption, and scattering coefficients of the medium and the separation between the source and detector locations. Extensive simulation studies have been carried out and the results are validated using two sets of experimental measurements. The utility of the system can be further improved by using multiple wavelength light sources. In such

  16. Region-of-interest diffuse optical tomography system

    Science.gov (United States)

    Saikia, Manob Jyoti; Kanhirodan, Rajan

    2016-01-01

    Diffuse optical tomography (DOT) using near-infrared light is a promising tool for non-invasive imaging of deep tissue. This technique is capable of quantitative reconstruction of absorption (μa) and scattering coefficient (μs) inhomogeneities in the tissue. The rationale for reconstructing the optical property map is that the absorption coefficient variation provides diagnostic information about metabolic and disease states of the tissue. The aim of DOT is to reconstruct the internal tissue cross section with good spatial resolution and contrast from noisy measurements non-invasively. We develop a region-of-interest scanning system based on DOT principles. Modulated light is injected into the phantom/tissue through one of the four light emitting diode sources. The light traversing through the tissue gets partially absorbed and scattered multiple times. The intensity and phase of the exiting light are measured using a set of photodetectors. The light transport through a tissue is diffusive in nature and is modeled using radiative transfer equation. However, a simplified model based on diffusion equation (DE) can be used if the system satisfies following conditions: (a) the optical parameter of the inhomogeneity is close to the optical property of the background, and (b) μs of the medium is much greater than μa (μs > > μa). The light transport through a highly scattering tissue satisfies both of these conditions. A discrete version of DE based on finite element method is used for solving the inverse problem. The depth of probing light inside the tissue depends on the wavelength of light, absorption, and scattering coefficients of the medium and the separation between the source and detector locations. Extensive simulation studies have been carried out and the results are validated using two sets of experimental measurements. The utility of the system can be further improved by using multiple wavelength light sources. In such a scheme, the spectroscopic

  17. Effects of haemodilution on the optical properties of blood during coagulation studied by optical coherence tomography

    Science.gov (United States)

    Liu, B.; Liu, Y.; Wei, H.; Yang, X.; Wu, G.; Guo, Z.; Yang, H.; He, Y.; Xie, S.

    2016-11-01

    We report an investigation of the effects of blood dilution with hypertonic (7.5 %) and normal (0.9 %) saline on its optical properties during coagulation in vitro using optical coherence tomography. The light penetration depth and attenuation coefficient are obtained from the dependences of reflectance on the depth. Normal whole blood has served as the control group. The average coagulation time is equal to 420 +/- 16, 418 +/- 16 and 358 +/- 14 {\\text{s}} with blood volume replacement of 2 %, 11 %, and 20 % by 0.9 % normal saline, respectively. With 2 %, 11% and 20% blood volume replacement with 7.5 % hypertonic saline, the average coagulation time is 422 +/- 17, 1160 +/- 45 and 1730 +/- 69 {\\text{s}}, respectively. For normal whole blood, the average coagulation time amounts to 425 +/- 19 {\\text{s}}. it is shown that dilution with normal saline has a procoagulant effect when it replaces 20 % of blood volume, and hypertonic saline has an anticoagulant effect if it replaces 11 % or more of blood volume. It is concluded that optical coherence tomography is a potential technique to quantify and monitor the liquid - gel transition during the coagulation process of blood diluted by normal and hypertonic saline.

  18. The use of optical coherence tomography in maxillofacial surgery

    Science.gov (United States)

    Al-Obaidi, Mohammed; Tandon, Rahul; Tiwana, Paul

    2015-02-01

    The ever-evolving medical field continues to trend toward less invasive approaches to the diagnosis and treatment of pathological conditions. Basic sciences research has allowed for improved technologies that are translated to the clinical sciences. Similarly, advancements in imaging modalities continue to improve and their applications become more varied. As such, surgeons and pathologists are able to depend on smaller samples for tissue diagnosis of pathological disease, where once large sections of tissue were needed. Optical coherence tomography (OCT), a high-resolution imaging technique, has been used extensively in different medical fields to improve diagnostic yield. Its use in dental fields, particularly in oral and maxillofacial surgery, remains limited. Our goal is to assess the use of OCT for improving soft tissue analysis and diagnosis, particularly for its applications in the field of oral and maxillofacial surgery. Optical coherence tomography is a modality that uses an optical signal using safe near-infrared light which is reflected off the sub-surface structures. This allows for high-resolution cross-sectional images of the tissue morphology to be obtained. Ophthalmologists have been using OCT to obtain images of the retina to assess for age-related macular degeneration. More recently, OCT has been used by Interventional Cardiology to image coronary arteries, and assess plaque thickness and morphology. This technology is now being investigated in several medical fields as a form of optical biopsy, providing in situ images with high-resolution morphology of tissues. We are particularly interested in its use on epithelial tissues, and therefore performed a literature review on the use of OCT for assessing epithelium. Evaluation of histologically-diagnosed actinic keratosis, for example, was found to correlate well with the imaging discrepancies found on OCT; and the in vivo assessment of atypical keratinocytes was firmly established. Additionally

  19. Integral ceramic superstructure evaluation using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-02-01

    Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.

  20. Laryngeal imaging with polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Burns, James A.; Kim, Ki Hean; Anderson, R. Rox

    2011-03-01

    Objectives/Hypothesis: Optical coherence tomography (OCT), an imaging technology that provides crosssectional subsurface tissue structure images using backscattered light, is a promising noninvasive, imaging modality for in-vivo assessment of vocal fold layered microstructure. Polarization-sensitive OCT (PS-OCT) augments conventional OCT by detecting changes in the polarization state of reflected light. This study imaged various benign laryngeal pathologies in patients undergoing direct laryngoscopy under general anesthesia to determine whether PS-OCT would provide useful additional information about vocal fold microstructure and glottic surface pathology. Study Design:Prospective clinical trial. Methods: Eighteen patients who were undergoing microlaryngoscopy under general anesthesia for benign glottic disease were imaged bilaterally with OCT and PS-OCT (N=34 vocal folds). Intraoperative microphotography guided placement of the imaging probe. Normalappearing glottic tissue was also imaged if present. When clinically indicated, biopsy or complete removal of the lesion established histologic confirmation. Results: PS-OCT provided high quality, vertical, cross-sectional images up to 1.2mm deep that complemented microlaryngoscopy, and conventional OCT for vocal fold pathologies. Scar tissue was visualized by PS-OCT, characterized by a birefringence pattern more intense than that of normal glottic tissue. Conclusions: Combining PS-OCT with OCT during human vocal cord imaging provides useful information in characterizing vocal cord lesions, particularly scar tissue.

  1. Analysis of Craniocardiac Malformations in Xenopus using Optical Coherence Tomography

    Science.gov (United States)

    Deniz, Engin; Jonas, Stephan; Hooper, Michael; N. Griffin, John; Choma, Michael A.; Khokha, Mustafa K.

    2017-01-01

    Birth defects affect 3% of children in the United States. Among the birth defects, congenital heart disease and craniofacial malformations are major causes of mortality and morbidity. Unfortunately, the genetic mechanisms underlying craniocardiac malformations remain largely uncharacterized. To address this, human genomic studies are identifying sequence variations in patients, resulting in numerous candidate genes. However, the molecular mechanisms of pathogenesis for most candidate genes are unknown. Therefore, there is a need for functional analyses in rapid and efficient animal models of human disease. Here, we coupled the frog Xenopus tropicalis with Optical Coherence Tomography (OCT) to create a fast and efficient system for testing craniocardiac candidate genes. OCT can image cross-sections of microscopic structures in vivo at resolutions approaching histology. Here, we identify optimal OCT imaging planes to visualize and quantitate Xenopus heart and facial structures establishing normative data. Next we evaluate known human congenital heart diseases: cardiomyopathy and heterotaxy. Finally, we examine craniofacial defects by a known human teratogen, cyclopamine. We recapitulate human phenotypes readily and quantify the functional and structural defects. Using this approach, we can quickly test human craniocardiac candidate genes for phenocopy as a critical first step towards understanding disease mechanisms of the candidate genes. PMID:28195132

  2. Imaging Cutaneous T-Cell Lymphoma with Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hans Christian Ring

    2012-07-01

    Full Text Available Aim: To investigate the presentation of a patch-stage cutaneous T-cell lymphoma (CTCL using optical coherence tomography (OCT. Methods: A patient with a patch caused by CTCL was photographed digitally, OCT-scanned and biopsied. A normal skin area adjacent to the patch was OCT-scanned for comparison, but not biopsied. The OCT image and the histological image were compared. Results: The OCT images illustrated a thickened and hyperreflective stratum corneum. OCT also demonstrated several elongated hyporeflective structures in the dermis. The largest structure was measured to have a width of 0.13 mm. A good immediate correlation was found between histology and OCT imaging of the sample. Conclusion: The aetiology of the elongated structures is thought to be lymphomatous infiltrates. Similar findings have been described in ocular lymphoma and may therefore be an important characteristic of cutaneous lymphoma. It may further be speculated that the differences in OCT images may reflect the biological behaviour of the infiltrate. This observation therefore suggests that OCT imaging may be a relevant tool for the in vivo investigation of mycosis fungoides and other CTCLs, but in order to verify these observed patterns in OCT imaging, further investigations will be required.

  3. [Optical coherence tomography for differentiation of parathyroid gland tissue].

    Science.gov (United States)

    Ladurner, R; Hallfeldt, K; Al Arabi, N; Gallwas, J; Mortensen, U; Sommerey, S

    2016-05-01

    Optical coherence tomography (OCT) is a high-resolution imaging technique that allows the identification of microarchitectural features in real-time. Can OCT be used to differentiate parathyroid tissue from other cervical tissue entities? All investigations were carried out during cervical operations. Initially, ex vivo images were analyzed to define morphological imaging criteria for each tissue entity. These criteria were used to evaluate a first series of ex vivo images. In a second phase the practicability of the technique was investigated in vivo and in the third phase backscattering intensity measurements were analyzed employing linear discriminant analysis (LDA). In the ex vivo series parathyroid tissue could be differentiated from other tissue entities with a sensitivity and specificity of 84  % and 94  %, respectively. Parathyroid tissue was correctly identified in the in vivo series in only 69.2 %. The analysis of backscattering intensity profiles employing LDA reliably distinguished between the different tissue types. The OCT images displayed typical characteristics for each tissue entity. Due to technical problems in handling the probe the in vivo OCT images were of much poorer quality. Backscattering intensity measurements illustrated that OCT images provide an individual profile for each tissue entity independent of the defined morphological assessment criteria. The results show that OCT is fundamentally suitable for intraoperative differentiation of tissues.

  4. Three-dimensional calibration targets for optical coherence tomography

    Science.gov (United States)

    Gabriele Sandrian, Michelle; Tomlins, Pete; Woolliams, Peter; Rasakanthan, Janarthanan; Lee, Graham C.; Yang, Anna; Považay, Boris; Alex, Aneesh; Sugden, Kate; Drexler, Wolfgang

    2012-03-01

    The recent expansion of clinical applications for optical coherence tomography (OCT) is driving the development of approaches for consistent image acquisition. There is a simultaneous need for time-stable, easy-to-use imaging targets for calibration and standardization of OCT devices. We present calibration targets consisting of three-dimensional structures etched into nanoparticle-embedded resin. Spherical iron oxide nanoparticles with a predominant particle diameter of 400 nm were homogeneously dispersed in a two part polyurethane resin and allowed to harden overnight. These samples were then etched using a precision micromachining femtosecond laser with a center wavelength of 1026 nm, 100kHz repetition rate and 450 fs pulse duration. A series of lines in depth were etched, varying the percentage of inscription energy and speed of the translation stage moving the target with respect to the laser. Samples were imaged with a dual wavelength spectral-domain OCT system (λ=800nm, ▵λ~180nm, and λ=1325nm, ▵λ~100nm) and point-spread function of nanoparticles within the target was measured.

  5. Using optical coherence tomography to detect peripheral pulmonary thrombi

    Institute of Scientific and Technical Information of China (English)

    HONG Cheng; WANG Wei; ZHONG Nan-shan; ZENG Guang-qiao; WU Hua

    2012-01-01

    Background Optical coherence tomography (OCT) is a new imaging technique capable of obtaining high-resolution intravascular images of small vessels and has been widely used in interventional cardiology.However,application of OCT in peripheral pulmonary arteries in patients has been seldom documented.Methods Three patients who were highly suspected peripheral pulmonary arteries thrombi and had undergone CT pulmonary angiography but tested negative for thrombi in peripheral pulmonary arteries were enrolled.Subsequently,OCT imaging was performed in peripheral pulmonary arteries.The patients received more than three-month anticoagulative treatment if thrombi were detected by OCT.Thereafter,OCT re-evaluation of the thrombolized blood vessels detected earlier was performed.The changes of thrombi before and after anticoagulative treatment were compared.Results Three patients underwent OCT imaging of peripheral pulmonary arteries.Thrombi were found in most of imaged vessels in these patients.Red and white thrombi can be differentiated,according to features of the thrombus on OCT images.After anticoagulation treatment,these patients' symptoms and hypoxemia improved.Repeated OCT imaging showed that most thrombi disappeared or became smaller.Conclusion OCT may be used as a potential tool for detecting peripheral pulmonary artery thrombi and differentiating red thrombi from white ones.

  6. Marginal integrity evaluation of dental composite using optical coherence tomography

    Science.gov (United States)

    Stan, Adrian-Tudor; Cojocariu, Andreea-Codruta; Antal, Anca Adriana; Topala, Florin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian Gh.

    2016-03-01

    In clinical dental practice it is often difficult or even impossible to distinguish and control interfacial adhesive defects from adhesive restorations using visual inspection or other traditional diagnostic methods. Nonetheless, non-invasive biomedical imaging methods like Optical Coherence Tomography (OCT) may provide a better view in this diagnostic outline. The aim of this study is to explore evaluations of the marginal adaptation of class I resin composites restorations using Time Domain (TD) OCT. Posterior human teeth have been chosen for this study. The teeth were stored in 0.9% physiological saline solution prior to use. A classical round-shaped class I cavity was prepared and cavities were restored with Charisma Diamond composite by Heraeus Kulzer and using a system of etch and rinse boding. The specimens were subjected to water storage and then to thermo-cycling. Three dimensional (3-D) scans of the restoration were obtained using a TD-OCT system centered at a 1300 nm wavelength. Open marginal adaptation at the interfaces and gaps inside the composite resins materials were identified using the proposed method. In conclusion, OCT has numerous advantages which justify its use for in vitro, as well as for in vivo studies. It can therefore be considered for non-invasive and fast detection of gaps at the restoration interface.

  7. [Imaging port wine stain by optical coherence tomography].

    Science.gov (United States)

    Zhao, Shi-Yong; Yu, Xin; Qiu, Hai-Xia; Huang, Nai-Yan; Wang, Tian-Shi; Xue, Ping; Gu, Ying

    2010-12-01

    Optical coherence tomography is an appropriate imaging method for biomedical science, due to its advantages of noninvasive nature, high resolution and fast imaging speed. Because most biological tissues have the characteristic of high scattering coefficient, OCT system can just obtain the structural images several millimeters below the surface of the tissues. The superficial depth of OCT's penetration limits application in dermatology field. As a common disease, the port wine stain (PWS) is a indication of OCT, because of its superficial lesion and significant expansion of blood vessels. To get deeper penetration in the skin, the authors employed 1 310 nm superluminescent diode as light source, optimized the light intensity ratio of reference delay arm and sample arm and control polarization, and the research of PWS imaging in vivo was accomplished. Besides, OCT is able to gather clear image and key characteristic parameters, such as the depth of epidermis layer, the diameter of blood vessel, etc. OCT will play an important role in the diagnosis and therapy of PWS.

  8. Optical Coherence Tomography: Clinical Applications in Medical Practice

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Mujaini

    2013-03-01

    Full Text Available Optical Coherence Tomography (OCT is a success story of scientific and technological co-operation between a physicist and a clinician. The concept of cross-sectional imaging revolutionalized the applicability of OCT in the medical profession. OCT is a non-contact, topographic, biomicroscopic device that provides high resolution, cross-sectional digital images of live biological tissues in vivo and in real time. OCT is based on the property of tissues to reflect and backscatter light involving low-coherence interferometry. The spatial resolution of as little as 3 microns or even less has allowed us to study tissues almost at a cellular level. Overall, OCT is an invaluable adjunct in the diagnosis and follow up of many diseases of both anterior and posterior segments of the eye, primarily or secondary to systemic diseases. The digitalization and advanced software has made it possible to store and retrieve huge patient data for patient services, clinical applications and academic research. OCT has revolutionized the sensitivity and specificity of diagnosis, follow up and response to treatment in almost all fields of clinical practice involving primary ocular pathologies and secondary ocular manifestations in systemic diseases like diabetes mellitus, hypertension, vascular and neurological diseases, thus benefitting non-ophthalmologists as well. Systemically, OCT is proving to be a helpful tool in substantiating early diagnosis in diseases like multiple sclerosis and drug induced retinopathies by detecting early changes in morphology of the retinal nerve fiber layer.

  9. Spectral domain optical coherence tomography with dual-balanced detection

    Science.gov (United States)

    Bo, En; Liu, Xinyu; Chen, Si; Luo, Yuemei; Wang, Nanshuo; Wang, Xianghong; Liu, Linbo

    2016-03-01

    We developed a spectral domain optical coherence tomography (SD-OCT) system employing dual-balanced detection (DBD) for direct current term suppression and SNR enhancement, especially for auto-autocorrelation artifacts reduction. The DBD was achieved by using a beam splitter to building a free-space Michelson interferometer, which generated two interferometric spectra with a phase difference of π. These two phase-opposed spectra were guided to the spectrometer through two single mode fibers of the 8 fiber v-groove array and acquired by ultizing the upper two lines of a three-line CCD camera. We rotated this fiber v-groove array by 1.35 degrees to focus two spectra onto the first and second line of the CCD camera. Two spectra were aligned by optimum spectrum matching algorithm. By subtracting one spectrum from the other, this dual-balanced detection system achieved a direct current term suppression of ~30 dB, SNR enhancement of ~3 dB, and auto-autocorrelation artifacts reduction of ~10 dB experimentally. Finally we respectively validated the feasibility and performance of dual-balanced detection by imaging a glass plate and swine corneal tissue ex vivo. The quality of images obtained using dual-balanced detection was significantly improved with regard to the conventional single-detection (SD) images.

  10. Screening cervical and oesophageal tissues using optical coherence tomography

    Science.gov (United States)

    Erry, Gavin R. G.; Bazant-Hegemark, Florian; Read, Mike D.; Stone, Nicholas

    2011-06-01

    Optical Coherence Tomography (OCT) is a technique that allows imaging tissue in three spatial dimensions. Such a technique makes it possible to examine the subsurface of the tissue. The depth of penetration into the tissue can be tailored by tuning the wavelength of the light source. While in some cases it is desirable to obtain deep penetration of the sample, when scanning for cancerous changes, it may only be necessary to penetrate the first few hundred micrometres. The use of a shorter wavelength, while decreasing the penetration depth, will improve the resolution of the instrument. While images from OCT systems contain speckle and other artefacts, there are methods of evaluating the information by using image processing techniques. Of particular interest is the scattering coefficient that can be derived from the OCT data. Using discriminant techniques on the scattering data (such as principal components analysis), gives a sensitive way of differentiating between changes in structure in the tissue. An extensive data collection was performed on cervical tissue using samples that ranged from normal to invasive cancer. The histopathology of each sample was gathered and was classified from normal to cancer. The scattering profiles of the data were averaged and gradient analysis was performed, showing that for small distances into the sample there is a significant difference between scattering profiles between cancerous and normal tissue. PCA was also performed on the data showing grouping into various stages of cancer.

  11. Towards quantitative analysis of retinal features in optical coherence tomography.

    Science.gov (United States)

    Baroni, Maurizio; Fortunato, Pina; La Torre, Agostino

    2007-05-01

    The purpose of this paper was to propose a new computer method for quantitative evaluation of representative features of the retina using optical coherence tomography (OCT). A multi-step approach was devised and positively tested for segmentation of the three main retinal layers: the vitreo-retinal interface and the inner and outer retina. Following a preprocessing step, three regions of interest were delimited. Significant peaks corresponding to high and low intensity strips were located along the OCT A-scan lines and accurate boundaries between different layers were obtained by maximizing an edge likelihood function. For a quantitative description, thickness measurement, densitometry, texture and curvature analyses were performed. As a first application, the effect of intravitreal injection of triamcinolone acetonide (IVTA) for the treatment of vitreo-retinal interface syndrome was evaluated. Almost all the parameters, measured on a set of 16 pathologic OCT images, were statistically different before and after IVTA injection (pvitreo-retinal interface and in the inner retinal layers. Texture parameters in the inner and outer retinal layers significantly correlated with the visual acuity restoration. According to these findings an IVTA injection might be considered a possible alternative to surgery for selected patients. In conclusion, the proposed approach appeared to be a promising tool for the investigation of tissue changes produced by pathology and/or therapy.

  12. Optical coherence tomography-guided classification of epiretinal membranes.

    Science.gov (United States)

    Konidaris, Vasileios; Androudi, Sofia; Alexandridis, Alexandros; Dastiridou, Anna; Brazitikos, Periklis

    2015-08-01

    To study and classify epiretinal membranes (ERMs) based on spectral domain optical coherence tomography (SD-OCT) findings. One hundred and twelve patients with ERMs were examined clinically and underwent OCT examination. The anatomical structure of the macula and vitreoretinal interface was studied. ERMs were classified in two categories: A, with posterior vitreous detachment (PVD) (91 cases), and B, with the absence of PVD (21 cases). Category A was divided into two subcategories: A1, without contraction of the ERM (37 cases), and A2, with the presence of membrane contraction (54 cases). A2 was further subdivided into A2.1, with retinal folding (15 cases), A2.2, with edema (23 cases), A2.3, with cystoid macular edema (9 cases), and A2.4, with lamellar macular hole (7 cases). Category B was divided in two subcategories: B1, without vitreomacular traction (VMT) (4 cases), and B2, with the presence of VMT (17 cases). Category B2 was subdivided into B2.1, with edema (9 cases), B2.2, presenting retinal detachment (5 cases), and B2.3, with schisis (3 cases). OCT classification of ERMs provides useful information on the anatomical structure of the retina, and the accurate estimation of vitreoretinal interface.

  13. Optical coherence tomography for the diagnosis of human otitis media

    Science.gov (United States)

    Cho, Nam Hyun; Jung, Unsang; Jang, Jeong Hun; Jung, Woonggyu; Kim, Jeehyun; Lee, Sang Heun; Boppart, Stephen A.

    2013-05-01

    We report the application of Optical Coherence Tomography (OCT) to various types of human cases of otitis media (OM). Whereas conventional diagnostic modalities for OM, including standard and pneumatic otoscopy, are limited to visualizing the surface information of the tympanic membrane (TM), OCT is able to effectively reveal the depth-resolved microstructural below the TM with a very high spatial resolution. With the potential advantage of using OCT for diagnosing different types of OM, we examined in-vivo the use of 840 nm wavelength, and OCT spectral domain OCT (SDOCT) techniques, in several human cases including normal ears, and ears with adhesive and effusion types of OM. Peculiar positions were identified in two-dimensional OCT images of abnormal TMs compared to images of a normal TM. Analysis of A-scan (axial depth-scans) data from these positions could successfully identify unique patterns for different constituents within effusions. These OCT images may not only be used for constructing a database for the diagnosis and classification of OM, but they may also demonstrate the feasibility and advantages for upgrading the current otoscopy techniques.

  14. Micro-optical coherence tomography of the mammalian cochlea

    Science.gov (United States)

    Iyer, Janani S.; Batts, Shelley A.; Chu, Kengyeh K.; Sahin, Mehmet I.; Leung, Hui Min; Tearney, Guillermo J.; Stankovic, Konstantina M.

    2016-01-01

    The mammalian cochlea has historically resisted attempts at high-resolution, non-invasive imaging due to its small size, complex three-dimensional structure, and embedded location within the temporal bone. As a result, little is known about the relationship between an individual’s cochlear pathology and hearing function, and otologists must rely on physiological testing and imaging methods that offer limited resolution to obtain information about the inner ear prior to performing surgery. Micro-optical coherence tomography (μOCT) is a non-invasive, low-coherence interferometric imaging technique capable of resolving cellular-level anatomic structures. To determine whether μOCT is capable of resolving mammalian intracochlear anatomy, fixed guinea pig inner ears were imaged as whole temporal bones with cochlea in situ. Anatomical structures such as the tunnel of Corti, space of Nuel, modiolus, scalae, and cell groupings were visualized, in addition to individual cell types such as neuronal fibers, hair cells, and supporting cells. Visualization of these structures, via volumetrically-reconstructed image stacks and endoscopic perspective videos, represents an improvement over previous efforts using conventional OCT. These are the first μOCT images of mammalian cochlear anatomy, and they demonstrate μOCT’s potential utility as an imaging tool in otology research. PMID:27633610

  15. Polarization sensitive spectroscopic optical coherence tomography for multimodal imaging

    Science.gov (United States)

    Strąkowski, Marcin R.; Kraszewski, Maciej; Strąkowska, Paulina; Trojanowski, Michał

    2015-03-01

    Optical coherence tomography (OCT) is a non-invasive method for 3D and cross-sectional imaging of biological and non-biological objects. The OCT measurements are provided in non-contact and absolutely safe way for the tested sample. Nowadays, the OCT is widely applied in medical diagnosis especially in ophthalmology, as well as dermatology, oncology and many more. Despite of great progress in OCT measurements there are still a vast number of issues like tissue recognition or imaging contrast enhancement that have not been solved yet. Here we are going to present the polarization sensitive spectroscopic OCT system (PS-SOCT). The PS-SOCT combines the polarization sensitive analysis with time-frequency analysis. Unlike standard polarization sensitive OCT the PS-SOCT delivers spectral information about measured quantities e.g. tested object birefringence changes over the light spectra. This solution overcomes the limits of polarization sensitive analysis applied in standard PS-OCT. Based on spectral data obtained from PS-SOCT the exact value of birefringence can be calculated even for the objects that provide higher order of retardation. In this contribution the benefits of using the combination of time-frequency and polarization sensitive analysis are being expressed. Moreover, the PS-SOCT system features, as well as OCT measurement examples are presented.

  16. Ex vivo brain tumor analysis using spectroscopic optical coherence tomography

    Science.gov (United States)

    Lenz, Marcel; Krug, Robin; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2016-03-01

    A big challenge during neurosurgeries is to distinguish between healthy tissue and cancerous tissue, but currently a suitable non-invasive real time imaging modality is not available. Optical Coherence Tomography (OCT) is a potential technique for such a modality. OCT has a penetration depth of 1-2 mm and a resolution of 1-15 μm which is sufficient to illustrate structural differences between healthy tissue and brain tumor. Therefore, we investigated gray and white matter of healthy central nervous system and meningioma samples with a Spectral Domain OCT System (Thorlabs Callisto). Additional OCT images were generated after paraffin embedding and after the samples were cut into 10 μm thin slices for histological investigation with a bright field microscope. All samples were stained with Hematoxylin and Eosin. In all cases B-scans and 3D images were made. Furthermore, a camera image of the investigated area was made by the built-in video camera of our OCT system. For orientation, the backsides of all samples were marked with blue ink. The structural differences between healthy tissue and meningioma samples were most pronounced directly after removal. After paraffin embedding these differences diminished. A correlation between OCT en face images and microscopy images can be seen. In order to increase contrast, post processing algorithms were applied. Hence we employed Spectroscopic OCT, pattern recognition algorithms and machine learning algorithms such as k-means Clustering and Principal Component Analysis.

  17. Optic Coherence Tomography of Idiopathic Macular Epiretinal Membranes

    Institute of Scientific and Technical Information of China (English)

    Xing Liu; Yunlan Ling; Jingjing Huang; Xiaoping Zheng

    2002-01-01

    bjectives: To study the characteristics of optical coherence tomography (OCT)inopathic macular epiretinal membranes (IMEM) and the relationship between thethickness offovea and the vision of affected eyes.Methods:A total of 67 cases (73 eyes) with clinical diagnosis of IMEM using direct,indirect ophthalmoscope, three mirror contact lens, fundus color photography or fundusfluorescein angiography (FFA)were examined with OCTResults: Epiretinal membranes (ERMs) with macular edema were found in 32 eyes,proliferative ERMs in 20 eyes, ERMs with macular pseudoholes in 14 eyes and ERMswith laminar macular holes in 7 eyes. Based on OCT, the ERMs were clearly andpartially seperated from the retinal (27 eyes, 38.36% ), the retinal thickness of thefovea was the thickest in the proliferative ERMs and the thinnest in the ERMs withlaminar macular holes. The statistical analysis showed there was a negative correlationbetween the thickness of fovea and visual acuity ( r = - 0. 454, P = 0. 000).Conclusion:There were four types of images of OCT in IMEM: ERMs with macularedema, proliferative ERMs, ERMs with macular pseudohole and ERMs with laminarmacular hole; and the thicker the fovea under the OCT, the poorer the vision acuity in the affected eyes with ERMs.

  18. Thrombosis and morphology of plaque rupture using optical coherence tomography

    Institute of Scientific and Technical Information of China (English)

    GUO Jun; CHEN Yun-dai; TIAN Feng; LIU Hong-bin; CHEN Lian; SUN Zhi-jun; REN Yi-hong

    2013-01-01

    Background Thrombosis following plaque rupture is the main cause of acute coronary syndrome,but not all plaque ruptures lead to thrombosis.There are limited in vivo data on the relationship between the morphology of ruptured plaque and thrombosis.Methods We used optical coherence tomography (OCT) to investigate the morphology of plaque rupture and its relation to coronary artery thrombosis in patients with coronary heart disease.Forty-two patients with coronary artery plaque rupture detected by OCT were divided into two groups (with or without thrombus) and the morphological characteristics of ruptured plaque,including fibrous cap thickness and broken cap site,were recorded.Results The fibrous cap of ruptured plaque with thrombus was significantly thinner compared to caps without thrombus ((57.00±17.00) μm vs.(96.00±48.00) μm; P=0.0076).Conclusions Plaque rupture associated with thrombosis occurs primarily in plaque covered by a thin fibrous cap.Thick fibrous caps are associated with greater stability of ruptured plaque.

  19. Clinical use of optical coherence tomography and fractional flow reserve

    Directory of Open Access Journals (Sweden)

    Ivanović Vladimir

    2016-01-01

    Full Text Available Introduction. The aim of each diagnostic method is to serve as a guide in deciding about the right patient treatment. During myocardial revascularization the decision to perform revascularization is usually not easy to make, especially in case of borderline stenosis. It has been proven that it is not enough to base morphological evaluation of coronary artery vessel stenosis solely on angiography. It is necessary to include additional modern diagnostic methods for functional analysis and detailed morphological analysis using fractional flow reserve (FFR and optical coherence tomography (OCT, respectively. Case reports. In the first case report we showed the significance of morphological analysis using OCT and proved that it was not lumen stenosis. The second and the third case reports showed the complementarity between functional analysis (FFR and morphological analysis (OCT of stenosis in solving a complex coronary disease. The fourth case report showed the significance of OCT in dealing with the recurrent stent restenosis. Conclusion. By these short case reports we confirmed that percutaneous coronary intervention (PCI guided by angiography is definitely not enough in deciding about myocardial revascularization especially in patients with a complex coronary disease. In certain cases FFR and OCT procedures can be complementary methods and improve quality of revascularization, particularly in the case of recurrent in-stent restenosis.

  20. Retinal Imaging of Infants on Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Anand Vinekar

    2015-01-01

    Full Text Available Spectral domain coherence tomography (SD OCT has become an important tool in the management of pediatric retinal diseases. It is a noncontact imaging device that provides detailed assessment of the microanatomy and pathology of the infant retina with a short acquisition time allowing office examination without the requirement of anesthesia. Our understanding of the development and maturation of the infant fovea has been enhanced by SD OCT allowing an in vivo assessment that correlates with histopathology. This has helped us understand the critical correlation of foveal development with visual potential in the first year of life and beyond. In this review, we summarize the recent literature on the clinical applications of SD OCT in studying the pathoanatomy of the infant macula, its ability to detect subclinical features, and its correlation with disease and vision. Retinopathy of prematurity and macular edema have been discussed in detail. The review also summarizes the current status of SD OCT in other infant retinal conditions, imaging the optic nerve, the choroid, and the retinal nerve fibre in infants and children, and suggests future areas of research.

  1. Benefits of optical coherence tomography for imaging of skin diseases

    Directory of Open Access Journals (Sweden)

    Utz S.R.

    2015-09-01

    Full Text Available Aim: working out the methods of visualization of information obtained during optical coherent tomography in normal skin and in series of inflammatory disorders. Materials and Methods. OCS1300SS (made in Thorlabs, USA was used in which the source of emission of radiation was a super-luminiscent diode with mean wavelength of 1325 nm. 12 patients with different skin conditions and 5 virtually healthy volunteers were examined with ОСТ procedure in OPD and IPD settings. High resolution USG numerical system DUB (TPM GmbH, Germany was used for comparative USG assessment. Results. ОСТ demonstrated considerably more detailed picture of the objects scanned compared to USG investigation. Image obtained with the help of ОСТ contains vital information about sizes of macro-morphological elements, status of vascular elements and their density in different depths of the skin. Conclusion. Additional results obtained from ОСТ of the skin lesions in plane section improves attraction for ОСТ in practical dermatology.

  2. Characterization of PET preforms using spectral domain optical coherence tomography

    Science.gov (United States)

    Hosseiny, Hamid; Ferreira, Manuel João.; Martins, Teresa; Carmelo Rosa, Carla

    2013-11-01

    Polyethylene terephthalate (PET) preforms are massively produced nowadays with the purpose of producing food and beverages packaging and liquid containers. Some varieties of these preforms are produced as multilayer structures, where very thin inner film(s) act as a barrier for nutrients leakage. The knowledge of the thickness of this thin inner layer is important in the production line. The quality control of preforms production requires a fast approach and normally the thickness control is performed by destructive means out of the production line. A spectral domain optical coherence tomography (SD-OCT) method was proposed to examine the thin layers in real time. This paper describes a nondestructive approach and all required signal processing steps to characterize the thin inner layers and also to improve the imaging speed and the signal to noise ratio. The algorithm was developed by using graphics processing unit (GPU) with computer unified device architecture (CUDA). This GPU-accelerated white light interferometry technique nondestructively assesses the samples and has high imaging speed advantage, overcoming the bottlenecks in PET performs quality control.

  3. Determination of dental decay rates with optical coherence tomography

    Science.gov (United States)

    Freitas, A. Z.; Zezell, D. M.; Mayer, M. P. A.; Ribeiro, A. C.; Gomes, A. S. L.; Vieira, N. D., Jr.

    2009-12-01

    We report the use of optical coherence tomography (OCT) to detect and quantify demineralization process induced by S. mutans biofilm in third molars human teeth. Artificial lesions were induced by a S. mutans microbiological culture and the samples (N = 50) were divided into groups according to the demineralization time: 3, 5, 7, 9, and 11 days. The OCT system was implemented using a light source delivering an average power of 96 μW in the sample arm, and spectral characteristics allowing 23 μm of axial resolution. The images were produced with lateral scans step of 10 μm and analyzed individually. As a result of the evaluation of theses images, lesion depth was calculated as function of demineralization time. The depth of the lesion in the root dentine increased from 70 μm to 230 μm (corrected by the enamel refraction index, 1.62 @ 856 nm), depending of exposure time. The lesion depth in root dentine was correlated to demineralization time, showing that it follows a geometrical progression like a bacteria growth law.

  4. Spectral Domain Optical Coherence Tomography Findings in Posterior Microphthalmia

    Directory of Open Access Journals (Sweden)

    Emine Tınkır Kayıtmazbatır

    2014-05-01

    Full Text Available The retinal spectral domain optical coherence tomography (SD-OCT findings of two posterior microphthalmia cases are presented in this case report. For this purpose, the findings of two siblings aged five and seven years who presented to our clinic with the complain of far-sightedness and high hypermetropia were evaluated. Both cases diagnosed to have posterior microphthalmia demonstrated normal biomicroscopic anterior segment examination and gonioscopy findings and the axial lengths were measured to be shorter than 17mm. The SD-OCT analysis of papillomacular folds detected in fundus examination revealed contribution of only neurosensorial retina. Beneath the retinal fold, we observed bilateral cysts in the intraretinal area in one of the cases and a triangle-shaped hyporeflective space with an apex corresponding to that of the retinal fold in the subretinal area in both cases. SD-OCT is an adjunctive imaging tool for diagnosis and follow-up of degenerative changes in posterior microphthalmia. These changes may be also important for visual prognosis. (Turk J Ophthalmol 2014; 44: 240-2

  5. Optical coherence tomography use in the diagnosis of enamel defects

    Science.gov (United States)

    Al-Azri, Khalifa; Melita, Lucia N.; Strange, Adam P.; Festy, Frederic; Al-Jawad, Maisoon; Cook, Richard; Parekh, Susan; Bozec, Laurent

    2016-03-01

    Molar incisor hypomineralization (MIH) affects the permanent incisors and molars, whose undermineralized matrix is evidenced by lesions ranging from white to yellow/brown opacities to crumbling enamel lesions incapable of withstanding normal occlusal forces and function. Diagnosing the condition involves clinical and radiographic examination of these teeth, with known limitations in determining the depth extent of the enamel defects in particular. Optical coherence tomography (OCT) is an emerging hard and soft tissue imaging technique, which was investigated as a new potential diagnostic method in dentistry. A comparison between the diagnostic potential of the conventional methods and OCT was conducted. Compared to conventional imaging methods, OCT gave more information on the structure of the enamel defects as well as the depth extent of the defects into the enamel structure. Different types of enamel defects were compared, each type presenting a unique identifiable pattern when imaged using OCT. Additionally, advanced methods of OCT image analysis including backscattered light intensity profile analysis and enface reconstruction were performed. Both methods confirmed the potential of OCT in enamel defects diagnosis. In conclusion, OCT imaging enabled the identification of the type of enamel defect and the determination of the extent of the enamel defects in MIH with the advantage of being a radiation free diagnostic technique.

  6. Evaluation of fingerprint deformation using optical coherence tomography

    Science.gov (United States)

    Gutierrez da Costa, Henrique S.; Maxey, Jessica R.; Silva, Luciano; Ellerbee, Audrey K.

    2014-02-01

    Biometric identification systems have important applications to privacy and security. The most widely used of these, print identification, is based on imaging patterns present in the fingers, hands and feet that are formed by the ridges, valleys and pores of the skin. Most modern print sensors acquire images of the finger when pressed against a sensor surface. Unfortunately, this pressure may result in deformations, characterized by changes in the sizes and relative distances of the print patterns, and such changes have been shown to negatively affect the performance of fingerprint identification algorithms. Optical coherence tomography (OCT) is a novel imaging technique that is capable of imaging the subsurface of biological tissue. Hence, OCT may be used to obtain images of subdermal skin structures from which one can extract an internal fingerprint. The internal fingerprint is very similar in structure to the commonly used external fingerprint and is of increasing interest in investigations of identify fraud. We proposed and tested metrics based on measurements calculated from external and internal fingerprints to evaluate the amount of deformation of the skin. Such metrics were used to test hypotheses about the differences of deformation between the internal and external images, variations with the type of finger and location inside the fingerprint.

  7. Video-rate volumetric optical coherence tomography-based microangiography

    Science.gov (United States)

    Baran, Utku; Wei, Wei; Xu, Jingjiang; Qi, Xiaoli; Davis, Wyatt O.; Wang, Ruikang K.

    2016-04-01

    Video-rate volumetric optical coherence tomography (vOCT) is relatively young in the field of OCT imaging but has great potential in biomedical applications. Due to the recent development of the MHz range swept laser sources, vOCT has started to gain attention in the community. Here, we report the first in vivo video-rate volumetric OCT-based microangiography (vOMAG) system by integrating an 18-kHz resonant microelectromechanical system (MEMS) mirror with a 1.6-MHz FDML swept source operating at ˜1.3 μm wavelength. Because the MEMS scanner can offer an effective B-frame rate of 36 kHz, we are able to engineer vOMAG with a video rate up to 25 Hz. This system was utilized for real-time volumetric in vivo visualization of cerebral microvasculature in mice. Moreover, we monitored the blood perfusion dynamics during stimulation within mouse ear in vivo. We also discussed this system's limitations. Prospective MEMS-enabled OCT probes with a real-time volumetric functional imaging capability can have a significant impact on endoscopic imaging and image-guided surgery applications.

  8. Surface imaging of metallic material fractures using optical coherence tomography.

    Science.gov (United States)

    Hutiu, Gheorghe; Duma, Virgil-Florin; Demian, Dorin; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-09-10

    We demonstrate the capability of optical coherence tomography (OCT) to perform topography of metallic surfaces after being subjected to ductile or brittle fracturing. Two steel samples, OL 37 and OL 52, and an antifriction Sn-Sb-Cu alloy were analyzed. Using an in-house-built swept source OCT system, height profiles were generated for the surfaces of the two samples. Based on such profiles, it can be concluded that the first two samples were subjected to ductile fracture, while the third one was subjected to brittle fracture. The OCT potential for assessing the surface state of materials after fracture was evaluated by comparing OCT images with images generated using an established method for such investigations, scanning electron microscopy (SEM). Analysis of cause of fracture is essential in response to damage of machinery parts during various accidents. Currently the analysis is performed using SEM, on samples removed from the metallic parts, while OCT would allow in situ imaging using mobile units. To the best of our knowledge, this is the first time that the OCT capability to replace SEM has been demonstrated. SEM is a more costly and time-consuming method to use in the investigation of surfaces of microstructures of metallic materials.

  9. The potential of optical coherence tomography for diagnosing meniscal pathology

    Science.gov (United States)

    Hang-Yin Ling, Carrie; Pozzi, Antonio; Thieman, Kelley M.; Tonks, Catherine A.; Guo, Shuguang; Xie, Huikai; Horodyski, MaryBeth

    2010-04-01

    Meniscal tears are often associated with anterior cruciate ligament (ACL) injury and may lead to pain and discomfort in humans. Maximal preservation of meniscal tissue is highly desirable to mitigate the progression of osteoarthritis. Guidelines of which meniscal tears are amenable to repair and what part of damaged tissues should be removed are elusive and lacking consensus. Images of microstructural changes in meniscus would potentially guide the surgeons to manage the meniscal tears better, but the resolution of current diagnostic techniques is limited for this application. In this study, we demonstrated the feasibility of using optical coherence tomography (OCT) for the diagnosis of meniscal pathology. Torn medial menisci were collected from dogs with ACL insufficiency. The torn meniscus was divided into three tissue samples and scanned by OCT and scanning electron microscopy (SEM). OCT and SEM images of torn menisci were compared. Each sample was evaluated for gross and microstructural abnormalities and reduction or loss of birefringence from the OCT images. The abnormalities detected with OCT were described for each type of tear. OCT holds promise in non-destructive and fast assessment of microstructural changes and tissue birefringence of meniscal tears. Future development of intraoperative OCT may help surgeons in the decision making of meniscal treatment.

  10. Towards spectral-domain optical coherence tomography on a silicon chip

    NARCIS (Netherlands)

    Akça, B.I.; Nguyen, V.D.; Kalkman, J.; van Leeuwen, Ton; Worhoff, Kerstin; de Ridder, R.M.; Pollnau, Markus

    We present experimental results of a spectral-domain optical coherence tomography system that includes an integrated spectrometer. A depth range of 1 mm and axial resolution of 19 μm was measured. A layered phantom was imaged.

  11. Fundus autofluorescence and optical coherence tomography findings in thiamine responsive megaloblastic anemia.

    Science.gov (United States)

    Ach, Thomas; Kardorff, Rüdiger; Rohrschneider, Klaus

    2015-01-01

    To report ophthalmologic fundus autofluorescence and spectral domain optical coherence tomography findings in a patient with thiamine responsive megaloblastic anemia (TRMA). A 13-year-old girl with genetically proven TRMA was ophthalmologically (visual acuity, funduscopy, perimetry, electroretinogram) followed up over >5 years. Fundus imaging also included autofluorescence and spectral domain optical coherence tomography. During a 5-year follow-up, visual acuity and visual field decreased, despite a special TRMA diet. Funduscopy revealed bull's eye appearance, whereas fundus autofluorescence showed central and peripheral hyperfluorescence and perifoveal hypofluorescence. Spectral domain optical coherence tomography revealed affected inner segment ellipsoid band and irregularities in the retinal pigment epithelium and choroidea. Autofluorescence and spectral domain optical coherence tomography findings in a patient with TRMA show retinitis pigmentosa-like retina, retinal pigment epithelium, and choroid alterations. These findings might progress even under special TRMA diet, indispensable to life. Ophthalmologist should consider TRMA in patients with deafness and ophthalmologic disorders.

  12. Performance analysis of a hybrid fingerprint extracted from optical coherence tomography fingertip scans

    CSIR Research Space (South Africa)

    Darlow, Luke N

    2016-06-01

    Full Text Available International Conference on Biometrics (ICB), 13-16 June 2016, Halmstad, Sweden Performance analysis of a hybrid fingerprint extracted from optical coherence tomography fingertip scans Darlow LN Connan J Singh A ABSTRACT: The Hybrid fingerprint is a...

  13. Technical Note: Wet validation of optical tomography for drinking water discolouration studies

    Directory of Open Access Journals (Sweden)

    R. Floris

    2013-02-01

    Full Text Available This paper presents a set of validation experiments for the reconstruction of a cross-sectional particle concentration field in a transparent pipe filled with a fluid using optical tomography.

  14. Technical Note: Wet validation of optical tomography for drinking water discolouration studies

    Directory of Open Access Journals (Sweden)

    R. Floris

    2013-06-01

    Full Text Available This paper presents a set of validation experiments for the reconstruction of a cross-sectional particle concentration field in a transparent pipe filled with a fluid using optical tomography.

  15. Optical polarization tractography based on polarization-sensitive optical coherence tomography

    Science.gov (United States)

    Yao, Gang; Wang, Yuanbo; Ravanfar, Mohammadreza; Azinfar, Leila; Yao, Xuan; Zhang, Keqing; Duan, Dongsheng

    2016-03-01

    Fibrous tissues exist in many parts of the body, where the directional fiber organization is critical in maintaining their normal functions. Disruption of the normal fibrous structure is often linked to tissue dysfunction. An imaging tool that can reveal the detailed fiber architecture will be valuable for our understanding of the structure-function relationship in these tissues. Here, we described a new high-resolution tractography method developed from Jones matrix polarizationsensitive optical coherence tomography. We demonstrated its applications for visualization of fibrous structures in several different animal tissues.

  16. Application of optical coherence tomography attenuation imaging for quantification of optical properties in medulloblastoma

    Science.gov (United States)

    Vuong, Barry; Skowron, Patryk; Kiehl, Tim-Rasmus; Kyan, Matthew; Garzia, Livia; Genis, Helen; Sun, Cuiru; Taylor, Michael D.; Yang, Victor X. D.

    2015-03-01

    The hemodynamic environment is known to play a crucial role in the progression, rupture, and treatment of intracranial aneurysms. Currently there is difficulty assessing and measuring blood flow profiles in vivo. An emerging high resolution imaging modality known as split spectrum Doppler optical coherence tomography (ssDOCT) has demonstrated the capability to quantify hemodynamic patterns as well as arterial microstructural changes. In this study, we present a novel in vitro method to acquire precise blood flow patterns within a patient- specific aneurysm silicone flow models using ssDOCT imaging. Computational fluid dynamics (CFD) models were generated to verify ssDOCT results.

  17. FABRICATION OF TISSUE-SIMULATIVE PHANTOMS AND CAPILLARIES AND THEIR INVESTIGATION BY OPTICAL COHERENCE TOMOGRAPHY TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A. V. Bykov

    2013-03-01

    Full Text Available Methods of tissue-simulative phantoms and capillaries fabrication from PVC-plastisol and silicone for application as test-objects in optical coherence tomography (OCT and skin and capillary emulation are considered. Comparison characteristics of these materials and recommendations for their application are given. Examples of phantoms visualization by optical coherence tomography method are given. Possibility of information using from B-scans for refractive index evaluation is shown.

  18. Optical clearing of melanoma in vivo: characterization by diffuse reflectance spectroscopy and optical coherence tomography

    Science.gov (United States)

    Pires, Layla; Demidov, Valentin; Vitkin, I. Alex; Bagnato, Vanderlei; Kurachi, Cristina; Wilson, Brian C.

    2016-08-01

    Melanoma is the most aggressive type of skin cancer, with significant risk of fatality. Due to its pigmentation, light-based imaging and treatment techniques are limited to near the tumor surface, which is inadequate, for example, to evaluate the microvascular density that is associated with prognosis. White-light diffuse reflectance spectroscopy (DRS) and near-infrared optical coherence tomography (OCT) were used to evaluate the effect of a topically applied optical clearing agent (OCA) in melanoma in vivo and to image the microvascular network. DRS was performed using a contact fiber optic probe in the range from 450 to 650 nm. OCT imaging was performed using a swept-source system at 1310 nm. The OCT image data were processed using speckle variance and depth-encoded algorithms. Diffuse reflectance signals decreased with clearing, dropping by ˜90% after 45 min. OCT was able to image the microvasculature in the pigmented melanoma tissue with good spatial resolution up to a depth of ˜300 μm without the use of OCA; improved contrast resolution was achieved with optical clearing to a depth of ˜750 μm in tumor. These findings are relevant to potential clinical applications in melanoma, such as assessing prognosis and treatment responses. Optical clearing may also facilitate the use of light-based treatments such as photodynamic therapy.

  19. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  20. CCD imaging for optical tomography of gel radiation dosimeters.

    Science.gov (United States)

    Wolodzko, J G; Marsden, C; Appleby, A

    1999-11-01

    Several investigations have been carried out by a number of researchers over the past few years to evaluate the utility of imaging gel dosimeters for the three-dimensional measurement of radiation fields. These have been proposed to be of particular value in mapping radiation dose distributions associated with emerging and complex approaches to cancer treatment such as conformal (CRT), intensity modulated (IMRT), "gamma knife," and pencil beam radiotherapies. Imaging of the gels has been successfully accomplished with clinical MRI units and via laser-based optical scanning. However, neither of these methods is generally accessible to all potential users, limiting the broader study and implementation of this valuable tool. We report here the design, methodology, and results of a preliminary study carried out to evaluate the utility of a new, inexpensive, and simplified approach to tomographic imaging of gel radiation dosimeters. For the purpose of this initial investigation, an array of liquid scintillation vials was prepared, containing a ferrous sulphate xylenol orange (FSX) gelatin formulation. The FSX formulation undergoes a change in optical absorption characteristics following irradiation, and the resulting color change can be observed visually. The vials were irradiated individually to different doses. Three-dimensional imaging was accomplished by tomographic reconstruction from two-dimensional optical images acquired using a diffuse, fluorescent light source, a digital charge-coupled device camera, single-photon-emission-computed tomography software, and other simple components designed by the authors. The resulting transverse images were evaluated through a region-of-interest (ROI) analysis to obtain the average change in image density in each vial as a function of radiation dose. These measured ROI values were subjected to a linear regression analysis to fit them to a straight line, and to determine the goodness of fit. Results from multiple imaging trials

  1. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy1

    Science.gov (United States)

    Fujimoto, James G; Pitris, Costas; Boppart, Stephen A; Brezinski, Mark E

    2000-01-01

    Abstract Optical coherence tomography (OCT) is an emerging technology for performing high-resolution cross-sectional imaging. OCT is analogous to ultrasound imaging, except that it uses light instead of sound. OCT can provide cross-sectional images of tissue structure on the micron scale in situ and in real time. Using OCT in combination with catheters and endoscopes enables high-resolution intraluminal imaging of organ systems. OCT can function as a type of optical biopsy and is a powerful imaging technology for medical diagnostics because unlike conventional histopathology which requires removal of a tissue specimen and processing for microscopic examination, OCT can provide images of tissue in situ and in real time. OCT can be used where standard excisional biopsy is hazardous or impossible, to reduce sampling errors associated with excisional biopsy, and to guide interventional procedures. In this paper, we review OCT technology and describe its potential biomedical and clinical applications. PMID:10933065

  2. Characterization and Analysis of Relative Intensity Noise in Broadband Optical Sources for Optical Coherence Tomography

    Science.gov (United States)

    Shin, Sunghwan; Sharma, Utkarsh; Tu, Haohua; Jung, Woonggyu; Boppart, Stephen A.

    2011-01-01

    Relative intensity noise (RIN) is one of the most significant factors limiting the sensitivity of an optical coherence tomography (OCT) system. The existing and prevalent theory being used for estimating RIN for various light sources in OCT is questionable, and cannot be applied uniformly for different types of sources. The origin of noise in various sources differs significantly, owing to the different physical nature of photon generation. In this study, we characterize and compare RIN of several OCT light sources including superluminescent diodes (SLDs), an erbium-doped fiber amplifier, multiplexed SLDs, and a continuous-wave laser. We also report a method for reduction of RIN by amplifying the SLD light output by using a gain-saturated semiconductor optical amplifier. PMID:22090794

  3. In vivo optical coherence tomography of stimulus-evoked intrinsic optical signals in mouse retinas

    Science.gov (United States)

    Wang, Benquan; Lu, Yiming; Yao, Xincheng

    2016-09-01

    Intrinsic optical signal (IOS) imaging promises a noninvasive method for advanced study and diagnosis of eye diseases. Before pursuing clinical applications, it is essential to understand anatomic and physiological sources of retinal IOSs and to establish the relationship between IOS distortions and eye diseases. The purpose of this study was designed to demonstrate the feasibility of in vivo IOS imaging of mouse models. A high spatiotemporal resolution spectral domain optical coherence tomography (SD-OCT) was employed for depth-resolved retinal imaging. A custom-designed animal holder equipped with ear bar and bite bar was used to minimize eye movements. Dynamic OCT imaging revealed rapid IOS from the photoreceptor's outer segment immediately after the stimulation delivery, and slow IOS changes were observed from inner retinal layers. Comparative photoreceptor IOS and electroretinography recordings suggested that the fast photoreceptor IOS may be attributed to the early stage of phototransduction before the hyperpolarization of retinal photoreceptor.

  4. Optical Sensing Method for Screening Disease in Melon Seeds by Using Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Jeehyun Kim

    2011-10-01

    Full Text Available We report a noble optical sensing method to diagnose seed abnormalities using optical coherence tomography (OCT. Melon seeds infected with Cucumber green mottle mosaic virus (CGMMV were scanned by OCT. The cross-sectional sensed area of the abnormal seeds showed an additional subsurface layer under the surface which is not found in normal seeds. The presence of CGMMV in the sample was examined by a blind test (n = 140 and compared by the reverse transcription-polymerase chain reaction. The abnormal layers (n = 40 were quantitatively investigated using A-scan sensing analysis and statistical method. By utilizing 3D OCT image reconstruction, we confirmed the distinctive layers on the whole seeds. These results show that OCT with the proposed data processing method can systemically pick up morphological modification induced by viral infection in seeds, and, furthermore, OCT can play an important role in automatic screening of viral infections in seeds.

  5. Optical coherence tomography: Monte Carlo simulation and improvement by optical amplification

    DEFF Research Database (Denmark)

    Tycho, Andreas

    2002-01-01

    An advanced novel Monte Carlo simulation model of the detection process of an optical coherence tomography (OCT) system is presented. For the first time it is shown analytically that the applicability of the incoherent Monte Carlo approach to model the heterodyne detection process of an OCT system...... model of the OCT signal. The OCT signal from a scattering medium are obtained for several beam and sample geometries using the new Monte Carlo model, and when comparing to results of an analytical model based on the extended Huygens-Fresnel principle excellent agreement is obtained. With the greater...... flexibility of Monte Carlo simulations, this new model is demonstrated to be excellent as a numerical phantom, i.e., as a substitute for otherwise difficult experiments. Finally, a new model of the signal-to-noise ratio (SNR) of an OCT system with optical amplification of the light reflected from the sample...

  6. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography.

    Science.gov (United States)

    Konecky, Soren D; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M; Saffer, Janet R; Freifelder, Richard; Karp, Joel S; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G

    2008-02-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions.

  7. Three dimensional image reconstruction based on a wide-field optical coherence tomography system

    Science.gov (United States)

    Feng, Yinqi; Feng, Shengtong; Zhang, Min; Hao, Junjun

    2014-07-01

    Wide-field optical coherence tomography has a promising application for its high scanning rate and resolution. The principle of a wide-field optical coherence tomography system is described, and 2D images of glass slides are reconstructed using eight-stepped phase-shifting method in the system. Using VC6.0 and OpenGL programming, 3D images are reconstructed based on the Marching Cube algorithm with 2D image sequences. The experimental results show that the depth detection and three-dimensional tomography for translucent materials could be implemented efficiently in the WFOCT system.

  8. A proposed fibre optic time domain optical coherence tomography system using a micro-photonic stationary optical delay line

    Science.gov (United States)

    Jansz, Paul Vernon; Wild, Graham; Hinckley, Steven

    2008-04-01

    Conventional time domain Optical Coherence Tomography (OCT) relies on a reference Optical Delay Line (ODL). These reference ODLs require the physical movement of a mirror to scan a given depth range. This movement results in instrument degradation. We propose a new optical fibre based time domain OCT system that makes use of a micro-photonic structure as a stationary ODL. The proposed system uses an in-fibre interferometer, either a Michelson or a Mach-Zhender. The reference ODL makes use of a collimator to expand the light from the optical fibre. This is them expanded in one dimension via planar optics, that is, a cylindrical lens based telescope, using a concave and convex lens. The expanded beam is them passed through a transmissive Spatial Light Modulator (SLM), specifically a liquid crystal light valve used as an optical switch. Light is then reflected back through the system off the micro-photonic structure. The micro-photonic structure is a one dimensional array of stagged mirror steps, called a Stepped Mirror Structure (SMS). The system enables the selection of discrete optical delay lengths. The proposed ODL is capable of depth hoping and multicasting. We discuss the fabrication of the SMS, which consists of eight steps, each approximately 150 μm high. A change in notch frequency using an in-fibre Mach Zhender interferometer was used to gauge the average step height. The results gave an average step height of 146 μm.

  9. Optical coherence tomography angiography-based capillary velocimetry

    Science.gov (United States)

    Wang, Ruikang K.; Zhang, Qinqin; Li, Yuandong; Song, Shaozhen

    2017-06-01

    Challenge persists in the field of optical coherence tomography (OCT) when it is required to quantify capillary blood flow within tissue beds in vivo. We propose a useful approach to statistically estimate the mean capillary flow velocity using a model-based statistical method of eigendecomposition (ED) analysis of the complex OCT signals obtained with the OCT angiography (OCTA) scanning protocol. ED-based analysis is achieved by the covariance matrix of the ensemble complex OCT signals, upon which the eigenvalues and eigenvectors that represent the subsets of the signal makeup are calculated. From this analysis, the signals due to moving particles can be isolated by employing an adaptive regression filter to remove the eigencomponents that represent static tissue signals. The mean frequency (MF) of moving particles can be estimated by the first lag-one autocorrelation of the corresponding eigenvectors. Three important parameters are introduced, including the blood flow signal power representing the presence of blood flow (i.e., OCTA signals), the MF indicating the mean velocity of blood flow, and the frequency bandwidth describing the temporal flow heterogeneity within a scanned tissue volume. The proposed approach is tested using scattering phantoms, in which microfluidic channels are used to simulate the functional capillary vessels that are perfused with the scattering intralipid solution. The results indicate a linear relationship between the MF and mean flow velocity. In vivo animal experiments are also conducted by imaging mouse brain with distal middle cerebral artery ligation to test the capability of the method to image the changes in capillary flows in response to an ischemic insult, demonstrating the practical usefulness of the proposed method for providing important quantifiable information about capillary tissue beds in the investigations of neurological conditions in vivo.

  10. Optical coherence tomography for blood glucose monitoring through signal attenuation

    Science.gov (United States)

    De Pretto, Lucas R.; Yoshimura, Tania M.; Ribeiro, Martha S.; de Freitas, Anderson Z.

    2016-03-01

    Development of non-invasive techniques for glucose monitoring is crucial to improve glucose control and treatment adherence in patients with diabetes. Hereafter, Optical Coherence Tomography (OCT) may offer a good alternative for portable glucometers, since it uses light to probe samples. Changes in the object of interest can alter the intensity of light returning from the sample and, through it, one can estimate the sample's attenuation coefficient (μt) of light. In this work, we aimed to explore the behavior of μt of mouse's blood under increasing glucose concentrations. Different samples were prepared in four glucose concentrations using a mixture of heparinized blood, phosphate buffer saline and glucose. Blood glucose concentrations were measured with a blood glucometer, for reference. We have also prepared other samples diluting the blood in isotonic saline solution to check the effect of a higher multiple-scattering component on the ability of the technique to differentiate glucose levels based on μt. The OCT system used was a commercial Spectral Radar OCT with 930 nm central wavelength and spectral bandwidth (FWHM) of 100 nm. The system proved to be sensitive for all blood glucose concentrations tested, with good correlations with the obtained attenuation coefficients. A linear tendency was observed, with an increase in attenuation with higher values of glucose. Statistical difference was observed between all groups (p<0.001). This work opens the possibility towards a non-invasive diagnostic modality using OCT for glycemic control, which eliminates the use of analytes and/or test strips, as in the case with commercially available glucometers.

  11. Differentiating functional brain regions using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Gil, Daniel A.; Bow, Hansen C.; Shen, Jin-H.; Joos, Karen M.; Skala, Melissa C.

    2017-02-01

    The human brain is made up of functional regions governing movement, sensation, language, and cognition. Unintentional injury during neurosurgery can result in significant neurological deficits and morbidity. The current standard for localizing function to brain tissue during surgery, intraoperative electrical stimulation or recording, significantly increases the risk, time, and cost of the procedure. There is a need for a fast, cost-effective, and high-resolution intraoperative technique that can avoid damage to functional brain regions. We propose that optical coherence tomography (OCT) can fill this niche by imaging differences in the cellular composition and organization of functional brain areas. We hypothesized this would manifest as differences in the attenuation coefficient measured using OCT. Five functional regions (prefrontal, somatosensory, auditory, visual, and cerebellum) were imaged in ex vivo porcine brains (n=3), a model chosen due to a similar white/gray matter ratio as human brains. The attenuation coefficient was calculated using a depth-resolved model and quantitatively validated with Intralipid phantoms across a physiological range of attenuation coefficients (absolute difference < 0.1cm-1). Image analysis was performed on the attenuation coefficient images to derive quantitative endpoints. We observed a statistically significant difference among the median attenuation coefficients of these five regions (one-way ANOVA, p<0.05). Nissl-stained histology will be used to validate our results and correlate OCT-measured attenuation coefficients to neuronal density. Additional development and validation of OCT algorithms to discriminate brain regions are planned to improve the safety and efficacy of neurosurgical procedures such as biopsy, electrode placement, and tissue resection.

  12. Macular thickness measurements using Copernicus Spectral Domain Optical Coherence Tomography.

    Science.gov (United States)

    Gella, Laxmi; Raman, Rajiv; Sharma, Tarun

    2015-01-01

    To provide normal macular thickness measurements using Spectral Domain Optical Coherence Tomography (SDOCT, Copernicus, Optopol Technologies, Zawierci, Poland). Fifty-eight eyes of 58 healthy subjects were included in this prospective study. All subjects had comprehensive ophthalmic examination including best-corrected visual acuity (BCVA). All the subjects underwent Copernicus SDOCT. Central foveal thickness (CFT) and photoreceptor layer (PRL) thickness were measured and expressed as mean and standard deviation. Mean retinal thickness for each of the 9 regions defined in the Early Treatment Diabetic Retinopathy Study was reported. The data were compared with published literature in Indians using Stratus and Spectralis OCTs to assess variation in instrument measurements. The mean CFT in the study sample was 173.8 ± 18.16 microns (131-215 microns) and the mean PRL thickness was 65.48 ± 4.23 microns (56-74 microns). No significant difference (p = 0.148) was found between CFT measured automated (179.28 ± 22 microns) and manually (173.83 ± 18.1 microns). CFT was significantly lower in women (167.62 ± 16.36 microns) compared to men (180.03 ± 18 microns) (p = 0.008). Mean retinal thickness reported in this study was significantly different from published literature using Stratus OCT and Spectralis OCT. We report the normal mean retinal thickness in central 1 mm area to be between 138 and 242 microns in Indian population using Copernicus SDOCT. We suggest that different OCT instruments cannot be used interchangeably for the measurement of macular thickness as they vary in segmentation algorithms.

  13. Optical coherence tomography image denoising using Gaussianization transform

    Science.gov (United States)

    Amini, Zahra; Rabbani, Hossein

    2017-08-01

    We demonstrate the power of the Gaussianization transform (GT) for modeling image content by applying GT for optical coherence tomography (OCT) denoising. The proposed method is a developed version of the spatially constrained Gaussian mixture model (SC-GMM) method, which assumes that each cluster of similar patches in an image has a Gaussian distribution. SC-GMM tries to find some clusters of similar patches in the image using a spatially constrained patch clustering and then denoise each cluster by the Wiener filter. Although in this method GMM distribution is assumed for the noisy image, holding this assumption on a dataset is not investigated. We illustrate that making a Gaussian assumption on a noisy dataset has a significant effect on denoising results. For this purpose, a suitable distribution for OCT images is first obtained and then GT is employed to map this original distribution of OCT images to a GMM distribution. Then, this Gaussianized image is used as the input of the SC-GMM algorithm. This method, which is a combination of GT and SC-GMM, remarkably improves the results of OCT denoising compared with earlier version of SC-GMM and even produces better visual and numerical results than the state-of-the art works in this field. Indeed, the main advantage of the proposed OCT despeckling method is texture preservation, which is important for main image processing tasks like OCT inter- and intraretinal layer analysis. Thus, to prove the efficacy of the proposed method for this analysis, an improvement in the segmentation of intraretinal layers using the proposed method as a preprocessing step is investigated. Furthermore, the proposed method can achieve the best expert ranking between other contending methods, and the results show the helpfulness and usefulness of the proposed method in clinical applications.

  14. Automatic segmentation of choroidal thickness in optical coherence tomography.

    Science.gov (United States)

    Alonso-Caneiro, David; Read, Scott A; Collins, Michael J

    2013-01-01

    The assessment of choroidal thickness from optical coherence tomography (OCT) images of the human choroid is an important clinical and research task, since it provides valuable information regarding the eye's normal anatomy and physiology, and changes associated with various eye diseases and the development of refractive error. Due to the time consuming and subjective nature of manual image analysis, there is a need for the development of reliable objective automated methods of image segmentation to derive choroidal thickness measures. However, the detection of the two boundaries which delineate the choroid is a complicated and challenging task, in particular the detection of the outer choroidal boundary, due to a number of issues including: (i) the vascular ocular tissue is non-uniform and rich in non-homogeneous features, and (ii) the boundary can have a low contrast. In this paper, an automatic segmentation technique based on graph-search theory is presented to segment the inner choroidal boundary (ICB) and the outer choroidal boundary (OCB) to obtain the choroid thickness profile from OCT images. Before the segmentation, the B-scan is pre-processed to enhance the two boundaries of interest and to minimize the artifacts produced by surrounding features. The algorithm to detect the ICB is based on a simple edge filter and a directional weighted map penalty, while the algorithm to detect the OCB is based on OCT image enhancement and a dual brightness probability gradient. The method was tested on a large data set of images from a pediatric (1083 B-scans) and an adult (90 B-scans) population, which were previously manually segmented by an experienced observer. The results demonstrate the proposed method provides robust detection of the boundaries of interest and is a useful tool to extract clinical data.

  15. Optical coherence tomography using the Niris system in otolaryngology

    Science.gov (United States)

    Rubinstein, Marc; Armstrong, William B.; Djalilian, Hamid R.; Crumley, Roger L.; Kim, Jason H.; Nguyen, Quoc A.; Foulad, Allen I.; Ghasri, Pedram E.; Wong, Brian J. F.

    2009-02-01

    Objectives: To determine the feasibility and accuracy of the Niris Optical Coherence Tomography (OCT) system in imaging of the mucosal abnormalities of the head and neck. The Niris system is the first commercially available OCT device for applications outside ophthalmology. Methods: We obtained OCT images of benign, premalignant and malignant lesions throughout the head and neck, using the Niris OCT imaging system (Imalux, Cleveland, OH). This imaging system has a tissue penetration depth of approximately 1-2mm, a scanning range of 2mm and a spatial depth resolution of approximately 10-20μm. Imaging was performed in the outpatient setting and in the operating room using a flexible probe. Results: High-resolution cross-sectional images from the oral cavity, nasal cavity, ears and larynx showed distinct layers and structures such as mucosa layer, basal membrane and lamina propria, were clearly identified. In the pathology images disruption of the basal membrane was clearly shown. Device set-up took approximately 5 minutes and the image acquisition was rapid. The system can be operated by the person performing the exam. Conclusions: The Niris system is non invasive and easy to incorporate into the operating room and the clinic. It requires minimal set-up and requires only one person to operate. The unique ability of the OCT offers high-resolution images showing the microanatomy of different sites. OCT imaging with the Niris device potentially offers an efficient, quick and reliable imaging modality in guiding surgical biopsies, intra-operative decision making, and therapeutic options for different otolaryngologic pathologies and premalignant disease.

  16. Optical coherence tomography of the rat cavernous nerves

    Science.gov (United States)

    Fried, Nathaniel M.; Rais-Bahrami, Soroush; Lagoda, Gwen A.; Chuang, Ying; Burnett, Arthur L.; Su, Li-Ming

    2007-02-01

    Improvements in identification, imaging, and visualization of the cavernous nerves during radical prostatectomy, which are responsible for erectile function, may improve nerve preservation and postoperative potency. Optical coherence tomography (OCT) is capable of real-time, high-resolution, cross-sectional, in vivo tissue imaging. The rat prostate serves as an excellent model for studying the use of OCT for imaging the cavernous nerves, as the rat cavernous nerve is a large, visible, and distinct bundle allowing for easy identification with OCT in addition to histologic confirmation. Imaging was performed with the Niris OCT system and a handheld 8 Fr probe, capable of acquiring real-time images with 11-μm axial and 25-μm lateral resolution in tissue. Open surgical exposure of the prostate was performed on a total of 6 male rats, and OCT images of the prostate, cavernous nerve, pelvic plexus ganglion, seminal vesicle, blood vessels, and periprostatic fat were acquired. Cavernous nerve electrical stimulation with simultaneous intracorporeal pressure measurements was performed to confirm proper identification of the cavernous nerves. The prostate and cavernous nerves were also processed for histologic analysis and further confirmation. Cross-sectional and longitudinal OCT images of the cavernous nerves were acquired and compared with histologic sections. The cavernous nerve and ganglion could be differentiated from the surrounding prostate gland, seminal vesicle, blood vessels, bladder, and fatty tissue. We report preliminary results of OCT images of the rat cavernous nerves with histologic correlation and erectile stimulation measurements, thus providing interpretation of prostate structures as they appear in OCT images.

  17. Role of Optical Coherence Tomography in Assessing Anterior Chamber Angles

    Science.gov (United States)

    Kochupurakal, Reema Thomas; Jha, Kirti Nath; Rajalakshmi, A.R.; Nagarajan, Swathi; Ezhumalai, G.

    2016-01-01

    Introduction Gonioscopy is the gold standard in assessing anterior chamber angles. However, interobserver variations are common and there is a need for reliable objective method of assessment. Aim To compare the anterior chamber angle by gonioscopy and Spectral Domain Optical Coherence Tomography (SD-OCT) in individuals with shallow anterior chamber. Materials and Methods This comparative observational study was conducted in a rural tertiary multi-speciality teaching hospital. A total of 101 eyes of 54 patients with shallow anterior chamber on slit lamp evaluation were included. Anterior chamber angle was graded by gonioscopy using the shaffer grading system. Angles were also assessed by SD-OCT with Trabecular Iris Angle (TIA) and Angle Opening Distance (AOD). Chi-square test, sensitivity, specificity, positive and negative predictive value to find correlation between OCT parameters and gonioscopy grading. Results Females represented 72.7%. The mean age was 53.93 ±8.24 years and mean anterior chamber depth was 2.47 ± 0.152 mm. Shaffer grade ≤ 2 were identified in 95(94%) superior, 42(41.5%) inferior, 65(64.3%) nasal and 57(56.4%) temporal quadrants. Cut-off values of TIA ≤ 22° and AOD ≤ 290 μm were taken as narrow angles on SD-OCT. TIA of ≤ 22° were found in 88(92.6%) nasal and 87(87%) temporal angles. AOD of ≤ 290 μm was found in 73(76.8%) nasal and 83(83%) temporal quadrants. Sensitivity in detecting narrow angles was 90.7% and 82.2% for TIA and AOD, while specificity was 11.7% and 23.4%, respectively. Conclusion Individuals were found to have narrow angles more with SD-OCT. Sensitivity was high and specificity was low in detecting narrow angles compared to gonioscopy, making it an unreliable tool for screening. PMID:27190851

  18. Spectrally encoded common-path fiber-optic-based parallel optical coherence tomography.

    Science.gov (United States)

    Lee, Kye-Sung; Hur, Hwan; Sung, Ha-Young; Kim, I Jong; Kim, Geon-Hee

    2016-09-15

    We demonstrate a fiber-optic-based parallel optical coherence tomography (OCT) using spectrally encoded extended illumination with a common-path handheld probe, where the flexibility and robustness of the system are significantly improved, which is critical in the clinical environment. To the best of our knowledge, we present the first parallel OCT based on fiber optics including a fiber coupler with a sensitivity of 94 dB, which is comparable to that of point-scanning OCT. We also investigated the effect of the phase stability of the fiber-based interferometry on the parallel OCT system by comparing the common-path OCT with two-arm OCT. Using the homemade common-path handheld probe based on a Mirau interferometer, the phase stability was 32 times better than that of the two-arm OCT. The axial resolution of the common-path OCT was measured as 5.1±0.3  μm. To demonstrate the in vivo imaging performance of the fiber-optic-based parallel OCT, human skin was imaged.

  19. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J, E-mail: z.lu@sheffield.ac.uk, E-mail: s.j.matcher@sheffield.ac.uk [Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ (United Kingdom)

    2011-02-21

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  20. Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Saarakkala, Simo; Wang Shuzhe; Huang Yanping; Zheng Yongping [Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong (China)], E-mail: simo.saarakkala@uku.fi, E-mail: ypzheng@ieee.org

    2009-11-21

    Optical coherence tomography (OCT) is a promising new technique for characterizing the structural changes of articular cartilage in osteoarthritis (OA). The calculation of quantitative parameters from the OCT signal is an important step to develop OCT as an effective diagnostic technique. In this study, two novel parameters for the quantification of optical surface reflection and surface roughness from OCT measurements are introduced: optical surface reflection coefficient (ORC), describing the amount of a ratio of the optical reflection from cartilage surface with respect to that from a reference material, and OCT roughness index (ORI) indicating the smoothness of the cartilage surface. The sensitivity of ORC and ORI to detect changes in bovine articular cartilage samples after enzymatic degradations of collagen and proteoglycans using collagenase and trypsin enzymes, respectively, was tested in vitro. A significant decrease (p < 0.001) in ORC as well as a significant increase (p < 0.001) in ORI was observed after collagenase digestion. After trypsin digestion, no significant changes in ORC or ORI were observed. To conclude, the new parameters introduced were demonstrated to be feasible and sensitive to detect typical OA-like degenerative changes in the collagen network. From the clinical point of view, the quantification of OCT measurements is of great interest since OCT probes have been already miniaturized and applied in patient studies during arthroscopy or open knee surgery in vivo. Further studies are still necessary to demonstrate the clinical capability of the introduced parameters for naturally occurring early OA changes in the cartilage.

  1. Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography

    Science.gov (United States)

    Saarakkala, Simo; Wang, Shu-Zhe; Huang, Yan-Ping; Zheng, Yong-Ping

    2009-11-01

    Optical coherence tomography (OCT) is a promising new technique for characterizing the structural changes of articular cartilage in osteoarthritis (OA). The calculation of quantitative parameters from the OCT signal is an important step to develop OCT as an effective diagnostic technique. In this study, two novel parameters for the quantification of optical surface reflection and surface roughness from OCT measurements are introduced: optical surface reflection coefficient (ORC), describing the amount of a ratio of the optical reflection from cartilage surface with respect to that from a reference material, and OCT roughness index (ORI) indicating the smoothness of the cartilage surface. The sensitivity of ORC and ORI to detect changes in bovine articular cartilage samples after enzymatic degradations of collagen and proteoglycans using collagenase and trypsin enzymes, respectively, was tested in vitro. A significant decrease (p < 0.001) in ORC as well as a significant increase (p < 0.001) in ORI was observed after collagenase digestion. After trypsin digestion, no significant changes in ORC or ORI were observed. To conclude, the new parameters introduced were demonstrated to be feasible and sensitive to detect typical OA-like degenerative changes in the collagen network. From the clinical point of view, the quantification of OCT measurements is of great interest since OCT probes have been already miniaturized and applied in patient studies during arthroscopy or open knee surgery in vivo. Further studies are still necessary to demonstrate the clinical capability of the introduced parameters for naturally occurring early OA changes in the cartilage.

  2. Imaging patients with glaucoma using spectral-domain optical coherence tomography and optical microangiography

    Science.gov (United States)

    Auyeung, Kris; Auyeung, Kelsey; Kono, Rei; Chen, Chieh-Li; Zhang, Qinqin; Wang, Ruikang K.

    2015-03-01

    In ophthalmology, a reliable means of diagnosing glaucoma in its early stages is still an open issue. Past efforts, including forays into fluorescent angiography (FA) and early optical coherence tomography (OCT) systems, to develop a potential biomarker for the disease have been explored. However, this development has been hindered by the inability of the current techniques to provide useful depth and microvasculature information of the optic nerve head (ONH), which have been debated as possible hallmarks of glaucoma progression. We reasoned that a system incorporating a spectral-domain OCT (SD-OCT) based Optical Microangiography (OMAG) system, could allow an effective, non-invasive methodology to evaluate effects on microvasculature by glaucoma. SD-OCT follows the principle of light reflection and interference to produce detailed cross-sectional and 3D images of the eye. OMAG produces imaging contrasts via endogenous light scattering from moving particles, allowing for 3D image productions of dynamic blood perfusion at capillary-level resolution. The purpose of this study was to investigate the optic cup perfusion (flow) differences in glaucomatous and normal eyes. Images from three normal and five glaucomatous subjects were analyzed our OCT based OMAG system for blood perfusion and structural images, allowing for comparisons. Preliminary results from blood flow analysis revealed reduced blood perfusion within the whole-depth region encompassing the Lamina Cribrosa in glaucomatous cases as compared to normal ones. We conclude that our OCT-OMAG system may provide promise and viability for glaucoma screening.

  3. Multispectral Cerenkov luminescence tomography for small animal optical imaging.

    Science.gov (United States)

    Spinelli, Antonello E; Kuo, Chaincy; Rice, Brad W; Calandrino, Riccardo; Marzola, Pasquina; Sbarbati, Andrea; Boschi, Federico

    2011-06-20

    Quite recently Cerenkov luminescence imaging (CLI) has been introduced as a novel pre-clinical imaging for the in vivo imaging of small animals such as mice. The CLI method is based on the detection of Cerenkov radiation (CR) generated by beta particles as they travel into the animal tissues with an energy such that Cerenkov emission condition is satisfied. This paper describes an image reconstruction method called multi spectral diffuse Cerenkov luminescence tomography (msCLT) in order to obtain 3D images from the detection of CR. The multispectral approach is based on a set of 2D planar images acquired using a number of narrow bandpass filters, and the distinctive information content at each wavelength is used in the 3D image reconstruction process. The proposed msCLT method was tested both in vitro and in vivo using 32P-ATP and all the images were acquired by using the IVIS 200 small animal optical imager (Caliper Life Sciences, Alameda USA). Source depth estimation and spatial resolution measurements were performed using a small capillary source placed between several slices of chicken breast. The theoretical Cerenkov emission spectrum and optical properties of chicken breast were used in the modelling of photon propagation. In vivo imaging was performed by injecting control nude mice with 10 MBq of 32P-ATP and the 3D tracer bio-distribution was reconstructed. Whole body MRI was acquired to provide an anatomical localization of the Cerenkov emission. The spatial resolution obtained from the msCLT reconstructed images of the capillary source showed that the FWHM is about 1.5 mm for a 6 mm depth. Co-registered MRI images showed that the Cerenkov emission regions matches fairly well with anatomical regions, such as the brain, heart and abdomen. Ex vivo imaging of the different organs such as intestine, brain, heart and ribs further confirms these findings. We conclude that in vivo 3D bio-distribution of a pure beta-minus emitting radiopharmaceutical such as 32P

  4. Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components

    OpenAIRE

    Park, B. H.; Pierce, M. C.; Cense, B.; De Boer, MR

    2004-01-01

    We present an analysis for polarization-sensitive optical coherence tomography that facilitates the unrestricted use of fiber and fiber-optic components throughout an interferometer and yields sample birefringence, diattenuation, and relative optic axis orientation. We use a novel Jones matrix approach that compares the polarization states of light reflected from the sample surface with those reflected from within a biological sample for pairs of depth scans. The incident polarization alterna...

  5. Development and Application of Multifunctional Optical Coherence Tomography

    Science.gov (United States)

    Zhi, Zhongwei

    Microcirculation refers to the functions of capillaries and the neighboring lymphatic vessels. It plays a vital role in the pathophysiology of disorders in many clinical areas including cardiology, dermatology, neurology and ophthalmology, and so forth. It is crucial to develop imaging technologies that can provide both qualitative and quantitative information as to how microcirculation responds to certain injury and/or disease, and its treatment. Optical coherence tomography (OCT) is a non-invasive optical imaging technique for high-resolution cross-sectional imaging of specimens, with many applications in clinical medicine. Current state-of-the-art OCT systems operate in the Fourier domain, using either a broadband light source with a spectrometer, known as spectral domain OCT (SDOCT), or a rapidly tunable laser, known as swept source OCT (SSOCT). The current Fourier domain OCT systems have dramatically improvement in sensitivity, resolution and speed compared to time domain OCT. In addition to the improvement in the OCT system hardware, different methods for functional measurements of tissue beds have been developed and demonstrated. This includes but not limited to, i) Phase-resolved Doppler OCT for quantifying the blood flow, ii) OCT angiography for visualization of microvasculature, iii) Polarization sensitive OCT for measuring the intrinsic optical property/ birefringence of tissue, iv) spectroscopic OCT for measuring blood oxygenation, etc. Functional OCT can provide important clinical information that is not available in the typical intensity based structural OCT images. Among these functional OCT modalities, Doppler OCT and OCT angiography attract great interests as they show high capability for in vivo study of microvascular pathology. By analyzing the Doppler effect of a flowing particle on light frequency, Doppler OCT allows the quantification of the blood flow speed and blood flow rate. The most popular approach for Doppler OCT is achieved through

  6. Evaluation of a cheap ultrasonic stage for light source coherence function measurement, optical coherence tomography and dynamic focusing

    NARCIS (Netherlands)

    Krstajic, Nikola; Matcher, Stephen J.; Childs, David; Steenbergen, Wiendelt; Hogg, Richard; Smallwood, Rod

    2009-01-01

    We evaluate the performance of a cheap ultrasonic stage in setups related to optical coherence tomography. The stage was used in several configurations: (1) optical delay line in an optical coherence tomography (OCT) setup; (2) as a delay line measuring coherence function of a low coherence source (

  7. Numerical analysis of astigmatism correction in gradient refractive index lens based optical coherence tomography catheters

    NARCIS (Netherlands)

    T. Wang (Teng); A.F.W. van der Steen (Ton); G. van Soest (Gijs)

    2012-01-01

    textabstractEndoscopic optical coherence tomography (OCT) catheters comprise a transparent tube to separate the imaging instrument from tissues. This tube acts as a cylindrical lens, introducing astigmatism into the beam. In this report, we quantified this negative effect using optical simulations o

  8. Edge-promoting reconstruction of absorption and diffusivity in optical tomography

    DEFF Research Database (Denmark)

    Hannukainen, A.; Harhanen, Lauri Oskari; Hyvönen, N.;

    2015-01-01

    In optical tomography a physical body is illuminated with near-infrared light and the resulting outward photon flux is measured at the object boundary. The goal is to reconstruct internal optical properties of the body, such as absorption and diffusivity. In this work, it is assumed that the imaged...

  9. Time-frequency analysis in optical coherence tomography for technical objects examination

    Science.gov (United States)

    StrÄ kowski, Marcin R.; Kraszewski, Maciej; Trojanowski, Michał; Pluciński, Jerzy

    2014-05-01

    Optical coherence tomography (OCT) is one of the most advanced optical measurement techniques for complex structure visualization. The advantages of OCT have been used for surface and subsurface defect detection in composite materials, polymers, ceramics, non-metallic protective coatings, and many more. Our research activity has been focused on timefrequency spectroscopic analysis in OCT. It is based on time resolved spectral analysis of the backscattered optical signal delivered by the OCT. The time-frequency method gives spectral characteristic of optical radiation backscattered or backreflected from the particular points inside the tested device. This provides more information about the sample, which are useful for further analysis. Nowadays, the applications of spectroscopic analysis for composite layers characterization or tissue recognition have been reported. During our studies we have found new applications of spectroscopic analysis. We have used this method for thickness estimation of thin films, which are under the resolution of OCT. Also, we have combined the spectroscopic analysis with polarization sensitive OCT (PS-OCT). This approach enables to obtain a multiorder retardation value directly and may become a breakthrough in PS-OCT measurements of highly birefringent media. In this work, we present the time-frequency spectroscopic algorithms and their applications for OCT. Also, the theoretical simulations and measurement validation of this method are shown.

  10. Evaluation of a cheap ultrasonic stage for light source coherence function measurement, optical coherence tomography, optical coherence microscopy, and dynamic focusing

    NARCIS (Netherlands)

    Krstajic, Nikola; Matcher, Stephen J.; Childs, David; Hogg, Richard; Smallwood, Rod; Steenbergen, Wiendelt; Andersen, Peter E.; Bouma, Brett E.

    2009-01-01

    We evaluate the performance of a cheap ultrasonic stage in setups related to optical coherence tomography. The stage was used in several configurations: 1) optical delay line in optical coherence tomography (OCT) setup; 2) as a delay line measuring coherence function of a low coherence source (e.g.

  11. Active Faraday optical frequency standard.

    Science.gov (United States)

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  12. Agreement of angle closure assessments between gonioscopy, anterior segment optical coherence tomography and spectral domain optical coherence tomography

    Institute of Scientific and Technical Information of China (English)

    Elton; Lik; Tong; Tay; Vernon; Khet; Yau; Yong; Boon; Ang; Lim; Stelson; Sia; Elizabeth; Poh; Ying; Wong; Leonard; Wei; Leon; Yip

    2015-01-01

    AIM: To determine angle closure agreements between gonioscopy and anterior segment optical coherence tomography(AS-OCT), as well as gonioscopy and spectral domain OCT(SD-OCT). A secondary objective was to quantify inter-observer agreements of AS-OCT and SD-OCT assessments.METHODS: Seventeen consecutive subjects(33 eyes)were recruited from the study hospital’s Glaucoma clinic.Gonioscopy was performed by a glaucomatologist masked to OCT results. OCT images were read independently by 2 other glaucomatologists masked to gonioscopy findings as well as each other’s analyses of OCT images.RESULTS: Totally 84.8% and 45.5% of scleral spurs were visualized in AS-OCT and SD-OCT images respectively(P <0.01). The agreement for angle closure between AS-OCT and gonioscopy was fair at k =0.31(95% confidence interval, CI: 0.03-0.59) and k =0.35(95%CI: 0.07-0.63) for reader 1 and 2 respectively. The agreement for angle closure between SD-OCT and gonioscopy was fair at k =0.21(95% CI: 0.07-0.49) and slight at k =0.17(95% CI: 0.08-0.42) for reader 1 and 2 respectively. The inter-reader agreement for angle closure in AS-OCT images was moderate at 0.51(95% CI: 0.13-0.88). The inter-reader agreement for angle closure in SD-OCT images was slight at 0.18(95% CI: 0.08-0.45).CONCLUSION: Significant proportion of scleral spurs were not visualised with SD-OCT imaging resulting in weaker inter-reader agreements. Identifying other angle landmarks in SD-OCT images will allow more consistent angle closure assessments. Gonioscopy and OCT imaging do not always agree in angle closure assessments but have their own advantages, and should be used together and not exclusively.

  13. Optically Active Organic Microrings

    DEFF Research Database (Denmark)

    Balzer, Frank; Beermann, J.; Bozhevolnyi, S.I.

    2003-01-01

    -hexaphenyl molecules are generated on mica surfaces, possessing narrow size distributions with mean diameters of a few micrometers, wall widths of 100 to 200 nm, and wall heights of several hundred nanometers. Polarized linear and nonlinear optics reveals that the rings are made up of radially...

  14. Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue

    Science.gov (United States)

    Yang, Yi; Wang, Tianheng; Biswal, Nrusingh C.; Wang, Xiaohong; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2011-09-01

    Optical scattering coefficient from ex vivo unfixed normal and malignant ovarian tissue was quantitatively extracted by fitting optical coherence tomography (OCT) A-line signals to a single scattering model. 1097 average A-line measurements at a wavelength of 1310 nm were performed at 108 sites obtained from 18 ovaries. The average scattering coefficient obtained from the normal tissue group consisted of 833 measurements from 88 sites was 2.41 mm-1 (+/-0.59), while the average coefficient obtained from the malignant tissue group consisted of 264 measurements from 20 sites was 1.55 mm-1 (+/-0.46). The malignant ovarian tissue showed significant lower scattering than the normal group (p collagen within OCT imaging depth was analyzed from the tissue histological section stained with Sirius Red. The average collagen area fraction (CAF) obtained from the normal tissue group was 48.4% (+/-12.3%), while the average CAF obtained from the malignant tissue group was 11.4% (+/-4.7%). A statistical significance of the collagen content was found between the two groups (p < 0.001). These results demonstrated that quantitative measurements of optical scattering coefficient from OCT images could be a potential powerful method for ovarian cancer detection.

  15. Repeatability and reproducibility of optic nerve head perfusion measurements using optical coherence tomography angiography

    Science.gov (United States)

    Chen, Chieh-Li; Bojikian, Karine D.; Xin, Chen; Wen, Joanne C.; Gupta, Divakar; Zhang, Qinqin; Mudumbai, Raghu C.; Johnstone, Murray A.; Chen, Philip P.; Wang, Ruikang K.

    2016-06-01

    Optical coherence tomography angiography (OCTA) has increasingly become a clinically useful technique in ophthalmic imaging. We evaluate the repeatability and reproducibility of blood perfusion in the optic nerve head (ONH) measured using optical microangiography (OMAG)-based OCTA. Ten eyes from 10 healthy volunteers are recruited and scanned three times with a 68-kHz Cirrus HD-OCT 5000-based OMAG prototype system (Carl Zeiss Meditec Inc., Dublin, California) centered at the ONH involving two separate visits within six weeks. Vascular images are generated with OMAG processing by detecting the differences in OCT signals between consecutive B-scans acquired at the same retina location. ONH perfusion is quantified as flux, vessel area density, and normalized flux within the ONH for the prelaminar, lamina cribrosa, and the full ONH. Coefficient of variation (CV) and intraclass correlation coefficient (ICC) are used to evaluate intravisit and intervisit repeatability, and interobserver reproducibility. ONH perfusion measurements show high repeatability [CV≤3.7% (intravisit) and ≤5.2% (intervisit)] and interobserver reproducibility (ICC≤0.966) in all three layers by three metrics. OCTA provides a noninvasive method to visualize and quantify ONH perfusion in human eyes with excellent repeatability and reproducibility, which may add additional insight into ONH perfusion in clinical practice.

  16. Optical imaging of oral pathological tissue using optical coherence tomography and synchrotron radiation computed microtomography

    Science.gov (United States)

    Cânjǎu, Silvana; Todea, Carmen; Sinescu, Cosmin; Negrutiu, Meda L.; Duma, Virgil; Mǎnescu, Adrian; Topalǎ, Florin I.; Podoleanu, Adrian Gh.

    2013-06-01

    The efforts aimed at early diagnosis of oral cancer should be prioritized towards developing a new screening instrument, based on optical coherence tomography (OCT), to be used directly intraorally, able to perform a fast, real time, 3D and non-invasive diagnosis of oral malignancies. The first step in this direction would be to optimize the OCT image interpretation of oral tissues. Therefore we propose plastination as a tissue preparation method that better preserves three-dimensional structure for study by new optical imaging techniques. The OCT and the synchrotron radiation computed microtomography (micro-CT) were employed for tissue sample analyze. For validating the OCT results we used the gold standard diagnostic procedure for any suspicious lesion - histopathology. This is a preliminary study of comparing features provided by OCT and Micro-CT. In the conditions of the present study, OCT proves to be a highly promising imaging modality. The use of x-ray based topographic imaging of small biological samples has been limited by the low intrinsic x-ray absorption of non-mineralized tissue and the lack of established contrast agents. Plastination can be used to enhance optical imagies of oral soft tissue samples.

  17. Differentiating Mild Papilledema and Buried Optic Nerve Head Drusen Using Spectral Domain Optical Coherence Tomography

    Science.gov (United States)

    Kulkarni, Kaushal M.; Pasol, Joshua; Rosa, Potyra R.; Lam, Byron L.

    2013-01-01

    Purpose To evaluate the clinical utility of spectral domain optical coherence tomography (SD-OCT) in differentiating mild papilledema from buried optic nerve head drusen (ONHD). Design Comparative case series. Participants 16 eyes of 9 patients with ultrasound-proven buried ONHD, 12 eyes of 6 patients with less than or equal to Frisén grade 2 papilledema due to idiopathic intracranial hypertension. 2 normal fellow eyes of patients with buried ONHD were included. Methods A raster scan on the optic nerve and retinal nerve fiber layer (RNFL) thickness analysis was performed on each eye using SD-OCT. Eight eyes underwent enhanced depth imaging SD-OCT. Images were assessed qualitatively and quantitatively to identify differentiating features between buried ONHD and papilledema. Five clinicians trained with a tutorial and masked to the underlying diagnosis reviewed the SD-OCT images of each eye independently to determine the diagnosis. Main outcome measures Differences in RNFL thickness in each quadrant between the two groups, and diagnostic accuracy of five independent clinicians based on the SD-OCT images alone. Results We found no statistically significant difference in RNFL thickness between buried ONHD and papilledema in any of the four quadrants. Diagnostic accuracy among the readers was low and ranged from 50–64%. The kappa coefficient of agreement among the readers was 0.35 (95% Confidence interval: 0.19, 0.54). Conclusions SD-OCT is not clinically reliable in differentiating buried ONHD and mild papilledema. PMID:24321144

  18. Study of optical properties and proteoglycan content of tendons by polarization sensitive optical coherence tomography

    Science.gov (United States)

    Yang, Ying; Rupani, Asha; Bagnaninchi, Pierre; Wimpenny, Ian; Weightman, Alan

    2012-08-01

    The highly orientated collagen fibers in tendons play a critical role for transferring tensile stress, and they demonstrate birefringent optical properties. However, the influence that proteoglycans (PGs) have on the optical properties of tendons is yet to be fully elucidated. PGs are the essential components of the tendon extracellular matrix; the changes in their quantities and compositions have been associated with tendinopathies. In this study, polarization sensitive optical coherence tomography (PS-OCT) has been used to reveal the relationship between PG content/location and birefringence properties of tendons. Fresh chicken tendons were imaged at regular intervals by PS-OCT and polarization light microscopy during the extraction of PGs, using guanidine hydrochloride (GuHCl). Complementary time-lapsed images taken from the two modalities mutually demonstrated that the extraction of PGs disturbed the local organization of collagen bundles. This corresponded with a decrease in birefringence and associated banding pattern observed by PS-OCT. Furthermore, this study revealed there was a higher concentration of PGs in the outer sheath region than in the fascicles, and therefore the change in birefringence was reduced when extraction was performed on unsheathed tendons. The results provide new insights of tendon structure and the role of PGs on the structural stability of tendons, which also demonstrates the great potential for using PS-OCT as a diagnostic tool to examine tendon pathology.

  19. Optimisation of post mortem cardiac computed tomography compared to optical coherence tomography and histopathology - Technical note

    DEFF Research Database (Denmark)

    Precht, Helle; Leth, Peter Mygind; Thygesen, Jesper

    2014-01-01

    Introduction: Coronary atherosclerosis is a leading cause of mortality. New technological developments in computed tomography (CT), including dual energy, iterative reconstructions and high definition scanning, could significantly improve the non-invasive identification of atherosclerosis plaques...

  20. 3D Human cartilage surface characterization by optical coherence tomography

    Science.gov (United States)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  1. Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke: e71478

    National Research Council Canada - National Science Library

    Vivek J Srinivasan; Emiri T Mandeville; Anil Can; Francesco Blasi; Mihail Climov; Ali Daneshmand; Jeong Hyun Lee; Esther Yu; Harsha Radhakrishnan; Eng H Lo; Sava Sakadzic; Katharina Eikermann-Haerter; Cenk Ayata

    2013-01-01

    .... A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described...

  2. Optical coherence tomography: technology and applications (biological and medical physics, biomedical engineering)

    CERN Document Server

    2013-01-01

    Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is emerging as a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue. This book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from biomedical and clinical perspectives. The chapters are written by leading research groups, in a style comprehensible to a broad audience.

  3. Structural examination of easel paintings with optical coherence tomography.

    Science.gov (United States)

    Targowski, Piotr; Iwanicka, Magdalena; Tymińska-Widmer, Ludmiła; Sylwestrzak, Marcin; Kwiatkowska, Ewa A

    2010-06-15

    Identification of the order, thickness, composition, and possibly the origin of the paint layers forming the structure of a painting, that is, its stratigraphy, is important in confirming its attribution and history as well as planning conservation treatments. The most common method of examination is analysis of a sample collected from the art object, both visually with a microscope and instrumentally through a variety of sophisticated, modern analytical tools. Because of its invasiveness, however, sampling is less than ideally compatible with conservation ethics; it is severely restricted with respect to the amount of material extirpated from the artwork. Sampling is also rather limited in that it provides only very local information. There is, therefore, a great need for a noninvasive method with sufficient in-depth resolution for resolving the stratigraphy of works of art. Optical coherence tomography (OCT) is a noninvasive, noncontact method of optical sectioning of partially transparent objects, with micrometer-level axial resolution. The method utilizes near-infrared light of low intensity (a few milliwatts) to obtain cross-sectional images of various objects; it has been mostly used in medical diagnostics. Through the serial collection of many such images, volume information may be extracted. The application of OCT to the examination of art objects has been in development since 2003. In this Account, we present a short introduction to the technique, briefly discuss the apparatus we use, and provide a paradigm for reading OCT tomograms. Unlike the majority of papers published previously, this Account focuses on one, very specific, use of OCT. We then consider two examples of successful, practical application of the technique. At the request of a conservation studio, the characteristics of inscriptions on two oil paintings, originating from the 18th and 19th centuries, were analyzed. In the first case, it was possible to resolve some questions concerning the

  4. Optical Design and Active Optics Methods in Astronomy

    CERN Document Server

    Lemaitre, Gerard R

    2013-01-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis. Keywords: active optics, optical design, elasticity theory, astronomical optics, diffractive optics, X-ray optics

  5. Optic nerve head analysis of superior segmental optic hypoplasia using Heidelberg retina tomography

    Directory of Open Access Journals (Sweden)

    Atsushi Miki

    2010-10-01

    , especially in the nasal superior sector. Approximately half of the eyes with SSOH were classified as abnormal using indices developed for detecting glaucoma, but the sectorial analysis revealed that the affected sectors were different from those of glaucoma. Optic nerve head measurements using the HRT may be useful in evaluating the optic disc characteristics in eyes with SSOH.Keywords: superior segmental optic hypoplasia, Heidelberg retina tomography

  6. Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing

    Science.gov (United States)

    Sakhalkar, H. S.; Dewhirst, M.; Oliver, T.; Cao, Y.; Oldham, M.

    2007-04-01

    Optical emission computed tomography (optical-ECT) is a technique for imaging the three-dimensional (3D) distribution of fluorescent probes in biological tissue specimens with high contrast and spatial resolution. In optical-ECT, functional information can be imaged by (i) systemic application of functional labels (e.g. fluorophore labelled proteins) and/or (ii) endogenous expression of fluorescent reporter proteins (e.g. red fluorescent protein (RFP), green fluorescent protein (GFP)) in vivo. An essential prerequisite for optical-ECT is optical clearing, a procedure where tissue specimens are made transparent to light by sequential perfusion with fixing, dehydrating and clearing agents. In this study, we investigate clearing protocols involving a selection of common fixing (4% buffered paraformaldehyde (PFA), methanol and ethanol), dehydrating (methanol and ethanol) and clearing agents (methyl salicylate and benzyl-alcohol-benzyl-benzoate (BABB)) in order to determine a 'fluorescence friendly' clearing procedure. Cell culture experiments were employed to optimize the sequence of chemical treatments that best preserve fluorescence. Texas red (TxRed), fluorescein isothiocyanate (FITC), RFP and GFP were tested as fluorophores and fluorescent reporter proteins of interest. Fluorescent and control cells were imaged on a microscope using a DSred2 and FITC filter set. The most promising clearing protocols of cell culture experiments were applied to whole xenograft tumour specimens, to test their effectiveness in large unsectioned samples. Fluorescence of TxRed/FITC fluorophores was not found to be significantly affected by any of the test clearing protocols. RFP and GFP fluorescence, however, was found to be significantly greater when cell fixation was in ethanol. Fixation in either PFA or methanol resulted in diminished fluorescence. After ethanol fixation, the RFP and GFP fluorescence proved remarkably robust to subsequent exposure to either methyl salicylate or BABB

  7. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    Science.gov (United States)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  8. Anterior segment optical coherence tomography in the assessment of postoperative intraocular lens optic changes.

    Science.gov (United States)

    Werner, Liliana; Michelson, Jennifer; Ollerton, Andrew; Leishman, Lisa; Bodnar, Zachary

    2012-06-01

    To evaluate the use of anterior segment optical coherence tomography (AS-OCT) to assess postoperative intraocular lens (IOL) optic changes. John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. Experimental study. Intraocular lenses explanted because of various complications were used, including poly(methyl methacrylate) (PMMA) IOLs with snowflake degeneration, hydrophilic acrylic IOLs with calcification, a silicone IOL with calcification from an eye with asteroid hyalosis, and hydrophobic acrylic IOLs explanted because of decentration, subluxation, or uveitis-glaucoma-hyphema syndrome. After gross and light microscopy, the IOLs were examined in the dry and hydrated states using AS-OCT. Selected hydrophilic acrylic IOLs were stained for calcium. In-the-bag IOLs in pseudophakic cadaver eyes were also evaluated by AS-OCT before and after explantation to confirm correspondence with the clinical situation. Intraoptic changes, such as snowflake lesions in PMMA IOLs, calcification in hydrophilic acrylic IOLs, and glistenings in hydrophobic acrylic IOLs, could be imaged by AS-OCT. The method was also helpful in analyzing the location and density. However, in cases of more superficial changes, unless the lesions/deposits were present on the optic surface with an extension to the optic substance of at least 0.1 mm, they could not be clearly differentiated from the overall outline of the IOL surface. Anterior segment OCT may be helpful in assessing the presence, location, and density of intraoptic changes, avoiding a misdiagnosis of IOL opacification and the performance of unnecessary procedures, such as posterior capsulotomy or vitrectomy. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Muon tomography applied to active volcanoes

    CERN Document Server

    Marteau, Jacques; Gibert, Dominique; Ianigro, Jean-Christophe; Jourde, Kevin; Kergosien, Bruno; Rolland, Pascal

    2015-01-01

    Muon tomography is a generic imaging method using the differential absorption of cosmic muons by matter. The measured contrast in the muons flux reflects the matter density contrast as it does in conventional medical imaging. The applications to volcanology present may advantadges induced by the features of the target itself: limited access to dangerous zones, impossible use of standard boreholes information, harsh environmental conditions etc. The Diaphane project is one of the largest and leading collaboration in the field and the present article summarizes recent results collected on the Lesser Antilles, with a special emphasis on the Soufri\\`ere of Guadeloupe.

  10. Dynamic cure measurement of dental polymer composites using optical coherence tomography

    Science.gov (United States)

    Tomlins, Peter H.; Palin, Will M.; Shortall, Adrian C.

    2008-02-01

    Dental amalgam is being increasingly replaced by Light-activated resin-based dental composites. However, these materials are limited by inefficient setting reactions as a function of depth, constraining the maximum extent of cure and reducing biocompatibility. In this paper we demonstrate a novel metrological tool for dynamic monitoring of refractive index and thickness change through curing resins using spectral-domain optical coherence tomography. We present real-time measurements from pre- to post-cure of a series of un-filled bisphenol-A diglycidyl ether dimethacrylate (bisGMA) and triethylene glycol dimethacrylate (TEGDMA) resins with different inhibitor concentrations. Our results demonstrate that refractive index measurements are sensitive to the extent of cure of such resins and that the inhibitor concentration strongly affects the cure dynamics and final extent of cure.

  11. Real-time surface tracking system using common-path spectral domain optical coherence tomography

    Science.gov (United States)

    Kim, Keo-Sik; Park, Hyoung-Jun; Kang, Hyun Seo; Kang, Jin U.; Song, Chul-Gyu

    2012-11-01

    An enhanced surface tracking system based on optical coherence tomography (OCT) modality has been developed and tested for use in a surgical guidance system. A surface detection algorithm based on a Savitzky-Golay filter of A-scan data and thresholding was applied to real-time depth tracking. The algorithm output controlled a motorized stage to adjust the probe position according to the sample's topological variance in real-time. As a result, the root mean square error (RMSE: 4.2 μm) of our algorithm was relatively lower than the conventional method (RMSE: 16.6 μm). Also, OCT images obtained using the algorithm showed a significantly extended imaging range and active surface tracking in real time. Consequently, the devised method demonstrated potential for use in systems for guiding surgical robots and endoscopic OCT.

  12. Geometric deformable model driven by CoCRFs: application to optical coherence tomography.

    Science.gov (United States)

    Tsechpenakis, Gabriel; Lujan, Brandon; Martinez, Oscar; Gregori, Giovanni; Rosenfeld, Philip J

    2008-01-01

    We present a geometric deformable model driven by dynamically updated probability fields. The shape is defined with the signed distance function, and the internal (smoothness) energy consists of a C1 continuity constraint, a shape prior, and a term that forces the zero-level of the shape distance function towards a connected form. The image probability fields are estimated by our collaborative Conditional Random Field (CoCRF), which is updated during the evolution in an active learning manner: it infers class posteriors in pixels or regions with feature ambiguities by assessing the joint appearance of neighboring sites and using the classification confidence. We apply our method to Optical Coherence Tomography fundus images for the segmentation of geographic atrophies in dry age-related macular degeneration of the human eye.

  13. Automated recovery of the center of rotation in optical projection tomography in the presence of scattering.

    Science.gov (United States)

    Dong, Di; Zhu, Shouping; Qin, Chenghu; Kumar, V; Stein, J V; Oehler, S; Savakis, C; Tian, Jie; Ripoll, J

    2013-01-01

    Finding the center of rotation is an essential step for accurate three-dimensional reconstruction in optical projection tomography (OPT). Unfortunately current methods are not convenient since they require either prior scanning of a reference phantom, small structures of high intensity existing in the specimen, or active participation during the centering procedure. To solve these problems this paper proposes a fast and automatic center of rotation search method making use of parallel programming in graphics processing units (GPUs). Our method is based on a two step search approach making use only of those sections of the image with high signal to noise ratio. We have tested this method both in non-scattering ex vivo samples and in in vivo specimens with a considerable contribution of scattering such as Drosophila melanogaster pupae, recovering in all cases the center of rotation with a precision 1/4 pixel or less.

  14. Optical probe design with extended depth-of-focus for optical coherence microscopy and optical coherence tomography

    Science.gov (United States)

    Lee, Seungwan; Choi, Minseog; Lee, Eunsung; Jung, Kyu-Dong; Chang, Jong-hyeon; Kim, Woonbae

    2013-03-01

    In this report, Optical probe system for modality, optical coherence tomography (OCT) and optical coherence microscope (OCM), is presented. In order to control the back focal length from 2.2 mm to 27 mm, optical probe is designed using two liquid lenses and several lenses. The narrow depth of focus (DOF) in microscope is extended by phase filter such as cubic filter. The filter is modified so that DOF is extended only In the OCM mode. The section for the extended DOF of probe is controlled by iris. Therefore in OCT mode, the phase filter does not affect on the DOF of lens. In OCM mode, the Gaussian light and modified light will affect the DOF. The probe dimension is less than 4 mm diameter and less than 60 mm long. The scan range of system is 0.88 mm wide, 1 mm deep in the OCT and 510 μm wide, 1 mm deep in the OCM mode. The lens curvature and iris aperture are operated by digital microelectrofluidic lens and iris.

  15. Current and future potential of retinal optical coherence tomography in multiple sclerosis with and without optic neuritis.

    Science.gov (United States)

    Balk, Lisanne J; Petzold, Axel

    2014-01-01

    Multiple sclerosis (MS) is a disorder characterized by inflammation and neuroaxonal degeneration. The latter is held responsible for the irreversible disability in patients with MS. The eye is a unique window into the brain. With the advent of optical coherence tomography, accurate quantification of retinal layer thickness has become feasible. Neuroaxonal degeneration affecting the retinal layers is structurally and functionally related to pathology in the visual pathways, which is most severe following MS optic neuritis. This is relevant to recognize because MS optic neuritis may mask the subtle thinning of retinal layers associated with global CNS atrophy, which is also related to more global loss of neurological function. Taken together, optical coherence tomography stands at the brink of becoming a validated imaging biomarker for monitoring neurodegeneration in MS and to provide end points for clinical trials.

  16. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    Science.gov (United States)

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  17. The employment of optic coherence tomography in the diagnosis of papilledema

    Directory of Open Access Journals (Sweden)

    Yaney González Yglesias

    2009-11-01

    Full Text Available Background: The optic coherence tomography constitute one of the most revolucionary tool in the ophtalmic diagnosis in the latest years, and is very useful in the papilledema studies. Objectives: Evaluate the optic coherence tomography useful in papilledema diagnosis. Methods: Prospective, observacional and analytic study made since may to october 2007 in the neuroophtalmology deparment, Ophtalmology Cuban Institute “ Ramón Pando ferrer”. Were studied 27 patients that presented a typical papilledema in the first episode at least with 2 months of duration. Results: The female sex was predominant with 27 of medium age. The medium thickness values of nervous fiber layer were stadistic important betwen the sectors (p=0.000. The nervous fiber layer thickness was predominant in order to frequency in lower, upper, nasal and temporal sectors. Conclusions: The optic coherence tomography constitute an useful instrument to papilledema diagnosis.

  18. Imaging actinic keratosis by high-definition optical coherence tomography. Histomorphologic correlation

    DEFF Research Database (Denmark)

    Boone, Marc A L M; Norrenberg, Sarah; Jemec, Gregor B E;

    2013-01-01

    transversal and axial directions, enable to visualize individual cells up to a depth of around 570 μm filling the imaging gap between conventional optical coherence tomography and reflectance confocal microscopy. We sought to determine the feasibility of detecting and grading of actinic keratosis...... by this technique using criteria defined for reflectance confocal microscopy compared to histology. In this pilot study, skin lesions of 17 patients with a histologically proven actinic keratosis were imaged by high-definition optical coherence tomography just before excision and images analysed qualitatively...... of photodamage. Using features already suggested by reflectance confocal microscopy, the study implies that high-definition optical coherence tomography facilitates in vivo diagnosis of actinic keratosis and allows the grading of different actinic keratosis lesions for increased clinical utility....

  19. Simulation of broad spectral bandwidth emitters at 1060 nm for optical coherence tomography

    Science.gov (United States)

    Tooley, I. G.; Childs, D. T. D.; Stevens, B. J.; Groom, K. M.; Hogg, R. A.

    2016-03-01

    The simulation of broad spectral bandwidth light sources (semiconductor optical amplifiers (SOA) and superluminescent diodes (SLD)) for application in ophthalmic optical coherence tomography is reported. The device requirements and origin of key device parameters are outlined, and a range of single and double InGaAs/GaAs quantum well (QW) active elements are simulated with a view to application in different OCT embodiments. We confirm that utilising higher order optical transitions is beneficial for single QW SOAs, but may introduce deleterious spectral modulation in SLDs. We show how an addition QW may be introduced to eliminate this spectral modulation, but that this results in a reduction of the gain spectrum width. We go on to explore double QW structures where the roles of the two QWs are reversed, with the narrow QW providing long wavelength emission and gain. We show how this modification in the density of states results in a significant increase in gain-spectrum width for a given current.

  20. Time-Gated Optical Projection Tomography Allows Visualization of Adult Zebrafish Internal Structures

    Science.gov (United States)

    Foglia, Efrem Alessandro; Pistocchi, Anna; D'Andrea, Cosimo; Valentini, Gianluca; Cubeddu, Rinaldo; De Silvestri, Sandro; Cerullo, Giulio; Cotelli, Franco

    2012-01-01

    Optical imaging through biological samples is compromised by tissue scattering and currently various approaches aim to overcome this limitation. In this paper we demonstrate that an all optical technique, based on non-linear upconversion of infrared ultrashort laser pulses and on multiple view acquisition, allows the reduction of scattering effects in tomographic imaging. This technique, namely Time-Gated Optical Projection Tomography (TGOPT), is used to reconstruct three dimensionally the internal structure of adult zebrafish without staining or clearing agents. This method extends the use of Optical Projection Tomography to optically diffusive samples yielding reconstructions with reduced artifacts, increased contrast and improved resolution with respect to those obtained with non-gated techniques. The paper shows that TGOPT is particularly suited for imaging the skeletal system and nervous structures of adult zebrafish. PMID:23185643

  1. Integrated optical coherence tomography and optical coherence microscopy imaging of human pathology

    Science.gov (United States)

    Lee, Hsiang-Chieh; Zhou, Chao; Wang, Yihong; Aquirre, Aaron D.; Tsai, Tsung-Han; Cohen, David W.; Connolly, James L.; Fujimoto, James G.

    2010-02-01

    Excisional biopsy is the current gold standard for disease diagnosis; however, it requires a relatively long processing time and it may also suffer from unacceptable false negative rates due to sampling errors. Optical coherence tomography (OCT) is a promising imaging technique that provide real-time, high resolution and three-dimensional (3D) images of tissue morphology. Optical coherence microscopy (OCM) is an extension of OCT, combining both the coherence gating and the confocal gating techniques. OCM imaging achieves cellular resolution with deeper imaging depth compared to confocal microscopy. An integrated OCT/OCM imaging system can provide co-registered multiscale imaging of tissue morphology. 3D-OCT provides architectural information with a large field of view and can be used to find regions of interest; while OCM provides high magnification to enable cellular imaging. The integrated OCT/OCM system has an axial resolution of kidney (19), were imaged with OCT and OCM within 2 to 6 hours after excision. The images were compared with H & E histology to identify characteristic features useful for disease diagnosis. The feasibility of visualizing human pathology using integrated OCT/OCM was demonstrated in the pathology laboratory settings.

  2. Comparison of optical coherence tomography, microcomputed tomography, and histology at a three-dimensionally imaged trabecular bone sample

    Science.gov (United States)

    Kasseck, Christoph; Kratz, Marita; Torcasio, Antonia; Gerhardt, Nils C.; van Lenthe, G. Harry; Gambichler, Thilo; Hoffmann, Klaus; Jones, David B.; Hofmann, Martin R.

    2010-07-01

    We investigate optical coherence tomography (OCT) as a method for imaging bone. The OCT images are compared directly to those of the standard methods of bone histology and microcomputed tomography (μCT) on a single, fixed human femoral trabecular bone sample. An advantage of OCT over bone histology is its noninvasive nature. OCT also images the lamellar structure of trabeculae at slightly higher contrast than normal bone histology. While μCT visualizes the trabecular framework of the whole sample, OCT can image additionally cells with a penetration depth limited approximately to 1 mm. The most significant advantage of OCT, however, is the absence of toxic effects (no ionizing radiation), i.e., continuous images may be made and individual cell tracking may be performed. The penetration depth of OCT, however, limits its use to small animal models and small bone organ cultures.

  3. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source.

    Science.gov (United States)

    Ko, Tony; Adler, Desmond; Fujimoto, James; Mamedov, Dmitry; Prokhorov, Viatcheslav; Shidlovski, Vladimir; Yakubovich, Sergei

    2004-05-17

    Ultrahigh resolution optical coherence tomography imaging is performed with a compact broadband superluminescent diode light source. The source consists of two multiplexed broadband superluminescent diodes and has a power output of 4 mW with a spectral bandwidth of 155 nm, centered at a wavelength of 890 nm. In vivo imaging was performed with approximately 2.3 microm axial resolution in scattering tissue and approximately 3.2 microm axial resolution in the retina. These results demonstrate that it is possible to perform in vivo ultrahigh resolution optical coherence tomography imaging using a superluminescent diode light source that is inexpensive, compact, and easy to operate.

  4. Reconstruction methods for sound visualization based on acousto-optic tomography

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Lylloff, Oliver; Barrera Figueroa, Salvador;

    2013-01-01

    The visualization of acoustic fields using acousto-optic tomography has recently proved to yield satisfactory results in the audible frequency range. The current implementation of this visualization technique uses a laser Doppler vibrometer (LDV) to measure the acousto-optic effect, that is...... tomographic techniques. The filtered back projection (FBP) method is the most popular reconstruction algorithm used for tomography in many fields of science. The present study takes the performance of the FBP method in sound visualization as a reference and investigates the use of alternative methods commonly...

  5. Fingerprint imaging from the inside of a finger with full-field optical coherence tomography

    Science.gov (United States)

    Auksorius, Egidijus; Boccara, A. Claude

    2015-01-01

    Imaging below fingertip surface might be a useful alternative to the traditional fingerprint sensing since the internal finger features are more reliable than the external ones. One of the most promising subsurface imaging technique is optical coherence tomography (OCT), which, however, has to acquire 3-D data even when a single en face image is required. This makes OCT inherently slow for en face imaging and produce unnecessary large data sets. Here we demonstrate that full-field optical coherence tomography (FF-OCT) can be used to produce en face images of sweat pores and internal fingerprints, which can be used for the identification purposes. PMID:26601009

  6. Optical coherence tomography in otolaryngology: original results and review of the literature

    Science.gov (United States)

    Bibas, Athanasios G.; Podoleanu, Adrian Gh.; Cucu, Radu G.; Dobre, George M.; Odell, Edward; Boxer, Aaron B.; O'Connors, Alec F.; Gleeson, Michael J.

    2004-07-01

    Optical coherence tomography is a diagnostic imaging technique allowing two dimensional tomographic imaging of tissue architecture. This is a review article on the use of optical coherence tomography in Otolaryngology including original images from human laryngeal tissue and temporal bones (cochlea) in our laboratory. Tissue specimens from normal larynges were imaged with an 850 nm OCT system. Our results showed good correlation between OCT image s and the corresponding haematoxylin-eosin stained histology sections in the normal larynx. Human temporal bones were also imaged using an 1300 nm OCT system. Limited morphological details were obtained due to the high scattering properties of the bony labyrinth.

  7. Contribution of optical coherence tomography imaging in management of iatrogenic coronary dissection

    Energy Technology Data Exchange (ETDEWEB)

    Barber-Chamoux, Nicolas, E-mail: nbarber-chamoux@chu-clermontferrand.fr [Department of Cardiology, Gabriel Montpied University Hospital, Clermont-Ferrand (France); Souteyrand, Géraud; Combaret, Nicolas [Department of Cardiology, Gabriel Montpied University Hospital, Clermont-Ferrand (France); ISIT, CaVITI, CNRS (UMR-6284), Auvergne University, Clermont-Ferrand (France); Ouedraogo, Edgar; Lusson, Jean René [Department of Cardiology, Gabriel Montpied University Hospital, Clermont-Ferrand (France); Motreff, Pascal [Department of Cardiology, Gabriel Montpied University Hospital, Clermont-Ferrand (France); ISIT, CaVITI, CNRS (UMR-6284), Auvergne University, Clermont-Ferrand (France)

    2016-03-15

    Iatrogenic coronary dissection is a rare but potentially serious complication of coronary angiography and angioplasty. Treatment with angioplasty guided only by angiography is often difficult. Optical coherence tomography imaging seems to be an interesting technique to lead the management of iatrogenic coronary dissection. Diagnosis can be made by optical coherence tomography; it can also eliminate differential diagnosis. Furthermore, this technique can guide safely the endovascular treatment. - Highlights: • Iatrogenic coronary dissection remains a challenging problem in angiography. • Endocoronary imaging is helpful for the diagnosis of iatrogenic coronary dissection. • OCT is a safe option to manage the endovascular treatment of coronary dissection.

  8. Optical coherence tomography in papilledema and pseudopapilledema with and without optic nerve head drusen

    Directory of Open Access Journals (Sweden)

    Shikha Talwar Bassi

    2014-01-01

    Full Text Available Aim: To compare the spectral domain optical coherence tomography (SD-OCT findings of the optic disc and the peripapillary retina of patients with a true papilledema and pseudopapilledema with and without optic nerve head drusen (ONHD. Study Design: Retrospective Case Control Study. Subjects and Methods: Peripapillary retinal nerve fiber layer (PPRNFL thickness as depicted by SD-OCT of 94 eyes of 66 patients with papilledema (30 eyes, pseudopapiledema (31 eyes, and normal controls (33 eyes was analyzed. The mean RNFL thickness, total retinal thickness (TRT at a superior and inferior edge of the disc and the quadrant wise topography of increased RNFL were compared in all three groups. Sensitivity, specificity, and area under the receiver operating characteristic curve (AROC were calculated for all the parameters. Results: The median RNFL thickness was 185.4 (129.5-349.3 μm, 122.3 (109-156.3 μm and 91.62 ± 7 μm in papilledema, pseudopapilledema, and controls, respectively. Papilledema group had thicker PPRNFL in all quadrants except temporal quadrant. TRT was thicker in papilledema and pseudopapilledema compared to controls. ONHD could be directly visualized as high reflective clumps in the sub-retinal space or the RNFL in 30 eyes. Increased RNFL thickness in all four quadrants was noted 43.3% in papilledema and 9.7% in pseudopapilledema. Normal RNFL thickness in all four quadrants was noted in 0% in papilledema and 32.3% in pseudopapilledema. Nasal RNFL had the highest AROC (0.792 indicating high diagnostic ability to differentiate papilledema from pseudopapilledema. Conclusion: SD-OCT can be used as a tool to differentiate between papilledema and pseudopapilledema.

  9. First-harmonic sensitivity functions for a linearised diffusion model of ultrasound-modulated optical tomography

    Science.gov (United States)

    Powell, Samuel; Arridge, Simon R.; Leung, Terence S.

    2015-03-01

    Ultrasound-modulated optical tomography is an emerging biomedical imaging modality which uses the spatially localised acoustically-driven modulation of coherent light as a probe of the structure and optical properties of biological tissues. In this work we model the first-harmonic flux generated by the coupled physics using a simple linearised diffusion-style forward model. We derive analytical expressions for the sensitivity of this measurement type with respect to the optical absorption and scattering coefficients. These correlation measurement density functions can be employed as part of an image-reconstruction procedure capable of reconstructing quantitative images of the optical properties of a medium under investigation.

  10. Theoretical study of Acousto-optical coherence tomography using random phase jumps on US and light

    CERN Document Server

    Gross, Michel; Ramaz, François; Farahi, Salma; Boccara, A C

    2011-01-01

    Acousto-optical coherence tomography (AOCT) is a variant of acousto-optic imaging (also called ultrasonic modulation imaging) that makes it possible to get the z resolution with acoustic and optic continuous wave beams. We describe here theoretically the AOCT effect, and we show that the acousto-optic "tagged photons" remain coherent if they are generated within a specific z region of the sample. We quantify the z selectivity for both the "tagged photon" field and for the Lesaffre et al. [Opt. Express 17, 18211 (2009)] photorefractive signal.

  11. Design and implementation of an optical simulation environment for bioluminescent tomography studies

    Institute of Scientific and Technical Information of China (English)

    LI Hui; TIAN Jie; LUO Jie; L(U) Yujie; CONG Wenxiang; WANG Ge

    2007-01-01

    As a challenging task for bioluminescent tomography simulation, a virtual optical environment is needed to solve the forward problem accurately, that is, to achieve a high precision for bioluminescent signal synthesis on the external body surface of a small animal. The molecular optical simulation environment named MOSE is implemented using the C + + programming language and the OpenGL techniques, including a user-friendly interface with interactive tools facilitating users' operations. The accuracy of the virtual optical environment is verified by error analysis of mesh simplification and comparison between MOSE results and experimental data. This virtual optical environment is accurate, flexible and efficient to simulate the photon propagation in complicated tissues, which has a great potential to become a software platform for bioluminescent tomography studies and other molecular imaging applications.

  12. Mapping coherence in measurement via full quantum tomography of a hybrid optical detector

    CERN Document Server

    Zhang, Lijian; Datta, Animesh; Puentes, Graciana; Lundeen, Jeff S; Jin, Xian-Min; Smith, Brian J; Plenio, Martin B; Walmsley, Ian A

    2012-01-01

    Quantum states and measurements exhibit wave-like --- continuous, or particle-like --- discrete, character. Hybrid discrete-continuous photonic systems are key to investigating fundamental quantum phenomena, generating superpositions of macroscopic states, and form essential resources for quantum-enhanced applications, e.g. entanglement distillation and quantum computation, as well as highly efficient optical telecommunications. Realizing the full potential of these hybrid systems requires quantum-optical measurements sensitive to complementary observables such as field quadrature amplitude and photon number. However, a thorough understanding of the practical performance of an optical detector interpolating between these two regions is absent. Here, we report the implementation of full quantum detector tomography, enabling the characterization of the simultaneous wave and photon-number sensitivities of quantum-optical detectors. This yields the largest parametrization to-date in quantum tomography experiments...

  13. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yidong, E-mail: yidongyang@med.miami.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 and Department of Radiation Oncology, University of Miami School of Medicine, Miami, Florida 33136 (United States); Wang, Ken Kang-Hsin; Wong, John W. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Eslami, Sohrab; Iordachita, Iulian I. [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Patterson, Michael S. [Juravinski Cancer Centre and Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4K1 (Canada)

    2015-04-15

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3

  14. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    Science.gov (United States)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in

  15. Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation

    Science.gov (United States)

    Barui, Ananya; Banerjee, Provas; Patra, Rusha; Das, Raunak Kumar; Dhara, Santanu; Dutta, Pranab K.; Chatterjee, Jyotirmoy

    2011-02-01

    Direct noninvasive visualization of wound bed with depth information is important to understand the tissue repair. We correlate skin swept-source-optical coherence tomography (OCT) with histopathological and immunohistochemical evaluation on traumatic lower limb wounds under honey dressing to compare and assess the tissue repair features acquired noninvasively and invasively. Analysis of optical biopsy identifies an uppermost brighter band for stratum corneum with region specific thickness (p technology.

  16. Two-dimensional optical tomography of hemodynamic changes in a preterm infant brain

    Science.gov (United States)

    Gao, Feng; Xue, Yuan; Zhao, Huijuan; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio

    2007-08-01

    Our preliminary results on two-dimensional (2D) optical tomographic imaging of hemodynamic changes in a preterm infant brain are reported. We use the established 16-channel time-correlated single photon counting system for the detection and generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that diffuse optical tomography may be a potent means for investigating brain functions and neural development of infant brains in the perinatal period.

  17. Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth

    OpenAIRE

    Sharma, Utkarsh; Chang, Ernest W.; Seok H Yun

    2008-01-01

    Multiple scattering in a sample presents a significant limitation to achieve meaningful structural information at deeper penetration depths in optical coherence tomography (OCT). Previous studies suggest that the spectral region around 1.7 µm may exhibit reduced scattering coefficients in biological tissues compared to the widely used wavelengths around 1.3 µm. To investigate this long-wavelength region, we developed a wavelength-swept laser at 1.7 µm wavelength and conducted OCT or optical f...

  18. Two-dimensional optical tomography of hemodynamic changes in a preterm infant brain

    Institute of Scientific and Technical Information of China (English)

    Feng Gao; Yuan Xue; Huijuan Zhao; Takashi Kusaka; Masanori Ueno; Yukio Yamada

    2007-01-01

    Our preliminary results on two-dimensional (2D) optical tomographic imaging of hemodynamic changes in a preterm infant brain are reported. We use the established 16-channel time-correlated single photon counting system for the detection and generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that diffuse optical tomography may be a potent means for investigating brain functions and neural development of infant brains in the perinatal period.

  19. Magnetic induction tomography using an all-optical ⁸⁷Rb atomic magnetometer.

    Science.gov (United States)

    Wickenbrock, Arne; Jurgilas, Sarunas; Dow, Albert; Marmugi, Luca; Renzoni, Ferruccio

    2014-11-15

    We demonstrate magnetic induction tomography (MIT) with an all-optical atomic magnetometer. Our instrument creates a conductivity map of conductive objects. Both the shape and size of the imaged samples compare very well with the actual shape and size. Given the potential of all-optical atomic magnetometers for miniaturization and extreme sensitivity, the proof-of-principle presented in this Letter opens up promising avenues in the development of instrumentation for MIT.

  20. Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography

    Science.gov (United States)

    Liu, Zhuolin; Kocaoglu, Omer P.; Turner, Timothy L.; Miller, Donald T.

    2016-03-01

    Retinal pigment epithelium (RPE) cells are vital to health of the outer retina, but are often compromised in ageing and major ocular diseases that lead to blindness. Early manifestation of RPE disruption occurs at the cellular level, and while biomarkers at this scale hold considerable promise, RPE cells have proven extremely challenging to image in the living human eye. We present a novel method based on optical coherence tomography (OCT) equipped with adaptive optics (AO) that overcomes the associated technical obstacles. The method takes advantage of the 3D resolution of AO-OCT, but more critically sub-cellular segmentation and registration that permit organelle motility to be used as a novel contrast mechanism. With this method, we successfully visualized RPE cells and characterized their 3D reflectance profile in every subject and retinal location (3° and 7° temporal to the fovea) imaged to date. We have quantified RPE packing geometry in terms of cell density, cone-to-RPE ratio, and number of nearest neighbors using Voronoi and power spectra analyses. RPE cell density (cells/mm2) showed no significant difference between 3° (4,892+/-691) and 7° (4,780+/-354). In contrast, cone-to- RPE ratio was significantly higher at 3° (3.88+/-0.52:1) than 7° (2.31+/- 0.23:1). Voronoi analysis also showed most RPE cells have six nearest neighbors, which was significantly larger than the next two most prevalent associations: five and seven. Averaged across the five subjects, prevalence of cells with six neighbors was 51.4+/-3.58% at 3°, and 54.58+/-3.01% at 7°. These results are consistent with histology and in vivo studies using other imaging modalities.

  1. Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics.

    Science.gov (United States)

    Kocaoglu, Omer P; Cense, Barry; Jonnal, Ravi S; Wang, Qiang; Lee, Sangyeol; Gao, Weihua; Miller, Donald T

    2011-08-15

    Early detection of axonal tissue loss in retinal nerve fiber layer (RNFL) is critical for effective treatment and management of diseases such as glaucoma. This study aims to evaluate the capability of ultrahigh-resolution optical coherence tomography with adaptive optics (UHR-AO-OCT) for imaging the RNFL axonal bundles (RNFBs) with 3×3×3μm(3) resolution in the eye. We used a research-grade UHR-AO-OCT system to acquire 3°×3° volumes in four normal subjects and one subject with an arcuate retinal nerve fiber layer defect (n=5; 29-62years). Cross section (B-scans) and en face (C-scan) slices extracted from the volumes were used to assess visibility and size distribution of individual RNFBs. In one subject, we reimaged the same RNFBs twice over a 7month interval and compared bundle width and thickness between the two imaging sessions. Lastly we compared images of an arcuate RNFL defect acquired with UHR-AO-OCT and commercial OCT (Heidelberg Spectralis). Individual RNFBs were distinguishable in all subjects at 3° retinal eccentricity in both cross-sectional and en face views (width: 30-50μm, thickness: 10-15μm). At 6° retinal eccentricity, RNFBs were distinguishable in three of the five subjects in both views (width: 30-45μm, thickness: 20-40μm). Width and thickness RNFB measurements taken 7months apart were strongly correlated (p<0.0005). Mean difference and standard deviation of the differences between the two measurement sessions were -0.1±4.0μm (width) and 0.3±1.5μm (thickness). UHR-AO-OCT outperformed commercial OCT in terms of clarity of the microscopic retina. To our knowledge, these are the first measurements of RNFB cross section reported in the living human eye.

  2. Full wave model of image formation in optical coherence tomography applicable to general samples.

    Science.gov (United States)

    Munro, Peter R T; Curatolo, Andrea; Sampson, David D

    2015-02-09

    We demonstrate a highly realistic model of optical coherence tomography, based on an existing model of coherent optical microscopes, which employs a full wave description of light. A defining feature of the model is the decoupling of the key functions of an optical coherence tomography system: sample illumination, light-sample interaction and the collection of light scattered by the sample. We show how such a model can be implemented using the finite-difference time-domain method to model light propagation in general samples. The model employs vectorial focussing theory to represent the optical system and, thus, incorporates general illumination beam types and detection optics. To demonstrate its versatility, we model image formation of a stratified medium, a numerical point-spread function phantom and a numerical phantom, based upon a physical three-dimensional structured phantom employed in our laboratory. We show that simulated images compare well with experimental images of a three-dimensional structured phantom. Such a model provides a powerful means to advance all aspects of optical coherence tomography imaging.

  3. The amplitude and the phase or: Measuring directional and random motion with optical coherence tomography

    NARCIS (Netherlands)

    Weiss, N.M.

    2016-01-01

    Optical coherence tomography (OCT) uses a low coherence light source and a Michelson interferometer to measure path-length resolved backscatter profiles of samples with micrometer resolution and up to a few millimeters long. The OCT amplitude is typically used to generate images of the sample. Addit

  4. A pilot study on slit lamp-adapted optical coherence tomography imaging of trabeculectomy filtering blebs.

    NARCIS (Netherlands)

    Theelen, T.; Wesseling, P.; Keunen, J.E.E.; Klevering, B.J.

    2007-01-01

    BACKGROUND: Our study aims to identify anatomical characteristics of glaucoma filtering blebs by means of slit lamp-adapted optical coherence tomography (SL-OCT) and to identify new parameters for the functional prognosis of the filter in the early post-operative period. METHODS: Patients with

  5. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies

    DEFF Research Database (Denmark)

    Tearney, Guillermo J; Regar, Evelyn; Akasaka, Takashi

    2012-01-01

    The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving the di...

  6. Effect of optical coherence tomography (OCT) in assessing the prognosis of central serouschorioretinopathy

    Institute of Scientific and Technical Information of China (English)

    Lin Zhou; Yan Lu

    2015-01-01

    Objective:To study the effect of optical coherence tomography (OCT) in assessing the prognosis of central serouschorioretinopathy.Methods: 100 cases of central serous chorioretinopathy patients diagnosed in our hospital from 2013 May to 2014 May were enrolled in observation group and furtherly divided into neural epithelium detachment group, pigment epithelium detachment group, neural and pigment epithelium detachment group according to FFA. 100 cases health people received healthy examination in our hospital during the same period were enrolled in control group. Then optical coherence tomography and multifocal ERG results were compared.Results:(1) optical coherence tomography: Sfct, Nct, Sct, Tct, Ict of observation group were higher than those of control group; Sfct, Nct, Sct, Tct, Ict of neural and pigment epithelium detachment group were higher than those of neural epithelium detachment group and pigment epithelium detachment group; (2) multifocal ERG: 1ring and 2 ring of P1 wave reaction density of observation group were lower than those of control group; 3ring, 4 ring, 5 ring of P1 wave reaction density of observation group had no difference with control group.Conclusion:optical coherence tomography (OCT) can accurately assay choroidal thickness of central serouschorioretinopathy and has good consistency with fundus fluorescein angiography and multifocal ERG results.

  7. Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography

    NARCIS (Netherlands)

    Weiss, N.; Van Leeuwen, T.G.; Kalkman, J.

    2013-01-01

    We report on localized measurement of the longitudinal and transverse flow velocities in a colloidal suspension using optical coherence tomography. We present a model for the path-length resolved autocorrelation function including diffusion and flow, which we experimentally verify. For flow that is

  8. Dimensional quality control of Ti-Ni dental file by optical coordinate metrology and computed tomography

    DEFF Research Database (Denmark)

    Yagüe-Fabra, J.A.; Tosello, Guido; Ontiveros, S.

    2014-01-01

    Endodontic dental files usually present complex 3D geometries, which make the complete measurement of the component very challenging with conventional micro metrology tools. Computed Tomography (CT) can represent a suitable alternative solution to micro metrology tools based on optical and tactil...

  9. Complete Two-dimensional Muellermetric Imaging of Biological Tissue Using Heterodyned Optical Coherence Tomography

    CERN Document Server

    Liu, Xue; Shahriar, M S

    2010-01-01

    A polarization-sensitive optical coherence tomography system based on heterodyning and filtering techniques is built to perform Stokesmetric imaging of different layers of depths in a porcine tendon sample. The complete 4\\times4 backscattering Muellermetric images of one layer are acquired using such a system. The images reveal information indiscernible from a conventional OCT system.

  10. Near-infrared optical coherence tomography for the inspection of fiber composites

    NARCIS (Netherlands)

    Liu, P.; Yao, L.; Groves, R.M.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive imaging method, which allows the econstruction of three dimensional depth-resolved images with microscale resolution. Originally developed for biomedical diagnostics, nowadays it also shows a high potential for applications in the field of non-des

  11. Quantitative comparison of analysis methods for spectroscopic optical coherence tomography: reply to comment

    NARCIS (Netherlands)

    Bosschaart, Nienke; van Leeuwen, Ton; Aalders, Maurice C.G.; Faber, Dirk

    2014-01-01

    We reply to the comment by Kraszewski et al on “Quantitative comparison of analysis methods for spectroscopic optical coherence tomography.” We present additional simulations evaluating the proposed window function. We conclude that our simulations show good qualitative agreement with the results of

  12. Optical Coherence Tomography for the Assessment of Coronary Atherosclerosis and Vessel Response after Stent Implantation

    NARCIS (Netherlands)

    N. Gonzalo (Nieves)

    2010-01-01

    textabstractOptical Coherence Tomography (OCT) is a light-based imaging modality that can provide in vivo high-resolution images of the coronary artery with a level of resolution (axial 10-20 µm) ten times higher than intravascular ultrasound. The technique, uses low-coherent near infrarred light t

  13. In vivo Imaging of Sarcoptes scabiei Infestation Using Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Banzhaf, Christina Alette; Themstrup, Lotte; Ring, Hans Christian

    2013-01-01

    BACKGROUND: Sarcoptes scabiei can be visualized with different imaging tools. Optical coherence tomography (OCT) may have the potential to describe the changes in skin morphology due to scabies infestation and visualize the parasite. METHODS: Five patients from the Departments of Dermatology......, this technology could potentially allow rapid, non-invasive, in vivo diagnosis and analysis of infestations....

  14. Retrospective image-based gating of intracoronary optical coherence tomography: Implications for quantitative analysis

    NARCIS (Netherlands)

    K. Sihan (Kenji); C.P. Botha (Charl); F.H. Post (Frits); S. de Winter (Sebastiaan); N. Gonzalo (Nieves); E.S. Regar (Eveline); P.W.J.C. Serruys (Patrick); R. Hamers (Ronald); N. Bruining (Nico)

    2011-01-01

    textabstractAims: Images acquired of coronary vessels during a pullback of time-domain optical coherence tomography (OCT) are influenced by the dynamics of the heart. This study explores the feasibility of applying an in-house developed retrospective image-based gating method for OCT and the influen

  15. Combined Raman spectroscopy and optical coherence tomography device for tissue characterization

    NARCIS (Netherlands)

    Patil, Chetan A.; Bosschaart, Nienke; Keller, Matthew D.; Leeuwen, van Ton G.; Mahadevan-Jansen, Anita

    2008-01-01

    coherence tomography (OCT) along a common optical axis. The device enhances application of both RS and OCT by precisely guiding RS acquisition with OCT images while also compensating for the lack of molecular specificity in OCT with the biochemical specificity of RS. We characterize the system perfo

  16. Optical coherence tomography complemented by hyperspectral imaging for the study of protective wood coatings

    NARCIS (Netherlands)

    Dingemans, L.M.; Papadakis, V.; Liu, P.; Adam, A.J.L.; Groves, R.M.

    2015-01-01

    Optical coherence tomography (OCT) is a contactless and non-destructive testing (NDT) technique based on lowcoherence interferometry. It has recently become a popular NDT-tool for evaluating cultural heritage. In this study, protective coatings on wood and their penetration into the wood structure w

  17. Optical coherence tomography complemented by hyperspectral imaging for the study of protective wood coatings

    NARCIS (Netherlands)

    Dingemans, L.M.; Papadakis, V.; Liu, P.; Adam, A.J.L.; Groves, R.M.

    2015-01-01

    Optical coherence tomography (OCT) is a contactless and non-destructive testing (NDT) technique based on lowcoherence interferometry. It has recently become a popular NDT-tool for evaluating cultural heritage. In this study, protective coatings on wood and their penetration into the wood structure w

  18. Near-infrared optical coherence tomography for the inspection of fiber composites

    NARCIS (Netherlands)

    Liu, P.; Yao, L.; Groves, R.M.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive imaging method, which allows the econstruction of three dimensional depth-resolved images with microscale resolution. Originally developed for biomedical diagnostics, nowadays it also shows a high potential for applications in the field of

  19. Diagnostic accuracy of optical coherence tomography in actinic keratosis and basal cell carcinoma

    DEFF Research Database (Denmark)

    Olsen, J.; Themstrup, L.; De Carvalho, N.

    2016-01-01

    Background Early diagnosis of non-melanoma skin cancer (NMSC) is potentially possible using optical coherence tomography (OCT) which provides non-invasive, real-time images of skin with micrometre resolution and an imaging depth of up to 2 mm. OCT technology for skin imaging has undergone signifi...

  20. Imaging of basal cell carcinoma by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, M A L M; Norrenberg, S; Jemec, G B E

    2012-01-01

    With the continued development of noninvasive therapies for basal cell carcinoma (BCC) such as photodynamic therapy and immune therapies, noninvasive diagnosis and monitoring become increasingly relevant. High-definition optical coherence tomography (HD-OCT) is a high-resolution imaging tool...

  1. Optical coherence tomography complemented by hyperspectral imaging for the study of protective wood coatings

    NARCIS (Netherlands)

    Dingemans, L.M.; Papadakis, V.; Liu, P.; Adam, A.J.L.; Groves, R.M.

    2015-01-01

    Optical coherence tomography (OCT) is a contactless and non-destructive testing (NDT) technique based on lowcoherence interferometry. It has recently become a popular NDT-tool for evaluating cultural heritage. In this study, protective coatings on wood and their penetration into the wood structure

  2. Measurement of biofilm growth and local hydrodynamics using optical coherence tomography

    NARCIS (Netherlands)

    Weiss, Nicolas; El Tayeb El Obied, Khalid; Kalkman, Jeroen; Lammertink, Rob G.H.; Leeuwen, van Ton G.

    2016-01-01

    We report on localized and simultaneous measurement of biofilm growth and local hydrodynamics in a microfluidic channel using optical coherence tomography. We measure independently with high spatio-temporal resolution the longitudinal flow velocity component parallel to the imaging beam and the tran

  3. The predictive value of optical coherence tomography after grid laser photocoagulation for diffuse diabetic macular oedema

    DEFF Research Database (Denmark)

    Soliman, W.; Sander, B.; Soliman, K.A.E.N.

    2008-01-01

    Purpose: To assess the predictive value of optical coherence tomography (OCT) mapping of retinal thickness and intraretinal morphological changes after macular grid for diffuse diabetic macular oedema (DMO). Methods: We carried out a prospective, non-controlled, case series study, in which 28 con...

  4. Clinical experiences with optical coherence tomography in epithelial (pre)malignancies

    NARCIS (Netherlands)

    Wessels, Ronni

    2015-01-01

    This thesis describes the potential of optical coherence tomography (OCT) to differentiate between normal tissue and (pre)malignant tissue in epithelial cancers. It can be divided in research performed in the genital area and the field of melanoma. Chapter 2 describes the principles of the OCT-tec

  5. Clinical experiences with optical coherence tomography in epithelial (pre)malignancies

    NARCIS (Netherlands)

    Wessels, Ronni; Wessels, R.

    2015-01-01

    This thesis describes the potential of optical coherence tomography (OCT) to differentiate between normal tissue and (pre)malignant tissue in epithelial cancers. It can be divided in research performed in the genital area and the field of melanoma. Chapter 2 describes the principles of the OCT-techn

  6. Simultaneous dual wavelength eye-tracked ultrahigh resolution retinal and choroidal optical coherence tomography

    DEFF Research Database (Denmark)

    Unterhuber, A.; Povaay, B.; Müller, André;

    2013-01-01

    We demonstrate an optical coherence tomography device that simultaneously combines different novel ultrabroad bandwidth light sources centered in the 800 and 1060 nm regions, operating at 66 kHz depth scan rate, and a confocal laser scanning ophthalmoscope-based eye tracker to permit motion-artif...

  7. Early Swept-Source Optical Coherence Tomography Angiography Findings in Unilateral Acute Idiopathic Maculopathy.

    Science.gov (United States)

    Nicolo, Massimo; Rosa, Raffaella; Musetti, Donatella; Musolino, Maria; Traverso, Carlo Enrico

    2016-02-01

    Unilateral acute idiopathic maculopathy (UAIM) is a rare disorder presenting in young people with an acute onset of unilateral central visual loss often associated with a prodromal flu-like illness. The authors present the early anatomical findings of a 35-year-old man clinically diagnosed with UAIM using swept-source optical coherence tomography (SS-OCT) and SS-OCT angiography.

  8. Design and testing of prototype handheld scanning probes for optical coherence tomography.

    Science.gov (United States)

    Demian, Dorin; Duma, Virgil-Florin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Cernat, Ramona; Topala, Florin Ionel; Hutiu, Gheorghe; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-08-01

    Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic-for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat-in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated. © IMechE 2014.

  9. Anterior segment spectral domain optical coherence tomography imaging of patients with anterior scleritis.

    Science.gov (United States)

    Levison, Ashleigh L; Lowder, Careen Y; Baynes, Kimberly M; Kaiser, Peter K; Srivastava, Sunil K

    2016-08-01

    The purpose of the study was to describe the findings seen on anterior segment spectral domain optical coherence tomography (SD-OCT) in patients with anterior scleritis and determine the feasibility of using SD-OCT to image and grade the degree of scleral inflammation and monitor response to treatment. All patients underwent slit lamp examination by a uveitis specialist, and the degree of scleral inflammation was recorded. Spectral domain OCT imaging was then performed of the conjunctiva and scleral tissue using a standardized acquisition protocol. The scans were graded and compared to clinical findings. Twenty-eight patients with anterior scleritis and ten patients without ocular disease were included in the study. Seventeen of the scleritis patients were followed longitudinally. Common findings on SD-OCT in patients with active scleritis included changes in hyporeflectivity within the sclera, nodules, and visible vessels within the sclera. There was significant variation in findings on SD-OCT within each clinical grade of active scleritis. These changes on SD-OCT improved with treatment and clinical improvement. SD-OCT imaging provided various objective measures that could be used in the future to grade inflammatory activity in patients with anterior scleritis. Longitudinal imaging of patients with active scleritis demonstrated that SD-OCT may have great utility in monitoring response to treatment.

  10. 10-channel fiber array fabrication technique for parallel optical coherence tomography system

    Science.gov (United States)

    Arauz, Lina J.; Luo, Yuan; Castillo, Jose E.; Kostuk, Raymond K.; Barton, Jennifer

    2007-02-01

    Optical Coherence Tomography (OCT) shows great promise for low intrusive biomedical imaging applications. A parallel OCT system is a novel technique that replaces mechanical transverse scanning with electronic scanning. This will reduce the time required to acquire image data. In this system an array of small diameter fibers is required to obtain an image in the transverse direction. Each fiber in the array is configured in an interferometer and is used to image one pixel in the transverse direction. In this paper we describe a technique to package 15μm diameter fibers on a siliconsilica substrate to be used in a 2mm endoscopic probe tip. Single mode fibers are etched to reduce the cladding diameter from 125μm to 15μm. Etched fibers are placed into a 4mm by 150μm trench in a silicon-silica substrate and secured with UV glue. Active alignment was used to simplify the lay out of the fibers and minimize unwanted horizontal displacement of the fibers. A 10-channel fiber array was built, tested and later incorporated into a parallel optical coherence system. This paper describes the packaging, testing, and operation of the array in a parallel OCT system.

  11. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit.

    Science.gov (United States)

    Baumann, Bernhard; Choi, WooJhon; Potsaid, Benjamin; Huang, David; Duker, Jay S; Fujimoto, James G

    2012-04-23

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional imaging method that provides additional contrast using the light polarizing properties of a sample. This manuscript describes PS-OCT based on ultrahigh speed swept source / Fourier domain OCT operating at 1050 nm at 100 kHz axial scan rates using single mode fiber optics and a multiplexing approach. Unlike previously reported PS-OCT multiplexing schemes, the method uses a passive polarization delay unit and does not require active polarization modulating devices. This advance decreases system cost and avoids complex synchronization requirements. The polarization delay unit was implemented in the sample beam path in order to simultaneously illuminate the sample with two different polarization states. The orthogonal polarization components for the depth-multiplexed signals from the two input states were detected using dual balanced detection. PS-OCT images were computed using Jones calculus. 3D PS-OCT imaging was performed in the human and rat retina. In addition to standard OCT images, PS-OCT images were generated using contrast form birefringence and depolarization. Enhanced tissue discrimination as well as quantitative measurements of sample properties was demonstrated using the additional contrast and information contained in the PS-OCT images.

  12. Integration of active optical components

    Science.gov (United States)

    Wipiejewski, Torsten; Akulova, Yuliya A.; Fish, Gregory A.; Schow, Clint L.; Koh, Ping; Karim, Adil; Nakagawa, Shigeru; Dahl, Anders; Kozodoy, Peter; Matson, Alex; Short, Bradley W.; Turner, Chuck M.; Penniman, Steven; Larson, Michael C.; Coldren, Christopher W.; Coldren, Larry A.

    2003-06-01

    Integration of active optical components typically serves five goals: enhanced performance, smaller space, lower power dissipation, higher reliability, and lower cost. We are manufacturing widely tunable laser diodes with an integrated high speed electro absorption modulator for metro and all-optical switching applications. The monolithic integration combines the functions of high power laser light generation, wavelength tuning over the entire C-band, and high speed signal modulation in a single chip. The laser section of the chip contains two sampled grating DBRs with a gain and a phase section between them. The emission wavelength is tuned by current injection into the waveguide layers of the DBR and phase sections. The laser light passes through an integrated optical amplifier before reaching the modulator section on the chip. The amplifier boosts the cw output power of the laser and provides a convenient way of power leveling. The modulator is based on the Franz-Keldysh effect for a wide band of operation. The common waveguide through all sections minimizes optical coupling losses. The packaging of the monolithically integrated chip is much simpler compared to a discrete or hybrid solution using a laser chip, an SOA, and an external modulator. Since only one optical fiber coupling is required, the overall packaging cost of the transmitter module is largely reduced. Error free transmission at 2.5Gbit/s over 200km of standard single mode fiber is obtained with less than 1dB of dispersion penalty.

  13. Smart optical coherence tomography for ultra-deep imaging through highly scattering media

    CERN Document Server

    Badon, Amaury; Lerosey, Geoffroy; Boccara, Albert C; Fink, Mathias; Aubry, Alexandre

    2015-01-01

    Multiple scattering of waves in disordered media is a nightmare whether it be for detection or imaging purposes. The best approach so far to get rid of multiple scattering is optical coherence tomography. It basically combines confocal microscopy and coherence time-gating to discriminate ballistic photons from a predominant multiple scattering background. Nevertheless, the imaging depth range remains limited to 1 mm at best in human soft tissues. Here we propose a matrix approach of optical imaging to push back this fundamental limit. By combining a matrix discrimination of ballistic waves and iterative time-reversal, we show both theoretically and experimentally an extension of the imaging-depth limit by at least a factor two compared to optical coherence tomography. In particular, the reported experiment demonstrates imaging through a strongly scattering layer from which only one reflected photon over 1000 billion is ballistic. This approach opens a new route towards ultra-deep tissue imaging.

  14. Image reconstruction using wavelet multi-resolution technique for time-domain diffuse optical tomography

    Science.gov (United States)

    Yang, Fang; Gao, Feng; Jiao, Yuting; Zhao, Huijuan

    2010-02-01

    It is generally believed that the inverse problem in diffuse optical tomography (DOT) is highly ill-posed and its solution is always under-determined and sensitive to noise, which is the main problem in the application of DOT. In this paper, we propose a method on image reconstruction for time-domain diffuse optical tomography based on panel detection and Finite-Difference Method, and introduce an approach to reduce the number of unknown parameters in the reconstruction process. We propose a multi-level scheme to reduce the number of unknowns by parameterizing the spatial distribution of optical properties via wavelet transform and then reconstruct the coefficients of this transform. Compared with previous traditional uni-level full spatial domain algorithm, this method can efficiently improve the reconstruction quality. Numerical simulations show that wavelet-based multi-level inversion is superior to the uni-level algebraic reconstruction technique.

  15. Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography.

    Science.gov (United States)

    Lim, JooWon; Lee, KyeoReh; Jin, Kyong Hwan; Shin, Seungwoo; Lee, SeoEun; Park, YongKeun; Ye, Jong Chul

    2015-06-29

    In optical tomography, there exist certain spatial frequency components that cannot be measured due to the limited projection angles imposed by the numerical aperture of objective lenses. This limitation, often called as the missing cone problem, causes the under-estimation of refractive index (RI) values in tomograms and results in severe elongations of RI distributions along the optical axis. To address this missing cone problem, several iterative reconstruction algorithms have been introduced exploiting prior knowledge such as positivity in RI differences or edges of samples. In this paper, various existing iterative reconstruction algorithms are systematically compared for mitigating the missing cone problem in optical diffraction tomography. In particular, three representative regularization schemes, edge preserving, total variation regularization, and the Gerchberg-Papoulis algorithm, were numerically and experimentally evaluated using spherical beads as well as real biological samples; human red blood cells and hepatocyte cells. Our work will provide important guidelines for choosing the appropriate regularization in ODT.

  16. In vitro birefringence imaging with spectral domain polarization-sensitive optical coherence tomography

    Institute of Scientific and Technical Information of China (English)

    Qiang Gong; Chuanmao Fan; Fan Zhang; Jianquan Yao

    2008-01-01

    Spectral domain polarization-sensitive optical coherence tomography (SDPS-OCT) is a depth-resolved polarization-sensitive interferometry which integrates polarization optics into spectral domain optical co-herence tomography (SD-OCT). This configuration can obtain birefringence information of samples and improve the imaging speed. In this paper, horizontally polarized light is used to replace natural light of the source. Then, right-rotated circularly polarized light is the incident sample light. To obtain two orthogonal components of the polarized interferogram, the reflected light of the reference arm is set to be 45° linearly polarized light. These two components are acquired by two spectrometers synchronously. The system was employed to achieve 12.8-#m axial resolution and 4.36-#m transverse resolution. We have imaged in vitro chicken tendon and muscle tissues with these system.

  17. Test target for characterizing 3D resolution of optical coherence tomography

    Science.gov (United States)

    Hu, Zhixiong; Hao, Bingtao; Liu, Wenli; Hong, Baoyu; Li, Jiao

    2014-12-01

    Optical coherence tomography (OCT) is a non-invasive 3D imaging technology which has been applied or investigated in many diagnostic fields including ophthalmology, dermatology, dentistry, cardiovasology, endoscopy, brain imaging and so on. Optical resolution is an important characteristic that can describe the quality and utility of an image acquiring system. We employ 3D printing technology to design and fabricate a test target for characterizing 3D resolution of optical coherence tomography. The test target which mimics USAF 1951 test chart was produced with photopolymer. By measuring the 3D test target, axial resolution as well as lateral resolution of a spectral domain OCT system was evaluated. For comparison, conventional microscope and surface profiler were employed to characterize the 3D test targets. The results demonstrate that the 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.

  18. Sagittal laser optical tomography for imaging of rheumatoid finger joints

    Energy Technology Data Exchange (ETDEWEB)

    Hielscher, Andreas H [Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027 (United States); Klose, Alexander D [Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027 (United States); Scheel, Alexander K [Department of Nephrology and Rheumatology, Georg-August University, Goettingen (Germany); Moa-Anderson, Bryte [Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027 (United States); Backhaus, Marina [Department of Rheumatology and Clinical Immunology, Charite University Hospital, Berlin (Germany); Netz, Uwe [Institute for Medical Physics and Laser Medicine, Free University of Berlin, Berlin (Germany); Beuthan, Juergen [Institute for Medical Physics and Laser Medicine, Free University of Berlin, Berlin (Germany)

    2004-04-07

    We present a novel optical tomographic imaging system that was designed to determine two-dimensional spatial distribution of optical properties in a sagittal plane through finger joints. The system incorporates a single laser diode and a single silicon photodetector into a scanning device that records spatially resolved light intensities as they are transmitted through a finger. These data are input to a model-based iterative image reconstruction (MOBIIR) scheme, which uses the equation of radiative transfer (ERT) as a forward model for light propagation through tissue. We have used this system to obtain tomographic images of six proximal interphalangeal finger joints from two patients with rheumatoid arthritis. The optical images were compared to clinical symptoms and ultrasound images.

  19. Development of a miniature multiple reference optical coherence tomography imaging device

    Science.gov (United States)

    McNamara, Paul M.; O'Riordan, Colm; Collins, Seán.; O'Brien, Peter; Wilson, Carol; Hogan, Josh; Leahy, Martin J.

    2016-03-01

    Multiple reference optical coherence tomography (MR-OCT) is a new technology ideally suited to low-cost, compact OCT imaging. This modality is an extension of time-domain OCT with the addition of a partial mirror in front of the reference mirror. This enables extended, simultaneous depth scanning with the relatively short sweep of a miniature voice coil motor on which the scanning mirror is mounted. Applications of this technology include biometric security, ophthalmology, personal health monitoring and non-destructive testing. This work details early-stage development of the first iteration of a miniature MR-OCT device. This device utilizes a fiber-coupled input from an off-board superluminescent diode (SLD). Typical dimensions of the module are 40 × 57 mm, but future designs are expected to be more compact. Off-the-shelf miniature optical components, voice coil motors and photodetectors are used, with the complexity of design depending on specific applications. The photonic module can be configured as either polarized or non-polarized and can include balanced detection. The photodetectors are directly connected to a printed circuit board under the module containing a transimpedance amplifier with complimentary outputs. The results shown in this work are from the non-polarized device. Assembly of the photonic modules requires extensive planning. In choosing the optical components, Zemax simulations are performed to model the beam characteristics. The physical layout is modeled using Solidworks and each component is placed and aligned via a well-designed alignment procedure involving an active-alignment pick-and-place assembly system.

  20. Photons-based medical imaging - Radiology, X-ray tomography, gamma and positrons tomography, optical imaging; Imagerie medicale a base de photons - Radiologie, tomographie X, tomographie gamma et positons, imagerie optique

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Dinten, J.M.; Moy, J.P.; Rinkel, J. [CEA Leti, Grenoble (France); Buvat, I. [IMNC - CNRS, Orsay (France); Da Silva, A. [Institut Fresnel, Marseille (France); Douek, P.; Peyrin, F. [INSA Lyon, Lyon Univ. (France); Frija, G. [Hopital Europeen George Pompidou, Paris (France); Trebossen, R. [CEA-Service hospitalier Frederic Joliot, Orsay (France)

    2010-07-01

    This book describes the different principles used in medical imaging. The detection aspects, the processing electronics and algorithms are detailed for the different techniques. This first tome analyses the photons-based techniques (X-rays, gamma rays and visible light). Content: 1 - physical background: radiation-matter interaction, consequences on detection and medical imaging; 2 - detectors for medical imaging; 3 - processing of numerical radiography images for quantization; 4 - X-ray tomography; 5 - positrons emission tomography: principles and applications; 6 - mono-photonic imaging; 7 - optical imaging; Index. (J.S.)

  1. Enhancement of Optical Coherence Tomography Axial Resolution by Spectral Shaping

    Institute of Scientific and Technical Information of China (English)

    孙汕; 郭继华; 高湔松; 薛平

    2002-01-01

    We propose a new method of changing the spectrum shape to improve the axial resolution of optical coherencetomography (OCT). Theoretical analysis shows that certain spectral shaping can shorten the coherence length.Comparisons of the simulation and experimental measurements of spectral shape and axial resolution of OCTare given, showing that the axial resolution of OCT is enhanced by a factor of 1.4.

  2. Optical Effects at projection measurements for Terahertz tomography

    Science.gov (United States)

    Brahm, A.; Wilms, A.; Tymoshchuk, M.; Grossmann, C.; Notni, G.; Tünnermann, A.

    2014-10-01

    Optical effects like refraction, diffraction and edge effects have an influence on Terahertz measurements. They can result in image artifacts which makes it difficult to detect and resolve material defects inside the samples. We used a geometrical optical ray tracing approach to analyze the optical effects at Terahertz projection measurements which can be used to perform 2D or 3D THz images. We measured rectangular and cylindrical samples made of PEEK (Polyetheretherketon), POM (Polyoxymethylen), and PMMA (Polymethylmethacrylat) and compared the results to simulations that are realized with the software ZEMAX. We were able to simulate the measured Fresnel refraction and transmission behavior for rectangular cuboids with a length of 25 mm and cylinders with diameter of 25 mm. We showed the influence of diffraction and edge effects at samples with different sizes made of PMMA. Thus, the optical effect of refraction was significant and observable for cylinders with diameters greater than 1.5 mm and holes with diameter greater than 2.5 mm.

  3. Coherent broadband light source for parallel optical coherence tomography

    NARCIS (Netherlands)

    Rivier, S.; Laversenne, L.; Bourquin, S.; Salathé, R.P.; Pollnau, M.; Grivas, C.; Shepherd, D.P.; Eason, R.W.; Flury, M.; Philipoussis, I.; Herzig, H.P.

    2004-01-01

    A Ti:sapphire planar waveguide is rib structured by Ar ion milling to provide parallel channel waveguides. By coupling high-power pump light through a microlens array into the waveguides, a novel broadband luminescent parallel emitter is demonstrated as a light source for parallel optical coherence

  4. Different ways to active optical frequency standards

    Science.gov (United States)

    Pan, Duo; Xue, Xiaobo; Zhang, Xiaogang; Chen, Jingbiao

    2016-06-01

    Active optical frequency standard, or active optical clock, is a new concept of optical frequency standard, where a weak feedback with phase coherence information in optical bad-cavity limitation is formed, and the continuous self-sustained coherent stimulated emission between two atomic transition levels with population inversion is realized. Through ten years of both theoretical and experimental exploration, the narrow linewidth and suppression of cavity pulling effect of active optical frequency standard have been initially proved. In this paper, after a simple review, we will mainly present the most recent experimental progresses of active optical frequency standards in Peking University, including 4-level cesium active optical frequency standards and active Faraday optical frequency standards. The future development of active optical frequency standards is also discussed.

  5. Direct Estimation of Optical Parameters From Photoacoustic Time Series in Quantitative Photoacoustic Tomography.

    Science.gov (United States)

    Pulkkinen, Aki; Cox, Ben T; Arridge, Simon R; Goh, Hwan; Kaipio, Jari P; Tarvainen, Tanja

    2016-11-01

    Estimation of optical absorption and scattering of a target is an inverse problem associated with quantitative photoacoustic tomography. Conventionally, the problem is expressed as two folded. First, images of initial pressure distribution created by absorption of a light pulse are formed based on acoustic boundary measurements. Then, the optical properties are determined based on these photoacoustic images. The optical stage of the inverse problem can thus suffer from, for example, artefacts caused by the acoustic stage. These could be caused by imperfections in the acoustic measurement setting, of which an example is a limited view acoustic measurement geometry. In this work, the forward model of quantitative photoacoustic tomography is treated as a coupled acoustic and optical model and the inverse problem is solved by using a Bayesian approach. Spatial distribution of the optical properties of the imaged target are estimated directly from the photoacoustic time series in varying acoustic detection and optical illumination configurations. It is numerically demonstrated, that estimation of optical properties of the imaged target is feasible in limited view acoustic detection setting.

  6. The Effect of Optic Disc Center Displacement on Retinal Nerve Fiber Layer Measurement Determined by Spectral Domain Optical Coherence Tomography

    Science.gov (United States)

    Uhm, Ki Bang; Sung, Kyung Rim; Kang, Min Ho; Cho, Hee Yoon; Seong, Mincheol

    2016-01-01

    Purpose To investigate the effect of optic disc center displacement on retinal nerve fiber layer (RNFL) measurement determined by spectral domain optical coherence tomography (SD-OCT). Methods The optic disc center was manipulated at 1-pixel intervals in horizontal, vertical, and diagonal directions. According to the manipulated optic disc center location, the RNFL thickness data were resampled: (1) at a 3.46-mm diameter circle; and (2) between a 2.5-mm diameter circle and 5.4-mm square. Error was calculated between the original and resampled RNFL measurements. The tolerable error threshold of the optic disc center displacement was determined by considering test-retest variability of SD-OCT. The unreliable zone was defined as an area with 10% or more variability. Results The maximum tolerable error thresholds of optic disc center displacement on the RNFL thickness map were distributed from 0.042 to 0.09 mm in 8 directions. The threshold shape was vertically elongated. Clinically important unreliable zones were located: (1) at superior and inferior region in the vertical displacement; (2) at inferotemporal region in the horizontal displacement, and (3) at superotemporal or inferotemporal region in the diagonal displacement. The unreliable zone pattern and threshold limit varied according to the direction of optic disc displacement. Conclusions Optic disc center displacement had a considerable impact on whole RNFL thickness measurements. Understanding the effect of optic disc center displacement could contribute to reliable RNFL measurements. PMID:27783663

  7. Handheld optical coherence tomography during sedation in young children with optic pathway gliomas.

    Science.gov (United States)

    Avery, Robert A; Hwang, Eugene I; Ishikawa, Hiroshi; Acosta, Maria T; Hutcheson, Kelly A; Santos, Domiciano; Zand, Dina J; Kilburn, Lindsay B; Rosenbaum, Kenneth N; Rood, Brian R; Schuman, Joel S; Packer, Roger J

    2014-03-01

    Monitoring young children with optic pathway gliomas (OPGs) for visual deterioration can be difficult owing to age-related noncompliance. Optical coherence tomography (OCT) measures of retinal nerve fiber layer (RNFL) thickness have been proposed as a surrogate marker of vision but this technique is also limited by patient cooperation. To determine whether measures of circumpapillary RNFL thickness, acquired with handheld OCT (HH-OCT) during sedation, can differentiate between young children with and without vision loss from OPGs. This cross-sectional analysis of a prospective observational study was conducted at a tertiary-care children's hospital. Children with an OPG (sporadic or secondary to neurofibromatosis type 1) who were cooperative for visual acuity testing, but required sedation to complete magnetic resonance imaging, underwent HH-OCT imaging of the circumpapillary RNFL while sedated. Area under the curve of the receiver operating characteristic, sensitivity, specificity, positive predictive value, and negative predictive value of the average and quadrant-specific RNFL thicknesses. Thirty-three children (64 eyes) met inclusion criteria (median age, 4.8 years; range, 1.8-12.6 years). In children with vision loss (abnormal visual acuity and/or visual field), RNFL thickness was decreased in all quadrants compared with the normal-vision group (P < .001 for all comparisons). Using abnormal criteria of less than 5% and less than 1%, the area under the curve was highest for the average RNFL thickness (0.96 and 0.97, respectively) compared with specific anatomic quadrants. The highest discrimination and predictive values were demonstrated for participants with 2 or more quadrants meeting less than 5% (sensitivity = 93.3; specificity = 97.9; positive predictive value = 93.3; and negative predictive value = 97.9) and less than 1% (sensitivity = 93.3; specificity = 100; positive predictive value = 100; and negative predictive value = 98.0) criteria. Measures of

  8. Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by temporal analysis of interferometric signals

    CERN Document Server

    Apelian, Clement; Thouvenin, Olivier; Boccara, A Claude

    2016-01-01

    We developed a new endogenous approach to reveal subcellular metabolic contrast in fresh ex vivo tissues taking advantage of the time dependence of the full field optical coherence tomography interferometric signals. This method reveals signals linked with local activity of the endogenous scattering elements which can reveal cells where other imaging techniques fail or need exogenous contrast agents. We benefit from the micrometric transverse resolution of full field OCT to image intracellular features. We used this time dependence to identify different dynamics at the millisecond scale on a wide range of organs in normal or pathological conditions.

  9. In vivo functional imaging of embryonic chick heart using ultrafast 1310nm-band spectral domain optical coherence tomography

    Science.gov (United States)

    Li, Peng; Yin, Xin; Wang, Ruikang K.

    2013-02-01

    During the cardiac development, the cardiac wall and the blood flow actively interact with each other, and determine the biomechanical environment to which the embryonic heart exposes. Employing an ultrafast 1310nm-band dual-camera spectral domain optical coherence tomography (SDOCT), the radial strain rate of the myocardial wall can be extracted with high signal-to-noise ratio, at the same time the Doppler velocity of the blood flow can also be displayed. The ability to simultaneously characterize these two cardiac tissues provides a powerful approach to better understand the interaction between the cardiac wall and the blood flow, which is important to the investigation of cardiac development.

  10. Actively Pumped Faraday Optical Filter

    Science.gov (United States)

    1996-04-30

    Richard I. Billmers Vincent M. Contarino David M. Allocca Martin F. Squicciarini William J. Scharpf 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...States Patent [i9] Billmers et al. iiiiiiifflimi iilliiiiiii US005513032A [ii] Patent Number: [45] Date of Patent: 5,513,032 Apr. 30, 1996...54] ACTIVELY PUMPED FARADAY OPTICAL FILTER [75] Inventors: Richard I. Billmers , Bensalem; Vincent M. Contarino, Warrington; David M

  11. Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis.

    Science.gov (United States)

    Levison, Ashleigh L; Baynes, Kimberly M; Lowder, Careen Y; Kaiser, Peter K; Srivastava, Sunil K

    2017-05-01

    To describe the findings seen on optical coherence tomography angiography (OCTA) in patients with punctate inner choroidopathy (PIC) and multifocal choroiditis and panuveitis (MCP) complicated by choroidal neovascular membranes. This was an Institutional Review Board-approved prospective, descriptive case series. 12 patients with PIC and MCP complicated by choroidal neovascularisation (CNV) were included. Each patient underwent slit-lamp examination by a uveitis specialist followed by conventional spectral domain OCT imaging of the macula. OCTA images of the macula were then obtained. 12 patients were enrolled in the study, out of which 9 patients were followed longitudinally. CNV was identified in 11 of the 12 patients. In all patients where fluorescein angiography (FA) was inconclusive for presence of CNV, OCTA identified CNV. Various lesions on OCT suggestive of activity correlated with changes in the vascular structure of OCTA to confirm suspicion of clinical activity. In patients with PIC and MCP complicated by CNV, OCTA successfully identified underlying CNV. Given the difficulty of differentiating inflammatory lesions from early CNV on OCT and FA, OCTA may provide a valuable method of monitoring patients with posterior uveitis highly correlated with development of CNV. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. A fast atlas-guided high density diffuse optical tomography system for brain imaging

    Science.gov (United States)

    Dai, Xianjin; Zhang, Tao; Yang, Hao; Jiang, Huabei

    2017-02-01

    Near infrared spectroscopy (NIRS) is an emerging functional brain imaging tool capable of assessing cerebral concentrations of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) during brain activation noninvasively. As an extension of NIRS, diffuse optical tomography (DOT) not only shares the merits of providing continuous readings of cerebral oxygenation, but also has the ability to provide spatial resolution in the millimeter scale. Based on the scattering and absorption properties of nonionizing near-infrared light in biological tissue, DOT has been successfully applied in the imaging of breast tumors, osteoarthritis and cortex activations. Here, we present a state-of-art fast high density DOT system suitable for brain imaging. It can achieve up to a 21 Hz sampling rate for a full set of two-wavelength data for 3-D DOT brain image reconstruction. The system was validated using tissue-mimicking brain-model phantom. Then, experiments on healthy subjects were conducted to demonstrate the capability of the system.

  13. Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: A case study

    Directory of Open Access Journals (Sweden)

    Harsimrat Singh

    2014-01-01

    Full Text Available Seizures in the newborn brain represent a major challenge to neonatal medicine. Neonatal seizures are poorly classified, under-diagnosed, difficult to treat and are associated with poor neurodevelopmental outcome. Video-EEG is the current gold-standard approach for seizure detection and monitoring. Interpreting neonatal EEG requires expertise and the impact of seizures on the developing brain remains poorly understood. In this case study we present the first ever images of the haemodynamic impact of seizures on the human infant brain, obtained using simultaneous diffuse optical tomography (DOT and video-EEG with whole-scalp coverage. Seven discrete periods of ictal electrographic activity were observed during a 60 minute recording of an infant with hypoxic–ischaemic encephalopathy. The resulting DOT images show a remarkably consistent, high-amplitude, biphasic pattern of changes in cortical blood volume and oxygenation in response to each electrographic event. While there is spatial variation across the cortex, the dominant haemodynamic response to seizure activity consists of an initial increase in cortical blood volume prior to a large and extended decrease typically lasting several minutes. This case study demonstrates the wealth of physiologically and clinically relevant information that DOT–EEG techniques can yield. The consistency and scale of the haemodynamic responses observed here also suggest that DOT–EEG has the potential to provide improved detection of neonatal seizures.

  14. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    Science.gov (United States)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  15. Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components

    Science.gov (United States)

    Hyle Park, B.; Pierce, Mark C.; Cense, Barry; de Boer, Johannes F.

    2004-11-01

    We present an analysis for polarization-sensitive optical coherence tomography that facilitates the unrestricted use of fiber and fiber-optic components throughout an interferometer and yields sample birefringence, diattenuation, and relative optic axis orientation. We use a novel Jones matrix approach that compares the polarization states of light reflected from the sample surface with those reflected from within a biological sample for pairs of depth scans. The incident polarization alternated between two states that are perpendicular in a Poincaré sphere representation to ensure proper detection of tissue birefringence regardless of optical fiber contributions. The method was validated by comparing the calculated diattenuation of a polarizing sheet, chicken tendon, and muscle with that obtained by independent measurement. The relative importance of diattenuation versus birefringence to angular displacement of Stokes vectors on a Poincaré sphere was quantified.

  16. Optical design of an optical coherence tomography and multispectral fluorescence imaging endoscope to detect early stage ovarian cancer

    Science.gov (United States)

    Tate, Tyler; Keenan, Molly; Swan, Elizabeth; Black, John; Utzinger, Urs; Barton, Jennifer

    2014-12-01

    The five year survival rate for ovarian cancer is over 90% if early detection occurs, yet no effective early screening method exists. We have designed and are constructing a dual modality Optical Coherence Tomography (OCT) and Multispectral Fluorescence Imaging (MFI) endoscope to optically screen the Fallopian tube and ovary for early stage cancer. The endoscope reaches the ovary via the natural pathway of the vagina, cervix, uterus and Fallopian tube. In order to navigate the Fallopian tube the endoscope must have an outer diameter of 600 μm, be highly flexible, steerable, tracking and nonperforating. The imaging systems consists of six optical subsystems, two from OCT and four from MFI. The optical subsystems have independent and interrelated design criteria. The endoscope will be tested on realistic tissue models and ex vivo tissue to prove feasibility of future human trials. Ultimately the project aims to provide women the first effective ovarian cancer screening technique.

  17. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multi-layered tissue structures

    DEFF Research Database (Denmark)

    Thrane, Lars; Frosz, Michael Henoch; Tycho, Andreas

    2004-01-01

    A recently developed analytical optical coherence tomography (OCT) model [Thrane et al., J. Opt. Soc. Am. A 17, 484 (2000)] allows the extraction of optical scattering parameters from OCT images, thereby permitting attenuation compensation in those images. By expanding this theoretical model, we...... have developed a new method for extracting optical scattering parameters from multilayered tissue structures in vivo. To verify this, we used a Monte Carlo (MC) OCT model as a numerical phantom to simulate the OCT signal for het-erogeneous multilayered tissue. Excellent agreement between the extracted...... values of the optical scattering properties of the different layers and the corresponding input reference values of the MC simulation was obtained, which demonstrates the feasibility of the method for in vivo applications. This is to our knowledge the first time such verification has been obtained...

  18. Laser Tomography Adaptive Optics (LTAO): A performance study

    CERN Document Server

    Tatulli, E

    2013-01-01

    We present an analytical derivation of the on-axis performance of Adaptive Optics systems using a given number of guide stars of arbitrary altitude, distributed at arbitrary angular positions in the sky. The expressions of the residual error are given for cases of both continuous and discrete turbulent atmospheric profiles. Assuming Shack-Hartmann wavefront sensing with circular apertures, we demonstrate that the error is formally described by integrals of products of three Bessel functions. We compare the performance of Adaptive Optics correction when using natural, Sodium or Rayleigh laser guide stars. For small diameter class telescopes (~5m), we show that a few number of Rayleigh beacons can provide similar performance to that of a single Sodium laser, for a lower overall cost of the instrument. For bigger apertures, using Rayleigh stars may not be such a suitable alternative because of the too severe cone effect that drastically degrades the quality of the correction.

  19. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography.

    Science.gov (United States)

    Bennett, J L; de Seze, J; Lana-Peixoto, M; Palace, J; Waldman, A; Schippling, S; Tenembaum, S; Banwell, B; Greenberg, B; Levy, M; Fujihara, K; Chan, K H; Kim, H J; Asgari, N; Sato, D K; Saiz, A; Wuerfel, J; Zimmermann, H; Green, A; Villoslada, P; Paul, F

    2015-05-01

    Neuromyelitis optica (NMO) is an inflammatory autoimmune disease of the central nervous system that preferentially targets the optic nerves and spinal cord. The clinical presentation may suggest multiple sclerosis (MS), but a highly specific serum autoantibody against the astrocytic water channel aquaporin-4 present in up to 80% of NMO patients enables distinction from MS. Optic neuritis may occur in either condition resulting in neuro-anatomical retinal changes. Optical coherence tomography (OCT) has become a useful tool for analyzing retinal damage both in MS and NMO. Numerous studies showed that optic neuritis in NMO typically results in more severe retinal nerve fiber layer (RNFL) and ganglion cell layer thinning and more frequent development of microcystic macular edema than in MS. Furthermore, while patients' RNFL thinning also occurs in the absence of optic neuritis in MS, subclinical damage seems to be rare in NMO. Thus, OCT might be useful in differentiating NMO from MS and serve as an outcome parameter in clinical studies.

  20. Reconstruction Method for Optical Tomography Based on the Linearized Bregman Iteration with Sparse Regularization

    Directory of Open Access Journals (Sweden)

    Chengcai Leng

    2015-01-01

    Full Text Available Optical molecular imaging is a promising technique and has been widely used in physiology, and pathology at cellular and molecular levels, which includes different modalities such as bioluminescence tomography, fluorescence molecular tomography and Cerenkov luminescence tomography. The inverse problem is ill-posed for the above modalities, which cause a nonunique solution. In this paper, we propose an effective reconstruction method based on the linearized Bregman iterative algorithm with sparse regularization (LBSR for reconstruction. Considering the sparsity characteristics of the reconstructed sources, the sparsity can be regarded as a kind of a priori information and sparse regularization is incorporated, which can accurately locate the position of the source. The linearized Bregman iteration method is exploited to minimize the sparse regularization problem so as to further achieve fast and accurate reconstruction results. Experimental results in a numerical simulation and in vivo mouse demonstrate the effectiveness and potential of the proposed method.

  1. Tomography for multiconjugate adaptive optics systems using laser guide stars

    Science.gov (United States)

    Gavel, Donald T.

    2004-10-01

    In this paper we present a solution to the MCAO reconstruction problem using multiple laser guide stars and show that it can be interpreted as a form of back-projection tomography. It is shown that a key intermediate step is to determine a minimum-variance estimate of the index variations over the atmospheric volume. We follow the idea of Tokovinin and Viard [JOSA-A, April 2001] in initially formulating the problem in the Fourier domain; we then extend the interpretation to the spatial domain. The former results were limited to the case of infinite aperture and plane wave beacons, and the statistically optimal wavefront solution was given for a single science direction. The new approach is more general and interpretable as tomographic back-projections, which gives rise to algorithms for the finite aperture, cone (laser) beams, and wide-science-field cases. A fortuitous consequence of this analysis is that a "fast" algorithm suitable for real-time implementation has become evident. The reconstruction requires only filtering and the inversion of small (dimension = number of guidestars) matrices. In simulations, we compare results with those of a spatial domain least-square matrix-inversion method.

  2. Nondestructive observation of teeth post core-space using optical coherence tomography: comparison with microcomputed tomography and live images

    Science.gov (United States)

    Minamino, Takuya; Mine, Atsushi; Matsumoto, Mariko; Sugawa, Yoshihiko; Kabetani, Tomoshige; Higashi, Mami; Kawaguchi, Asuka; Ohmi, Masato; Awazu, Kunio; Yatani, Hirofumi

    2015-10-01

    No previous reports have observed inside the root canal using both optical coherence tomography (OCT) and x-ray microcomputed tomography (μCT) for the same sample. The purpose of this study was to clarify both OCT and μCT image properties from observations of the same root canal after resin core build-up treatment. As OCT allows real-time observation of samples, gap formation may be able to be shown in real time. A dual-cure, one-step, self-etch adhesive system bonding agent, and dual-cure resin composite core material were used in root canals in accordance with instructions from the manufacturer. The resulting OCT images were superior for identifying gap formation at the interface, while μCT images were better to grasp the tooth form. Continuous tomographic images from real-time OCT observation allowed successful construction of a video of the resin core build-up procedure. After 10 to 12 s of light curing, a gap with a clear new signal occurred at the root-core material interface, proceeding from the coronal side (6 mm from the cemento-enamel junction) to the apical side of the root.

  3. Visual Quality Enhancement in Multispectral Optoacoustic Tomography using Active Contour Segmentation Priors

    CERN Document Server

    Mandal, Subhamoy; Razansky, Daniel

    2015-01-01

    Segmentation of biomedical images is essential for studying and characterizing anatomical structures, detection and evaluation of pathological tissues. Segmentation has been further shown to enhance the reconstruction performance in many tomographic imaging modalities by accounting for heterogeneities of the excitation field and tissue properties in the imaged region. This is particularly relevant in optoacoustic tomography, where discontinuities in the optical and acoustic tissue properties, if not properly accounted for, may result in deterioration of the imaging performance. Efficient segmentation of optoacoustic images is often hampered by the relatively low intrinsic contrast of large anatomical structures, which is further impaired by the limited angular coverage of some commonly employed tomographic imaging configurations. Herein, we analyze the performance of active contour models for boundary segmentation in cross-sectional optoacoustic tomography. The segmented mask is employed to construct a two co...

  4. Block matching 3D random noise filtering for absorption optical projection tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fumene Feruglio, P; Vinegoni, C; Weissleder, R [Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114 (United States); Gros, J [Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA 02115 (United States); Sbarbati, A, E-mail: cvinegoni@mgh.harvard.ed [Department of Morphological and Biomedical Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2010-09-21

    Absorption and emission optical projection tomography (OPT), alternatively referred to as optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT), are recently developed three-dimensional imaging techniques with value for developmental biology and ex vivo gene expression studies. The techniques' principles are similar to the ones used for x-ray computed tomography and are based on the approximation of negligible light scattering in optically cleared samples. The optical clearing is achieved by a chemical procedure which aims at substituting the cellular fluids within the sample with a cell membranes' index matching solution. Once cleared the sample presents very low scattering and is then illuminated with a light collimated beam whose intensity is captured in transillumination mode by a CCD camera. Different projection images of the sample are subsequently obtained over a 360{sup 0} full rotation, and a standard backprojection algorithm can be used in a similar fashion as for x-ray tomography in order to obtain absorption maps. Because not all biological samples present significant absorption contrast, it is not always possible to obtain projections with a good signal-to-noise ratio, a condition necessary to achieve high-quality tomographic reconstructions. Such is the case for example, for early stage's embryos. In this work we demonstrate how, through the use of a random noise removal algorithm, the image quality of the reconstructions can be considerably improved even when the noise is strongly present in the acquired projections. Specifically, we implemented a block matching 3D (BM3D) filter applying it separately on each acquired transillumination projection before performing a complete three-dimensional tomographical reconstruction. To test the efficiency of the adopted filtering scheme, a phantom and a real biological sample were processed. In both cases, the BM3D filter led to a signal-to-noise ratio

  5. Structural and functional optical coherence tomography imaging of the colon

    Science.gov (United States)

    Welge, Weston Anthony

    Colorectal cancer (CRC) remains the second deadliest cancer in the United States, despite steady reduction in mortality rate over the last three decades. Colonoscopy is the gold-standard screening modality with high sensitivity and specificity to mature polyps. However, the miss rate for small (invention in 1991. As the optical analog to ultrasound, OCT provides information in both lateral and depth dimensions with resolution measurements. Angiogenesis occurs at the beginning of tumorigenesis, and the tumor-originated arterioles are incapable of regular vasodilation. This Doppler OCT technique could potentially detect tumors at the earliest stages by measuring the change in local blood flow velocity in response to vasodilatory stimuli.

  6. Multiple Fan-Beam Optical Tomography: Modelling Techniques

    Directory of Open Access Journals (Sweden)

    Pang Jon Fea

    2009-10-01

    Full Text Available This paper explains in detail the solution to the forward and inverse problem faced in this research. In the forward problem section, the projection geometry and the sensor modelling are discussed. The dimensions, distributions and arrangements of the optical fibre sensors are determined based on the real hardware constructed and these are explained in the projection geometry section. The general idea in sensor modelling is to simulate an artificial environment, but with similar system properties, to predict the actual sensor values for various flow models in the hardware system. The sensitivity maps produced from the solution of the forward problems are important in reconstructing the tomographic image.

  7. Image reconstruction for optical tomography using photon density waves

    Science.gov (United States)

    Khalaf, Reem; van der Zee, Pieter; Dixon, Laurence C. W.; Davies, Alan

    1998-12-01

    The forward model in this work is based on the frequency- dependent diffusion approximation. The diffusion approximation is solved using the Finite Element Method with the Robin Boundary condition. The model is 2D, with a circular domain simulating the cross section of a limb. The meshes are generated with FIDAP, a computational fluid dynamics package. The diffusion matrix is solved using Cholesky decomposition, and results on the boundary for a modulated source include AC and DC data for a given set of optical parameters.

  8. Sound field reconstruction using acousto-optic tomography

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2012-01-01

    When sound propagates through a medium, it results in pressure fluctuations that change the instantaneous density of the medium. Under such circumstances, the refractive index that characterizes the propagation of light is not constant, but influenced by the acoustic field. This kind of interaction...... the acousto-optic effect in air, and demonstrates that it can be measured with a laser Doppler vibrometer in the audible frequency range. The tomographic reconstruction is tested by means of computer simulations and measurements. The main features observed in the simulations are also recognized...

  9. Optical design and active optics methods in astronomy

    Science.gov (United States)

    Lemaitre, Gerard R.

    2013-03-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis.

  10. Phase-sensitive multiple reference optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Dsouza, Roshan I.; Subhash, Hrebesh; Neuhaus, Kai; Hogan, Josh; Wilson, Carol; Leahy, Martin

    2016-03-01

    Multiple reference OCT (MR-OCT) is a recently developed novel time-domain OCT platform based on a miniature reference arm optical delay, which utilizes a single miniature actuator and a partial mirror to generate recirculating optical delay for extended axial-scan range. MR-OCT technology promises to fit into a robust and cost-effective design, compatible with integration into consumer-level devices for addressing wide applications in mobile healthcare and biometry applications. Using conventional intensity based OCT processing techniques, the high-resolution structural imaging capability of MR-OCT has been recently demonstrated for various applications including in vivo human samples. In this study, we demonstrate the feasibility of implementing phase based processing with MR-OCT for various functional applications such as Doppler imaging and sensing of blood vessels, and for tissue vibrography applications. The MR-OCT system operates at 1310nm with a spatial resolution of ~26 µm and an axial scan rate of 600Hz. Initial studies show a displacement-sensitivity of ~20 nm to ~120 nm for the first 1 to 9 orders of reflections, respectively with a mirror as test-sample. The corresponding minimum resolvable velocity for these orders are ~2.3 µm/sec and ~15 µm/sec respectively. Data from a chick chorioallantoic membrane (CAM) model will be shown to demonstrate the feasibility of MR-OCT for imaging in-vivo blood flow.

  11. Swept source optical coherence tomography based on non-uniform discrete fourier transform

    Institute of Scientific and Technical Information of China (English)

    Tong Wu; Zhihua Ding; Kai Wang; Chuan Wang

    2009-01-01

    A high-speed high-sensitivity swept source optical coherence tomography (SSOCT) system using a high speed swept laser source is developed.Non-uniform discrete fourier transform (NDFT) method is introduced in the SSOCT system for data processing.Frequency calibration method based on a Mach-Zender interferometer (MZI) and conventional data interpolation method is also adopted in the system for comparison.Optical coherence tomography (OCT) images from SSOCT based on the NDFT method,the MZI method,and the interpolation method are illustrated.The axial resolution of the SSOCT based on the NDFT method is comparable to that of the SSOCT system using MZI calibration method and conventional data interpolation method.The SSOCT system based on the NDFT method can achieve higher signal intensity than that of the system based on the MZI calibration method and conventional data interpolation method because of the better utilization of the power of source.

  12. Optical coherence tomography and T cell gene expression analysis in patients with benign multiple sclerosis

    Directory of Open Access Journals (Sweden)

    John Soltys

    2017-01-01

    Full Text Available Benign multiple sclerosis is a retrospective diagnosis based primarily on a lack of motor symptom progression. Recent findings that suggest patients with benign multiple sclerosis experience non-motor symptoms highlight the need for a more prospective means to diagnose benign multiple sclerosis early in order to help direct patient care. In this study, we present optical coherence tomography and T cell neurotrophin gene analysis findings in a small number of patients with benign multiple sclerosis. Our results demonstrated that retinal nerve fiber layer was mildly thinned, and T cells had a distinct gene expression profile that included upregulation of interleukin 10 and leukemia inhibitory factor, downregulation of interleukin 6 and neurotensin high affinity receptor 1 (a novel neurotrophin receptor. These findings add evidence for further investigation into optical coherence tomography and mRNA profiling in larger cohorts as a potential means to diagnose benign multiple sclerosis in a more prospective manner.

  13. Flow rate estimation by optical coherence tomography using contrast dilution approach

    Science.gov (United States)

    Štohanzlová, Petra; Kolář, Radim

    2015-07-01

    This paper describes experiments and methodology for flow rate estimation using optical coherence tomography and dilution method in single fiber setup. The single fiber is created from custom made glass capillary and polypropylene hollow fiber. As a data source, measurements on single fiber phantom with continuous flow of carrier medium and bolus of Intralipid solution as a contrast agent were used using Thorlabs OCT OCS1300SS. The measured data were processed by methods of image processing, in order to precisely align the individual images in the sequence and extract dilution curves from the area inside the fiber. An experiment proved that optical coherence tomography can be used for flow rate estimation by the dilution method with precision around 7%.

  14. Quantitative analysis of the Stratus optical coherence tomography fast macular thickness map reports

    Directory of Open Access Journals (Sweden)

    Domalpally Amitha

    2010-01-01

    Full Text Available The cross sectional optical coherence tomography images have an important role in evaluating retinal diseases. The reports generated by the Stratus fast macular thickness scan protocol are useful for both clinical and research purposes. The centerpoint thickness is an important outcome measure for many therapeutic trials related to macular disease. The data is susceptible to artifacts such as decentration and boundary line errors and could be potentially erroneous. An understanding of how the data is generated is essential before utilizing the data. This article describes the interpretation of the fast macular thickness map report, assessment of the quality of an optical coherence tomography image and identification of the artifacts that could influence the numeric data.

  15. Optical coherence tomography monitoring of angioplasty balloon inflation in a deployment tester

    Science.gov (United States)

    Azarnoush, Hamed; Vergnole, Sébastien; Bourezak, Rafik; Boulet, Benoit; Lamouche, Guy

    2010-08-01

    We present an innovative integration of an intravascular optical coherence tomography probe into a computerized balloon deployment system to monitor the balloon inflation process. The high-resolution intraluminal imaging of the balloon provides a detailed assessment of the balloon quality and, consequently, a technique to improve the balloon manufacturing process. A custom-built swept-source optical coherence tomography system is used for real-time imaging. A semicompliant balloon with a nominal diameter of 4 mm is fabricated for the experiments. Imaging results correspond to balloon deployment in air and inside an artery phantom. A characterization of the balloon diameter, wall thickness, compliance, and elastic modulus is provided, based on image segmentation. Using the images obtained from the probe pullback, a three-dimensional visualization of the inflated balloon is presented.

  16. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images.

    Science.gov (United States)

    Duan, Jinming; Tench, Christopher; Gottlob, Irene; Proudlock, Frank; Bai, Li

    2015-11-21

    Optical coherence tomography (OCT) imaging plays an important role in clinical diagnosis and monitoring of diseases of the human retina. Automated analysis of optical coherence tomography images is a challenging task as the images are inherently noisy. In this paper, a novel variational image decomposition model is proposed to decompose an OCT image into three components: the first component is the original image but with the noise completely removed; the second contains the set of edges representing the retinal layer boundaries present in the image; and the third is an image of noise, or in image decomposition terms, the texture, or oscillatory patterns of the original image. In addition, a fast Fourier transform based split Bregman algorithm is developed to improve computational efficiency of solving the proposed model. Extensive experiments are conducted on both synthesised and real OCT images to demonstrate that the proposed model outperforms the state-of-the-art speckle noise reduction methods and leads to accurate retinal layer segmentation.

  17. Theoretical limit of spatial resolution in diffuse optical tomography using a perturbation model

    Energy Technology Data Exchange (ETDEWEB)

    Konovalov, A B; Vlasov, V V [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation)

    2014-03-28

    We have assessed the limit of spatial resolution of timedomain diffuse optical tomography (DOT) based on a perturbation reconstruction model. From the viewpoint of the structure reconstruction accuracy, three different approaches to solving the inverse DOT problem are compared. The first approach involves reconstruction of diffuse tomograms from straight lines, the second – from average curvilinear trajectories of photons and the third – from total banana-shaped distributions of photon trajectories. In order to obtain estimates of resolution, we have derived analytical expressions for the point spread function and modulation transfer function, as well as have performed a numerical experiment on reconstruction of rectangular scattering objects with circular absorbing inhomogeneities. It is shown that in passing from reconstruction from straight lines to reconstruction using distributions of photon trajectories we can improve resolution by almost an order of magnitude and exceed the accuracy of reconstruction of multi-step algorithms used in DOT. (optical tomography)

  18. High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon

    Science.gov (United States)

    Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping

    2005-03-01

    A high-resolution second-harmonic optical coherence tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti :sapphire laser. An axial resolution of 4.2μm at the second-harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second-harmonic generation signals that strongly depend on the orientation, polarization, and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues of the rat-tail tendon. Highly organized collagen fibrils in the rat-tail tendon can be visualized in recorded images.

  19. Correlation of optic neuritis and retinal nerve fibre thickness using optical coherence tomography in a cohort of multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Izanne Roos

    2016-03-01

    Full Text Available Background: Optical coherence tomography (OCT is a fast, non-invasive imaging technology that produces 3D, high-resolution images of the retina. Direct visualisation of the retina allows a unique opportunity to study the effects of multiple sclerosis (MS-associated neurodegeneration on retinal ganglion cells as well as effects of retrobulbar demyelination on axonal and retinal architecture through measurement of retinal nerve fibre layer (RNFL thickness and total macular volume (TMV. These findings are clinically important as axonal loss is irreversible and correlates with disability.Aim: To determine the role and usefulness of OCT in a local cohort of MS patients.Setting: Neurology Clinic, Inkosi Albert Luthuli Central Hospital, KwaZulu-Natal, South Africa.Methods: Nineteen patients with MS currently being treated with interferon β-1b underwent OCT examination of both eyes. RNFL thickness and macular volume were measured and correlated with clinical disease characteristics, history of optic neuritis and level of disability.Results: Mean RNFL thickness was 77.3 μm with no significant difference in mean RNFL in eyes with a history of optic neuritis (ON and those without (p = 0.4. Eyes with a history of ON did, however, have significantly thinner RNFL compared with the contralateral eye (p = 0.04. Despite a strong correlation between TMV and RNFL (p = 0.001, a subset of patients with normal RNFL had TMV that was less than 1% of what was expected. There was no correlation between RNFL and disability scores.Conclusion: OCT enables a direct axonal ‘optical biopsy’, for monitoring disease progression and treatment response in MS. RNFL thinning occurs independently of a history of optic neuritis and may represent a chronic optic neuropathy in patients with MS.Keywords: Multiple sclerosis; optical coherence tomography

  20. X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms.

    Science.gov (United States)

    Sandoghchi, S R; Jasion, G T; Wheeler, N V; Jain, S; Lian, Z; Wooler, J P; Boardman, R P; Baddela, N; Chen, Y; Hayes, J; Fokoua, E Numkam; Bradley, T; Gray, D R; Mousavi, S M; Petrovich, M; Poletti, F; Richardson, D J

    2014-10-20

    Specialty optical fibers, in particular microstructured and multi-material optical fibers, have complex geometry in terms of structure and/or material composition. Their fabrication, although rapidly developing, is still at a very early stage of development compared with conventional optical fibers. Structural characterization of these fibers during every step of their multi-stage fabrication process is paramount to optimize the fiber-drawing process. The complexity of these fibers restricts the use of conventional refractometry and microscopy techniques to determine their structural and material composition. Here we present, to the best of our knowledge, the first nondestructive structural and material investigation of specialty optical fibers using X-ray computed tomography (CT) methods, not achievable using other techniques. Recent advances in X-ray CT techniques allow the examination of optical fibers and their preforms with sub-micron resolution while preserving the specimen for onward processing and use. In this work, we study some of the most challenging specialty optical fibers and their preforms. We analyze a hollow core photonic band gap fiber and its preforms, and bond quality at the joint between two fusion-spliced hollow core fibers. Additionally, we studied a multi-element optical fiber and a metal incorporated dual suspended-core optical fiber. The application of X-ray CT can be extended to almost all optical fiber types, preforms and devices.