WorldWideScience

Sample records for optical integrated light

  1. Optical Characteristics of a Multichannel Hybrid Integrated Light Source for Ultra-High-Bandwidth Optical Interconnections

    Directory of Open Access Journals (Sweden)

    Takanori Shimizu

    2015-11-01

    Full Text Available The optical characteristics of a multi-channel hybrid integrated light source were described for an optical interconnection with a bandwidth of over 10 Tbit/s. The power uniformity of the relative intensity of a 1000-channel light source was shown, and the minimum standard deviation s of the optical power of the 200 output ports at each 25-channel laser diode (LD array was estimated to be 0.49 dB. This hybrid integrated light source is expected to be easily adaptable to a photonics-electronics convergence system for ultra-high-bandwidth interchip interconnections.

  2. Integrated Quantum Optics: Experiments towards integrated quantum-light sources and quantum-enhanced sensing

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk

    The work presented in this thesis is focused on experimental application and generation of continuous variable quantum correlated states of light in integrated dielectric structures. Squeezed states are among the most exploited continuous variable optical states for free-space quantum-enhanced se...... is presented and an optimized device design is proposed. The devices have been fabricated and tested optically and preliminary interrogations of the output quantum noise have been performed....

  3. Stechiometric neodymium compounds as new materials for light sources in integrated optics

    International Nuclear Information System (INIS)

    Malinowski, M.

    1981-01-01

    Short review of physico-chemical properties of stechiometric neodymium compounds has been presented. Several constructions of minilasers as promising light sources for integrated optics devices have been described. (author)

  4. Integrated Photonics Enabled by Slow Light

    DEFF Research Database (Denmark)

    Mørk, Jesper; Chen, Yuntian; Ek, Sara

    2012-01-01

    In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources.......In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources....

  5. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Integrated Optical lightguide device

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Veldhuis, G.J.

    2005-01-01

    In an integrated optical lightguide device including a light-transmitting core layer, an inclusion or buffer layer, and an active or cladding layer. The cladding layer is divided into segments. Groups of different segments exhibit different refractive indices, light intensity profiles or different

  7. Integrated Optical lightguide device

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Veldhuis, G.J.

    2000-01-01

    In an integrated optical lightguide device including a light-transmitting core layer, an inclusion or buffer layer, and an active or cladding layer. The cladding layer is divided into segments. Groups of different segments exhibit different refractive indices, light intensity profiles or different

  8. The first neural probe integrated with light source (blue laser diode) for optical stimulation and electrical recording.

    Science.gov (United States)

    Park, HyungDal; Shin, Hyun-Joon; Cho, Il-Joo; Yoon, Eui-sung; Suh, Jun-Kyo Francis; Im, Maesoon; Yoon, Euisik; Kim, Yong-Jun; Kim, Jinseok

    2011-01-01

    In this paper, we report a neural probe which can selectively stimulate target neurons optically through Si wet etched mirror surface and record extracellular neural signals in iridium oxide tetrodes. Consequently, the proposed approach provides to improve directional problem and achieve at least 150/m gap distance between stimulation and recording sites by wet etched mirror surface in V-groove. Also, we developed light source, blue laser diode (OSRAM Blue Laser Diode_PL 450), integration through simple jig for one-touch butt-coupling. Furthermore, optical power and impedance of iridium oxide tetrodes were measured as 200 μW on 5 mW from LD and 206.5 k Ω at 1 kHz and we demonstrated insertion test of probe in 0.5% agarose-gel successfully. We have successfully transmitted a light of 450 nm to optical fiber through the integrated LD using by butt-coupling method.

  9. Designing neutral-atom nanotraps with integrated optical waveguides

    International Nuclear Information System (INIS)

    Burke, James P. Jr.; Chu, S.-T.; Bryant, Garnett W.; Williams, C.J.; Julienne, P.S.

    2002-01-01

    Integrated optical structures offer the intriguing potential of compact, reproducible waveguide arrays, rings, Y junctions, etc., that could be used to design evanescent field traps to transport, store, and interact atoms in networks as complicated as any integrated optical waveguide circuit. We theoretically investigate three approaches to trapping atoms above linear integrated optical waveguides. A two-color scheme balances the decaying evanescent fields of red- and blue-detuned light to produce a potential minimum above the guide. A one-color surface trap proposal uses blue-detuned light and the attractive surface interaction to provide a potential minimum. A third proposal uses blue-detuned light in two guides positioned above and below one another. The atoms are confined to the 'dark' spot in the vacuum gap between the guides. We find that all three approaches can be used to trap atoms in two or three dimensions with approximately 100 mW of laser power. We show that the dark spot guide is robust to light scatter and provides the most viable approach for constructing integrated optical circuits that could be used to transport and manipulate atoms in a controlled manner

  10. Laser cooling of neutral atoms by red-shifted diffuse light in an optical integral sphere cavity

    International Nuclear Information System (INIS)

    Wang Yuzhu; Chen Hongxin; Cai Weiquan; Liu Liang; Zhou Shanyu; Shu Wei; Li Fosheng

    1994-01-01

    In this paper, we report a cooling and deceleration experiment of a thermal beam by using a nearly resonant red-shifted diffuse light in an optical integral sphere cavity. With this red-shifted diffuse light, a part of thermal sodium atoms is cooled to 380m/s and the velocity width of cooled atoms is about 20m/s. The mechanism of this kind of laser cooling and the experimental results are discussed. (author). 12 refs, 5 figs

  11. Design of fiber optic probes for laser light scattering

    Science.gov (United States)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  12. Advanced materials for integrated optical waveguides

    CERN Document Server

    Tong Ph D, Xingcun Colin

    2014-01-01

    This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, ...

  13. Optical registration of spaceborne low light remote sensing camera

    Science.gov (United States)

    Li, Chong-yang; Hao, Yan-hui; Xu, Peng-mei; Wang, Dong-jie; Ma, Li-na; Zhao, Ying-long

    2018-02-01

    For the high precision requirement of spaceborne low light remote sensing camera optical registration, optical registration of dual channel for CCD and EMCCD is achieved by the high magnification optical registration system. System integration optical registration and accuracy of optical registration scheme for spaceborne low light remote sensing camera with short focal depth and wide field of view is proposed in this paper. It also includes analysis of parallel misalignment of CCD and accuracy of optical registration. Actual registration results show that imaging clearly, MTF and accuracy of optical registration meet requirements, it provide important guarantee to get high quality image data in orbit.

  14. Integrated optical interrogation of micro-structures

    Science.gov (United States)

    Evans, III, Boyd M.; Datskos, Panagiotis G.; Rajic, Slobodan

    2003-01-01

    The invention is an integrated optical sensing element for detecting and measuring changes in position or deflection. A deflectable member, such as a microcantilever, is configured to receive a light beam. A waveguide, such as an optical waveguide or an optical fiber, is positioned to redirect light towards the deflectable member. The waveguide can be incorporated into the deflectable member or disposed adjacent to the deflectable member. Means for measuring the extent of position change or deflection of the deflectable member by receiving the light beam from the deflectable member, such as a photodetector or interferometer, receives the reflected light beam from the deflectable member. Changes in the light beam are correlated to the changes in position or deflection of the deflectable member. A plurality of deflectable members can be arranged in a matrix or an array to provide one or two-dimensional imaging or sensing capabilities.

  15. Optical bistability controlling light with light

    CERN Document Server

    Gibbs, Hyatt

    1985-01-01

    Optical Bistability: Controlling Light with Light focuses on optical bistability in nonlinear optical systems. Emphasis is on passive (non-laser) systems that exhibit reversible bistability with input intensity as the hysteresis variable, along with the physics and the potential applications of such systems for nonlinear optical signal processing. This book consists of seven chapters and begins with a historical overview of optical bistability in lasers and passive systems. The next chapter describes steady-state theories of optical bistability, including the Bonifacio-Lugiato model, as we

  16. Light-switching-light optical transistor based on metallic nanoparticle cross-chains geometry incorporating Kerr nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    AbdelMalek, Fathi; Aroua, Walid [National Institute of Applied Science and Technology, University of Carthage, Tunis (Tunisia); Haxha, Shyqyri [Computer Science and Technology Department, Bedfordshire University, Luton (United Kingdom); Flint, Ian [Selex ES Ltd, Luton, Bedfordshire (United Kingdom)

    2016-08-15

    In this research work, we propose all-optical transistor based on metallic nanoparticle cross-chains geometry. The geometry of the proposed device consists of two silver nanoparticle chains arranged along the x- and z-axis. The x-chain contains a Kerr nonlinearity, the source beam is set at the left side of the later, while the control beam is located at the top side of the z-chain. The control beam can turn ON and OFF the light transmission of an incoming light. We report a theoretical model of a very small all-optical transistor proof-of-concept made of optical 'light switching light' concept. We show that the transmission efficiency strongly depends on the control beam and polarization of the incoming light. We investigate the influence of a perfect reflector and reflecting substrate on the transmission of the optical signal when the control beam is turned ON and OFF. These new findings make our unique design a potential candidate for future highly-integrated optical information processing chips. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. On-chip synthesis of circularly polarized emission of light with integrated photonic circuits.

    Science.gov (United States)

    He, Li; Li, Mo

    2014-05-01

    The helicity of circularly polarized (CP) light plays an important role in the light-matter interaction in magnetic and quantum material systems. Exploiting CP light in integrated photonic circuits could lead to on-chip integration of novel optical helicity-dependent devices for applications ranging from spintronics to quantum optics. In this Letter, we demonstrate a silicon photonic circuit coupled with a 2D grating emitter operating at a telecom wavelength to synthesize vertically emitting, CP light from a quasi-TE waveguide mode. Handedness of the emitted circular polarized light can be thermally controlled with an integrated microheater. The compact device footprint enables a small beam diameter, which is desirable for large-scale integration.

  18. Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.

    Science.gov (United States)

    Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N

    2012-03-26

    We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

  19. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Directory of Open Access Journals (Sweden)

    Cheng Chuantong

    2017-07-01

    Full Text Available Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  20. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Science.gov (United States)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-07-01

    Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  1. FIBER OPTIC LIGHTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Munir BATUR

    2013-01-01

    Full Text Available Recently there have been many important and valuable developments in the communication industry. The huge increase in the sound, data and visual communications has caused a parallel increase in the demand for systems with wider capacity, higher speed and higher quality. Communication systems that use light to transfer data are immensely increased. There have recently many systems in which glass or plastic fiber cables were developed for light wave to be transmitted from a source to a target place. Fiber optic systems, are nowadays widely used in energy transmission control systems, medicine, industry and lighting. The basics of the system is, movement of light from one point to another point in fiber cable with reflections. Fiber optic lighting systems are quite secure than other lighting systems and have flexibility for realizing many different designs. This situation makes fiber optics an alternative for other lighting systems. Fiber optic lighting systems usage is increasing day-by-day in our life. In this article, these systems are discussed in detail.

  2. Complete achromatic and robustness electro-optic switch between two integrated optical waveguides

    Science.gov (United States)

    Huang, Wei; Kyoseva, Elica

    2018-01-01

    In this paper, we present a novel design of electro-optic modulator and optical switching device, based on current integrated optics technique. The advantages of our optical switching device are broadband of input light wavelength, robustness against varying device length and operation voltages, with reference to previous design. Conforming to our results of previous paper [Huang et al, phys. lett. a, 90, 053837], the coupling of the waveguides has a hyperbolic-secant shape. while detuning has a sign flip at maximum coupling, we called it as with a sign flip of phase mismatch model. The a sign flip of phase mismatch model can produce complete robust population transfer. In this paper, we enhance this device to switch light intensity controllable, by tuning external electric field based on electro-optic effect.

  3. Tunable light source for fiber optic lighting applications

    Science.gov (United States)

    Narendran, Nadarajah; Bierman, Andrew; Finney, Mark J.; Edwards, Ian K.

    1997-09-01

    This paper examines the possibility of tuning the lamp spectrum to compensate for color distortions in fiber optic lighting systems. Because most optical fibers have strong absorption in the blue and red wavelength regions, white light entering and propagating down an optical fiber suffers varied amounts of attenuation as a function of wavelength. As a result, the light exiting the optical fiber has a greenish tint that the lighting design community considers undesirable in interior lighting applications. HID lamps are commonly used for the light source in this industry. Certain classes of HID lamps tend to shift in color when their operating position or the input voltage to the lamp is changed. An experimental study is being conducted to characterize the color shift properties of a small HID lamp as a function of tilt and input voltage. The study also examines the possibility of exploiting this color shift to compensate for the color distortions caused by optical fibers. The details of the experiment and the results are presented in this manuscript.

  4. III-nitride Photonic Integrated Circuit: Multi-section GaN Laser Diodes for Smart Lighting and Visible Light Communication

    KAUST Repository

    Shen, Chao

    2017-04-01

    The past decade witnessed the rapid development of III-nitride light-emitting diodes (LEDs) and laser diodes (LDs), for smart lighting, visible-light communication (VLC), optical storage, and internet-of-things. Recent studies suggested that the GaN-based LDs, which is free from efficiency droop, outperform LEDs as a viable high-power light source. Conventionally, the InGaN-based LDs are grown on polar, c-plane GaN substrates. However, a relatively low differential gain limited the device performance due to a significant polarization field in the active region. Therefore, the LDs grown on nonpolar m-plane and semipolar (2021)-plane GaN substrates are posed to deliver high-efficiency owing to the entirely or partially eliminated polarization field. To date, the smart lighting and VLC functionalities have been demonstrated based on discrete devices, such as LDs, transverse-transmission modulators, and waveguide photodetectors. The integration of III-nitride photonic components, including the light emitter, modulator, absorber, amplifier, and photodetector, towards the realization of III-nitride photonic integrated circuit (PIC) offers the advantages of small-footprint, high-speed, and low power consumption, which has yet to be investigated. This dissertation presents the design, fabrication, and characterization of the multi-section InGaN laser diodes with integrated functionalities on semipolar (2021)-plane GaN substrates for enabling such photonic integration. The blue-emitting integrated waveguide modulator-laser diode (IWM-LD) exhibits a high modulation efficiency of 2.68 dB/V. A large extinction ratio of 11.3 dB is measured in the violet-emitting IWM-LD. Utilizing an integrated absorber, a high optical power (250mW), droop-free, speckle-free, and large modulation bandwidth (560MHz) blue-emitting superluminescent diode is reported. An integrated short-wavelength semiconductor optical amplifier with the laser diode at ~404 nm is demonstrated with a large gain of 5

  5. Towards All-optical Light Robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    In the Programmable Phase Optics (PPO) group at DTU Fotonik we pioneered the new and emerging research area of so-called Light Robotics including the new and disruptive 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time optically manipulated and “remote-controlled”......In the Programmable Phase Optics (PPO) group at DTU Fotonik we pioneered the new and emerging research area of so-called Light Robotics including the new and disruptive 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time optically manipulated and “remote......-controlled” in a volume with six-degrees-of-freedom. To be exploring the full potential of this new drone-like 3D light robotics approach in challenging microscopic geometries requires a versatile and real-time reconfigurable light coupling that can dynamically track a plurality of “light robots” in 3D to ensure...

  6. Integrated Miniature Arrays of Optical Biomolecule Detectors

    Science.gov (United States)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  7. Hybrid graphene/silicon integrated optical isolators with photonic spin–orbit interaction

    International Nuclear Information System (INIS)

    Ma, Jingwen; Sun, Xiankai; Xi, Xiang; Yu, Zejie

    2016-01-01

    Optical isolators are an important building block in photonic computation and communication. In traditional optics, isolators are realized with magneto-optical garnets. However, it remains challenging to incorporate such materials on an integrated platform because of the difficulty in material growth and bulky device footprint. Here, we propose an ultracompact integrated isolator by exploiting graphene's magneto-optical property on a silicon-on-insulator platform. The photonic nonreciprocity is achieved because the cyclotrons in graphene experiencing different optical spins exhibit different responses to counterpropagating light. Taking advantage of cavity resonance effects, we have numerically optimized a device design, which shows excellent isolation performance with the extinction ratio over 45 dB and the insertion loss around 12 dB at a wavelength near 1.55 μm. Featuring graphene's CMOS compatibility and substantially reduced device footprint, our proposal sheds light on monolithic integration of nonreciprocal photonic devices.

  8. Compressive sensing in a photonic link with optical integration

    DEFF Research Database (Denmark)

    Chen, Ying; Yu, Xianbin; Chi, Hao

    2014-01-01

    In this Letter, we present a novel structure to realize photonics-assisted compressive sensing (CS) with optical integration. In the system, a spectrally sparse signal modulates a multiwavelength continuous-wave light and then is mixed with a random sequence in optical domain. The optical signal......, which is equivalent to the function of integration required in CS. A proof-of-concept experiment with four wavelengths, corresponding to a compression factor of 4, is demonstrated. More simulation results are also given to show the potential of the technique....

  9. Green Lighting. Energy-efficient integrated lighting systems - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Linhart, F.; Scartezzini, J.-L.

    2009-10-15

    The objective of the Green Lighting project was to develop a High Performance Integrated Lighting System, based on advanced technologies for day- and electric lighting, achieving a Lighting Power Density (LPD) that does not exceed 3 W/m{sup 2}. The project has revealed that Anidolic Daylighting Systems (ADS) are an ideal basis for High Performance Integrated Lighting Systems. Not only are they able to provide adequate illumination (i.e. sufficiently high illuminance) in office rooms during large fractions of normal office hours, under various sky conditions and over the entire year, but they are also highly appreciated by office occupants at the condition that glare control mechanisms are available. Complementary electric lighting is, however, still necessary to back up the ADS at times when there is insufficient daylight flux available. It was shown during this project, that the most interesting trade-offs between energy-efficiency and visual comfort are obtained by using a combination of ceiling-mounted directly emitting luminaires with very high optical efficiencies for ambient lighting and portable desk lamps for temporary task lighting. The most appropriate lamps for the ceiling-mounted luminaires are currently highly efficient fluorescent tubes, but white LED tubes can be considered a realistic option for the future. The most suitable light sources for desk lamps for temporary task lighting are Compact Fluorescent Lamps (CFLs) and white LED light bulbs. Based on the above-mentioned technologies, a High Performance Integrated Lighting System with a very low LPD has been developed over the last three years. The system has been set up in an office room of the LESO solar experimental building located on the EPFL campus; it has been tested intensively during a Post-Occupancy Evaluation (POE) study involving twenty human subjects. This study has revealed that the subjects' performance and subjective visual comfort was improved by the new system, compared to

  10. FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Ocvirk, P.

    2010-01-01

    Model color-magnitude diagrams of low-metallicity globular clusters (GCs) usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modeling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyze the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.), and the stellar population models of Vazdekis et al. and Bruzual and Charlot, and focus on the reconstructed stellar age distributions. First, we show that background/foreground contamination correlates with E(B - V), which allows us to define a clean subsample of uncontaminated GCs, on the basis of an E(B - V) filtering. We then identify a 'confusion zone' where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70%-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch (HB) ratio indicates that the confusion is driven by HB morphology: red HB clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H] = [ - 2, - 1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an H II region are present. This work also provides a practical method for constraining HB morphology from high signal to noise integrated light spectroscopy in the optical. This will allow post-asymptotic giant branch evolution studies in a range of environments and at distances where resolving stellar populations

  11. Integrated optic vector-matrix multiplier

    Science.gov (United States)

    Watts, Michael R [Albuquerque, NM

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  12. Optics, light and lasers

    CERN Document Server

    Meschede, Dieter

    2008-01-01

    Starting from the concepts of classical optics, Optics, Light and Lasers introduces in detail the phenomena of linear and nonlinear light matter interaction, the properties of modern laser sources, and the concepts of quantum optics. Several examples taken from the scope of modern research are provided to emphasize the relevance of optics in current developments within science and technology. The text has been written for newcomers to the topic and benefits from the author's ability to explain difficult sequences and effects in a straightforward and easily comprehensible way. To this second, c

  13. Optical propagators in vector and spinor theories by path integral formalism

    International Nuclear Information System (INIS)

    Linares, J.

    1993-01-01

    The construction of an extended parabolic (wide-angle) vector and spinor wave theory is presented. For that, optical propagators in monochromatic vector light optics and monoenergetic spinor electron optics are evaluated by the path integral formalism. The auxiliary parameter method introduced by Fock and the Feynman-Dyson perturbative series are used. The proposed theory supplies, by a generalized Fermat's principle, the Mukunda-Simon-Sudarshan transformation for the passage from scalar to vector light (or spinor electron) optics in an asymptotic approximation. (author). 19 refs

  14. Dynamic light scattering optical coherence tomography.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Jiang, James Y; Zhu, Bo; Boas, David A

    2012-09-24

    We introduce an integration of dynamic light scattering (DLS) and optical coherence tomography (OCT) for high-resolution 3D imaging of heterogeneous diffusion and flow. DLS analyzes fluctuations in light scattered by particles to measure diffusion or flow of the particles, and OCT uses coherence gating to collect light only scattered from a small volume for high-resolution structural imaging. Therefore, the integration of DLS and OCT enables high-resolution 3D imaging of diffusion and flow. We derived a theory under the assumption that static and moving particles are mixed within the OCT resolution volume and the moving particles can exhibit either diffusive or translational motion. Based on this theory, we developed a fitting algorithm to estimate dynamic parameters including the axial and transverse velocities and the diffusion coefficient. We validated DLS-OCT measurements of diffusion and flow through numerical simulations and phantom experiments. As an example application, we performed DLS-OCT imaging of the living animal brain, resulting in 3D maps of the absolute and axial velocities, the diffusion coefficient, and the coefficient of determination.

  15. Light propagation in linear optical media

    CERN Document Server

    Gillen, Glen D; Guha, Shekhar

    2013-01-01

    Light Propagation in Linear Optical Media describes light propagation in linear media by expanding on diffraction theories beyond what is available in classic optics books. In one volume, this book combines the treatment of light propagation through various media, interfaces, and apertures using scalar and vector diffraction theories. After covering the fundamentals of light and physical optics, the authors discuss light traveling within an anisotropic crystal and present mathematical models for light propagation across planar boundaries between different media. They describe the propagation o

  16. Integrated optical readout for miniaturization of cantilever-based sensor system

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    The authors present the fabrication and characterization of an integrated optical readout scheme based on single-mode waveguides for cantilever-based sensors. The cantilever bending is read out by monitoring changes in the optical intensity of light transmitted through the cantilever that also acts...

  17. Plasmonic nanofocusing of light in an integrated silicon photonics platform.

    Science.gov (United States)

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2011-07-04

    The capability to focus electromagnetic energy at the nanoscale plays an important role in nanoscinece and nanotechnology. It allows enhancing light matter interactions at the nanoscale with applications related to nonlinear optics, light emission and light detection. It may also be used for enhancing resolution in microscopy, lithography and optical storage systems. Hereby we propose and experimentally demonstrate the nanoscale focusing of surface plasmons by constructing an integrated plasmonic/photonic on chip nanofocusing device in silicon platform. The device was tested directly by measuring the optical intensity along it using a near-field microscope. We found an order of magnitude enhancement of the intensity at the tip's apex. The spot size is estimated to be 50 nm. The demonstrated device may be used as a building block for "lab on a chip" systems and for enhancing light matter interactions at the apex of the tip.

  18. System for diffusing light from an optical fiber or light guide

    Science.gov (United States)

    Maitland, Duncan J [Pleasant Hill, CA; Wilson, Thomas S [San Leandro, CA; Benett, William J [Livermore, CA; Small, IV, Ward [

    2008-06-10

    A system for diffusing light from an optical fiber wherein the optical fiber is coupled to a light source, comprising forming a polymer element adapted to be connected to the optical fiber and incorporating a scattering element with the polymer element wherein the scattering element diffuses the light from the polymer element. The apparatus of the present invention comprises a polymer element operatively connected to the optical fiber and a scattering element operatively connected with the shape polymer element that diffuses the light from the polymer element.

  19. Quantum Dot Laser for a Light Source of an Athermal Silicon Optical Interposer

    Directory of Open Access Journals (Sweden)

    Nobuaki Hatori

    2015-04-01

    Full Text Available This paper reports a hybrid integrated light source fabricated on a silicon platform using a 1.3 μm wavelength quantum dot array laser. Temperature insensitive characteristics up to 120 °C were achieved by the optimum quantum dot structure and laser structure. Light output power was obtained that was high enough to achieve an optical error-free link of a silicon optical interposer. Furthermore, we investigated a novel spot size convertor in a silicon waveguide suitable for a quantum dot laser for lower energy cost operation of the optical interposer.

  20. Si light-emitting device in integrated photonic CMOS ICs

    Science.gov (United States)

    Xu, Kaikai; Snyman, Lukas W.; Aharoni, Herzl

    2017-07-01

    The motivation for integrated Si optoelectronics is the creation of low-cost photonics for mass-market applications. Especially, the growing demand for sensitive biochemical sensors in the environmental control or medicine leads to the development of integrated high resolution sensors. Here CMOS-compatible Si light-emitting device structures are presented for investigating the effect of various depletion layer profiles and defect engineering on the photonic transition in the 1.4-2.8 eV. A novel Si device is proposed to realize both a two-terminal Si-diode light-emitting device and a three-terminal Si gate-controlled diode light-emitting device in the same device structure. In addition to the spectral analysis, differences between two-terminal and three-terminal devices are discussed, showing the light emission efficiency change. The proposed Si optical source may find potential applications in micro-photonic systems and micro-optoelectro-mechanical systems (MOEMS) in CMOS integrated circuitry.

  1. Magneto-optical light scattering from ferromagnetic surfaces

    International Nuclear Information System (INIS)

    Gonzalez, M.U.; Armelles, G.; Martinez Boubeta, C.; Cebollada, A.

    2003-01-01

    We have studied the optical and magneto-optical components of the light scattered by the surface of several Fe films with different morphologies. We present a method, based on the ratio between the optical and magneto-optical components of the scattered intensity, to discern the physical origin, either structural or magnetic corrugation, of the light scattered by these ferromagnetic surfaces. Surface versus bulk magnetic information can be separated by magneto-optical light scattering measurements, the scattered light being more sensitive to magnetization differences between surface and bulk than the reflected one

  2. An optically stabilized fast-switching light emitting diode as a light source for functional neuroimaging.

    Directory of Open Access Journals (Sweden)

    Daniel A Wagenaar

    Full Text Available Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.007% per hour over a 12-h period, and short-term fluctuations to 0.005% root-mean-square over 10 seconds. The LED can be switched on and off completely within 100 μs, a feature that is crucial when visual stimuli and light for optical recording need to be interleaved to obtain artifact-free recordings. The utility of the system is demonstrated by recording visual responses in the central nervous system of the medicinal leech Hirudo verbana using voltage-sensitive dyes.

  3. Polarized light and optical measurement

    CERN Document Server

    Clarke, D N; Ter Haar, D

    2013-01-01

    Polarized Light and Optical Measurement is a five-chapter book that begins with a self-consistent conceptual picture of the phenomenon of polarization. Chapter 2 describes a number of interactions of light and matter used in devising optical elements in polarization studies. Specific optical elements are given in Chapter 3. The last two chapters explore the measurement of the state of polarization and the various roles played in optical instrumentation by polarization and polarization-sensitive elements. This book will provide useful information in this field of interest for research workers,

  4. Light-effect transistor (LET with multiple independent gating controls for optical logic gates and optical amplification

    Directory of Open Access Journals (Sweden)

    Jason eMarmon

    2016-03-01

    Full Text Available Modern electronics are developing electronic-optical integrated circuits, while their electronic backbone, e.g. field-effect transistors (FETs, remains the same. However, further FET down scaling is facing physical and technical challenges. A light-effect transistor (LET offers electronic-optical hybridization at the component level, which can continue Moore’s law to quantum region without requiring a FET’s fabrication complexity, e.g. physical gate and doping, by employing optical gating and photoconductivity. Multiple independent gates are therefore readily realized to achieve unique functionalities without increasing chip space. Here we report LET device characteristics and novel digital and analog applications, such as optical logic gates and optical amplification. Prototype CdSe-nanowire-based LETs show output and transfer characteristics resembling advanced FETs, e.g. on/off ratios up to ~1.0x106 with a source-drain voltage of ~1.43 V, gate-power of ~260 nW, and subthreshold swing of ~0.3 nW/decade (excluding losses. Our work offers new electronic-optical integration strategies and electronic and optical computing approaches.

  5. Integrating sphere-based setup as an accurate system for optical properties measurements

    CSIR Research Space (South Africa)

    Abdalmonem, S

    2010-09-01

    Full Text Available Determination of the optical properties of solid and liquid samples has great importance. Since the integrating sphere-based setup is used to measure the amount of reflected and transmitted light by the examined samples, optical properties could...

  6. Slow-light solitons in atomic media and doped optical fibers

    International Nuclear Information System (INIS)

    Korolkova, N.; Sinclair, G.F.; Leonhardt, U.

    2005-01-01

    Full text: We show how to generate optical solitons in atomic media that can be slowed down or accelerated at will. Such slow-light soliton is a polarization structure propagating with a speed that is proportional to the total intensity of the incident light. Ultimately, this method will allow the storage, retrieval and possibly the manipulation of the quantum information in atomic media. Solitons with controllable speed are constructed generalizing the theory of slow-light propagation to an integrable regime of nonlinear dynamics. For the first time, the inverse scattering method for slow-light solitons is developed. In contrast to the pioneering experimental demonstrations of slow light, we consider strong spin modulations where the non-linear dynamics of light and atoms creates polarization solitons. We also analyze how this scheme can be implemented in optical fibers doped with Lambda-atoms. In quantum-information applications, such slow-light solitons could complement the use of quantum solitons in fibres with the advantage of storing quantum information in media and complement methods for quantum memory with the advantages of non-linear dynamics, in particular the intrinsic stability of solitons. (author)

  7. Carambola optics for recycling of light.

    Science.gov (United States)

    Leutz, Ralf; Fu, Ling; Ries, Harald

    2006-04-20

    Recycling of light allows the luminance (radiance) emitted by a light source to be increased at the cost of reducing the total luminous flux (radiant power). Recycling of light means returning part of the emitted light to the source, where part of it will escape absorption. An optical design that is suitable for multiple and controlled recycling is described. Carambola optics is named for its resemblance to star fruit. Several pairs of mirrors or prisms redirect light repeatedly onto the source, thus achieving multiple transits of the light through the source. This recycled light exits the carambola in the same phase space as light directly emitted and not recycled.

  8. Replicative manufacturing of complex lighting optics by non-isothermal glass molding

    Science.gov (United States)

    Kreilkamp, Holger; Vu, Anh Tuan; Dambon, Olaf; Klocke, Fritz

    2016-09-01

    The advantages of LED lighting, especially its energy efficiency and the long service life have led to a wide distribution of LED technology in the world. However, in order to make fully use of the great potential that LED lighting offers, complex optics are required to distribute the emitted light from the LED efficiently. Nowadays, many applications use polymer optics which can be manufactured at low costs. However, due to ever increasing luminous power, polymer optics reach their technological limits. Due to its outstanding properties, especially its temperature resistance, resistance against UV radiation and its long term stability, glass is the alternative material of choice for the use in LED optics. This research is introducing a new replicative glass manufacturing approach, namely non-isothermal glass molding (NGM) which is able to manufacture complex lighting optics in high volumes at competitive prices. The integration of FEM simulation at the early stage of the process development is presented and helps to guarantee a fast development cycle. A coupled thermo-mechanical model is used to define the geometry of the glass preform as well as to define the mold surface geometry. Furthermore, simulation is used to predict main process outcomes, especially in terms of resulting form accuracy of the molded optics. Experiments conducted on a commercially available molding machine are presented to validate the developed simulation model. Finally, the influence of distinct parameters on important process outcomes like form accuracy, surface roughness, birefringence, etc. is discussed.

  9. Integrated Optical Circuit Engineering

    Science.gov (United States)

    Sriram, S.

    1985-04-01

    Implementation of single-mode optical fiber systems depends largely on the availability of integrated optical components for such functions as switching, multiplexing, and modulation. The technology of integrated optics is maturing very rapidly, and its growth justifies the optimism that now exists in the optical community.

  10. 21 CFR 872.4620 - Fiber optic dental light.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  11. Light Optics for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    In Optical Stochastic Cooling (OSC) radiation generated by a particle in a "pickup" undulator is amplified and transported to a downstream "kicker" undulator where it interacts with the same particle which radiated it. Fermilab plans to carry out both passive (no optical amplifier) and active (optical amplifier) tests of OSC at the Integrable Optics Test Accelerator (IOTA) currently in construction*. The performace of the optical system is analyzed with simulations in Synchrotron Radiation Workshop (SRW) accounting for the specific temporal and spectral properties of undulator radiation and being augmented to include dispersion of lens material.

  12. Optical forces through guided light deflections

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, Gaszton

    2013-01-01

    . In this work we look into the object shaping aspect and its potential for controlled optical manipulation. Using a simple bent waveguide as example, our numerical simulations show that the guided deflection of light efficiently converts incident light momentum into optical force with one order...

  13. Matrix light and pixel light: optical system architecture and requirements to the light source

    Science.gov (United States)

    Spinger, Benno; Timinger, Andreas L.

    2015-09-01

    Modern Automotive headlamps enable improved functionality for more driving comfort and safety. Matrix or Pixel light headlamps are not restricted to either pure low beam functionality or pure high beam. Light in direction of oncoming traffic is selectively switched of, potential hazard can be marked via an isolated beam and the illumination on the road can even follow a bend. The optical architectures that enable these advanced functionalities are diverse. Electromechanical shutters and lens units moved by electric motors were the first ways to realize these systems. Switching multiple LED light sources is a more elegant and mechanically robust solution. While many basic functionalities can already be realized with a limited number of LEDs, an increasing number of pixels will lead to more driving comfort and better visibility. The required optical system needs not only to generate a desired beam distribution with a high angular dynamic, but also needs to guarantee minimal stray light and cross talk between the different pixels. The direct projection of the LED array via a lens is a simple but not very efficient optical system. We discuss different optical elements for pre-collimating the light with minimal cross talk and improved contrast between neighboring pixels. Depending on the selected optical system, we derive the basic light source requirements: luminance, surface area, contrast, flux and color homogeneity.

  14. Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor.

    Science.gov (United States)

    Park, Yoo Min; Han, Yong Duk; Chun, Hyeong Jin; Yoon, Hyun C

    2017-07-15

    We present a hand-held optical biosensing system utilizing a smartphone-embedded illumination sensor that is integrated with immunoblotting assay method. The smartphone-embedded illumination sensor is regarded as an alternative optical receiver that can replaces the conventional optical analysis apparatus because the illumination sensor can respond to the ambient light in a wide range of wavelengths, including visible and infrared. To demonstrate the biosensing applicability of our system employing the enzyme-mediated immunoblotting and accompanying light interference, various types of ambient light conditions including outdoor sunlight and indoor fluorescent were tested. For the immunoblotting assay, the biosensing channel generating insoluble precipitates as an end product of the enzymatic reaction is fabricated and mounted on the illumination sensor of the smartphone. The intensity of penetrating light arrives on the illumination sensor is inversely proportional to the amount of precipitates produced in the channel, and these changes are immediately analyzed and quantified via smartphone software. In this study, urinary C-terminal telopeptide fragment of type II collagen (uCTX-II), a biomarker of osteoarthritis diagnosis, was tested as a model analyte. The developed smartphone-based sensing system efficiently measured uCTX-II in the 0-5ng/mL concentration range with a high sensitivity and accuracy under various light conditions. These assay results show that the illumination sensor-based optical biosensor is suitable for point-of-care testing (POCT). Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Integrated optical waveguides and inertial focussing microfluidics in silica for microflow cytometry applications

    International Nuclear Information System (INIS)

    Butement, Jonathan T; Rowe, David J; Sessions, Neil P; Hua, Ping; Murugan, G Senthil; Wilkinson, James S; Clark, Owain; Chad, John E; Hunt, Hamish C

    2016-01-01

    A key challenge in the development of a microflow cytometry platform is the integration of the optical components with the fluidics as this requires compatible micro-optical and microfluidic technologies. In this work a microflow cytometry platform is presented comprising monolithically integrated waveguides and deep microfluidics in a rugged silica chip. Integrated waveguides are used to deliver excitation light to an etched microfluidic channel and also collect transmitted light. The fluidics are designed to employ inertial focussing, a particle positioning technique, to reduce signal variation by bringing the flowing particles onto the same plane as the excitation light beam. A fabrication process is described which exploits microelectronics mass production techniques including: sputtering, ICP etching and PECVD. Example devices were fabricated and the effectiveness of inertial focussing of 5.6 µ m fluorescent beads was studied showing lateral and vertical confinement of flowing beads within the microfluidic channel. The fluorescence signals from flowing calibration beads were quantified demonstrating a CV of 26%. Finally the potential of this type of device for measuring the variation in optical transmission from input to output waveguide as beads flowed through the beam was evaluated. (paper)

  16. Integrated optical isolators using magnetic surface plasmon (Presentation Recording)

    Science.gov (United States)

    Shimizu, Hiromasa; Kaihara, Terunori; Umetsu, Saori; Hosoda, Masashi

    2015-09-01

    Optical isolators are one of the essential components to protect semiconductor laser diodes (LDs) from backward reflected light in integrated optics. In order to realize optical isolators, nonreciprocal propagation of light is necessary, which can be realized by magnetic materials. Semiconductor optical isolators have been strongly desired on Si and III/V waveguides. We have developed semiconductor optical isolators based on nonreciprocal loss owing to transverse magneto-optic Kerr effect, where the ferromagnetic metals are deposited on semiconductor optical waveguides1). Use of surface plasmon polariton at the interface of ferromagnetic metal and insulator leads to stronger optical confinement and magneto-optic effect. It is possible to modulate the optical confinement by changing the magnetic field direction, thus optical isolator operation is proposed2, 3). We have investigated surface plasmons at the interfaces between ferrimagnetic garnet/gold film, and applications to waveguide optical isolators. We assumed waveguides composed of Au/Si(38.63nm)/Ce:YIG(1700nm)/Si(220nm)/Si , and calculated the coupling lengths between Au/Si(38.63nm)/Ce:YIG plasmonic waveguide and Ce:YIG/Si(220nm)/Si waveguide for transversely magnetized Ce:YIG with forward and backward directions. The coupling length was calculated to 232.1um for backward propagating light. On the other hand, the coupling was not complete, and the length was calculated to 175.5um. The optical isolation by using the nonreciprocal coupling and propagation loss was calculated to be 43.7dB when the length of plasmonic waveguide is 700um. 1) H. Shimizu et al., J. Lightwave Technol. 24, 38 (2006). 2) V. Zayets et al., Materials, 5, 857-871 (2012). 3) J. Montoya, et al, J. Appl. Phys. 106, 023108, (2009).

  17. Front lighted optical tooling method and apparatus

    International Nuclear Information System (INIS)

    Stone, W. J.

    1985-01-01

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature

  18. Advances in integrated optics

    CERN Document Server

    Chester, A; Bertolotti, M

    1994-01-01

    This volwne contains the Proceedings of a two-week summer conference titled "Advances in Integrated Optics" held June 1-9, 1993, in Erice, Sicily. This was the 18th annual course organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The term Integrated Optics signifies guided-wave optical circuits consisting of two or more devices on a single substrate. Since its inception in the late 1960's, Integrated Optics has evolved from a specialized research topic into a broad field of work, ranging from basic research through commercial applications. Today many devices are available on market while a big effort is devolved to research on integrated nonlinear optical devices. This conference was organized to provide a comprehensive survey of the frontiers of this technology, including fundamental concepts, nonlinear optical materials, devices both in the linear and nonlinear regimes, and selected applications. These Proceedings update a...

  19. Complex Light and Optical Forces X

    DEFF Research Database (Denmark)

    This year marked the 10th Anniversary Edition of the conference on Complex Light and Optical Forces that is part of Photonics West. We again had a record number of submissions, indicative of the rising visibility and stature of this conference. Indeed, Complex Light and Optical Forces is still...... the only yearly venue worldwide for presenting research on complex light. This year we did not find a need to organize joint sessions with other conferences at Photonics West....

  20. A CMOS microdisplay with integrated controller utilizing improved silicon hot carrier luminescent light sources

    Science.gov (United States)

    Venter, Petrus J.; Alberts, Antonie C.; du Plessis, Monuko; Joubert, Trudi-Heleen; Goosen, Marius E.; Janse van Rensburg, Christo; Rademeyer, Pieter; Fauré, Nicolaas M.

    2013-03-01

    Microdisplay technology, the miniaturization and integration of small displays for various applications, is predominantly based on OLED and LCoS technologies. Silicon light emission from hot carrier electroluminescence has been shown to emit light visibly perceptible without the aid of any additional intensification, although the electrical to optical conversion efficiency is not as high as the technologies mentioned above. For some applications, this drawback may be traded off against the major cost advantage and superior integration opportunities offered by CMOS microdisplays using integrated silicon light sources. This work introduces an improved version of our previously published microdisplay by making use of new efficiency enhanced CMOS light emitting structures and an increased display resolution. Silicon hot carrier luminescence is often created when reverse biased pn-junctions enter the breakdown regime where impact ionization results in carrier transport across the junction. Avalanche breakdown is typically unwanted in modern CMOS processes. Design rules and process design are generally tailored to prevent breakdown, while the voltages associated with breakdown are too high to directly interact with the rest of the CMOS standard library. This work shows that it is possible to lower the operating voltage of CMOS light sources without compromising the optical output power. This results in more efficient light sources with improved interaction with other standard library components. This work proves that it is possible to create a reasonably high resolution microdisplay while integrating the active matrix controller and drivers on the same integrated circuit die without additional modifications, in a standard CMOS process.

  1. Microchip Flow Cytometer with Integrated Polymer Optical Elements for Measurement of Scattered Light

    DEFF Research Database (Denmark)

    Wang, Zhenyu; El-Ali, Jamil; Perch-Nielsen, Ivan Ryberg

    2004-01-01

    channels to form a complete microchip flow cytometer. All the optical elements, the microfluidic system, and the fiber-to-waveguide couplers were defined in one layer of polymer (SU-8, negative photoresist) by standard photolithography. With only one single mask procedure, all the fabrication and packaging...... processes can be finished in one day. Polystyrene beads were measured in the microchip flow cytometer, and three signals (forward scattering, large angle scattering and extinction) were measured simultaneously for each bead. The average intensities of the forward Scattered light and the incident light...

  2. Calculating with light using a chip-scale all-optical abacus.

    Science.gov (United States)

    Feldmann, J; Stegmaier, M; Gruhler, N; Ríos, C; Bhaskaran, H; Wright, C D; Pernice, W H P

    2017-11-02

    Machines that simultaneously process and store multistate data at one and the same location can provide a new class of fast, powerful and efficient general-purpose computers. We demonstrate the central element of an all-optical calculator, a photonic abacus, which provides multistate compute-and-store operation by integrating functional phase-change materials with nanophotonic chips. With picosecond optical pulses we perform the fundamental arithmetic operations of addition, subtraction, multiplication, and division, including a carryover into multiple cells. This basic processing unit is embedded into a scalable phase-change photonic network and addressed optically through a two-pulse random access scheme. Our framework provides first steps towards light-based non-von Neumann arithmetic.

  3. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits.

    Science.gov (United States)

    Bie, Ya-Qing; Grosso, Gabriele; Heuck, Mikkel; Furchi, Marco M; Cao, Yuan; Zheng, Jiabao; Bunandar, Darius; Navarro-Moratalla, Efren; Zhou, Lin; Efetov, Dmitri K; Taniguchi, Takashi; Watanabe, Kenji; Kong, Jing; Englund, Dirk; Jarillo-Herrero, Pablo

    2017-12-01

    One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe 2 , a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.

  4. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits

    Science.gov (United States)

    Bie, Ya-Qing; Grosso, Gabriele; Heuck, Mikkel; Furchi, Marco M.; Cao, Yuan; Zheng, Jiabao; Bunandar, Darius; Navarro-Moratalla, Efren; Zhou, Lin; Efetov, Dmitri K.; Taniguchi, Takashi; Watanabe, Kenji; Kong, Jing; Englund, Dirk; Jarillo-Herrero, Pablo

    2017-12-01

    One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.

  5. Optical design of an in vivo laparoscopic lighting system

    Science.gov (United States)

    Liu, Xiaolong; Abdolmalaki, Reza Yazdanpanah; Mancini, Gregory J.; Tan, Jindong

    2017-12-01

    This paper proposes an in vivo laparoscopic lighting system design to address the illumination issues, namely poor lighting uniformity and low optical efficiency, existing in the state-of-the-art in vivo laparoscopic cameras. The transformable design of the laparoscopic lighting system is capable of carrying purposefully designed freeform optical lenses for achieving lighting performance with high illuminance uniformity and high optical efficiency in a desired target region. To design freeform optical lenses for extended light sources such as LEDs with Lambertian light intensity distributions, we present an effective and complete freeform optical design method. The procedures include (1) ray map computation by numerically solving a standard Monge-Ampere equation; (2) initial freeform optical surface construction by using Snell's law and a lens volume restriction; (3) correction of surface normal vectors due to accumulated errors from the initially constructed surfaces; and (4) feedback modification of the solution to deal with degraded illuminance uniformity caused by the extended sizes of the LEDs. We employed an optical design software package to evaluate the performance of our laparoscopic lighting system design. The simulation results show that our design achieves greater than 95% illuminance uniformity and greater than 89% optical efficiency (considering Fresnel losses) for illuminating the target surgical region.

  6. Optical design of an in vivo laparoscopic lighting system.

    Science.gov (United States)

    Liu, Xiaolong; Abdolmalaki, Reza Yazdanpanah; Mancini, Gregory J; Tan, Jindong

    2017-12-01

    This paper proposes an in vivo laparoscopic lighting system design to address the illumination issues, namely poor lighting uniformity and low optical efficiency, existing in the state-of-the-art in vivo laparoscopic cameras. The transformable design of the laparoscopic lighting system is capable of carrying purposefully designed freeform optical lenses for achieving lighting performance with high illuminance uniformity and high optical efficiency in a desired target region. To design freeform optical lenses for extended light sources such as LEDs with Lambertian light intensity distributions, we present an effective and complete freeform optical design method. The procedures include (1) ray map computation by numerically solving a standard Monge-Ampere equation; (2) initial freeform optical surface construction by using Snell's law and a lens volume restriction; (3) correction of surface normal vectors due to accumulated errors from the initially constructed surfaces; and (4) feedback modification of the solution to deal with degraded illuminance uniformity caused by the extended sizes of the LEDs. We employed an optical design software package to evaluate the performance of our laparoscopic lighting system design. The simulation results show that our design achieves greater than 95% illuminance uniformity and greater than 89% optical efficiency (considering Fresnel losses) for illuminating the target surgical region. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. Integrated Micro-Optical Fluorescence Detection System for Microfluidic Electrochromatography

    International Nuclear Information System (INIS)

    ALLERMAN, ANDREW A.; ARNOLD, DON W.; ASBILL, RANDOLPH E.; BAILEY, CHRISTOPHER G.; CARTER, TONY RAY; KEMME, SHANALYN A.; MATZKE, CAROLYN M.; SAMORA, SALLY; SWEATT, WILLIAM C.; WARREN, MIAL E.; WENDT, JOEL R.

    1999-01-01

    The authors describe the design and microfabrication of an extremely compact optical system as a key element in an integrated capillary-channel electrochromatograph with laser induced fluorescence detection. The optical design uses substrate-mode propagation within the fused silica substrate. The optical system includes a vertical cavity surface-emitting laser (VCSEL) array, two high performance microlenses and a commercial photodetector. The microlenses are multilevel diffractive optics patterned by electron beam lithography and etched by reactive ion etching in fused silica. Two generations of optical subsystems are described. The first generation design is integrated directly onto the capillary channel-containing substrate with a 6 mm separation between the VCSEL and photodetector. The second generation design separates the optical system onto its own module and the source to detector length is further compressed to 3.5 mm. The systems are designed for indirect fluorescence detection using infrared dyes. The first generation design has been tested with a 750 nm VCSEL exciting a 10(sup -4) M solution of CY-7 dye. The observed signal-to-noise ratio of better than 100:1 demonstrates that the background signal from scattered pump light is low despite the compact size of the optical system and meets the system sensitivity requirements

  8. WOW: light print, light propel, light point

    Science.gov (United States)

    Glückstad, Jesper; Bañas, Andrew; Aabo, Thomas; Palima, Darwin

    2012-10-01

    We are presenting so-called Wave-guided Optical Waveguides (WOWs) fabricated by two-photon polymerization and capable of being optically manipulated into any arbitrary orientation. By integrating optical waveguides into the structures we have created freestanding waveguides which can be positioned anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation. In a broader context, this research shows that optically trapped micro-fabricated structures can potentially help bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the sub-wavelength domain.

  9. Light collection optics for measuring flux and spectrum from light-emitting devices

    Science.gov (United States)

    McCord, Mark A.; DiRegolo, Joseph A.; Gluszczak, Michael R.

    2016-05-24

    Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.

  10. Transformation optics beyond the manipulation of light trajectories.

    Science.gov (United States)

    Ginis, Vincent; Tassin, Philippe

    2015-08-28

    Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.g. beam benders, lenses, invisibility cloaks, etc. In this contribution, we explore transformation optics beyond the manipulation of light trajectories. With a few well-chosen examples, we demonstrate that transformation optics can be used to manipulate electromagnetic fields up to an unprecedented level. In the first example, we introduce an electromagnetic cavity that allows for deep subwavelength confinement of light. The cavity is designed with transformation optics even though the concept of trajectory ceases to have any meaning in a structure as small as this cavity. In the second example, we show that the properties of Cherenkov light emitted in a transformation-optical material can be understood and modified from simple geometric considerations. Finally, we show that optical forces--a quadratic function of the fields--follow the rules of transformation optics too. By applying a folded coordinate transformation to a pair of waveguides, optical forces can be enhanced just as if the waveguides were closer together. With these examples, we open up an entirely new spectrum of devices that can be conceived using transformation optics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Organic Optical Sensor Based on Monolithic Integration of Organic Electronic Devices

    Directory of Open Access Journals (Sweden)

    Hoi Lam Tam

    2015-09-01

    Full Text Available A novel organic optical sensor that integrates a front organic light-emitting diode (OLED and an organic photodiode (OPD is demonstrated. The stripe-shaped cathode is used in the OLED components to create light signals, while the space between the stripe-shaped cathodes serves as the detection window for integrated OPD units. A MoO3 (5 nm/Ag (15 nm bi-layer inter-electrode is interposed between the vertically stacked OLED and OPD units, serving simultaneously as the cathode for the front OLED and an anode for the upper OPD units in the sensor. In the integrated sensor, the emission of the OLED units is confined by the area of the opaque stripe-shaped cathodes, optimized to maximize the reflected light passing through the window space for detection by the OPD components. This can ensure high OLED emission output, increasing the signal/noise ratio. The design and fabrication flexibility of an integrated OLED/OPD device also has low cost benefits, and is light weight and ultra-thin, making it possible for application in wearable units, finger print identification, image sensors, smart light sources, and compact information systems.

  12. Optical and IR light curves of VV Puppis

    International Nuclear Information System (INIS)

    Szkody, P.; Bailey, J.A.; Hough, J.H.

    1983-01-01

    We present optical (0.36 to 0.6 μm) light curves with time resolutions of seconds and infrared (IR) (1.25 to 2.2 μm) light curves with time resolutions of minutes for VV Puppis during a high state. The optical light curves show a single hump with largest amplitude in the V filter, while the IR light curves show a double hump sinusoidal variation. Flickering is evident in both the optical and IR light curves, with the largest amplitude in optical B light. Through subtraction of the low state fluxes from our high state values, we obtain a flux distribution of the accretion column which peaks at 0.55 μm and becomes #betta# 2 in the IR, consistent with current cyclotron models. Comparison of the observed IR variations throughout the orbit with the expected variations due to an M4 star heated by an accretion column at an inclination of 66 0 suggests that the IR light is a combination of the secondary star plus contributions from two emitting poles. (author)

  13. Optical Communication over Plastic Optical Fibers Integrated Optical Receiver Technology

    CERN Document Server

    Atef, Mohamed

    2013-01-01

    This book presents high-performance data transmission over plastic optical fibers (POF) using integrated optical receivers having good properties with multilevel modulation, i.e. a higher sensitivity and higher data rate transmission over a longer plastic optical fiber length. Integrated optical receivers and transmitters with high linearity are introduced for multilevel communication. For binary high-data rate transmission over plastic optical fibers, an innovative receiver containing an equalizer is described leading also to a high performance of a plastic optical fiber link. The cheap standard PMMA SI-POF (step-index plastic optical fiber) has the lowest bandwidth and the highest attenuation among multimode fibers. This small bandwidth limits the maximum data rate which can be transmitted through plastic optical fibers. To overcome the problem of the plastic optical fibers high transmission loss, very sensitive receivers must be used to increase the transmitted length over POF. The plastic optical fiber li...

  14. An integrated optical coherence microscopy imaging and optical stimulation system for optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    Science.gov (United States)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly's life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.

  15. Integrated source of broadband quadrature squeezed light

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk; Nielsen, Bo Melholt; Andersen, Ulrik Lund

    2015-01-01

    An integrated silicon nitride resonator is proposed as an ultracompact source of bright single-mode quadrature squeezed light at 850 nm. Optical properties of the device are investigated and tailored through numerical simulations, with particular attention paid to loss associated with interfacing...... the device. An asymmetric double layer stack waveguide geometry with inverse vertical tapers is proposed for efficient and robust fibre-chip coupling, yielding a simulated total loss of -0.75 dB/facet. We assess the feasibility of the device through a full quantum noise analysis and derive the output...

  16. Applications of quantum electro-optic control and squeezed light

    International Nuclear Information System (INIS)

    Lam, P.K.

    2000-01-01

    Full text: The control theory of electronic feedback or feedforward is a topic well understood by many scientists and engineers. With many of the modern equipment relying on automation and robotics, an understanding of this classical control theory is a common requisite for many technologists. In the field of optics, electronic control theory is also commonly used in many situations. From the temperature controlling of laser systems, the auto-alignment of optical elements, to the locking of optical resonators, all make use of electronic control theory in their operations. In this talk, we present the use the control theory in the context of quantum optics. In much the same as its classical counterpart, the 'quantum electro-optic' control loop consists simply of an optical beam splitter, a detector and an electro-optic modulator. This simple system, however, can offer many interesting applications when used in combination with nonclassical states of light. One well-known example of non-classical light is that of the squeezed state of light. A light beam is referred to as being amplitude 'squeezed' when its amplitude has less noise when compared to that of a coherent light state. In fact, the field fluctuation of such light states in some sense lower that the field fluctuation of the photonic vacuum state. Yet another interesting non-classical light state is the so-called 'Einstein-Podolsky-Rosen' entangled pair. This consists of two beams of light, each of which has properties that are highly dependent on each other. Using both the quantum electro-optic control loops and these light states, we demonstrate schemes which allow us to perform noiseless optical amplification, quantum non-demolition measurement and quantum teleportation. These schemes may be important building blocks to the realisation of future quantum communications and quantum information networks

  17. Shedding Light on Fiber Optics.

    Science.gov (United States)

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  18. Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits.

    Science.gov (United States)

    Lu, Cuicui; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2014-01-27

    Optical computing opens up the possibility for the realization of ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic comparator is one of the indispensable core components of optical computing systems. Unfortunately, up to now, no any nanoscale all-optical logic comparator suitable for on-chip integration applications has been realized experimentally. Here, we report a subtle and effective technical solution to circumvent the obstacles of inherent Ohmic losses of metal and limited propagation length of SPPs. A nanoscale all-optical logic comparator suitable for on-chip integration applications is realized in plasmonic circuits directly. The incident single-bit (or dual-bit) logic signals can be compared and the comparison results are endowed with different logic encodings. An ultrabroad operating wavelength range from 700 to 1000 nm, and an ultrahigh output logic-state contrast-ratio of more than 25 dB are realized experimentally. No high power requirement is needed. Though nanoscale SPP light source and the logic comparator device are integrated into the same plasmonic chip, an ultrasmall feature size is maintained. This work not only paves a way for the realization of complex logic device such as adders and multiplier, but also opens up the possibility for realizing quantum solid chips based on plasmonic circuits.

  19. Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit

    International Nuclear Information System (INIS)

    Hamilton, Alasdair C; Courtial, Johannes

    2009-01-01

    Volumes of sub-wavelength electromagnetic elements can act like homogeneous materials: metamaterials. In analogy, sheets of optical elements such as prisms can act ray-optically like homogeneous sheet materials. In this sense, such sheets can be considered to be metamaterials for light rays (METATOYs). METATOYs realize new and unusual transformations of the directions of transmitted light rays. We study here, in the ray-optics and scalar-wave limits, the wave-optical analog of such transformations, and we show that such an analog does not always exist. Perhaps, this is the reason why many of the ray-optical possibilities offered by METATOYs have never before been considered.

  20. Fiber Optics: A New World of Possibilities in Light.

    Science.gov (United States)

    Hutchinson, John

    1990-01-01

    The background and history of light and fiber optics are discussed. Applications for light passed either directly or indirectly through optical fibers are described. Suggestions for science activities that use fiber optics are provided. (KR)

  1. Optical pulse generation using fiber lasers and integrated optics

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-01-01

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics

  2. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenbo [Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada); Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8 (Canada); Department of Biomedical Engineering, University of British Columbia, KAIS 5500, 2332 Main Mall, Vancouver, British Columbia V6T 1Z4 (Canada); Wu, Zhenguo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada); Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8 (Canada)

    2016-06-15

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra. Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to −0.70 nm within the spectral range of 500–850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.

  3. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Zhenguo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2016-01-01

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra. Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to −0.70 nm within the spectral range of 500–850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.

  4. Integration of optical imaging with a small animal irradiator

    International Nuclear Information System (INIS)

    Weersink, Robert A.; Ansell, Steve; Wang, An; Wilson, Graham; Shah, Duoaud; Lindsay, Patricia E.; Jaffray, David A.

    2014-01-01

    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mounted on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two

  5. Light distribution in diffractive multifocal optics and its optimization.

    Science.gov (United States)

    Portney, Valdemar

    2011-11-01

    To expand a geometrical model of diffraction efficiency and its interpretation to the multifocal optic and to introduce formulas for analysis of far and near light distribution and their application to multifocal intraocular lenses (IOLs) and to diffraction efficiency optimization. Medical device consulting firm, Newport Coast, California, USA. Experimental study. Application of a geometrical model to the kinoform (single focus diffractive optical element) was expanded to a multifocal optic to produce analytical definitions of light split between far and near images and light loss to other diffraction orders. The geometrical model gave a simple interpretation of light split in a diffractive multifocal IOL. An analytical definition of light split between far, near, and light loss was introduced as curve fitting formulas. Several examples of application to common multifocal diffractive IOLs were developed; for example, to light-split change with wavelength. The analytical definition of diffraction efficiency may assist in optimization of multifocal diffractive optics that minimize light loss. Formulas for analysis of light split between different foci of multifocal diffractive IOLs are useful in interpreting diffraction efficiency dependence on physical characteristics, such as blaze heights of the diffractive grooves and wavelength of light, as well as for optimizing multifocal diffractive optics. Disclosure is found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  6. Temperature Characteristics of Monolithically Integrated Wavelength-Selectable Light Sources

    International Nuclear Information System (INIS)

    Han Liang-Shun; Zhu Hong-Liang; Zhang Can; Ma Li; Liang Song; Wang Wei

    2013-01-01

    The temperature characteristics of monolithically integrated wavelength-selectable light sources are experimentally investigated. The wavelength-selectable light sources consist of four distributed feedback (DFB) lasers, a multimode interferometer coupler, and a semiconductor optical amplifier. The oscillating wavelength of the DFB laser could be modulated by adjusting the device operating temperature. A wavelength range covering over 8.0nm is obtained with stable single-mode operation by selecting the appropriate laser and chip temperature. The thermal crosstalk caused by the lateral heat spreading between lasers operating simultaneously is evaluated by oscillating-wavelength shift. The thermal crosstalk approximately decreases exponentially as the increasing distance between lasers

  7. Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy

    Science.gov (United States)

    Weigert, Martin; Bundschuh, Sebastian T.

    2018-01-01

    Sample-induced image-degradation remains an intricate wave-optical problem in light-sheet microscopy. Here we present biobeam, an open-source software package that enables simulation of operational light-sheet microscopes by combining data from 105–106 multiplexed and GPU-accelerated point-spread-function calculations. The wave-optical nature of these simulations leads to the faithful reproduction of spatially varying aberrations, diffraction artifacts, geometric image distortions, adaptive optics, and emergent wave-optical phenomena, and renders image-formation in light-sheet microscopy computationally tractable. PMID:29652879

  8. Phase shifting white light interferometry using colour CCD for optical metrology and bio-imaging applications

    Science.gov (United States)

    Upputuri, Paul Kumar; Pramanik, Manojit

    2018-02-01

    Phase shifting white light interferometry (PSWLI) has been widely used for optical metrology applications because of their precision, reliability, and versatility. White light interferometry using monochrome CCD makes the measurement process slow for metrology applications. WLI integrated with Red-Green-Blue (RGB) CCD camera is finding imaging applications in the fields optical metrology and bio-imaging. Wavelength dependent refractive index profiles of biological samples were computed from colour white light interferograms. In recent years, whole-filed refractive index profiles of red blood cells (RBCs), onion skin, fish cornea, etc. were measured from RGB interferograms. In this paper, we discuss the bio-imaging applications of colour CCD based white light interferometry. The approach makes the measurement faster, easier, cost-effective, and even dynamic by using single fringe analysis methods, for industrial applications.

  9. High-Resolution Integrated Optical System

    Science.gov (United States)

    Prakapenka, V. B.; Goncharov, A. F.; Holtgrewe, N.; Greenberg, E.

    2017-12-01

    Raman and optical spectroscopy in-situ at extreme high pressure and temperature conditions relevant to the planets' deep interior is a versatile tool for characterization of wide range of properties of minerals essential for understanding the structure, composition, and evolution of terrestrial and giant planets. Optical methods, greatly complementing X-ray diffraction and spectroscopy techniques, become crucial when dealing with light elements. Study of vibrational and optical properties of minerals and volatiles, was a topic of many research efforts in past decades. A great deal of information on the materials properties under extreme pressure and temperature has been acquired including that related to structural phase changes, electronic transitions, and chemical transformations. These provide an important insight into physical and chemical states of planetary interiors (e.g. nature of deep reservoirs) and their dynamics including heat and mass transport (e.g. deep carbon cycle). Optical and vibrational spectroscopy can be also very instrumental for elucidating the nature of the materials molten states such as those related to the Earth's volatiles (CO2, CH4, H2O), aqueous fluids and silicate melts, planetary ices (H2O, CH4, NH3), noble gases, and H2. The optical spectroscopy study performed concomitantly with X-ray diffraction and spectroscopy measurements at the GSECARS beamlines on the same sample and at the same P-T conditions would greatly enhance the quality of this research and, moreover, will provide unique new information on chemical state of matter. The advanced high-resolution user-friendly integrated optical system is currently under construction and expected to be completed by 2018. In our conceptual design we have implemented Raman spectroscopy with five excitation wavelengths (266, 473, 532, 660, 946 nm), confocal imaging, double sided IR laser heating combined with high temperature Raman (including coherent anti-Stokes Raman scattering) and

  10. Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications

    KAUST Repository

    Shen, Chao

    2018-02-14

    GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, VSOA, of 0V and 6.25V, respectively. The amplification effect was measured based on a large gain of 5.7 dB at VSOA = 6.25V from the increased optical output power of 8.2 mW to 30.5 mW. Such integrated amplifier can be modulated to achieve Gbps data communication using on-off keying technique. The monolithically integrated amplifier-LD paves the way towards the III-nitride on-chip photonic system, providing a compact, low-cost, and multi-functional solution for applications such as smart lighting and visible light communications.

  11. Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Lee, Changmin; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2018-01-01

    GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, VSOA, of 0V and 6.25V, respectively. The amplification effect was measured based on a large gain of 5.7 dB at VSOA = 6.25V from the increased optical output power of 8.2 mW to 30.5 mW. Such integrated amplifier can be modulated to achieve Gbps data communication using on-off keying technique. The monolithically integrated amplifier-LD paves the way towards the III-nitride on-chip photonic system, providing a compact, low-cost, and multi-functional solution for applications such as smart lighting and visible light communications.

  12. Study of the optical properties of solid tissue phantoms using single and double integrating sphere systems

    CSIR Research Space (South Africa)

    Monem, S

    2015-12-01

    Full Text Available light propagation mechanisms inside the tissues. In this work, two calibration models based on measurements adopting integrating sphere systems have been used to determine the optical properties of the studied solid phantoms. Integrating sphere...

  13. Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams

    International Nuclear Information System (INIS)

    Beddar, A.S.; Mackie, T.R.; Attix, F.H.

    1992-01-01

    The use of a small plastic scintillator coupled to an optical fibre bundle light pipe for the dosimetry of radiotherapy x-ray or electron beams in a phantom has been studied. Under such conditions, some light is generated by the direct action of the radiation on the optical fibres themselves, and this 'background' signal must be correctly accounted for. Electron beams were incident on fused silica optical fibres and other light pipes made of polymethylmethacrylate (PMMA), polystyrene and water. The observed light signal generated in all cases was found to depend strongly on the angle between the electron direction and the light pipe axis, and to correlate well with the angular characteristics uniquely associated with Cerenkov radiation. The use of a parallel fibre bundle light pipe, identical to the one that carries light from the scintillator, offers a suitable means of generating a similar background Cerenkov light signal that can be subtracted to obtain output from the scintillation dosimeter alone. (author)

  14. Optical design of adjustable light emitting diode for different lighting requirements

    International Nuclear Information System (INIS)

    Lu Jia-Ning; Yu Jie; Tong Yu-Zhen; Zhang Guo-Yi

    2012-01-01

    Light emitting diode (LED) sources have been widely used for illumination. Optical design, especially freedom compact lens design is necessary to make LED sources applied in lighting industry, such as large-range interior lighting and small-range condensed lighting. For different lighting requirements, the size of target planes should be variable. In our paper we provide a method to design freedom lens according to the energy conservation law and Snell law through establishing energy mapping between the luminous flux emitted by a Lambertian LED source and a certain area of the target plane. The algorithm of our design can easily change the radius of each circular target plane, which makes the size of the target plane adjustable. Ray-tracing software Tracepro is used to validate the illuminance maps and polar-distribution maps. We design lenses for different sizes of target planes to meet specific lighting requirements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Integration of Organic Light Emitting Diodes and Organic Photodetectors for Lab-on-a-Chip Bio-Detection Systems

    Directory of Open Access Journals (Sweden)

    Graeme Williams

    2014-02-01

    Full Text Available The rapid development of microfluidics and lab-on-a-chip (LoC technologies have allowed for the efficient separation and manipulation of various biomaterials, including many diagnostically relevant species. Organic electronics have similarly enjoyed a great deal of research, resulting in tiny, highly efficient, wavelength-selective organic light-emitting diodes (OLEDs and organic photodetectors (OPDs. We consider the blend of these technologies for rapid detection and diagnosis of biological species. In the ideal system, optically active or fluorescently labelled biological species can be probed via light emission from OLEDs, and their subsequent light emission can be detected with OPDs. The relatively low cost and simple fabrication of the organic electronic devices suggests the possibility of disposable test arrays. Further, with full integration, the finalized system can be miniaturized and made simple to use. In this review, we consider the design constraints of OLEDs and OPDs required to achieve fully organic electronic optical bio-detection systems. Current approaches to integrated LoC optical sensing are first discussed. Fully realized OLED- and OPD-specific photoluminescence detection systems from literature are then examined, with a specific focus on their ultimate limits of detection. The review highlights the enormous potential in OLEDs and OPDs for integrated optical sensing, and notes the key avenues of research for cheap and powerful LoC bio-detection systems.

  16. Advanced optical manufacturing digital integrated system

    Science.gov (United States)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  17. All-optically integrated photoacoustic and optical coherence tomography: A review

    Directory of Open Access Journals (Sweden)

    Wei Qiao

    2017-07-01

    Full Text Available All-optically integrated photoacoustic (PA and optical coherence tomography (OCT dual-mode imaging technology that could offer comprehensive pathological information for accurate diagnosis in clinic has gradually become a promising imaging technology in the aspect of biomedical imaging during the recent years. This review refers to the technology aspects of all-optical PA detection and system evolution of optically integrated PA and OCT, including Michelson interferometer dual-mode imaging system, Fabry–Perot (FP interferometer dual-mode imaging system and Mach–Zehnder interferometer dual-mode imaging system. It is believed that the optically integrated PA and OCT has great potential applications in biomedical imaging.

  18. High-Voltage LED Light Engine with Integrated Driver

    Energy Technology Data Exchange (ETDEWEB)

    Soer, Wouter [Lumileds LLC, San Jose, CA (United States)

    2016-02-29

    LED luminaires have seen dramatic changes in cost breakdown over the past few years. The LED component cost, which until recently was the dominant portion of luminaire cost, has fallen to a level of the same order as the other luminaire components, such as the driver, housing, optics etc. With the current state of the technology, further luminaire performance improvement and cost reduction is realized most effectively by optimization of the whole system, rather than a single component. This project focuses on improving the integration between LEDs and drivers. Lumileds has developed a light engine platform based on low-cost high-power LEDs and driver topologies optimized for integration with these LEDs on a single substrate. The integration of driver and LEDs enables an estimated luminaire cost reduction of about 25% for targeted applications, mostly due to significant reductions in driver and housing cost. The high-power LEDs are based on Lumileds’ patterned sapphire substrate flip-chip (PSS-FC) technology, affording reduced die fabrication and packaging cost compared to existing technology. Two general versions of PSS-FC die were developed in order to create the desired voltage and flux increments for driver integration: (i) small single-junction die (0.5 mm2), optimal for distributed lighting applications, and (ii) larger multi-junction die (2 mm2 and 4 mm2) for high-power directional applications. Two driver topologies were developed: a tapped linear driver topology and a single-stage switch-mode topology, taking advantage of the flexible voltage configurations of the new PSS-FC die and the simplification opportunities enabled by integration of LEDs and driver on the same board. A prototype light engine was developed for an outdoor “core module” application based on the multi-junction PSS-FC die and the single-stage switch-mode driver. The light engine meets the project efficacy target of 128 lm/W at a luminous flux

  19. Integrated Optical Circuit Engineering For Optical Fiber Gyrocopes

    Science.gov (United States)

    Bristow, Julian P.; We, Albert C.; Keur, M.; Lukas, Greg; Ott, Daniel M...; Sriram, S.

    1988-03-01

    Fiber optic gyroscopes are of interest for low-cost, high performance rotation sensors. Integrated optical implementations of the processing optics offer the hope of mass-production, and associated cost reductions. The development of a suitable integrated optical system has been reported by other authors at a wavelength of 850nm [1]. Despite strong technical advantages at 1.3μm wavelength [2], no results have yet appeared. This wavelength is preferred for telecommunications applications applications, thus significantly reduced fiber costs may be realized. Lithium niobate is relatively immune from the photorefractive effect at this wavelength, whereas it is not at at 850nm [3].

  20. Optical electronics self-organized integration and applications

    CERN Document Server

    Yoshimura, Tetsuzo

    2012-01-01

    IntroductionFrom Electronics to Optical ElectronicsAnalysis Tools for Optical CircuitsSelf-Organized Optical Waveguides: Theoretical AnalysisSelf-Organized Optical Waveguides: Experimental DemonstrationsOptical Waveguide Films with Vertical Mirrors 3-D Optical Circuits with Stacked Waveguide Films Heterogeneous Thin-Film Device IntegrationOptical Switches OE Hardware Built by Optical ElectronicsIntegrated Solar Energy Conversion SystemsFuture Challenges.

  1. Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting.

    Science.gov (United States)

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng

    2012-09-01

    One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.

  2. Integration of a high-NA light microscope in a scanning electron microscope.

    Science.gov (United States)

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  3. Plasmonic nanopatch array for optical integrated circuit applications.

    Science.gov (United States)

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  4. A development optical course based on optical fiber white light interference

    Science.gov (United States)

    Jiang, Haili; Sun, Qiuhua; Zhao, Yancheng; Li, Qingbo

    2017-08-01

    The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don't know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students' ability of using scientific methods to solve complex engineering problems.

  5. All-optical phase modulation for integrated interferometric biosensors.

    Science.gov (United States)

    Dante, Stefania; Duval, Daphné; Sepúlveda, Borja; González-Guerrero, Ana Belen; Sendra, José Ramón; Lechuga, Laura M

    2012-03-26

    We present the theoretical and the experimental implementation of an all-optical phase modulation system in integrated Mach-Zehnder Interferometers to solve the drawbacks related to the periodic nature of the interferometric signal. Sensor phase is tuned by modulating the emission wavelength of low-cost commercial laser diodes by changing their output power. FFT deconvolution of the signal allows for direct phase readout, immune to sensitivity variations and to light intensity fluctuations. This simple phase modulation scheme increases the signal-to-noise ratio of the measurements in one order of magnitude, rendering in a sensor with a detection limit of 1.9·10⁻⁷ RIU. The viability of the all-optical modulation approach is demonstrated with an immunoassay detection as a biosensing proof of concept.

  6. Towards optical brain imaging: getting light through a bone

    Science.gov (United States)

    Thompson, J. V.; Hokr, B. H.; Nodurft, D. T.; Yakovlev, V. V.

    2018-06-01

    Optical imaging and detection in biological samples is severely limited by scattering effects. In particular, optical techniques for measuring conditions beneath the skull and within the bone marrow hold significant promise when it comes to speed, sensitivity and specificity. However, the strong optical scattering due to bone hinders the realization of these methods. In this article, we propose a technique to enhance the transmittance of light through bone. This is achieved by injecting light below the top surface of the bone and utilizing multiple scattering to increase transmittance. This technique suggests that enhancements of 2-6 times may be realized by injection of light 1 mm below the surface of the bone. By enhancing the transmittance of light through bone, we will greatly improve our ability to utilize optical methods to better understand and diagnose conditions within biological media.

  7. INFRARED HIGH-RESOLUTION INTEGRATED LIGHT SPECTRAL ANALYSES OF M31 GLOBULAR CLUSTERS FROM APOGEE

    Energy Technology Data Exchange (ETDEWEB)

    Sakari, Charli M. [Department of Astronomy, University of Washington, Seattle WA 98195-1580 (United States); Shetrone, Matthew D. [McDonald Observatory, University of Texas at Austin, HC75 Box 1337-MCD, Fort Davis, TX 79734 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 N. A’Ohoku Place, Hilo, HI 96720 (United States); Bizyaev, Dmitry; Pan, Kaike [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Prieto, Carlos Allende; García-Hernández, Domingo Aníbal [Instituto de Astrofísica de Canarias (IAC), Va Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Caldwell, Nelson [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lucatello, Sara [INAF Osservatorio Astronomico di Padova, Vicolo dellOsservatorio 5, I-35122 Padova (Italy); Majewski, Steven; O’Connell, Robert W. [Dept. of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Strader, Jay, E-mail: sakaricm@u.washington.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2016-10-01

    Chemical abundances are presented for 25 M31 globular clusters (GCs), based on moderately high resolution ( R = 22,500) H -band integrated light (IL) spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Infrared (IR) spectra offer lines from new elements, lines of different strengths, and lines at higher excitation potentials compared to the optical. Integrated abundances of C, N, and O are derived from CO, CN, and OH molecular features, while Fe, Na, Mg, Al, Si, K, Ca, and Ti abundances are derived from atomic features. These abundances are compared to previous results from the optical, demonstrating the validity and value of IR IL analyses. The CNO abundances are consistent with typical tip of the red giant branch stellar abundances but are systematically offset from optical Lick index abundances. With a few exceptions, the other abundances agree between the optical and the IR within the 1 σ uncertainties. The first integrated K abundances are also presented and demonstrate that K tracks the α elements. The combination of IR and optical abundances allows better determinations of GC properties and enables probes of the multiple populations in extragalactic GCs. In particular, the integrated effects of the Na/O anticorrelation can be directly examined for the first time.

  8. Integrating nanophotonic concepts and topics into optics curricula

    Science.gov (United States)

    Sonek, Gregory J.

    2007-06-01

    Nanophotonics has emerged as a new and important field of study, not only in research, but also in undergraduate optics and photonics education and training. Beyond the study of classical and quantum optics, it is important for students to learn about how the flow of light can be manipulated on a nanoscale level, and used in applications such as telecommunications, imaging, and medicine. This paper reports on our work to integrate basic nanophotonic concepts and topics into existing optics and optical electronics courses, as well as independent study projects, at the undergraduate level. Through classroom lectures, topical readings, computer modeling exercises, and laboratory experiments, students are introduced to nanophotonic concepts subsequent to a study of physical and geometrical optics. A compare and contrast methodology is employed to help students identify similarities and differences that exist in the optical behavior of bulk and nanostructured media. Training is further developed through engineering design and simulation exercises that use advanced, vector-diffraction-based, modeling software for simulating the performance of various materials and structures. To date, the addition of a nanophotonics component to the optics curriculum has proven successful, been enthusiastically received by students, and should serve as a basis for further course development efforts that emphasize the combined capabilities of nanotechnology and photonics.

  9. Optical Fiber Connection Navigation System Using Visible Light Communication in Central Office with Economic Evaluation

    Science.gov (United States)

    Waki, Masaki; Uruno, Shigenori; Ohashi, Hiroyuki; Manabe, Tetsuya; Azuma, Yuji

    We propose an optical fiber connection navigation system that uses visible light communication for an integrated distribution module in a central office. The system realizes an accurate database, requires less skilled work to operate and eliminates human error. This system can achieve a working time reduction of up to 88.0% compared with the conventional work without human error for the connection/removal of optical fiber cords, and is economical as regards installation and operation.

  10. Light gradients and optical microniches in coral tissues

    Directory of Open Access Journals (Sweden)

    Daniel eWangpraseurt

    2012-08-01

    Full Text Available Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterise vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with PAR (photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500-700 nm relative to a healthy coral. Photosynthesis peaked around 300 µm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g. ~1000 µm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts.

  11. The relevance of light diffusion profiles for interstitial PDT using light-diffusing optical fibers

    Science.gov (United States)

    Stringasci, Mirian D.; Fortunato, Thereza C.; Moriyama, Lilian T.; Vollet Filho, José Dirceu; Bagnato, Vanderlei S.; Kurachi, Cristina

    2017-02-01

    Photodynamic therapy (PDT) is a technique used for several tumor types treatment. Light penetration on biological tissue is one limiting factor for PDT applied to large tumors. An alternative is using interstitial PDT, in which optical fibers are inserted into tumors. Cylindrical diffusers have been used in interstitial PDT. Light emission of different diffusers depends on the manufacturing process, size and optical properties of fibers, which make difficult to establish an adequate light dosimetry, since usually light profile is not designed for direct tissue-fiber contact. This study discusses the relevance of light distribution by a cylindrical diffuser into a turbid lipid emulsion solution, and how parts of a single diffuser contribute to illumination. A 2 cm-long cylindrical diffuser optical fiber was connected to a diode laser (630 nm), and the light spatial distribution was measured by scanning the solution with a collection probe. From the light field profile generated by a 1 mm-long intermediary element of a 20 mm-long cylindrical diffuser, recovery of light distribution for the entire diffuser was obtained. PDT was performed in rat healthy liver for a real treatment outcome analysis. By using computational tools, a typical necrosis profile generated by the irradiation with such a diffuser fiber was reconstructed. The results showed that it was possible predicting theoretically the shape of a necrosis profile in a healthy, homogeneous tissue with reasonable accuracy. The ability to predict the necrosis profile obtained from an interstitial illumination by optical diffusers has the potential improve light dosimetry for interstitial PDT.

  12. Optical antenna for a visible light communications receiver

    Science.gov (United States)

    Valencia-Estrada, Juan Camilo; García-Márquez, Jorge; Topsu, Suat; Chassagne, Luc

    2018-01-01

    Visible Light Communications (VLC) receivers adapted to be used in high transmission rates will eventually use either, high aperture lenses or non-linear optical elements capable of converting light arriving to the receiver into an electric signal. The high aperture lens case, reveals a challenge from an optical designers point-of-view. As a matter of fact, the lens must collect a wide aperture intensity flux using a limited aperture as its use is intended to portable devices. This last also limits both, lens thickness and its focal length. Here, we show a first design to be adapted to a VLC receiver that take these constraints into account. This paper describes a method to design catadioptric and monolithic lenses to be used as an optical collector of light entering from a near point light source as a spherical fan L with a wide acceptance angle α° and high efficiency. These lenses can be mass produced and therefore one can find many practical applications in VLC equipped devices. We show a first design for a near light source without magnification, and second one with a detector's magnification in a meridional section. We utilize rigorous geometric optics, vector analysis and ordinary differential equations.

  13. Polarized light in optics and spectroscopy

    CERN Document Server

    Kliger, David S

    1990-01-01

    This comprehensive introduction to polarized light provides students and researchers with the background and the specialized knowledge needed to fully utilize polarized light. It provides a basic introduction to the interaction of light with matter for those unfamiliar with photochemistry and photophysics. An in-depth discussion of polarizing optics is also given. Different analytical techniques are introduced and compared and introductions to the use of polarized light in various forms of spectroscopy are provided.Key Features* Starts at a basic level and develops tools for resear

  14. Multi-layered fabrication of large area PDMS flexible optical light guide sheets

    Science.gov (United States)

    Green, Robert; Knopf, George K.; Bordatchev, Evgueni V.

    2017-02-01

    Large area polydimethylsiloxane (PDMS) flexible optical light guide sheets can be used to create a variety of passive light harvesting and illumination systems for wearable technology, advanced indoor lighting, non-planar solar light collectors, customized signature lighting, and enhanced safety illumination for motorized vehicles. These thin optically transparent micro-patterned polymer sheets can be draped over a flat or arbitrarily curved surface. The light guiding behavior of the optical light guides depends on the geometry and spatial distribution of micro-optical structures, thickness and shape of the flexible sheet, refractive indices of the constituent layers, and the wavelength of the incident light. A scalable fabrication method that combines soft-lithography, closed thin cavity molding, partial curing, and centrifugal casting is described in this paper for building thin large area multi-layered PDMS optical light guide sheets. The proposed fabrication methodology enables the of internal micro-optical structures (MOSs) in the monolithic PDMS light guide by building the optical system layer-by-layer. Each PDMS layer in the optical light guide can have the similar, or a slightly different, indices of refraction that permit total internal reflection within the optical sheet. The individual molded layers may also be defect free or micro-patterned with microlens or reflecting micro-features. In addition, the bond between adjacent layers is ensured because each layer is only partially cured before the next functional layer is added. To illustrate the scalable build-by-layers fabrication method a three-layer mechanically flexible illuminator with an embedded LED strip is constructed and demonstrated.

  15. Integrating optical, mechanical, and test software (with applications to freeform optics)

    Science.gov (United States)

    Genberg, Victor; Michels, Gregory; Myer, Brian

    2017-10-01

    Optical systems must perform under environmental conditions including thermal and mechanical loading. To predict the performance in the field, integrated analysis combining optical and mechanical software is required. Freeform and conformal optics offer many new opportunities for optical design. The unconventional geometries can lead to unconventional, and therefore unintuitive, mechanical behavior. Finite element (FE) analysis offers the ability to predict the deformations of freeform optics under various environments and load conditions. To understand the impact on optical performance, the deformations must be brought into optical analysis codes. This paper discusses several issues related to the integrated optomechanical analysis of freeform optics.

  16. Integrated Wavelength-Tunable Light Source for Optical Gas Sensing Systems

    Directory of Open Access Journals (Sweden)

    Bin Li

    2015-01-01

    Full Text Available A compact instrument consisting of a distributed feedback laser (DFB at 1.65 μm was developed as a light source for gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS technique. The wavelength of laser is tuned by adjusting the laser working temperature and injection current, which are performed by self-developed temperature controller and current modulator respectively. Stability test shows the fluctuation of the laser temperature is within the range of ±0.02°C. For gas detection experiments, the wavelength is tuned around the gas absorption line by adjusting laser temperature and is then shifted periodically to scan across the absorption line by the laser current modulator, which generates a 10 Hz saw wave signal. In addition, the current modulator is able to generate sine wave signal for gas sensing systems using wavelength modulation spectroscopy (WMS technique involving extraction of harmonic signals. The spectrum test proves good stability that the spectrum was measured 6 times every 10 minutes at the constant temperature and current condition. This standalone instrument can be applied as a light source for detection systems of different gases by integrating lasers at corresponding wavelength.

  17. Integration of Curved D-Type Optical Fiber Sensor with Microfluidic Chip.

    Science.gov (United States)

    Sun, Yung-Shin; Li, Chang-Jyun; Hsu, Jin-Cherng

    2016-12-30

    A curved D-type optical fiber sensor (OFS) combined with a microfluidic chip is proposed. This OFS, based on surface plasmon resonance (SPR) of the Kretchmann's configuration, is applied as a biosensor to measure the concentrations of different bio-liquids such as ethanol, methanol, and glucose solutions. The SPR phenomenon is attained by using the optical fiber to guide the light source to reach the side-polished, gold-coated region. Integrating this OFS with a polymethylmethacrylate (PMMA)-based microfluidic chip, the SPR spectra for liquids with different refractive indices are recorded. Experimentally, the sensitivity of the current biosensor was calculated to be in the order of 10 -5 RIU. This microfluidic chip-integrated OFS could be valuable for monitoring subtle changes in biological samples such as blood sugar, allergen, and biomolecular interactions.

  18. Light scattering in optical CT scanning of Presage dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y; Adamovics, J; Cheeseborough, J C; Chao, K S; Wuu, C S, E-mail: yx2010@columbia.ed

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS' optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  19. Analysis of optical transmission by 400-500 nm visible light into aesthetic dental biomaterials.

    Science.gov (United States)

    Watts, D C; Cash, A J

    1994-04-01

    The penetration of visible light into dental biomaterials is an essential factor in photoinitiation of setting reactions and in the optical aspects of dental aesthetics. Light of visible blue wavelengths, 400-500 nm, has been applied at normal angles to 0.2-5.0 mm sections of human dentine and representative ceramic, polymerceramic composites and hybrid glass-polyalkenoate materials. The integrated optical transmission has been determined for each material section. The data have been converted to absorbance values and analysed to check for mathematical conformity to the Beer-Lambert Law. It is found that conformity (typically, P ratio. This factor ranges from 30% to 90% in the materials investigated. It follows that there is a high degree of inefficiency in the transmission of visible light into and through aesthetic biomaterials for the purposes of photoactivation using existing technology. Means by which this limitation and inefficiency may be reduced are discussed. While the reflectivity of aesthetic biomaterials has been perceived by dental practitioners, the magnitude of this effect and its implications in connection with light-cured materials have not been analysed and emphasized hitherto.

  20. Numerical Investigations on a Distributed Fiber-Optic Lighting System with an End Reflector

    International Nuclear Information System (INIS)

    Li Shuhua; Gong Huaping; Tu Yumeng; Meng Ying

    2011-01-01

    A novel distributed fiber-optic decorative lighting system with the reflection coating on the extremity of fiber-optic is designed, which used the multi-mold optical fiber made up of large core diameter(Diameter of core and cladding is 105μm and 125μm, respectly). After introducing the distributional optical fiber decorative lighting system briefly, the ralationship between corrosion depth of the optical fiber core and the leakage of fiber-optic has been analyzed with the Rsoft, and then the relationship of the lighting power and the uniformity of lighting power with the leakage rate of optical fiber lamp, the reflective of reflection coating has been discussed.The simulation analysis shows that, when the core diameter is corroded to 80∼85 μm, the leakage rate of optical fiber may achieve 5.0%, which suits the optical fiber decorative lighting. Considering all kinds of factors, when optical fiber lamp's quantity is 20, the coating index of reflection is 95%, optical fiber lamp's leakage of light rate is 5.0%, and the optical fiber lamp's distance is 1 meter, the quite high illuminating power may be achieved, as well as the good lighting uniformity.Finally the experimental study of decorative lighting system is given. And the experimental result is in keeping well with the theory simulation conclusion.

  1. Study of light transmission through optical fiber-to-fiber connector assemblies

    International Nuclear Information System (INIS)

    Chung, M.; Gutowski, M.; Adams, M.; Solomon, J.

    1998-01-01

    Optical fiber-to-fiber connectors are now being used widely in particle tracking detectors. We describe the properties of the connectors, their production, and measurements of the light transmission through the gap of the connector assembly. We studied light transmission for various types of connectors illuminated by several different light sources. The light transmission was found to be dependent on the angular distribution of the light rays passing through a connector assembly. Two arrangements were studied, a point source and a diffuse source. A green LED with a diffuser is believed to best reproduce the angular distributions of light in the real detector applications. We also studied the transmission as a function of the index of refraction of the optical couplants. The light transmission depends on the index of refraction of an optical couplant placed in the gap, and improves as it approaches the index of refraction of the fiber core. Light transmissions of 80%∼88% were obtained without any optical couplant in the connector gap and transmissions of 89%∼99% with various optical couplants. A Monte Carlo study using measured light distributions from a fiber end produced a reasonable agreement with the transmission measurements made on a connector assembly

  2. Study of light transmission through optical fiber-to-fiber connector assemblies

    International Nuclear Information System (INIS)

    Chung, M.; Gutowski, M.; Adams, M.; Solomon, J.

    1998-01-01

    Optical fiber-to-fiber connectors are now being used widely in particle tracking detectors. We describe the properties of the connectors, their production, and measurements of the light transmission through the gap of the connector assembly. We studied light transmission for various types of connectors illuminated by several different light sources. The light transmission was found to be dependent on the angular distribution of the light rays passing through a connector assembly. Two arrangements were studied, a point source and a diffuse source. A green LED with a diffuser is believed to best reproduce the angular distributions of light in the real detector applications. We also studied the transmission as a function of the index of refraction of the optical couplants. The light transmission depends on the index of refraction of an optical couplant placed in the gap, and improves as it approaches the index of refraction of the fiber core. Light transmissions of 80%∼88% were obtained without any optical couplant in the connector gap and transmissions of 89%∼99% with various optical couplants. A Monte Carlo study using measured light distributions from a fiber end produced a reasonable agreement with the transmission measurements made on a connector assembly. copyright 1998 American Institute of Physics

  3. Illusion optics in chaotic light

    International Nuclear Information System (INIS)

    Zhang Suheng; Gan Shu; Xiong Jun; Zhang Xiangdong; Wang Kaige

    2010-01-01

    The time-reversal process provides the possibility to counteract the time evolution of a physical system. Recent research has shown that such a process can occur in the first-order field correlation of chaotic light and result in the spatial interference and phase-reversal diffraction in an unbalanced interferometer. Here we report experimental investigations on the invisibility cloak and illusion phenomena in chaotic light. In an unbalanced interferometer illuminated by thermal light, we have observed the cloak effect and the optical transformation of one object into another object. The experimental results can be understood by the phase-reversal diffraction, and they demonstrate the theoretical proposal of similar effects in complementary media.

  4. Light emitting fabric technologies for photodynamic therapy.

    Science.gov (United States)

    Mordon, Serge; Cochrane, Cédric; Tylcz, Jean Baptiste; Betrouni, Nacim; Mortier, Laurent; Koncar, Vladan

    2015-03-01

    Photodynamic therapy (PDT) is considered to be a promising method for treating various types of cancer. A homogeneous and reproducible illumination during clinical PDT plays a determinant role in preventing under- or over-treatment. The development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of optical fiber into flexible structures could offer an interesting alternative. This paper aims to describe different methods proposed to develop Side Emitting Optical Fibers (SEOF), and how these SEOF can be integrated in a flexible structure to improve light illumination of the skin during PDT. Four main techniques can be described: (i) light blanket integrating side-glowing optical fibers, (ii) light emitting panel composed of SEOF obtained by micro-perforations of the cladding, (iii) embroidery-based light emitting fabric, and (iv) woven-based light emitting fabric. Woven-based light emitting fabrics give the best performances: higher fluence rate, best homogeneity of light delivery, good flexibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction

    Directory of Open Access Journals (Sweden)

    Daoxin Dai

    2012-03-01

    Full Text Available Silicon-based large-scale photonic integrated circuits are becoming important, due to the need for higher complexity and lower cost for optical transmitters, receivers and optical buffers. In this paper, passive technologies for large-scale photonic integrated circuits are described, including polarization handling, light non-reciprocity and loss reduction. The design rule for polarization beam splitters based on asymmetrical directional couplers is summarized and several novel designs for ultra-short polarization beam splitters are reviewed. A novel concept for realizing a polarization splitter–rotator is presented with a very simple fabrication process. Realization of silicon-based light non-reciprocity devices (e.g., optical isolator, which is very important for transmitters to avoid sensitivity to reflections, is also demonstrated with the help of magneto-optical material by the bonding technology. Low-loss waveguides are another important technology for large-scale photonic integrated circuits. Ultra-low loss optical waveguides are achieved by designing a Si3N4 core with a very high aspect ratio. The loss is reduced further to <0.1 dB m−1 with an improved fabrication process incorporating a high-quality thermal oxide upper cladding by means of wafer bonding. With the developed ultra-low loss Si3N4 optical waveguides, some devices are also demonstrated, including ultra-high-Q ring resonators, low-loss arrayed-waveguide grating (demultiplexers, and high-extinction-ratio polarizers.

  6. Perform light and optic experiments in Augmented Reality

    Science.gov (United States)

    Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan; Javahiraly, Nicolas; Israel, Kai

    2015-10-01

    In many scientific studies lens experiments are part of the curriculum. The conducted experiments are meant to give the students a basic understanding for the laws of optics and its applications. Most of the experiments need special hardware like e.g. an optical bench, light sources, apertures and different lens types. Therefore it is not possible for the students to conduct any of the experiments outside of the university's laboratory. Simple optical software simulators enabling the students to virtually perform lens experiments already exist, but are mostly desktop or web browser based. Augmented Reality (AR) is a special case of mediated and mixed reality concepts, where computers are used to add, subtract or modify one's perception of reality. As a result of the success and widespread availability of handheld mobile devices, like e.g. tablet computers and smartphones, mobile augmented reality applications are easy to use. Augmented reality can be easily used to visualize a simulated optical bench. The students can interactively modify properties like e.g. lens type, lens curvature, lens diameter, lens refractive index and the positions of the instruments in space. Light rays can be visualized and promote an additional understanding of the laws of optics. An AR application like this is ideally suited to prepare the actual laboratory sessions and/or recap the teaching content. The authors will present their experience with handheld augmented reality applications and their possibilities for light and optic experiments without the needs for specialized optical hardware.

  7. Simultaneous optical and electrical modeling of plasmonic light trapping in thin-film amorphous silicon photovoltaic devices

    Science.gov (United States)

    Gandhi, Keyur K.; Nejim, Ahmed; Beliatis, Michail J.; Mills, Christopher A.; Henley, Simon J.; Silva, S. Ravi P.

    2015-01-01

    Rapid prototyping of photovoltaic (PV) cells requires a method for the simultaneous simulation of the optical and electrical characteristics of the device. The development of nanomaterial-enabled PV cells only increases the complexity of such simulations. Here, we use a commercial technology computer aided design (TCAD) software, Silvaco Atlas, to design and model plasmonic gold nanoparticles integrated in optoelectronic device models of thin-film amorphous silicon (a-Si:H) PV cells. Upon illumination with incident light, we simulate the optical and electrical properties of the cell simultaneously and use the simulation to produce current-voltage (J-V) and external quantum efficiency plots. Light trapping due to light scattering and localized surface plasmon resonance interactions by the nanoparticles has resulted in the enhancement of both the optical and electrical properties due to the reduction in the recombination rates in the photoactive layer. We show that the device performance of the modeled plasmonic a-Si:H PV cells depends significantly on the position and size of the gold nanoparticles, which leads to improvements either in optical properties only, or in both optical and electrical properties. The model provides a route to optimize the device architecture by simultaneously optimizing the optical and electrical characteristics, which leads to a detailed understanding of plasmonic PV cells from a design perspective and offers an advanced tool for rapid device prototyping.

  8. An integrated single- and two-photon non-diffracting light-sheet microscope

    Science.gov (United States)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  9. Chem/bio sensing with non-classical light and integrated photonics.

    Science.gov (United States)

    Haas, J; Schwartz, M; Rengstl, U; Jetter, M; Michler, P; Mizaikoff, B

    2018-01-29

    Modern quantum technology currently experiences extensive advances in applicability in communications, cryptography, computing, metrology and lithography. Harnessing this technology platform for chem/bio sensing scenarios is an appealing opportunity enabling ultra-sensitive detection schemes. This is further facilliated by the progress in fabrication, miniaturization and integration of visible and infrared quantum photonics. Especially, the combination of efficient single-photon sources together with waveguiding/sensing structures, serving as active optical transducer, as well as advanced detector materials is promising integrated quantum photonic chem/bio sensors. Besides the intrinsic molecular selectivity and non-destructive character of visible and infrared light based sensing schemes, chem/bio sensors taking advantage of non-classical light sources promise sensitivities beyond the standard quantum limit. In the present review, recent achievements towards on-chip chem/bio quantum photonic sensing platforms based on N00N states are discussed along with appropriate recognition chemistries, facilitating the detection of relevant (bio)analytes at ultra-trace concentration levels. After evaluating recent developments in this field, a perspective for a potentially promising sensor testbed is discussed for reaching integrated quantum sensing with two fiber-coupled GaAs chips together with semiconductor quantum dots serving as single-photon sources.

  10. Nonlinear light-matter interactions in engineered optical media

    Science.gov (United States)

    Litchinitser, Natalia

    In this talk, we consider fundamental optical phenomena at the interface of nonlinear and singular optics in artificial media, including theoretical and experimental studies of linear and nonlinear light-matter interactions of vector and singular optical beams in metamaterials. We show that unique optical properties of metamaterials open unlimited prospects to ``engineer'' light itself. Thanks to their ability to manipulate both electric and magnetic field components, metamaterials open new degrees of freedom for tailoring complex polarization states and orbital angular momentum (OAM) of light. We will discuss several approaches to structured light manipulation on the nanoscale using metal-dielectric, all-dielectric and hyperbolic metamaterials. These new functionalities, including polarization and OAM conversion, beam magnification and de-magnification, and sub-wavelength imaging using novel non-resonant hyperlens are likely to enable a new generation of on-chip or all-fiber structured light applications. The emergence of metamaterials also has a strong potential to enable a plethora of novel nonlinear light-matter interactions and even new nonlinear materials. In particular, nonlinear focusing and defocusing effects are of paramount importance for manipulation of the minimum focusing spot size of structured light beams necessary for nanoscale trapping, manipulation, and fundamental spectroscopic studies. Colloidal suspensions offer as a promising platform for engineering polarizibilities and realization of large and tunable nonlinearities. We will present our recent studies of the phenomenon of spatial modulational instability leading to laser beam filamentation in an engineered soft-matter nonlinear medium. Finally, we introduce so-called virtual hyperbolic metamaterials formed by an array of plasma channels in air as a result of self-focusing of an intense laser pulse, and show that such structure can be used to manipulate microwave beams in a free space. This

  11. Light Robotics and its potential for integrating with magnetic carriers

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    . After years of working on light-driven trapping and manipulation, we can see that a confluence of developments is now ripe for the emergence of a new area that can contribute to nanobiophotonics – Light Robotics – which combines advances in microfabrication and optical micromanipulation together...... with intelligent control ideas from robotics, wavefront engineering and computational optics. In the Summer 2017 we published a ca. 500 pages edited Elsevier book volume covering the fundamental aspects needed for Light Robotics including optical trapping systems, microfabrication and microassembly as well...... as underlying theoretical principles and experimental illustrations for optimizing optical forces and torques for Light Robotics. The Elsevier volume is presenting various new functionalities that are enabled by these new designed light-driven micro-robots in addition to various nano-biophotonics applications...

  12. Light Robotics: an all-optical nano- and micro-toolbox

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Palima, Darwin

    2017-01-01

    potential of this new ‘drone-like’ light-driven micro-robotics in challenging microscopic geometries requires a versatile and real-time reconfigurable light addressing that can dynamically track a plurality of tiny micro-robots in 3D to ensure continuous optimal light coupling on the fly. Our latest......Recently we proposed the concept of so-called Light Robotics including the new and disruptive 3D fabricated micro-tools coined Wave-guided Optical Waveguides that can be real-time optically manipulated and remote-controlled with a joystick in a volume with six-degrees-of-freedom. Exploring the full...

  13. Fiber fuse light-induced continuous breakdown of silica glass optical fiber

    CERN Document Server

    Todoroki, Shin-ichi

    2014-01-01

    This book describes the fiber fuse phenomenon that causes a serious problem for the present optical communication systems. High-power light often brings about catastrophic damage to optical devices. Silica glass optical fibers with ultralow transmission loss are not the exception. A fiber fuse appears in a heated region of the fiber cable delivering a few watts of light and runs toward the light source destroying its core region. Understanding this phenomenon is a necessary first step in the development of future optical communication systems. This book provides supplementary videos and photog

  14. Integration of Curved D-Type Optical Fiber Sensor with Microfluidic Chip

    Directory of Open Access Journals (Sweden)

    Yung-Shin Sun

    2016-12-01

    Full Text Available A curved D-type optical fiber sensor (OFS combined with a microfluidic chip is proposed. This OFS, based on surface plasmon resonance (SPR of the Kretchmann’s configuration, is applied as a biosensor to measure the concentrations of different bio-liquids such as ethanol, methanol, and glucose solutions. The SPR phenomenon is attained by using the optical fiber to guide the light source to reach the side-polished, gold-coated region. Integrating this OFS with a polymethylmethacrylate (PMMA-based microfluidic chip, the SPR spectra for liquids with different refractive indices are recorded. Experimentally, the sensitivity of the current biosensor was calculated to be in the order of 10−5 RIU. This microfluidic chip-integrated OFS could be valuable for monitoring subtle changes in biological samples such as blood sugar, allergen, and biomolecular interactions.

  15. Human tissue optical properties measurements and light propagation modelling

    CSIR Research Space (South Africa)

    Dam, JS

    2006-07-01

    Full Text Available Biomedical Optics is the study of the optical properties of living biological material, especially its scattering and absorption characteristics, and their significance to light propagation within the material. Determination of tissue optical...

  16. Illumination properties and energy savings of a solar fiber optic lighting system balanced by artificial lights

    OpenAIRE

    Lingfors, David

    2013-01-01

    A solar fiber optic lighting system, SP3 from the Swedish company Parans Solar Lighting AB, has been installed in a study area/corridor test site. A collector is tracking the sun during daytime, focusing the direct sun irradiance via Fresnel lenses into optical fibers, which guide the solar light into the building. The illumination properties of the system have been characterized. The energy saving due to reduced need of artificial lighting have been calculated and methods for balancing the a...

  17. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI.

    Science.gov (United States)

    Zolnik, Timothy A; Sha, Fern; Johenning, Friedrich W; Schreiter, Eric R; Looger, Loren L; Larkum, Matthew E; Sachdev, Robert N S

    2017-03-01

    The genetically encoded fluorescent calcium integrator calcium-modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium. The rate of conversion - the sensitivity to activity - is tunable and depends on the intensity of violet light. Synaptic activity and action potentials can independently initiate significant CaMPARI conversion. The level of conversion by subthreshold synaptic inputs is correlated to the strength of input, enabling optical readout of relative synaptic strength. When combined with optogenetic activation of defined presynaptic neurons, CaMPARI provides an all-optical method to map synaptic connectivity. The calcium-modulated photoactivatable ratiometric integrator (CaMPARI) is a genetically encoded calcium integrator that facilitates the study of neural circuits by permanently marking cells active during user-specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labelling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all-optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and subthreshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed Ca

  18. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    International Nuclear Information System (INIS)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  19. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Sosa, Daniel-Esteban; Angel-Toro, Luciano, E-mail: dsierras@eafit.edu.co, E-mail: langel@eafit.edu.co [Grupo de Optica Aplicada, Universidad EAFIT, 1 Medellin (Colombia)

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB (registered) software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  20. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    Science.gov (United States)

    Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  1. X-ray Optics for BES Light Source Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Dennis [Argonne National Lab. (ANL), Argonne, IL (United States); Padmore, Howard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lessner, Eliane [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2013-03-27

    potentially revolutionary science involves soft excitations such as magnons and phonons; in general, these are well below the resolution that can be probed by today’s optical systems. The study of these low-energy excitations will only move forward if advances are made in high-resolution gratings for the soft X-ray energy region, and higher-resolution crystal analyzers for the hard X-ray region. In almost all the forefront areas of X-ray science today, the main limitation is our ability to focus, monochromate, and manipulate X-rays at the level required for these advanced measurements. To address these issues, the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) sponsored a workshop, X-ray Optics for BES Light Source Facilities, which was held March 27–29, 2013, near Washington, D.C. The workshop addressed a wide range of technical and organizational issues. Eleven working groups were formed in advance of the meeting and sought over several months to define the most pressing problems and emerging opportunities and to propose the best routes forward for a focused R&D program to solve these problems. The workshop participants identified eight principal research directions (PRDs), as follows: Development of advanced grating lithography and manufacturing for high-energy resolution techniques such as soft X-ray inelastic scattering. Development of higher-precision mirrors for brightness preservation through the use of advanced metrology in manufacturing, improvements in manufacturing techniques, and in mechanical mounting and cooling. Development of higher-accuracy optical metrology that can be used in manufacturing, verification, and testing of optomechanical systems, as well as at wavelength metrology that can be used for quantification of individual optics and alignment and testing of beamlines. Development of an integrated optical modeling and design framework that is designed and maintained specifically for X-ray optics. Development of

  2. X-ray Optics for BES Light Source Facilities

    International Nuclear Information System (INIS)

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    2013-01-01

    and potentially revolutionary science involves soft excitations such as magnons and phonons; in general, these are well below the resolution that can be probed by today's optical systems. The study of these low-energy excitations will only move forward if advances are made in high-resolution gratings for the soft X-ray energy region, and higher-resolution crystal analyzers for the hard X-ray region. In almost all the forefront areas of X-ray science today, the main limitation is our ability to focus, monochromate, and manipulate X-rays at the level required for these advanced measurements. To address these issues, the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) sponsored a workshop, X-ray Optics for BES Light Source Facilities, which was held March 27-29, 2013, near Washington, D.C. The workshop addressed a wide range of technical and organizational issues. Eleven working groups were formed in advance of the meeting and sought over several months to define the most pressing problems and emerging opportunities and to propose the best routes forward for a focused R&D program to solve these problems. The workshop participants identified eight principal research directions (PRDs), as follows: Development of advanced grating lithography and manufacturing for high-energy resolution techniques such as soft X-ray inelastic scattering. Development of higher-precision mirrors for brightness preservation through the use of advanced metrology in manufacturing, improvements in manufacturing techniques, and in mechanical mounting and cooling. Development of higher-accuracy optical metrology that can be used in manufacturing, verification, and testing of optomechanical systems, as well as at wavelength metrology that can be used for quantification of individual optics and alignment and testing of beamlines. Development of an integrated optical modeling and design framework that is designed and maintained specifically for X-ray optics. Development of

  3. Integrated three-dimensional optical MEMS for chip-based fluorescence detection

    Science.gov (United States)

    Hung, Kuo-Yung; Tseng, Fan-Gang; Khoo, Hwa-Seng

    2009-04-01

    This paper presents a novel fluorescence sensing chip for parallel protein microarray detection in the context of a 3-in-1 protein chip system. This portable microchip consists of a monolithic integration of CMOS-based avalanche photo diodes (APDs) combined with a polymer micro-lens, a set of three-dimensional (3D) inclined mirrors for separating adjacent light signals and a low-noise transformer-free dc-dc boost mini-circuit to power the APDs (ripple below 1.28 mV, 0-5 V input, 142 V and 12 mA output). We fabricated our APDs using the planar CMOS process so as to facilitate the post-CMOS integration of optical MEMS components such as the lenses. The APD arrays were arranged in unique circular patterns appropriate for detecting the specific fluorescently labelled protein spots in our study. The array-type APDs were designed so as to compensate for any alignment error as detected by a positional error signal algorithm. The condenser lens was used as a structure for light collection to enhance the fluorescent signals by about 25%. This element also helped to reduce the light loss due to surface absorption. We fabricated an inclined mirror to separate two adjacent fluorescent signals from different specimens. Excitation using evanescent waves helped reduce the interference of the excitation light source. This approach also reduced the number of required optical lenses and minimized the complexity of the structural design. We achieved detection floors for anti-rabbit IgG and Cy5 fluorescent dye as low as 0.5 ng/µl (~3.268 nM). We argue that the intrinsic nature of point-to-point and batch-detection methods as showcased in our chip offers advantages over the serial-scanning approach used in traditional scanner systems. In addition, our system is low cost and lightweight.

  4. Switching of light with light using cold atoms inside a hollow optical fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2010-01-01

    We demonstrate a fiber-optical switch that operates with a few hundred photons per switching pulse. The light-light interaction is mediated by laser-cooled atoms. The required strong interaction between atoms and light is achieved by simultaneously confining photons and atoms inside the microscopic...... hollow core of a single-mode photonic-crystal fiber....

  5. Processes for design, construction and utilisation of arrays of light-emitting diodes and light-emitting diode-coupled optical fibres for multi-site brain light delivery.

    Science.gov (United States)

    Bernstein, Jacob G; Allen, Brian D; Guerra, Alexander A; Boyden, Edward S

    2015-05-01

    Optogenetics enables light to be used to control the activity of genetically targeted cells in the living brain. Optical fibers can be used to deliver light to deep targets, and LEDs can be spatially arranged to enable patterned light delivery. In combination, arrays of LED-coupled optical fibers can enable patterned light delivery to deep targets in the brain. Here we describe the process flow for making LED arrays and LED-coupled optical fiber arrays, explaining key optical, electrical, thermal, and mechanical design principles to enable the manufacturing, assembly, and testing of such multi-site targetable optical devices. We also explore accessory strategies such as surgical automation approaches as well as innovations to enable low-noise concurrent electrophysiology.

  6. Characteristic Analysis Light Intensity Sensor Based On Plastic Optical Fiber At Various Configuration

    Science.gov (United States)

    Arifin, A.; Lusiana; Yunus, Muhammad; Dewang, Syamsir

    2018-03-01

    This research discusses the light intensity sensor based on plastic optical fiber. This light intensity sensor is made of plastic optical fiber consisting of two types, namely which is cladding and without cladding. Plastic optical fiber used multi-mode step-index type made of polymethyl metacrylate (PMMA). The infrared LED emits light into the optical fiber of the plastic and is subsequently received by the phototransistor to be converted to an electric voltage. The sensor configuration is made with three models: straight configuration, U configuration and gamma configuration with cladding and without cladding. The measured light source uses a 30 Watt high power LED with a light intensity of 0 to 10 Klux. The measured light intensity will affect the propagation of light inside the optical fiber sensor. The greater the intensity of the measured light, the greater the output voltage that is read on the computer. The results showed that the best optical fiber sensor characteristics were obtained in U configuration. Sensors with U-configuration without cladding had the best sensitivity and resolution values of 0.0307 volts/Klux and 0.0326 Klux. The advantages of this measuring light intensity based on the plastic optical fiber instrument are simple, easy-to-make operational systems, low cost, high sensitivity and resolution.

  7. Light fidelity (Li-Fi): towards all-optical networking

    Science.gov (United States)

    Tsonev, Dobroslav; Videv, Stefan; Haas, Harald

    2013-12-01

    Motivated by the looming radio frequency (RF) spectrum crisis, this paper aims at demonstrating that optical wireless communication (OWC) has now reached a state where it can demonstrate that it is a viable and matured solution to this fundamental problem. In particular, for indoor communications where most mobile data traffic is consumed, light fidelity (Li-Fi) which is related to visible light communication (VLC) offers many key advantages, and effective solutions to the issues that have been posed in the last decade. This paper discusses all key component technologies required to realize optical cellular communication systems referred to here as optical attocell networks. Optical attocells are the next step in the progression towards ever smaller cells, a progression which is known to be the most significant contributor to the improvements in network spectral efficiencies in RF wireless networks.

  8. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    Science.gov (United States)

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  9. Generation of optical vortices in an integrated optical circuit

    Science.gov (United States)

    Tudor, Rebeca; Kusko, Mihai; Kusko, Cristian

    2017-09-01

    In this work, the generation of optical vortices in an optical integrated circuit is numerically demonstrated. The optical vortices with topological charge m = ±1 are obtained by the coherent superposition of the first order modes present in a waveguide with a rectangular cross section, where the phase delay between these two propagating modes is Δφ = ±π/2. The optical integrated circuit consists of an input waveguide continued with a y-splitter. The left and the right arms of the splitter form two coupling regions K1 and K2 with a multimode output waveguide. In each coupling region, the fundamental modes present in the arms of the splitter are selectively coupled into the output waveguide horizontal and vertical first order modes, respectively. We showed by employing the beam propagation method simulations that the fine tuning of the geometrical parameters of the optical circuit makes possible the generation of optical vortices in both transverse electric (TE) and transverse magnetic (TM) modes. Also, we demonstrated that by placing a thermo-optical element on one of the y-splitter arms, it is possible to switch the topological charge of the generated vortex from m = 1 to m = -1.

  10. Centralized light-source optical access network based on polarization multiplexing.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2010-03-01

    This paper presents and demonstrates a centralized light source optical access network based on optical polarization multiplexing technique. By using two optical sources emitting light orthogonally polarized in the Central Node for downstream and upstream operations, the Remote Node is kept source-free. EVM values below telecommunication standard requirements have been measured experimentally when bidirectional digital signals have been transmitted over 10 km of SMF employing subcarrier multiplexing technique in the electrical domain.

  11. Optical particle trapping and dynamic manipulation using spatial light modulation

    DEFF Research Database (Denmark)

    Eriksen, René Lynge

    suitable for optical trapping. A phaseonly spatial light modulator (SLM) is used for the phase encoding of the laser beam. The SLM is controlled directly from a standard computer where phase information is represented as gray-scale image information. Experimentally, both linear and angular movements......This thesis deals with the spatial phase-control of light and its application for optical trapping and manipulation of micron-scale objects. Utilizing the radiation pressure, light exerts on dielectric micron-scale particles, functionality of optical tweezers can be obtained. Multiple intensity...... compression factors of two, which is not achievable with binary phase encoding, have been successfully demonstrated. In addition, the GPC method has been miniaturized and implemented in a planar optical platform and shown to work acceptably, with relatively high visibility. Furthermore, the GPC method has...

  12. Improved contrast polymer light-emitting diode with optical interference layers

    International Nuclear Information System (INIS)

    Liu, H.Y.; Sun, R.G.; Yang, K.X.; Peng, J.B.; Cao, Y.; Joo, S.K.

    2007-01-01

    An improved contrast polymer light diode based on the destructive optical interference layers deposited between the glass substrate and ITO anode is fabricated. It is unnecessary to be considered that the additional optical interference structure will impede carrier injection from the electrode to the carrier-transporting layer. Due to the quarter-wavelength thickness of medial ITO layer, the reflected light from first Cr layer is inverted 180 o out of phase with the reflected light from second Cr layer, resulting in the destructive interference. It is evident that the contrast ratio of the device with the optical interference structure is about three times higher than that of the conventional device

  13. Optical diagnostics of CO2 laser-fusion targets using backscattered light

    International Nuclear Information System (INIS)

    Casperson, D.E.

    1981-01-01

    With the f/2.4 focusing optics on one of the eight Helios CO 2 laser beam lines, direct backscattered light from a variety of glass microballoon targets has been observed. The quantities that have been measured include: (1) the total backscattered energy; (2) relative amplitudes of the backscattered fundamental and low harmonics (n = 1, 2, 3) of the 10.6 μm incident light; (3) the 3/2 harmonic emission from a double pulse backscatter experiment; (4) the temporally resolved 10.6 μm light using a fast pyroelectric detector and a Los Alamos 5-GHz oscilloscope; and (5) the time-integrated spectrally resolved fundamental using a 3/4 meter spectrometer and a high resolution pyroelectric detector array (resolution approx. 40 A at 10.6 μm). The suitability of these diagnostics for evaluating the CO 2 laser plasma in terms of stimulated scattering processes, plasma density gradients, velocity of the critical surface, etc., is discussed

  14. Fibre Optic Gyroscope Developments Using Integrated Optic Components

    Science.gov (United States)

    Minford, W. J.; DePaula, R. M.

    1988-09-01

    The sensing of rotation using counterpropagating optical beams in a fiber loop (the SAGNAC effect) has gone through extensive developments and demonstrations since first proved feasible by Vali and Shorthilll in 1976. The interferometric fiber gyroscope minimum configuration2 which uses a common input-output port and single-mode filter was developed to provide the extreme high stability necessary to reach the sensitivities at low rotation rates attainable with current state-of-the-art detectors. The simplicity and performance of this configuration has led to its acceptance and wide-spread use. In order to increase the mechanical stability of this system, all single-mode fiber components are employed and a further advancement to integrated optics has enabled most of the optical functions to be placed on a single mass-producible substrate. Recent improvements in the components (eg polarization maintaining fiber and low coherence sources) have further enhanced the performance of the minimum configuration gyro. This presentation focused on the impact of LiNbO3 integrated optic components on gyroscope developments. The use of Ti-indiffused LiNbO3 waveguide optical circuits in interferometric fiber optic gyroscopes has taken two directions: to utilize only the phase modulator, or to combine many of the minimum configuration optical functions on the electro-optic substrate. The high-bandwidth phase modulator is the driving force for using LiNbO3 waveguide devices. This device allows both biasing the gyro for maximum sensitivity and closing the loop via frequency shifting, for example, thus increasing the dynamic range of the gyro and the linearity of the scale factor. Efforts to implement most of the minimum configuration optical functions onto a single LiNbO3 substrate have been led by Thomson CSF.3 They have demonstrated an interferometric gyroscope with excellent performance using a LiNbO3 optical circuit containing a Y-splitter, phase modulator, and surface

  15. Use of diffusive optical fibers for plant lighting

    Energy Technology Data Exchange (ETDEWEB)

    Kozai, T.; Kitaya, Y.; Fujiwara, K. [Chiba Univ., Matsudo (Japan); Kino, S.; Kinowaki, M. [Topy Green Ltd., Tokyo (Japan)

    1994-12-31

    Lighting is one of the most critical aspects in plant production and environmental research with plants. Much research has been repeated on the effect of light intensity, spectral distribution of light and lighting cycle, but comparatively little research done on the effect of lighting direction on the growth, development and morphology of plants. When plants are grown with lamps above, light is directed downward to the plants. Downward or overhead lighting is utilized in almost all cases. However, downward lighting does not always give the best result in terms of lighting efficiency, growth, development and morphology of plants. Kitaya et al. (1988) developed a lighting system in which two rooting beds were arranged; one above and the other under fluorescent lamps. Lettuce plants grew normally in the lower bed and suspended upside-down under the upper bed. The lettuce plants suspended upside-down were given the light in upward direction (upward lighting). No significant difference in growth, development and morphology was found between the lettuce plants grown by the downward and upward lighting. Combining upward and downward lighting, improved spacing efficiency and reduced electricity cost per plant compared with conventional, downward lighting. From the above example, when designing a lighting system for plants with lamps more lighting direction should be considered. In the present study, a sideward lighting system was developed using diffusive optical fiber belts. More higher quality tissue-cultured transplants could be produced in reduced space with sideward lighting system than with a downward lighting system. An application of the sideward lighting system using diffusive optical fiber belts is described and advantages and disadvantages are discussed.

  16. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    Science.gov (United States)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  17. Energy-dependent microscopic optical potential for scattering of nucleons on light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Farag, M.Y.H.; Esmael, E.H. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Maridi, H.M. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Taiz University, Physics Department, Faculty of Applied Science, Taiz (Yemen)

    2014-06-15

    We present an energy-dependent microscopic optical model potential for elastic scattering of nucleons on light nuclei. The single-folding model is used for the real part of the optical potential (OP), while the imaginary part is derived within the high-energy approximation theory. The energy dependence of the OP is determined from the parameterization of the volume integrals those calculated from the best-fit OP that fit the experimental data of the cross sections and analyzing powers. This energy-dependent OP is successfully applied to analyze the proton elastic scattering of {sup 4,6,i8}He, {sup 6,7}Li, and {sup 9,10}Be nuclei at low and intermediate incident energies up to 200MeV/nucleon. (orig.)

  18. Optical laser systems at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; Edstrom, Steve; Gilevich, Sasha; Glownia, James M.; Granados, Eduardo; Hering, Philippe; Hoffmann, Matthias C.; Miahnahri, Alan; Milathianaki, Despina; Polzin, Wayne; Ratner, Daniel; Tavella, Franz; Vetter, Sharon; Welch, Marc; White, William E.; Fry, Alan R., E-mail: alanfry@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-22

    This manuscript serves as a reference to describe the optical laser sources and capabilities at the Linac Coherent Light Source. Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.

  19. Optical feedback-induced light modulation for fiber-based laser ablation.

    Science.gov (United States)

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  20. Designing Plasmonic Materials and Optical Metasurfaces for Light Manipulation and Optical Sensing

    Science.gov (United States)

    Chen, Wenxiang

    Metamaterials are artificial materials designed to create optical properties that do not exist in nature. They are assemblies of subwavelength structures that are tailored in size, shape, composition, and orientation to realize the desired property. Metamaterials are promising for applications in diverse areas: optical filters, lenses, holography, sensors, photodetectors, photovoltaics, photocatalysts, medical devices, and many more, because of their excellent abilities in bending, absorbing, enhancing and blocking light. However, the practical use of metamaterials is challenged by the lack of plasmonic materials with proper permittivity for different applications and the slow and expensive fabrication methods available to pattern sub-wavelength structures. We have also only touched the surface in exploring the innovative uses of metamaterials to solve world problems. In this thesis, we study the fundamental optical properties of metamaterial building blocks by designing material permittivity. We continuously tune the interparticle distance in colloidal Au nanocrystal (NC) solids via the partial ligand exchange process. Then we combine top-down nanoimprint lithography with bottom-up assembly of colloidal NCs to develop a large-area, low-cost fabrication method for subwavelength nanostructures. Via this method, we fabricate and characterize nano-antenna arrays of different sizes and demonstrate metasurface quarter wave-plates of different bandwidth, and compare their performances with simulation results. We also integrate the metasurfaces with chemically- and mechanically-responsive polymers for strong-signal sensing. In the first design, we combine ultrathin plasmonic nanorods with hydrogel to fabricate optical moisture sensors for agricultural use. In the second application, we design mechanically tunable Au grating resonances on a polydimethylsiloxane (PDMS) substrate. The dimensions of Au grating are carefully engineered to achieve a hybridized, ultrasharp, and

  1. All-Optical Network Subsystems Using Integrated SOA-Based Optical Gates and Flip-Flops for Label-Swapped Netorks

    DEFF Research Database (Denmark)

    Seoane, Jorge; Holm-Nielsen, Pablo Villanueva; Kehayas, E.

    2006-01-01

    In this letter, we demonstrate that all-optical network subsystems, offering intelligence in the optical layer, can be constructed by functional integration of integrated all-optical logic gates and flip-flops. In this context, we show 10-Gb/s all-optical 2-bit label address recognition......-level advantages of these all-optical subsystems combined with their realization with compact integrated devices, suggest that they are strong candidates for future packet/label switched optical networks....... by interconnecting two optical gates that perform xor operation on incoming optical labels. We also demonstrate 40-Gb/s all-optical wavelength-switching through an optically controlled wavelength converter, consisting of an integrated flip-flop prototype device driven by an integrated optical gate. The system...

  2. Collimating lens for light-emitting-diode light source based on non-imaging optics.

    Science.gov (United States)

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian

    2012-04-10

    A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source.

  3. Lectures on light nonlinear and quantum optics using the density matrix

    CERN Document Server

    Rand, Stephen C.

    2016-01-01

    This book bridges the gap between introductory quantum mechanics and the research front of modern optics and scientific fields that make use of light. While suitable as a reference for the specialist in quantum optics, it also targets non-specialists from other disciplines who need to understand light and its uses in research. It introduces a single analytic tool, the density matrix, to analyze complex optical phenomena encountered in traditional as well as cross-disciplinary research. It moves swiftly in a tight sequence from elementary to sophisticated topics in quantum optics, including optical tweezers, laser cooling, coherent population transfer, optical magnetism, electromagnetically induced transparency, squeezed light, and cavity quantum electrodynamics. A systematic approach starts with the simplest systems—stationary two-level atoms—then introduces atomic motion, adds more energy levels, and moves on to discuss first-, second-, and third-order coherence effects that are the basis for analyzing n...

  4. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  5. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  6. Interferometric interrogation concepts for integrated electro-optical sensor systems

    NARCIS (Netherlands)

    Ikkink, T.J.; Ikkink, Teunis Jan

    1998-01-01

    Integrated optical sensors have a high potential in the measurement of a large variety of measurands. Research on integrated optical sensors enjoys increasing interest. In order to reach accurate performance and to facilitate the use of integrated optical sensors, electronic functions for sensor

  7. EXPERIMENTAL STUDY ON LIGHT TRANSMITTING CONCRETE BY USING OPTICAL FIBRE

    OpenAIRE

    S. Suganya; S. Minu Gopika

    2017-01-01

    Light transmitting concrete is one of the fibre reinforced concrete which is mainly used for aesthetic application by incorporating the optical fibres in concrete. Optical fibres help to transmit the light through the fibres and the end-light type of fibre is used to increase the aesthetic appearance of the concrete which is like a transparent concrete. Fibres are arranged in different layers, to increase the load carrying capacity and also the pattern can be created to make the concrete deco...

  8. A multi-ring optical packet and circuit integrated network with optical buffering.

    Science.gov (United States)

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  9. Integrated optical circuit comprising a polarization convertor

    NARCIS (Netherlands)

    1998-01-01

    An integrated optical circuit includes a first device and a second device, which devices are connected by a polarization convertor. The polarization convertor includes a curved section of a waveguide, integrated in the optical circuit. The curved section may have several differently curved

  10. Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles

    Science.gov (United States)

    Liehr, Sascha; Lenke, Philipp; Krebber, Katerina; Seeger, Monika; Thiele, Elke; Metschies, Heike; Gebreselassie, Berhane; Münich, Johannes Christian; Stempniewski, Lothar

    2008-04-01

    Fiber optic sensors based on polymer optical fibers (POF) have the advantage of being very elastic and robust at the same time. Unlike silica fibers, standard PMMA POF fibers can be strained to more than 40% while fully maintaining their light guiding properties. We investigated POF as a distributed strain sensor by analysing the backscatter increase at the strained section using the optical time domain reflectometry (OTDR) technique. This sensing ability together with its high robustness and break-down strain makes POF well-suited for integration into technical textiles for structural health monitoring purposes. Within the European research project POLYTECT (Polyfunctional textiles against natural hazards) technical textiles with integrated POF sensors, among others sensors are being developed for online structural health monitoring of geotechnical structures. Mechanical deformation in slopes, dams, dikes, embankments and retrofitted masonry structures is to be detected before critical damage occurs. In this paper we present the POF strain sensor properties, reactions to disturbing influences as temperature and bends as well as the results of the different model tests we conducted within POLYTECT. We further show the potential of perfluorinated graded-index POF for distributed strain sensing with increased spatial resolution and measurement lengths.

  11. All-optical temporal integration of ultrafast pulse waveforms.

    Science.gov (United States)

    Park, Yongwoo; Ahn, Tae-Jung; Dai, Yitang; Yao, Jianping; Azaña, José

    2008-10-27

    An ultrafast all-optical temporal integrator is experimentally demonstrated. The demonstrated integrator is based on a very simple and practical solution only requiring the use of a widely available all-fiber passive component, namely a reflection uniform fiber Bragg grating (FBG). This design allows overcoming the severe speed (bandwidth) limitations of the previously demonstrated photonic integrator designs. We demonstrate temporal integration of a variety of ultrafast optical waveforms, including Gaussian, odd-symmetry Hermite Gaussian, and (odd-)symmetry double pulses, with temporal features as fast as ~6-ps, which is about one order of magnitude faster than in previous photonic integration demonstrations. The developed device is potentially interesting for a multitude of applications in all-optical computing and information processing, ultrahigh-speed optical communications, ultrafast pulse (de-)coding, shaping and metrology.

  12. Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements

    Science.gov (United States)

    Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey

    2017-12-01

    Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.

  13. Production and detection of light bosons using optical resonators

    International Nuclear Information System (INIS)

    Hoogeveen, F.; Ziegenhagen, T.

    1990-11-01

    Experiments looking for light spin zero particles using the 'shining light through walls' technique can be improved by enclosing the light in an optical resonator. In this paper we analyze this technique. The effect of using cavities factorizes into a gainfactor for both the emitting and the receiving cavity and a modecoupling constant. The gain factor only depends on the optical quality of the two cavities, whereas the modecoupling constant depends, but not sensitively, in a calculable way on the geometry, axion mass and magnetic fields used. An increase in sensitivity by a factor 10 in the axion photon coupling constant is within reach. (orig.)

  14. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Directory of Open Access Journals (Sweden)

    Heck Martijn J.R.

    2016-06-01

    Full Text Available Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  15. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Science.gov (United States)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  16. High-speed Light Peak optical link for high energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.X. [Academia Sinica, Taipei, Taiwan (China); Chiang, F. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Deng, B. [Hubei Polytechnic University, Huangshi, Hubei (China); Southern Methodist University, Dallas, TX (United States); Hou, J. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Hou, S., E-mail: suen@gate.sinica.edu.tw [Academia Sinica, Taipei, Taiwan (China); Liu, C.; Liu, T. [Southern Methodist University, Dallas, TX (United States); Teng, P.K. [Academia Sinica, Taipei, Taiwan (China); Wang, C.H. [National United University, Miaoli, Taiwan (China); Xu, T. [Shandong University, Ji' nan (China); Southern Methodist University, Dallas, TX (United States); Ye, J. [Southern Methodist University, Dallas, TX (United States)

    2014-11-21

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with {sup 60}Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  17. Note: A portable Raman analyzer for microfluidic chips based on a dichroic beam splitter for integration of imaging and signal collection light paths

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Yijia; Xu, Shuping; Xu, Weiqing, E-mail: xuwq@jlu.edu.cn [State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012 (China); Chen, Lei [State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Chen, Gang [State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012 (China); College of Chemistry, Jilin University, Changchun 130012 (China); Bi, Wenbin [State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012 (China); School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Cui, Haining [College of Physics, Jilin University, Changchun 130012 (China)

    2015-05-15

    An integrated and portable Raman analyzer featuring an inverted probe fixed on a motor-driving adjustable optical module was designed for the combination of a microfluidic system. It possesses a micro-imaging function. The inverted configuration is advantageous to locate and focus microfluidic channels. Different from commercial micro-imaging Raman spectrometers using manual switchable light path, this analyzer adopts a dichroic beam splitter for both imaging and signal collection light paths, which avoids movable parts and improves the integration and stability of optics. Combined with surface-enhanced Raman scattering technique, this portable Raman micro-analyzer is promising as a powerful tool for microfluidic analytics.

  18. Machine integrated optical measurement of honed surfaces in presence of cooling lubricant

    International Nuclear Information System (INIS)

    Schmitt, R; Koenig, N; Zheng, H

    2011-01-01

    The measurement of honed surfaces is one of the most important tasks in tribology. Although many established techniques exist for texture characterization, such as SEM, tactile stylus or white-light interferometry, none of them is suited for a machine integrated measurement. Harsh conditions such as the presence of cooling lubricant or vibrations prohibit the use of commercial sensors inside a honing machine. Instead, machined engine blocks need time-consuming cleaning and preparation while taken out of the production line for inspection. A full inspection of all produced parts is hardly possible this way. Within this paper, an approach for a machine-integrated measurement is presented, which makes use of optical sensors for texture profiling. The cooling lubricant here serves as immersion medium. The results of test measurements with a chromatic-confocal sensor and a fiber-optical low-coherence interferometer show the potential of both measuring principles for our approach. Cooling lubricant temperature and flow, scanning speed and measurement frequency have been varied in the tests. The sensor with best performance will later be chosen for machine integration.

  19. Optical meta-atom for localization of light with quantized energy.

    Science.gov (United States)

    Lannebère, Sylvain; Silveirinha, Mário G

    2015-10-30

    The capacity to confine light into a small region of space is of paramount importance in many areas of modern science. Here we suggest a mechanism to store a quantized 'bit' of light--with a very precise amount of energy--in an open core-shell plasmonic structure ('meta-atom') with a nonlinear optical response. Notwithstanding the trapped light state is embedded in the radiation continuum, its lifetime is not limited by the radiation loss. Interestingly, it is shown that the interplay between the nonlinear response and volume plasmons enables breaking fundamental reciprocity restrictions, and coupling very efficiently an external light source to the meta-atom. The collision of an incident optical pulse with the meta-atom may be used to release the trapped light 'bit'.

  20. Visible-light optical coherence tomography: a review

    Science.gov (United States)

    Shu, Xiao; Beckmann, Lisa; Zhang, Hao F.

    2017-12-01

    Visible-light optical coherence tomography (vis-OCT) is an emerging imaging modality, providing new capabilities in both anatomical and functional imaging of biological tissue. It relies on visible light illumination, whereas most commercial and investigational OCTs use near-infrared light. As a result, vis-OCT requires different considerations in engineering design and implementation but brings unique potential benefits to both fundamental research and clinical care of several diseases. Here, we intend to provide a summary of the development of vis-OCT and its demonstrated applications. We also provide perspectives on future technology improvement and applications.

  1. Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion

    Science.gov (United States)

    Qiao, Tiezhu; Chen, Lulu; Pang, Yusong; Yan, Gaowei

    2018-06-01

    Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.

  2. Engineering light-matter interaction for emerging optical manipulation applications

    DEFF Research Database (Denmark)

    Qiu, Cheng-Wei; Palima, Darwin; Novitsky, Andrey

    2014-01-01

    In this review, we explore recent trends in optical micromanipulation by engineering light-matter interaction and controlling the mechanical effects of optical fields. One central theme is exploring the rich phenomena beyond the now established precision measurements based on trapping micro beads...

  3. CENTRAL WAVELENGTH ADJUSTMENT OF LIGHT EMITTING SOURCE IN INTERFEROMETRIC SENSORS BASED ON FIBER-OPTIC BRAGG GRATINGS

    Directory of Open Access Journals (Sweden)

    A. S. Aleynik

    2015-09-01

    Full Text Available The paper is focused on the investigation of fiber-optic interferometric sensor based on the array of fiber Bragg gratings. Reflection spectra displacement mechanism of the fiber Bragg gratings under the external temperature effects and the static pressure is described. The experiment has shown that reflection spectra displacement of Bragg gratings reduces the visibility of the interference pattern. A method of center wavelength adjustment is proposed for the optical radiation source in accord ance with the current Bragg gratings reflection spectra based on the impulse relative modulation of control signal for the Peltier element controller. The semiconductor vertical-cavity surface-emitting laser controlled by a pump driver is used as a light source. The method is implemented by the Peltier element controller regulating and stabilizing the light source temperature, and a programmable logic-integrated circuit monitoring the Peltier element controller. The experiment has proved that the proposed method rendered possible to regulate the light source temperature at a pitch of 0.05 K and adjust the optical radiation source center wavelength at a pitch of 0.05 nm. Experimental results have revealed that the central wavelength of the radiation adjustment at a pitch of 0.005 nm gives the possibility for the capacity of the array consisting of four opticalfiber sensors based on the fiber Bragg gratings. They are formed in one optical fiber under the Bragg grating temperature change from 0° C to 300° C and by the optical fiber mechanical stretching by the force up to 2 N.

  4. Efficient all-optical switching using slow light within a hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic-crys......-crystal fiber and using quantum optical techniques for generating slow light propagation and large nonlinear interaction between light beams.......We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic...

  5. Light-induced cell separation in a tailored optical landscape

    International Nuclear Information System (INIS)

    Paterson, L.; Milne, G.; Garcés-Chávez, V.; Tatarkova, S. A.; Sibbett, W.; Dholakia, K.; Papagiakoumou, E.; Gunn-Moore, F. J.; Bryant, P. E.; Riches, A. C.

    2005-01-01

    We demonstrate passive optical sorting of cell populations in the absence of any externally driven fluid flow. Specifically, we report the movement of erythrocytes and lymphocytes in an optical landscape, consisting of a circularly symmetric light pattern created by a Bessel light beam. These distinct cell populations move, spontaneously and differentially, across the underlying periodic optical landscape. Thus, we were able to separate lymphocytes from a mixed population of cells containing erythrocytes and then collect the lymphocytes in a microcapillary reservoir. We also demonstrate an enhanced form of this separation that exploits the polarizability of silica microspheres by attaching spheres coated with antibodies to cell surface markers to a subpopulation of lymphocytes. These techniques may be applied using standard laboratory apparatus.

  6. Theory of absorption integrated optical sensor of gaseous materials

    Science.gov (United States)

    Egorov, A. A.

    2010-10-01

    The eigen and noneigen (leaky) modes of a three-layer planar integrated optical waveguide are described. The dispersion relation of a three-layer planar waveguide and other dependences are derived, and the cutoff conditions are analyzed. The diagram of propagation constants of the guided and radiation modes of an irregular asymmetric three-layer waveguide and the dependence of the electric field amplitudes of radiation modes of substrate on vertical coordinate in a tantalum integrated optical waveguide are presented. The operating principles of an absorption integrated optical waveguide sensor are investigated. The dependences of sensitivity of an integrated optical waveguide sensor on the sensory cell length, the coupling efficiency of the laser radiation into the waveguide, the absorption cross-section of the studied material, and the level of additive statistical noise are investigated. Some of the prospective areas of application of integrated-optical waveguide sensors are outlined.

  7. Invisibility Cloaking Based on Geometrical Optics for Visible Light

    Science.gov (United States)

    Ichikawa, H.; Oura, M.; Taoda, T.

    2013-06-01

    Optical cloaking has been one of unattainable dreams and just a subject in fiction until recently. Several different approaches to cloaking have been proposed and demonstrated: stealth technology, active camouflage and transformation optics. The last one would be the most formal approach modifying electromagnetic field around an object to be cloaked with metamaterials. While cloaking based on transformation optics, though valid only at single frequency, is experimentally demonstrated in microwave region, its operation in visible spectrum is still distant from realisation mainly owing to difficulty in fabricating metamaterial structure whose elements are much smaller than wavelength of light. Here we show that achromatic optical cloaking in visible spectrum is possible with the mere principle based on geometrical optics. In combining a pair of polarising beam splitters and right-angled prisms, rays of light to be obstructed by an object can make a detour to an observer, while unobstructed rays go straight through two polarising beam splitters. What is observed eventually through the device is simply background image as if nothing exists in between.

  8. Spatial light modulators for full cross-connections in optical networks

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    2004-01-01

    A polarization-independent optical switch is disclosed for switching at least one incoming beam from at least one input source to at least one output drain. The switch includes a polarizing beam splitter to split each of the at least one incoming beam into a first input beam and a second input beam, wherein the first input beam and the second input beams are independently polarized; a wave plate optically coupled to the second input beam for converting the polarization of the second input beam to an appropriately polarized second input beam; a beam combiner optically coupled to the first input beam and the modified second input beam, wherein the beam combiner accepts the first input beam and the modified second input beam to produce a combined beam; the combined beam is invariant to the polarization state of the input source's polarization; and a controllable spatial light modulator optically coupled to the combined beam, wherein the combined beam is diffracted by the controllable spatial light modulator to place light at a plurality of output locations.

  9. Electronic-Optical Amplifier in the measurement of light polarization plane

    International Nuclear Information System (INIS)

    Miranda Diaz, Lazaro

    2009-01-01

    This paper analyzes the behavior of the output response of two electronic-optical amplifiers with constant amplitude and phase variable, in which photodiodes each them are arranged spatially 90th each other and both with their faces detection parallel to the axis of light transmission. Outward both amplifiers are going to a digital circuit that compares the fronts outputs to the front of the pulse signal that feeds the light source, to finally obtain the difference in time when fronts of light capture the photodiodes. This configuration permit to analyze the influence of the geometric arrangement of the system optical and understand the principle of why the diodes with their faces parallel to the axis of light transmission are capable of capturing variations of this, and even detect the rotation of the plane of light polarized. (Author)

  10. Propagation and storing of light in optically modified atomic media

    International Nuclear Information System (INIS)

    Zaremba, Jaroslaw

    2010-01-01

    Coherent interactions of laser light with atomic ensembles allow one to modify dispersive properties of a medium and lead to new optical phenomena. Studies of the controlled light propagation and storing in such media have recently become a dynamically developing field of research motivated both by the fundamental character of the processes and by potential applications. This article briefly reviews basic theoretical approach to the dynamics of the propagation of laser pulses in optically modified media. The method and the physical processes are discussed that allow one to slow down the group velocity of laser pulse to zero (stopping of light), to transfer the state of a light pulse to atomic coherences and to restore the pulse. The interpretation of these phenomena in the formalism of dark-state polaritons is presented. Examples of possible coherent manipulations on a stored light are also discussed.

  11. Propagation and storing of light in optically modified atomic media

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, Jaroslaw, E-mail: zaremba@fizyka.iomk.p [Institute of Physics Nicolaus Copernicus University ul. Grudziadzka 5/7 87 100 Torun (Poland)

    2010-03-01

    Coherent interactions of laser light with atomic ensembles allow one to modify dispersive properties of a medium and lead to new optical phenomena. Studies of the controlled light propagation and storing in such media have recently become a dynamically developing field of research motivated both by the fundamental character of the processes and by potential applications. This article briefly reviews basic theoretical approach to the dynamics of the propagation of laser pulses in optically modified media. The method and the physical processes are discussed that allow one to slow down the group velocity of laser pulse to zero (stopping of light), to transfer the state of a light pulse to atomic coherences and to restore the pulse. The interpretation of these phenomena in the formalism of dark-state polaritons is presented. Examples of possible coherent manipulations on a stored light are also discussed.

  12. Light Scattering by Optically Soft Particles Theory and Applications

    CERN Document Server

    Sharma, Subodh K

    2006-01-01

    The present monograph deals with a particular class of approximation methods in the context of light scattering by small particles. This class of approximations has been termed as eikonal or soft particle approximations. The eikonal approximation was studied extensively in the potential scattering and then adopted in optical scattering problems. In this context, the eikonal and other soft particle approximations pertain to scatterers whose relative refractive index compared to surrounding medium is close to unity. The study of these approximations is very important because soft particles occur abundantly in nature. For example, the particles that occur in ocean optics, biomedical optics, atmospheric optics and in many industrial applications can be classified as soft particles. This book was written in recognition of the long-standing and current interest in the field of scattering approximations for soft particles. It should prove to be a useful addition for researchers in the field of light scattering.

  13. Integrated Plastic Substrates for OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Gaynor, Whitney

    2015-08-01

    OLED lighting has immense potential as aesthetically pleasing, energy-efficient general illumination. Unlike other light sources, such as incandescents, fluorescents, and inorganic LEDs, OLEDs naturally emit over a large-area surface. They are glare free, do not need to be shaded, and are cool to the touch, requiring no heatsink. The best efficiencies and lifetimes reported are on par with or better than current forms of illumination. However, the cost for OLED lighting remains high – so much so that these products are not market competitive and there is very low consumer demand. We believe that flexible, plastic-based devices will highlight the advantages of aesthetically-pleasing OLED lighting systems while paving the way for lowering both materials and manufacturing costs. These flexible devices require new development in substrate and support technology, which was the focus of the work reported here. The project team, led by Sinovia Technologies, has developed integrated plastic substrates to serve as supports for flexible OLED lighting. The substrates created in this project would enable large-area, flexible devices and are specified to perform three functions. They include a barrier to protect the OLED from moisture and oxygen-related degradation, a smooth, highly conductive transparent electrode to enable large-area device operation, and a light scattering layer to improve emission efficiency. Through the course of this project, integrated substrates were fabricated, characterized, evaluated for manufacturing feasibility and cost, and used in white OLED demonstrations to test their impact on flexible OLED lighting. Our integrated substrates meet or exceed the DOE specifications for barrier performance in water vapor and oxygen transport rates, as well as the transparency and conductivity of the anode film. We find that these integrated substrates can be manufactured in a completely roll-to-roll, high throughput process and have developed and demonstrated

  14. Integrated Optical Interconnect Architectures for Embedded Systems

    CERN Document Server

    Nicolescu, Gabriela

    2013-01-01

    This book provides a broad overview of current research in optical interconnect technologies and architectures. Introductory chapters on high-performance computing and the associated issues in conventional interconnect architectures, and on the fundamental building blocks for integrated optical interconnect, provide the foundations for the bulk of the book which brings together leading experts in the field of optical interconnect architectures for data communication. Particular emphasis is given to the ways in which the photonic components are assembled into architectures to address the needs of data-intensive on-chip communication, and to the performance evaluation of such architectures for specific applications.   Provides state-of-the-art research on the use of optical interconnects in Embedded Systems; Begins with coverage of the basics for high-performance computing and optical interconnect; Includes a variety of on-chip optical communication topologies; Features coverage of system integration and opti...

  15. High-power fiber optic cable with integrated active sensors for live process monitoring

    Science.gov (United States)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  16. Freeform étendue-preserving optics for light and color mixing

    Science.gov (United States)

    Sorgato, Simone; Mohedano, Rubén.; Chaves, Julio; Cvetkovic, Aleksandra; Hernández, Maikel; Benítez, Pablo; Miñano, Juan C.; Thienpont, Hugo; Duerr, Fabian

    2015-09-01

    Today's SSL illumination market shows a clear trend towards high flux packages with higher efficiency and higher CRI, realized by means of multiple color chips and phosphors. Such light sources require the optics to provide both near- and far-field color mixing. This design problem is particularly challenging for collimated luminaries, since traditional diffusers cannot be employed without enlarging the exit aperture and reducing brightness (so increasing étendue). Furthermore, diffusers compromise the light output ratio (efficiency) of the lamps to which they are applied. A solution, based on Köhler integration, consisting of a spherical cap comprising spherical microlenses on both its interior and exterior sides was presented in 2012. When placed on top of an inhomogeneous multichip Lambertian LED, this so-called Shell-Mixer creates a homogeneous (both spatially and angularly) virtual source, also Lambertian, where the images of the chips merge. The virtual source is located at the same position with essentially the same size of the original source. The diameter of this optics was 3 times that of the chip-array footprint. In this work, we present a new version of the Shell-Mixer, based on the Edge Ray Principle, where neither the overall shape of the cap nor the surfaces of the lenses are constrained to spheres or rotational Cartesian ovals. This new Shell- Mixer is freeform, only twice as large as the original chip-array and equals the original model in terms of brightness, color uniformity and efficiency.

  17. Fiberoptic microneedles: novel optical diffusers for interstitial delivery of therapeutic light.

    Science.gov (United States)

    Kosoglu, Mehmet A; Hood, Robert L; Rossmeisl, John H; Grant, David C; Xu, Yong; Robertson, John L; Rylander, Marissa Nichole; Rylander, Christopher G

    2011-11-01

    Photothermal therapies have limited efficacy and application due to the poor penetration depth of light inside tissue. In earlier work, we described the development of novel fiberoptic microneedles to provide a means to mechanically penetrate dermal tissue and deliver light directly into a localized target area.This paper presents an alternate fiberoptic microneedle design with the capability of delivering more diffuse, but therapeutically useful photothermal energy. Laser lipolysis is envisioned as a future clinical application for this design. A novel fiberoptic microneedle was developed using hydrofluoric acid etching of optical fiber to permit diffuse optical delivery. Microneedles etched for 10, 30, and 50 minutes, and an optical fiber control were compared with three techniques. First, red light delivery from the microneedles was evaluated by imaging the reflectance of the light from a white paper.Second, spatial temperature distribution of the paper in response to near-IR light (1,064 nm, 1 W CW) was recorded using infrared thermography. Third, ex vivo adipose tissue response during 1,064 nm, (5 W CW)irradiation was recorded with bright field microscopy. Acid etching exposed a 3 mm length of the fiber core, allowing circumferential delivery of light along this length. Increasing etching time decreased microneedle diameter, resulting in increased uniformity of red and 1,064 nm light delivery along the microneedle axis. For equivalent total energy delivery, thinner microneedles reduced carbonization in the adipose tissue experiments. We developed novel microscale optical diffusers that provided a more homogeneous light distribution from their surfaces, and compared performance to a flat-cleaved fiber, a device currently utilized in clinical practice. These fiberoptic microneedles can potentially enhance clinical laser procedures by providing direct delivery of diffuse light to target chromophores, while minimizing undesirable photothermal damage in adjacent

  18. Projecting light beams with 3D waveguide arrays

    Science.gov (United States)

    Crespi, Andrea; Bragheri, Francesca

    2017-01-01

    Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on the phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase patterns with several singularity points. We also simulate the propagation of the projected beam, showing the possibility to concentrate light. We note that these devices should be at reach of current technology, thus perspectives are open for the generation of complex free-space optical beams from integrated waveguide circuits.

  19. Fast and accurate modeling of stray light in optical systems

    Science.gov (United States)

    Perrin, Jean-Claude

    2017-11-01

    The first problem to be solved in most optical designs with respect to stray light is that of internal reflections on the several surfaces of individual lenses and mirrors, and on the detector itself. The level of stray light ratio can be considerably reduced by taking into account the stray light during the optimization to determine solutions in which the irradiance due to these ghosts is kept to the minimum possible value. Unhappily, the routines available in most optical design software's, for example CODE V, do not permit all alone to make exact quantitative calculations of the stray light due to these ghosts. Therefore, the engineer in charge of the optical design is confronted to the problem of using two different software's, one for the design and optimization, for example CODE V, one for stray light analysis, for example ASAP. This makes a complete optimization very complex . Nevertheless, using special techniques and combinations of the routines available in CODE V, it is possible to have at its disposal a software macro tool to do such an analysis quickly and accurately, including Monte-Carlo ray tracing, or taking into account diffraction effects. This analysis can be done in a few minutes, to be compared to hours with other software's.

  20. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Duller, G.A.T.; Murray, A.S.

    1999-01-01

    Recently developed blue light emitting diodes (LEDs) for the optical stimulation of quartz for use in routine optically stimulated luminescence (OSL) dating and retrospective dosimetry have been tested. For similar power densities, it was found that the higher energy light provided by the blue LE......, preliminary results from ramping the blue light power output with time are demonstrated. It is shown that this technique enables the separation of OSL components with differing stimulation rates.......Recently developed blue light emitting diodes (LEDs) for the optical stimulation of quartz for use in routine optically stimulated luminescence (OSL) dating and retrospective dosimetry have been tested. For similar power densities, it was found that the higher energy light provided by the blue LEDs...... (470 nm) gives order of magnitude greater rate of stimulation in quartz than that from conventional blue-green light filtered from a halogen lamp. A practical blue LED OSL configuration is described. From comparisons of OSL decay curves produced by green and blue light sources, and by examination...

  1. Performing derivative and integral operations for optical waves with optical metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Cun-Li [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China); Zhao, Zhi-Gang; Li, Xiao-Lin [College of Engineering, Nanjing Agriculture University, Nanjing Jiangsu, 210031 (China); Yang, Hong-Wei, E-mail: phd_hwyang@njau.edu.cn [College of Science, Nanjing Agriculture University, Nanjing Jiangsu, 210095 (China)

    2016-12-01

    The graded refractive index waveguides can perform Fourier transform for an optical wave. According to this characteristic, simpler optical metamaterials with three waveguides are theoretically proposed, in which all of the waveguides are materials with a positive refractive index. By selecting the appropriate refractive index and structure size, the theory and simulations demonstrated that these metamaterials can perform mathematical operations for the outline of incident optical waves, including the first-order derivative, second-order derivative and the integral. - Highlights: • The derivative and integral operations of optical waves are achieved with a simpler model. • Both negative and positive refractive index boast the same functions. • The mathematical operations can be implemented only by changing the refractive index of the intermediate material. • The results will greatly expand the possible applications, including photon computers, picture processing, video displays and data storage.

  2. OPTICS. Quantum spin Hall effect of light.

    Science.gov (United States)

    Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco

    2015-06-26

    Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. Copyright © 2015, American Association for the Advancement of Science.

  3. High Efficiency Optical MEMS by the Integration of Photonic Lattices with Surface MEMS

    Energy Technology Data Exchange (ETDEWEB)

    FLEMING, JAMES G.; LIN, SHAWN-YU; MANI, SEETHAMBAL S.; RODGERS, M. STEVEN; DAGEL, DARYL J.

    2002-11-01

    This report outlines our work on the integration of high efficiency photonic lattice structures with MEMS (MicroElectroMechanical Systems). The simplest of these structures were based on 1-D mirror structures. These were integrated into a variety of devices, movable mirrors, switchable cavities and finally into Bragg fiber structures which enable the control of light in at least 2 dimensions. Of these devices, the most complex were the Bragg fibers. Bragg fibers consist of hollow tubes in which light is guided in a low index media (air) and confined by surrounding Bragg mirror stacks. In this work, structures with internal diameters from 5 to 30 microns have been fabricated and much larger structures should also be possible. We have demonstrated the fabrication of these structures with short wavelength band edges ranging from 400 to 1600nm. There may be potential applications for such structures in the fields of integrated optics and BioMEMS. We have also looked at the possibility of waveguiding in 3 dimensions by integrating defects into 3-dimensional photonic lattice structures. Eventually it may be possible to tune such structures by mechanically modulating the defects.

  4. Benefits of glass fibers in solar fiber optic lighting systems.

    Science.gov (United States)

    Volotinen, Tarja T; Lingfors, David H S

    2013-09-20

    The transmission properties and coupling of solar light have been studied for glass core multimode fibers in order to verify their benefits for a solar fiber optic lighting system. The light transportation distance can be extended from 20 m with plastic fibers to over 100 m with the kind of glass fibers studied here. A high luminous flux, full visible spectrum, as well as an outstanding color rendering index (98) and correlated color temperature similar to the direct sun light outside have been obtained. Thus the outstanding quality of solar light transmitted through these fibers would improve the visibility of all kinds of objects compared to fluorescent and other artificial lighting. Annual relative lighting energy savings of 36% in Uppsala, Sweden, and 76% in Dubai were estimated in an office environment. The absolute savings can be doubled by using glass optical fibers, and are estimated to be in the order of 550 kWh/year in Sweden and 1160 kWh/year in Dubai for one system of only 0.159 m(2) total light collecting area. The savings are dependent on the fiber length, the daily usage time of the interior, the type of artificial lighting substituted, the system light output flux, and the available time of sunny weather at the geographic location.

  5. A tunable lighting system integrated by inorganic and transparent organic light-emitting diodes

    Science.gov (United States)

    Zhang, Jing-jing; Zhang, Tao; Jin, Ya-fang; Liu, Shi-shen; Yuan, Shi-dong; Cui, Zhao; Zhang, Li; Wang, Wei-hui

    2014-05-01

    A tunable surface-emitting integrated lighting system is constructed using a combination of inorganic light-emitting diodes (LEDs) and transparent organic LEDs (OLEDs). An RB two-color LED is used to supply red and blue light emission, and a green organic LED is used to supply green light emission. Currents of the LED and OLED are tuned to produce a white color, showing different Commission Internationale d'Eclairage (CIE) chromaticity coordinates and correlated color temperatures with a wide adjustable range. Such an integration can compensate for the lack of the LED's luminance uniformity and the transparent OLED's luminance intensity.

  6. Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes

    Science.gov (United States)

    Fina, Michael Dane

    Organic light-emitting diodes (OLEDs) have made tremendous technological progress in the past two decades and have emerged as a top competitor for next generation light-emitting displays and lighting. State-of-the-art OLEDs have been reported in literature to approach, and even surpass, white fluorescent tube efficiency. However, despite rapid technological progress, efficiency metrics must be improved to compete with traditional inorganic light-emitting diode (LED) technology. Organic materials possess specialized traits that permit manipulations to the light-emitting cavity. Overall, as demonstrated within, these modifications can be used to improve electrical and optical device efficiencies. This work is focused at analyzing the effects that nanopatterned geometric modifications to the organic active layers play on device efficiency. In general, OLED efficiency is complicated by the complex, coupled processes which contribute to spontaneous dipole emission. A composite of three sub-systems (electrical, exciton and optical) ultimately dictate the OLED device efficiency. OLED electrical operation is believed to take place via a low-mobility-modified Schottky injection process. In the injection-limited regime, geometric effects are expected to modify the local electric field leading to device current enhancement. It is shown that the patterning effect can be used to enhance charge carrier parity, thereby enhancing overall recombination. Current density and luminance characteristics are shown to be improved by OLED nanopatterning from both the model developed within and experimental techniques. Next, the optical enhancement effects produced by the nanopatterned array are considered. Finite-difference time-domain (FDTD) simulations are used to determine positional, spectral optical enhancement for the nanopatterned device. The results show beneficial effects to the device performance. The optical enhancements are related to the reduction in internal radiative

  7. Light-Directed Particle Patterning by Evaporative Optical Marangoni Assembly.

    Science.gov (United States)

    Varanakkottu, Subramanyan Namboodiri; Anyfantakis, Manos; Morel, Mathieu; Rudiuk, Sergii; Baigl, Damien

    2016-01-13

    Controlled particle deposition on surfaces is crucial for both exploiting collective properties of particles and their integration into devices. Most available methods depend on intrinsic properties of either the substrate or the particles to be deposited making them difficult to apply to complex, naturally occurring or industrial formulations. Here we describe a new strategy to pattern particles from an evaporating drop, regardless of inherent particle characteristics and suspension composition. We use light to generate Marangoni surface stresses resulting in flow patterns that accumulate particles at predefined positions. Using projected images, we generate a broad variety of complex patterns, including multiple spots, lines and letters. Strikingly, this method, which we call evaporative optical Marangoni assembly (eOMA), allows us to pattern particles regardless of their size or surface properties, in model suspensions as well as in complex, real-world formulations such as commercial coffee.

  8. Editorial European conference on integrated optics (ECIO'10)

    NARCIS (Netherlands)

    Williams, K.A.

    2011-01-01

    This Special Issue contains a selection of extended papers from the Fifteenth European Conference on Integrated Optics held on 7-9 April 2010. The First European Conference on Integrated Optics in the series was held in London, UK thirty years ago, and the conference has been held biannually across

  9. Alternative Measurement Configurations for Extracting Bulk Optical Properties Using an Integrating Sphere Setup.

    Science.gov (United States)

    Thennadil, Suresh N; Chen, Yi-Chieh

    2017-02-01

    The usual approach for estimating bulk optical properties using an integrating sphere measurement setup is by acquiring spectra from three measurement modes namely collimated transmittance (T c ), total transmittance (T d ), and total diffuse reflectance (R d ), followed by the inversion of these measurements using the adding-doubling method. At high scattering levels, accurate acquisition of T c becomes problematic due to the presence of significant amounts of forward-scattered light in this measurement which is supposed to contain only unscattered light. In this paper, we propose and investigate the effectiveness of using alternative sets of integrating sphere measurements that avoid the use of T c and could potentially increase the upper limit of concentrations of suspensions at which bulk optical property measurements can be obtained in the visible-near-infrared (Vis-NIR) region of the spectrum. We examine the possibility of replacing T c with one or more reflectance measurements at different sample thicknesses. We also examine the possibility of replacing both the collimated (T c ) and total transmittance (T d ) measurements with reflectance measurements taken from different sample thicknesses. The analysis presented here indicates that replacing T c with a reflectance measurement can reduce the errors in the bulk scattering properties when scattering levels are high. When only multiple reflectance measurements are used, good estimates of the bulk optical properties can be obtained when the absorption levels are low. In addition, we examine whether there is any advantage in using three measurements instead of two to obtain the reduced bulk scattering coefficient and the bulk absorption coefficient. This investigation is made in the context of chemical and biological suspensions which have a much larger range of optical properties compared to those encountered with tissue.

  10. Slow-light enhanced optical detection in liquid-infiltrated photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Rishøj, Lars Søgaard; Steffensen, Henrik

    2007-01-01

    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner–Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomena as well as a high filling factor of the energy...... residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light–matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving...

  11. Organo-erbium systems for optical amplification at telecommunications wavelengths.

    Science.gov (United States)

    Ye, H Q; Li, Z; Peng, Y; Wang, C C; Li, T Y; Zheng, Y X; Sapelkin, A; Adamopoulos, G; Hernández, I; Wyatt, P B; Gillin, W P

    2014-04-01

    Modern telecommunications rely on the transmission and manipulation of optical signals. Optical amplification plays a vital part in this technology, as all components in a real telecommunications system produce some loss. The two main issues with present amplifiers, which rely on erbium ions in a glass matrix, are the difficulty in integration onto a single substrate and the need of high pump power densities to produce gain. Here we show a potential organic optical amplifier material that demonstrates population inversion when pumped from above using low-power visible light. This system is integrated into an organic light-emitting diode demonstrating that electrical pumping can be achieved. This opens the possibility of direct electrically driven optical amplifiers and optical circuits. Our results provide an alternative approach to producing low-cost integrated optics that is compatible with existing silicon photonics and a different route to an effective integrated optics technology.

  12. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals

    International Nuclear Information System (INIS)

    Borovoi, A.; Konoshonkin, A.; Kustova, N.

    2014-01-01

    The physical-optics approximation in the problem of light scattering by large particles is so defined that it includes the classical physical optics concerning the problem of light penetration through a large aperture in an opaque screen. In the second part of the paper, the problem of light backscattering by quasi-horizontally oriented atmospheric ice crystals is considered where conformity between the physical-optics and geometric-optics approximations is discussed. The differential scattering cross section as well as the polarization elements of the Mueller matrix for quasi-horizontally oriented hexagonal ice plates has been calculated in the physical-optics approximation for the case of vertically pointing lidars. - Highlights: • The physical-optics Mueller matrix is a smoothed geometric-optics counterpart. • Backscatter by partially oriented hexagonal ice plates has been calculated. • Depolarization ratio for partially oriented hexagonal ice plates is negligible

  13. Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.

    Science.gov (United States)

    Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya

    2013-12-30

    We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.

  14. TH-C-17A-12: Integrated CBCT and Optical Tomography System On-Board a Small Animal Radiation Research Platform (SARRP)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K; Zhang, B; Eslami, S; Iordachita, I; Wong, J [Johns Hopkins University, Baltimore, MD (United States); Patterson, M [Hamilton Regional Cancer Ctr., Hamilton, ON (Canada)

    2014-06-15

    Purpose: We present a newly developed on-board optical tomography system for SARRP. Innovative features include the compact design and fast acquisition optical method to perform 3D soft tissue radiation guidance. Because of the on-board feature and the combination of the CBCT, diffusive optical tomography (DOT), bioluminescence and fluorescence tomography (BLT and FT), this integrated system is expected to provide more accurate soft tissue guidance than an off-line system as well as highly sensitive functional imaging in preclinical research. Methods: Images are acquired in the order of CBCT, DOT and then BLT/FT, where the SARRP CBCT and DOT are used to provide the anatomical and optical properties information to enhance the subsequent BLT/FT optical reconstruction. The SARRP stage is redesigned to include 9 imbedded optical fibers in contact with the animal's skin. These fibers, connected to a white light lamp or laser, serve as the light sources for the DOT or FT, respectively. A CCD camera with f/1.4 lens and multi-spectral filter set is used as the optical detector and is mounted on a portable cart ready to dock into the SARRP. No radiation is delivered during optical image acquisition. A 3-way mirror system capable of 180 degree rotation around the animal reflects the optical signal to the camera at multiple projection angles. A special black-painted dome covers the stage and provides the light shielding. Results: Spontaneous metastatic bioluminescent liver and lung tumor models will be used to validate the 3D BLT reconstruction. To demonstrate the capability of our FT system, GastroSense750 fluorescence agent will be used to imaging the mouse stomach and intestinal region in 3D. Conclusion: We expect that this integrated CBCT and optical tomography on-board a SARRP will present new research opportunities for pre-clinical radiation research. Supported by NCI RO1-CA 158100.

  15. TH-C-17A-12: Integrated CBCT and Optical Tomography System On-Board a Small Animal Radiation Research Platform (SARRP)

    International Nuclear Information System (INIS)

    Wang, K; Zhang, B; Eslami, S; Iordachita, I; Wong, J; Patterson, M

    2014-01-01

    Purpose: We present a newly developed on-board optical tomography system for SARRP. Innovative features include the compact design and fast acquisition optical method to perform 3D soft tissue radiation guidance. Because of the on-board feature and the combination of the CBCT, diffusive optical tomography (DOT), bioluminescence and fluorescence tomography (BLT and FT), this integrated system is expected to provide more accurate soft tissue guidance than an off-line system as well as highly sensitive functional imaging in preclinical research. Methods: Images are acquired in the order of CBCT, DOT and then BLT/FT, where the SARRP CBCT and DOT are used to provide the anatomical and optical properties information to enhance the subsequent BLT/FT optical reconstruction. The SARRP stage is redesigned to include 9 imbedded optical fibers in contact with the animal's skin. These fibers, connected to a white light lamp or laser, serve as the light sources for the DOT or FT, respectively. A CCD camera with f/1.4 lens and multi-spectral filter set is used as the optical detector and is mounted on a portable cart ready to dock into the SARRP. No radiation is delivered during optical image acquisition. A 3-way mirror system capable of 180 degree rotation around the animal reflects the optical signal to the camera at multiple projection angles. A special black-painted dome covers the stage and provides the light shielding. Results: Spontaneous metastatic bioluminescent liver and lung tumor models will be used to validate the 3D BLT reconstruction. To demonstrate the capability of our FT system, GastroSense750 fluorescence agent will be used to imaging the mouse stomach and intestinal region in 3D. Conclusion: We expect that this integrated CBCT and optical tomography on-board a SARRP will present new research opportunities for pre-clinical radiation research. Supported by NCI RO1-CA 158100

  16. X-ray heating and the optical light curve of HZ Herculis

    International Nuclear Information System (INIS)

    Perrenod, S.C.; Shields, G.A.

    1975-01-01

    We discuss theoretically the optical light curve of HZ Her, the binary companion of the pulsed X-ray source Her X-1. Using model stellar atmospheres, we construct light curves that are in agreement with UBV photometry of HZ Her except for the sharpness of the minimum. Unlike previous authors, we find that heating of the photosphere of HZ Her by the observed X-ray flux is sufficient to explain the amplitude of the light variations in each color, if the X-ray emission persists at HZ Her throughout the 35-day ON-OFF CYCLE. We rule out a corona surrounding HZ Her as the source of the extra light near minimum, and we also rule out a model wherein the extra light is caused by a stellar wind that electron-scatters optical light emitted by the photosphere of the hot side of the star

  17. Harnessing light: optical science and engineering for the 21st century

    National Research Council Canada - National Science Library

    Committee on Optical Science and Engineering, National Research Council

    .... Harnessing Light surveys this multitude of applications, as well as the status of the optics industry and of research and education in optics, and identifies actions that could enhance the field's...

  18. Optical vault: a reconfigurable bottle beam based on conical refraction of light.

    Science.gov (United States)

    Turpin, A; Shvedov, V; Hnatovsky, C; Loiko, Yu V; Mompart, J; Krolikowski, W

    2013-11-04

    We employ conical refraction of light in a biaxial crystal to create an optical bottle for photophoretic trapping and manipulation of particles in gaseous media. We show that by only varying the polarization state of the input light beam the optical bottle can be opened and closed in order to load and unload particles in a highly controllable manner.

  19. Optically polarized atoms understanding light-atom interactions

    CERN Document Server

    Auzinsh, Marcis; Rochester, Simon M

    2010-01-01

    This book is addressed at upper-level undergraduate and graduate students involved in research in atomic, molecular, and optical Physics. It will also be useful to researchers practising in this field. It gives an intuitive, yet sufficiently detailed and rigorous introduction to light-atom interactions with a particular emphasis on the symmetry aspects of the interaction, especially those associated with the angular momentum of atoms and light. The book will enable readers to carryout practical calculations on their own, and is richly illustrated with examples drawn from current research topic

  20. Characterization methods of integrated optics for mid-infrared interferometry

    Science.gov (United States)

    Labadie, Lucas; Kern, Pierre Y.; Schanen-Duport, Isabelle; Broquin, Jean-Emmanuel

    2004-10-01

    his article deals with one of the important instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency: the necessity to have a reliable and performant system for beam combination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferometry in the near infrared. Integrated optics provides also interesting features in terms of filtering, which is a main issue for the deep null to be reached by Darwin. However, Darwin will operate in the mid infrared range from 4 microns to 20 microns where no integrated optics functions are available on-the-shelf. This requires extending the integrated optics concept and the undergoing technology in this spectral range. This work has started with the IODA project (Integrated Optics for Darwin) under ESA contract and aims to provide a first component for interferometry. In this paper are presented the guidelines of the characterization work that is implemented to test and validate the performances of a component at each step of the development phase. We present also an example of characterization experiment used within the frame of this work, is theoretical approach and some results.

  1. Light-controlled microwave whispering-gallery-mode quasi-optical resonators at 50W LED array illumination

    Directory of Open Access Journals (Sweden)

    V. B. Yurchenko

    2015-08-01

    Full Text Available We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor that makes light-microwave interaction observable with an ordinary light (no laser at conventional brightness (like an office lighting in quasi-optical microwave structures at rather long (centimeter-scale wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel.

  2. Low-frequency acousto-optic backscattering of Bessel light beams

    Science.gov (United States)

    Khilo, Nikolai A.; Belyi, Vladimir N.; Khilo, Petr A.; Kazak, Nikolai S.

    2018-05-01

    The use of Bessel light beams, as well as Bessel acoustic beams, substantially enhances the capabilities of acousto-optic methods for control of optical field. We present a theoretical study of the process of optical Bessel beams conversion by means of backward acousto-optic scattering on a Bessel acoustic field in a transversely isotropic crystal. It is shown that, with an appropriate choice of Bessel beams parameters, the backscattering in visible spectral range can be realized at relatively low acoustic frequencies less than one gigahertz. Under conditions of phase matching and transverse spatial synchronism, the efficiency of backscattering is sufficiently high, which is interesting, for example, for construction of acousto-optic spectral analyzers.

  3. Prescriptionless light-cone integrals

    International Nuclear Information System (INIS)

    Suzuki, A.T.; Schmidt, A.G.M.

    2000-01-01

    Perturbative quantum gauge field theory as seen within the perspective of physical gauge choices such as the light-cone gauge entails the emergence of troublesome poles of the type (k.n) -α in the Feynman integrals. These come from the boson field propagator, where α=1,2,.. and n μ is the external arbitrary four-vector that defines the gauge properly. This becomes an additional hurdle in the computation of Feynman diagrams, since any graph containing internal boson lines will inevitably produce integrands with denominators bearing the characteristic gauge-fixing factor. How one deals with them has been the subject of research over decades, and several prescriptions have been suggested and tried in the course of time, with failures and successes. However, a more recent development at this fronteer which applies the negative dimensional technique to compute light-cone Feynman integrals shows that we can altogether dispense with prescriptions to perform the calculations. An additional bonus comes to us attached to this new technique, in that not only it renders the light-cone prescriptionless but, by the very nature of it, it can also dispense with decomposition formulas or partial fractioning tricks used in the standard approach to separate pole products of the type (k.n) -α [(k-p).n] -β (β=1,2,..). In this work we demonstrate how all this can be done. (orig.)

  4. Characterization of hybrid integrated all-optical flip-flop

    NARCIS (Netherlands)

    Liu, Y.; McDougall, R.; Seoane, J.; Kehayas, E.; Hill, M.T.; Maxwell, G.D.; Zhang, S.; Harmon, R.; Huijskens, Frans; Rivers, L.; Van Holm-Nielsen, P.; Martinez, J.M.; Herrera Llorente, J.; Ramos, F.; Marti, J.; Avramopoulos, H.; Jeppesen, P.; Koonen, A.M.J.; Poustie, A.; Dorren, H.J.S.

    2006-01-01

    We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given

  5. Characterisation of hybrid integrated all-optical flip-flop

    DEFF Research Database (Denmark)

    Liu, Y.; McDougall, R.; Seoane, Jorge

    2006-01-01

    We present a fully-packaged, hybrid-integrated all-optical flip-flop with separate optical set and reset operation. The flip-flop can control a wavelength converter to route 40 Gb/s data packets all-optically. The experimental results are given....

  6. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    Science.gov (United States)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  7. From Darwin to Internet at the speed of light

    Science.gov (United States)

    2002-11-01

    Data moving around the Internet are like road traffic in that a car can be driven fast down a straight road but has to slow down a great deal when changing direction at a junction. The same thing happens on information highways. Beams of light carry data along fibre-optic cables at very high speeds. When the data arrive at computers, known as servers, the servers redirect them to their final destinations. Presently, you need to convert the light signals into electricity, and that slows everything down. Electrons move at a speed of a few kilometres per second through a circuit, whereas light travels at nearly 300 000 kilometres per second. Integrated optics would leave the data as light and simply channel it through the chip, in the right direction. Scientists call this area integrated optics, referring to the integrated circuit board on which chips are mounted. Instead of miniaturised electronics, however, miniaturised optics are placed on a microchip. ESA has a strategy to enable more sophisticated searches for extra-solar planets in the future. Two planned developments rely on combining the light from such planets in a number of different telescopes. These are the Darwin mission and its precursor, the ESA/ESO Ground-based European Nulling Interferometer Experiment (GENIE). When you combine light beams, you traditionally need moving mirrors and lenses to divert the light beams to where you want them. However, if the system moves, it can break. As Malcolm Fridlund, Project Scientist for Darwin and GENIE says, “To change to integrated optics, which is much smaller and has no moving parts, would be highly desirable.” Desirable certainly, but also difficult. At present, integrated optics is a science that is far behind integrated circuit technology. For this reason, ESA is funding two studies. Astrium has been asked to study a traditional optics approach and Alcatel is investigating an integrated-optics solution. “We shall take the decision on whether GENIE will

  8. Broadband light source for fiber-optic measurement system in spaceborne applications

    Science.gov (United States)

    Rößner, Max R.; Müller, Mathias S.; Buck, Thorbjörn C.; Koch, Alexander W.

    2012-01-01

    Measuring temperatures, mechanical loads and derived quantities precisely and reliably play an important role in spaceflight. With spacecraft becoming increasingly complex, upscaling of present telemetry techniques can become cumbersome. Additionally, there are entirely new sensory requirements, resulting from emerging technologies such as smart structures, active vibration damping and composite material health monitoring. It has been demonstrated in preceding studies that these measurements can be advantageously and efficiently carried out by means of fiber-optic systems. The most prominent fiber-optic strain and temperature sensor is the fiber Bragg grating. Typically, multiple fiber Bragg gratings are used to translate entire temperature and strain fields into an optical wavelength information. For the interrogation of these sensors, a broadband or scanning light source is required. Additional requirements with respect to the light source are high intensity and unpolarized illumination of the gratings. These constraints can be met by a light source that is based on amplified spontaneous emission in a rare-earth-doped fiber. In the presented work, a compact light source, adapted for measurement applications and targeted towards space applications, has been developed. The design of this light source is presented, as well as its implementation. The light source has been designed and tested for selected core aspects of space robustness and the results of these tests are summarized.

  9. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery

    Science.gov (United States)

    Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong

    2015-07-01

    Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.

  10. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery.

    Science.gov (United States)

    Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong

    2015-07-01

    Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.

  11. Silicon-Nitride-based Integrated Optofluidic Biochemical Sensors using a Coupled-Resonator Optical Waveguide

    Directory of Open Access Journals (Sweden)

    Jiawei eWANG

    2015-04-01

    Full Text Available Silicon nitride (SiN is a promising material platform for integrating photonic components and microfluidic channels on a chip for label-free, optical biochemical sensing applications in the visible to near-infrared wavelengths. The chip-scale SiN-based optofluidic sensors can be compact due to a relatively high refractive index contrast between SiN and the fluidic medium, and low-cost due to the complementary metal-oxide-semiconductor (CMOS-compatible fabrication process. Here, we demonstrate SiN-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide (CROW in the visible wavelengths. The working principle is based on imaging in the far field the out-of-plane elastic-light-scattering patterns of the CROW sensor at a fixed probe wavelength. We correlate the imaged pattern with reference patterns at the CROW eigenstates. Our sensing algorithm maps the correlation coefficients of the imaged pattern with a library of calibrated correlation coefficients to extract a minute change in the cladding refractive index. Given a calibrated CROW, our sensing mechanism in the spatial domain only requires a fixed-wavelength laser in the visible wavelengths as a light source, with the probe wavelength located within the CROW transmission band, and a silicon digital charge-coupled device (CCD / CMOS camera for recording the light scattering patterns. This is in sharp contrast with the conventional optical microcavity-based sensing methods that impose a strict requirement of spectral alignment with a high-quality cavity resonance using a wavelength-tunable laser. Our experimental results using a SiN CROW sensor with eight coupled microrings in the 680nm wavelength reveal a cladding refractive index change of ~1.3 × 10^-4 refractive index unit (RIU, with an average sensitivity of ~281 ± 271 RIU-1 and a noise-equivalent detection limit (NEDL of 1.8 ×10^-8 RIU ~ 1.0 ×10^-4 RIU across the CROW bandwidth of ~1 nm.

  12. Influence of excitation light rejection on forward model mismatch in optical tomography

    International Nuclear Information System (INIS)

    Hwang, K; Pan, T; Joshi, A; Rasmussen, J C; Bangerth, W; Sevick-Muraca, E M

    2006-01-01

    Fluorescence enhanced tomography for molecular imaging requires low background for detection and accurate image reconstruction. In this contribution, we show that excitation light leakage is responsible for elevated background and can be minimized with the use of gradient index (GRIN) lenses when using fibre optics to collect propagated fluorescence light from tissue or other biological media. We show that the model mismatch between frequency-domain photon migration (FDPM) measurements and the diffusion approximation prediction is decreased when GRIN lenses are placed prior to the interference filters to provide efficient excitation light rejection. Furthermore, model mismatch is correlated to the degree of excitation light leakage. This work demonstrates the importance of proper light filtering when designing fluorescence optical imaging and tomography

  13. Non-invasive red light optogenetic pacing and optical coherence microscopy (OCM) imaging for drosophila melanogaster (Conference Presentation)

    Science.gov (United States)

    Men, Jing; Li, Airong; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2017-02-01

    Cardiac pacing could be a powerful tool for investigating mammalian cardiac electrical conduction systems as well as for treatment of certain cardiac pathologies. However, traditional electrical pacing using pacemaker requires an invasive surgical procedure. Electrical currents from the implanted electrodes can also cause damage to heart tissue, further restricting its utility. Optogenetic pacing has been developed as a promising, non-invasive alternative to electrical stimulation for controlling animal heart rhythms. It induces heart contractions by shining pulsed light on transgene-generated microbial opsins, which in turn activate the light gated ion channels in animal hearts. However, commonly used opsins in optogenetic pacing, such as channelrhodopsin-2 (ChR2), require short light wavelength stimulation (475 nm), which is strongly absorbed and scattered by tissue. Here, we performed optogenetic pacing by expression of recently engineered red-shifted microbial opsins, ReaChR and CsChrimson, in a well-established animal model, Drosophila melanogaster, using the 617 nm stimulation light pulses. The OCM technique enables non-invasive optical imaging of animal hearts with high speed and ultrahigh axial and transverse resolutions. We integrated a customized OCM system with the optical stimulation system to monitor the optogenetic pacing noninvasively. The use of red-sifted opsins enabled deeper penetration of simulating light at lower power, which is promising for applications of optogenetic pacing in mammalian cardiac pathology studies or clinical treatments in the future.

  14. Light fidelity (Li-Fi): towards all-optical networking

    OpenAIRE

    Tsonev, Dobroslav; Videv, Stefan; Haas, Harald

    2013-01-01

    Motivated by the looming radio frequency (RF) spectrum crisis, this paper aims at demonstrating that optical wireless communication (OWC) has now reached a state where it can demonstrate that it is a viable and matured solution to this fundamental problem. In particular, for indoor communications where most mobile data traffic is consumed, light fidelity (Li-Fi) which is related to visible light communication (VLC) offers many key advantages, and effective solutions to the issues that have be...

  15. Development of the multiwavelength monolithic integrated fiber optics terminal

    Science.gov (United States)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  16. III-nitride Photonic Integrated Circuit: Multi-section GaN Laser Diodes for Smart Lighting and Visible Light Communication

    KAUST Repository

    Shen, Chao

    2017-01-01

    The past decade witnessed the rapid development of III-nitride light-emitting diodes (LEDs) and laser diodes (LDs), for smart lighting, visible-light communication (VLC), optical storage, and internet-of-things. Recent studies suggested that the Ga

  17. Indium phosphide (InP) for optical interconnects

    NARCIS (Netherlands)

    Lebby, M.; Ristic, S.; Calabretta, N.; Stabile, R.; Tekin, T.; Pitwon, R.; Håkansson, A.; Pleros, N.

    2016-01-01

    We present InP as the incumbent technology for data center transceiver and switching optics. We review the most popular InP monolithic integration approaches in light of photonic integration being recognized as an increasingly important technology for data center optics. We present Multi-Guide

  18. Eternal triangle: the interaction of light source, electrical control gear, and optics

    Science.gov (United States)

    S'heeren, Griet

    1998-04-01

    In this particular 'affair' the participants are less than human but have individual personalities they bring to their relationship with each other. High pressure metal halide lamps such as BriteArc lamps have the highest luminance and radiance of all continuously operating practical light source. Since these lamps have short arcs and are available in power ratings from about 30W to 30kW they have found applications with various optical systems. Besides the lamps, such systems include an electrical control device and an optical system. To fulfil the user's requirements for a specific application, it is not only important to choose the right lamp, but crucial to achieve a harmonious marriage between the light source, electrical control device and the optics. To run a high pressure discharge lamp an ignitor/ballast system is essential This stabilizes the lamp parameters. The chemical components inside the lamp determine the lamp voltage and the gear determines, via the current, the lamp power. These are directly related in the luminance and color temperature of the emitted light. Therefore lamp performance and effective life are dependent on the ignitor, control gear and lamp combination. Since the lamp emits radiation in all directions, collection of the light from a lamp can be improved by using reflectors to deliver the light into a lens system. Since lamps with short arc gaps approach a point source they appear ideal for optical system applications. The shape of the reflector and the focusing of the lamp determine which part of the light is collected out of the light-arc. In the case of an LCD projector, the final light output also depends on the transmission characteristics of the LCD panels. Their nonlinearity causes the color of the emitted light to be different from the lamp color. All these parameters have to be optimized to obtain the highest performance. This leads to the conclusion that a carefully matched combination of lamp, ignitor/ballast and optics

  19. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss...

  20. Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems

    International Nuclear Information System (INIS)

    Johnston, Mark D.; Frogget, Brent; Oliver, Bryan Velten; Maron, Yitzhak; Droemer, Darryl W.; Crain, Marlon D.

    2010-01-01

    This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.

  1. Fast Light Optical Gyroscopes

    Science.gov (United States)

    Smith, David D.

    2015-01-01

    Next-generation space missions are currently constrained by existing spacecraft navigation systems which are not fully autonomous. These systems suffer from accumulated dead-reckoning errors and must therefore rely on periodic corrections provided by supplementary technologies that depend on line-of-sight signals from Earth, satellites, or other celestial bodies for absolute attitude and position determination, which can be spoofed, incorrectly identified, occluded, obscured, attenuated, or insufficiently available. These dead-reckoning errors originate in the ring laser gyros themselves, which constitute inertial measurement units. Increasing the time for standalone spacecraft navigation therefore requires fundamental improvements in gyroscope technologies. One promising solution to enhance gyro sensitivity is to place an anomalous dispersion or fast light material inside the gyro cavity. The fast light essentially provides a positive feedback to the gyro response, resulting in a larger measured beat frequency for a given rotation rate as shown in figure 1. Game Changing Development has been investing in this idea through the Fast Light Optical Gyros (FLOG) project, a collaborative effort which began in FY 2013 between NASA Marshall Space Flight Center (MSFC), the U.S. Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC), and Northwestern University. MSFC and AMRDEC are working on the development of a passive FLOG (PFLOG), while Northwestern is developing an active FLOG (AFLOG). The project has demonstrated new benchmarks in the state of the art for scale factor sensitivity enhancement. Recent results show cavity scale factor enhancements of approx.100 for passive cavities.

  2. Handbook of optical microcavities

    CERN Document Server

    Choi, Anthony H W

    2014-01-01

    An optical cavity confines light within its structure and constitutes an integral part of a laser device. Unlike traditional gas lasers, semiconductor lasers are invariably much smaller in dimensions, making optical confinement more critical than ever. In this book, modern methods that control and manipulate light at the micrometer and nanometer scales by using a variety of cavity geometries and demonstrate optical resonance from ultra-violet (UV) to infra-red (IR) bands across multiple material platforms are explored. The book has a comprehensive collection of chapters that cover a wide range

  3. Circularly polarized light to study linear magneto-optics for ferrofluids: θ-scan technique

    Science.gov (United States)

    Meng, Xiangshen; Huang, Yan; He, Zhenghong; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Li, Jian; Qiu, Xiaoyan

    2018-06-01

    Circularly polarized light can be divided into two vertically linearly polarized light beams with  ±π/2 phase differences. In the presence of an external magnetic field, when circularly polarized light travels through a ferrofluid film, whose thickness is no more than that of λ/4 plate, magneto-optical, magnetic birefringence and dichroism effects cause the transmitted light to behave as elliptically polarized light. Using angular scan by a continuously rotating polarizer as analyzer, the angular (θ) distribution curve of relative intensity (T) corresponding to elliptically polarized light can be measured. From the T  ‑  θ curve having ellipsometry, the parameters such as the ratio of short to long axis, and angular orientation of the long axis to the vertical field direction can be obtained. Thus, magnetic birefringence and dichroism can be probed simultaneously by measuring magneto-optical, positive or negative birefringence and dichroism features from the transmission mode. The proposed method is called θ-scan technique, and can accurately determine sample stability, magnetic field direction, and cancel intrinsic light source ellipticity. This study may be helpful to further research done to ferrofluids and other similar colloidal samples with anisotropic optics.

  4. Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation)

    Science.gov (United States)

    Kim, Youngduck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Kim, Hyungsik; Nemilentsau, Andrei M.; Low, Tony; Taniguchi, Takashi; Watanabe, Kenji; Bae, Myung-Ho; Heinz, Tony F.; Englund, Dirk R.; Hone, James

    2017-02-01

    Ultrafast electrically driven light emitter is a critical component in the development of the high bandwidth free-space and on-chip optical communications. Traditional semiconductor based light sources for integration to photonic platform have therefore been heavily studied over the past decades. However, there are still challenges such as absence of monolithic on-chip light sources with high bandwidth density, large-scale integration, low-cost, small foot print, and complementary metal-oxide-semiconductor (CMOS) technology compatibility. Here, we demonstrate the first electrically driven ultrafast graphene light emitter that operate up to 10 GHz bandwidth and broadband range (400 1600 nm), which are possible due to the strong coupling of charge carriers in graphene and surface optical phonons in hBN allow the ultrafast energy and heat transfer. In addition, incorporation of atomically thin hexagonal boron nitride (hBN) encapsulation layers enable the stable and practical high performance even under the ambient condition. Therefore, electrically driven ultrafast graphene light emitters paves the way towards the realization of ultrahigh bandwidth density photonic integrated circuits and efficient optical communications networks.

  5. TH-CD-201-05: Characterization of a Novel Light-Collimating Tank Optical-CT System for 3D Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Miles, D; Yoon, S [Duke University Medical Physics Graduate Program, Durham, NC (United States); Adamovics, J [Department of Chemistry and Biology, Rider University, Skillman, NJ (United States); Oldham, M [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: Comprehensive 3D dosimetry is highly desirable for advanced clinical QA, but costly optical readout techniques have hindered widespread implementation. Here, we present the first results from a cost-effective Integrated-lens Dry-tank Optical Scanner (IDOS), designed for convenient 3D dosimetry readout of radiochromic plastic dosimeters (e.g. PRESAGE). Methods: The scanner incorporates a novel transparent light-collimating tank, which collimates a point light source into parallel-ray CT geometry. The tank was designed using an in-house Monte-Carlo optical ray-tracing simulation, and was cast in polyurethane using a 3D printed mould. IDOS spatial accuracy was evaluated by imaging a set of custom optical phantoms, with comparison to x-ray CT images. IDOS dose measurement performance was assessed by imaging PRESAGE dosimeters irradiated with simple known dose distributions (e.g., 4 field box 6MV treatment with Varian Linac). Direct comparisons were made to images from our gold standard DLOS scanner and calculated dose distributions from a commissioned Eclipse planning system. Results: All optical CT images were reconstructed at 1mm isotropic resolution. Comparison of IDOS and x-ray CT images of the geometric phantom demonstrated excellent IDOS geometric accuracy (sub-mm) throughout the dosimeter. IDOS measured 3D dose distribution agreed well with prediction from Eclipse, with 95% gamma pass rate at 3%/3mm. Cross-scanner dose measurement gamma analysis shows >90% of pixels passing at 3%/3mm. Conclusion: The first prototype of the IDOS system has demonstrated promising performance, with accurate dosimeter readout and negligible spatial distortion. The use of optical simulations and 3D printing to create a light collimating-tank has dramatically increased convenience and reduced costs by removing the need for expensive lenses and large volumes of refractive matching fluids.

  6. TH-CD-201-05: Characterization of a Novel Light-Collimating Tank Optical-CT System for 3D Dosimetry

    International Nuclear Information System (INIS)

    Miles, D; Yoon, S; Adamovics, J; Oldham, M

    2016-01-01

    Purpose: Comprehensive 3D dosimetry is highly desirable for advanced clinical QA, but costly optical readout techniques have hindered widespread implementation. Here, we present the first results from a cost-effective Integrated-lens Dry-tank Optical Scanner (IDOS), designed for convenient 3D dosimetry readout of radiochromic plastic dosimeters (e.g. PRESAGE). Methods: The scanner incorporates a novel transparent light-collimating tank, which collimates a point light source into parallel-ray CT geometry. The tank was designed using an in-house Monte-Carlo optical ray-tracing simulation, and was cast in polyurethane using a 3D printed mould. IDOS spatial accuracy was evaluated by imaging a set of custom optical phantoms, with comparison to x-ray CT images. IDOS dose measurement performance was assessed by imaging PRESAGE dosimeters irradiated with simple known dose distributions (e.g., 4 field box 6MV treatment with Varian Linac). Direct comparisons were made to images from our gold standard DLOS scanner and calculated dose distributions from a commissioned Eclipse planning system. Results: All optical CT images were reconstructed at 1mm isotropic resolution. Comparison of IDOS and x-ray CT images of the geometric phantom demonstrated excellent IDOS geometric accuracy (sub-mm) throughout the dosimeter. IDOS measured 3D dose distribution agreed well with prediction from Eclipse, with 95% gamma pass rate at 3%/3mm. Cross-scanner dose measurement gamma analysis shows >90% of pixels passing at 3%/3mm. Conclusion: The first prototype of the IDOS system has demonstrated promising performance, with accurate dosimeter readout and negligible spatial distortion. The use of optical simulations and 3D printing to create a light collimating-tank has dramatically increased convenience and reduced costs by removing the need for expensive lenses and large volumes of refractive matching fluids.

  7. Stochastic theory of polarized light in nonlinear birefringent media: An application to optical rotation

    Science.gov (United States)

    Tsuchida, Satoshi; Kuratsuji, Hiroshi

    2018-05-01

    A stochastic theory is developed for the light transmitting the optical media exhibiting linear and nonlinear birefringence. The starting point is the two-component nonlinear Schrödinger equation (NLSE). On the basis of the ansatz of “soliton” solution for the NLSE, the evolution equation for the Stokes parameters is derived, which turns out to be the Langevin equation by taking account of randomness and dissipation inherent in the birefringent media. The Langevin equation is converted to the Fokker-Planck (FP) equation for the probability distribution by employing the technique of functional integral on the assumption of the Gaussian white noise for the random fluctuation. The specific application is considered for the optical rotation, which is described by the ellipticity (third component of the Stokes parameters) alone: (i) The asymptotic analysis is given for the functional integral, which leads to the transition rate on the Poincaré sphere. (ii) The FP equation is analyzed in the strong coupling approximation, by which the diffusive behavior is obtained for the linear and nonlinear birefringence. These would provide with a basis of statistical analysis for the polarization phenomena in nonlinear birefringent media.

  8. Third-order optical intensity correlation measurements of pseudo-thermal light

    International Nuclear Information System (INIS)

    Chen Xi-Hao; Wu Wei; Meng Shao-Ying; Li Ming-Fei

    2014-01-01

    Third-order Hanbrury Brown—Twiss and double-slit interference experiments with a pseudo-thermal light are performed by recording intensities in single, double and triple optical paths, respectively. The experimental results verifies the theoretical prediction that the indispensable condition for achieving a interference pattern or ghost image in Nth-order intensity correlation measurements is the synchronous detection of the same light field by each reference detector, no matter the intensities recorded in one, or two, or N optical paths. It is shown that, when the reference detectors are scanned in the opposite directions, the visibility and resolution of the third-order spatial correlation function of thermal light is much better than that scanned in the same direction, but it is no use for obtaining the Nth-order interference pattern or ghost image in the thermal Nth-order interference or ghost imaging. (general)

  9. Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Narayan, G.; Kirshner, R. P.

    2011-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.

  10. Bio-optical data integration based on a 4 D database system approach

    Science.gov (United States)

    Imai, N. N.; Shimabukuro, M. H.; Carmo, A. F. C.; Alcantara, E. H.; Rodrigues, T. W. P.; Watanabe, F. S. Y.

    2015-04-01

    Bio-optical characterization of water bodies requires spatio-temporal data about Inherent Optical Properties and Apparent Optical Properties which allow the comprehension of underwater light field aiming at the development of models for monitoring water quality. Measurements are taken to represent optical properties along a column of water, and then the spectral data must be related to depth. However, the spatial positions of measurement may differ since collecting instruments vary. In addition, the records should not refer to the same wavelengths. Additional difficulty is that distinct instruments store data in different formats. A data integration approach is needed to make these large and multi source data sets suitable for analysis. Thus, it becomes possible, even automatically, semi-empirical models evaluation, preceded by preliminary tasks of quality control. In this work it is presented a solution, in the stated scenario, based on spatial - geographic - database approach with the adoption of an object relational Database Management System - DBMS - due to the possibilities to represent all data collected in the field, in conjunction with data obtained by laboratory analysis and Remote Sensing images that have been taken at the time of field data collection. This data integration approach leads to a 4D representation since that its coordinate system includes 3D spatial coordinates - planimetric and depth - and the time when each data was taken. It was adopted PostgreSQL DBMS extended by PostGIS module to provide abilities to manage spatial/geospatial data. It was developed a prototype which has the mainly tools an analyst needs to prepare the data sets for analysis.

  11. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    International Nuclear Information System (INIS)

    Bao, Sun; Fu-Shen, Chen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive impulse electric field measurement. The integrated optical sensor is based on a Mach–Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The maximal detectable electric field range (−75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation

  12. Simulated nuclear optical signatures using explosive light sources (ELS)

    International Nuclear Information System (INIS)

    Glaser, R.F.

    1979-05-01

    Four Explosive Light Source (aluminium powder and oxygen) tests were conducted on the test range at Sandia Laboratories in Albuquerque (SLA) from 28 February through 7 March 1978. Although several types of measuring devices were used, the report documents only the optical time histories measured by the bhangmeters and the NBDS, and explains the conclusions reached. In general, the four shots made it possible to gather clear-air optical transmission data, determine the suitability of ELS to simulate the optical effects of a nuclear burst, and provide experience for the larger scale ELS tests to be conducted at Fort Ord, CA in April

  13. Simulated nuclear optical signatures using explosive light sources (ELS)

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, R.F.

    1979-05-01

    Four Explosive Light Source (aluminium powder and oxygen) tests were conducted on the test range at Sandia Laboratories in Albuquerque (SLA) from 28 February through 7 March 1978. Although several types of measuring devices were used, the report documents only the optical time histories measured by the bhangmeters and the NBDS, and explains the conclusions reached. In general, the four shots made it possible to gather clear-air optical transmission data, determine the suitability of ELS to simulate the optical effects of a nuclear burst, and provide experience for the larger scale ELS tests to be conducted at Fort Ord, CA in April.

  14. Demonstration of glass-based photonic interposer for mid-board-optical engines and electrical-optical circuit board (EOCB) integration strategy

    Science.gov (United States)

    Schröder, H.; Neitz, M.; Schneider-Ramelow, M.

    2018-02-01

    Due to its optical transparency and superior dielectric properties glass is regarded as a promising candidate for advanced applications as active photonic interposer for mid-board-optics and optical PCB waveguide integration. The concepts for multi-mode and single-mode photonic system integration are discussed and related demonstration project results will be presented. A hybrid integrated photonic glass body interposer with integrated optical lenses for multi-mode data communication wavelength of 850 nm have been realized. The paper summarizes process developments which allow cost efficient metallization of TGV. Electro-optical elements like photodiodes and VCSELs can be directly flip-chip mounted on the glass substrate according to the desired lens positions. Furthermore results for a silicon photonic based single-mode active interposer integration onto a single mode glass made EOCB will be compared in terms of packaging challenges. The board level integration strategy for both of these technological approaches and general next generation board level integration concepts for photonic interposer will be introductorily discussed.

  15. Optical asymmetric cryptography based on amplitude reconstruction of elliptically polarized light

    Science.gov (United States)

    Cai, Jianjun; Shen, Xueju; Lei, Ming

    2017-11-01

    We propose a novel optical asymmetric image encryption method based on amplitude reconstruction of elliptically polarized light, which is free from silhouette problem. The original image is analytically separated into two phase-only masks firstly, and then the two masks are encoded into amplitudes of the orthogonal polarization components of an elliptically polarized light. Finally, the elliptically polarized light propagates through a linear polarizer, and the output intensity distribution is recorded by a CCD camera to obtain the ciphertext. The whole encryption procedure could be implemented by using commonly used optical elements, and it combines diffusion process and confusion process. As a result, the proposed method achieves high robustness against iterative-algorithm-based attacks. Simulation results are presented to prove the validity of the proposed cryptography.

  16. Object-Based Canopy Gap Segmentation and Classification: Quantifying the Pros and Cons of Integrating Optical and LiDAR Data

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2015-11-01

    Full Text Available Delineating canopy gaps and quantifying gap characteristics (e.g., size, shape, and dynamics are essential for understanding regeneration dynamics and understory species diversity in structurally complex forests. Both high spatial resolution optical and light detection and ranging (LiDAR remote sensing data have been used to identify canopy gaps through object-based image analysis, but few studies have quantified the pros and cons of integrating optical and LiDAR for image segmentation and classification. In this study, we investigate whether the synergistic use of optical and LiDAR data improves segmentation quality and classification accuracy. The segmentation results indicate that the LiDAR-based segmentation best delineates canopy gaps, compared to segmentation with optical data alone, and even the integration of optical and LiDAR data. In contrast, the synergistic use of two datasets provides higher classification accuracy than the independent use of optical or LiDAR (overall accuracy of 80.28% ± 6.16% vs. 68.54% ± 9.03% and 64.51% ± 11.32%, separately. High correlations between segmentation quality and object-based classification accuracy indicate that classification accuracy is largely dependent on segmentation quality in the selected experimental area. The outcome of this study provides valuable insights of the usefulness of data integration into segmentation and classification not only for canopy gap identification but also for many other object-based applications.

  17. Optical HMI with biomechanical energy harvesters integrated in textile supports

    International Nuclear Information System (INIS)

    De Pasquale, G; De Pasquale, D; Kim, SG

    2015-01-01

    This paper reports the design, prototyping and experimental validation of a human-machine interface (HMI), named GoldFinger, integrated into a glove with energy harvesting from fingers motion. The device is addressed to medical applications, design tools, virtual reality field and to industrial applications where the interaction with machines is restricted by safety procedures. The HMI prototype includes four piezoelectric transducers applied to the fingers backside at PIP (proximal inter-phalangeal) joints, electric wires embedded in the fabric connecting the transducers, aluminum case for the electronics, wearable switch made with conductive fabrics to turn the communication channel on and off, and a LED. The electronic circuit used to manage the power and to control the light emitter includes a diodes bridge, leveling capacitors, storage battery and switch made by conductive fabric. The communication with the machine is managed by dedicated software, which includes the user interface, the optical tracking, and the continuous updating of the machine microcontroller. The energetic benefit of energy harvester on the battery lifetime is inversely proportional to the activation time of the optical emitter. In most applications, the optical port is active for 1 to 5% of the time, corresponding to battery lifetime increasing between about 14% and 70%. (paper)

  18. Optical HMI with biomechanical energy harvesters integrated in textile supports

    Science.gov (United States)

    De Pasquale, G.; Kim, SG; De Pasquale, D.

    2015-12-01

    This paper reports the design, prototyping and experimental validation of a human-machine interface (HMI), named GoldFinger, integrated into a glove with energy harvesting from fingers motion. The device is addressed to medical applications, design tools, virtual reality field and to industrial applications where the interaction with machines is restricted by safety procedures. The HMI prototype includes four piezoelectric transducers applied to the fingers backside at PIP (proximal inter-phalangeal) joints, electric wires embedded in the fabric connecting the transducers, aluminum case for the electronics, wearable switch made with conductive fabrics to turn the communication channel on and off, and a LED. The electronic circuit used to manage the power and to control the light emitter includes a diodes bridge, leveling capacitors, storage battery and switch made by conductive fabric. The communication with the machine is managed by dedicated software, which includes the user interface, the optical tracking, and the continuous updating of the machine microcontroller. The energetic benefit of energy harvester on the battery lifetime is inversely proportional to the activation time of the optical emitter. In most applications, the optical port is active for 1 to 5% of the time, corresponding to battery lifetime increasing between about 14% and 70%.

  19. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    International Nuclear Information System (INIS)

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.

    1995-01-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered

  20. Light scattering in porous materials: Geometrical optics and stereological approach

    International Nuclear Information System (INIS)

    Malinka, Aleksey V.

    2014-01-01

    Porous material has been considered from the point of view of stereology (geometrical statistics), as a two-phase random mixture of solid material and air. Considered are the materials having the refractive index with the real part that differs notably from unit and the imaginary part much less than unit. Light scattering in such materials has been described using geometrical optics. These two – the geometrical optics laws and the stereological approach – allow one to obtain the inherent optical properties of such a porous material, which are basic in the radiative transfer theory: the photon survival probability, the scattering phase function, and the polarization properties (Mueller matrix). In this work these characteristics are expressed through the refractive index of the material and the random chord length distribution. The obtained results are compared with the traditional approach, modeling the porous material as a pack of particles of different shapes. - Highlights: • Porous material has been considered from the point of view of stereology. • Properties of a two-phase random mixture of solid material and air are considered. • Light scattering in such materials has been described using geometrical optics. • The inherent optical properties of such a porous material have been obtained

  1. Simulation of multicomponent light source for optical-electronic system of color analysis objects

    Science.gov (United States)

    Peretiagin, Vladimir S.; Alekhin, Artem A.; Korotaev, Valery V.

    2016-04-01

    Development of lighting technology has led to possibility of using LEDs in the specialized devices for outdoor, industrial (decorative and accent) and domestic lighting. In addition, LEDs and devices based on them are widely used for solving particular problems. For example, the LED devices are widely used for lighting of vegetables and fruit (for their sorting or growing), textile products (for the control of its quality), minerals (for their sorting), etc. Causes of active introduction LED technology in different systems, including optical-electronic devices and systems, are a large choice of emission color and LED structure, that defines the spatial, power, thermal and other parameters. Furthermore, multi-element and color devices of lighting with adjustable illumination properties can be designed and implemented by using LEDs. However, devices based on LEDs require more attention if you want to provide a certain nature of the energy or color distribution at all the work area (area of analysis or observation) or surface of the object. This paper is proposed a method of theoretical modeling of the lighting devices. The authors present the models of RGB multicomponent light source applied to optical-electronic system for the color analysis of mineral objects. The possibility of formation the uniform and homogeneous on energy and color illumination of the work area for this system is presented. Also authors showed how parameters and characteristics of optical radiation receiver (by optical-electronic system) affect on the energy, spatial, spectral and colorimetric properties of a multicomponent light source.

  2. Comparing Different Approaches to Visualizing Light Waves: An Experimental Study on Teaching Wave Optics

    Science.gov (United States)

    Mešic, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-01-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented…

  3. Light intensity dependent optical rotation in azobenzene polymers

    Science.gov (United States)

    Ivanov, M.; Ilieva, D.; Petrova, T.; Dragostinova, V.; Todorov, T.; Nikolova, L.

    2006-05-01

    We investigate the self-induced rotation of the azimuth of light polarization ellipse in azobenzene polymers. It is initiated by the photoreorientation and ordering of the azobenzenes on illumination with elliptically polarized light resulting in the appearance of an optical axis whose direction is gradually rotated along the depth of the film. A macroscopic chiral structure is created with a pitch depending on light ellipticity and the photobirefringence ▵n in the successive layers of the film. In this work we make use of the fact that at elevated temperatures ▵n is very sensitive to light intensity. In our acrylic amorphous azobenzene polymer at temperatures 50-65°C the saturated values of ▵n are much higher for low intensity of the exciting light than for higher intensity. In this temperature range the polarization azimuth of monochromatic blue light with different intensity is rotated to a different angle after passing through the polymer film. This effect can be used for passive elements rotating the polarization azimuth depending on light intensity and for the formation of light beams with a space-variant polarization state.

  4. Integrated light in direct excitation and energy transfer luminescence

    OpenAIRE

    Chimczak, Eugeniusz

    2007-01-01

    Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.

  5. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    Science.gov (United States)

    Baumbick, Robert J.

    1991-02-01

    Fiber optic technology is expected to be used in future advanced weapons platforms as well as commercial aerospace applications. Fiber optic waveguides will be used to transmit noise free high speed data between a multitude of computers as well as audio and video information to the flight crew. Passive optical sensors connected to control computers with optical fiber interconnects will serve both control and monitoring functions. Implementation of fiber optic technology has already begun. Both the military and NASA have several programs in place. A cooperative program called FOCSI (Fiber Optic Control System Integration) between NASA Lewis and the NAVY to build environmentally test and flight demonstrate sensor systems for propul sion and flight control systems is currently underway. Integrated Optical Circuits (IOC''s) are also being given serious consideration for use in advanced aircraft sys tems. IOC''s will result in miniaturization and localization of components to gener ate detect optical signals and process them for use by the control computers. In some complex systems IOC''s may be required to perform calculations optically if the technology is ready replacing some of the electronic systems used today. IOC''s are attractive because they will result in rugged components capable of withstanding severe environments in advanced aerospace vehicles. Manufacturing technology devel oped for microelectronic integrated circuits applied to IOC''s will result in cost effective manufacturing. This paper reviews the current FOCSI program and describes the role of IOC''s in FOCSI applications.

  6. Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

    Directory of Open Access Journals (Sweden)

    Felix Pyatkov

    2017-01-01

    Full Text Available Carbon nanotubes (CNTs have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources.

  7. Integrated optics theory and technology

    CERN Document Server

    Hunsperger, Robert G

    1984-01-01

    Our intent in producing this book was to provide a text that would be comprehensive enough for an introductory course in integrated optics, yet concise enough in its mathematical derivations to be easily readable by a practicing engineer who desires an overview of the field. The response to the first edition has indeed been gratifying; unusually strong demand has caused it to be sold out during the initial year of publication, thus providing us with an early opportunity to produce this updated and improved second edition. This development is fortunate, because integrated optics is a very rapidly progressing field, with significant new research being regularly reported. Hence, a new chapter (Chap. 17) has been added to review recent progress and to provide numerous additional references to the relevant technical literature. Also, thirty-five new problems for practice have been included to supplement those at the ends of chapters in the first edition. Chapters I through 16 are essentially unchanged, except for ...

  8. Characterization of tunable light source by optical parametric oscillator for high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. W. [Ewha Womens Univ., Seoul (Korea); Rhee, B. G. [Sejong Univ., Seoul (Korea); Park, S. W. [Yonsei Univ., Seoul (Korea); Noh, J. W. [Inha Univ., Incheon (Korea)

    1998-04-01

    A tunable light source is developed by the optical parametric oscillator, which is very useful for a high resolution spectroscopy. The electronic structure of molecules and atoms can be examined by a proper coherent light source. Optical parametric oscillator provides light sources stable and widely tunable. In this work, the characteristics of the parametric optical generation are examined in the LiNbO{sub 3}. The theoretical analysis as well as the experimental measurement is performed. The pump laser is a second harmonic of Nd:YAG laser, and the parametric gain is measured. The characteristics of singly resonant oscillator and doubly resonant oscillator is studied as a function of temperature. It is found that 1mole% MgO:LiNbO{sub 3} crystal provides the tunability from 0.6{mu}m to 3.0{mu}m wavelength. Both the critical and noncritical phase matching are studied. The optical damage occurring in a congruent LiNbO{sub 3} crystal was not observed in 1mole% MgO:LiNbO{sub 3} crystal, opening a possibility for a high power optical parametric oscillation generation. The current work can be extended to an experiment employing the fundamental Nd:YAG as pump to provide a coherent light source for the study of molecular vibrations. 28 refs., 14 figs., 3 tabs. (Author)

  9. Invariable optical properties of phosphor-free white light-emitting diode under electrical stress

    International Nuclear Information System (INIS)

    Hao, Long; Hao, Fang; Sheng-Li, Qi; Li-Wen, Sang; Wen-Yu, Cao; Jian, Yan; Jun-Jing, Deng; Zhi-Jian, Yang; Guo-Yi, Zhang

    2010-01-01

    This paper reports that a dual-wavelength white light-emitting diode is fabricated by using a metal-organic chemical vapor deposition method. Through a 200-hours' current stress, the reverse leakage current of this light-emitting diode increases with the aging time, but the optical properties remained unchanged despite the enhanced reverse leakage current. Transmission electron microscopy and cathodeluminescence images show that indium atoms were assembled in and around V-shape pits with various compositions, which can be ascribed to the emitted white light. Evolution of cathodeluminescence intensities under electron irradiation is also performed. Combining cathodeluminescence intensities under electron irradiation and above results, the increase of leakage channels and crystalline quality degradation are realized. Although leakage channels increase with aging, potential fluctuation caused by indium aggregation can effectively avoid the impact of leakage channels. Indium aggregation can be attributed to the mechanism of preventing optical degradation in phosphor-free white light-emitting diode. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Optical fiber design with orbital angular momentum light purity higher than 99.9.

    Science.gov (United States)

    Zhang, Zhishen; Gan, Jiulin; Heng, Xiaobo; Wu, Yuqing; Li, Qingyu; Qian, Qi; Chen, Dongdan; Yang, Zhongmin

    2015-11-16

    The purity of the synthesized orbital-angular-momentum (OAM) light in the fiber is inversely proportional to channel crosstalk level in the OAM optical fiber communication system. Here the relationship between the fiber structure and the purity is firstly demonstrated in theory. The graded-index optical fiber is proposed and designed for the OAM light propagation with the purity higher than 99.9%. 16 fiber modes (10 OAM modes) have been supported by a specific designed graded-index optical fiber with dispersion less than 35 ps/(km∙nm). Such fiber design has suppressed the intrinsic crosstalk to be lower than -30 dB, and can be potentially used for the long distance OAM optical communication system.

  11. Signal and noise analysis in TRION-Time-Resolved Integrative Optical Fast Neutron detector

    International Nuclear Information System (INIS)

    Vartsky, D; Feldman, G; Mor, I; Goldberg, M B; Bar, D; Dangendorf, V

    2009-01-01

    TRION is a sub-mm spatial resolution fast neutron imaging detector, which employs an integrative optical time-of-flight technique. The detector was developed for fast neutron resonance radiography, a method capable of detecting a broad range of conventional and improvised explosives. In this study we have analyzed in detail, using Monte-Carlo calculations and experimentally determined parameters, all the processes that influence the signal and noise in the TRION detector. In contrast to event-counting detectors where the signal-to-noise ratio is dependent only on the number of detected events (quantum noise), in an energy-integrating detector additional factors, such as the fluctuations in imparted energy, number of photoelectrons, system gain and other factors will contribute to the noise. The excess noise factor (over the quantum noise) due to these processes was 4.3, 2.7, 2.1, 1.9 and 1.9 for incident neutron energies of 2, 4, 7.5, 10 and 14 MeV, respectively. It is shown that, even under ideal light collection conditions, a fast neutron detection system operating in an integrative mode cannot be quantum-noise-limited due to the relatively large variance in the imparted proton energy and the resulting scintillation light distributions.

  12. Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods.

    Science.gov (United States)

    Lien, Miao-Bin; Kim, Ji-Young; Han, Myung-Geun; Chang, You-Chia; Chang, Yu-Chung; Ferguson, Heather J; Zhu, Yimei; Herzing, Andrew A; Schotland, John C; Kotov, Nicholas A; Norris, Theodore B

    2017-06-27

    A systematic study is presented of the intensity-dependent nonlinear light scattering spectra of gold nanorods under resonant excitation of the longitudinal surface plasmon resonance (SPR). The spectra exhibit features due to coherent second and third harmonic generation as well as a broadband feature that has been previously attributed to multiphoton photoluminescence arising primarily from interband optical transitions in the gold. A detailed study of the spectral dependence of the scaling of the scattered light with excitation intensity shows unexpected scaling behavior of the coherent signals, which is quantitatively accounted for by optically induced damping of the SPR mode through a Fermi liquid model of the electronic scattering. The broadband feature is shown to arise not from luminescence, but from scattering of the second-order longitudinal SPR mode with the electron gas, where efficient excitation of the second order mode arises from an optical asymmetry of the nanorod. The electronic-temperature-dependent plasmon damping and the Fermi-Dirac distribution together determine the intensity dependence of the broadband emission, and the structure-dependent absorption spectrum determines the spectral shape through the fluctuation-dissipation theorem. Hence a complete self-consistent picture of both coherent and incoherent light scattering is obtained with a single set of physical parameters.

  13. Active Learning Strategies for Introductory Light and Optics

    Science.gov (United States)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…

  14. Integrated resource management for Hybrid Optical Wireless (HOW) networks

    DEFF Research Database (Denmark)

    Yan, Ying; Yu, Hao; Wessing, Henrik

    2009-01-01

    Efficient utilization of available bandwidth over hybrid optical wireless networks is a critical issue, especially for multimedia applications with high data rates and stringent Quality of Service (QoS) requirements. In this paper, we propose an integrated resource management including an enhanced...... resource sharing scheme and an integrated admission control scheme for the hybrid optical wireless networks. It provides QoS guarantees for connections through both optical and wireless domain. Simulation results show that our proposed scheme improves QoS performances in terms of high throughput and low...

  15. Compound semiconductor optical waveguide switch

    Science.gov (United States)

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  16. Infrared and optical light curves of EX Hydrae and VW Hydri

    International Nuclear Information System (INIS)

    Sherrington, M.R.; Lawson, P.A.; King, A.R.; Jameson, R.F.

    1980-01-01

    Optical and infrared light curves of EX Hya (V and K) and VW Hyi (J and K) are presented. The infrared colours imply very large discs for these systems. It is also found for EX Hya that the structure of the light curves is non-repeatable. (author)

  17. Materials and integration schemes for above-IC integrated optics

    NARCIS (Netherlands)

    Schmitz, Jurriaan; Rangarajan, B.; Kovalgin, Alexeij Y.

    2014-01-01

    A study is presented on silicon oxynitride material for waveguides and germanium-silicon alloys for p-i-n diodes. The materials are manufactured at low, CMOS-backend compatible temperatures, targeting the integration of optical functions on top of CMOS chips. Low-temperature germanium-silicon

  18. Design and Analysis of an Optical Coupler for Concentrated Solar Light Using Optical Fibers in Residential Buildings

    Directory of Open Access Journals (Sweden)

    Afshin Aslian

    2016-01-01

    Full Text Available Concentrated sunlight that is transmitted by fiber optics has been used for generating electricity, heat, and daylight. On the other hand, multijunction photovoltaic cells provide high efficiency for generating electricity from highly concentrated sunlight. This study deals with designing and simulating a high-efficiency coupler, employing a mathematical model to connect sunlight with fiber optics for multiple applications. The coupler concentrates and distributes irradiated light from a primary concentrator. In this study, a parabolic dish was used as the primary concentrator, a coupler that contains nine components called a compound truncated pyramid and a cone (CTPC, all of which were mounted on a plate. The material of both the CTPC and the plate was BK7 optical glass. Fiber optics cables and multijunction photovoltaic cells were connected to the cylindrical part of the CTPC. The fibers would transmit the light to the building to provide heat and daylight, whereas multijunction photovoltaic cells generate electricity. Theoretical and simulation results showed high performance of the designed coupler. The efficiency of the coupler was as high as 92%, whereas the rim angle of the dish increased to an optimum angle. Distributed sunlight in the coupler increased the flexibility and simplicity of the design, resulting in a system that provided concentrated electricity, heat, and lighting for residential buildings.

  19. Integrated Optical Content Addressable Memories (CAM and Optical Random Access Memories (RAM for Ultra-Fast Address Look-Up Operations

    Directory of Open Access Journals (Sweden)

    Christos Vagionas

    2017-07-01

    Full Text Available Electronic Content Addressable Memories (CAM implement Address Look-Up (AL table functionalities of network routers; however, they typically operate in the MHz regime, turning AL into a critical network bottleneck. In this communication, we demonstrate the first steps towards developing optical CAM alternatives to enable a re-engineering of AL memories. Firstly, we report on the photonic integration of Semiconductor Optical Amplifier-Mach Zehnder Interferometer (SOA-MZI-based optical Flip-Flop and Random Access Memories on a monolithic InP platform, capable of storing the binary prefix-address data-bits and the outgoing port information for next hop routing, respectively. Subsequently the first optical Binary CAM cell (B-CAM is experimentally demonstrated, comprising an InP Flip-Flop and a SOA-MZI Exclusive OR (XOR gate for fast search operations through an XOR-based bit comparison, yielding an error-free 10 Gb/s operation. This is later extended via physical layer simulations in an optical Ternary-CAM (T-CAM cell and a 4-bit Matchline (ML configuration, supporting a third state of the “logical X” value towards wildcard bits of network subnet masks. The proposed functional CAM and Random Access Memories (RAM sub-circuits may facilitate light-based Address Look-Up tables supporting search operations at 10 Gb/s and beyond, paving the way towards minimizing the disparity with the frantic optical transmission linerates, and fast re-configurability through multiple simultaneous Wavelength Division Multiplexed (WDM memory access requests.

  20. Timing growth and development of Campanula by daily light integral and supplemental light level in a cost-efficient light control system

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig; Ottosen, Carl-Otto; Jørgensen, Bo Nørregaard

    2012-01-01

    light control system (DynaLight desktop) automatically defines the most cost-efficient use of supplemental light based on predefined setpoints for daily photosynthesis integral (DPI), forecasted solar irradiance and the market price on electricity. It saves energy in high-cost periods of electricity......Two campanula species Campanula portenschlagiana (‘Blue Get Mee’) and Campanula cochlearifolia (‘Blue Wonder’) were grown in a cost-efficient light control system and the effect of supplemental light level and daily light integral (DLI) on growth and development was quantified. The alternative...... the number of flowers and buds and CLI in ‘Blue Get Mee’. The results demonstrate that DLI was the main limiting factor for prediction of growth and development when two campanula species were grown in a cost-efficient light control system where the number of daily light hours was often below the critical...

  1. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits

    Science.gov (United States)

    Zeuner, Jonas; Sharma, Aditya N.; Tillmann, Max; Heilmann, René; Gräfe, Markus; Moqanaki, Amir; Szameit, Alexander; Walther, Philip

    2018-03-01

    Recent progress in integrated-optics technology has made photonics a promising platform for quantum networks and quantum computation protocols. Integrated optical circuits are characterized by small device footprints and unrivalled intrinsic interferometric stability. Here, we take advantage of femtosecond-laser-written waveguides' ability to process polarization-encoded qubits and present an implementation of a heralded controlled-NOT gate on chip. We evaluate the gate performance in the computational basis and a superposition basis, showing that the gate can create polarization entanglement between two photons. Transmission through the integrated device is optimized using thermally expanded core fibers and adiabatically reduced mode-field diameters at the waveguide facets. This demonstration underlines the feasibility of integrated quantum gates for all-optical quantum networks and quantum repeaters.

  2. Boson sampling with integrated optical circuits

    International Nuclear Information System (INIS)

    Bentivegna, M.

    2014-01-01

    Simulating the evolution of non-interacting bosons through a linear transformation acting on the system’s Fock state is strongly believed to be hard for a classical computer. This is commonly known as the Boson Sampling problem, and has recently got attention as the first possible way to demonstrate the superior computational power of quantum devices over classical ones. In this paper we describe the quantum optics approach to this problem, highlighting the role of integrated optical circuits.

  3. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-01-01

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154

  4. Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range.

    Science.gov (United States)

    Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang

    2016-04-13

    The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications.

  5. Neptunium detector using fiber-optic light guides

    International Nuclear Information System (INIS)

    Spencer, W.A.; Killeen, T.E.; Herold, T.R.

    1981-01-01

    A colorimeter has been constructed and installed to detect neptunium (IV) on-line as it elutes from an ion exchange column in a plant process stream. Because of the high radiation and corrosive atmosphere at the monitoring location, the instrument was designed using remote electronics and glass fiber optic cables. The five-foot cables transmit pulsed white light into a glass monitoring window in a containment box and return the transmitted portion to a photosensor. A simple spring clamp was designed to couple the cables to the monitoring window without modifying existing processes. Details of the design, installation, and operational problems are discussed. Other applications and modifications of the present colorimeter for other actinides, as well as preliminary results on a fiber optic spectrophotometer, are presented

  6. Light distribution analysis of optical fibre probe-based near-field optical tweezers using FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B H; Yang, L J; Wang, Y [School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Heilongjiang, Harbin, 150001 (China)], E-mail: richelaw@163.com

    2009-09-01

    Optical fibre probe-based near-field optical tweezers overcomes the diffraction limit of conventional optical tweezers, utilizing strong mechanical forces and torque associated with highly enhanced electric fields to trap and manipulate nano-scale particles. Near-field evanescent wave generated at optical fibre probe decays rapidly with the distance that results a significant reduced trapping volume, thus it is necessary to analyze the near-field distribution of optical fibre probe. The finite difference time domain (FDTD) method is applied to characterize the near-field distribution of optical fibre probe. In terms of the distribution patterns, depolarization and polarization, the near-field distributions in longitudinal sections and cross-sections of tapered metal-coated optical fibre probe are calculated. The calculation results reveal that the incident polarized wave becomes depolarized after exiting from the nano-scale aperture of probe. The near-field distribution of the probe is unsymmetrical, and the near-field distribution in the cross-section vertical to the incident polarized wave is different from that in the cross-section parallel to the incident polarized wave. Moreover, the polarization of incident wave has a great impact on the light intensity distribution.

  7. Packaged and hybrid integrated all-optical flip-flop memory

    NARCIS (Netherlands)

    Liu, Y.; McDougall, R.; Hill, M.T.; Maxwell, G.D.; Zhang, S.; Harmon, R.; Huijskens, Frans; Rivers, L.; Dorren, H.J.S.; Poustie, A.

    2006-01-01

    A fully-packaged hybrid-integrated all-optical flip-flop, where InP-based semiconductor optical amplifiers are assembled onto a planar silica waveguide board, is demonstrated. It is shown experimentally that the flip-flop can dynamically toggle between its two states by injecting 150 ps optical

  8. Development of optical packet and circuit integrated ring network testbed.

    Science.gov (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  9. Optical trapping using cascade conical refraction of light.

    Science.gov (United States)

    O'Dwyer, D P; Ballantine, K E; Phelan, C F; Lunney, J G; Donegan, J F

    2012-09-10

    Cascade conical refraction occurs when a beam of light travels through two or more biaxial crystals arranged in series. The output beam can be altered by varying the relative azimuthal orientation of the two biaxial crystals. For two identical crystals, in general the output beam comprises a ring beam with a spot at its centre. The relative intensities of the spot and ring can be controlled by varying the azimuthal angle between the refracted cones formed in each crystal. We have used this beam arrangement to trap one microsphere within the central spot and a second microsphere on the ring. Using linearly polarized light, we can rotate the microsphere on the ring with respect to the central sphere. Finally, using a half wave-plate between the two crystals, we can create a unique beam profile that has two intensity peaks on the ring, and thereby trap two microspheres on diametrically opposite points on the ring and rotate them around the central sphere. Such a versatile optical trap should find application in optical trapping setups.

  10. Integrated semiconductor optical sensors for chronic, minimally-invasive imaging of brain function.

    Science.gov (United States)

    Lee, Thomas T; Levi, Ofer; Cang, Jianhua; Kaneko, Megumi; Stryker, Michael P; Smith, Stephen J; Shenoy, Krishna V; Harris, James S

    2006-01-01

    Intrinsic optical signal (IOS) imaging is a widely accepted technique for imaging brain activity. We propose an integrated device consisting of interleaved arrays of gallium arsenide (GaAs) based semiconductor light sources and detectors operating at telecommunications wavelengths in the near-infrared. Such a device will allow for long-term, minimally invasive monitoring of neural activity in freely behaving subjects, and will enable the use of structured illumination patterns to improve system performance. In this work we describe the proposed system and show that near-infrared IOS imaging at wavelengths compatible with semiconductor devices can produce physiologically significant images in mice, even through skull.

  11. Integrated-optic current sensors with a multimode interference waveguide device.

    Science.gov (United States)

    Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol

    2016-04-04

    Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.

  12. Planar Silicon Optical Waveguide Light Modulators

    DEFF Research Database (Denmark)

    Leistiko, Otto; Bak, H.

    1994-01-01

    that values in the nanosecond region should be possible, however, the measured values are high, 20 microseconds, due to the large area of the injector junctions, 1× 10¿2 cm2, and the limitations imposed by the detection circuit. The modulating properties of these devices are impressive, measurements......The results of an experimental investigation of a new type of optical waveguide based on planar technology in which the liglht guiding and modulation are achieved by exploiting free carrier effects in silicon are presented. Light is guided between the n+ substrate and two p+ regions, which also...... serve as carrier injectors for controling absorption. Light confinement of single mode devices is good, giving spot sizes of 9 ¿m FWHM. Insertion loss measurements indicate that the absorption losses for these waveguides are extremely low, less 1 dB/cm. Estimates of the switching speed indicate...

  13. Integrated optical delay lines for time-division multiplexers

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Kleijn, E.; Smit, M.K.; Leijtens, X.J.M.

    2013-01-01

    In this paper, we present a study of integrated optical delay lines (DLs) for application in optical time-division multiplexers. The investigated DLs are formed by spirally folded waveguides. The components were designed in a generic approach and fabricated in multi-project wafer runs on an

  14. Cone and Rod Loss in Stargardt Disease Revealed by Adaptive Optics Scanning Light Ophthalmoscopy

    Science.gov (United States)

    Song, Hongxin; Rossi, Ethan A.; Latchney, Lisa; Bessette, Angela; Stone, Edwin; Hunter, Jennifer J.; Williams, David R.; Chung, Mina

    2015-01-01

    Importance Stargardt disease (STGD1) is characterized by macular atrophy and flecks in the retinal pigment epithelium. The causative ABCA4 gene encodes a protein localizing to photoreceptor outer segments. The pathologic steps by which ABCA4 mutations lead to clinically detectable retinal pigment epithelium changes remain unclear. We investigated early STGD1 using adaptive optics scanning light ophthalmoscopy. Observations Adaptive optics scanning light ophthalmoscopy imaging of 2 brothers with early STGD1 and their unaffected parents was compared with conventional imaging. Cone and rod spacing were increased in both patients (P optics scanning light ophthalmoscopy reveals increased cone and rod spacing in areas that appear normal in conventional images, suggesting that photoreceptor loss precedes clinically detectable retinal pigment epithelial disease in STGD1. PMID:26247787

  15. International Conference on Integrated Optical Circuit Engineering, 1st, Cambridge, MA, October 23-25, 1984, Proceedings

    Science.gov (United States)

    Ostrowsky, D. B.; Sriram, S.

    Aspects of waveguide technology are explored, taking into account waveguide fabrication techniques in GaAs/GaAlAs, the design and fabrication of AlGaAs/GaAs phase couplers for optical integrated circuit applications, ion implanted GaAs integrated optics fabrication technology, a direct writing electron beam lithography based process for the realization of optoelectronic integrated circuits, and advances in the development of semiconductor integrated optical circuits for telecommunications. Other subjects examined are related to optical signal processing, optical switching, and questions of optical bistability and logic. Attention is given to acousto-optic techniques in integrated optics, acousto-optic Bragg diffraction in proton exchanged waveguides, optical threshold logic architectures for hybrid binary/residue processors, integrated optical modulation and switching, all-optic logic devices for waveguide optics, optoelectronic switching, high-speed photodetector switching, and a mechanical optical switch.

  16. Nonparaxial Bessel and Bessel-Gauss pincers light-sheets

    Science.gov (United States)

    Mitri, F. G.

    2017-01-01

    Nonparaxial optical Bessel and Bessel-Gauss pincers optical-sheets are introduced based upon the angular spectrum decomposition in plane waves. The angular spectrum function and the beam-shape coefficients are expressed by means of improper integrals computed numerically. The radiated component of the electric field is also evaluated, displaying unique features of the nonparaxial Bessel pincers light-sheets. This new type of auto-focusing light-sheets finds potential applications in the development of novel methods in optical light-sheet tweezers for particle manipulation in opto-fluidics, particle sizing and imaging. Numerical predictions for the scattering, radiation force and torque, and particle dynamics also benefit from the developed beam solution.

  17. Light radiation pressure upon a wrinkled membrane – parametrization of an optically orthotropic model

    Science.gov (United States)

    Nerovny, N. A.; Zimin, V. N.

    2018-04-01

    In this paper, the problem of representing the light pressure force upon the surface of a thin wrinkled film is discussed. The common source of wrinkles is the shear deformation of the membrane sample. The optical model of such a membrane is assumed to be optically orthotropic and an analytic equation for infinitesimal light pressure force is written. A linear regression model in the case of wrinkle geometry, where a surface element can have different optical parameters, is constructed and the Bayesian approach is used to calculate the parameters of this model.

  18. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.

    Science.gov (United States)

    Owen, R J; Heyes, C D; Knebel, D; Röcker, C; Nienhaus, G U

    2006-07-01

    In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution. (c) 2006 Wiley Periodicals, Inc.

  19. Interference of Light in a Michelson-Morley Interferometer: A Quantum Optical Approach

    Directory of Open Access Journals (Sweden)

    Ø. Langangen

    2012-01-01

    Full Text Available The temporal coherence interference properties of light as revealed by single detector intensity measurements in a Michelson-Morley interferometer (MMI is often described in terms of classical optics. We show, in a pedagogical manner, how such features of light also can be understood in terms of a more general quantum-optics framework. If a thermal reference source is used in the MMI local oscillator port in combination with a thermal source in the signal port, the interference pattern revealed by single detector intensity measurements shows a distinctive dependence on the differences in the temperature of the two sources. A related method has actually been used to perform high-precision measurements of the cosmic microwave background radiation. The general quantum-optics framework allows us to consider any initial quantum state. As an example, we consider the interference of single photons as a tool to determine the peak angular-frequency of a single-photon pulse interfering with a single-photon reference pulse. A similar consideration for laser pulses, in terms of coherent states, leads to a different response in the detector. The MMI experimental setup is therefore an example of an optical device where one, in terms of intensity measurements, can exhibit the difference between classical and quantum-mechanical light.

  20. Optical properties of ultraviolet-light soaked states in polyfluorene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Kohei [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Takahashi, Hideaki [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Naito, Hiroyoshi [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)]. E-mail: naito@pe.osakafu-u.ac.jp

    2006-06-19

    Optical properties of ultraviolet (UV)-light soaked states in poly(9,9-dioctylfluorene) (F8) have been studied. F8 thin films, synthesized by Suzuki and Yamamoto coupling reactions, were irradiated by a He-Cd laser ({lambda} = 325 nm) and the UV-light-soaked states were characterized by photoluminescence (PL), optical absorption, Fourier transform infrared absorption and electron spectroscopy for chemical analysis measurements. A photo-induced decrease in PL intensity and PL color change were found in UV-light-soaked F8 thin films. It is shown that the decrease in PL intensity is due to the increase in oxygen-related PL quenching centers and that the PL color change is due to the appearance of 2.2-eV emission bands whose origin is identified to be an exciplex formed between an oxygen-related defect and its nearest F8 polymer chain. The oxygen-related defect, which forms the exciplex, can result from a keto defect (fluorenone) because of the similarity in PL spectra between UV-light-soaked F8 and fluorene-fluorenone copolymers.

  1. Optical properties of ultraviolet-light soaked states in polyfluorene thin films

    International Nuclear Information System (INIS)

    Asada, Kohei; Takahashi, Hideaki; Naito, Hiroyoshi

    2006-01-01

    Optical properties of ultraviolet (UV)-light soaked states in poly(9,9-dioctylfluorene) (F8) have been studied. F8 thin films, synthesized by Suzuki and Yamamoto coupling reactions, were irradiated by a He-Cd laser (λ = 325 nm) and the UV-light-soaked states were characterized by photoluminescence (PL), optical absorption, Fourier transform infrared absorption and electron spectroscopy for chemical analysis measurements. A photo-induced decrease in PL intensity and PL color change were found in UV-light-soaked F8 thin films. It is shown that the decrease in PL intensity is due to the increase in oxygen-related PL quenching centers and that the PL color change is due to the appearance of 2.2-eV emission bands whose origin is identified to be an exciplex formed between an oxygen-related defect and its nearest F8 polymer chain. The oxygen-related defect, which forms the exciplex, can result from a keto defect (fluorenone) because of the similarity in PL spectra between UV-light-soaked F8 and fluorene-fluorenone copolymers

  2. A Miniaturized Optical Sensor with Integrated Gas Cell

    NARCIS (Netherlands)

    Ayerden, N.P.; Ghaderi, M.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design, fabrication and characterization of a highly integrated optical gas sensor is presented. The gas cell takes up most of the space in a microspectrometer and is the only component that has so far not been miniaturized. Using the tapered resonator cavity of a linear variable optical filter

  3. Integrated optics on Lithium Niobate for sensing applications

    Science.gov (United States)

    Zaltron, A.; Bettella, G.; Pozza, G.; Zamboni, R.; Ciampolillo, M.; Argiolas, N.; Sada, C.; Kroesen, S.; Esseling, M.; Denz, C.

    2015-05-01

    In micro-analytical chemistry and biology applications, optofluidic technology holds great promise for creating efficient lab-on-chip systems where higher levels of integration of different stages on the same platform is constantly addressed. Therefore, in this work the possibility of integrating opto-microfluidic functionalities in lithium niobate (LiNbO3) crystals is presented. In particular, a T-junction droplet generator is directly engraved in a LiNbO3 substrate by means of laser ablation process and optical waveguides are realized in the same material by exploiting the Titanium in-diffusion approach. The coupling of these two stages as well as the realization of holographic gratings in the same substrate will allow creating new compact optical sensor prototypes, where the optical properties of the droplets constituents can be monitored.

  4. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    Science.gov (United States)

    Hanselaer, P.; Keppens, A.; Forment, S.; Ryckaert, W. R.; Deconinck, G.

    2009-09-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup.

  5. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    International Nuclear Information System (INIS)

    Hanselaer, P; Keppens, A; Forment, S; Ryckaert, W R; Deconinck, G

    2009-01-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup

  6. Near-to-eye electroholography via guided-wave acousto-optics for augmented reality

    Science.gov (United States)

    Jolly, Sundeep; Savidis, Nickolaos; Datta, Bianca; Smalley, Daniel; Bove, V. Michael

    2017-03-01

    Near-to-eye holographic displays act to directly project wavefronts into a viewer's eye in order to recreate 3-D scenes for augmented or virtual reality applications. Recently, several solutions for near-to-eye electroholography have been proposed based on digital spatial light modulators in conjunction with supporting optics, such as holographic waveguides for light delivery; however, such schemes are limited by the inherent low space-bandwidth product available with current digital SLMs. In this paper, we depict a fully monolithic, integrated optical platform for transparent near-to-eye holographic display requiring no supporting optics. Our solution employs a guided-wave acousto-optic spatial light modulator implemented in lithium niobate in conjunction with an integrated Bragg-regime reflection volume hologram.

  7. A fully integrated optical detector with a-Si:H based color photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Watty, Krystian; Merfort, Christian; Seibel, Konstantin; Schoeler, Lars; Boehm, Markus [Institute for Microsystem Technologies (IMT), University of Siegen, Hoelderlinstr. 3, 57076 Siegen (Germany)

    2010-03-15

    The fabrication of an electrophoresis separation microchip with monolithic integrated excitation light source and variospectral photodiodes for absorption detection is presented in this paper. Microchip based separation techniques are essential elements in the development of fully integrated micro-total analysis systems ({mu}-TAS). An integrated microfluidic device, like an application specific lab-on-microchip (ALM) (Seibel et al., in: MRS Spring Meeting, San Francisco, USA, 2005 1), includes all components, necessary to perform a chemical analysis on chip and it can be used as a stand-alone unit directly at the point of sampling. Variospectral diodes based on hydrogenated amorphous silicon (a-Si:H) technology allow for advanced optical detection schemes, because the spectral sensitivity of the devices can be tailored to fit the emission of specific fluorescent markers. Important features of a-Si:H variospectral photodiodes are a high dynamic range, a bias-tunable spectral sensitivity and a very good linearity for the separation of mixed color signals. Principle of ALM device. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Optical coherence tomography-enhanced microlaryngoscopy: preliminary report of a noncontact optical coherence tomography system integrated with a surgical microscope.

    Science.gov (United States)

    Vokes, David E; Jackson, Ryan; Guo, Shuguang; Perez, Jorge A; Su, Jianping; Ridgway, James M; Armstrong, William B; Chen, Zhongping; Wong, Brian J F

    2008-07-01

    Optical coherence tomography (OCT) is a new imaging modality that uses near-infrared light to produce cross-sectional images of tissue with a resolution approaching that of light microscopy. We have previously reported use of OCT imaging of the vocal folds (VFs) during direct laryngoscopy with a probe held in contact or near-contact with the VFs. This aim of this study was to develop and evaluate a novel OCT system integrated with a surgical microscope to allow hands-free OCT imaging of the VFs, which could be performed simultaneously with microscopic visualization. We performed a prospective evaluation of a new method of acquiring OCT images of the VFs. An OCT system was successfully integrated with a surgical microscope to permit noncontact OCT imaging of the VFs of 10 patients. With this novel device we were able to identify VF epithelium and lamina propria; however, the resolution was reduced compared to that achieved with the standard contact or near-contact OCT. Optical coherence tomography is able to produce high-resolution images of vocal fold mucosa to a maximum depth of 1.6 mm. It may be used in the diagnosis of VF lesions, particularly early squamous cell carcinoma, in which OCT can show disruption of the basement membrane. Mounting the OCT device directly onto the operating microscope allows hands-free noncontact OCT imaging and simultaneous conventional microscopic visualization of the VFs. However, the lateral resolution of the OCT microscope system is 50 microm, in contrast to the conventional handheld probe system (10 microm). Although such images at this resolution are still useful clinically, improved resolution would enhance the system's performance, potentially enabling real-time OCT-guided microsurgery of the larynx.

  9. Light scattering techniques for the characterization of optical components

    Science.gov (United States)

    Hauptvogel, M.; Schröder, S.; Herffurth, T.; Trost, M.; von Finck, A.; Duparré, A.; Weigel, T.

    2017-11-01

    The rapid developments in optical technologies generate increasingly higher and sometimes completely new demands on the quality of materials, surfaces, components, and systems. Examples for such driving applications are the steadily shrinking feature sizes in semiconductor lithography, nanostructured functional surfaces for consumer optics, and advanced optical systems for astronomy and space applications. The reduction of surface defects as well as the minimization of roughness and other scatter-relevant irregularities are essential factors in all these areas of application. Quality-monitoring for analysing and improving those properties must ensure that even minimal defects and roughness values can be detected reliably. Light scattering methods have a high potential for a non-contact, rapid, efficient, and sensitive determination of roughness, surface structures, and defects.

  10. Effects of layer nanodefects on the light transmission by optical elements with multilayer interference coatings

    International Nuclear Information System (INIS)

    Fekeshgazyi, Yi.V.; Syidenko, T.S.; Mitsa, O.V.; Barna, P.; Kyikyineshyi, O.Ye.

    2011-01-01

    The light transmission properties of optical elements with multilayer interference coatings have been studied. The reduction of transmittance maxima for optical elements with coating containing defects is found to be stronger for larger refractive indices of the substances that the defects are made of. The shape of transmittance curves is found to substantially depend on the defect dimensions along the direction of light propagation and the defect arrangement in the layer bulk. The results obtained are necessary for the developing of a technology aimed at manufacturing the optical elements with multilayer interference coatings for laser facilities and optical lenses.

  11. Integrated-Optics Components Utilizing Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra

    2004-01-01

    This thesis describes a new class of components for integrated optics, based on the propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in a dielectric. These novel components can provide guiding of light as well as coupling and splitting from/into a number...... with experimental results is obtained. The interaction of LR-SPPs with photonic crystals (PCs) is also studied. The PC structures are formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film. The LR-SPP transmission through...... of channels with good performance. Guiding of LR-SPPs along nm-thin and µm-wide gold stripes embedded in polymer is investigated in the wavelength range of 1250 – 1650 nm. LR-SPP guiding properties, such as the propagation loss and mode field diameter, are studied for different stripe widths and thicknesses...

  12. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; Laskin, Julia; Kathmann, Shawn M.; Wise, Matthew E.; Caylor, Ryan; Imholt, Felisha; Selimovic, Vanessa; Shilling, John E.

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the light absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  13. Accuracy of Alcon WaveLight® EX500 optical pachymetry during LASIK

    Directory of Open Access Journals (Sweden)

    Mifflin MD

    2017-08-01

    Full Text Available Mark D Mifflin,1 Xavier M Mortensen,1 Brent S Betts,1 Cole Gross,2 Brian Zaugg1 1Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah, Salt Lake City, UT, 2University of Nevada School of Medicine, Reno, NV, USA Purpose: To study the accuracy and reliability of optical pachymetry using the Alcon WaveLight EX500 during laser-assisted in situ keratomileusis (LASIK. Materials and methods: This was a retrospective chart review of 90 eyes from 45 patients who had undergone LASIK (mean age 35.2±8.2 years; 19 males, 26 females. The WaveLight FS200 femtosecond laser was programmed to cut LASIK flaps at a desired depth of 120 µm. Optical low-coherence reflectometry (WaveLight EX500 was used to measure central corneal thickness prior to lifting the flap, and the residual stromal bed immediately after excimer ablation. Flap thickness (FT was calculated using simple subtraction. Optical coherence tomography (OCT was used to measure central corneal thickness, flap thickness, and residual stromal bed in the postoperative period and the results compared to intraoperative measurements. Results: Mean programmed FS200 FT was 119 µm. Mean FT using EX500 optical pachymetry was 109 µm. The difference between FS200- programmed and EX500-measured FT was 9 µm (P<0.001. There was also a significant difference between the EX500 and OCT FT (109 µm vs 119 µm, respectively; P<0.001. Conclusion: FT values calculated using intraoperative EX500 optical pachymetry were significantly lower than programmed FS200 values or OCT measurements. Keywords: flap thickness, optical coherence tomography, femtosecond laser

  14. Thermo-optically induced reorganizations in the main light harvesting antenna of plants. II

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Varkonyi, Zsuzsanna; Kovacs, Laszlo

    2005-01-01

    We have investigated the circular dichroism spectral transients associated with the light-induced reversible reorganizations in chirally organized macrodomains of pea thylakoid membranes and loosely stacked lamellar aggregates of the main chlorophyll a/b light harvesting complexes (LHCII) isolated...... from the same membranes. These reorganizations have earlier been assigned to originate from a thermo-optic effect. According to the thermo-optic mechanism, fast local thermal transients due to dissipation of the excess excitation energy induce elementary structural changes in the close vicinity...

  15. Optical design and testing: introduction.

    Science.gov (United States)

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin

    2014-10-10

    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.

  16. Integrated all optical transmodulator circuits with non-linear gain elements and tunable optical fibers

    NARCIS (Netherlands)

    Kuindersma, P.I.; Leijtens, X.J.M.; Zantvoort, van J.H.C.; Waardt, de H.

    2012-01-01

    We characterize integrated InP circuits for high speed ‘all-optical’ signal processing. Single chip circuits act as optical transistors. Transmodulation is performed by non-linear gain sections. Integrated tunable filters give signal equalization in time domain.

  17. Photoflash unit having optical system including aspheric lens to enhance light output

    International Nuclear Information System (INIS)

    English, G.J.

    1984-01-01

    A photoflash unit employing an optical system or apparatus with improved center beam candle power seconds and zonal lumen seconds from the flash lamp therein, said unit also employing a minimized utilization ratio of lamp-to-package cross-sectional area. Each individual lamp capsule comprises a reflective element, a refractive element (lens), and at least one photoflash lamp (light source). The lens provides for lamp shred magnification so as to fill the cell (capsule) width to thus provide maximum transfer of light to the subject on axis. One embodiment has the light source fused (glued) to the reflector and lens while a second embodiment has an air interface between the source and the optical elements. In both embodiments, the lens is aspheric and substantially covers both the reflector and source

  18. Spectral Filtering Criteria for U-Band Test Light for In-Service Line Monitoring in Optical Fiber Networks

    Science.gov (United States)

    Honda, Nazuki; Izumita, Hisashi; Nakamura, Minoru

    2006-06-01

    In the fiber-to-the-home era, thousands of optical fibers will have to be accommodated in the central offices of optical access networks. To reduce maintenance costs and improve the service reliability of optical fiber networks, the authors must develop an optical fiber line testing system with a function for in-service line monitoring that uses a test light with a wavelength different from the communication light wavelength. To monitor an in-service line in an optical network, the effective rejection ratio of the test light must be taken into account. This ratio depends on the spectrum of the test light from the optical time-domain reflectometer and the rejection band of the filter in front of the optical network unit. The dependence of the effective rejection ratio as a function of the sideband suppression ratio (SBSR) and of the ratio of the rejection band to the bandwidth of the sideband noise d/D is clarified. When d/D =0.1 and the target effective rejection ratio of the filter is -40 dB, the SBSR and the filter loss of the termination cable must be -70 and -43 dB, respectively, or the SBSR must be -80 dB. When d/D service line monitoring for a 10-Gb/s transmission using a 1650-nm test light with an SBSR of -80 dB is also demonstrated.

  19. Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment.

    Science.gov (United States)

    O'Neal Tugaoen, Heather; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul

    2018-02-01

    A key barrier to implementing photocatalysis is delivering light to photocatalysts that are in contact with aqueous pollutants. Slurry photocatalyst systems suffer from poor light penetration and require post-treatment to separate the catalyst. The alternative is to deposit photocatalysts on fixed films and deliver light onto the surface or the backside of the attached catalysts. In this study, TiO 2 -coated quartz optical fibers were coupled to light emitting diodes (OF/LED) to improve in situ light delivery. Design factors and mechanisms studied for OF/LEDs in a flow-through reactor included: (i) the influence of number of LED sources coupled to fibers and (ii) the use of multiple optical fibers bundled to a single LED. The light delivery mechanism from the optical fibers into the TiO 2 coatings is thoroughly discussed. To demonstrate influence of design variables, experiments were conducted in the reactor using the chlorinated pollutant para-chlorobenzoic acid (pCBA). From the degradation kinetics of pCBA, the quantum efficiencies (Φ) of oxidation and electrical energies per order (E EO ) were determined. The use of TiO 2 coated optical fiber bundles reduced the energy requirements to deliver photons and increased available surface area, which improved Φ and enhanced oxidative pollutant removal performance (E EO ). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. QKD-Based Secured Burst Integrity Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2016-03-01

    The field of optical transmission has undergone numerous advancements and is still being researched mainly due to the fact that optical data transmission can be done at enormous speeds. It is quite evident that people prefer optical communication when it comes to large amount of data involving its transmission. The concept of switching in networks has matured enormously with several researches, architecture to implement and methods starting with Optical circuit switching to Optical Burst Switching. Optical burst switching is regarded as viable solution for switching bursts over networks but has several security vulnerabilities. However, this work exploited the security issues associated with Optical Burst Switching with respect to integrity of burst. This proposed Quantum Key based Secure Hash Algorithm (QKBSHA-512) with enhanced compression function design provides better avalanche effect over the conventional integrity algorithms.

  1. Endoscopic hyperspectral imaging: light guide optimization for spectral light source

    Science.gov (United States)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2018-02-01

    Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions ( 65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss ( 99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time.

  2. A Planar, Chip-Based, Dual-Beam Refractometer Using an Integrated Organic Light Emitting Diode (OLED) Light Source and Organic Photovoltaic (OPV) Detectors

    Science.gov (United States)

    Ratcliff, Erin L.; Veneman, P. Alex; Simmonds, Adam; Zacher, Brian; Huebner, Daniel

    2010-01-01

    We present a simple chip-based refractometer with a central organic light emitting diode (OLED) light source and two opposed organic photovoltaic (OPV) detectors on an internal reflection element (IRE) substrate, creating a true dual-beam sensor platform. For first-generation platforms, we demonstrate the use of a single heterojunction OLED based on electroluminescence emission from an Alq3/TPD heterojunction (tris-(8-hydroxyquinoline)aluminum/N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine) and light detection with planar heterojunction pentacene/C60 OPVs. The sensor utilizes the considerable fraction of emitted light from conventional thin film OLEDs that is coupled into guided modes in the IRE instead of into the forward (display) direction. A ray-optics description is used to describe light throughput and efficiency-limiting factors for light coupling from the OLED into the substrate modes, light traversing through the IRE substrate, and light coupling into the OPV detectors. The arrangement of the OLED at the center of the chip provides for two sensing regions, a “sample” and “reference” channel, with detection of light by independent OPV detectors. This configuration allows for normalization of the sensor response against fluctuations in OLED light output, stability, and local fluctuations (temperature) which might influence sensor response. The dual beam configuration permits significantly enhanced sensitivity to refractive index changes relative to single-beam protocols, and is easily integrated into a field-portable instrumentation package. Changes in refractive index (ΔR.I.) between 10−2 and 10−3 R.I. units could be detected for single channel operation, with sensitivity increased to ΔR.I. ≈ 10−4 units when the dual beam configuration is employed. PMID:20218580

  3. Excitation of random intense single-cycle light-pulse chains in optical fiber

    International Nuclear Information System (INIS)

    Ding, Y C; Zhang, F L; Gao, J B; Chen, Z Y; Lin, C Y; Yu, M Y

    2014-01-01

    Excitation of intense periodic single-cycle light pulses in a stochastic background arising from continuous wave stimulated Brillouin scattering (SBS) in a long optical fiber with weak optical feedback is found experimentally and modeled theoretically. Such intense light-pulse chains occur randomly and the optical feedback is a requirement for their excitation. The probability of these forms, among the large number of experimental output signals with identifiable waveforms, appearing is only about 3%, with the remainder exhibiting regular SBS characteristics. It is also found that pulses with low period numbers appear more frequently and the probability distribution for their occurrence in terms of the pulse power is roughly L-shaped, like that for rogue waves. The results from a three-wave-coupling model for SBS including feedback phase control agree well qualitatively with the observed phenomena. (paper)

  4. Optical computing, optical memory, and SBIRs at Foster-Miller

    Science.gov (United States)

    Domash, Lawrence H.

    1994-03-01

    A desktop design and manufacturing system for binary diffractive elements, MacBEEP, was developed with the optical researcher in mind. Optical processing systems for specialized tasks such as cellular automation computation and fractal measurement were constructed. A new family of switchable holograms has enabled several applications for control of laser beams in optical memories. New spatial light modulators and optical logic elements have been demonstrated based on a more manufacturable semiconductor technology. Novel synthetic and polymeric nonlinear materials for optical storage are under development in an integrated memory architecture. SBIR programs enable creative contributions from smaller companies, both product oriented and technology oriented, and support advances that might not otherwise be developed.

  5. Daily light integral and day light quality: Potentials and pitfalls of nighttime UV treatments on cucumber powdery mildew.

    Science.gov (United States)

    Suthaparan, Aruppillai; Solhaug, Knut Asbjørn; Stensvand, Arne; Gislerød, Hans Ragnar

    2017-10-01

    Nighttime ultraviolet (UV) radiation, if applied properly, has a significant potential for management of powdery mildews in many crop species. In this study, the role of growth light duration, irradiance, a combination of both (daily light integral) and light spectral quality (blue or red) on the efficacy of UV treatments against powdery mildew caused by Podosphaera xanthii and the growth performance of cucumber plants was studied in growth chambers. Increasing daily light integral provided by high-pressure sodium lamps (HPS) decreased efficacy of nighttime UV treatments against P. xanthii, but it increased plant growth. Furthermore, the efficacy of nighttime UV decreased when day length was increased from 16 to 20h at a constant daily light integral. The efficacy of nighttime UV increased if red light was applied after UV treatment, showing the possibility of day length extension without reducing the effect of UV. Increasing the dose of blue light during daytime reduced the efficacy of nighttime UV in controlling the disease, whereas blue deficient growth light (light after nighttime UV reduced its disease control efficacy. This showed the importance of maintaining a minimum of blue light in the growth light before nighttime UV treatment. Findings from this study showed that optimization of nighttime UV for management of powdery mildew is dependent on the spectral composition of the photosynthetically active radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Amplification without inversion, fast light and optical bistability in a duplicated two-level system

    International Nuclear Information System (INIS)

    Ebrahimi Zohravi, Lida; Vafafard, Azar; Mahmoudi, Mohammad

    2014-01-01

    The optical properties of a weak probe field in a duplicated two-level system are investigated in multi-photon resonance (MPR) condition and beyond it. It is shown that by changing the relative phase of applied fields, the absorption switches to the amplification without inversion in MPR condition. By applying the Floquet decomposition to the equations of motion beyond MPR condition, it is shown that the phase-dependent behavior is valid only in MPR condition. Moreover, it is demonstrated that the group velocity of light pulse can be controlled by the intensity of the applied fields and the gain-assisted superluminal light propagation (fast light) is obtained in this system. In addition, the optical bistability (OB) behavior of the system is studied beyond MPR condition. We apply an indirect incoherent pumping field to the system and it is found that the group velocity and OB behavior of the system can be controlled by the incoherent pumping rate. - Highlights: • We studied the optical properties of DTL system under MPR condition and beyond it. • By changing the relative phase, the absorption switches to the amplification without inversion in MPR condition. • The gain-assisted superluminal light propagation (fast light) is obtained in this system. • The optical bistability (OB) behavior of the system is studied beyond MPR condition. • The incoherent pumping rate has a major role in controlling the group velocity and OB behavior of the system

  7. Quantum optics with ultracold quantum gases: towards the full quantum regime of the light-matter interaction

    International Nuclear Information System (INIS)

    Mekhov, Igor B; Ritsch, Helmut

    2012-01-01

    Although the study of ultracold quantum gases trapped by light is a prominent direction of modern research, the quantum properties of light were widely neglected in this field. Quantum optics with quantum gases closes this gap and addresses phenomena where the quantum statistical natures of both light and ultracold matter play equally important roles. First, light can serve as a quantum nondemolition probe of the quantum dynamics of various ultracold particles from ultracold atomic and molecular gases to nanoparticles and nanomechanical systems. Second, due to the dynamic light-matter entanglement, projective measurement-based preparation of the many-body states is possible, where the class of emerging atomic states can be designed via optical geometry. Light scattering constitutes such a quantum measurement with controllable measurement back-action. As in cavity-based spin squeezing, the atom number squeezed and Schrödinger cat states can be prepared. Third, trapping atoms inside an optical cavity, one creates optical potentials and forces, which are not prescribed but quantized and dynamical variables themselves. Ultimately, cavity quantum electrodynamics with quantum gases requires a self-consistent solution for light and particles, which enriches the picture of quantum many-body states of atoms trapped in quantum potentials. This will allow quantum simulations of phenomena related to the physics of phonons, polarons, polaritons and other quantum quasiparticles. (topical review)

  8. The role of low light intensity: A step towards understanding the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells

    Science.gov (United States)

    Lojpur, Vesna; Mitrić, Miodrag; Validžić, Ivana Lj

    2018-05-01

    We report here an optic/lens system that we used so far, for cooling the surface of solar cells, the reduction of light intensity and the change of light distribution that reaches the surface of the solar cell. The objective was to improve photovoltaic characteristics under very low light illumination, as well as to understand the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells. It was found that for all so far designed thin-film solar cells made and based on the synthesized Sb2S3, optics/lens system causes an increase in open circuit voltage (VOC) and short circuit current (ISC) and thus the efficiencies of made solar devices. Values of energy gaps for the thin-films made devices were in the range from 1.4 to 2 eV. Improvements of the photovoltaic response of the designed devices are found to be better at the lower light intensity (5% sun), than at higher intensities of light. For the same intensity of light used optic/lens improves the efficiency of the devices, by changing the light distribution. Other processes that are related to the optics/lens system, leading to an increase in ISC and VOC and consequently to an increase in efficiencies of the designed devices, are investigated.

  9. Optical method for the characterization of laterally patterned samples in integrated circuits

    Science.gov (United States)

    Maris, Humphrey J [Barrington, RI

    2009-03-17

    Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure.

  10. Optical properties and aging of light-absorbing secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    J. Liu

    2016-10-01

    Full Text Available The light-absorbing organic aerosol (OA commonly referred to as “brown carbon” (BrC has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC precursors, NOx concentrations, photolysis time, and relative humidity (RH on the light absorption of selected secondary organic aerosols (SOA. Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC value is observed from toluene SOA products formed under high-NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis and ultraviolet (UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.

  11. Optical integration and verification of LINC-NIRVANA

    Science.gov (United States)

    Moreno-Ventas, J.; Baumeister, H.; Bertram, Thomas; Bizenberger, P.; Briegel, F.; Greggio, D.; Kittmann, F.; Marafatto, L.; Mohr, L.; Radhakrishnan, K.; Schray, H.

    2014-07-01

    The LBT (Large Binocular Telescope) located in Mount Graham near Tucson/Arizona at an altitude of about 3200m, is an innovative project being undertaken by institutions from Europe and USA. The structure of the telescope incorporates two 8.4-meter telescopes on a 14.4 center-to-center common mount. This configuration provides the equivalent collecting area of a 12m single-dish telescope. LINC-NIRVANA is an instrument to combine the light from both LBT primary mirrors in an imaging Fizeau interferometer. Many requirements must be fulfilled in order to get a good interferometric combination of the beams, being among the most important plane wavefronts, parallel input beams, homotheticity and zero optical path difference (OPD) required for interferometry. The philosophy is to have an internally aligned instrument first, and then align the telescope to match the instrument. The sum of different subsystems leads to a quite ambitious system, which requires a well-defined strategy for alignment and testing. In this paper I introduce and describe the followed strategy, as well as the different solutions, procedures and tools used during integration. Results are presented at every step.

  12. Modular initiator with integrated optical diagnostic

    Science.gov (United States)

    Alam, M Kathleen [Cedar Crest, NM; Schmitt, Randal L [Tijeras, NM; Welle, Eric J [Niceville, FL; Madden, Sean P [Arlington, MA

    2011-05-17

    A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.

  13. Integrated Active and Passive Polymer Optical Components with nm to mm Features

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Schøler, Mikkel; Kristensen, Anders

    2007-01-01

    We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides.......We present wafer-scale fabrication of integrated active and passive polymer optics with nm to mm features. First order DFB lasers, defined in dye doped SU-8 resist are integrated with SU-8 waveguides....

  14. Integrated chemical sensor array platform based on a light emitting diode, xerogel-derived sensor elements, and high-speed pin printing

    International Nuclear Information System (INIS)

    Cho, Eun Jeong; Bright, Frank V.

    2002-01-01

    We report a new, solid-state, integrated optical array sensor platform. By using pin printing technology in concert with sol-gel-processing methods, we form discrete xerogel-based microsensor elements that are on the order of 100 μm in diameter and 1 μm thick directly on the face of a light emitting diode (LED). The LED serves as the light source to excite chemically responsive luminophores sequestered within the doped xerogel microsensors and the analyte-dependent emission from within the doped xerogel is detected with a charge coupled device (CCD). We overcome the problem of background illumination from the LED reaching the CCD and the associated biasing that results by coating the LED first with a thin layer of blue paint. The thin paint layer serves as an optical filter, knocking out the LEDs red-edge spectral tail. The problem of the spatially-dependent fluence across the LED face is solved entirely by performing ratiometric measurements. We illustrate the performance of the new sensor scheme by forming an array of 100 discrete O 2 -responsive sensing elements on the face of a single LED. The combination of pin printing with an integrated sensor and light source platform results in a rapid method of forming (∼1 s per sensor element) reusable sensor arrays. The entire sensor array can be calibrated using just one sensor element. Array-to-array reproducibly is <8%. Arrays can be formed using single or multiple pins with indistinguishable analytical performance

  15. Intelligent Optical Systems Using Adaptive Optics

    Science.gov (United States)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  16. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    International Nuclear Information System (INIS)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G.; Shea, H.

    2014-01-01

    Miniature ( 3 ) vapor-cell based devices using optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm 3 as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm 3 volume) test setup based on the M z magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors

  17. Light propagation in a magneto-optical hyperbolic biaxial crystal

    Science.gov (United States)

    Kuznetsov, Evgeniy V.; Merzlikin, Alexander M.

    2017-12-01

    The light propagation through a magneto-optical hyperbolic biaxial crystal is investigated. Magnetization of the structure results in splitting and reconnection of an isofrequency near the self-intersection point and thus it leads to the disappearance of conical refraction in a crystal. In its turn the isofrequency splitting leads to band gap opening and makes it possible to steer the beam. These effects allow to control the light propagation by means of an external magnetostatic field. The Poynting's vector distribution in the crystal is calculated by means of a Fourier transform in order to demonstrate the aforementioned effects.

  18. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  19. Micro-resonators based on integrated polymer technology for optical sensing

    OpenAIRE

    Girault , Pauline; Lemaitre , Jonathan; Guendouz , Mohammed; Lorrain , Nathalie; Poffo , Luiz; Gadonna , Michel; Bosc , Dominique

    2014-01-01

    International audience; Research on sensors has experienced a noticeable development over the last decades especially in label free optical biosensors. However, compact sensors without markers for rapid, reliable and inexpensive detection of various substances induces a significant research of new technological solutions. The context of this work is the development of a sensor based on easily integrated and inexpensive micro-resonator (MR) component in integrated optics, highly sensitive and ...

  20. Contributed review: Review of integrated correlative light and electron microscopy.

    Science.gov (United States)

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  1. Contributed Review: Review of integrated correlative light and electron microscopy

    International Nuclear Information System (INIS)

    Timmermans, F. J.; Otto, C.

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy

  2. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  3. Optically nonlinear energy transfer in light-harvesting dendrimers

    OpenAIRE

    Andrews, David; Bradshaw, DS

    2004-01-01

    Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems,organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Sta...

  4. Bottom-up production of meta-atoms for optical magnetism in visible and NIR light

    Science.gov (United States)

    Barois, Philippe; Ponsinet, Virginie; Baron, Alexandre; Richetti, Philippe

    2018-02-01

    Many unusual optical properties of metamaterials arise from the magnetic response of engineered structures of sub-wavelength size (meta-atoms) exposed to light. The top-down approach whereby engineered nanostructure of well-defined morphology are engraved on a surface proved to be successful for the generation of strong optical magnetism. It faces however the limitations of high cost and small active area in visible light where nanometre resolution is needed. The bottom-up approach whereby the fabrication metamaterials of large volume or large area results from the combination of nanochemitry and self-assembly techniques may constitute a cost-effective alternative. This approach nevertheless requires the large-scale production of functional building-blocks (meta-atoms) bearing a strong magnetic optical response. We propose in this paper a few tracks that lead to the large scale synthesis of magnetic metamaterials operating in visible or near IR light.

  5. Evaluation of dental enamel caries assessment using Quantitative Light Induced Fluorescence and Optical Coherence Tomography.

    Science.gov (United States)

    Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena

    2016-06-01

    An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Silicon Nanowires for All-Optical Signal Processing in Optical Communication

    DEFF Research Database (Denmark)

    Pu, Minhao; Hu, Hao; Ji, Hua

    2012-01-01

    Silicon (Si), the second most abundant element on earth, has dominated in microelectronics for many decades. It can also be used for photonic devices due to its transparency in the range of optical telecom wavelengths which will enable a platform for a monolithic integration of optics...... and microelectronics. Silicon photonic nanowire waveguides fabricated on silicon-on-insulator (SOI) substrates are crucial elements in nano-photonic integrated circuits. The strong light confinement in nanowires induced by high index contrast SOI material enhances the nonlinear effects in the silicon nanowire core...... such as four-wave mixing (FWM) which is an imperative process for optical signal processing. Since the current mature silicon fabrication technology enables a precise dimension control on nanowires, dispersion engineering can be performed by tailoring nanowire dimensions to realize an efficient nonlinear...

  7. "Cul-de-sac" microstrip resonators for high-speed integrated optical commutator switches

    Science.gov (United States)

    Jaeger, Nicolas A.; Chen, Mingche

    1993-04-01

    A novel microstrip resonator structure for use with integrated Y-branch optical modulators fabricated in Ti:LiNbO3 is proposed. The legs of the structure are intended to act as the electrodes of the modulator, with light being directed into each of the output waveguides of the Y-branch on alternate half-cycles of the standing wave excited in the resonator; forming an optical commutator switch. Such resonators having Al2O3 substrates were designed, fabricated, and tested. Measurements on one such resonator, operating at 7.12 GHz and having an unloaded quality factor of 123, indicating that 50 V should develop across the ends of its legs for 35 mW dissipated power; the corresponding values, from the model used to design the resonator, were 179, 50 V,and 24 mW, respectively. Using the model it is shown that a similar resonator fabricated on LiNbO3 should be able to develop about 50 V for 100 mW dissipated power at 15 GHz.

  8. Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells

    Science.gov (United States)

    Chang, Hong-Wei; Lee, Jonghee; Hofmann, Simone; Hyun Kim, Yong; Müller-Meskamp, Lars; Lüssem, Björn; Wu, Chung-Chih; Leo, Karl; Gather, Malte C.

    2013-05-01

    The performance of both organic light-emitting diodes (OLEDs) and organic solar cells (OSC) depends on efficient coupling between optical far field modes and the emitting/absorbing region of the device. Current approaches towards OLEDs with efficient light-extraction often are limited to single-color emission or require expensive, non-standard substrates or top-down structuring, which reduces compatibility with large-area light sources. Here, we report on integrating solution-processed nano-particle based light-scattering films close to the active region of organic semiconductor devices. In OLEDs, these films efficiently extract light that would otherwise remain trapped in the device. Without additional external outcoupling structures, translucent white OLEDs containing these scattering films achieve luminous efficacies of 46 lm W-1 and external quantum efficiencies of 33% (both at 1000 cd m-2). These are by far the highest numbers ever reported for translucent white OLEDs and the best values in the open literature for any white device on a conventional substrate. By applying additional light-extraction structures, 62 lm W-1 and 46% EQE are reached. Besides universally enhancing light-extraction in various OLED configurations, including flexible, translucent, single-color, and white OLEDs, the nano-particle scattering film boosts the short-circuit current density in translucent organic solar cells by up to 70%.

  9. Broadcast of four HD videos with LED ceiling lighting: optical-wireless MAC

    Science.gov (United States)

    Bouchet, Olivier; Porcon, Pascal; Gueutier, Eric

    2011-09-01

    The European project "hOME Gigabit Access Network" (OMEGA) targeted various wireless and wired solutions for 1 Gbit/s connectivity in Home Area Networks (HANs). One objective was to evaluate the suitability of optical wireless technologies in two spectral regions: visible light (visible-light communications - VLC) and near infrared (infrared communications - IRC). Several demonstrators have been built, all of them largely relying on overthe- shelf components. The demonstrators included a "wide-area" VLC broadcast link based on LED ceiling lighting and a laser-based high-data-rate "wide-area" IRC prototype. In this paper we discuss an adapted optical-wireless media-access-control (OWMAC) sublayer, which was developed and implemented during the project. It is suitable for both IRC and VLC. The VLC prototype is based on DMT signal processing and provides broadcasting at { 100 Mbit/s over an area of approximately 5 m2. The IRC prototype provides {300 Mbit/s half-duplex communication over an area of approximately 30 m2. The IRC mesh network, composed of one base station and two terminals, is based on OOK modulation, multi-sector transceivers, and an ultra-fast sector switch. After a brief discussion about the design of the optical-wireless data link layer and the optical-wireless switch (OWS) card, we address the card development and implementation. We also present applications for the VLC and IRC prototypes and measurement results regarding the MAC layer.

  10. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    Science.gov (United States)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  11. Radiation-induced attenuation in integrated optical materials

    International Nuclear Information System (INIS)

    Evans, B.D.

    1989-01-01

    This paper reports that three materials commonly employed in opto-electronic integrated circuits evaluated for radiation-induced optical attenuation in the range 300 nm to 3000 nm. These include optically clear epoxy and crystalline lithium niobate after Co-60 exposure and crystalline tellurium dioxide after mixed gamma/fast-neutron exposure. In all these materials, however, induced loss was restricted to shorter wavelengths; attenuation induced at the telecommunications windows near 850, 1300 and 1550 nm was <0.1 dB/cm

  12. Integrated optics and optoelectronics II; Proceedings of the Meeting, San Jose, CA, Sept. 17-19, 1990

    International Nuclear Information System (INIS)

    Wong, Ka-Kha

    1991-01-01

    The present volume on integrated optics and optoelectronics discusses proton- and ion-exchange technologies, radiation effects on GaAs optical system FET devices and on the dynamical behavior of LiNbO3 switching devices, advanced lightwave components and concepts, advanced optical interconnects concepts, advanced aircraft and engine control, IOCs for fiber-optic gyroscopes, and commercial integrated optical devices. Attention is given to integrated optical devices for high-data-rate serial-to-parallel conversion, the design of novel integrated optic devices using depressed index waveguides, and a low-loss L-band microwave fiber-optic link for control of a T/R module. Topics addressed include the temperature and modulation dependence of spectral linewidth in distributed Bragg reflector laser diodes, length-minimization design considerations in photonic integrated circuits incorporating directional couplers, and the photochemical formation of polymeric optical waveguides and devices for optical interconnection applications

  13. Optical silencing of C. elegans cells with light-driven proton pumps.

    Science.gov (United States)

    Okazaki, Ayako; Takahashi, Megumi; Toyoda, Naoya; Takagi, Shin

    2014-08-01

    Recent development of optogenetic techniques, which utilize light-driven ion channels or ion pumps for controlling the activity of excitable cells, has greatly facilitated the investigation of nervous systems in vivo. A new generation of optical silencers includes outward-directed proton pumps, such as Arch, which have several advantages over currently widely used halorhodopsin (NpHR). These advantages include the resistance to inactivation during prolonged illumination and the ability to generate a larger optical current from low intensity light. C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. In this article, we will outline the practical aspects of using of Arch and other proton pumps as optogenetic tools in C. elegans. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Crosstalk performance of integrated optical cross-connects

    NARCIS (Netherlands)

    Herben, C.G.P.; Leijtens, X.J.M.; Maat, D.H.P.; Blok, H.; Smit, M.K.

    1999-01-01

    Crosstalk performance of monolithically integrated multiwavelength optical cross-connects (OXC's) depends strongly on their architecture. In this paper, a semiquantitative analysis of crosstalk in 11 different architectures is presented. Two architectures are analyzed numerically in more detail and

  15. Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices.

    Science.gov (United States)

    Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M

    2012-01-11

    We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. © 2011 American Chemical Society

  16. Trinary optical logic processors using shadow casting with polarized light

    Science.gov (United States)

    Ghosh, Amal K.; Basuray, A.

    1990-10-01

    An optical implementation is proposed of the modified trinary number (MTN) system (Datta et al., 1989) in which any binary number can have arithmetic operations performed on it in parallel without the need for carry and borrow steps. The present method extends the lensless shadow-casting technique of Tanida and Ichioka (1983, 1985). Three kinds of spatial coding are used for encoding the trinary input states, whereas in the decoding plane three states are identified by no light and light with two orthogonal states of polarization.

  17. Optical design and development of a snapshot light-field laryngoscope

    Science.gov (United States)

    Zhu, Shuaishuai; Jin, Peng; Liang, Rongguang; Gao, Liang

    2018-02-01

    The convergence of recent advances in optical fabrication and digital processing yields a generation of imaging technology-light-field (LF) cameras which bridge the realms of applied mathematics, optics, and high-performance computing. Herein for the first time, we introduce the paradigm of LF imaging into laryngoscopy. The resultant probe can image the three-dimensional shape of vocal folds within a single camera exposure. Furthermore, to improve the spatial resolution, we developed an image fusion algorithm, providing a simple solution to a long-standing problem in LF imaging.

  18. Integrated control platform for converged optical and wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying

    The next generation of broadband access networks is expected to be heterogeneous. Multiple wired and wireless systems can be integrated, in order to simultaneously provide seamless access with an appropriate Quality of Service (QoS). Wireless networks support ubiquitous connectivity yet low data...... rates, whereas optical networks can offer much higher data rates but only provide fixed connection structures. Their complementary characteristics make the integration of the two networks a promising trend for next generation networks. With combined strengths, the converged network will provide both...... the complementary characteristics of the optical networks and the wireless networks, addresses motivations for their interworking, discusses the current progress in hybrid network architectures as well as the functionalities of a control system, and identifies the achieved research contributions in the integrated...

  19. Non-image-forming light driven functions are preserved in a mouse model of autosomal dominant optic atrophy.

    Directory of Open Access Journals (Sweden)

    Georgia Perganta

    Full Text Available Autosomal dominant optic atrophy (ADOA is a slowly progressive optic neuropathy that has been associated with mutations of the OPA1 gene. In patients, the disease primarily affects the retinal ganglion cells (RGCs and causes optic nerve atrophy and visual loss. A subset of RGCs are intrinsically photosensitive, express the photopigment melanopsin and drive non-image-forming (NIF visual functions including light driven circadian and sleep behaviours and the pupil light reflex. Given the RGC pathology in ADOA, disruption of NIF functions might be predicted. Interestingly in ADOA patients the pupil light reflex was preserved, although NIF behavioural outputs were not examined. The B6; C3-Opa1(Q285STOP mouse model of ADOA displays optic nerve abnormalities, RGC dendropathy and functional visual disruption. We performed a comprehensive assessment of light driven NIF functions in this mouse model using wheel running activity monitoring, videotracking and pupillometry. Opa1 mutant mice entrained their activity rhythm to the external light/dark cycle, suppressed their activity in response to acute light exposure at night, generated circadian phase shift responses to 480 nm and 525 nm pulses, demonstrated immobility-defined sleep induction following exposure to a brief light pulse at night and exhibited an intensity dependent pupil light reflex. There were no significant differences in any parameter tested relative to wildtype littermate controls. Furthermore, there was no significant difference in the number of melanopsin-expressing RGCs, cell morphology or melanopsin transcript levels between genotypes. Taken together, these findings suggest the preservation of NIF functions in Opa1 mutants. The results provide support to growing evidence that the melanopsin-expressing RGCs are protected in mitochondrial optic neuropathies.

  20. Integration of Magneto-Optical Materials for Novel Optical Devices & Magnetophotonic Crystals, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in monolithically integrating magneto-optic and magnetic materials with semiconductor platforms in order to...

  1. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions.

    Science.gov (United States)

    Du, Jing; Wang, Jian

    2015-11-01

    Bessel beams carrying orbital angular momentum (OAM) with helical phase fronts exp(ilφ)(l=0;±1;±2;…), where φ is the azimuthal angle and l corresponds to the topological number, are orthogonal with each other. This feature of Bessel beams provides a new dimension to code/decode data information on the OAM state of light, and the theoretical infinity of topological number enables possible high-dimensional structured light coding/decoding for free-space optical communications. Moreover, Bessel beams are nondiffracting beams having the ability to recover by themselves in the face of obstructions, which is important for free-space optical communications relying on line-of-sight operation. By utilizing the OAM and nondiffracting characteristics of Bessel beams, we experimentally demonstrate 12 m distance obstruction-free optical m-ary coding/decoding using visible Bessel beams in a free-space optical communication system. We also study the bit error rate (BER) performance of hexadecimal and 32-ary coding/decoding based on Bessel beams with different topological numbers. After receiving 500 symbols at the receiver side, a zero BER of hexadecimal coding/decoding is observed when the obstruction is placed along the propagation path of light.

  2. Integrated optical isolators based on two-mode interference couplers

    International Nuclear Information System (INIS)

    Sun, Yiling; Zhou, Haifeng; Jiang, Xiaoqing; Hao, Yinlei; Yang, Jianyi; Wang, Minghua

    2010-01-01

    This paper presents an optical waveguide isolator based on two-mode interference (TMI) couplers, by utilizing the magneto-optical nonreciprocal phase shift (NPS). The operating principle of this device is to utilize the difference between the nonreciprocal phase shifts of the two lowest-order modes. A two-dimensional (2D) semi-vectorial finite difference method is used to calculate the difference between the nonreciprocal phase shifts of the two lowest-order modes and optimize the parameters. The proposed device may play an important role in integrated optical devices and optical communication systems

  3. Water cooled metal optics for the Advanced Light Source

    International Nuclear Information System (INIS)

    McKinney, W.R.; Irick, S.C.; Lunt, D.L.J.

    1991-01-01

    The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously

  4. Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator.

    Science.gov (United States)

    Azaña, José

    2008-01-01

    It is demonstrated that a uniform fiber Bragg grating (FBG) working in the linear regime inherently behaves as an optical temporal integrator over a limited time window. Specifically, the reflected temporal waveform from a weak-coupling uniform FBG is proportional to the time integral of an (arbitrary) optical pulse launched at the component input. This integration extends over a time window fixed by the duration of the squarelike temporal impulse response of the FBG. Ultrafast all-optical integrators capable of accurate operation over nanosecond time windows can be implemented using readily feasible FBGs. The introduced concepts are demonstrated by numerical simulations.

  5. Nonparaxial Bessel and Bessel–Gauss pincers light-sheets

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org

    2017-01-23

    Highlights: • Bessel and Bessel–Gauss autofocusing light sheets (i.e. beams in 2D) are developed. • The light-sheets are synthesized based on the angular spectrum decomposition method. • Computations of the scattering, radiation force and torque benefit from the solutions. - Abstract: Nonparaxial optical Bessel and Bessel–Gauss pincers optical-sheets are introduced based upon the angular spectrum decomposition in plane waves. The angular spectrum function and the beam-shape coefficients are expressed by means of improper integrals computed numerically. The radiated component of the electric field is also evaluated, displaying unique features of the nonparaxial Bessel pincers light-sheets. This new type of auto-focusing light-sheets finds potential applications in the development of novel methods in optical light-sheet tweezers for particle manipulation in opto-fluidics, particle sizing and imaging. Numerical predictions for the scattering, radiation force and torque, and particle dynamics also benefit from the developed beam solution.

  6. Nonparaxial Bessel and Bessel–Gauss pincers light-sheets

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2017-01-01

    Highlights: • Bessel and Bessel–Gauss autofocusing light sheets (i.e. beams in 2D) are developed. • The light-sheets are synthesized based on the angular spectrum decomposition method. • Computations of the scattering, radiation force and torque benefit from the solutions. - Abstract: Nonparaxial optical Bessel and Bessel–Gauss pincers optical-sheets are introduced based upon the angular spectrum decomposition in plane waves. The angular spectrum function and the beam-shape coefficients are expressed by means of improper integrals computed numerically. The radiated component of the electric field is also evaluated, displaying unique features of the nonparaxial Bessel pincers light-sheets. This new type of auto-focusing light-sheets finds potential applications in the development of novel methods in optical light-sheet tweezers for particle manipulation in opto-fluidics, particle sizing and imaging. Numerical predictions for the scattering, radiation force and torque, and particle dynamics also benefit from the developed beam solution.

  7. [Correction of light refraction and reflection in medical transmission optical tomography].

    Science.gov (United States)

    Tereshchenko, S A; Potapov, D A

    2002-01-01

    The effects of light refraction and reflection on the quality of image reconstruction in medical transmission optical tomography of high-scattering media are considered. It has been first noted that light refraction not only distorts the geometric scheme of measurements, but may lead to the appearance of object areas that cannot be scanned. Some ways of decreasing the effect of refraction on the reconstruction of spatial distribution of the extinction coefficient are stated.

  8. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    Energy Technology Data Exchange (ETDEWEB)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G., E-mail: gaetano.mileti@unine.ch [Laboratoire Temps-Fréquence, University of Neuchâtel, Neuchâtel 2000 (Switzerland); Shea, H. [Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel 2002 (Switzerland)

    2014-02-03

    Miniature (optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  9. Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide

    Science.gov (United States)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won

    2015-07-01

    We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.

  10. Integrated light-guide plates that can control the illumination angle for liquid crystal display backlight system

    Science.gov (United States)

    Feng, Di; Yang, Xingpeng; Jin, Guofan; Yan, Yingbai; Fan, Shoushan

    2006-01-01

    Liquid crystal displays (LCDs) with edge-lit backlight systems offer several advantages, such as low energy consuming, low weight, and high uniformity of intensity, over traditional cathode-ray tube displays, and make them ideal for many applications including monitors in notebook personal computers, screens for TV, and many portable information terminals, such as mobile phones, personal digital assistants, etc. To satisfy market requirements for mobile and personal display panels, it is more and more necessary to modify the backlight system and make it thinner, lighter, and brighter all at once. In this paper, we have proposed a new integrated LGP based on periodic and aperiodic microprism structures by using polymethyl methacrylate material, which can be designed to control the illumination angle, and to get high uniformity of intensity. So the backlight system will be simplified to use only light sources and one LGP without using other optical sheets, such as reflection sheet, diffusion sheet and prism sheets. By using optimizing program and ray tracing method, the designed LGPs can achieve a uniformity of intensity better than 86%, and get a peak illumination angle from +400 to -200, without requiring other optical sheets. We have designed a backlight system with only one LED light source and one LGP, and other LGP design examples with different sizes (1.8 inches and 14.1 inches) and different light source (LED or CCFL), are performed also.

  11. Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.

    Science.gov (United States)

    Shao, Guang-hao; Song, Xiao-shi; Xu, Fei; Lu, Yan-qing

    2012-08-13

    Optical parametric amplification (OPA) of arbitrarily polarized light is proposed in a multi-section periodically poled Lithium Niobate (PPLN). External electric field is applied on selected sections to induce the polarization rotation of involved lights, thus the quasi-phase matched optical parametric processes exhibit polarization insensitivity under suitable voltage. In addition to the amplified signal wave, an idler wave with the same polarization is generated simultaneously. As an example, a ~10 times OPA showing polarization independency is simulated. Applications of this technology are also discussed.

  12. Hybrid integrated single-wavelength laser with silicon micro-ring reflector

    Science.gov (United States)

    Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian

    2018-02-01

    A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.

  13. Calculation of optical properties of dental composites as a basis for determining color impression and penetration depth of laser light

    Science.gov (United States)

    Weniger, Kirsten K.; Muller, Gerhard J.

    2005-03-01

    In order to achieve esthetic dental restorations, there should be no visible difference between restorative material and treated teeth. This requires a match of the optical properties of both restorative material and natural teeth. These optical properties are determined by absorption and scattering of light emerging not only on the surface but also inside the material. Investigating different dental composites in several shades, a method has been developed to calculate the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g and reduced scattering coefficient μs'. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer, followed by inverse Monte Carlo simulations. Determination of optical properties is more precise and comprehensive than with the previously used Kubelka Munk theory because scattering can be looked at separated into pure scattering with the scattering coefficient μs and its direction with the anisotropy factor g. Moreover the use of the inverse Monte Carlo simulation not only minimizes systematic errors and considers the scattering phase function, but also takes into account the measuring geometry. The compilation of a data pool of optical parameters now enables the application of further calculation models as a basis for optimization of the composition of new materials. For example, a prediction of the general color impression for multiple layers can be carried out as well as the calculation of the wavelength dependent penetration depths of light with regard to photo polymerization. Further applications are possible in the area of laser ablation.

  14. Optical programmable metamaterials

    Science.gov (United States)

    Gong, Cheng; Zhang, Nan; Dai, Zijie; Liu, Weiwei

    2018-02-01

    We suggest and demonstrate the concept of optical programmable metamaterials which can configure the device's electromagnetic parameters by the programmable optical stimuli. In such metamaterials, the optical stimuli produced by a FPGA controlled light emitting diode array can switch or combine the resonance modes which are coupled in. As an example, an optical programmable metamaterial terahertz absorber is proposed. Each cell of the absorber integrates four meta-rings (asymmetric 1/4 rings) with photo-resistors connecting the critical gaps. The principle and design of the metamaterials are illustrated and the simulation results demonstrate the functionalities for programming the metamaterial absorber to change its bandwidth and resonance frequency.

  15. Comparison of acrylic polymer adhesive tapes and silicone optical grease in light sharing detectors for positron emission tomography

    Science.gov (United States)

    Van Elburg, Devin J.; Noble, Scott D.; Hagey, Simone; Goertzen, Andrew L.

    2018-03-01

    Optical coupling is an important factor in detector design as it improves optical photon transmission by mitigating internal reflections at light-sharing boundaries. In this work we compare optical coupling materials, namely double-sided acrylic polymer tapes and silicone optical grease (SiG), in the context of positron emission tomography. Four double-sided tapes from 3 M of varying thicknesses (0.229 mm-1.016 mm) and adhesive materials (‘100MP’, ‘A100’, and ‘GPA’) were characterized with spectrophotometer measurements as well as photopeak amplitude and energy resolution measurements using lutetium-yttrium oxy-orthosilicate (LYSO) coupled to photomultiplier tubes (PMT) or silicon photomultipliers (SiPMs). Transmission spectra from the spectrophotometer showed over 80% transmission for all tapes at 420 nm and above, with 89.6% and 88.8% transmission for the 0.508 mm and 1.016 mm thick GPA tapes, respectively, at 420 nm. Measurements with single-pixel LYSO-PMT and 4  ×  4 array (one-to-one coupled) LYSO-SiPM setups determined that SiG had the greatest photopeak amplitude, with tapes showing 2.1%-14.8% reduction in photopeak amplitude with respect to SiG. Energy resolution changed by less than 4% on a relative basis between tapes and SiG with PMT measurements, however for the SiPM array measurements the energy resolution improved from 15.6%  ±  2.7% full-width at half-maximum to 11.4%  ±  1.2% for SiG and 1 mm GPA respectively. Data acquired with dual-layer offset LYSO arrays (light sharing detector designs) demonstrated that a detector coupled with 1 mm thick GPA tape produced equivalent detector flood histograms to those from a design coupled with SiG and a 1 mm thick glass lightguide. No significant degradation in photopeak amplitude and energy resolution was observed over five months of measurements, indicating the tapes maintain their coupling integrity over several months. Though minimal photopeak amplitude

  16. Comparison of acrylic polymer adhesive tapes and silicone optical grease in light sharing detectors for positron emission tomography.

    Science.gov (United States)

    Van Elburg, Devin J; Noble, Scott D; Hagey, Simone; Goertzen, Andrew L

    2018-02-26

    Optical coupling is an important factor in detector design as it improves optical photon transmission by mitigating internal reflections at light-sharing boundaries. In this work we compare optical coupling materials, namely double-sided acrylic polymer tapes and silicone optical grease (SiG), in the context of positron emission tomography. Four double-sided tapes from 3 M of varying thicknesses (0.229 mm-1.016 mm) and adhesive materials ('100MP', 'A100', and 'GPA') were characterized with spectrophotometer measurements as well as photopeak amplitude and energy resolution measurements using lutetium-yttrium oxy-orthosilicate (LYSO) coupled to photomultiplier tubes (PMT) or silicon photomultipliers (SiPMs). Transmission spectra from the spectrophotometer showed over 80% transmission for all tapes at 420 nm and above, with 89.6% and 88.8% transmission for the 0.508 mm and 1.016 mm thick GPA tapes, respectively, at 420 nm. Measurements with single-pixel LYSO-PMT and 4  ×  4 array (one-to-one coupled) LYSO-SiPM setups determined that SiG had the greatest photopeak amplitude, with tapes showing 2.1%-14.8% reduction in photopeak amplitude with respect to SiG. Energy resolution changed by less than 4% on a relative basis between tapes and SiG with PMT measurements, however for the SiPM array measurements the energy resolution improved from 15.6%  ±  2.7% full-width at half-maximum to 11.4%  ±  1.2% for SiG and 1 mm GPA respectively. Data acquired with dual-layer offset LYSO arrays (light sharing detector designs) demonstrated that a detector coupled with 1 mm thick GPA tape produced equivalent detector flood histograms to those from a design coupled with SiG and a 1 mm thick glass lightguide. No significant degradation in photopeak amplitude and energy resolution was observed over five months of measurements, indicating the tapes maintain their coupling integrity over several months. Though minimal photopeak amplitude degradation

  17. Nanomaterials for LightManagement in Electro-Optical Devices

    Energy Technology Data Exchange (ETDEWEB)

    Truong, Vo-Van [Concordia University, Montréal, Québec, H4B 1R6, Canada; Singh, Jai [Charles Darwin University, Darwin, Australia; Tanemura, Sakae [Japan Fine Ceramics Center, Nagoya, Japan; Hu, Michael Z. [ORNL

    2012-01-01

    In the past decade, nanostructured materials and nanoparticles have emerged as the necessary ingredients for electrooptical applications and enhancement of device performance, in particular by making use of the light management aspects of the nanomaterials. The application areas that are being transformed profoundly include smart coating devices (e.g., electrochromic, photochromic, and thermochromic devices), solar energy, and sensing. Despite the large volume of work in the past on smart coating devices, and in particular on electrochromic devices and thermochromic fenestrations, for optical transmission or reflection control, applications remain limited because of slow response time and nonuniformity in the case of large surfaces. Recent works in the field indicate that nanostructured electrochromic coatings would be an integral part of the solution to the above problem. One aspect that can thus be focused on would be the fabrication and characterization of the nanostructured smart coating materials and their compatibility with other layers in the overall smart coating device. In the area of solar photovoltaics, nanomaterials have been used in designing light-trapping schemes for inorganic as well as organic solar cells. One particular category of solar cells that has attracted much interest is the plasmonic solar cells in which metallic nanoparticles are incorporated, helping in enhancing their energy conversion efficiency. Nanostructured solar cells would eventually develop into a 'game changing' technology for making solar cells that are affordable and highly efficient, providing a sizeable alternative energy source for our ever-increasing energy needs. Sensors based on the optical properties of constituting nanostructures and nanoparticles also form a most interesting class of bio- and electrochemical sensing devices. The possibility of synthetizing nanoparticles and structures of specifically desired sizes and shapes has indeed opened a whole new

  18. Light-induced nonthermal population of optical phonons in nanocrystals

    Science.gov (United States)

    Falcão, Bruno P.; Leitão, Joaquim P.; Correia, Maria R.; Soares, Maria R.; Wiggers, Hartmut; Cantarero, Andrés; Pereira, Rui N.

    2017-03-01

    Raman spectroscopy is widely used to study bulk and nanomaterials, where information is frequently obtained from spectral line positions and intensities. In this study, we monitored the Raman spectrum of ensembles of semiconductor nanocrystals (NCs) as a function of optical excitation intensity (optical excitation experiments). We observe that in NCs the red-shift of the Raman peak position with increasing light power density is much steeper than that recorded for the corresponding bulk material. The increase in optical excitation intensity results also in an increasingly higher temperature of the NCs as obtained with Raman thermometry through the commonly used Stokes/anti-Stokes intensity ratio. More significantly, the obtained dependence of the Raman peak position on temperature in optical excitation experiments is markedly different from that observed when the same NCs are excited only thermally (thermal excitation experiments). This difference is not observed for the control bulk material. The inefficient diffusion of photogenerated charges in nanoparticulate systems, due to their inherently low electrical conductivity, results in a higher steady-state density of photoexcited charges and, consequently, also in a stronger excitation of optical phonons that cannot decay quickly enough into acoustic phonons. This results in a nonthermal population of optical phonons and thus the Raman spectrum deviates from that expected for the temperature of the system. Our study has major consequences to the general application of Raman spectroscopy to nanomaterials.

  19. Cell sorting using efficient light shaping approaches

    DEFF Research Database (Denmark)

    Banas, Andrew; Palima, Darwin; Villangca, Mark Jayson

    2016-01-01

    distributions aimed at the positions of the detected cells. Furthermore, the beam shaping freedom provided by GPC can allow optimizations in the beam’s propagation and its interaction with the catapulted cells. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading...... is gentler, less invasive and more economical compared to conventional FACS systems. As cells are less responsive to plastic or glass beads commonly used in the optical manipulation literature, and since laser safety would be an issue in clinical use, we develop efficient approaches in utilizing lasers...... and light modulation devices. The Generalized Phase Contrast (GPC) method that can be used for efficiently illuminating spatial light modulators or creating well-defined contiguous optical traps is supplemented by diffractive techniques capable of integrating the available light and creating 2D or 3D beam...

  20. Cryogenic Fiber Optic Assemblies for Spaceflight Environments: Design, Manufacturing, Testing, and Integration

    Science.gov (United States)

    Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2); and others will be included.

  1. Light rays at optical black holes in moving media

    International Nuclear Information System (INIS)

    Brevik, I.; Halnes, G.

    2002-01-01

    Light experiences a nonuniformly moving medium as an effective gravitational field, endowed with an effective metric tensor g(tilde sign) μν =η μν +(n 2 -1)u μ u ν , n being the refractive index and u μ the four-velocity of the medium. Leonhardt and Piwnicki [Phys. Rev. A 60, 4301 (1999)] argued that a flowing dielectric fluid of this kind can be used to generate an ''optical black hole.'' In the Leonhardt-Piwnicki model, only a vortex flow was considered. It was later pointed out by Visser [Phys. Rev. Lett. 85, 5252 (2000)] that in order to form a proper optical black hole containing an event horizon, it becomes necessary to add an inward radial velocity component to the vortex flow. In the present paper we undertake this task: we consider a full spiral flow, consisting of a vortex component plus a radially infalling component. Light propagates in such a dielectric medium in a way similar to that occurring around a rotating black hole. We calculate, and show graphically, the effective potential versus the radial distance from the vortex singularity, and show that the spiral flow can always capture light in both a positive, and a negative, inverse impact parameter interval. The existence of a genuine event horizon is found to depend on the strength of the radial flow, relative to the strength of the azimuthal flow. A limitation of our fluid model is that it is nondispersive

  2. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    NARCIS (Netherlands)

    Kehayas, E.; Tsiokos, D.; Bakapoulos, P.; Apostolopoulos, D.; Petrantonakis, D.; Stampoulidis, L.; Poustie, A.; McDougall, R.; Maxwell, G.D.; Liu, Y.; Zhang, S.; Dorren, H.J.S.; Seoane, J.; Van Holm-Nielsen, P.; Jeppesen, P.; Avramopoulos, H.

    2006-01-01

    This paper presents an experimental performance characterization of all-optical subsystems at 40 Gb/s using interconnected hybrid integrated all-optical semiconductor optical amplifier (SOA) Mach-Zehnder interferometer (MZI) gates and flip-flop prototypes. It was shown that optical gates can be

  3. Beam-optics study of the gantry beam delivery system for light-ion cancer therapy

    International Nuclear Information System (INIS)

    Pavlovic, M.

    1995-12-01

    Ion optics considerations on the granty-like beam delivery system for light-ion cancer therapy are presented. A low-angle active beam scanning in two directions is included in the preliminary gantry design. The optical properties of several gantry modifications are discussed. (orig.)

  4. Light propagation in Liquid-infiltrated Microstructured Optical Fibres”

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard

    2008-01-01

    The work presented in this thesis is focussed on studying the possibilities of tuning and optimizing the performance of infiltrated waveguides in systems where nonlinear optical effects are exploited. Infiltrated systems where either nonlinear temporal or spatial effects come into play have been...... considered. First a general introduction to the basic principles used throughout the work is given. It is then shown how infiltrated waveguides can be used for manipulating dispersive and diffractive properties of light propagartion....

  5. Movable Thomson scattering system based on optical fiber (TS-probe)

    International Nuclear Information System (INIS)

    Narihara, K.; Hayashi, H.

    2009-01-01

    This paper proposes a movable compact Thomson scattering (TS) system based on optical fibers (TS-probe). A TS-probe consists of a probe head, optical fiber, a laser-diode, polychromators and lock-in amplifiers. A laser beam optics and light collection optics are mounted rigidly on a probe head with a fixed scattering position. Laser light and scattered light are transmitted by flexible optical fibers, enabling us to move the TS-prove head freely during plasma discharge. The light signal scattered from an amplitude-modulated laser is detected against the plasma light based on the principle of the lock-in amplifier. With a modulated laser power of 300W, the scattered signal from a sheet plasma of 15 mm depth and n e -10 19 m -3 will be measured with 10% accuracy by setting the integrating time to 0.1 s. The TS-probe head is like a 1/20 model of the currently operating LHD-TS. (author)

  6. Surface light scattering: integrated technology and signal processing

    DEFF Research Database (Denmark)

    Lading, L.; Dam-Hansen, C.; Rasmussen, E.

    1997-01-01

    systems representing increasing levels of integration are considered. It is demonstrated that efficient signal and data processing can be achieved by evaluation of the statistics of the derivative of the instantaneous phase of the detector signal. (C) 1997 Optical Society of America....

  7. Total site integration of light hydrocarbons separation process

    OpenAIRE

    Ulyev, L.; Vasilyev, M.; Maatouk, A.; Duic, Neven; Khusanovc, Alisher

    2016-01-01

    Ukraine is the largest consumer of hydrocarbons per unit of production in Europe (Ukraine policy review, 2006). The most important point is a reduction of energy consumption in chemical and metallurgical industries as a biggest consumer. This paper deals with energy savings potential of light hydrocarbons separation process. Energy consumption of light hydrocarbons separation process processes typical of Eastern European countries were analysed. Process Integration (PI) was used to perform a ...

  8. Optical imaging of human cone photoreceptors directly following the capture of light.

    Directory of Open Access Journals (Sweden)

    Phillip Bedggood

    Full Text Available Capture of light in the photoreceptor outer segment initiates a cascade of chemical events that inhibit neurotransmitter release, ultimately resulting in vision. The massed response of the photoreceptor population can be measured non-invasively by electrical recordings, but responses from individual cells cannot be measured without dissecting the retina. Here we used optical imaging to observe individual human cones in the living eye as they underwent bleaching of photopigment and associated phototransduction. The retina was simultaneously stimulated and observed with high intensity visible light at 1 kHz, using adaptive optics. There was marked variability between individual cones in both photosensitivity and pigment optical density, challenging the conventional assumption that photoreceptors act as identical subunits (coefficient of variation in rate of photoisomerization = 23%. There was also a pronounced inverse correlation between these two parameters (p<10(-7; the temporal evolution of image statistics revealed this to be a dynamic relationship, with cone waveguiding efficiency beginning a dramatic increase within 3 ms of light onset. Beginning as early as 2 ms after light onset and including half of cells by ∼7 ms, cone intensity showed reversals characteristic of interference phenomena, with greater delays in reversal corresponding to cones with more photopigment (p<10(-3. The timing of these changes is argued to best correspond with either the cessation of dark current, or to related events such as changes in intracellular cGMP. Cone intensity also showed fluctuations of high frequency (332±25 Hz and low amplitude (3.0±0.85%. Other groups have shown similar fluctuations that were directly evoked by light; if this corresponds to the same phenomenon, we propose that the amplitude of fluctuation may be increased by the use of a bright flash followed by a brief pause, to allow recovery of cone circulating current.

  9. On geometric optics and surface waves for light scattering by spheres

    International Nuclear Information System (INIS)

    Liou, K.N.; Takano, Y.; Yang, P.

    2010-01-01

    A geometric optics approach including surface wave contributions has been developed for homogeneous and concentrically coated spheres. In this approach, a ray-by-ray tracing program was used for efficient computation of the extinction and absorption cross sections. The present geometric-optics surface-wave (GOS) theory for light scattering by spheres considers the surface wave contribution along the edge of a particle as a perturbation term to the geometric-optics core that includes Fresnel reflection-refraction and Fraunhofer diffraction. Accuracies of the GOS approach for spheres have been assessed through comparison with the results determined from the exact Lorenz-Mie (LM) theory in terms of the extinction efficiency, single-scattering albedo, and asymmetry factor in the size-wavelength ratio domain. In this quest, we have selected a range of real and imaginary refractive indices representative of water/ice and aerosol species and demonstrated close agreement between the results computed by GOS and LM. This provides the foundation to conduct physically reliable light absorption and scattering computations based on the GOS approach for aerosol aggregates associated with internal and external mixing states employing spheres as building blocks.

  10. Integrated optical circuit engineering IV; Proceedings of the Meeting, Cambridge, MA, Sept. 16, 17, 1986

    Science.gov (United States)

    Mentzer, Mark A.; Sriram, S.

    The design and implementation of integrated optical circuits are discussed in reviews and reports. Topics addressed include lithium niobate devices, silicon integrated optics, waveguide phenomena, coupling considerations, processing technology, nonlinear guided-wave optics, integrated optics for fiber systems, and systems considerations and applications. Also included are eight papers and a panel discussion from an SPIE conference on the processing of guided-wave optoelectronic materials (held in Los Angeles, CA, on January 21-22, 1986).

  11. Transparent thin film polarizing and optical control systems

    Directory of Open Access Journals (Sweden)

    Nelson V. Tabiryan

    2011-06-01

    Full Text Available We show that a diffractive waveplate can be combined with a phase retardation film for fully converting light of arbitrary polarization state into a polarized light. Incorporating a photonic bandgap layer into a system of such polarizers that unify different polarization states in the input light into a single polarization state at its output, rather than absorbing or reflecting half of it, we developed and demonstrated a polarization-independent optical controller capable of switching between transmittive and reflective states. The transition between those states is smoothly controlled with low-voltage and low-power sources. Using versatile fabrication methods, this “universally polarizing optical controller” can be integrated into a thin package compatible with a variety of display, spatial light modulation, optical communication, imaging and other photonics systems.

  12. Impact of slow-light enhancement on optical propagation in active semiconductor photonic crystal waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2015-01-01

    We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission properties of active semiconductor photonic crystal waveguides. In such devices, slow-light propagation can be used to enhance the material gain per unit length, enabling, for example......, the realization of short optical amplifiers compatible with photonic integration. The coupled wave analysis is compared to numerical approaches based on the Fourier modal method and a frequency domain finite element technique. The presence of material gain leads to the build-up of a backscattered field, which...... is interpreted as distributed feedback effects or reflection at passive-active interfaces, depending on the approach taken. For very large material gain values, the band structure of the waveguide is perturbed, and deviations from the simple coupled Bloch wave model are found....

  13. Integrated optical circuits for numerical computation

    Science.gov (United States)

    Verber, C. M.; Kenan, R. P.

    1983-01-01

    The development of integrated optical circuits (IOC) for numerical-computation applications is reviewed, with a focus on the use of systolic architectures. The basic architecture criteria for optical processors are shown to be the same as those proposed by Kung (1982) for VLSI design, and the advantages of IOCs over bulk techniques are indicated. The operation and fabrication of electrooptic grating structures are outlined, and the application of IOCs of this type to an existing 32-bit, 32-Mbit/sec digital correlator, a proposed matrix multiplier, and a proposed pipeline processor for polynomial evaluation is discussed. The problems arising from the inherent nonlinearity of electrooptic gratings are considered. Diagrams and drawings of the application concepts are provided.

  14. An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Zifei Wang

    2018-02-01

    Full Text Available The nonlinear optical loop mirror (NOLM has been studied for several decades and has attracted considerable attention for applications in high data rate optical communications and all-optical signal processing. The majority of NOLM research has focused on silica fiber-based implementations. While various fiber designs have been considered to increase the nonlinearity and manage dispersion, several meters to hundreds of meters of fiber are still required. On the other hand, there is increasing interest in developing photonic integrated circuits for realizing signal processing functions. In this paper, we realize the first-ever passive integrated NOLM in silicon photonics and demonstrate its application for all-optical signal processing. In particular, we show wavelength conversion of 10 Gb/s return-to-zero on-off keying (RZ-OOK signals over a wavelength range of 30 nm with error-free operation and a power penalty of less than 2.5 dB, we achieve error-free nonreturn to zero (NRZ-to-RZ modulation format conversion at 10 Gb/s also with a power penalty of less than 2.8 dB, and we obtain error-free all-optical time-division demultiplexing of a 40 Gb/s RZ-OOK data signal into its 10 Gb/s tributary channels with a maximum power penalty of 3.5 dB.

  15. The all-optical modulator in dielectric-loaded waveguide with graphene-silicon heterojunction structure

    Science.gov (United States)

    Sun, Feiying; Xia, Liangping; Nie, Changbin; Shen, Jun; Zou, Yixuan; Cheng, Guiyu; Wu, Hao; Zhang, Yong; Wei, Dongshan; Yin, Shaoyun; Du, Chunlei

    2018-04-01

    All-optical modulators based on graphene show great promise for on-chip optical interconnects. However, the modulation performance of all-optical modulators is usually based on the interaction between graphene and the fiber, limiting their potential in high integration. Based on this point, an all-optical modulator in a dielectric-loaded waveguide (DLW) with a graphene-silicon heterojunction structure (GSH) is proposed. The DLW raises the waveguide mode, which provides a strong light-graphene interaction. Sufficient tuning of the graphene Fermi energy beyond the Pauli blocking effect is obtained with the presented GSH structure. Under the modulation light with a wavelength of 532 nm and a power of 60 mW, a modulation efficiency of 0.0275 dB µm-1 is achieved for light with a communication wavelength of 1.55 µm in the experiment. This modulator has the advantage of having a compact footprint, which may make it a candidate for achieving a highly integrated all-optical modulator.

  16. Integrated semiconductor twin-microdisk laser under mutually optical injection

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng; Yang, Yue-De; Xiao, Jin-Long; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-05-11

    We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due to strong optical interaction between the two microdisks.

  17. Pump-probe nonlinear magneto-optical rotation with frequency-modulated light

    International Nuclear Information System (INIS)

    Pustelny, S.; Gawlik, W.; Jackson Kimball, D. F.; Rochester, S. M.; Yashchuk, V. V.; Budker, D.

    2006-01-01

    Specific types of atomic coherences between Zeeman sublevels can be generated and detected using a method based on nonlinear magneto-optical rotation with frequency-modulated light. Linearly polarized, frequency-modulated light is employed to selectively generate ground-state coherences between Zeeman sublevels for which Δm=2 and Δm=4 in 85 Rb and 87 Rb atoms, and additionally Δm=6 in 85 Rb. The atomic coherences are detected with a separate, unmodulated probe light beam. Separation of the pump and probe beams enables independent investigation of the processes of creation and detection of the atomic coherences. With the present technique the transfer of the Zeeman coherences, including high-order coherences, from excited to ground state by spontaneous emission has been observed

  18. Physical optics

    International Nuclear Information System (INIS)

    Kim Il Gon; Lee, Seong Su; Jang, Gi Wan

    2012-07-01

    This book indicates physical optics with properties and transmission of light, mathematical expression of wave like harmonic wave and cylindrical wave, electromagnetic theory and light, transmission of light with Fermat principle and Fresnel equation, geometrical optics I, geometrical optics II, optical instrument such as stops, glasses and camera, polarized light like double refraction by polarized light, interference, interference by multiple reflections, diffraction, solid optics, crystal optics such as Faraday rotation and Kerr effect and measurement of light. Each chapter has an exercise.

  19. Physical optics

    Energy Technology Data Exchange (ETDEWEB)

    Kim Il Gon; Lee, Seong Su; Jang, Gi Wan

    2012-07-15

    This book indicates physical optics with properties and transmission of light, mathematical expression of wave like harmonic wave and cylindrical wave, electromagnetic theory and light, transmission of light with Fermat principle and Fresnel equation, geometrical optics I, geometrical optics II, optical instrument such as stops, glasses and camera, polarized light like double refraction by polarized light, interference, interference by multiple reflections, diffraction, solid optics, crystal optics such as Faraday rotation and Kerr effect and measurement of light. Each chapter has an exercise.

  20. Towards a fully integrated optical gyroscope using whispering gallery modes resonators

    Science.gov (United States)

    Amrane, T.; Jager, J.-B.; Jager, T.; Calvo, V.; Léger, J.-M.

    2017-11-01

    Since the developments of lasers and the optical fibers in the 70s, the optical gyroscopes have been subject to an intensive research to improve both their resolution and stability performances. However the best optical gyroscopes currently on the market, the ring laser gyroscope and the interferometer fiber optic gyroscope are still macroscopic devices and cannot address specific applications where size and weight constraints are critical. One solution to overcome these limitations could be to use an integrated resonator as a sensitive part to build a fully Integrated Optical Resonant Gyroscope (IORG). To keep a high rotation sensitivity, which is usually degraded when downsizing this kind of optical sensors based on the Sagnac effect, the resonator has to exhibit a very high quality factor (Q): as detailed in equation (1) where the minimum rotation rate resolution for an IORG is given as a function of the resonator characteristics (Q and diameter D) and of the global system optical system characteristics (i.e. SNR and bandwidth B), the higher the Q×D product, the lower the resolution.

  1. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens

    International Nuclear Information System (INIS)

    Ke, Yougang; Liu, Yachao; Zhou, Junxiao; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2016-01-01

    In the optical system, most elements such as lens, prism, and optical fiber are made of silica glass. Therefore, integrating Pancharatnam-Berry phase elements into silica glass has potential applications in the optical system. In this paper, we take a lens, for example, which integrates a Pancharatnam-Berry phase lens into a conventional plano-convex lens. The spin states and positions of focal points can be modulated by controlling the polarization states of the incident beam. The proposed lens has a high transmission efficiency, and thereby acts as a simple and powerful tool to manipulate spin photons. Furthermore, the method can be conveniently extended to the optical fiber and laser cavity, and may provide a route to the design of the spin-photonic devices.

  2. Notes on the design of experiments and beam diagnostics with synchrotron light detected by a gated photomultiplier for the Fermilab superconducting electron linac and for the Integrable Optics Test Accelerator (IOTA)

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanov, Aleksandr [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ruan, Jinhao [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Santucci, James [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, Randy [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-11-08

    We outline the design of beam experiments for the electron linac at the Fermilab Accelerator Science and Technology (FAST) facility and for the Integrable Optics Test Accelerator (IOTA), based on synchrotron light emitted by the electrons in bend dipoles, detected with gated microchannel-plate photomultipliers (MCP-PMTs). The system can be used both for beam diagnostics (e.g., beam intensity with full dynamic range, turn-by-turn beam vibrations, etc.) and for scientific experiments, such as the direct observation of the time structure of the radiation emitted by single electrons in a storage ring. The similarity between photon pulses and spectrum at the downstream end of the electron linac and in the IOTA ring allows one to test the apparatus during commissioning of the linac.

  3. Comprehensive optical and data management infrastructure for high-throughput light-sheet microscopy of whole mouse brains.

    Science.gov (United States)

    Müllenbroich, M Caroline; Silvestri, Ludovico; Onofri, Leonardo; Costantini, Irene; Hoff, Marcel Van't; Sacconi, Leonardo; Iannello, Giulio; Pavone, Francesco S

    2015-10-01

    Comprehensive mapping and quantification of neuronal projections in the central nervous system requires high-throughput imaging of large volumes with microscopic resolution. To this end, we have developed a confocal light-sheet microscope that has been optimized for three-dimensional (3-D) imaging of structurally intact clarified whole-mount mouse brains. We describe the optical and electromechanical arrangement of the microscope and give details on the organization of the microscope management software. The software orchestrates all components of the microscope, coordinates critical timing and synchronization, and has been written in a versatile and modular structure using the LabVIEW language. It can easily be adapted and integrated to other microscope systems and has been made freely available to the light-sheet community. The tremendous amount of data routinely generated by light-sheet microscopy further requires novel strategies for data handling and storage. To complete the full imaging pipeline of our high-throughput microscope, we further elaborate on big data management from streaming of raw images up to stitching of 3-D datasets. The mesoscale neuroanatomy imaged at micron-scale resolution in those datasets allows characterization and quantification of neuronal projections in unsectioned mouse brains.

  4. Fluorescence monitoring of capillary electrophoresis separation of biomolecules with monolithically integrated optical waveguides

    NARCIS (Netherlands)

    Dongre, C.; Dekker, R.; Hoekstra, Hugo; Martinez-Vazquez, R.; Osellame, R.; Ramponi, R.; Cerullo, G.; van Weeghel, R.; Besselink, G.A.J.; van den Vlekkert, H.H.; Pollnau, Markus

    2009-01-01

    Monolithic integration of optical waveguides in a commercial lab-on-a-chip by femtosecond-laser material processing enables arbitrary 3D geometries of optical sensing structures in combination with fluidic microchannels. Integrated fluorescence monitoring of molecular separation, as applicable in

  5. Progress in high index contrast integrated optics

    NARCIS (Netherlands)

    Baets, R.G.F.; Bienstman, P.; Bogaerts, W.; Brouckaert, J.; De Backere, P.; Dumon, P.; Roelkens, G.; Scheerlinck, S.; Smit, M.K.; Taillaert, D.; Van Campenhout, J.; Van Laere, F.; Thourhout, Van D.

    2007-01-01

    A large fraction of the recent innovation in integrated optics is enabled by the use of high index contrast structures and devices. The strong confinement achievable in such devices allows for dramatic performance benefits and downscaling. In this paper the progress in this field is reviewed.

  6. Integrated optical sensors for the chemical domain

    NARCIS (Netherlands)

    Lambeck, Paul

    2006-01-01

    During the last decade there has been a rapidly growing interest in integrated optical (IO) sensors, expecially because many of them principally allow for sensitive, real time, label-free-on-site measurements of the concentration of (bio-)chemical species. This review aims at giving an overview of

  7. Structure-based optics of centric diatom frustules: modulation of the in vivo light field for efficient diatom photosynthesis.

    Science.gov (United States)

    Goessling, Johannes W; Su, Yanyan; Cartaxana, Paulo; Maibohm, Christian; Rickelt, Lars F; Trampe, Erik C L; Walby, Sandra L; Wangpraseurt, Daniel; Wu, Xia; Ellegaard, Marianne; Kühl, Michael

    2018-07-01

    The optical properties of diatom silicate frustules inspire photonics and nanotechnology research. Whether light interaction with the nano-structure of the frustule also affects diatom photosynthesis has remained unclear due to lack of information on frustule optical properties under more natural conditions. Here we demonstrate that the optical properties of the frustule valves in water affect light harvesting and photosynthesis in live cells of centric diatoms (Coscinodiscus granii). Microscale cellular mapping of photosynthesis around localized spot illumination demonstrated optical coupling of chloroplasts to the valve wall. Photonic structures of the three-layered C. granii valve facilitated light redistribution and efficient photosynthesis in cell regions distant from the directly illuminated area. The different porous structure of the two sides of the valve exhibited photon trapping and forward scattering of blue light enhancing photosynthetic active radiation inside the cell. Photonic structures of diatom frustules thus alter the cellular light field with implications on diatom photobiology. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  8. Evaluation of polymer based third order nonlinear integrated optics devices

    NARCIS (Netherlands)

    Driessen, A.; Hoekstra, Hugo; Blom, F.C.; Horst, F.; Horst, F.; Krijnen, Gijsbertus J.M.; van Schoot, J.B.P.; van Schoot, J.B.P.; Lambeck, Paul; Popma, T.J.A.; Diemeer, Mart

    Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS

  9. III–V quantum light source and cavity-QED on Silicon

    Science.gov (United States)

    Luxmoore, I. J.; Toro, R.; Pozo-Zamudio, O. Del; Wasley, N. A.; Chekhovich, E. A.; Sanchez, A. M.; Beanland, R.; Fox, A. M.; Skolnick, M. S.; Liu, H. Y.; Tartakovskii, A. I.

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III–V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III–V material grown directly on silicon substrates. The high quality of the III–V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems. PMID:23393621

  10. III-V quantum light source and cavity-QED on silicon.

    Science.gov (United States)

    Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.

  11. Development of a visible light transmission (VLT) measurement system using an open-path optical method

    Science.gov (United States)

    Nurulain, S.; Manap, H.

    2017-09-01

    This paper describes about a visible light transmission (VLT) measurement system using an optical method. VLT rate plays an important role in order to determine the visibility of a medium. Current instrument to measure visibility has a gigantic set up, costly and mostly fails to function at low light condition environment. This research focuses on the development of a VLT measurement system using a simple experimental set-up and at a low cost. An open path optical technique is used to measure a few series of known-VLT thin film that act as sample of different visibilities. This measurement system is able to measure the light intensity of these thin films within the visible light region (535-540 nm) and the response time is less than 1s.

  12. Nonlinear light scattering in a two component medium: optical limiting application

    International Nuclear Information System (INIS)

    Joudrier, Valerie

    1998-01-01

    Scattering is a fundamental manifestation of the interaction between matter and radiation, resulting from inhomogeneities in the refractive index, which decrease transmission. This phenomenon is then especially attractive for sensor protection from laser light by optical limiting. One of the methods to induce scattering at high incident energy is to make use of the Kerr effect where the index of refraction is intensity dependent. Thus, the idea is to use a two component medium with a good index matching between the two components at low intensity, resulting in the medium transparency, and to modify it, at high intensity, due to the non linearity of one component making the medium highly scattering. Some of the experimental and theoretical investigations concerning a new material (here, a cell containing some liquid with small silica particles as inclusion in it) are presented in the visible domain (I=532 nm), for the nanosecond protection regime, beginning, with the chemical synthesis of the sample. The experimental results concerning the optical limiting process are presented, showing that nonlinear scattering is clearly the dominant mechanism in confrontation with other potential nonlinear effects. Several complementary experiments are then performed to complete the nonlinear scattering characterization, involving the measurement of the angular distribution of scattered energy and the integrating sphere measurement. Further information are also gained by studying the time response of the nonlinearities with a dual-beam (pulsed-pump, cw probe) technique. The previous experimental data is also analyzed with some simple theoretical models to evaluate the nonlinearity of the material from optical limiting, the angular scattering and the total scattering energy measurements. The good match between all the analytical results permits to delineate the physical mechanisms responsible for the nonlinear scattering effect and to direct the final conclusion. (author) [fr

  13. Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium

    International Nuclear Information System (INIS)

    Chen Lixiang; Zheng Guoliang; She Weilong

    2007-01-01

    An optical spanner is a light beam that can exert a torque on an object. It is demonstrated in this Rapid Communication that, with the aid of applied electric and magnetic fields, a light beam with initially linear polarization and initially zero total spin angular momentum can interact with an optically active medium, resulting in a change of the ratio of left-handed circularly polarized photons to right-handed ones. Thus the total spin angular momentum of the light is changed, which leads to a torque, creating an electrically and magnetically controlled optical spanner on the medium. For a linearly polarized 632.8 nm laser beam incident on a 100-μm-long Ce:Bi 12 TiO 20 whisker crystal with 5 μm radius, if the magnetic field is fixed at -1.8 T, both the left- (right-)handed circularly polarized photon number and the total spin angular momentum vary with the applied electric field in a sinusoidal way, which means the torque exerted by the optical spanner on the crystal also varies sinusoidally with the electric field. It is found that at 50 (or-50) kV/cm, 56% right- (left-)handed circularly polarized photons are translated into left- (right-)handed ones, which corresponds to a transfer of 0.56(ℎ/2π) spin angular momentum contributed by each photon

  14. Reducing uncertainties associated with filter-based optical measurements of light absorbing carbon particles with chemical information

    Science.gov (United States)

    Engström, J. E.; Leck, C.

    2011-08-01

    The presented filter-based optical method for determination of soot (light absorbing carbon or Black Carbon, BC) can be implemented in the field under primitive conditions and at low cost. This enables researchers with small economical means to perform monitoring at remote locations, especially in the Asia where it is much needed. One concern when applying filter-based optical measurements of BC is that they suffer from systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust. In addition to an optical correction of the non-absorbing material this study provides a protocol for correction of light scattering based on the chemical quantification of the material, which is a novelty. A newly designed photometer was implemented to measure light transmission on particle accumulating filters, which includes an additional sensor recording backscattered light. The choice of polycarbonate membrane filters avoided high chemical blank values and reduced errors associated with length of the light path through the filter. Two protocols for corrections were applied to aerosol samples collected at the Maldives Climate Observatory Hanimaadhoo during episodes with either continentally influenced air from the Indian/Arabian subcontinents (winter season) or pristine air from the Southern Indian Ocean (summer monsoon). The two ways of correction (optical and chemical) lowered the particle light absorption of BC by 63 to 61 %, respectively, for data from the Arabian Sea sourced group, resulting in median BC absorption coefficients of 4.2 and 3.5 Mm-1. Corresponding values for the South Indian Ocean data were 69 and 97 % (0.38 and 0.02 Mm-1). A comparison with other studies in the area indicated an overestimation of their BC levels, by up to two orders of magnitude. This raises the necessity for chemical correction protocols on optical filter-based determinations of BC, before even the sign on the

  15. Reducing uncertainties associated with filter-based optical measurements of light absorbing carbon particles with chemical information

    Directory of Open Access Journals (Sweden)

    J. E. Engström

    2011-08-01

    Full Text Available The presented filter-based optical method for determination of soot (light absorbing carbon or Black Carbon, BC can be implemented in the field under primitive conditions and at low cost. This enables researchers with small economical means to perform monitoring at remote locations, especially in the Asia where it is much needed.

    One concern when applying filter-based optical measurements of BC is that they suffer from systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust. In addition to an optical correction of the non-absorbing material this study provides a protocol for correction of light scattering based on the chemical quantification of the material, which is a novelty. A newly designed photometer was implemented to measure light transmission on particle accumulating filters, which includes an additional sensor recording backscattered light. The choice of polycarbonate membrane filters avoided high chemical blank values and reduced errors associated with length of the light path through the filter.

    Two protocols for corrections were applied to aerosol samples collected at the Maldives Climate Observatory Hanimaadhoo during episodes with either continentally influenced air from the Indian/Arabian subcontinents (winter season or pristine air from the Southern Indian Ocean (summer monsoon. The two ways of correction (optical and chemical lowered the particle light absorption of BC by 63 to 61 %, respectively, for data from the Arabian Sea sourced group, resulting in median BC absorption coefficients of 4.2 and 3.5 Mm−1. Corresponding values for the South Indian Ocean data were 69 and 97 % (0.38 and 0.02 Mm−1. A comparison with other studies in the area indicated an overestimation of their BC levels, by up to two orders of magnitude. This raises the necessity for chemical correction protocols on optical filter

  16. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    Science.gov (United States)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  17. Linac Coherent Light Source soft x-ray materials science instrument optical design and monochromator commissioning

    Czech Academy of Sciences Publication Activity Database

    Heimann, P.; Krupin, O.; Schlotter, W.F.; Turner, J.; Krzywinski, J.; Sorgenfrei, F.; Messerschmidt, M.; Bernstein, D.; Chalupský, Jaromír; Hájková, Věra; Hau-Riege, S.; Holmes, M.; Juha, Libor; Kelez, N.; Lüning, J.; Nordlund, D.; Perea, M.F.; Scherz, A.; Soufli, R.; Wurth, W.; Rowen, M.

    2011-01-01

    Roč. 82, č. 9 (2011), 093104/1-093104/8 ISSN 0034-6748 R&D Projects: GA MŠk(CZ) ME10046 Institutional research plan: CEZ:AV0Z10100523 Keywords : diffraction gratings * light sources * linear accelerators * optical materials * x-ray monochromators * x-ray optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.367, year: 2011

  18. Optical System Design and Integration of the Mercury Laser Altimeter

    Science.gov (United States)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  19. Note: Automated optical focusing on encapsulated devices for scanning light stimulation systems

    International Nuclear Information System (INIS)

    Bitzer, L. A.; Benson, N.; Schmechel, R.

    2014-01-01

    Recently, a scanning light stimulation system with an automated, adaptive focus correction during the measurement was introduced. Here, its application on encapsulated devices is discussed. This includes the changes an encapsulating optical medium introduces to the focusing process as well as to the subsequent light stimulation measurement. Further, the focusing method is modified to compensate for the influence of refraction and to maintain a minimum beam diameter on the sample surface

  20. In vivo Microscale Measurements of Light and Photosynthesis during Coral Bleaching: Evidence for the Optical Feedback Loop?

    Science.gov (United States)

    Wangpraseurt, Daniel; Holm, Jacob B; Larkum, Anthony W D; Pernice, Mathieu; Ralph, Peter J; Suggett, David J; Kühl, Michael

    2017-01-01

    Climate change-related coral bleaching, i.e., the visible loss of zooxanthellae from the coral host, is increasing in frequency and extent and presents a major threat to coral reefs globally. Coral bleaching has been proposed to involve accelerating light stress of their microalgal endosymbionts via a positive feedback loop of photodamage, symbiont expulsion and excess in vivo light exposure. To test this hypothesis, we used light and O 2 microsensors to characterize in vivo light exposure and photosynthesis of Symbiodinium during a thermal stress experiment. We created tissue areas with different densities of Symbiodinium cells in order to understand the optical properties and light microenvironment of corals during bleaching. Our results showed that in bleached Pocillopora damicornis corals, Symbiodinium light exposure was up to fivefold enhanced relative to healthy corals, and the relationship between symbiont loss and light enhancement was well-described by a power-law function. Cell-specific rates of Symbiodinium gross photosynthesis and light respiration were enhanced in bleached P. damicornis compared to healthy corals, while areal rates of net photosynthesis decreased. Symbiodinium light exposure in Favites sp. revealed the presence of low light microniches in bleached coral tissues, suggesting that light scattering in thick coral tissues can enable photoprotection of cryptic symbionts. Our study provides evidence for the acceleration of in vivo light exposure during coral bleaching but this optical feedback mechanism differs between coral hosts. Enhanced photosynthesis in relation to accelerating light exposure shows that coral microscale optics exerts a key role on coral photophysiology and the subsequent degree of radiative stress during coral bleaching.

  1. T-SDN architecture for space and ground integrated optical transport network

    Science.gov (United States)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  2. Propagation of light in the lithium niobate crystal along directions close to an optical axis

    International Nuclear Information System (INIS)

    Volkov, V.V.; Egorova, G.A.; Lonskij, Eh.S.; Potapov, E.V.; Rakov, A.V.

    1978-01-01

    Theoretical and experimental results are given of studying some characteristics of electrooptical modulator from lithium niobate when propagating in it linear-polarized light in directions close to the optical axis, the electric field being applied along the X axis. It has been shown that an increase in an angle of deviation from the optical axis of a light beam passing in the crystal changes the value of the controlling voltage. This is accompanied by the rotation of the polarization plane and the change in the intensity of the light being passed. The methods have been proposed of increasing the modulator aperture, determining the main refraction indices and some electrooptical coefficients fo the lithium niobate crystal

  3. Real-time optical correlator using computer-generated holographic filter on a liquid crystal light valve

    Science.gov (United States)

    Chao, Tien-Hsin; Yu, Jeffrey

    1990-01-01

    Limitations associated with the binary phase-only filter often used in optical correlators are presently circumvented in the writing of complex-valued data on a gray-scale spatial light modulator through the use of a computer-generated hologram (CGH) algorithm. The CGH encodes complex-valued data into nonnegative real CGH data in such a way that it may be encoded in any of the available gray-scale spatial light modulators. A CdS liquid-crystal light valve is used for the complex-valued CGH encoding; computer simulations and experimental results are compared, and the use of such a CGH filter as the synapse hologram in a holographic optical neural net is discussed.

  4. Interstitial near-infrared photoimmunotherapy: effective treatment areas and light doses needed for use with fiber optic diffusers.

    Science.gov (United States)

    Okuyama, Shuhei; Nagaya, Tadanobu; Sato, Kazuhide; Ogata, Fusa; Maruoka, Yasuhiro; Choyke, Peter L; Kobayashi, Hisataka

    2018-02-16

    Near-infrared photoimmunotherapy (NIR-PIT), a promising cancer therapy utilizing an antibody-photoabsorber conjugate (APC) and NIR light, which induces rapid necrotic cell death only in APC-bound cells. Effective NIR-PIT in mouse models has been achieved using superficial light illumination (SLI) with light emitting diodes (LEDs) or lasers, but in the clinical setting, fiber optic diffusers have been employed to deliver light to deeper tumors. However, the performance of NIR light in tissue delivered by fiber optic diffusers is poorly understood. Here, we investigated NIR-PIT using a cylindrical fiber optic diffuser in a mouse model of A431 tumors. NIR-PIT with 100 J/cm, the same light dose used in clinical trials of NIR-PIT, was applied after insertion of the diffuser within the tumor bed, and then both bioluminescence and fluorescence imaging were analyzed to assess the therapeutic efficacy. The diffuser can deliver adequate NIR light dose for effective NIR-PIT to the A431 tumor at a distance of approximately 1 cm around the light source at 100 J/cm. At 50 J/cm NIR light effective NIR-PIT was reduced to a distance of 5 - 7 mm diameter around the light source. These results indicate that the energy of interstitial light (measured in Joules/cm) administered via a fiber diffuser determines the depth of effective NIR-PIT around the diffuser and determines the spacing at which such diffusers should be placed to entirely cover the tumor. Thermal measurements demonstrate that interstitial light for NIR-PIT does not cause damage to the skin overlying the diffuser.

  5. Pushing nanoparticles with light — A femtonewton resolved measurement of optical scattering forces

    Directory of Open Access Journals (Sweden)

    C. Zensen

    2016-05-01

    Full Text Available Optomechanical manipulation of plasmonic nanoparticles is an area of current interest, both fundamental and applied. However, no experimental method is available to determine the forward-directed scattering force that dominates for incident light of a wavelength close to the plasmon resonance. Here, we demonstrate how the scattering force acting on a single gold nanoparticle in solution can be measured. An optically trapped 80 nm particle was repetitively pushed from the side with laser light resonant to the particle plasmon frequency. A lock-in analysis of the particle movement provides a measured value for the scattering force. We obtain a resolution of less than 3 femtonewtons which is an order of magnitude smaller than any measurement of switchable forces performed on nanoparticles in solution with single beam optical tweezers to date. We compared the results of the force measurement with Mie simulations of the optical scattering force on a gold nanoparticle and found good agreement between experiment and theory within a few fN.

  6. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Boer, J.F. de; Milner, T.E.; Nelson, J.S.

    1999-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) was used to characterize completely the polarization state of light backscattered from turbid media. Using a low-coherence light source, one can determine the Stokes parameters of backscattered light as a function of optical path in turbid media. To demonstrate the application of this technique we determined the birefringence and the optical axis in fibrous tissue (rodent muscle) and in vivo rodent skin. PS-OCT has potentially useful applications in biomedical optics by imaging simultaneously the structural properties of turbid biological materials and their effects on the polarization state of backscattered light. This method may also find applications in material science for investigation of polarization properties (e.g., birefringence) in opaque media such as ceramics and crystals. copyright 1999 Optical Society of America

  7. Integration of LCoS-SLM and LabVIEW based software to simulate fundamental optics, wave optics, and Fourier optics

    Science.gov (United States)

    Lyu, Bo-Han; Wang, Chen; Tsai, Chun-Wei

    2017-08-01

    Jasper Display Corp. (JDC) offer high reflectivity, high resolution Liquid Crystal on Silicon - Spatial Light Modulator (LCoS-SLM) which include an associated controller ASIC and LabVIEW based modulation software. Based on this LCoS-SLM, also called Education Kit (EDK), we provide a training platform which includes a series of optical theory and experiments to university students. This EDK not only provides a LabVIEW based operation software to produce Computer Generated Holograms (CGH) to generate some basic diffraction image or holographic image, but also provides simulation software to verity the experiment results simultaneously. However, we believe that a robust LCoSSLM, operation software, simulation software, training system, and training course can help students to study the fundamental optics, wave optics, and Fourier optics more easily. Based on these fundamental knowledges, they could develop their unique skills and create their new innovations on the optoelectronic application in the future.

  8. Thin Film Magnetless Faraday Rotators for Compact Heterogeneous Integrated Optical Isolators (Postprint)

    Science.gov (United States)

    2017-06-15

    AFRL-RX-WP-JA-2017-0348 THIN-FILM MAGNETLESS FARADAY ROTATORS FOR COMPACT HETEROGENEOUS INTEGRATED OPTICAL ISOLATORS (POSTPRINT) Dolendra Karki...Interim 9 May 2016 – 1 December 2016 4. TITLE AND SUBTITLE THIN-FILM MAGNETLESS FARADAY ROTATORS FOR COMPACT HETEROGENEOUS INTEGRATED OPTICAL...transfer of ultra-compact thin-film magnetless Faraday rotators to silicon photonic substrates. Thin films of magnetization latching bismuth

  9. Monte Carlo study of skin optical clearing to enhance light penetration in the tissue: implications for photodynamic therapy of acne vulgaris

    Science.gov (United States)

    Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.; Altshuler, Gregory B.; Yaroslavsky, Ilya V.

    2008-06-01

    Result of Monte Carlo simulations of skin optical clearing is presented. The model calculations were carried out with the aim of studying of spectral response of skin under immersion liquids action and calculation of enhancement of light penetration depth. In summary, we have shown that: 1) application of glucose, propylene glycol and glycerol produced significant decrease of light scattering in different skin layers; 2) maximal clearing effect will be obtained in case of optical clearing of skin dermis, however, absorbed light fraction in skin dermis changed insignificantly, independently on clearing agent and place it administration; 3) in contrast to it, the light absorbed fraction in skin adipose layer increased significantly in case of optical clearing of skin dermis. It is very important because it can be used for development of optical methods of obesity treatment; 4) optical clearing of superficial skin layers can be used for decreasing of power of light radiation used for treatment of acne vulgaris.

  10. IDENTIFICATIONS OF FIVE INTEGRAL SOURCES VIA OPTICAL SPECTROSCOPY

    International Nuclear Information System (INIS)

    Butler, Suzanne C.; Tomsick, John A.; Chaty, Sylvain; Heras, Juan A. Zurita; Rodriguez, Jerome; Walter, Roland; Kaaret, Philip; Kalemci, Emrah; Oezbey, Mehtap

    2009-01-01

    The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) is discovering hundreds of new hard X-ray sources, many of which remain unidentified. We report on optical spectroscopy of five such sources for which X-ray observations at lower energies (∼0.5-10 keV) and higher angular resolutions than INTEGRAL have allowed for unique optical counterparts to be located. We find that INTEGRAL Gamma-Ray (IGR) J16426+6536 and IGR J22292+6647 are Type 1 Seyfert active galactic nuclei (with IGR J16426+6536 further classified as a Seyfert 1.5) which have redshifts of z = 0.323 and z = 0.113, respectively. IGR J18308-1232 is identified as a cataclysmic variable (CV), and we confirm a previous identification of IGR J19267+1325 as a magnetic CV. IGR J18214-1318 is identified as an obscured high-mass X-ray binary (HMXB), which are systems thought to have a compact object embedded in the stellar wind of a massive star. We combine Chandra fluxes with distances based on the optical observations to calculate X-ray luminosities of the HMXB and CVs, finding L 0.3-10keV = 5 x 10 36 erg s -1 for IGR J18214-1318, L 0.3-10keV = 1.3 x 10 32 erg s -1 for IGR J18308-1232, and L 0.3-10keV = 6.7 x 10 32 erg s -1 for IGR J19267+1325.

  11. Silicon-based optical integrated circuits for terabit communication networks

    International Nuclear Information System (INIS)

    Svidzinsky, K K

    2003-01-01

    A brief review is presented of the development of silicon-based optical integrated circuits used as components in modern all-optical communication networks with the terabit-per-second transmission capacity. The designs and technologies for manufacturing these circuits are described and the problems related to their development and application in WDM communication systems are considered. (special issue devoted to the memory of academician a m prokhorov)

  12. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method

    International Nuclear Information System (INIS)

    Bi Lei; Yang Ping; Kattawar, George W.; Hu Yongxiang; Baum, Bryan A.

    2011-01-01

    A new physical-geometric optics hybrid (PGOH) method is developed to compute the scattering and absorption properties of ice particles. This method is suitable for studying the optical properties of ice particles with arbitrary orientations, complex refractive indices (i.e., particles with significant absorption), and size parameters (proportional to the ratio of particle size to incident wavelength) larger than ∼20, and includes consideration of the edge effects necessary for accurate determination of the extinction and absorption efficiencies. Light beams with polygon-shaped cross sections propagate within a particle and are traced by using a beam-splitting technique. The electric field associated with a beam is calculated using a beam-tracing process in which the amplitude and phase variations over the wavefront of the localized wave associated with the beam are considered analytically. The geometric-optics near field for each ray is obtained, and the single-scattering properties of particles are calculated from electromagnetic integral equations. The present method does not assume additional physical simplifications and approximations, except for geometric optics principles, and may be regarded as a 'benchmark' within the framework of the geometric optics approach. The computational time is on the order of seconds for a single-orientation simulation and is essentially independent of the size parameter. The single-scattering properties of oriented hexagonal ice particles (ice plates and hexagons) are presented. The numerical results are compared with those computed from the discrete-dipole-approximation (DDA) method.

  13. Post delivery test report for light duty utility arm optical alignment system (OAS)

    International Nuclear Information System (INIS)

    Pardini, A.F.

    1996-01-01

    This report documents the post delivery testing of the Optical Alignment System (OAS) LDUA system, designed for use by the Light Duty Utility Arm (LDUA) project. The post delivery test shows by demonstration that the optical alignment system is fully operational to perform the task of aligning the LDUA arm and mast with the entry riser during deployment operations within a Hanford Site waste tank

  14. Post delivery test report for light duty utility arm optical alignment system (OAS)

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, A.F.

    1996-04-18

    This report documents the post delivery testing of the Optical Alignment System (OAS) LDUA system, designed for use by the Light Duty Utility Arm (LDUA) project. The post delivery test shows by demonstration that the optical alignment system is fully operational to perform the task of aligning the LDUA arm and mast with the entry riser during deployment operations within a Hanford Site waste tank.

  15. Size-selective detection in integrated optical interferometric biosensors

    NARCIS (Netherlands)

    Mulder, Harmen K P; Ymeti, Aurel; Subramaniam, Vinod; Kanger, Johannes S

    2012-01-01

    We present a new size-selective detection method for integrated optical interferometric biosensors that can strongly enhance their performance. We demonstrate that by launching multiple wavelengths into a Young interferometer waveguide sensor it is feasible to derive refractive index changes from

  16. [Getting an insight into the brain - new optical clearing techniques and imaging using light-sheet microscope].

    Science.gov (United States)

    Pawłowska, Monika; Legutko, Diana; Stefaniuk, Marzena

    2017-01-01

    One of the biggest challenges in neuroscience is to understand how brain operates. For this, it would be the best to image the whole brain with at least cellular resolution, preserving the three-dimensional structure in order to capture the connections between different areas. Most currently available high-resolution imaging techniques are based on preparing thin brain sections that are next photographed one by one and subsequently bigger structures are reconstructed. These techniques are laborious and create artifacts. Recent optical clearing methods allow to obtain literally transparent brains that can be imaged using light-sheet microscope. The present review summarizes the most popular optical clearing techniques, describing their different mechanisms and comparing advantages and disadvantages of different approaches, and presents the principle of light-sheet microscopy and its use in imaging. Finally, it gives examples of application of optical tissue clearing and light-sheet imaging in neuroscience and beyond it.

  17. Integrated polymer micro-ring resonators for optical sensing applications

    OpenAIRE

    Girault , Pauline; Lorrain , Nathalie; Poffo , Luiz; Guendouz , Mohammed; Lemaitre , Jonathan; Carré , Christiane; Gadonna , Michel; Bosc , Dominique; Vignaud , Guillaume

    2015-01-01

    International audience; Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as cor...

  18. Optical properties of Lactuca and Taraxacum seed and fruit coats: Their role as light filters [phytochrome, photoblasty, fiber optics, transmission, spectra

    International Nuclear Information System (INIS)

    Widell, K.-O.; Vogelmann, T.C.

    1985-01-01

    The optical properties of seed and fruit coats were examined from several varieties of light-sensitive achenes. Taraxacum vulgare L. and Lactuca sativa L. cv. Grand Rapids achenes with dark fruit coats and L. sativa cvs Huvudsallat and Issallat with white fruit coats were examined. Transmission spectra varied among the different achenes: white fruit coats of Lactuca acted as neutral density filters between 450 and 780 nm, whereas Taraxacum transmitted 2–36% in this region. The ribbed fruit coat structure greatly affected transmission so that at different locations in the same coat, transmission varied between 20 to 80% at 660 and 730 nm. Fruit coats of Grand Rapids lettuce and Taraxacum transmitted more far-red than red light with T 660 /T 730 ratios of 0.8 and 0.4, respectively. The relationship between the optical properties of fruit coats and light-stimulated germination is discussed. (author)

  19. Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields

    International Nuclear Information System (INIS)

    Pustelny, S.; Gawlik, W.; Rochester, S. M.; Kimball, D. F. Jackson; Yashchuk, V. V.; Budker, D.

    2006-01-01

    Larmor precession of laser-polarized atoms contained in antirelaxation-coated cells, detected via nonlinear magneto-optical rotation (NMOR), is a promising technique for a new generation of ultrasensitive atomic magnetometers. For magnetic fields directed along the light propagation direction, resonances in NMOR appear when linearly polarized light is frequency or amplitude modulated at twice the Larmor frequency. Because the frequency of these resonances depends on the magnitude but not the direction of the field, they are useful for scalar magnetometry. Additional NMOR resonances at the Larmor frequency appear when the magnetic field is tilted away from the light propagation direction in the plane defined by the light propagation and polarization vectors. These resonances, studied both experimentally and with a density matrix calculation in the present work, offer a convenient method of achieving additional information about a direction of the magnetic field

  20. At-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sutter, John; Alcock, Simon G.; Sawhney, Kawal

    2014-09-01

    Modern, third-generation synchrotron radiation sources provide coherent and extremely bright beams of X-ray radiation. The successful exploitation of such beams depends to a significant extent on imperfections and misalignment of the optics employed on the beamlines. This issue becomes even more critical with the increasing use of active optics, and the desire to achieve diffraction-limited and coherence-preserving X-ray beams. In recent years, significant progress has been made to improve optic testing and optimization techniques, especially those using X-rays for so-called atwavelength metrology. These in-situ and at-wavelength metrology methods can be used not only to optimize the performance of X-ray optics, but also to correct and minimize the collective distortions of upstream beamline optics, including monochromators, and transmission windows. An overview of at-wavelength metrology techniques implemented at Diamond Light Source is presented, including grating interferometry and X-ray near-field speckle based techniques. Representative examples of the application of these techniques are also given, including in-situ and atwavelength calibration and optimization of: active, piezo bimorph mirrors; Kirkpatrick-Baez (KB) mirrors; and refractive optics such as compound refractive lenses.

  1. Generation of Light Scattering States in Cholesteric Liquid Crystals by Optically Controlled Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Timothy J. Bunning

    2013-03-01

    Full Text Available Circularly polarized light was previously employed to stimulate the reversible and reconfigurable writing of scattering states in cholesteric liquid crystal (CLC cells constructed with a photosensitive layer. Such dynamic photodriven responses have utility in remotely triggering changes in optical constructs responsive to optical stimulus and applications where complex spatial patterning is required. Writing of scattering regions required the handedness of incoming radiation to match the handedness of the CLC and the reflection bandwidth of the CLC to envelop the wavelength of the incoming radiation. In this paper, the mechanism of transforming the CLC into a light scattering state via the influence of light on the photosensitive alignment layer is detailed. Specifically, the effects of: (i the polarization state of light on the photosensitive alignment layer; (ii the exposure time; and (iii the incidence angle of radiation on domain formation are reported. The photogenerated light-scattering domains are shown to be similar in appearance between crossed polarizers to a defect structure that occurs at a CLC/air interface (i.e., a free CLC surface. This observation provides strong indication that exposure of the photosensitive alignment layer to the circularly polarized light of appropriate wavelength and handedness generates an out-of-plane orientation leading to a periodic distortion of the original planar structure.

  2. Optics robustness of the ATLAS Tile Calorimeter

    CERN Document Server

    Costa Batalha Pedro, Rute; The ATLAS collaboration

    2018-01-01

    TileCal, the central hadronic calorimeter of the ATLAS detector is composed of plastic scintillators interleaved by iron plates, and wavelength shifting optical fibres. The optical properties of these components are known to suffer from natural ageing and degrade due to exposure to radiation. The calorimeter was designed for 10 years of LHC operating at the design luminosity of $10^{34}$ cm$^{-1}$s$^{-1}$. Irradiation tests of scintillators and fibres shown that their light yield decrease about 10 for the maximum dose expected after the 10 years of LHC operation. The robustness of the TileCal optics components is evaluated using the calibration systems of the calorimeter: Cs-137 gamma source, laser light, and integrated photomultiplier signals of particles from collisions. It is observed that the loss of light yield increases with exposure to radiation as expected. The decrease in the light yield during the years 2015-2017 corresponding to the LHC Run 2 will be reported.

  3. Light Curve Simulation Using Spacecraft CAD Models and Empirical Material Spectral BRDFS

    Science.gov (United States)

    Willison, A.; Bedard, D.

    This paper presents a Matlab-based light curve simulation software package that uses computer-aided design (CAD) models of spacecraft and the spectral bidirectional reflectance distribution function (sBRDF) of their homogenous surface materials. It represents the overall optical reflectance of objects as a sBRDF, a spectrometric quantity, obtainable during an optical ground truth experiment. The broadband bidirectional reflectance distribution function (BRDF), the basis of a broadband light curve, is produced by integrating the sBRDF over the optical wavelength range. Colour-filtered BRDFs, the basis of colour-filtered light curves, are produced by first multiplying the sBRDF by colour filters, and integrating the products. The software package's validity is established through comparison of simulated reflectance spectra and broadband light curves with those measured of the CanX-1 Engineering Model (EM) nanosatellite, collected during an optical ground truth experiment. It is currently being extended to simulate light curves of spacecraft in Earth orbit, using spacecraft Two-Line-Element (TLE) sets, yaw/pitch/roll angles, and observer coordinates. Measured light curves of the NEOSSat spacecraft will be used to validate simulated quantities. The sBRDF was chosen to represent material reflectance as it is spectrometric and a function of illumination and observation geometry. Homogeneous material sBRDFs were obtained using a goniospectrometer for a range of illumination and observation geometries, collected in a controlled environment. The materials analyzed include aluminum alloy, two types of triple-junction photovoltaic (TJPV) cell, white paint, and multi-layer insulation (MLI). Interpolation and extrapolation methods were used to determine the sBRDF for all possible illumination and observation geometries not measured in the laboratory, resulting in empirical look-up tables. These look-up tables are referenced when calculating the overall sBRDF of objects, where

  4. Optical Slot-Waveguide Based Biochemical Sensors

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2009-06-01

    Full Text Available Slot-waveguides allow light to be guided and strongly confined inside a nanometer-scale region of low refractive index. Thus stronger light-analyte interaction can be obtained as compared to that achievable by a conventional waveguide, in which the propagating beam is confined to the high-refractive-index core of the waveguide. In addition, slot-waveguides can be fabricated by employing CMOS compatible materials and technology, enabling miniaturization, integration with electronic, photonic and fluidic components in a chip, and mass production. These advantages have made the use of slot-waveguides for highly sensitive biochemical optical integrated sensors an emerging field. In this paper, recent achievements in slot-waveguide based biochemical sensing will be reviewed. These include slot-waveguide ring resonator based refractometric label-free biosensors, label-based optical sensing, and nano-opto-mechanical sensors.

  5. Gas chromatographic sensing on an optical fiber by mode-filtered light detection.

    Science.gov (United States)

    Bruckner, C A; Synovec, R E

    1996-06-01

    A chemical sensor for gas phase measurements is reported which combines the principles of chemical separation and fiber optic detection. The analyzer incorporates an annular column Chromatographic sensor, constructed by inserting a polymer-clad optical fiber into a silica capillary. Light from a helium-neon laser is launched down the fiber, producing a steady intensity distribution within the fiber, but a low background of scattered light. When sample vapor is introduced to the sensor, and an analyte-rich volume interacts with the polymer cladding, Chromatographic retention is observed simultaneously with a change in the local refractive index of the cladding. An increase in cladding refractive index (RI) causes light to be coupled out of the fiber, with detection at a right-angle to the annular column length to provide optimum S/N ratio. This detection mechanism is called mode-filtered light detection. We report a gas Chromatographic separation on a 3.1 m annular column (320 microm i.d. silica tube, 228 microm o.d. fiber with a 12 microm fluorinated silicone clad) of methane, benzene, butanone and chlorobenzene in 6 min. The annular column length was reduced to 22 cm to function as a sensor, with selected organic vapors exhibiting unique retention times and detection selectivity. The detection selectivity is determined by the analyte RI and the partition coefficient into the cladding. The calculated limit of detection (LOD) for benzene vapor is 0.03% by volume in nitrogen, and several chlorinated species had LOD values less than 1%. For binary mixtures of organic vapors, the detected response appears to be the linear combination of the two organic standards, suggesting that the annular column may be useful as a general approach for designing chemical sensors that incorporate separation and optical detection principles simultaneously.

  6. 2ω Dimensional light-cone integrals with momentum shift

    International Nuclear Information System (INIS)

    Suzuki, A.T.

    1987-01-01

    A class of light-cone integrals typical to one-loop calculations in the two-component formalism is considered. One finds type of integrals in the evaluation of one-loop diagrams, such as the 'swordfish' diagrams. The results cannot be expressed as a finite sum of elementary functions, but convergence is verified for the particular cases considered. (G.D.F.) [pt

  7. Uni- and omnidirectional simulation tools for integrated optics

    NARCIS (Netherlands)

    Stoffer, Remco

    2001-01-01

    This thesis presents several improvements on simulation methods in integrated optics, as well as some new methods. Both uni- and omnidirectional tools are presented; for the unidirectional methods, the emphasis is on higher-order accuracy; for the omnidirectional methods, the boundary conditions are

  8. Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication

    Science.gov (United States)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2015-10-01

    Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.

  9. Light sensing in a photoresponsive, organic-based complementary inverter.

    Science.gov (United States)

    Kim, Sungyoung; Lim, Taehoon; Sim, Kyoseung; Kim, Hyojoong; Choi, Youngill; Park, Keechan; Pyo, Seungmoon

    2011-05-01

    A photoresponsive organic complementary inverter was fabricated and its light sensing characteristics was studied. An organic circuit was fabricated by integrating p-channel pentacene and n-channel copper hexadecafluorophthalocyanine (F16CuPc) organic thin-film transistors (OTFTs) with a polymeric gate dielectric. The F16CuPc OTFT showed typical n-type characteristics and a strong photoresponse under illumination. Whereas under illumination, the pentacene OTFT showed a relatively weak photoresponse with typical p-type characteristics. The characteristics of the organic electro-optical circuit could be controlled by the incident light intensity, a gate bias, or both. The logic threshold (V(M), when V(IN) = V(OUT)) was reduced from 28.6 V without illumination to 19.9 V at 6.94 mW/cm². By using solely optical or a combination of optical and electrical pulse signals, light sensing was demonstrated in this type of organic circuit, suggesting that the circuit can be potentially used in various optoelectronic applications, including optical sensors, photodetectors and electro-optical transceivers.

  10. An Optical Receiver Post Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administrations (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  11. An Optical Receiver Post-Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration's (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  12. Fibre optic cable in the nuclear industry

    International Nuclear Information System (INIS)

    Roberts, Berwyn

    1987-01-01

    The uses of optical fibre cables to transmit light signals include medical applications and telecommunications. In the nuclear industry the applications include process control and monitoring, conventional datacoms, security fencing and sensors. Time division multiplexing is described and currently available fibre optic multipexers are listed and explained. Single and multimode fibres are mentioned. Fibre optics are also used in cryogenics, to monitor the integrity of the storage vessels for cryogenic liquids. The uses of fibre optics at Hartlepool, Heysham I and Torness are mentioned in particular. (UK)

  13. Selective detection of Escherichia coli by imaging of the light intensity transmitted through an optical disk

    Science.gov (United States)

    Shiramizu, Hideyuki; Kuroda, Chiaki; Ohki, Yoshimichi; Shima, Takayuki; Wang, Xiaomin; Fujimaki, Makoto

    2018-03-01

    We have developed an optical disk system for imaging transmitted light from Escherichia coli dispersed on an optical disk. When E. coli was stained using Bismarck brown, the transmittance was found to decrease in images obtained at λ = 405 nm. The results indicate that transmittance imaging is suitable for finding the difference in light intensity between stained and unstained E. coli, whereas the reflectance images were scarcely changed by staining. Therefore, E. coli can be selectively discriminated from abiotic contaminants using transmittance imaging.

  14. Ray and wave optics of integrable and stochastic systems

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1979-07-01

    The generalization of WKB methods to more than one dimension is discussed in terms of the integrability or non-integrability of the geometrical optics (ray Hamiltonian) system derived in the short-wave approximation. In the two-dimensional case the ray trajectories are either regular or stochastic, and the qualitative differences between these types of motion are manifested in the characteristics of the spectra and eigenfunctions. These are examined for a model system which may be integrable or stochastic, depending on a single parameter

  15. Guidance and control of MIR TDL radiation via flexible hollow metallic rectangular pipes and fibers for possible LHS and other optical system compaction and integration

    Science.gov (United States)

    Yu, C.

    1983-01-01

    Flexible hollow metallic rectangular pipes and infrared fibers are proposed as alternate media for collection, guidance and manipulation of mid-infrared tunable diode laser (TDL) radiation. Certain features of such media are found to be useful for control of TDL far field patterns, polarization and possibly intensity fluctuations. Such improvement in dimension compatibility may eventually lead to laser heterodyne spectroscopy (LHS) and optical communication system compaction and integration. Infrared optical fiber and the compound parabolic coupling of light into a hollow pipe waveguide are discussed as well as the design of the waveguide.

  16. Survivable integrated grooming in multi-granularity optical networks

    Science.gov (United States)

    Wu, Jingjing; Guo, Lei; Wei, Xuetao; Liu, Yejun

    2012-05-01

    Survivability is an important issue to ensure the service continuity in optical network. At the same time, with the granularity of traffic demands ranging from sub-wavelength-level to wavelength-level, traffic demands need to be aggregated and carried over the network in order to utilize resources effectively. Therefore, multi-granularity grooming is proposed to save the cost and reduce the number of switching ports in Optical-Cross Connects (OXCs). However, current works mostly addressed the survivable wavelength or waveband grooming. Therefore, in this paper, we propose three heuristic algorithms called Multi-granularity Dedicated Protection Grooming (MDPG), Multi-granularity Shared Protection Grooming (MSPG) and Multi-granularity Mixed Protection Grooming (MMPG), respectively. All of them are performed based on the Survivable Multi-granularity Integrated Auxiliary Graph (SMIAG) that includes one Wavelength Integrated Auxiliary Graph (WIAG) for wavelength protection and one waveBand Integrated Auxiliary Graph (BIAG) for waveband protection. Numerical results show that MMPG has the lowest average port-cost, the best resource utilization ratio and the lowest blocking probability among these three algorithms. Compared with MDPG, MSPG has lower average port-cost, better resource utilization ratio and lower blocking probability.

  17. Excitation of anodized alumina films with a light source

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Canulescu, Stela; Rechendorff, K.

    Optical properties of anodized aluminium alloys were determined by optical diffuse reflectance spectroscopy of such films. Samples with different concentrations of dopants were excited with a white-light source combined with an integrating sphere for fast determination of diffuse reflectance....... The UV-VIS reflectance of Ti-doped anodized aluminium films was measured over the wavelength range of 200 nm to 900 nm. Titanium doped-anodized aluminium films with 5-15 wt% Ti were characterized. Changes in the diffuse light scattering of doped anodized aluminium films, and thus optical appearance......, with doping are discussed. Using the Kubelka-Munk model on the diffuse reflectance spectra of such films, the bandgap Eg of the oxide alloys can be determined....

  18. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation.

    Science.gov (United States)

    Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho

    2015-12-31

    To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal-oxide-semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms.

  19. Slow and fast light effects in semiconductor optical amplifiers for applications in microwave photonics

    DEFF Research Database (Denmark)

    Xue, Weiqi

    This thesis analyzes semiconductor optical amplifiers based slow and fast light effects with particular focus on the applications in microwave photonics. We conceive novel ideas and demonstrate a great enhancement of light slow down. Furthermore, by cascading several slow light stages, >360 degree...... microwave phase shifts over a bandwidth of several tens of gigahertz are achieved. These also satisfy the basic requirements of microwave photonic systems. As an application demonstration, a tunable microwave notch filter is realized, where slow light based phase shifters provide 100% fractional tuning over...

  20. Detailed abundances from integrated-light spectroscopy: Milky Way globular clusters

    Science.gov (United States)

    Larsen, S. S.; Brodie, J. P.; Strader, J.

    2017-05-01

    Context. Integrated-light spectroscopy at high spectral resolution is rapidly maturing as a powerful way to measure detailed chemical abundances for extragalactic globular clusters (GCs). Aims: We test the performance of our analysis technique for integrated-light spectra by applying it to seven well-studied Galactic GCs that span a wide range of metallicities. Methods: Integrated-light spectra were obtained by scanning the slit of the UVES spectrograph on the ESO Very Large Telescope across the half-light diameters of the clusters. We modelled the spectra using resolved Hubble Space Telescope colour-magnitude diagrams (CMDs), as well as theoretical isochrones, in combination with standard stellar atmosphere and spectral synthesis codes. The abundances of Fe, Na, Mg, Ca, Ti, Cr, and Ba were compared with literature data for individual stars in the clusters. Results: The typical differences between iron abundances derived from our integrated-light spectra and those compiled from the literature are less than 0.1 dex. A larger difference is found for one cluster (NGC 6752), and is most likely caused primarily by stochastic fluctuations in the numbers of bright red giants within the scanned area. As expected, the α-elements (Ca, Ti) are enhanced by about 0.3 dex compared to the Solar-scaled composition, while the [Cr/Fe] ratios are close to Solar. When using up-to-date line lists, our [Mg/Fe] ratios also agree well with literature data. Our [Na/Fe] ratios are, on average, 0.08-0.14 dex lower than average values quoted in the literature, and our [Ba/Fe] ratios may be overestimated by 0.20-0.35 dex at the lowest metallicities. We find that analyses based on theoretical isochrones give very similar results to those based on resolved CMDs. Conclusions: Overall, the agreement between our integrated-light abundance measurements and the literature data is satisfactory. Refinements of the modelling procedure, such as corrections for stellar evolutionary and non-LTE effects

  1. Design of integrated optics all-optical label swappers for spectral amplitude code label swapping optical packet networks on active/passive InP technology

    NARCIS (Netherlands)

    Habib, C.; Munoz, P.; Leijtens, X.J.M.; Chen, Lawrence; Smit, M.K.; Capmany, J.

    2009-01-01

    In this paper the designs of optical label swapper devices, for spectral amplitude coded labels, monolithically integrated on InP active/passive technology are pre sented. The devices are based on cross-gain modulation in a semiconductor optical amplifier. Multi-wavelength operation is enabled by

  2. Multilayered phantoms with tunable optical properties for a better understanding of light/tissue interactions

    Science.gov (United States)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Vignoud, Séverine; Lavaud, Jonathan; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Light/tissue interactions, like diffuse reflectance, endogenous fluorescence and Raman scattering, are a powerful means for providing skin diagnosis. Instrument calibration is an important step. We thus developed multilayered phantoms for calibration of optical systems. These phantoms mimic the optical properties of biological tissues such as skin. Our final objective is to better understand light/tissue interactions especially in the case of confocal Raman spectroscopy. The phantom preparation procedure is described, including the employed method to obtain a stratified object. PDMS was chosen as the bulk material. TiO2 was used as light scattering agent. Dye and ink were adopted to mimic, respectively, oxy-hemoglobin and melanin absorption spectra. By varying the amount of the incorporated components, we created a material with tunable optical properties. Monolayer and multilayered phantoms were designed to allow several characterization methods. Among them, we can name: X-ray tomography for structural information; Diffuse Reflectance Spectroscopy (DRS) with a homemade fibered bundle system for optical characterization; and Raman depth profiling with a commercial confocal Raman microscope for structural information and for our final objective. For each technique, the obtained results are presented and correlated when possible. A few words are said on our final objective. Raman depth profiles of the multilayered phantoms are distorted by elastic scattering. The signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties, obtained here with DRS, is crucial to properly correct Raman depth profiles. Thus, it would be permitted to consider quantitative studies on skin for drug permeation follow-up or hydration assessment, for instance.

  3. Optical Characterization of Tissue Phantoms Using a Silicon Integrated fdNIRS System on Chip.

    Science.gov (United States)

    Sthalekar, Chirag C; Miao, Yun; Koomson, Valencia Joyner

    2017-04-01

    An interface circuit with signal processing and digitizing circuits for a high frequency, large area avalanche photodiode (APD) has been integrated in a 130 nm BiCMOS chip. The system enables the absolute oximetry of tissue using frequency domain Near Infrared Spectroscopy (fdNIRS). The system measures the light absorbed and scattered by the tissue by measuring the reduction in the amplitude of signal and phase shift introduced between the light source and detector which are placed a finite distance away from each other. The received 80 MHz RF signal is downconverted to a low frequency and amplified using a heterodyning scheme. The front-end transimpedance amplifier has a 3-level programmable gain that increases the dynamic range to 60 dB. The phase difference between an identical reference channel and the optical channel is measured with a 0.5° accuracy. The detectable current range is [Formula: see text] and with a 40 A/W reponsivity using the APD, power levels as low as 500 pW can be detected. Measurements of the absorption and reduced scattering coefficients of solid tissue phantoms using this system are compared with those using a commercial instrument with differences within 30%. Measurement of a milk based liquid tissue phantom show an increase in absorption coefficient with addition of black ink. The miniaturized circuit serves as an efficiently scalable system for multi-site detection for applications in neonatal cerebral oximetry and optical mammography.

  4. Thermal, optical, and electrical engineering of an innovative tunable white LED light engine

    Science.gov (United States)

    Trivellin, Nicola; Meneghini, Matteo; Ferretti, Marco; Barbisan, Diego; Dal Lago, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico

    2014-02-01

    Color temperature, intensity and blue spectrum of the light affects the ganglion receptors in human brain stimulating the human nervous system. With this work we review different methods for obtaining tunable light emission spectra and propose an innovative white LED lighting system. By an in depth study of the thermal, electrical and optical characteristics of GaN and GaP based compound semiconductors for optoelectronics a specific tunable spectra has been designed. The proposed tunable white LED system is able to achieve high CRI (above 95) in a large CCT range (3000 - 5000K).

  5. Optics for dummies

    CERN Document Server

    Duree, Galen C

    2011-01-01

    The easy way to shed light on Optics In general terms, optics is the science of light. More specifically, optics is a branch of physics that describes the behavior and properties of light?including visible, infrared, and ultraviolet?and the interaction of light with matter. Optics For Dummies gives you an approachable introduction to optical science, methods, and applications. You'll get plain-English explanations of the nature of light and optical effects; reflection, refraction, and diffraction; color dispersion; optical devices, industrial, medical, and military applicatio

  6. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    Science.gov (United States)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  7. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    International Nuclear Information System (INIS)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; Edstrom, Dean; Harms, Elvin

    2017-01-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  8. A nonlinear plasmonic waveguide based all-optical bidirectional switching

    Science.gov (United States)

    Bana, Xiaoqiang; Pang, Xingxing; Li, Xiaohui; Hu, Bin; Guo, Yixuan; Zheng, Hairong

    2018-01-01

    In this paper, an all-optical switching with a nanometer coupled ring resonator is demonstrated based on the nonlinear material. By adjusting the light intensity, we implement the resonance wavelength from 880 nm to 940 nm in the nonlinear material structure monocyclic. In the bidirectional switch structure, the center wavelength (i.e. 880 nm) is fixed. By changing the light intensity from I = 0 to I = 53 . 1 MW /cm2, the function of optical switching can be obtained. The results demonstrate that both the single-ring cavity and the T-shaped double-ring structure can realize the optical switching effect. This work takes advantage of the simple structure. The single-ring cavity plasmonic switches have many advantages, such as nanoscale size, low pumping light intensity, ultrafast response time (femtosecond level), etc. It is expected that the proposed all-optical integrated devices can be potentially applied in optical communication, signal processing, and signal sensing, etc.

  9. Raman laser spectrometer optical head: qualification model assembly and integration verification

    Science.gov (United States)

    Ramos, G.; Sanz-Palomino, M.; Moral, A. G.; Canora, C. P.; Belenguer, T.; Canchal, R.; Prieto, J. A. R.; Santiago, A.; Gordillo, C.; Escribano, D.; Lopez-Reyes, G.; Rull, F.

    2017-08-01

    Raman Laser Spectrometer (RLS) is the Pasteur Payload instrument of the ExoMars mission, within the ESA's Aurora Exploration Programme, that will perform for the first time in an out planetary mission Raman spectroscopy. RLS is composed by SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit). iOH focuses the excitation laser on the samples (excitation path), and collects the Raman emission from the sample (collection path, composed on collimation system and filtering system). Its original design presented a high laser trace reaching to the detector, and although a certain level of laser trace was required for calibration purposes, the high level degrades the Signal to Noise Ratio confounding some Raman peaks. So, after the bread board campaign, some light design modifications were implemented in order to fix the desired amount of laser trace, and after the fabrication and the commitment of the commercial elements, the assembly and integration verification process was carried out. A brief description of the iOH design update for the engineering and qualification model (iOH EQM) as well as the assembly process are briefly described in this papers. In addition, the integration verification and the first functional tests, carried out with the RLS calibration target (CT), results are reported on.

  10. Electro-optical properties of a polymer light-emitting diode with an injection-limited hole contact

    NARCIS (Netherlands)

    van Woudenbergh, T; Blom, PWM; Huiberts, JN

    2003-01-01

    The electro-optical characteristics of a polymer light-emitting diode with a strongly reduced hole injection have been investigated. A silver contact on poly-dialkoxy-p-phenylene vinylene decreases the hole injection by five orders of magnitude, resulting in both a highly reduced light output and

  11. Optical fiber sensors embedded in flexible polymer foils

    Science.gov (United States)

    van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter

    2010-04-01

    In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

  12. Polymer optical fiber with Rhodamine doped cladding for fiber light systems

    Energy Technology Data Exchange (ETDEWEB)

    Narro-García, R., E-mail: roberto.narro@gmail.com [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Quintero-Torres, R. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Domínguez-Juárez, J.L. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Cátedras CONACyT, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Ocampo, M.A. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico)

    2016-01-15

    Both preform and polymer optical fiber with a Poly(methyl methacrylate) core and THV–Rhodamine 6G cladding were characterized. UV–vis absorbance, photoluminescence spectra and lifetime of the preform were measured. Axial and lateral photoluminescence spectra of the polymer optical fiber were studied under 404 nm excitation in order to study the illumination performance of the fiber. It was observed that the peak wavelength from the fiber photoluminescence spectra is higher than the peak wavelength from the fiber preform and that the peak wavelength from the fiber photoluminescence spectra is red shifted with the fiber length in the case of axial emission. The obtained results suggest the influence of self-absorption on the photoluminescence shape. Strong lateral emission along the fiber was observed with the naked eyes in all the cases. The lateral photoluminescence spectra show that the lateral emission is a combination between the pump laser and the Rh6G molecule photoluminescence. The results suggest that this polymer optical fiber could be a potential candidate for the development of fiber lighting systems. - Highlights: • Axial and lateral emission along the fiber was studied. • Self-absorption effect was confirmed in the case of axial photoluminescence. • The lateral emission is a combination between the laser and the RhG6 emission. • This fiber could be a potential candidate for the development of lighting systems.

  13. Optically nonlinear energy transfer in light-harvesting dendrimers

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2004-08-01

    Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices.

  14. Nuclear power plant prestressed concrete containment vessel structure monitoring during integrated leakage rate test using three kinds of fiber optic sensors

    Science.gov (United States)

    Liao, Kaixing; Li, Jinke; Kong, Xianglong; Sun, Changsen; Zhao, Xuefeng

    2017-04-01

    After years of operation, the safety of the prestressed concrete containment vessel (PCCV) structure of Nuclear Power Plant (NPP) is an important aspect. In order to detect the strength degradation and the structure deformation, several sensors such as vibrating wire strain gauge, invar wires and pendulums were installed in PCCV. However, the amounts of sensors above are limited due to the cost. Due to the well durability of fiber optic sensors, three kinds of fiber optic sensors were chosen to install on the surface of PCCV to monitor the deformation during Integrated Leakage Rate Test (ILRT). The three kinds of fiber optic sensors which had their own advantages and disadvantages are Fiber Bragg Grating (FBG), white light interferometry (WLI) and Brillouin Optical Time Domain Analysis (BOTDA). According to the measuring data, the three fiber optic sensors worked well during the ILRT. After the ILRT, the monitoring strain was recoverable thus the PCCV was still in the elastic stage. If these three kinds of fiber optic sensors are widely used in the PCCV, the unusual deformations are easier to detect. As a consequence, the three fiber optic sensors have good potential in the structure health monitoring of PCCV.

  15. Production cavity and central optics for a light shining through a wall experiment

    International Nuclear Information System (INIS)

    Hodajerdi, Reza

    2015-02-01

    The unexplained nature of dark matter and dark energy is a prominent reason for investigating physics beyond the standard model of particle physics (SM). Some extensions of the SM propose weakly interacting slim particles (WISPs). In an attempt to prove the existence of these particles, Light shining through the wall (LSW) experiments explore a very weak coupling between WISPs and photons (and viceversa). LSW experiments employ high-power lasers that provide a well defined flux of photons for the WISP-Photon conversion. The ALPS-I experiment at DESY in Hamburg was the first successful experiment with a high finesse optical resonator to enhance the laser power in a strong magnetic field in order to increase the photon to WISP conversion probability. The ALPS-II experimental concept adds a second optical cavity to also increase the reconversion probability. Both cavities are separated by a wall, amplify light at 1064 nm and share a common optical axis. Operating these two cavities inside 20 straightened HERA superconducting dipole magnets and using a transition edge sensor (TES) as a single photon detector will make the ALPS-II experiment almost three orders of magnitude more sensitive than its predecessor. Since photons, originating from reconverted WISPs in the regeneration cavity (RC) have 1064 nm wavelengths, the RC has to be locked to the production cavity (PC) with light of a different wavelength. Therefore frequency doubled PCs light will be used to lock the RC. This 532 nm light shall not arrive at the TES to prevent background noise. To achieve this, an optical attenuation system for wavelengths different from 1064 nm is required. In my thesis, the required attenuation was estimated and an optical setup was proposed and constructed and tested. It attenuates green photons by a factor of of 10 -18 and transmits 85% of the infrared photons. Furthermore the high finesse production cavity of ALPS-IIa was set up and characterized during this thesis. The PC reached

  16. A low-latency optical switch architecture using integrated μm SOI-based contention resolution and switching

    Science.gov (United States)

    Mourgias-Alexandris, G.; Moralis-Pegios, M.; Terzenidis, N.; Cherchi, M.; Harjanne, M.; Aalto, T.; Vyrsokinos, K.; Pleros, N.

    2018-02-01

    The urgent need for high-bandwidth and high-port connectivity in Data Centers has boosted the deployment of optoelectronic packet switches towards bringing high data-rate optics closer to the ASIC, realizing optical transceiver functions directly at the ASIC package for high-rate, low-energy and low-latency interconnects. Even though optics can offer a broad range of low-energy integrated switch fabrics for replacing electronic switches and seamlessly interface with the optical I/Os, the use of energy- and latency-consuming electronic SerDes continues to be a necessity, mainly dictated by the absence of integrated and reliable optical buffering solutions. SerDes undertakes the role of optimally synergizing the lower-speed electronic buffers with the incoming and outgoing optical streams, suggesting that a SerDes-released chip-scale optical switch fabric can be only realized in case all necessary functions including contention resolution and switching can be implemented on a common photonic integration platform. In this paper, we demonstrate experimentally a hybrid Broadcast-and-Select (BS) / wavelength routed optical switch that performs both the optical buffering and switching functions with μm-scale Silicon-integrated building blocks. Optical buffering is carried out in a silicon-integrated variable delay line bank with a record-high on-chip delay/footprint efficiency of 2.6ns/mm2 and up to 17.2 nsec delay capability, while switching is executed via a BS design and a silicon-integrated echelle grating, assisted by SOA-MZI wavelength conversion stages and controlled by a FPGA header processing module. The switch has been experimentally validated in a 3x3 arrangement with 10Gb/s NRZ optical data packets, demonstrating error-free switching operation with a power penalty of <5dB.

  17. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ken R. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Applied Physics, Stanford University, 348 Via Pueblo, Stanford, CA 94305 (United States); Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Coffee, Ryan [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; Minitti, Michael; Mitra, Ankush; Moeller, Stefan; Noonan, Peter; Osipov, Timur; Schorb, Sebastian; Swiggers, Michele; Wallace, Alexander; Yin, Jing [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bostedt, Christoph, E-mail: bostedt@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-17

    A description of the Atomic, Molecular and Optical Sciences (AMO) instrument at the Linac Coherent Light Source is presented. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument. The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  18. A reprocessing model for the ultraviolet and optical light from 4U 1820-30

    Science.gov (United States)

    Arons, Jonathan; King, Ivan R.

    1993-01-01

    We show that the recently discovered optical and ultraviolet light from the X-ray burst source 4U 1820-30 in the globular cluster NGC 6624 is due to reprocessing of the X-rays in the outer regions of an optically thick, geometrically thin accretion disk. We suggest that observation of orbital modulation of the reprocessed light, due to the variable contribution made as the heated face of the companion turns toward and away from the observer, would provide constraints on the inclination of the binary orbit, and we suggest that detection in the reprocessed flux of the 'red noise' already observed in the X-rays would provide useful constraints on the geometry and physics of the accretion disk.

  19. A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography

    DEFF Research Database (Denmark)

    Maria J., Sanjuan-Ferrer,; Bravo Gonzalo, Ivan; Bondu, Magalie

    2017-01-01

    Supercontinuum (SC) light is a well-established technology, which finds applications in several domains ranging from chemistry to material science and imaging systems [1-2]. More specifically, its ultra-wide optical bandwidth and high average power make it an ideal tool for Optical Coherence...... Tomography (OCT). Over the last 5 years, numerous examples have demonstrated its high potential [3-4] in this context. However, SC light sources present pulse-to-pulse intensity variation that can limit the performance of any OCT system [5] by degrading their signal to noise ratio (SNR). To this goal, we...... have studied and compared the noise of several SC light sources and evaluated how their noise properties affect the performance of Ultra-High Resolution OCT (UHR-OCT) at 1300 nm. We have measured several SC light sources with different parameters (pulse length, energy, seed repetition rate, etc.). We...

  20. AMIC: an expandable integrated analog front-end for light distribution moments analysis

    OpenAIRE

    SPAGGIARI, MICHELE; Herrero Bosch, Vicente; Lerche, Christoph Werner; Aliaga Varea, Ramón José; Monzó Ferrer, José María; Gadea Gironés, Rafael

    2011-01-01

    In this article we introduce AMIC (Analog Moments Integrated Circuit), a novel analog Application Specific Integrated Circuit (ASIC) front-end for Positron Emission Tomography (PET) applications. Its working principle is based on mathematical analysis of light distribution through moments calculation. Each moment provides useful information about light distribution, such as energy, position, depth of interaction, skewness (deformation due to border effect) etc. A current buffer delivers a cop...

  1. Understanding vision: students’ use of light and optics resources

    International Nuclear Information System (INIS)

    Jones, Dyan L; Zollman, Dean

    2014-01-01

    We present a qualitative study designed to examine how students construct an understanding of the human eye and vision from their knowledge of light and optics. As would be expected, vast differences are shown to exist between pre- and post-instruction students in terms of not only resource use, but also willingness to transfer their existing knowledge. However, we have found that appropriate scaffolding can facilitate resource activation and guide students to construct an understanding of vision and vision defects. (paper)

  2. Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.

    Science.gov (United States)

    Chen, Chuanrui; Tang, Songsong; Teymourian, Hazhir; Karshalev, Emil; Zhang, Fangyu; Li, Jinxing; Mou, Fangzhi; Liang, Yuyan; Guan, Jianguo; Wang, Joseph

    2018-07-02

    Hybrid micromotors capable of both chemically powered propulsion and fuel-free light-driven actuation and offering built-in optical brakes for chemical propulsion are described. The new hybrid micromotors are designed by combining photocatalytic TiO 2 and catalytic Pt surfaces into a Janus microparticle. The chemical reactions on the different surfaces of the Janus particle hybrid micromotor can be tailored by using chemical or light stimuli that generate counteracting propulsion forces on the catalytic Pt and photocatalytic TiO 2 sides. Such modulation of the surface chemistry on a single micromotor leads to switchable propulsion modes and reversal of the direction of motion that reflect the tuning of the local ion concentration and hence the dominant propulsion force. An intermediate Au layer (under the Pt surface) plays an important role in determining the propulsion mechanism and operation of the hybrid motor. The built-in optical braking system allows "on-the-fly" control of the chemical propulsion through a photocatalytic reaction on the TiO 2 side to counterbalance the chemical propulsion force generated on the Pt side. The adaptive dual operation of these chemical/light hybrid micromotors, associated with such control of the surface chemistry, holds considerable promise for designing smart nanomachines that autonomously reconfigure their propulsion mode for various on-demand operations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Lighting control and dimensioning in integrated daylight systems

    Energy Technology Data Exchange (ETDEWEB)

    Halonen, L.; Eloholma, M.; Lehtovaara, J.

    1996-12-31

    The objective of this research was to find out the subjective and individual requirements for lighting control in connection with daylight utilization in indoor lighting. There is a great potential to use daylight in indoor lighting. This sets demands for the integrated daylight control systems, so that the indoor lighting can be optimized and demands of the users can be fulfilled. Control strategies should also take into account individual light needs, luminance balance and visual comfort. New lighting control systems and strategies such as vertical/horizontal illuminance ratio were studied. The incoming daylight may radically change the luminance distribution of the visual field and the effects of daylight on luminances of vertical surfaces may become especially noticeable. When daylight is utilized in indoor lighting, special care has to be taken to maintain the quality of the lighting of the visual environment. The windows become a potential source of discomfort glare in offices in uncontrolled daylight conditions. With the present methods it is not possible to evaluate discomfort glare caused by high surface luminances or windows. The results of this research do not support the opinion that low vision people in offices need more light than the normally sighted or that the illumination levels should be raised for low vision people. The rise of lighting levels from the present practice (task illuminance level 500 lux) in office work does not improve the visual performance of low vision people. In planning the visual environment for the low vision people care has to be taken on the direction of light. (7 refs.)

  4. Cavity nonlinear optics with layered materials

    Directory of Open Access Journals (Sweden)

    Fryett Taylor

    2017-12-01

    Full Text Available Unprecedented material compatibility and ease of integration, in addition to the unique and diverse optoelectronic properties of layered materials, have generated significant interest in their utilization in nanophotonic devices. While initial nanophotonic experiments with layered materials primarily focused on light sources, modulators, and detectors, recent efforts have included nonlinear optical devices. In this paper, we review the current state of cavity-enhanced nonlinear optics with layered materials. Along with conventional nonlinear optics related to harmonic generation, we report on emerging directions of nonlinear optics, where layered materials can potentially play a significant role.

  5. INTEGRATED APPLICATION OF OPTICAL DIAGNOSTIC METHODS IN ULCERATIVE COLITIS

    Directory of Open Access Journals (Sweden)

    E. V. Velikanov

    2013-01-01

    Full Text Available Abstract. Our results suggest that the combined use of optical coherent tomography (OCT and fluorescence diagnosis helps to refine the nature and boundaries of the pathological process in the tissue of the colon in ulcerative colitis. Studies have shown that an integrated optical diagnostics allows us to differentiate lesions respectively to histology and to decide on the need for biopsy and venue. This method is most appropriate in cases difficult for diagnosis. 

  6. Optical security based on near-field processes at the nanoscale

    International Nuclear Information System (INIS)

    Naruse, Makoto; Tate, Naoya; Ohtsu, Motoichi

    2012-01-01

    Optics has been playing crucial roles in security applications ranging from authentication and watermarks to anti-counterfeiting. However, since the fundamental physical principle involves optical far-fields, or propagating light, diffraction of light causes severe difficulties, for example in device scaling and system integration. Moreover, conventional security technologies in use today have been facing increasingly stringent demands to safeguard against threats such as counterfeiting of holograms, requiring innovative physical principles and technologies to overcome their limitations. Nanophotonics, which utilizes interactions between light and matter at the nanometer scale via optical near-field interactions, can break through the diffraction limit of conventional propagating light. Moreover, nanophotonics has some unique physical attributes, such as localized optical energy transfer and the hierarchical nature of optical near-field interactions, which pave the way for novel security functionalities. This paper reviews the physical principles and describes some experimental demonstrations of systems based on nanophotonics with respect to security applications such as tamper resistance against non-invasive and invasive attacks, hierarchical information retrieval, hierarchical holograms, authentication, and traceability. (paper)

  7. Hermitian symmetry free optical-single-carrier frequency division multiple access for visible light communication

    Science.gov (United States)

    Azim, Ali W.; Le Guennec, Yannis; Maury, Ghislaine

    2018-05-01

    Optical-orthogonal frequency division multiplexing (O-OFDM) is an effective scheme for visible light communications (VLC), offering a candid extension to multiple access (MA) scenarios, i.e., O-OFDMA. However, O-OFDMA exhibits high peak-to-average power ratio (PAPR), which exacerbates the non-linear distortions from the light emitting diode (LED). To overcome high PAPR while sustaining MA, optical-single-carrier frequency-division multiple access (O-SCFDMA) is used. For both O-OFDMA and O-SCFDMA, Hermitian symmetry (HS) constraint is imposed in frequency-domain (FD) to obtain a real-valued time-domain (TD) signal for intensity modulation-direct detection (IM-DD) implementation of VLC. Howbeit, HS results in an increase of PAPR for O-SCFDMA. In this regard, we propose HS free (HSF) O-SCFDMA (HSFO-SCFDMA). We compare HSFO-SCFDMA with several approaches in key parameters, such as, bit error rate (BER), optical power penalty, PAPR, quantization, electrical power efficiency and system complexity. BER performance and optical power penalty is evaluated considering multipath VLC channel and taking into account the bandwidth limitation of LED in combination with its optimized driver. It is illustrated that HSFO-SCFDMA outperforms other alternatives.

  8. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation

    Directory of Open Access Journals (Sweden)

    Jongpal Kim

    2015-12-01

    Full Text Available To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG readout chip is fabricated using a 0.13-μm complementary metal–oxide–semiconductor (CMOS process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms.

  9. Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting

    Directory of Open Access Journals (Sweden)

    Ngoc Hai Vu

    2017-10-01

    Full Text Available An essential impact which can improve the indoor environment and save on power consumption for artificial lighting is utilization of daylight. Optical fiber daylighting technology offers a way to use direct daylight for remote spaces in a building. However, the existing paradigm based on the precise orientation of sunlight concentrator toward the Sun is very costly and difficult to install on the roof of buildings. Here, we explore an alternative approach using mirror-coated lens array and planar waveguide to develop a flat optical fiber daylighting system (optical fiber daylighting panel with lateral displacement Sun-tracking mechanism. Sunlight collected and reflected by each mirror-coated lens in a rectangular lens array is coupled into a planar waveguide using cone prisms placed at each lens focus. This geometry yields a thin, flat profile for Sunlight concentrator. Our proposed concentrating panel can be achieved with 35 mm thickness while the concentrator’s width and length are 500 mm × 500 mm. The commercial optical simulation tool (LightToolsTM was used to develop the simulation models and analyze the system performance. Simulation results based on the designed system demonstrated an optical efficiency of 51.4% at a concentration ratio of 125. The system can support utilizing a lateral displacement Sun-tracking system, which allows for replacing bulky and robust conventional rotational Sun-tracking systems. This study shows a feasibility of a compact and inexpensive optical fiber daylighting system to be installed on the roof of buildings.

  10. A COTS RF/Optical Software Defined Radio for the Integrated Radio and Optical Communications Test Bed

    Science.gov (United States)

    Nappier, Jennifer M.; Zeleznikar, Daniel J.; Wroblewski, Adam C.; Tokars, Roger P.; Schoenholz, Bryan L.; Lantz, Nicholas C.

    2017-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration (NASA) is investigating the merits of a hybrid radio frequency (RF) and optical communication system for deep space missions. In an effort to demonstrate the feasibility and advantages of a hybrid RF/Optical software defined radio (SDR), a laboratory prototype was assembled from primarily commercial-off-the-shelf (COTS) hardware components. This COTS platform has been used to demonstrate simultaneous transmission of the radio and optical communications waveforms through to the physical layer (telescope and antenna). This paper details the hardware and software used in the platform and various measures of its performance. A laboratory optical receiver platform has also been assembled in order to demonstrate hybrid free space links in combination with the transmitter.

  11. Application of polarization information to a light-controlling-light technique.

    Science.gov (United States)

    Liang, J C; Wang, H C

    2017-09-15

    Nonlinear effects of photo-induced waveguides based on isomerization photochemistry are investigated. It is found that polarization information of the controlling light can be used to control the propagation of the signal light in all-optical waveguides, and an accurate and convenient light-controlling-light scheme is proposed, that is, controlling propagation of the signal light by synergic use of the intensity information and polarization information of the controlling light. The polarization dependence of optical nonlinearity is expected to enrich the connotation of the optical nonlinear effects and has theoretical significance and practical value.

  12. Energy savings due to daylight and artificial lighting integration in office buildings in hot climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ashwal, Nagib T. [Sana' a University, Sana' a (Yemen); Budaiwi, Ismail M. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2011-07-01

    Reducing energy consumption while maintaining acceptable environmental quality in buildings has been a challenging task for building professionals. In office buildings, artificial lighting systems are a major consumer of energy and can significantly contribute to building cooling load. Furthermore, although reliable, artificial lighting does not necessarily provide the required quality of lighting. Significant improvement in lighting quality and energy consumption can be achieved by proper integration of daylight and artificial lighting. The objective of this study is to investigate the energy performance of office buildings resulting from daylight and artificial lighting integration in hot climates. A parametric analysis is conducted to find the impact of different window design parameters, including window area, height and glazing type, on building energy performance. Results have shown that as much as 35% reduction in lighting energy consumption and 13% reduction in total energy consumption can be obtained when proper daylighting and artificial lighting integration is achieved.

  13. Light backscatter fiber optic sensor: a new tool for predicting the stability of pork emulsions containing antioxidative potato protein hydrolysate.

    Science.gov (United States)

    Nieto, Gema; Xiong, Youling L; Payne, Fred; Castillo, Manuel

    2015-02-01

    The objective of this study was to determine whether light backscatter response from fresh pork meat emulsions is correlated to final product stability indices. A specially designed fiber optic measurement system was used in combination with a miniature fiber optic spectrometer to determine the intensity of light backscatter within the wavelength range 300-1100 nm (UV/VIS/NIR) at different radial distances (2, 2.5 and 3mm) with respect to the light source in pork meat emulsions with two fat levels (15%, 30%) and two levels (0, 2.5%) of the natural antioxidant hydrolyzed potato protein (HPP). Textural parameters (hardness, deformability, cohesiveness and breaking force), cooking loss, TBARS (1, 2, 3, and 7 days of storage at 4 °C) and CIELAB color coordinates of cooked emulsions were measured. The light backscatter was directly correlated with cooking losses, color, breaking force and TBARS. The optical configuration proposed would compensate for the emulsion heterogeneity, maximizing the existing correlation between the optical signal and the emulsion quality metrics.

  14. From sight to light the passage from ancient to modern optics

    CERN Document Server

    Smith, A Mark

    2014-01-01

    From its inception in Greek antiquity, the science of optics was aimed primarily at explaining sight and accounting for why things look as they do. By the end of the seventeenth century, however, the analytic focus of optics had shifted to light: its fundamental properties and such physical behaviors as reflection, refraction, and diffraction. This dramatic shift-which A. Mark Smith characterizes as the "Keplerian turn"-lies at the heart of this fascinating and pioneering study.                    Breaking from previous scholarship that sees Johannes Kepler as the culmination of a long-evolvin

  15. Mass estimates from optical-light curves for binary X-ray sources

    International Nuclear Information System (INIS)

    Avni, Y.

    1978-01-01

    The small amplitude variations with orbital phase of the optical light from X-ray binaries are caused by the changing geometrical aspect of the primary as seen by a fixed observer. The shape and the amplitude of the light curve depends on the stellar masses and on the orbital elements. The light curve can, therefore, be used to determine, or set limits on, the parameters of the binary system. A self-consistent procedure for the calculation of the light curve can be formulated if the primary is formulated if the primary is uniformly rotating at an angular velocity equal to the angular velocity of its orbital revolution in a circular orbit, and if the primary is in a hydrostatic and radiative equilibrium in the co-rotating frame. When the primary is further approximated to be centrally condensed, the above set of assumptions is called the standard picture. The standard picture is described, its validity discussed and its application to various systems reviewed. (C.F.)

  16. Preserving Simplecticity in the Numerical Integration of Linear Beam Optics

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Presented are mathematical tools and methods for the development of numerical integration techniques that preserve the symplectic condition inherent to mechanics. The intended audience is for beam physicists with backgrounds in numerical modeling and simulation with particular attention to beam optics applications. The paper focuses on Lie methods that are inherently symplectic regardless of the integration accuracy order. Section 2 provides the mathematically tools used in the sequel and necessary for the reader to extend the covered techniques. Section 3 places those tools in the context of charged-particle beam optics; in particular linear beam optics is presented in terms of a Lie algebraic matrix representation. Section 4 presents numerical stepping techniques with particular emphasis on a third-order leapfrog method. Section 5 discusses the modeling of field imperfections with particular attention to the fringe fields of quadrupole focusing magnets. The direct computation of a third order transfer matrix for a fringe field is shown.

  17. White light coronagraph in OSO-7

    International Nuclear Information System (INIS)

    Koomen, M.J.; Detwiler, C.R.; Brueckner, G.E.; Cooper, H.W.; Tousey, R.

    1975-01-01

    A small, externally occulted Lyot-type coronagraph, designated for use in the seventh unmanned Orbiting Solar Observatory (OSO-7), is described. Optical configuration, suppression of stray light, SEC vidicon detector, and data system are discussed, as well as integration of the instrument into the spacecraft and operation in orbit. Orbital operation produced daily images of the white light corona, from 2.8 to 10 solar radii, at least once per day for 2 3/4 yr. The first records of white light coronal transient events were obtained, and the corona was shown to be constantly changing

  18. Sensitivity of a fibre scattered-light interferometer to external phase perturbations in an optical fibre

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A E; Potapov, V T [V.A.Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino Branch, Fryazino, Moscow region (Russian Federation); Gorshkov, B G [OOO ' Petrofaiber' , Russia, Tula region, Novomoskovsk (Russian Federation)

    2015-10-31

    Sensitivity of a fibre scattered-light interferometer to external phase perturbations is studied for the first time. An expression is derived for an average power of a useful signal at the interferometer output under external harmonic perturbations in a signal fibre of the interferometer. It is shown that the maximum sensitivity of the scattered-light interferometer depends on the dispersion of the interferogram intensity. An average signal-to-noise ratio is determined theoretically and experimentally at the output of the interferometer at different amplitudes of external perturbations. Using the measured dependences of the signal-to-noise ratio, the threshold sensitivity of the fibre scattered-light interferometer to external phase perturbations is found. The results obtained can be used to optimise characteristics of optical time-domain reflectometers and to design individual phase-sensitive fibre-optic sensors. (laser applications and other topics in quantum electronics)

  19. Deflection of slow light by magneto-optically controlled atomic media

    International Nuclear Information System (INIS)

    Zhou, D. L.; Wang, R. Q.; Zhou, Lan; Yi, S.; Sun, C. P.

    2007-01-01

    We present a semiclassical theory for light deflection by a coherent Λ-type three-level atomic medium in an inhomogeneous magnetic field or an inhomogeneous control laser. When the atomic energy levels (or the Rabi coupling by the control laser) are position-dependent due to the Zeeman effect caused by the inhomogeneous magnetic field (or due to inhomogeneity of the control field profile), the spatial dependence of the refraction index of the atomic medium will result in an observable deflection of slow signal light when the electromagnetically induced transparency cancels medium absorption. Our theoretical approach based on Fermat's principle in geometrical optics not only provides a consistent explanation for the most recent experiment in a straightforward way, but also predicts the two-photon detuning dependent behaviors and larger deflection angles by three orders of magnitude for the slow signal light deflection by the atomic media in an inhomogeneous off-resonant control laser field

  20. Universal discrete Fourier optics RF photonic integrated circuit architecture.

    Science.gov (United States)

    Hall, Trevor J; Hasan, Mehedi

    2016-04-04

    This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical.