WorldWideScience

Sample records for optical cluster detections

  1. Optical detection of CO and CO2 temperature dependent desorption from carbon nanotube clusters

    International Nuclear Information System (INIS)

    Chistiakova, M V; Armani, A M

    2014-01-01

    The development of new materials relies on high precision methods to quantify adsorption/desorption of gases from surfaces. One commonly used approach is temperature programmed desorption spectroscopy. While this approach is very accurate, it requires complex instrumentation, and it is limited to performing experiments under high vacuum, thus restricting experimental scope. An alternative approach is to integrate the surface of interest directly onto a detector face, creating an active substrate. One surface that has applications in numerous areas is the carbon nanotube (CNT). As such, an active substrate that integrates a CNT surface on a sensor and is able to perform measurements in ambient environments will have significant impact. In the present work, we have developed an active substrate that combines an optical sensor with a CNT cluster substrate. The optical sensor is able to accurately probe the temperature dependent desorption of carbon monoxide and carbon dioxide gases from the CNT cluster surface. This active substrate will enable a wide range of temperature dependent desorption measurements to be performed from a scientifically interesting material system. (paper)

  2. Optical properties of cluster plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Yasuaki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Downer, M C

    1998-03-01

    It is shown that unlike a gas plasma or an electron plasma in a metal, an ionized clustered material (`cluster plasma`) permits propagation below the plasma cut-off of electromagnetic (EM) waves whose phase velocity is close to but below the speed of light. This results from the excitation of a plasma oscillation mode (and/or polarization mode) through the cluster surface which does not exist in usual gaseous plasma. The existence of this new optical mode, cluster mode, is confirmed via numerical simulation. (author)

  3. A magnetic nanoparticle-clustering biosensor for blu-ray based optical detection of small-molecules

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Donolato, Marco; Antunes, Paula Soares Martins

    2014-01-01

    MNP-clustering facilitates high-resolution small-molecule assays. For experiments, aptamer-functionalized MNPs (Apt-MNPs) were first incubated with adenosine-5'-triphosphate (ATP) followed by adding MNPs with linker strands (linker-MNPs). The linker hybridizes with a region of aptamer sequences...

  4. The detection of neutron clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marques, F.M.; Labiche, M.; Orr, N.A.; Angelique, J.C. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire] [and others

    2001-11-01

    A new approach to the production and detection of bound neutron clusters is presented. The technique is based on the breakup of beams of very neutron-rich nuclei and the subsequent detection of the recoiling proton in a liquid scintillator. The method has been tested in the breakup of {sup 11}Li, {sup 14}Be and {sup 15}B beams by a C target. Some 6 events were observed that exhibit the characteristics of a multi-neutron cluster liberated in the breakup of {sup 14}Be, most probably in the channel {sup 10}Be+{sup 4}n. The various backgrounds that may mimic such a signal are discussed in detail. (author)

  5. Crowd Analysis by Using Optical Flow and Density Based Clustering

    DEFF Research Database (Denmark)

    Santoro, Francesco; Pedro, Sergio; Tan, Zheng-Hua

    2010-01-01

    In this paper, we present a system to detect and track crowds in a video sequence captured by a camera. In a first step, we compute optical flows by means of pyramidal Lucas-Kanade feature tracking. Afterwards, a density based clustering is used to group similar vectors. In the last step...

  6. Detection of CO emission in Hydra 1 cluster galaxies

    International Nuclear Information System (INIS)

    Huchtmeier, W.K.

    1990-01-01

    A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies

  7. Hanle Detection for Optical Clocks

    Directory of Open Access Journals (Sweden)

    Xiaogang Zhang

    2015-01-01

    Full Text Available Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard.

  8. Automated detection of microcalcification clusters in mammograms

    Science.gov (United States)

    Karale, Vikrant A.; Mukhopadhyay, Sudipta; Singh, Tulika; Khandelwal, Niranjan; Sadhu, Anup

    2017-03-01

    Mammography is the most efficient modality for detection of breast cancer at early stage. Microcalcifications are tiny bright spots in mammograms and can often get missed by the radiologist during diagnosis. The presence of microcalcification clusters in mammograms can act as an early sign of breast cancer. This paper presents a completely automated computer-aided detection (CAD) system for detection of microcalcification clusters in mammograms. Unsharp masking is used as a preprocessing step which enhances the contrast between microcalcifications and the background. The preprocessed image is thresholded and various shape and intensity based features are extracted. Support vector machine (SVM) classifier is used to reduce the false positives while preserving the true microcalcification clusters. The proposed technique is applied on two different databases i.e DDSM and private database. The proposed technique shows good sensitivity with moderate false positives (FPs) per image on both databases.

  9. The detection of clusters in rare diseases

    Energy Technology Data Exchange (ETDEWEB)

    Besag, J. (Washington Univ., Seattle, WA (USA) Newcastle upon Tyne Univ. (UK)); Newell, J. (Newcastle upon Tyne Univ. (UK))

    1991-01-01

    Tests for clustering of rare diseases investigate whether an observed pattern of cases in one or more geographical regions could reasonably have arisen by chance alone, bearing in mind the variation in background population density. In contrast, tests for the detection of clusters are concerned with screening a large region for evidence of individual 'hot spots' of disease but without any preconception about their likely locations; the results of such tests may form the basis for subsequent small area investigations, statistical or non-statistical, but will rarely be an end in themselves. The main intention of the paper is to describe and illustrate a new technique for the identification of small clusters of disease. A secondary purpose is to discuss some common pitfalls in the application of tests of clustering to epidemiological data. (author).

  10. Optical detection in microfluidic systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2009-01-01

    Optical detection schemes continue to be favoured for measurements in microfluidic systems. A selection of the latest progress mainly within the last two years is critically reviewed. Emphasis is on integrated solutions, such as planar waveguides, coupling schemes to the outside world, evanescent...... to ease commercialisation of the devices. This work will hopefully result in more commercial products that benefit from integrated optics, because the impact on commercial devices so far has been modest....

  11. Spatial cluster detection using dynamic programming

    Directory of Open Access Journals (Sweden)

    Sverchkov Yuriy

    2012-03-01

    Full Text Available Abstract Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic

  12. Fiber optic fire detection technology

    International Nuclear Information System (INIS)

    Hering, D.W.

    1990-01-01

    Electrostatic application of paint was, and still is, the most technically feasible method of reducing VOC (volatile organic compounds) emissions, while reducing the cost to apply the coatings. Prior to the use of electrostatics, only two sides of the traditional fire triangle were normally present in the booth, fuel (solvent), and oxygen (air). Now the third leg (the ignition source) was present at virtually all times during the production operation in the form of the electrostatic charge and the resulting energy in the system. The introduction of fiber optics into the field of fire detection was for specific application to the electrostatic painting industry, but specifically, robots used in the application of electrostatic painting in the automotive industry. The use of fiber optics in this hazard provided detection for locations that have been previously prohibited or inaccessible with the traditional fire detection systems. The fiber optic technology that has been adapted to the field of fire detection operates on the principle of transmission of photons through a light guide (optic fiber). When the light guide is subjected to heat, the cladding on the light guide melts away from the core and allows the light (photons) to escape. The controller, which contains the emitter and receiver is set-up to distinguish between partial loss of light and a total loss of light. Glass optical fibers carrying light offer distinct advantages over wires or coaxial cables carrying electricity as a transmission media. The uses of fiber optic detection will be expanded in the near future into such areas as aircraft, cable trays and long conveyor runs because fiber optics can carry more information and deliver it with greater clarity over longer distances with total immunity to all kinds of electrical interference

  13. Fast clustering using adaptive density peak detection.

    Science.gov (United States)

    Wang, Xiao-Feng; Xu, Yifan

    2017-12-01

    Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.

  14. Optical response of small magnesium clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2004-01-01

    We predict strong enhancement in the photoabsorption of small Mg clusters in the region of 4–5 eV due to the resonant excitation of the plasmon oscillations of cluster electrons. Photoabsorption spectra for neutral Mg clusters consisting of up to N = 11 atoms have been calculated using an ab initio...... framework based on the time-dependent density functional theory (TDDFT). The nature of predicted resonances has been elucidated by comparison of the results of the an ab initio calculations with the results of the classical Mie theory. The splitting of the plasmon resonances caused by the cluster...

  15. X-ray and optical study of seven clusters of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Maccagni, D; Tarenghi, M [Consiglio Nazionale delle Ricerche, Milan (Italy). Lab. di Fisica Cosmica e Tecnologie Relative; Cooke, B A; Maccacaro, T; Pye, J P; Ricketts, M J [Leicester Univ. (UK). X-Ray Astronomy Group; Chincarini, G [Oklahoma Univ., Norman (USA). Dept. of Physics; Bologna Univ. (Italy). Istituto di Astronomia)

    1978-01-01

    In this paper we present observations of seven clusters of galaxies associated with X-ray sources detected by the Sky Survey Instrument (SSI) of the University of Leicester on the satellite Ariel V. Three are new X-ray sources and there are four new identifications with clusters of galaxies. All error boxes have an area less than about 1/3 square degree. All clusters have been classified according to the Rood and Sastry and the Bautz and Morgan systems. The new optical material obtained at the 4 m telescope of the Cerro Tololo Inter-American Observatory has been used to give the morphological description of some of the clusters.

  16. Optical detection of polychlorinated biphenyls

    Science.gov (United States)

    Kuncova, Gabriela; Berkova, Daniela; Burkhard, Jiri; Demnerova, Katerina; Pazlarova, Jarmila; Triska, Jan; Vrchotova, Nadezda

    1999-12-01

    In this paper we describe the detection of polychlorinated biphenyls (PCBs) which is based on the measurement of changes of optical absorption at 400 nm of the medium in an aerobic bioreactor with immobilized cells Pseudomonas species 2. The rate of production, composition and the concentration of yellow intermediates are influenced by concentration and composition of PCB mixtures, concentration of cells and by the methods of immobilization. The method was applied in the detection of commercial mixture D103. It was found that the advantageous carriers were inorganic or organic-inorganic matrices, which sorbed PCBs and a cell outgrowth from their surface was low. In water contaminated with transformer oil and chlorinated hydrocarbons the detection limit is 10-2 gD103/kg. In transformer oil the upper limit for degradation of D103 by sodium dehalogenation (1.5 gD103 /kgoil) was determined also in the presence of the same concentration of trichloroethylene. The employment to of a liquid core waveguide spectrophotometer instead of a diode array spectrophotometer increased the sensitivity of the measurement of yellow intermediates by a factor of 100. An extrinsic fiber-optic sensor was used for in-situ measurement during biodegradation of PCBs in bioreactors.

  17. Structural and optical properties of Si-doped Ag clusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-03-06

    The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.

  18. Structural and optical properties of Si-doped Ag clusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2014-01-01

    The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.

  19. Search for optical millisecond pulsars in globular clusters

    International Nuclear Information System (INIS)

    Middleditch, J.H.; Imamura, J.N.; Steiman-Cameron, T.Y.

    1988-01-01

    A search for millisecond optical pulsars in several bright, compact globular clusters was conducted. The sample included M28, and the X-ray clusters 47 Tuc, NGC 6441, NGC 6624, M22, and M15. The globular cluster M28 contains the recently discovered 327 Hz radio pulsar. Upper limits of 4 sigma to pulsed emission of (1-20) solar luminosities were found for the globular clusters tested, and 0.3 solar luminosity for the M28 pulsar for frequencies up to 500 Hz. 8 references

  20. Optical and acoustical UAV detection

    Science.gov (United States)

    Christnacher, Frank; Hengy, Sébastien; Laurenzis, Martin; Matwyschuk, Alexis; Naz, Pierre; Schertzer, Stéphane; Schmitt, Gwenael

    2016-10-01

    Recent world events have highlighted that the proliferation of UAVs is bringing with it a new and rapidly increasing threat for national defense and security agencies. Whilst many of the reported UAV incidents seem to indicate that there was no terrorist intent behind them, it is not unreasonable to assume that it may not be long before UAV platforms are regularly employed by terrorists or other criminal organizations. The flight characteristics of many of these mini- and micro-platforms present challenges for current systems which have been optimized over time to defend against the traditional air-breathing airborne platforms. A lot of programs to identify cost-effective measures for the detection, classification, tracking and neutralization have begun in the recent past. In this paper, lSL shows how the performance of a UAV detection and tracking concept based on acousto-optical technology can be powerfully increased through active imaging.

  1. Theoretical study of hyperfine interactions and optically detected magnetic resonance spectra by simulation of the C291[NV]-H172 diamond cluster hosting nitrogen-vacancy center

    International Nuclear Information System (INIS)

    Nizovtsev, A P; Ya Kilin, S; Pushkarchuk, A L; Pushkarchuk, V A; Jelezko, F

    2014-01-01

    Single nitrogen-vacancy (NV) centers in diamond coupled to neighboring nuclear spins are promising candidates for room-temperature applications in quantum information processing, quantum sensing and metrology. Here we report on a systematic density functional theory simulation of hyperfine coupling of the electronic spin of the NV center to individual 13 C nuclear spins arbitrarily disposed in the H-terminated C 291 [NV] - H 172 cluster hosting the NV center. For the ‘families’ of equivalent positions of the 13 C atom in diamond lattices around the NV center we calculated hyperfine characteristics. For the first time the data are given for a system where the 13 C atom is located on the NV center symmetry axis. Electron paramagnetic resonance transitions in the coupled electron–nuclear spin system 14 NV- 13 C are analyzed as a function of the external magnetic field. Previously reported experimental data from Dréau et al (2012 Phys. Rev. B 85 134107) are described using simulated hyperfine coupling parameters. (paper)

  2. A Test for Cluster Bias: Detecting Violations of Measurement Invariance across Clusters in Multilevel Data

    Science.gov (United States)

    Jak, Suzanne; Oort, Frans J.; Dolan, Conor V.

    2013-01-01

    We present a test for cluster bias, which can be used to detect violations of measurement invariance across clusters in 2-level data. We show how measurement invariance assumptions across clusters imply measurement invariance across levels in a 2-level factor model. Cluster bias is investigated by testing whether the within-level factor loadings…

  3. Resource-efficient generation of linear cluster states by linear optics with postselection

    International Nuclear Information System (INIS)

    Uskov, D B; Alsing, P M; Fanto, M L; Szep, A; Smith, A M; Kaplan, L; Kim, R

    2015-01-01

    We report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon–photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to (1/2) n−1 ; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of (1/4) m−1 . (paper)

  4. How to detect trap cluster systems?

    International Nuclear Information System (INIS)

    Mandowski, Arkadiusz

    2008-01-01

    Spatially correlated traps and recombination centres (trap-recombination centre pairs and larger clusters) are responsible for many anomalous phenomena that are difficult to explain in the framework of both classical models, i.e. model of localized transitions (LT) and the simple trap model (STM), even with a number of discrete energy levels. However, these 'anomalous' effects may provide a good platform for identifying trap cluster systems. This paper considers selected cluster-type effects, mainly relating to an anomalous dependence of TL on absorbed dose in the system of isolated clusters (ICs). Some consequences for interacting cluster (IAC) systems, involving both localized and delocalized transitions occurring simultaneously, are also discussed

  5. Stable dissipative optical vortex clusters by inhomogeneous effective diffusion.

    Science.gov (United States)

    Li, Huishan; Lai, Shiquan; Qui, Yunli; Zhu, Xing; Xie, Jianing; Mihalache, Dumitru; He, Yingji

    2017-10-30

    We numerically show the generation of robust vortex clusters embedded in a two-dimensional beam propagating in a dissipative medium described by the generic cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion term, which is asymmetrical in the two transverse directions and periodically modulated in the longitudinal direction. We show the generation of stable optical vortex clusters for different values of the winding number (topological charge) of the input optical beam. We have found that the number of individual vortex solitons that form the robust vortex cluster is equal to the winding number of the input beam. We have obtained the relationships between the amplitudes and oscillation periods of the inhomogeneous effective diffusion and the cubic gain and diffusion (viscosity) parameters, which depict the regions of existence and stability of vortex clusters. The obtained results offer a method to form robust vortex clusters embedded in two-dimensional optical beams, and we envisage potential applications in the area of structured light.

  6. Optical properties of DNA-hosted silver clusters

    NARCIS (Netherlands)

    Markešević, Nemanja

    2015-01-01

    DNA-hosted silver clusters (Ag:DNAs) have attracted a lot of attention due to their small size (~20 atoms), wide range of applications in chemistry and biology, and sequence-dependent optical tunability. Most of the previous studies are focused on the ensemble of emitters in solution. However,

  7. Optical study of the DAFT/FADA galaxy cluster survey

    Science.gov (United States)

    Martinet, N.; Durret, F.; Clowe, D.; Adami, C.

    2013-11-01

    DAFT/FADA (Dark energy American French Team) is a large survey of ˜90 high redshift (0.42×10^{14} M_{⊙}) clusters with HST weak lensing oriented data, plus BVRIZJ 4m ground based follow up to compute photometric redshifts. The main goals of this survey are to constrain dark energy parameters using weak lensing tomography and to study a large homogeneous sample of high redshift massive clusters. We will briefly review the latest results of this optical survey, focusing on two ongoing works: the calculation of galaxy luminosity functions from photometric redshift catalogs and the weak lensing analysis of ground based data.

  8. The optical properties of galaxies in the Ophiuchus cluster

    Science.gov (United States)

    Durret, F.; Wakamatsu, K.; Adami, C.; Nagayama, T.; Omega Muleka Mwewa Mwaba, J. M.

    2018-05-01

    Context. Ophiuchus is one of the most massive clusters known, but due to its low Galactic latitude its optical properties remain poorly known. Aims: We investigate the optical properties of Ophiuchus to obtain clues on the formation epoch of this cluster, and compare them to those of the Coma cluster, which is comparable in mass to Ophiuchus but much more dynamically disturbed. Methods: Based on a deep image of the Ophiuchus cluster in the r' band obtained at the Canada France Hawaii Telescope with the MegaCam camera, we have applied an iterative process to subtract the contribution of the numerous stars that, due to the low Galactic latitude of the cluster, pollute the image, and have obtained a photometric catalogue of 2818 galaxies fully complete at r' = 20.5 mag and still 91% complete at r' = 21.5 mag. We use this catalogue to derive the cluster Galaxy Luminosity Function (GLF) for the overall image and for a region (hereafter the "rectangle" region) covering exactly the same physical size as the region in which the GLF of the Coma cluster was previously studied. We then compute density maps based on an adaptive kernel technique, for different magnitude limits, and define three circular regions covering 0.08, 0.08, and 0.06 deg2, respectively, centred on the cluster (C), on northwest (NW) of the cluster, and southeast (SE) of the cluster, in which we compute the GLFs. Results: The GLF fits are much better when a Gaussian is added to the usual Schechter function, to account for the excess of very bright galaxies. Compared to Coma, Ophiuchus shows a strong excess of bright galaxies. Conclusions: The properties of the two nearby very massive clusters Ophiuchus and Coma are quite comparable, though they seem embedded in different large-scale environments. Our interpretation is that Ophiuchus was built up long ago, as confirmed by its relaxed state (see paper I) while Coma is still in the process of forming. The photometric catalogue of Ophiuchus (full Table B.1) is

  9. Local Community Detection Algorithm Based on Minimal Cluster

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2016-01-01

    Full Text Available In order to discover the structure of local community more effectively, this paper puts forward a new local community detection algorithm based on minimal cluster. Most of the local community detection algorithms begin from one node. The agglomeration ability of a single node must be less than multiple nodes, so the beginning of the community extension of the algorithm in this paper is no longer from the initial node only but from a node cluster containing this initial node and nodes in the cluster are relatively densely connected with each other. The algorithm mainly includes two phases. First it detects the minimal cluster and then finds the local community extended from the minimal cluster. Experimental results show that the quality of the local community detected by our algorithm is much better than other algorithms no matter in real networks or in simulated networks.

  10. Growth and optical properties of Ag clusters deposited on poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Flores-Camacho, J M; Weidlinger, G; Sun, L D; Hohage, M; Primetzhofer, D; Bauer, P; Zeppenfeld, P; Schmidegg, K

    2011-01-01

    The growth and concomitant evolution of the optical properties of Ag nano-clusters deposited on biaxially extruded poly(ethylene terephthalate) films is studied by reflectance difference spectroscopy. It is demonstrated by low energy ion scattering and simulated optical spectra that the clusters form a two-dimensional layer buried beneath the surface of the substrate. The experimental spectra are described by simulations in which different configurations of the host such as anisotropy, amorphization, and dilution are considered in an effective medium approach. The contribution of the anisotropic substrate is used to explain the resulting line shapes. We also discuss the role of the rate of change of the filling fraction with Ag coverage in the evolution of the spectra and the detection of the onset of coalescence by optical means.

  11. Electrostatic resonances and optical responses of cylindrical clusters

    International Nuclear Information System (INIS)

    Choy, C W; Xiao, J J; Yu, K W

    2008-01-01

    We developed a Green function formalism (GFF) for computing the electrostatic resonance in clusters of cylindrical particles. In the GFF, we take advantage of a surface integral equation to avoid matching the complicated boundary conditions on the surfaces of the particles. Numerical solutions of the eigenvalue equation yield a pole spectrum in the spectral representation. The pole spectrum can in turn be used to compute the optical response of these particles. For two cylindrical particles, the results are in excellent agreement with the exact results from the multiple image method and the normal mode expansion method. The results of this work can be extended to investigate the enhanced nonlinear optical responses of metal-dielectric composites, as well as optical switching in plasmonic waveguides.

  12. Laser-based optical detection of explosives

    CERN Document Server

    Pellegrino, Paul M; Farrell, Mikella E

    2015-01-01

    Laser-Based Optical Detection of Explosives offers a comprehensive review of past, present, and emerging laser-based methods for the detection of a variety of explosives. This book: Considers laser propagation safety and explains standard test material preparation for standoff optical-based detection system evaluation Explores explosives detection using deep ultraviolet native fluorescence, Raman spectroscopy, laser-induced breakdown spectroscopy, reflectometry, and hyperspectral imaging Examines photodissociation followed by laser-induced fluorescence, photothermal methods, cavity-enhanced absorption spectrometry, and short-pulse laser-based techniques Describes the detection and recognition of explosives using terahertz-frequency spectroscopic techniques Each chapter is authored by a leading expert on the respective technology, and is structured to supply historical perspective, address current advantages and challenges, and discuss novel research and applications. Readers are left with an in-depth understa...

  13. Process monitoring using optical ultrasonic wave detection

    International Nuclear Information System (INIS)

    Telschow, K.L.; Walter, J.B.; Garcia, G.V.; Kunerth, D.C.

    1989-01-01

    Optical ultrasonic wave detection techniques are being developed for process monitoring. An important limitation on optical techniques is that the material surface, in materials processing applications, is usually not a specular reflector and in many cases is totally diffusely reflecting. This severely degrades the light collected by the detection optics, greatly reducing the intensity and randomly scattering the phase of the reflected light. A confocal Fabry-Perot interferometer, which is sensitive to the Doppler frequency shift resulting from the surface motion and not to the phase of the collected light, is well suited to detecting ultrasonic waves in diffusely reflecting materials. This paper describes the application of this detector to the real-time monitoring of the sintering of ceramic materials. 8 refs., 5 figs

  14. An Examination of Three Spatial Event Cluster Detection Methods

    Directory of Open Access Journals (Sweden)

    Hensley H. Mariathas

    2015-03-01

    Full Text Available In spatial disease surveillance, geographic areas with large numbers of disease cases are to be identified, so that targeted investigations can be pursued. Geographic areas with high disease rates are called disease clusters and statistical cluster detection tests are used to identify geographic areas with higher disease rates than expected by chance alone. In some situations, disease-related events rather than individuals are of interest for geographical surveillance, and methods to detect clusters of disease-related events are called event cluster detection methods. In this paper, we examine three distributional assumptions for the events in cluster detection: compound Poisson, approximate normal and multiple hypergeometric (exact. The methods differ on the choice of distributional assumption for the potentially multiple correlated events per individual. The methods are illustrated on emergency department (ED presentations by children and youth (age < 18 years because of substance use in the province of Alberta, Canada, during 1 April 2007, to 31 March 2008. Simulation studies are conducted to investigate Type I error and the power of the clustering methods.

  15. Weighted community detection and data clustering using message passing

    Science.gov (United States)

    Shi, Cheng; Liu, Yanchen; Zhang, Pan

    2018-03-01

    Grouping objects into clusters based on the similarities or weights between them is one of the most important problems in science and engineering. In this work, by extending message-passing algorithms and spectral algorithms proposed for an unweighted community detection problem, we develop a non-parametric method based on statistical physics, by mapping the problem to the Potts model at the critical temperature of spin-glass transition and applying belief propagation to solve the marginals corresponding to the Boltzmann distribution. Our algorithm is robust to over-fitting and gives a principled way to determine whether there are significant clusters in the data and how many clusters there are. We apply our method to different clustering tasks. In the community detection problem in weighted and directed networks, we show that our algorithm significantly outperforms existing algorithms. In the clustering problem, where the data were generated by mixture models in the sparse regime, we show that our method works all the way down to the theoretical limit of detectability and gives accuracy very close to that of the optimal Bayesian inference. In the semi-supervised clustering problem, our method only needs several labels to work perfectly in classic datasets. Finally, we further develop Thouless-Anderson-Palmer equations which heavily reduce the computation complexity in dense networks but give almost the same performance as belief propagation.

  16. Optical Detection in Ultrafast Short Wavelength Science

    International Nuclear Information System (INIS)

    Fullagar, Wilfred K.; Hall, Chris J.

    2010-01-01

    A new approach to coherent detection of ionising radiation is briefly motivated and recounted. The approach involves optical scattering of coherent light fields by colour centres in transparent solids. It has significant potential for diffractive imaging applications that require high detection dynamic range from pulsed high brilliance short wavelength sources. It also motivates new incarnations of Bragg's X-ray microscope for pump-probe studies of ultrafast molecular structure-dynamics.

  17. Reset Tree-Based Optical Fault Detection

    Directory of Open Access Journals (Sweden)

    Howon Kim

    2013-05-01

    Full Text Available In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit’s reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool.

  18. Optical fiber applied to radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Francisco A.B.; Costa, Antonella L.; Oliveira, Arno H. de; Vasconcelos, Danilo C., E-mail: fanbra@yahoo.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: heeren@nuclear.ufmg.br, E-mail: danilochagas@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear

    2015-07-01

    In the last years, the production of optical fibers cables has make possible the development of a range of spectroscopic probes for in situ analysis performing beyond nondestructive tests, environmental monitoring, security investigation, application in radiotherapy for dose monitoring, verification and validation. In this work, a system using an optical fiber cable to light signal transmission from a NaI(Tl) radiation detector is presented. The innovative device takes advantage mainly of the optical fibers small signal attenuation and immunity to electromagnetic interference to application for radiation detection systems. The main aim was to simplify the detection system making it to reach areas where the conventional device cannot access due to its lack of mobility and external dimensions. Some tests with this innovative system are presented and the results stimulate the continuity of the researches. (author)

  19. Picosecond optical shutter for particle detection

    International Nuclear Information System (INIS)

    Fan, B.; Gee, C.M.; Shapiro, G.

    1975-04-01

    Characteristics of an optical shutter utilizing Kerr effect induced by picosecond laser pulses in carbon disulfide are studied experimentally. The shutter has a gate time of 4.5 to 5 ps full width at half-maximum and a transmission of approximately 15 percent at a wavelength 0.53 μm. Such an ultrafast shutter can be used as an optical signal gate in a sampling detection scheme that has picosecond time-resolution. The picosecond optical detection scheme is envisioned to have applications in experimental high-energy physics such as to time-resolve ultrashort Cherenkov or synchrotron radiation emitted by relativistic particles. Methods of synchronizing a laser-activated Kerr shutter with a particle accelerator or synchrotron are discussed

  20. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected Via the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; hide

    2010-01-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives (sigma)8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find (sigma)8 + 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernova which give (sigma)8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  1. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zeldovich Effect

    International Nuclear Information System (INIS)

    Sehgal, N.

    2011-01-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives σ 8 = 0.851 ± 0.115 and w = -1.14 ± 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find σ 8 = 0.821 ± 0.044 and w = -1.05 ± 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give σ 8 = 0.802 ± 0.038 and w = -0.98 ± 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  2. The Atacama Cosmology Telescope: Relation Between Galaxy Cluster Optical Richness and Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sehgal, Neelima; Addison, Graeme; Battaglia, Nick; Battistelli, Elia S.; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Duenner, Rolando; Gralla, Megan; hide

    2012-01-01

    We present the measured Sunyaev-Zel'dovich (SZ) flux from 474 optically-selected MaxBCG clusters that fall within the Atacama Cosmology Telescope (ACT) Equatorial survey region. The ACT Equatorial region used in this analysis covers 510 square degrees and overlaps Stripe 82 of the Sloan Digital Sky Survey. We also present the measured SZ flux stacked on 52 X-ray-selected MCXC clusters that fall within the ACT Equatorial region and an ACT Southern survey region covering 455 square degrees. We find that the measured SZ flux from the X-ray-selected clusters is consistent with expectations. However, we find that the measured SZ flux from the optically-selected clusters is both significantly lower than expectations and lower than the recovered SZ flux measured by the Planck satellite. Since we find a lower recovered SZ signal than Planck, we investigate the possibility that there is a significant offset between the optically-selected brightest cluster galaxies (BCGs) and the SZ centers, to which ACT is more sensitive due to its finer resolution. Such offsets can arise due to either an intrinsic physical separation between the BCG and the center of the gas concentration or from misidentification of the cluster BCG. We find that the entire discrepancy for both ACT and Planck can be explained by assuming that the BCGs are offset from the SZ maxima with a uniform random distribution between 0 and 1.5 Mpc. In contrast, the physical separation between BCGs and X-ray peaks for an X-ray-selected subsample of MaxBCG clusters shows a much narrower distribution that peaks within 0.2 Mpc. We conclude that while offsets between BCGs and SZ peaks may be an important component in explaining the discrepancy, it is likely that a combination of factors is responsible for the ACT and Planck measurements. Several effects that can lower the SZ signal equally for both ACT and Planck, but not explain the difference in measured signals, include a larger percentage of false detections in the

  3. Fault detection of flywheel system based on clustering and principal component analysis

    Directory of Open Access Journals (Sweden)

    Wang Rixin

    2015-12-01

    Full Text Available Considering the nonlinear, multifunctional properties of double-flywheel with closed-loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of “integrated power and attitude control” system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the reachability-plot. Finally, the last step of proposed model is used to define the relationship of parameters in each operation through the principal component analysis (PCA method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system.

  4. Optical fiber-applied radiation detection system

    International Nuclear Information System (INIS)

    Nishiura, Ryuichi; Uranaka, Yasuo; Izumi, Nobuyuki

    2001-01-01

    A technique to measure radiation by using plastic scintillation fibers doped radiation fluorescent (scintillator) to plastic optical fiber for a radiation sensor, was developed. The technique contains some superiority such as high flexibility due to using fibers, relatively easy large area due to detecting portion of whole of fibers, and no electromagnetic noise effect due to optical radiation detection and signal transmission. Measurable to wide range of and continuous radiation distribution along optical fiber cable at a testing portion using scintillation fiber and flight time method, the optical fiber-applied radiation sensing system can effectively monitor space radiation dose or apparatus operation condition monitoring. And, a portable type scintillation optical fiber body surface pollution monitor can measure pollution concentration of radioactive materials attached onto body surface by arranging scintillation fiber processed to a plate with small size and flexibility around a man to be tested. Here were described on outline and fundamental properties of various application products using these plastic scintillation fiber. (G.K.)

  5. AMICO: optimized detection of galaxy clusters in photometric surveys

    Science.gov (United States)

    Bellagamba, Fabio; Roncarelli, Mauro; Maturi, Matteo; Moscardini, Lauro

    2018-02-01

    We present Adaptive Matched Identifier of Clustered Objects (AMICO), a new algorithm for the detection of galaxy clusters in photometric surveys. AMICO is based on the Optimal Filtering technique, which allows to maximize the signal-to-noise ratio (S/N) of the clusters. In this work, we focus on the new iterative approach to the extraction of cluster candidates from the map produced by the filter. In particular, we provide a definition of membership probability for the galaxies close to any cluster candidate, which allows us to remove its imprint from the map, allowing the detection of smaller structures. As demonstrated in our tests, this method allows the deblending of close-by and aligned structures in more than 50 per cent of the cases for objects at radial distance equal to 0.5 × R200 or redshift distance equal to 2 × σz, being σz the typical uncertainty of photometric redshifts. Running AMICO on mocks derived from N-body simulations and semi-analytical modelling of the galaxy evolution, we obtain a consistent mass-amplitude relation through the redshift range of 0.3 slope of ∼0.55 and a logarithmic scatter of ∼0.14. The fraction of false detections is steeply decreasing with S/N and negligible at S/N > 5.

  6. Range detection using entangled optical photons

    Science.gov (United States)

    Brandsema, Matthew J.; Narayanan, Ram M.; Lanzagorta, Marco

    2015-05-01

    Quantum radar is an emerging field that shows a lot of promise in providing significantly improved resolution compared to its classical radar counterpart. The key to this kind of resolution lies in the correlations created from the entanglement of the photons being used. Currently, the technology available only supports quantum radar implementation and validation in the optical regime, as opposed to the microwave regime, because microwave photons have very low energy compared to optical photons. Furthermore, there currently do not exist practical single photon detectors and generators in the microwave spectrum. Viable applications in the optical regime include deep sea target detection and high resolution detection in space. In this paper, we propose a conceptual architecture of a quantum radar which uses entangled optical photons based on Spontaneous Parametric Down Conversion (SPDC) methods. After the entangled photons are created and emerge from the crystal, the idler photon is detected very shortly thereafter. At the same time, the signal photon is sent out towards the target and upon its reflection will impinge on the detector of the radar. From these two measurements, correlation data processing is done to obtain the distance of the target away from the radar. Various simulations are then shown to display the resolution that is possible.

  7. Supernovae in Low-Redshift Galaxy Clusters: Observations by the Wise Observatory Optical Transient Search (WOOTS)

    OpenAIRE

    Gal-Yam, Avishay; Maoz, Dan; Guhathakurta, Puragra; Filippenko, Alexei V.

    2007-01-01

    We describe the Wise Observatory Optical Transient Search (WOOTS), a survey for supernovae (SNe) and other variable and transient objects in the fields of redshift 0.06-0.2 Abell galaxy clusters. We present the survey design and data-analysis procedures, and our object detection and follow-up strategies. We have obtained follow-up spectroscopy for all viable SN candidates, and present the resulting SN sample here. Out of the 12 SNe we have discovered, seven are associated with our target clus...

  8. Single Nanoparticle Detection Using Optical Microcavities.

    Science.gov (United States)

    Zhi, Yanyan; Yu, Xiao-Chong; Gong, Qihuang; Yang, Lan; Xiao, Yun-Feng

    2017-03-01

    Detection of nanoscale objects is highly desirable in various fields such as early-stage disease diagnosis, environmental monitoring and homeland security. Optical microcavity sensors are renowned for ultrahigh sensitivities due to strongly enhanced light-matter interaction. This review focuses on single nanoparticle detection using optical whispering gallery microcavities and photonic crystal microcavities, both of which have been developing rapidly over the past few years. The reactive and dissipative sensing methods, characterized by light-analyte interactions, are explained explicitly. The sensitivity and the detection limit are essentially determined by the cavity properties, and are limited by the various noise sources in the measurements. On the one hand, recent advances include significant sensitivity enhancement using techniques to construct novel microcavity structures with reduced mode volumes, to localize the mode field, or to introduce optical gain. On the other hand, researchers attempt to lower the detection limit by improving the spectral resolution, which can be implemented by suppressing the experimental noises. We also review the methods of achieving a better temporal resolution by employing mode locking techniques or cavity ring up spectroscopy. In conclusion, outlooks on the possible ways to implement microcavity-based sensing devices and potential applications are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Optically-Selected Cluster Catalogs As a Precision Cosmology Tool

    Energy Technology Data Exchange (ETDEWEB)

    Rozo, Eduardo; /Ohio State U. /Chicago U. /KICP, Chicago; Wechsler, Risa H.; /KICP, Chicago /KIPAC, Menlo Park; Koester, Benjamin P.; /Michigan U. /Chicago U., Astron.; Evrard, August E.; McKay, Timothy A.; /Michigan U.

    2007-03-26

    We introduce a framework for describing the halo selection function of optical cluster finders. We treat the problem as being separable into a term that describes the intrinsic galaxy content of a halo (the Halo Occupation Distribution, or HOD) and a term that captures the effects of projection and selection by the particular cluster finding algorithm. Using mock galaxy catalogs tuned to reproduce the luminosity dependent correlation function and the empirical color-density relation measured in the SDSS, we characterize the maxBCG algorithm applied by Koester et al. to the SDSS galaxy catalog. We define and calibrate measures of completeness and purity for this algorithm, and demonstrate successful recovery of the underlying cosmology and HOD when applied to the mock catalogs. We identify principal components--combinations of cosmology and HOD parameters--that are recovered by survey counts as a function of richness, and demonstrate that percent-level accuracies are possible in the first two components, if the selection function can be understood to {approx} 15% accuracy.

  10. Optical Detection of Life on Exoplanets

    Science.gov (United States)

    Heap, Sara

    2009-01-01

    We describe what is known about the atmospheric properties (Teff, lob g, [FelH]) and fundamental properties (mass, age, and metal content) of nearby stars and how they influence the habitable zones and habitable eras of these stars. We then take an observer's point of view to assess the ability of optical telescopes to detect photosynthetic or methanogenic life on planets orbiting these stars.

  11. Detecting space-time cancer clusters using residential histories

    Science.gov (United States)

    Jacquez, Geoffrey M.; Meliker, Jaymie R.

    2007-04-01

    Methods for analyzing geographic clusters of disease typically ignore the space-time variability inherent in epidemiologic datasets, do not adequately account for known risk factors (e.g., smoking and education) or covariates (e.g., age, gender, and race), and do not permit investigation of the latency window between exposure and disease. Our research group recently developed Q-statistics for evaluating space-time clustering in cancer case-control studies with residential histories. This technique relies on time-dependent nearest neighbor relationships to examine clustering at any moment in the life-course of the residential histories of cases relative to that of controls. In addition, in place of the widely used null hypothesis of spatial randomness, each individual's probability of being a case is instead based on his/her risk factors and covariates. Case-control clusters will be presented using residential histories of 220 bladder cancer cases and 440 controls in Michigan. In preliminary analyses of this dataset, smoking, age, gender, race and education were sufficient to explain the majority of the clustering of residential histories of the cases. Clusters of unexplained risk, however, were identified surrounding the business address histories of 10 industries that emit known or suspected bladder cancer carcinogens. The clustering of 5 of these industries began in the 1970's and persisted through the 1990's. This systematic approach for evaluating space-time clustering has the potential to generate novel hypotheses about environmental risk factors. These methods may be extended to detect differences in space-time patterns of any two groups of people, making them valuable for security intelligence and surveillance operations.

  12. STELLAR POPULATIONS IN MEDIUM REDSHIFT CLUSTERS .2. OPTICAL-INFRARED PHOTOMETRY AND SPECTRA

    NARCIS (Netherlands)

    PICKLES, AJ; VANDERKRUIT, PC

    1991-01-01

    We present optical and infrared photometry (BV RI, J H K) and spectra of galaxies in 6 medium redshift clusters covering the redshift range 0.19 less-than-or-equal-to z less-than-or-equal-to 0.4. The array photometry is used to note the radial distribution of the cluster galaxies with optical and

  13. Optic disc detection using ant colony optimization

    Science.gov (United States)

    Dias, Marcy A.; Monteiro, Fernando C.

    2012-09-01

    The retinal fundus images are used in the treatment and diagnosis of several eye diseases, such as diabetic retinopathy and glaucoma. This paper proposes a new method to detect the optic disc (OD) automatically, due to the fact that the knowledge of the OD location is essential to the automatic analysis of retinal images. Ant Colony Optimization (ACO) is an optimization algorithm inspired by the foraging behaviour of some ant species that has been applied in image processing for edge detection. Recently, the ACO was used in fundus images to detect edges, and therefore, to segment the OD and other anatomical retinal structures. We present an algorithm for the detection of OD in the retina which takes advantage of the Gabor wavelet transform, entropy and ACO algorithm. Forty images of the retina from DRIVE database were used to evaluate the performance of our method.

  14. Electro-optical muzzle flash detection

    Science.gov (United States)

    Krieg, Jürgen; Eisele, Christian; Seiffer, Dirk

    2016-10-01

    Localizing a shooter in a complex scenario is a difficult task. Acoustic sensors can be used to detect blast waves. Radar technology permits detection of the projectile. A third method is to detect the muzzle flash using electro-optical devices. Detection of muzzle flash events is possible with focal plane arrays, line and single element detectors. In this paper, we will show that the detection of a muzzle flash works well in the shortwave infrared spectral range. Important for the acceptance of an operational warning system in daily use is a very low false alarm rate. Using data from a detector with a high sampling rate the temporal signature of a potential muzzle flash event can be analyzed and the false alarm rate can be reduced. Another important issue is the realization of an omnidirectional view required on an operational level. It will be shown that a combination of single element detectors and simple optics in an appropriate configuration is a capable solution.

  15. Method for detecting clusters of possible uranium deposits

    International Nuclear Information System (INIS)

    Conover, W.J.; Bement, T.R.; Iman, R.L.

    1978-01-01

    When a two-dimensional map contains points that appear to be scattered somewhat at random, a question that often arises is whether groups of points that appear to cluster are merely exhibiting ordinary behavior, which one can expect with any random distribution of points, or whether the clusters are too pronounced to be attributable to chance alone. A method for detecting clusters along a straight line is applied to the two-dimensional map of 214 Bi anomalies observed as part of the National Uranium Resource Evaluation Program in the Lubbock, Texas, region. Some exact probabilities associated with this method are computed and compared with two approximate methods. The two methods for approximating probabilities work well in the cases examined and can be used when it is not feasible to obtain the exact probabilities

  16. Optical Sensors for Detection of Amino Acids.

    Science.gov (United States)

    Pettiwala, Aafrin M; Singh, Prabhat K

    2017-11-06

    Amino acids are crucially involved in a myriad of biological processes. Any aberrant changes in physiological level of amino acids often manifest in common metabolic disorders, serious neurological conditions and cardiovascular diseases. Thus, devising methods for detection of trace amounts of amino acids becomes highly elemental to their efficient clinical diagnosis. Recently, the domain of developing optical sensors for detection of amino acids has witnessed significant activity which is the focus of the current review article. We undertook a detailed search of the peer-reviewed literature that primarily deals with optical sensors for amino acids and focuses on the use of different type of materials as a sensing platform. Ninety-five papers have been included in the review, majority of which deals with optical sensors. We attempt to systematically classify these contributions based on applications of various chemical and biological scaffolds such as polymers, supramolecular assemblies, nanoparticles, DNA, heparin etc. for the sensing of amino acids. This review identifies that supramolecular assemblies and nanomaterial continue to be commonly used materials to devise sensors for amino acids followed by surfactant assemblies. The broad implications of amino acids in human health and diagnosis have stirred a lot of interest to develop optimized optical detection systems for amino acids in recent years, using different materials based on chemical and biological scaffolds. We have also attempted to highlight the merits and demerits of some of the noteworthy sensor systems to instigate further efforts for constructing amino acids sensor based on unconventional concepts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS

    International Nuclear Information System (INIS)

    Xu, Bingxiao; Zheng, Wei; Postman, Marc; Bradley, Larry; Meneghetti, Massimo; Koekemoer, Anton; Seitz, Stella; Zitrin, Adi; Merten, Julian; Maoz, Dani; Frye, Brenda; Umetsu, Keiichi; Vega, Jesus

    2016-01-01

    We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected from the high-resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the CLASH sample. The algorithm's arc elongation accuracy, completeness, and false positive rate are determined and used to compute an estimate of the true arc abundance. We derive a lensing efficiency of 4 ± 1 arcs (with length ≥6″ and length-to-width ratio ≥7) per cluster for the X-ray-selected CLASH sample, 4 ± 1 arcs per cluster for the MOKA-simulated sample, and 3 ± 1 arcs per cluster for the MUSIC-simulated sample. The observed and simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a median redshift z s = 1.9 with 33% of the detected arcs having z s  > 3. We find that the arc abundance does not depend strongly on the source redshift distribution but is sensitive to the mass distribution of the dark matter halos (e.g., the c–M relation). Our results show that consistency between the observed and simulated distributions of lensed arc sizes and axial ratios can be achieved by using cluster-lensing simulations that are carefully matched to the selection criteria used in the observations

  18. THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bingxiao; Zheng, Wei [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Postman, Marc; Bradley, Larry [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Meneghetti, Massimo; Koekemoer, Anton [INAF, Osservatorio Astronomico di Bologna, and INFN, Sezione di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Seitz, Stella [Universitaets-Sternwarte, Fakultaet fuer Physik, Ludwig-Maximilians Universitaet Muenchen, Scheinerstr. 1, D-81679 Muenchen (Germany); Zitrin, Adi [California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Merten, Julian [University of Oxford, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Maoz, Dani [School of Physics and Astronomy, Tel Aviv University, Tel-Aviv 69978 (Israel); Frye, Brenda [Steward Observatory/Department of Astronomy, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Umetsu, Keiichi [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Vega, Jesus, E-mail: bxu6@jhu.edu [Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid (Spain)

    2016-02-01

    We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected from the high-resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the CLASH sample. The algorithm's arc elongation accuracy, completeness, and false positive rate are determined and used to compute an estimate of the true arc abundance. We derive a lensing efficiency of 4 ± 1 arcs (with length ≥6″ and length-to-width ratio ≥7) per cluster for the X-ray-selected CLASH sample, 4 ± 1 arcs per cluster for the MOKA-simulated sample, and 3 ± 1 arcs per cluster for the MUSIC-simulated sample. The observed and simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a median redshift z{sub s} = 1.9 with 33% of the detected arcs having z{sub s} > 3. We find that the arc abundance does not depend strongly on the source redshift distribution but is sensitive to the mass distribution of the dark matter halos (e.g., the c–M relation). Our results show that consistency between the observed and simulated distributions of lensed arc sizes and axial ratios can be achieved by using cluster-lensing simulations that are carefully matched to the selection criteria used in the observations.

  19. The Detection and Statistics of Giant Arcs behind CLASH Clusters

    Science.gov (United States)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Seitz, Stella; Zitrin, Adi; Merten, Julian; Maoz, Dani; Frye, Brenda; Umetsu, Keiichi; Zheng, Wei; Bradley, Larry; Vega, Jesus; Koekemoer, Anton

    2016-02-01

    We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected from the high-resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the CLASH sample. The algorithm's arc elongation accuracy, completeness, and false positive rate are determined and used to compute an estimate of the true arc abundance. We derive a lensing efficiency of 4 ± 1 arcs (with length ≥6″ and length-to-width ratio ≥7) per cluster for the X-ray-selected CLASH sample, 4 ± 1 arcs per cluster for the MOKA-simulated sample, and 3 ± 1 arcs per cluster for the MUSIC-simulated sample. The observed and simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a median redshift zs = 1.9 with 33% of the detected arcs having zs > 3. We find that the arc abundance does not depend strongly on the source redshift distribution but is sensitive to the mass distribution of the dark matter halos (e.g., the c-M relation). Our results show that consistency between the observed and simulated distributions of lensed arc sizes and axial ratios can be achieved by using cluster-lensing simulations that are carefully matched to the selection criteria used in the observations.

  20. Optical tomographic imaging for breast cancer detection

    Science.gov (United States)

    Cong, Wenxiang; Intes, Xavier; Wang, Ge

    2017-09-01

    Diffuse optical breast imaging utilizes near-infrared (NIR) light propagation through tissues to assess the optical properties of tissues for the identification of abnormal tissue. This optical imaging approach is sensitive, cost-effective, and does not involve any ionizing radiation. However, the image reconstruction of diffuse optical tomography (DOT) is a nonlinear inverse problem and suffers from severe illposedness due to data noise, NIR light scattering, and measurement incompleteness. An image reconstruction method is proposed for the detection of breast cancer. This method splits the image reconstruction problem into the localization of abnormal tissues and quantification of absorption variations. The localization of abnormal tissues is performed based on a well-posed optimization model, which can be solved via a differential evolution optimization method to achieve a stable reconstruction. The quantification of abnormal absorption is then determined in localized regions of relatively small extents, in which a potential tumor might be. Consequently, the number of unknown absorption variables can be greatly reduced to overcome the underdetermined nature of DOT. Numerical simulation experiments are performed to verify merits of the proposed method, and the results show that the image reconstruction method is stable and accurate for the identification of abnormal tissues, and robust against the measurement noise of data.

  1. a Probabilistic Embedding Clustering Method for Urban Structure Detection

    Science.gov (United States)

    Lin, X.; Li, H.; Zhang, Y.; Gao, L.; Zhao, L.; Deng, M.

    2017-09-01

    Urban structure detection is a basic task in urban geography. Clustering is a core technology to detect the patterns of urban spatial structure, urban functional region, and so on. In big data era, diverse urban sensing datasets recording information like human behaviour and human social activity, suffer from complexity in high dimension and high noise. And unfortunately, the state-of-the-art clustering methods does not handle the problem with high dimension and high noise issues concurrently. In this paper, a probabilistic embedding clustering method is proposed. Firstly, we come up with a Probabilistic Embedding Model (PEM) to find latent features from high dimensional urban sensing data by "learning" via probabilistic model. By latent features, we could catch essential features hidden in high dimensional data known as patterns; with the probabilistic model, we can also reduce uncertainty caused by high noise. Secondly, through tuning the parameters, our model could discover two kinds of urban structure, the homophily and structural equivalence, which means communities with intensive interaction or in the same roles in urban structure. We evaluated the performance of our model by conducting experiments on real-world data and experiments with real data in Shanghai (China) proved that our method could discover two kinds of urban structure, the homophily and structural equivalence, which means clustering community with intensive interaction or under the same roles in urban space.

  2. A PROBABILISTIC EMBEDDING CLUSTERING METHOD FOR URBAN STRUCTURE DETECTION

    Directory of Open Access Journals (Sweden)

    X. Lin

    2017-09-01

    Full Text Available Urban structure detection is a basic task in urban geography. Clustering is a core technology to detect the patterns of urban spatial structure, urban functional region, and so on. In big data era, diverse urban sensing datasets recording information like human behaviour and human social activity, suffer from complexity in high dimension and high noise. And unfortunately, the state-of-the-art clustering methods does not handle the problem with high dimension and high noise issues concurrently. In this paper, a probabilistic embedding clustering method is proposed. Firstly, we come up with a Probabilistic Embedding Model (PEM to find latent features from high dimensional urban sensing data by “learning” via probabilistic model. By latent features, we could catch essential features hidden in high dimensional data known as patterns; with the probabilistic model, we can also reduce uncertainty caused by high noise. Secondly, through tuning the parameters, our model could discover two kinds of urban structure, the homophily and structural equivalence, which means communities with intensive interaction or in the same roles in urban structure. We evaluated the performance of our model by conducting experiments on real-world data and experiments with real data in Shanghai (China proved that our method could discover two kinds of urban structure, the homophily and structural equivalence, which means clustering community with intensive interaction or under the same roles in urban space.

  3. Fiber Optic Thermal Detection of Composite Delaminations

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.

    2011-01-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  4. Efficient image duplicated region detection model using sequential block clustering

    Czech Academy of Sciences Publication Activity Database

    Sekeh, M. A.; Maarof, M. A.; Rohani, M. F.; Mahdian, Babak

    2013-01-01

    Roč. 10, č. 1 (2013), s. 73-84 ISSN 1742-2876 Institutional support: RVO:67985556 Keywords : Image forensic * Copy–paste forgery * Local block matching Subject RIV: IN - Informatics, Computer Science Impact factor: 0.986, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/mahdian-efficient image duplicated region detection model using sequential block clustering.pdf

  5. Orthology detection combining clustering and synteny for very large datasets

    OpenAIRE

    Lechner, Marcus; Hernandez-Rosales, Maribel; Doerr, Daniel; Wieseke, Nicolas; Thévenin, Annelyse; Stoye, Jens; Hartmann, Roland K.; Prohaska, Sonja J.; Stadler, Peter F.

    2014-01-01

    The elucidation of orthology relationships is an important step both in gene function prediction as well as towards understanding patterns of sequence evolution. Orthology assignments are usually derived directly from sequence similarities for large data because more exact approaches exhibit too high computational costs. Here we present PoFF, an extension for the standalone tool Proteinortho, which enhances orthology detection by combining clustering, sequence similarity, and synteny. In the ...

  6. Cluster analysis of received constellations for optical performance monitoring

    NARCIS (Netherlands)

    van Weerdenburg, J.J.A.; van Uden, R.; Sillekens, E.; de Waardt, H.; Koonen, A.M.J.; Okonkwo, C.

    2016-01-01

    Performance monitoring based on centroid clustering to investigate constellation generation offsets. The tool allows flexibility in constellation generation tolerances by forwarding centroids to the demapper. The relation of fibre nonlinearities and singular value decomposition of intra-cluster

  7. Optical motion detection using image partitioning

    International Nuclear Information System (INIS)

    Hessel, K.R.; Stalker, K.T.; McCarthy, A.E.

    1976-08-01

    An optical system for surveillance or intrusion detection, based upon image partitioning, is proposed. The scene of interest is imaged onto a checkerboard pattern of transmissive and reflective areas and the transmitted and reflected light components are measured by detectors. Changes in the scene disturb the light balance and can cause an alarm indication. Several system configurations are proposed. Measurements and computer simulations are used to determine the operating characteristics of the several configurations. Depth of focus problems at the patterned reflector is the primary concern. Noise considerations determine the theoretical limitation of system performance and are analyzed in some detail. Indications are that, under good scene radiance conditions, a change in the scene of approximately one part in 10 3 is detectable with a signal-to-noise ratio sufficient for a false alarm rate of one every few months

  8. Agglomerative concentric hypersphere clustering applied to structural damage detection

    Science.gov (United States)

    Silva, Moisés; Santos, Adam; Santos, Reginaldo; Figueiredo, Eloi; Sales, Claudomiro; Costa, João C. W. A.

    2017-08-01

    The present paper proposes a novel cluster-based method, named as agglomerative concentric hypersphere (ACH), to detect structural damage in engineering structures. Continuous structural monitoring systems often require unsupervised approaches to automatically infer the health condition of a structure. However, when a structure is under linear and nonlinear effects caused by environmental and operational variability, data normalization procedures are also required to overcome these effects. The proposed approach aims, through a straightforward clustering procedure, to discover automatically the optimal number of clusters, representing the main state conditions of a structural system. Three initialization procedures are introduced to evaluate the impact of deterministic and stochastic initializations on the performance of this approach. The ACH is compared to state-of-the-art approaches, based on Gaussian mixture models and Mahalanobis squared distance, on standard data sets from a post-tensioned bridge located in Switzerland: the Z-24 Bridge. The proposed approach demonstrates more efficiency in modeling the normal condition of the structure and its corresponding main clusters. Furthermore, it reveals a better classification performance than the alternative ones in terms of false-positive and false-negative indications of damage, demonstrating a promising applicability in real-world structural health monitoring scenarios.

  9. Remote Optical Detection of Alpha Radiation

    International Nuclear Information System (INIS)

    Sand, J.; Hannuksela, V.; Toivonen, J.; Ihantola, S.; Peraejaervi, K.; Toivonen, H.

    2010-01-01

    Alpha emitting radiation sources are typically hard to detect with conventional detectors due to the short range of alpha particles in the air. However, previous studies have shown that remote detection of alpha radiation is possible by measuring the ionization-induced fluorescence of air molecules. The alpha-induced ultraviolet (UV) light is mainly emitted by molecular nitrogen and its fluorescence properties are well known. The benefit of this method is the long range of UV photons in the air. Secondly, the detection is possible also under a strong beta and gamma radiation backgrounds as they do not cause localized molecular excitation. In this work, the optical detection was studied using two different detection schemes; spectral separation of fluorescence from the background lighting and coincidence detection of UV photons originating from a single radiative decay event. Our spectrally integrated measurements have shown that one alpha decay event yields up to 400 fluorescence photons in the air and all these UV photons are induced in a 5 ns time-window. On the other hand, the probability of a background coincidence event in 5 ns scale is very rare compared to the number of background photons. This information can be applied in fluorescence coincidence filtering to discriminate the alpha radiation initiated fluorescence signal from much more intense background lighting. A device called HAUVA (Handheld Alpha UV Application) was built during this work for demonstration purposes. HAUVA utilizes spectral filtering and it is designed to detect alpha emitters from a distance of about 40 cm. Using specially selected room lighting, the device is able to separate 1 kBq alpha emitter from the background lighting with 1 second integration time. (author)

  10. Locally adaptive decision in detection of clustered microcalcifications in mammograms

    Science.gov (United States)

    Sainz de Cea, María V.; Nishikawa, Robert M.; Yang, Yongyi

    2018-02-01

    In computer-aided detection or diagnosis of clustered microcalcifications (MCs) in mammograms, the performance often suffers from not only the presence of false positives (FPs) among the detected individual MCs but also large variability in detection accuracy among different cases. To address this issue, we investigate a locally adaptive decision scheme in MC detection by exploiting the noise characteristics in a lesion area. Instead of developing a new MC detector, we propose a decision scheme on how to best decide whether a detected object is an MC or not in the detector output. We formulate the individual MCs as statistical outliers compared to the many noisy detections in a lesion area so as to account for the local image characteristics. To identify the MCs, we first consider a parametric method for outlier detection, the Mahalanobis distance detector, which is based on a multi-dimensional Gaussian distribution on the noisy detections. We also consider a non-parametric method which is based on a stochastic neighbor graph model of the detected objects. We demonstrated the proposed decision approach with two existing MC detectors on a set of 188 full-field digital mammograms (95 cases). The results, evaluated using free response operating characteristic (FROC) analysis, showed a significant improvement in detection accuracy by the proposed outlier decision approach over traditional thresholding (the partial area under the FROC curve increased from 3.95 to 4.25, p-value  FPs at a given sensitivity level. The proposed adaptive decision approach could not only reduce the number of FPs in detected MCs but also improve case-to-case consistency in detection.

  11. Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering

    Directory of Open Access Journals (Sweden)

    Jean Marie Vianney Kinani

    2017-01-01

    Full Text Available We develop a swift, robust, and practical tool for detecting brain lesions with minimal user intervention to assist clinicians and researchers in the diagnosis process, radiosurgery planning, and assessment of the patient’s response to the therapy. We propose a unified gravitational fuzzy clustering-based segmentation algorithm, which integrates the Newtonian concept of gravity into fuzzy clustering. We first perform fuzzy rule-based image enhancement on our database which is comprised of T1/T2 weighted magnetic resonance (MR and fluid-attenuated inversion recovery (FLAIR images to facilitate a smoother segmentation. The scalar output obtained is fed into a gravitational fuzzy clustering algorithm, which separates healthy structures from the unhealthy. Finally, the lesion contour is automatically outlined through the initialization-free level set evolution method. An advantage of this lesion detection algorithm is its precision and its simultaneous use of features computed from the intensity properties of the MR scan in a cascading pattern, which makes the computation fast, robust, and self-contained. Furthermore, we validate our algorithm with large-scale experiments using clinical and synthetic brain lesion datasets. As a result, an 84%–93% overlap performance is obtained, with an emphasis on robustness with respect to different and heterogeneous types of lesion and a swift computation time.

  12. Recent developments in optical detection methods for microchip separations

    NARCIS (Netherlands)

    Götz, S.; Karst, U.

    2007-01-01

    This paper summarizes the features and performances of optical detection systems currently applied in order to monitor separations on microchip devices. Fluorescence detection, which delivers very high sensitivity and selectivity, is still the most widely applied method of detection. Instruments

  13. A {sup 13}CO Detection in a Brightest Cluster Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Vantyghem, A. N.; McNamara, B. R.; Hogan, M. T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Edge, A. C. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Combes, F.; Salomé, P. [LERMA, Observatoire de Paris, CNRS, UPMC, PSL Univ., 61 avenue de l’Observatoire, F-75014 Paris (France); Russell, H. R.; Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); McDonald, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Nulsen, P. E. J., E-mail: a2vantyg@uwaterloo.ca [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-10-20

    We present ALMA Cycle 4 observations of CO(1-0), CO(3-2), and {sup 13}CO(3-2) line emission in the brightest cluster galaxy (BCG) of RXJ0821+0752. This is one of the first detections of {sup 13}CO line emission in a galaxy cluster. Half of the CO(3-2) line emission originates from two clumps of molecular gas that are spatially offset from the galactic center. These clumps are surrounded by diffuse emission that extends 8 kpc in length. The detected {sup 13}CO emission is confined entirely to the two bright clumps, with any emission outside of this region lying below our detection threshold. Two distinct velocity components with similar integrated fluxes are detected in the {sup 12}CO spectra. The narrower component (60 km s{sup −1} FWHM) is consistent in both velocity centroid and linewidth with {sup 13}CO(3-2) emission, while the broader (130–160 km s{sup −1}), slightly blueshifted wing has no associated {sup 13}CO(3-2) emission. A simple local thermodynamic model indicates that the {sup 13}CO emission traces 2.1 × 10{sup 9} M {sub ⊙} of molecular gas. Isolating the {sup 12}CO velocity component that accompanies the {sup 13}CO emission yields a CO-to-H{sub 2} conversion factor of α {sub CO} = 2.3 M {sub ⊙} (K km s{sup −1}){sup −1}, which is a factor of two lower than the Galactic value. Adopting the Galactic CO-to-H{sub 2} conversion factor in BCGs may therefore overestimate their molecular gas masses by a factor of two. This is within the object-to-object scatter from extragalactic sources, so calibrations in a larger sample of clusters are necessary in order to confirm a sub-Galactic conversion factor.

  14. Multi-conjugate adaptive optics observations of the Orion Trapezium Cluster

    International Nuclear Information System (INIS)

    Petr-Gotzens, M G; Kolb, J; Marchetti, E; Sterzik, M F; Ivanov, V D; Nuernberger, D; Koehler, R; Bouy, H; MartIn, E L; Huelamo, N; Navascues, D Barrado y

    2008-01-01

    We obtained very deep and high spatial resolution near-infrared images of the Orion Trapezium Cluster using the Multi-Conjugate Adaptive Optics Demonstrator (MAD) instrument at the VLT. The goal of these observations has been to search for objects at the very low-mass end of the IMF down to the planetary-mass regime. Three fields in the innermost dense part of the Trapezium Cluster, with a total area of 3.5 sq.arcmin have been surveyed at 1.65μm and 2.2μm. Several new candidate planetary mass objects with potential masses Jup have been detected based on their photometry and on their location in the colour-magnitude diagram. The performance of the multi-conjugate adaptive optics correction is excellent over a large field-of-view of ∼ 1'. The final data has a spatial resolution of Jup ), however, must await future confirmation by spectroscopic and/or photometric observations.

  15. THE RELATION BETWEEN COOL CLUSTER CORES AND HERSCHEL-DETECTED STAR FORMATION IN BRIGHTEST CLUSTER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rawle, T. D.; Egami, E.; Rex, M.; Fiedler, A.; Haines, C. P.; Pereira, M. J.; Portouw, J.; Walth, G. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Edge, A. C. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Smith, G. P. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Altieri, B.; Valtchanov, I. [Herschel Science Centre, ESAC, ESA, P.O. Box 78, Villanueva de la Canada, 28691 Madrid (Spain); Perez-Gonzalez, P. G. [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Van der Werf, P. P. [Sterrewacht Leiden, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Zemcov, M., E-mail: trawle@as.arizona.edu [Department of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-03-01

    We present far-infrared (FIR) analysis of 68 brightest cluster galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500 {mu}m), we calculate the obscured star formation rate (SFR). 22{sup +6.2}{sub -5.3}% of the BCGs are detected in the far-infrared, with SFR = 1-150 M{sub Sun} yr{sup -1}. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing H{alpha} emission is also correlated with obscured star formation. For all but the most luminous BCGs (L{sub TIR} > 2 Multiplication-Sign 10{sup 11} L{sub Sun }), only a small ({approx}<0.4 mag) reddening correction is required for SFR(H{alpha}) to agree with SFR{sub FIR}. The relatively low H{alpha} extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate from normal stellar mass loss.

  16. Fiber Optic Detection of Action Potentials in Axons

    National Research Council Canada - National Science Library

    Smela, Elisabeth

    2006-01-01

    In prior exploratory research, we had designed a fiber optic sensor utilizing a long period Bragg grating for the purpose of detecting action potentials in axons optically, through a change in index...

  17. Community detection in complex networks using proximate support vector clustering

    Science.gov (United States)

    Wang, Feifan; Zhang, Baihai; Chai, Senchun; Xia, Yuanqing

    2018-03-01

    Community structure, one of the most attention attracting properties in complex networks, has been a cornerstone in advances of various scientific branches. A number of tools have been involved in recent studies concentrating on the community detection algorithms. In this paper, we propose a support vector clustering method based on a proximity graph, owing to which the introduced algorithm surpasses the traditional support vector approach both in accuracy and complexity. Results of extensive experiments undertaken on computer generated networks and real world data sets illustrate competent performances in comparison with the other counterparts.

  18. K2: A NEW METHOD FOR THE DETECTION OF GALAXY CLUSTERS BASED ON CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY MULTICOLOR IMAGES

    International Nuclear Information System (INIS)

    Thanjavur, Karun; Willis, Jon; Crampton, David

    2009-01-01

    We have developed a new method, K2, optimized for the detection of galaxy clusters in multicolor images. Based on the Red Sequence approach, K2 detects clusters using simultaneous enhancements in both colors and position. The detection significance is robustly determined through extensive Monte Carlo simulations and through comparison with available cluster catalogs based on two different optical methods, and also on X-ray data. K2 also provides quantitative estimates of the candidate clusters' richness and photometric redshifts. Initially, K2 was applied to the two color (gri) 161 deg 2 images of the Canada-France-Hawaii Telescope Legacy Survey Wide (CFHTLS-W) data. Our simulations show that the false detection rate for these data, at our selected threshold, is only ∼1%, and that the cluster catalogs are ∼80% complete up to a redshift of z = 0.6 for Fornax-like and richer clusters and to z ∼ 0.3 for poorer clusters. Based on the g-, r-, and i-band photometric catalogs of the Terapix T05 release, 35 clusters/deg 2 are detected, with 1-2 Fornax-like or richer clusters every 2 deg 2 . Catalogs containing data for 6144 galaxy clusters have been prepared, of which 239 are rich clusters. These clusters, especially the latter, are being searched for gravitational lenses-one of our chief motivations for cluster detection in CFHTLS. The K2 method can be easily extended to use additional color information and thus improve overall cluster detection to higher redshifts. The complete set of K2 cluster catalogs, along with the supplementary catalogs for the member galaxies, are available on request from the authors.

  19. Alerts Visualization and Clustering in Network-based Intrusion Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dr. Li [University of Tennessee; Gasior, Wade C [ORNL; Dasireddy, Swetha [University of Tennessee

    2010-04-01

    Today's Intrusion detection systems when deployed on a busy network overload the network with huge number of alerts. This behavior of producing too much raw information makes it less effective. We propose a system which takes both raw data and Snort alerts to visualize and analyze possible intrusions in a network. Then we present with two models for the visualization of clustered alerts. Our first model gives the network administrator with the logical topology of the network and detailed information of each node that involves its associated alerts and connections. In the second model, flocking model, presents the network administrator with the visual representation of IDS data in which each alert is represented in different color and the alerts with maximum similarity move together. This gives network administrator with the idea of detecting various of intrusions through visualizing the alert patterns.

  20. Human population structure detection via multilocus genotype clustering

    Directory of Open Access Journals (Sweden)

    Starmer Joshua

    2007-06-01

    Full Text Available Abstract Background We describe a hierarchical clustering algorithm for using Single Nucleotide Polymorphism (SNP genetic data to assign individuals to populations. The method does not assume Hardy-Weinberg equilibrium and linkage equilibrium among loci in sample population individuals. Results We show that the algorithm can assign sample individuals highly accurately to their corresponding ethnic groups in our tests using HapMap SNP data and it is also robust to admixed populations when tested with Perlegen SNP data. Moreover, it can detect fine-scale population structure as subtle as that between Chinese and Japanese by using genome-wide high-diversity SNP loci. Conclusion The algorithm provides an alternative approach to the popular STRUCTURE program, especially for fine-scale population structure detection in genome-wide association studies. This is the first successful separation of Chinese and Japanese samples using random SNP loci with high statistical support.

  1. Orthology detection combining clustering and synteny for very large datasets.

    Science.gov (United States)

    Lechner, Marcus; Hernandez-Rosales, Maribel; Doerr, Daniel; Wieseke, Nicolas; Thévenin, Annelyse; Stoye, Jens; Hartmann, Roland K; Prohaska, Sonja J; Stadler, Peter F

    2014-01-01

    The elucidation of orthology relationships is an important step both in gene function prediction as well as towards understanding patterns of sequence evolution. Orthology assignments are usually derived directly from sequence similarities for large data because more exact approaches exhibit too high computational costs. Here we present PoFF, an extension for the standalone tool Proteinortho, which enhances orthology detection by combining clustering, sequence similarity, and synteny. In the course of this work, FFAdj-MCS, a heuristic that assesses pairwise gene order using adjacencies (a similarity measure related to the breakpoint distance) was adapted to support multiple linear chromosomes and extended to detect duplicated regions. PoFF largely reduces the number of false positives and enables more fine-grained predictions than purely similarity-based approaches. The extension maintains the low memory requirements and the efficient concurrency options of its basis Proteinortho, making the software applicable to very large datasets.

  2. Orthology detection combining clustering and synteny for very large datasets.

    Directory of Open Access Journals (Sweden)

    Marcus Lechner

    Full Text Available The elucidation of orthology relationships is an important step both in gene function prediction as well as towards understanding patterns of sequence evolution. Orthology assignments are usually derived directly from sequence similarities for large data because more exact approaches exhibit too high computational costs. Here we present PoFF, an extension for the standalone tool Proteinortho, which enhances orthology detection by combining clustering, sequence similarity, and synteny. In the course of this work, FFAdj-MCS, a heuristic that assesses pairwise gene order using adjacencies (a similarity measure related to the breakpoint distance was adapted to support multiple linear chromosomes and extended to detect duplicated regions. PoFF largely reduces the number of false positives and enables more fine-grained predictions than purely similarity-based approaches. The extension maintains the low memory requirements and the efficient concurrency options of its basis Proteinortho, making the software applicable to very large datasets.

  3. AN EXAMINATION OF THE OPTICAL SUBSTRUCTURE OF GALAXY CLUSTERS HOSTING RADIO SOURCES

    International Nuclear Information System (INIS)

    Wing, Joshua D.; Blanton, Elizabeth L.

    2013-01-01

    Using radio sources from the Faint Images of the Radio Sky at Twenty-cm survey, and optical counterparts in the Sloan Digital Sky Survey, we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.

  4. Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements

    Science.gov (United States)

    Reyes, R.; Mandelbaum, R.; Hirata, C.; Bahcall, N.; Seljak, U.

    2008-11-01

    We develop an improved mass tracer for clusters of galaxies from optically observed parameters, and calibrate the mass relation using weak gravitational lensing measurements. We employ a sample of ~13000 optically selected clusters from the Sloan Digital Sky Survey (SDSS) maxBCG catalogue, with photometric redshifts in the range 0.1-0.3. The optical tracers we consider are cluster richness, cluster luminosity, luminosity of the brightest cluster galaxy (BCG) and combinations of these parameters. We measure the weak lensing signal around stacked clusters as a function of the various tracers, and use it to determine the tracer with the least amount of scatter. We further use the weak lensing data to calibrate the mass normalization. We find that the best mass estimator for massive clusters is a combination of cluster richness, N200, and the luminosity of the BCG, LBCG: , where is the observed mean BCG luminosity at a given richness. This improved mass tracer will enable the use of galaxy clusters as a more powerful tool for constraining cosmological parameters.

  5. Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach

    Directory of Open Access Journals (Sweden)

    Sami Ullah

    2017-11-01

    Full Text Available Ability to detect potential space-time clusters in spatio-temporal data on disease occurrences is necessary for conducting surveillance and implementing disease prevention policies. Most existing techniques use geometrically shaped (circular, elliptical or square scanning windows to discover disease clusters. In certain situations, where the disease occurrences tend to cluster in very irregularly shaped areas, these algorithms are not feasible in practise for the detection of space-time clusters. To address this problem, a new algorithm is proposed, which uses a co-clustering strategy to detect prospective and retrospective space-time disease clusters with no restriction on shape and size. The proposed method detects space-time disease clusters by tracking the changes in space–time occurrence structure instead of an in-depth search over space. This method was utilised to detect potential clusters in the annual and monthly malaria data in Khyber Pakhtunkhwa Province, Pakistan from 2012 to 2016 visualising the results on a heat map. The results of the annual data analysis showed that the most likely hotspot emerged in three sub-regions in the years 2013-2014. The most likely hotspots in monthly data appeared in the month of July to October in each year and showed a strong periodic trend.

  6. Polarization sensitive optical coherence tomography detection method

    International Nuclear Information System (INIS)

    Colston, B W; DaSilva, L B; Everett, M J; Featherstone, J D B; Fried, D; Ragadio, J N; Sathyam, U S.

    1999-01-01

    This study demonstrates the potential of polarization sensitive optical coherence tomography (PS-OCT) for non-invasive in vivo detection and characterization of early, incipient caries lesions. PS-OCT generates cross-sectional images of biological tissue while measuring the effect of the tissue on the polarization state of incident light. Clear discrimination between regions of normal and demineralized enamel is first shown in PS-OCT images of bovine enamel blocks containing well-characterized artificial lesions. High-resolution, cross-sectional images of extracted human teeth are then generated that clearly discriminate between the normal and carious regions on both the smooth and occlusal surfaces. Regions of the teeth that appeared to be demineralized in the PS-OCT images were verified using histological thin sections examined under polarized light microscopy. The PS-OCT system discriminates between normal and carious regions by measuring the polarization state of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. Demineralization of enamel increases the scattering coefficient, thus depolarizing the incident light. This study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions

  7. THE ATACAMA COSMOLOGY TELESCOPE: RELATION BETWEEN GALAXY CLUSTER OPTICAL RICHNESS AND SUNYAEV-ZEL'DOVICH EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, Neelima; Hlozek, Renee [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Addison, Graeme; Dunkley, Joanna; Louis, Thibaut [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Battaglia, Nick [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Battistelli, Elia S. [Department of Physics, University of Rome ' La Sapienza' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Bond, J. Richard; Hajian, Amir; Hincks, Adam D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Das, Sudeep [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Devlin, Mark J. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Duenner, Rolando [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Gralla, Megan [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Halpern, Mark; Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hilton, Matt [Centre for Astronomy and Particle Theory, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Hughes, John P. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Lin, Yen-Ting [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan (China); and others

    2013-04-10

    We present the measured Sunyaev-Zel'dovich (SZ) flux from 474 optically selected MaxBCG clusters that fall within the Atacama Cosmology Telescope (ACT) Equatorial survey region. The ACT Equatorial region used in this analysis covers 510 deg{sup 2} and overlaps Stripe 82 of the Sloan Digital Sky Survey. We also present the measured SZ flux stacked on 52 X-ray-selected MCXC clusters that fall within the ACT Equatorial region and an ACT Southern survey region covering 455 deg{sup 2}. We find that the measured SZ flux from the X-ray-selected clusters is consistent with expectations. However, we find that the measured SZ flux from the optically selected clusters is both significantly lower than expectations and lower than the recovered SZ flux measured by the Planck satellite. Since we find a lower recovered SZ signal than Planck, we investigate the possibility that there is a significant offset between the optically selected brightest cluster galaxies (BCGs) and the SZ centers, to which ACT is more sensitive due to its finer resolution. Such offsets can arise due to either an intrinsic physical separation between the BCG and the center of the gas concentration or from misidentification of the cluster BCG. We find that the entire discrepancy for both ACT and Planck can be explained by assuming that the BCGs are offset from the SZ maxima with a uniform random distribution between 0 and 1.5 Mpc. Such large offsets between gas peaks and BCGs for optically selected cluster samples seem unlikely given that we find the physical separation between BCGs and X-ray peaks for an X-ray-selected subsample of MaxBCG clusters to have a much narrower distribution that peaks within 0.2 Mpc. It is possible that other effects are lowering the ACT and Planck signals by the same amount, with offsets between BCGs and SZ peaks explaining the remaining difference between ACT and Planck measurements. Several effects that can lower the SZ signal equally for both ACT and Planck, but not

  8. A method to determine the number of nanoparticles in a cluster using conventional optical microscopes

    International Nuclear Information System (INIS)

    Kang, Hyeonggon; Attota, Ravikiran; Tondare, Vipin; Vladár, András E.; Kavuri, Premsagar

    2015-01-01

    We present a method that uses conventional optical microscopes to determine the number of nanoparticles in a cluster, which is typically not possible using traditional image-based optical methods due to the diffraction limit. The method, called through-focus scanning optical microscopy (TSOM), uses a series of optical images taken at varying focus levels to achieve this. The optical images cannot directly resolve the individual nanoparticles, but contain information related to the number of particles. The TSOM method makes use of this information to determine the number of nanoparticles in a cluster. Initial good agreement between the simulations and the measurements is also presented. The TSOM method can be applied to fluorescent and non-fluorescent as well as metallic and non-metallic nano-scale materials, including soft materials, making it attractive for tag-less, high-speed, optical analysis of nanoparticles down to 45 nm diameter

  9. The double galaxy cluster Abell 2465 - I. Basic properties: optical imaging and spectroscopy

    Science.gov (United States)

    Wegner, Gary A.

    2011-05-01

    Optical imaging and spectroscopic observations of the z= 0.245 double galaxy cluster Abell 2465 are described. This object appears to be undergoing a major merger. It is a double X-ray source and is detected in the radio at 1.4 GHz. The purpose of this paper is to investigate signatures of the interaction of the two components. Redshifts were measured to determine velocity dispersions and virial radii of each component. The technique of fuzzy clustering was used to assign membership weights to the galaxies in each clump. Using redshifts of 93 cluster members within 1.4 Mpc of the subcluster centres, the virial masses of the north-east (NE) and south-west (SW) components are Mv= 4.1 ± 0.8 × 1014 and 3.8 ± 0.8 × 1014 M⊙, respectively. These agree within the errors with masses from X-ray scaling relations. The projected velocity difference between the two subclusters is 205 ± 149 km s-1. The anisotropy parameter, β, is found to be low for both components. Spectra of 37 per cent of the spectroscopically observed galaxies show emission lines and are predominantly star forming in the diagnostic diagram. No strong active galactic nucleus sources were found. The emission-line galaxies tend to lie between the two cluster centres with more near the SW clump. The luminosity functions of the two subclusters differ. The NE component is similar to many rich clusters, while the SW component has more faint galaxies. The NE clump’s light profile follows a single Navarro-Frenk-White profile with c= 10 while the SW is better fitted with an extended outer region and a compact inner core, consistent with available X-ray data indicating that the SW clump has a cooling core. The observed differences and properties of the two components of Abell 2465 are interpreted to have been caused by a collision 2-4 Gyr ago, after which they have moved apart and are now near their apocentres, although the start of a merger remains a possibility. The number of emission-line galaxies gives

  10. Noise and detection in ''optical'' modulation spectroscopy

    International Nuclear Information System (INIS)

    Montelatici, V.

    1975-01-01

    The measuring techniques suitable for ''optical'' modulation spectroscopy are analyzed and source of noise identified. The choice of optical detector is for photoelectrical devices. It is shown that the shot noise of phototubes is the most important noise source

  11. Detection of quadrupole relaxation in an optically pumped cesium vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-10-01

    The relaxation of quadrupole orientation induced by means of optical pumping in a cesium vapour is experimentally studied, and the results are compared to the theoretical predictions. The optical detection process of this type of orientation is also discussed as a function of the polarization and spectral profile of the detection light.

  12. Blood detection in wireless capsule endoscopy using expectation maximization clustering

    Science.gov (United States)

    Hwang, Sae; Oh, JungHwan; Cox, Jay; Tang, Shou Jiang; Tibbals, Harry F.

    2006-03-01

    Wireless Capsule Endoscopy (WCE) is a relatively new technology (FDA approved in 2002) allowing doctors to view most of the small intestine. Other endoscopies such as colonoscopy, upper gastrointestinal endoscopy, push enteroscopy, and intraoperative enteroscopy could be used to visualize up to the stomach, duodenum, colon, and terminal ileum, but there existed no method to view most of the small intestine without surgery. With the miniaturization of wireless and camera technologies came the ability to view the entire gestational track with little effort. A tiny disposable video capsule is swallowed, transmitting two images per second to a small data receiver worn by the patient on a belt. During an approximately 8-hour course, over 55,000 images are recorded to a worn device and then downloaded to a computer for later examination. Typically, a medical clinician spends more than two hours to analyze a WCE video. Research has been attempted to automatically find abnormal regions (especially bleeding) to reduce the time needed to analyze the videos. The manufacturers also provide the software tool to detect the bleeding called Suspected Blood Indicator (SBI), but its accuracy is not high enough to replace human examination. It was reported that the sensitivity and the specificity of SBI were about 72% and 85%, respectively. To address this problem, we propose a technique to detect the bleeding regions automatically utilizing the Expectation Maximization (EM) clustering algorithm. Our experimental results indicate that the proposed bleeding detection method achieves 92% and 98% of sensitivity and specificity, respectively.

  13. Advanced defect detection algorithm using clustering in ultrasonic NDE

    Science.gov (United States)

    Gongzhang, Rui; Gachagan, Anthony

    2016-02-01

    A range of materials used in industry exhibit scattering properties which limits ultrasonic NDE. Many algorithms have been proposed to enhance defect detection ability, such as the well-known Split Spectrum Processing (SSP) technique. Scattering noise usually cannot be fully removed and the remaining noise can be easily confused with real feature signals, hence becoming artefacts during the image interpretation stage. This paper presents an advanced algorithm to further reduce the influence of artefacts remaining in A-scan data after processing using a conventional defect detection algorithm. The raw A-scan data can be acquired from either traditional single transducer or phased array configurations. The proposed algorithm uses the concept of unsupervised machine learning to cluster segmental defect signals from pre-processed A-scans into different classes. The distinction and similarity between each class and the ensemble of randomly selected noise segments can be observed by applying a classification algorithm. Each class will then be labelled as `legitimate reflector' or `artefacts' based on this observation and the expected probability of defection (PoD) and probability of false alarm (PFA) determined. To facilitate data collection and validate the proposed algorithm, a 5MHz linear array transducer is used to collect A-scans from both austenitic steel and Inconel samples. Each pulse-echo A-scan is pre-processed using SSP and the subsequent application of the proposed clustering algorithm has provided an additional reduction to PFA while maintaining PoD for both samples compared with SSP results alone.

  14. THE CLUSTERING OF ALFALFA GALAXIES: DEPENDENCE ON H I MASS, RELATIONSHIP WITH OPTICAL SAMPLES, AND CLUES OF HOST HALO PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.; Jones, Michael G. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Rodríguez-Puebla, Aldo, E-mail: papastergis@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: jonesmg@astro.cornell.edu, E-mail: apuebla@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264, 04510 México, D.F. (Mexico)

    2013-10-10

    We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.

  15. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A.R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L.Felipe; Battistelli, Elia S.; Bond, J.Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W.Bertrand; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.

    2011-08-18

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives {sigma}{sub 8} = 0.851 {+-} 0.115 and w = -1.14 {+-} 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find {sigma}{sub 8} = 0.821 {+-} 0.044 and w = -1.05 {+-} 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give {sigma}{sub 8} = 0.802 {+-} 0.038 and w = -0.98 {+-} 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  16. Shipboard Smoke Detection with Optical Fiber Technology

    National Research Council Canada - National Science Library

    Whitesel, Henry

    1994-01-01

    ...) and scattering across an air gap. Utilizing spectrographic techniques and dual detector designs potentially compensates for optical power changes, ambient light changes, dirt coatings, and water coatings...

  17. Substructure in clusters of galaxies

    International Nuclear Information System (INIS)

    Fitchett, M.J.

    1988-01-01

    Optical observations suggesting the existence of substructure in clusters of galaxies are examined. Models of cluster formation and methods used to detect substructure in clusters are reviewed. Consideration is given to classification schemes based on a departure of bright cluster galaxies from a spherically symmetric distribution, evidence for statistically significant substructure, and various types of substructure, including velocity, spatial, and spatial-velocity substructure. The substructure observed in the galaxy distribution in clusters is discussed, focusing on observations from general cluster samples, the Virgo cluster, the Hydra cluster, Centaurus, the Coma cluster, and the Cancer cluster. 88 refs

  18. Spatial Cluster Detection for Repeatedly Measured Outcomes while Accounting for Residential History

    OpenAIRE

    Cook, Andrea J.; Gold, Diane R.; Li, Yi

    2009-01-01

    Spatial cluster detection has become an important methodology in quantifying the effect of hazardous exposures. Previous methods have focused on cross-sectional outcomes that are binary or continuous. There are virtually no spatial cluster detection methods proposed for longitudinal outcomes. This paper proposes a new spatial cluster detection method for repeated outcomes using cumulative geographic residuals. A major advantage of this method is its ability to readily incorporate information ...

  19. GALAXY CLUSTERS IN THE SWIFT/BAT ERA. II. 10 MORE CLUSTERS DETECTED ABOVE 15 keV

    International Nuclear Information System (INIS)

    Ajello, M.; Reimer, O.; Rebusco, P.; Cappelluti, N.; Boehringer, H.; La Parola, V.; Cusumano, G.

    2010-01-01

    We report on the discovery of 10 additional galaxy clusters detected in the ongoing Swift/Burst Alert Telescope (BAT) all-sky survey. Among the newly BAT-discovered clusters there are Bullet, A85, Norma, and PKS 0745-19. Norma is the only cluster, among those presented here, which is resolved by BAT. For all the clusters, we perform a detailed spectral analysis using XMM-Newton and Swift/BAT data to investigate the presence of a hard (non-thermal) X-ray excess. We find that in most cases the clusters' emission in the 0.3-200 keV band can be explained by a multi-temperature thermal model confirming our previous results. For two clusters (Bullet and A3667), we find evidence for the presence of a hard X-ray excess. In the case of the Bullet cluster, our analysis confirms the presence of a non-thermal, power-law-like, component with a 20-100 keV flux of 3.4 x 10 -12 erg cm -2 s -1 as detected in previous studies. For A3667, the excess emission can be successfully modeled as a hot component (kT ∼ 13 keV). We thus conclude that the hard X-ray emission from galaxy clusters (except the Bullet) has most likely a thermal origin.

  20. Galaxy Clusters in the Swift/BAT era II: 10 more Clusters detected above 15 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M.; /SLAC /KIPAC, Menlo Park; Rebusco, P.; /KIPAC, Menlo Park; Cappelluti, N.; /Garching, Max Planck Inst., MPE /Maryland U., Baltimore County; Reimer, O.; /SLAC /Palermo Observ.; Boehringer, H.; /Garching, Max Planck Inst., MPE; La Parola, V.; Cusumano, G.; /Palermo Observ.

    2010-10-27

    We report on the discovery of 10 additional galaxy clusters detected in the ongoing Swift/BAT all-sky survey. Among the newly BAT-discovered clusters there are: Bullet, Abell 85, Norma, and PKS 0745-19. Norma is the only cluster, among those presented here, which is resolved by BAT. For all the clusters we perform a detailed spectral analysis using XMM-Newton and Swift/BAT data to investigate the presence of a hard (non-thermal) X-ray excess. We find that in most cases the clusters emission in the 0.3-200 keV band can be explained by a multi-temperature thermal model confirming our previous results. For two clusters (Bullet and Abell 3667) we find evidence for the presence of a hard X-ray excess. In the case of the Bullet cluster, our analysis confirms the presence of a non-thermal, power-law like, component with a 20-100 keV flux of 3.4 x 10{sup -12} erg cm{sup -2} s{sup -1} as detected in previous studies. For Abell 3667 the excess emission can be successfully modeled as a hot component (kT = {approx}13 keV). We thus conclude that the hard X-ray emission from galaxy clusters (except the Bullet) has most likely thermal origin.

  1. SOUTH POLE TELESCOPE DETECTIONS OF THE PREVIOUSLY UNCONFIRMED PLANCK EARLY SUNYAEV-ZEL'DOVICH CLUSTERS IN THE SOUTHERN HEMISPHERE

    International Nuclear Information System (INIS)

    Story, K.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Aird, K. A.; Andersson, K.; Bazin, G.; Armstrong, R.; Desai, S.; Bonamente, M.; Brodwin, M.; Foley, R. J.; Clocchiatti, A.; De Haan, T.; Dobbs, M. A.; Dudley, J. P.; George, E. M.

    2011-01-01

    We present South Pole Telescope (SPT) observations of the five galaxy cluster candidates in the southern hemisphere which were reported as unconfirmed in the Planck Early Sunyaev-Zel'dovich (ESZ) sample. One cluster candidate, PLCKESZ G255.62-46.16, is located in the 2500 deg 2 SPT SZ survey region and was reported previously as SPT-CL J0411-4819. For the remaining four candidates, which are located outside of the SPT SZ survey region, we performed short, dedicated SPT observations. Each of these four candidates was strongly detected in maps made from these observations, with signal-to-noise ratios ranging from 6.3 to 13.8. We have observed these four candidates on the Magellan-Baade telescope and used these data to estimate cluster redshifts from the red sequence. Resulting redshifts range from 0.24 to 0.46. We report measurements of Y 0.'75 , the integrated Comptonization within a 0.'75 radius, for all five candidates. We also report X-ray luminosities calculated from ROSAT All-Sky Survey catalog counts, as well as optical and improved SZ coordinates for each candidate. The combination of SPT SZ measurements, optical red-sequence measurements, and X-ray luminosity estimates demonstrates that these five Planck ESZ cluster candidates do indeed correspond to real galaxy clusters with redshifts and observable properties consistent with the rest of the ESZ sample.

  2. X-ray and optical substructures of the DAFT/FADA survey clusters

    Science.gov (United States)

    Guennou, L.; Durret, F.; Adami, C.; Lima Neto, G. B.

    2013-04-01

    We have undertaken the DAFT/FADA survey with the double aim of setting constraints on dark energy based on weak lensing tomography and of obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range 0.4-0.9 for which there were HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. Out of these, a spatial analysis was possible for 30 clusters, but only 23 had deep enough X-ray data for a really robust analysis. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. Altogether, the X-ray sample of 23 clusters and the optical sample of 26 clusters have 14 clusters in common. We present preliminary results on the coupled X-ray and dynamical analyses of these 14 clusters.

  3. The merging cluster Abell 1758: an optical and dynamical view

    Science.gov (United States)

    Monteiro-Oliveira, Rogerio; Serra Cypriano, Eduardo; Machado, Rubens; Lima Neto, Gastao B.

    2015-08-01

    The galaxy cluster Abell 1758-North (z=0.28) is a binary system composed by the sub-structures NW and NE. This is supposed to be a post-merging cluster due to observed detachment between the NE BCG and the respective X-ray emitting hot gas clump in a scenario very close to the famous Bullet Cluster. On the other hand, the projected position of the NW BCG coincides with the local hot gas peak. This system was been targeted previously by several studies, using multiple wavelengths and techniques, but there is still no clear picture of the scenario that could have caused this unusual configuration. To help solving this complex puzzle we added some pieces: firstly, we have used deep B, RC and z' Subaru images to perform both weak lensing shear and magnification analysis of A1758 (including here the South component that is not in interaction with A1758-North) modeling each sub-clump as an NFW profile in order to constrain masses and its center positions through MCMC methods; the second piece is the dynamical analysis using radial velocities available in the literature (143) plus new Gemini-GMOS/N measurements (68 new redshifts).From weak lensing we found that independent shear and magnification mass determinations are in excellent agreement between them and combining both we could reduce mass error bar by ~30% compared to shear alone. By combining this two weak-lensing probes we found that the position of both Northern BCGs are consistent with the masses centers within 2σ and and the NE hot gas peak to be offseted of the respective mass peak (M200=5.5 X 1014 M⊙) with very high significance. The most massive structure is NW (M200=7.95 X 1014 M⊙ ) where we observed no detachment between gas, DM and BCG.We have calculated a low line-of-sight velocity difference (plane of collision and the sky (<40 degrees). Dynamic modeling shows that the point of maximum approximation taken place 0.55 Gyr ago, pointing Abell 1758-North as a young merger cluster.

  4. Direct detection of the optical field beyond single polarization mode.

    Science.gov (United States)

    Che, Di; Sun, Chuanbowen; Shieh, William

    2018-02-05

    Direct detection is traditionally regarded as a detection method that recovers only the optical intensity. Compared with coherent detection, it owns a natural advantage-the simplicity-but lacks a crucial capability of field recovery that enables not only the multi-dimensional modulation, but also the digital compensation of the fiber impairments linear with the optical field. Full-field detection is crucial to increase the capacity-distance product of optical transmission systems. A variety of methods have been investigated to directly detect the optical field of the single polarization mode, which normally sends a carrier traveling with the signal for self-coherent detection. The crux, however, is that any optical transmission medium supports at least two propagating modes (e.g. single mode fiber supports two polarization modes), and until now there is no direct detection that can recover the complete set of optical fields beyond one polarization, due to the well-known carrier fading issue after mode demultiplexing induced by the random mode coupling. To avoid the fading, direct detection receivers should recover the signal in an intensity space isomorphic to the optical field without loss of any degrees of freedom, and a bridge should be built between the field and its isomorphic space for the multi-mode field recovery. Based on this thinking, we propose, for the first time, the direct detection of dual polarization modes by a novel receiver concept, the Stokes-space field receiver (SSFR) and its extension, the generalized SSFR for multiple spatial modes. The idea is verified by a dual-polarization field recovery of a polarization-multiplexed complex signal over an 80-km single mode fiber transmission. SSFR can be applied to a much wider range of fields beyond optical communications such as coherent sensing and imaging, where simple field recovery without an extra local laser is desired for enhanced system performance.

  5. Fractals: Giant impurity nonlinearities in optics of fractal clusters

    International Nuclear Information System (INIS)

    Butenko, A.V.; Shalaev, V.M.; Stockman, M.I.

    1988-01-01

    A theory of nonlinear optical properties of fractals is developed. Giant enhancement of optical susceptibilities is predicted for impurities bound to a fractal. This enhancement occurs if the exciting radiation frequency lies within the absorption band of the fractal. The giant optical nonlinearities are due to existence of high local electric fields in the sites of impurity locations. Such fields are due to the inhomogeneously broadened character of a fractal spectrum, i.e. partial conservation of individuality of fractal-forming particles (monomers). The field enhancement is proportional to the Q-factor of the resonance of a monomer. The effects of coherent anti-Stokes Raman scattering (CARS) and phase conjugation (PC) of light waves are enhanced to a much greater degree than generation of higher harmonics. In a general case the susceptibility of a higher-order is enhanced in the maximum way if the process includes ''subtraction'' of photons (at least one of the strong field frequencies enters the susceptibility with the minus sign). Alternatively, enhancement for the highest-order harmonic generation (when all the photons are ''accumulated'') is minimal. The predicted phenomena bear information on spectral properties of both impurity molecules and a fractal. In particular, in the CARS spectra a narrow (with the natural width) resonant structure, which is proper to an isolated monomer of a fractal, is predicted to be observed. (orig.)

  6. System and Method for Multi-Wavelength Optical Signal Detection

    Science.gov (United States)

    McGlone, Thomas D. (Inventor)

    2017-01-01

    The system and method for multi-wavelength optical signal detection enables the detection of optical signal levels significantly below those processed at the discrete circuit level by the use of mixed-signal processing methods implemented with integrated circuit technologies. The present invention is configured to detect and process small signals, which enables the reduction of the optical power required to stimulate detection networks, and lowers the required laser power to make specific measurements. The present invention provides an adaptation of active pixel networks combined with mixed-signal processing methods to provide an integer representation of the received signal as an output. The present invention also provides multi-wavelength laser detection circuits for use in various systems, such as a differential absorption light detection and ranging system.

  7. Stereo multiplexing for direct detected optical communication systems

    NARCIS (Netherlands)

    Gaete, O.; Coelho, L.D.; Spinnler, B.; Al Fiad, M.S.A.S.; Jansen, S.L.; Hanik, N.

    2009-01-01

    We propose a novel technique that allows simultaneous detection of two modulated optical sub-carriers. A proof-of-principle experiment is described and subsequently the performance at high data rates (111Gb/s) is assessed by simulations.

  8. Electro-optical Detection of Charged Particles

    International Nuclear Information System (INIS)

    Lazarus, D.M.

    2001-01-01

    The electric field of charged particles can induce transient changes in the polarization of light that produce sub-picosecond modulation of a laser beam. This is a consequence of the electro-optical effect in which the presence of the electric field in an electro-optical medium produces a change in the index of refraction of the medium resulting in a phase retardation between polarization components parallel and perpendicular to the electric field. We have observed the electro-optical effect due to 10 picosecond electron beam bunches with rise times that were limited by the bandwidth of our data acquisition system. This technology is being applied to particle beam diagnostics and has the potential to produce charged particle detectors combining excellent spatial resolution with unprecedented temporal precision.

  9. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.

    Science.gov (United States)

    Mejia, Camilo A; Huang, Ningfeng; Povinelli, Michelle L

    2012-09-01

    We predict the formation of optically trapped, metal-dielectric nanoparticle clusters above photonic crystal microcavities. We determine the conditions on particle size and position for a gold particle to be trapped above the microcavity. We then show that strong field redistribution and enhancement near the trapped gold nanoparticle results in secondary trapping sites for a pair of dielectric nanoparticles.

  10. Optical and ultraviolet study of five stars in the Pleiades open cluster

    International Nuclear Information System (INIS)

    Younan, K.F.; Dufton, P.L.

    1984-01-01

    Optical and ultraviolet observations of five low-reddened stars in the Pleiades open cluster have been obtained with an echelle spectrograph and the IUE satellite. The observed interstellar absorption lines have been analysed with different cloud models to estimate interstellar gas abundances for each line-of-sight. These results have been discussed in the light of current models for diatomic formation. (author)

  11. Molecular detection using Rydberg, autoionizing, and cluster states. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wessel, J.

    1989-08-17

    Continuing investigations of multiphoton ionization processes in naphthalene have established the geometry and spectroscopy of trimer and tetramer cluster states. A new, highly efficient ionization mechanism has been identified in the trimer. It is closely related to autoionization of 2-electron atoms by resonant 2-photon excitation and to exciton fusion in larger clusters.

  12. Connecting optical and X-ray tracers of galaxy cluster relaxation

    Science.gov (United States)

    Roberts, Ian D.; Parker, Laura C.; Hlavacek-Larrondo, Julie

    2018-04-01

    Substantial effort has been devoted in determining the ideal proxy for quantifying the morphology of the hot intracluster medium in clusters of galaxies. These proxies, based on X-ray emission, typically require expensive, high-quality X-ray observations making them difficult to apply to large surveys of groups and clusters. Here, we compare optical relaxation proxies with X-ray asymmetries and centroid shifts for a sample of Sloan Digital Sky Survey clusters with high-quality, archival X-ray data from Chandra and XMM-Newton. The three optical relaxation measures considered are the shape of the member-galaxy projected velocity distribution - measured by the Anderson-Darling (AD) statistic, the stellar mass gap between the most-massive and second-most-massive cluster galaxy, and the offset between the most-massive galaxy (MMG) position and the luminosity-weighted cluster centre. The AD statistic and stellar mass gap correlate significantly with X-ray relaxation proxies, with the AD statistic being the stronger correlator. Conversely, we find no evidence for a correlation between X-ray asymmetry or centroid shift and the MMG offset. High-mass clusters (Mhalo > 1014.5 M⊙) in this sample have X-ray asymmetries, centroid shifts, and Anderson-Darling statistics which are systematically larger than for low-mass systems. Finally, considering the dichotomy of Gaussian and non-Gaussian clusters (measured by the AD test), we show that the probability of being a non-Gaussian cluster correlates significantly with X-ray asymmetry but only shows a marginal correlation with centroid shift. These results confirm the shape of the radial velocity distribution as a useful proxy for cluster relaxation, which can then be applied to large redshift surveys lacking extensive X-ray coverage.

  13. Optical identifications of IRAS point sources: the Fornax, Hydra I and Coma clusters

    International Nuclear Information System (INIS)

    Wang, G.; Leggett, S.K.; Savage, A.

    1991-01-01

    We present optical identifications for 66 IRAS point sources in the region of the Fornax cluster of galaxies, 106 IRAS point sources in the region of the Hydra I cluster of galaxies (Abell 1060) and 59 IRAS point sources in the region of the Coma cluster of galaxies (Abell 1656). Eight other sources in Hydra I do not have optical counterparts and are very probably due to infrared cirrus. Twenty-three (35 per cent) of the Fornax sources are associated with stars and 43 (65 per cent) with galaxies; 48 (42 per cent) of the Hydra I sources are associated with stars and 58 (51 per cent) with galaxies; 18 (31 per cent) of the Coma sources are associated with stars and 41 (69 per cent) with galaxies. The stellar and infrared cirrus surface density is consistent with the galactic latitude of each field. (author)

  14. Fiber Optic Detection of Ammonia Gas

    Directory of Open Access Journals (Sweden)

    L. Kalvoda

    2006-01-01

    Full Text Available Bathochromic shifts accompanying the formation of several bivalent metallic complexes containing 5-(4’-dimethylaminophenylimino quinolin-8-one (L1, and 7-chlore-5(4’-diethylamino-2-methylphenylimino quinolin-8-one (L2 ligands in ethanol solutions were evaluated by VIS-NIR spectroscopy. The [L1-Cu-L1] sulphide complex was selected as a reagent for further tests on optical fibres. Samples of multimode siloxane-clad fused-silica fibre were sensitized by diffusing an ethanol/chloroform solution of the dye into the cladding polymer, and tested by VIS-NIR optical spectroscopy (12 cm long fibre sections, and optical time domain reflectometry (OTDR; 20 ns laser pulses, wavelength 850 nm, 120 m long fibre sensitized within the interval 104–110 m. A well-resolved absorption band of the reagent could be identified in the absorption spectra of the fibres. After exposure to dry ammonia/nitrogen gas with increasing ammonia concentration (0–4000 ppm, the short fibre samples showed subsequent decay of NIR optical absorption; saturation was observed for higher ammonia levels. The concentration resolution r ? 50 ppm and forward response time t90 ? 30 sec were obtained within the interval 0–1000 ppm. The OTDR courses showed an enhancement of the back-scattered light intensity coming from the sensitized region after diffusion of the initial reagent, and decay after exposure to concentrated ammonia/nitrogen gas (10000 ppm.

  15. Optical Detection of Anomalous Nitrogen in Comets

    Science.gov (United States)

    2003-12-01

    VLT Opens New Window towards Our Origins Summary A team of European astronomers [1] has used the UVES spectrograph on the 8.2-m VLT KUEYEN telescope to perform a uniquely detailed study of Comet LINEAR (C/2000 WM1) . This is the first time that this powerful instrument has been employed to obtain high-resolution spectra of a comet. At the time of the observations in mid-March 2002, Comet LINEAR was about 180 million km from the Sun, moving outwards after its perihelion passage in January. As comets are believed to carry "pristine" material - left-overs from the formation of the solar system, about 4,600 million years ago - studies of these objects are important to obtain clues about the origins of the solar system and the Earth in particular. The high quality of the data obtained of this moving 9th-magnitude object has permitted a determination of the cometary abundance of various elements and their isotopes [2]. Of particular interest is the unambiguous detection and measurement of the nitrogen-15 isotope. The only other comet in which this isotope has been observed is famous Comet Hale-Bopp - this was during the passage in 1997, when it was much brighter than Comet LINEAR. Most interestingly, Comet LINEAR and Comet Hale-Bopp display the same isotopic abundance ratio, about 1 nitrogen-15 atom for each 140 nitrogen-14 atoms ( 14 N/ 15 N = 140 ± 30) . That is about half of the terrestrial value (272). It is also very different from the result obtained by means of radio measurements of Comet Hale-Bopp ( 14 N/ 15 N = 330 ± 75). Optical and radio measurements concern different molecules (CN and HCN, respectively), and this isotopic anomaly must be explained by some differentiation mechanism. The astronomers conclude that part of the cometary nitrogen is trapped in macromolecules attached to dust particles . The successful entry of UVES into cometary research now opens eagerly awaited opportunities for similiar observations in other, comparatively faint comets. These

  16. Optical detection of radio waves through a nanomechanical transducer

    DEFF Research Database (Denmark)

    Bagci, Tolga; Simonsen, A; Schmid, Silvan

    2013-01-01

    Low-loss transmission and sensitive recovery of weak radio-frequency (rf) and microwave signals is an ubiquitous technological challenge, crucial in fields as diverse as radio astronomy, medical imaging, navigation and communication, including those of quantum states. Efficient upconversion of rf-signals...... to an optical carrier would allow transmitting them via optical fibers instead of copper wires dramatically reducing losses, and give access to the mature toolbox of quantum optical techniques, routinely enabling quantum-limited signal detection. Research in the field of cavity optomechanics [1, 2] has shown...... reflected off its metallized surface. The circuit acts as an antenna; the voltage signals it induces are detected as an optical phase shift with quantum-limited sensitivity. The corresponding half-wave voltage is in the microvolt range, orders of magnitude below that of standard optical modulators...

  17. Using spectral-domain optical coherence tomography to detect optic neuropathy in patients with craniosynostosis.

    Science.gov (United States)

    Dagi, Linda R; Tiedemann, Laura M; Heidary, Gena; Robson, Caroline D; Hall, Amber M; Zurakowski, David

    2014-12-01

    Detecting and monitoring optic neuropathy in patients with craniosynostosis is a clinical challenge due to limited cooperation, and subjective measures of visual function. The purpose of this study was to appraise the correlation of peripapillary retinal nerve fiber layer (RNFL) thickness measured by spectral-domain ocular coherence tomography (SD-OCT) with indication of optic neuropathy based on fundus examination. The medical records of all patients with craniosynostosis presenting for ophthalmic evaluation during 2013 were retrospectively reviewed. The following data were abstracted from the record: diagnosis, historical evidence of elevated intracranial pressure, current ophthalmic evaluation and visual field results, and current peripapillary RNFL thickness. A total of 54 patients were included (mean age, 10.6 years [range, 2.4-33.8 years]). Thirteen (24%) had evidence of optic neuropathy based on current fundus examination. Of these, 10 (77%) demonstrated either peripapillary RNFL elevation and papilledema or depression with optic atrophy. Sensitivity for detecting optic atrophy was 88%; for papilledema, 60%; and for either form of optic neuropathy, 77%. Specificity was 94%, 90%, and 83%, respectively. Kappa agreement was substantial for optic atrophy (κ = 0.73) and moderate for papilledema (κ = 0.39) and for either form of optic neuropathy (κ = 0.54). Logistic regression indicated that peripapillary RNFL thickness was predictive of optic neuropathy (P optic neuropathy than visual field testing (likelihood ratio = 10.02; P = 0.002). Sensitivity and specificity of logMAR visual acuity in detecting optic neuropathy were 15% and 95%, respectively. Peripapillary RNFL thickness measured by SD-OCT provides adjunctive evidence for identifying optic neuropathy in patients with craniosynostosis and appears more sensitive at detecting optic atrophy than papilledema. Copyright © 2014 American Association for Pediatric Ophthalmology and Strabismus. Published by

  18. CALL FOR PAPERS: Special cluster in Biomedical Optics: honouring Professor Valery Tuchin, Saratov University

    Science.gov (United States)

    Wang, Ruikang K.; Priezzhev, Alexander; Fantini, Sergio

    2004-07-01

    To honour Professor Valery Tuchin, one of the pioneers in biomedical optics, Journal of Physics D: Applied Physics invites manuscript submissions on topics in biomedical optics, for publication in a Special section in May 2005. Papers may cover a variety of topics related to photon propagation in turbid media, spectroscopy and imaging. This Special cluster will reflect the diversity, breadth and impact of Professor Tuchin's contributions to the field of biomedical optics over the course of his distinguished career. Biomedical optics is a recently emerged discipline providing a broad variety of optical techniques and instruments for diagnostic, therapeutic and basic science applications. Together with contributions from other pioneers in the field, Professor Tuchin's work on fundamental and experimental aspects in tissue optics contributed enormously to the formation of this exciting field. Although general submissions in biomedical optics are invited, the Special cluster Editors especially encourage submissions in areas that are explicitly or implicitly influenced by Professor Tuchin's contributions to the field of biomedical optics. Manuscripts submitted to this Special cluster of Journal of Physics D: Applied Physics will be refereed according to the normal criteria and procedures of the journal, in accordance with the following schedule: Deadline for receipt of contributed papers: 31 November 2004 Deadline for acceptance and completion of refereeing process: 28 February 2005 Publication of special issue: May 2005 Please submit your manuscript electronically to jphysd@iop.org or via the Web site at www.iop.org/Journals. Otherwise, please send a copy of your typescript, a set of original figures and a cover letter to: The Publishing Administrator, Journal of Physics D: Applied Physics, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, United Kingdom. Further information on how to submit may be obtained upon request by e-mailing the

  19. Substructures in DAFT/FADA survey clusters based on XMM and optical data

    Science.gov (United States)

    Durret, F.; DAFT/FADA Team

    2014-07-01

    The DAFT/FADA survey was initiated to perform weak lensing tomography on a sample of 90 massive clusters in the redshift range [0.4,0.9] with HST imaging available. The complementary deep multiband imaging constitutes a high quality imaging data base for these clusters. In X-rays, we have analysed the XMM-Newton and/or Chandra data available for 32 clusters, and for 23 clusters we fit the X-ray emissivity with a beta-model and subtract it to search for substructures in the X-ray gas. This study was coupled with a dynamical analysis for the 18 clusters with at least 15 spectroscopic galaxy redshifts in the cluster range, based on a Serna & Gerbal (SG) analysis. We detected ten substructures in eight clusters by both methods (X-rays and SG). The percentage of mass included in substructures is found to be roughly constant with redshift, with values of 5-15%. Most of the substructures detected both in X-rays and with the SG method are found to be relatively recent infalls, probably at their first cluster pericenter approach.

  20. Optical detection system for MEMS-type pressure sensor

    International Nuclear Information System (INIS)

    Sareło, K; Górecka-Drzazga, A; Dziuban, J A

    2015-01-01

    In this paper a special optical detection system designed for a MEMS-type (micro-electro-mechanical system) silicon pressure sensor is presented. The main part of the optical system—a detection unit with a perforated membrane—is bonded to the silicon sensor, and placed in a measuring system. An external light source illuminates the membrane of the pressure sensor. Owing to the light reflected from the deflected membrane sensor, the optical pattern consisting of light points is visible, and pressure can be estimated. The optical detection unit (20   ×   20   ×   20.4 mm 3 ) is fabricated using microengineering techniques. Its dimensions are adjusted to the dimensions of the pressure sensor (5   ×   5 mm 2 silicon membrane). Preliminary tests of the optical detection unit integrated with the silicon pressure sensor are carried out. For the membrane sensor from 15 to 60 µm thick, a repeatable detection of the differential pressure in the range of 0 to 280 kPa is achieved. The presented optical microsystem is especially suitable for the pressure measurements in a high radiation environment. (paper)

  1. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Optical Extension for Neutron Capture Elements

    Science.gov (United States)

    Melendez, Matthew; O'Connell, Julia; Frinchaboy, Peter M.; Donor, John; Cunha, Katia M. L.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Stassun, Keivan G.; APOGEE Team

    2017-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. However, neutron capture elements are very limited in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we are conducting a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. As part of this effort, we present Ba II, La II, Ce II and Eu II results for a few open clusters without previous abundance measurements using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.This work is supported by an NSF AAG grant AST-1311835.

  2. Syntheses, structures and third-order non-linear optical properties of homometal clusters containing molybdenum

    International Nuclear Information System (INIS)

    Li Yong; Lu Jing; Cui Xiaobing; Xu Jiqing; Li Kechang; Sun Huaying; Li Guanghua; Pan Lingyun; Yang Qingxin

    2005-01-01

    Both the homometal cluster [P(ph 4 )] 2 [Mo 2 O 2 (μ-S) 2 (S 2 ) 2 ] (1) and [Mo 2 O 2 (μ-S) 2 (Et 2 dtc) 2 ] (2) (Et 2 dtc=diethyl-dithiocarbamate) were successfully synthesized by low-temperature solid-state reactions. X-ray single-crystal diffraction studies suggest that compound (1) is a dinuclear anion cluster, and compound (2) is a dinuclear neutral cluster. The two compounds were characterized by elemental analyses, IR spectra and UV-Vis spectra. The third-order non-linear optical (NLO) properties of the clusters were also investigated and all exhibited nice non-linear absorption and self-defocusing performance with moduli of the hyperpolarizabilities 5.145x10 -30 esu for (1) and 5.428x10 -30 esu for (2)

  3. Electronic structure and optical properties of the thiolate-protected Au28(SMe)20 cluster.

    Science.gov (United States)

    Knoppe, Stefan; Malola, Sami; Lehtovaara, Lauri; Bürgi, Thomas; Häkkinen, Hannu

    2013-10-10

    The recently reported crystal structure of the Au28(TBBT)20 cluster (TBBT: p-tert-butylbenzenethiolate) is analyzed with (time-dependent) density functional theory (TD-DFT). Bader charge analysis reveals a novel trimeric Au3(SR)4 binding motif. The cluster can be formulated as Au14(Au2(SR)3)4(Au3(SR)4)2. The electronic structure of the Au14(6+) core and the ligand-protected cluster were analyzed, and their stability can be explained by formation of distorted eight-electron superatoms. Optical absorption and circular dichroism (CD) spectra were calculated and compared to the experiment. Assignment of handedness of the intrinsically chiral cluster is possible.

  4. K-means-clustering-based fiber nonlinearity equalization techniques for 64-QAM coherent optical communication system.

    Science.gov (United States)

    Zhang, Junfeng; Chen, Wei; Gao, Mingyi; Shen, Gangxiang

    2017-10-30

    In this work, we proposed two k-means-clustering-based algorithms to mitigate the fiber nonlinearity for 64-quadrature amplitude modulation (64-QAM) signal, the training-sequence assisted k-means algorithm and the blind k-means algorithm. We experimentally demonstrated the proposed k-means-clustering-based fiber nonlinearity mitigation techniques in 75-Gb/s 64-QAM coherent optical communication system. The proposed algorithms have reduced clustering complexity and low data redundancy and they are able to quickly find appropriate initial centroids and select correctly the centroids of the clusters to obtain the global optimal solutions for large k value. We measured the bit-error-ratio (BER) performance of 64-QAM signal with different launched powers into the 50-km single mode fiber and the proposed techniques can greatly mitigate the signal impairments caused by the amplified spontaneous emission noise and the fiber Kerr nonlinearity and improve the BER performance.

  5. Medium-induced change of the optical response of metal clusters in rare-gas matrices

    Science.gov (United States)

    Xuan, Fengyuan; Guet, Claude

    2017-10-01

    Interaction with the surrounding medium modifies the optical response of embedded metal clusters. For clusters from about ten to a few hundreds of silver atoms, embedded in rare-gas matrices, we study the environment effect within the matrix random phase approximation with exact exchange (RPAE) quantum approach, which has proved successful for free silver clusters. The polarizable surrounding medium screens the residual two-body RPAE interaction, adds a polarization term to the one-body potential, and shifts the vacuum energy of the active delocalized valence electrons. Within this model, we calculate the dipole oscillator strength distribution for Ag clusters embedded in helium droplets, neon, argon, krypton, and xenon matrices. The main contribution to the dipole surface plasmon red shift originates from the rare-gas polarization screening of the two-body interaction. The large size limit of the dipole surface plasmon agrees well with the classical prediction.

  6. Synthesis of colloidal silver nanoparticle clusters and their application in ascorbic acid detection by SERS.

    Science.gov (United States)

    Cholula-Díaz, Jorge L; Lomelí-Marroquín, Diana; Pramanick, Bidhan; Nieto-Argüello, Alfonso; Cantú-Castillo, Luis A; Hwang, Hyundoo

    2018-03-01

    Ascorbic acid (vitamin C) has an essential role in the human body mainly due to its antioxidant function. In this work, metallic silver nanoparticle (AgNP) colloids were used in SERS experiments to detect ascorbic acid in aqueous solution. The AgNPs were synthesized by a green method using potato starch as reducing and stabilizing agent, and water as the solvent. The optical properties of the yellowish as-synthesized silver colloids were characterized by UV-vis spectroscopy, in which besides a typical band at 410 nm related to the localized surface plasmon resonance of the silver nanoparticles, a shoulder band around 500 nm, due to silver nanoparticle cluster formation, is presented when relatively higher concentrations of starch are used in the synthesis. These starch-capped silver nanoparticles show an intrinsic Raman peak at 1386 cm -1 assigned to deformation modes of the starch structure. The increase of the intensity of the SERS peak at 1386 cm -1 with an increase in the concentration of the ascorbic acid is related to a decrease of the gap between dimers and trimers of the silver nanoparticle clusters produced by the presence of ascorbic acid in the colloid. The limit of detection of this technique for ascorbic acid is 0.02 mM with a measurement concentration range of 0.02-10 mM, which is relevant for the application of this method for detecting ascorbic acid in biological specimen. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Selective detection of antibodies in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Hoiby, P.E.; Emiliyanov, Grigoriy Andreev

    2005-01-01

    was applied to selectively capture either α-streptavidin or α-CRP antibodies inside these air holes. A sensitive and easy-to-use fluorescence method was used for the optical detection. Our results show that mPOF based biosensors can provide reliable and selective antibody detection in ultra small sample......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fiber (mPOF). The fiber core is defined by a ring of 6 air holes and a simple procedure...

  8. Detection of Aeromonas hydrophila Using Fiber Optic Microchannel Sensor

    Directory of Open Access Journals (Sweden)

    Samla Gauri

    2017-01-01

    Full Text Available This research focuses on the detection of Aeromonas hydrophila using fiber optic microchannel biosensor. Microchannel was fabricated by photolithography method. The fiber optic was chosen as signal transmitting medium and light absorption characteristic of different microorganisms was investigated for possible detection. Experimental results showed that Aeromonas hydrophila can be detected at the region of UV-Vis spectra between 352 nm and 354 nm which was comparable to measurement provided by UV spectrophotometer and also theoretical calculation by Beer-Lambert Absorption Law. The entire detection can be done in less than 10 minutes using a total volume of 3 μL only. This result promises good potential of this fiber optic microchannel sensor as a reliable, portable, and disposable sensor.

  9. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    Science.gov (United States)

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.

  10. Electro-optical detection of charged particles

    International Nuclear Information System (INIS)

    Semertzidis, Y.K.; Castillo, V.; Kowalski, L.; Kraus, D.E.; Larsen, R.; Lazarus, D.M.; Magurno, B.; Nikas, D.; Ozben, C.; Srinivasan-Rao, T.; Tsang, T.

    2000-01-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the polarization of laser light in a LiNbO 3 crystal. The modulation of the laser light during the passage of a pulsed electron beam was observed using a fast photodiode and a digital oscilloscope. The fastest rise time measured, 120 ps, was obtained in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. This technology holds good for detectors of greatly improved spatial and temporal resolution for single relativistic charged particles as well as particle beams

  11. Electro-optical detection of charged particles

    CERN Document Server

    Semertzidis, Y K; Kowalski, L A; Kraus, D E; Larsen, R; Lazarus, D M; Magurno, B; Nikas, D; Ozben, C; Srinivasan-Rao, T; Tsang, Thomas

    2000-01-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the polarization of laser light in a LiNbO sub 3 crystal. The modulation of the laser light during the passage of a pulsed electron beam was observed using a fast photodiode and a digital oscilloscope. The fastest rise time measured, 120 ps, was obtained in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. This technology holds good for detectors of greatly improved spatial and temporal resolution for single relativistic charged particles as well as particle beams.

  12. Electro-optical detection of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Semertzidis, Y.K.; Castillo, V.; Kowalski, L.; Kraus, D.E.; Larsen, R.; Lazarus, D.M. E-mail: lazarus@sun2.bnl.gov; Magurno, B.; Nikas, D.; Ozben, C.; Srinivasan-Rao, T.; Tsang, T

    2000-10-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the polarization of laser light in a LiNbO{sub 3} crystal. The modulation of the laser light during the passage of a pulsed electron beam was observed using a fast photodiode and a digital oscilloscope. The fastest rise time measured, 120 ps, was obtained in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. This technology holds good for detectors of greatly improved spatial and temporal resolution for single relativistic charged particles as well as particle beams.

  13. Optical Detection of Non-amplified Genomic DNA

    Science.gov (United States)

    Li, Di; Fan, Chunhai

    Nucleic acid sequences are unique to every living organisms including animals, plants and even bacteria and virus, which provide a practical molecular target for the identification and diagnosis of various diseases. DNA contains heterocyclic rings that has inherent optical absorbance at 260 nm, which is widely used to quantify single and double stranded DNA in biology. However, this simple quantification method could not differentiate sequences; therefore it is not suitable for sequence-specific analyte detection. In addition to a few exceptions such as chiral-related circular dichroism spectra, DNA hybridization does not produce significant changes in optical signals, thus an optical label is generally needed for sequence-specific DNA detection with optical means. During the last two decades, we have witnessed explosive progress in the area of optical DNA detection, especially with the help of simultaneously rapidly developed nanomaterials. In this chapter, we will summarize recent advances in optical DNA detection including colorimetric, fluorescent, luminescent, surface plasmon resonance (SPR) and Raman scattering assays. Challenges and problems remained to be addressed are also discussed.

  14. OPTICAL LINE EMISSION IN BRIGHTEST CLUSTER GALAXIES AT 0 < z < 0.6: EVIDENCE FOR A LACK OF STRONG COOL CORES 3.5 Gyr AGO?

    International Nuclear Information System (INIS)

    McDonald, Michael

    2011-01-01

    In recent years the number of known galaxy clusters beyond z ∼> 0.2 has increased drastically with the release of multiple catalogs containing >30,000 optically detected galaxy clusters over the range 0 0.3, hinting at an earlier epoch of strong cooling. We compare the evolution of emission-line nebulae to the X-ray-derived cool core (CC) fraction from the literature over the same redshift range and find overall agreement, with the exception that an upturn in the strong CC fraction is not observed at z > 0.3. The overall agreement between the evolution of CCs and optical line emission at low redshift suggests that emission-line surveys of galaxy clusters may provide an efficient method of indirectly probing the evolution of CCs and thus provide insights into the balance of heating and cooling processes at early cosmic times.

  15. Global detection approach for clustered microcalcifications in mammograms using a deep learning network.

    Science.gov (United States)

    Wang, Juan; Nishikawa, Robert M; Yang, Yongyi

    2017-04-01

    In computerized detection of clustered microcalcifications (MCs) from mammograms, the traditional approach is to apply a pattern detector to locate the presence of individual MCs, which are subsequently grouped into clusters. Such an approach is often susceptible to the occurrence of false positives (FPs) caused by local image patterns that resemble MCs. We investigate the feasibility of a direct detection approach to determining whether an image region contains clustered MCs or not. Toward this goal, we develop a deep convolutional neural network (CNN) as the classifier model to which the input consists of a large image window ([Formula: see text] in size). The multiple layers in the CNN classifier are trained to automatically extract image features relevant to MCs at different spatial scales. In the experiments, we demonstrated this approach on a dataset consisting of both screen-film mammograms and full-field digital mammograms. We evaluated the detection performance both on classifying image regions of clustered MCs using a receiver operating characteristic (ROC) analysis and on detecting clustered MCs from full mammograms by a free-response receiver operating characteristic analysis. For comparison, we also considered a recently developed MC detector with FP suppression. In classifying image regions of clustered MCs, the CNN classifier achieved 0.971 in the area under the ROC curve, compared to 0.944 for the MC detector. In detecting clustered MCs from full mammograms, at 90% sensitivity, the CNN classifier obtained an FP rate of 0.69 clusters/image, compared to 1.17 clusters/image by the MC detector. These results indicate that using global image features can be more effective in discriminating clustered MCs from FPs caused by various sources, such as linear structures, thereby providing a more accurate detection of clustered MCs on mammograms.

  16. Thermo-optical Characterization of Photothermal Optical Phase Shift Detection in Extended-Nano Channels and UV Detection of Biomolecules.

    Science.gov (United States)

    Shimizu, Hisashi; Miyawaki, Naoya; Asano, Yoshihiro; Mawatari, Kazuma; Kitamori, Takehiko

    2017-06-06

    The expansion of microfluidics research to nanofluidics requires absolutely sensitive and universal detection methods. Photothermal detection, which utilizes optical absorption and nonradiative relaxation, is promising for the sensitive detection of nonlabeled biomolecules in nanofluidic channels. We have previously developed a photothermal optical phase shift (POPS) detection method to detect nonfluorescent molecules sensitively, while a rapid decrease of the sensitivity in nanochannels and the introduction of an ultraviolet (UV) excitation system were issues to be addressed. In the present study, our primary aim is to characterize the POPS signal in terms of the thermo-optical properties and quantitatively evaluate the causes for the decrease in sensitivity. The UV excitation system is then introduced into the POPS detector to realize the sensitive detection of nonlabeled biomolecules. The UV-POPS detection system is designed and constructed from scratch based on a symmetric microscope. The results of simulations and experiments reveal that the sensitivity decreases due to a reduction of the detection volume, dissipation of the heat, and cancellation of the changes in the refractive indices. Finally, determination of the concentration of a nonlabeled protein (bovine serum albumin) is performed in a very thin 900 nm deep nanochannel. As a result, the limit of detection (LOD) is 2.3 μM (600 molecules in the 440 attoliter detection volume), which is as low as that previously obtained for our visible POPS detector. UV-POPS detection is thus expected be a powerful technique for the study of biomolecules, including DNAs and proteins confined in nanofluidic channels.

  17. Classifying Aerosols Based on Fuzzy Clustering and Their Optical and Microphysical Properties Study in Beijing, China

    Directory of Open Access Journals (Sweden)

    Wenhao Zhang

    2017-01-01

    Full Text Available Classification of Beijing aerosol is carried out based on clustering optical properties obtained from three Aerosol Robotic Network (AERONET sites. The fuzzy c-mean (FCM clustering algorithm is used to classify fourteen-year (2001–2014 observations, totally of 6,732 records, into six aerosol types. They are identified as fine particle nonabsorbing, two kinds of fine particle moderately absorbing (fine-MA1 and fine-MA2, fine particle highly absorbing, polluted dust, and desert dust aerosol. These aerosol types exhibit obvious optical characteristics difference. While five of them show similarities with aerosol types identified elsewhere, the polluted dust aerosol has no comparable prototype. Then the membership degree, a significant parameter provided by fuzzy clustering, is used to analyze internal variation of optical properties of each aerosol type. Finally, temporal variations of aerosol types are investigated. The dominant aerosol types are polluted dust and desert dust in spring, fine particle nonabsorbing aerosol in summer, and fine particle highly absorbing aerosol in winter. The fine particle moderately absorbing aerosol occurs during the whole year. Optical properties of the six types can also be used for radiative forcing estimation and satellite aerosol retrieval. Additionally, methodology of this study can be applied to identify aerosol types on a global scale.

  18. Fast optical signal not detected in awake behaving monkeys.

    Science.gov (United States)

    Radhakrishnan, Harsha; Vanduffel, Wim; Deng, Hong Ping; Ekstrom, Leeland; Boas, David A; Franceschini, Maria Angela

    2009-04-01

    While the ability of near-infrared spectroscopy (NIRS) to measure cerebral hemodynamic evoked responses (slow optical signal) is well established, its ability to measure non-invasively the 'fast optical signal' is still controversial. Here, we aim to determine the feasibility of performing NIRS measurements of the 'fast optical signal' or Event-Related Optical Signals (EROS) under optimal experimental conditions in awake behaving macaque monkeys. These monkeys were implanted with a 'recording well' to expose the dura above the primary visual cortex (V1). A custom-made optical probe was inserted and fixed into the well. The close proximity of the probe to the brain maximized the sensitivity to changes in optical properties in the cortex. Motion artifacts were minimized by physical restraint of the head. Full-field contrast-reversing checkerboard stimuli were presented to monkeys trained to perform a visual fixation task. In separate sessions, two NIRS systems (CW4 and ISS FD oximeter), which previously showed the ability to measure the fast signal in human, were used. In some sessions EEG was acquired simultaneously with the optical signal. The increased sensitivity to cortical optical changes with our experimental setup was quantified with 3D Monte Carlo simulations on a segmented MRI monkey head. Averages of thousands of stimuli in the same animal, or grand averages across the two animals and across repeated sessions, did not lead to detection of the fast optical signal using either amplitude or phase of the optical signal. Hemodynamic responses and visual evoked potentials were instead always detected with single trials or averages of a few stimuli. Based on these negative results, despite the optimal experimental conditions, we doubt the usefulness of non-invasive fast optical signal measurements with NIRS.

  19. Relaxation processes in optically excites metal clusters; Relaxationsprozesse in optisch angeregten Metallclustern

    Energy Technology Data Exchange (ETDEWEB)

    Stanzel, J.

    2007-08-10

    The present work is concerned with the dynamics of optically excited metal clusters in the gas phase. Small mass-selected gold and tungsten cluster anions (Au{sup -}{sub n}, n=5-8, 14, 20 and W{sup -}{sub n}, n=3-14) are studied using femtosecond time-resolved photoelectron spectroscopy. Depending on the electronic structure in the valence region as well as on the optical excitation energy fundamentally different relaxation processes are observed. In small gold cluster anions excited with 1.56 eV an isolated electronically excited state is populated. The time-dependent measurements are strongly sizedependent and open insights into photoinduced geometry changes of the nuclear framework. Oscillatory vibrational wavepacket motion in Au{sup -}{sub 5}, an extremely longlived ({tau} >90 ns) electronically excited state in Au{sup -}{sub 6} as well as photoinduced melting in Au{sup -}{sub 7} and Au{sup -}{sub 8} is monitored in real time. By increasing the OPTICAL excitation energy to 3.12 eV a completely different scenario is observed. A multitude of electronically excited states can be reached upon optical excitation and as a consequence electronic relaxation processes that take place on a time scale of 1 ps are dominating. This is shown for Au{sup -}{sub 7}, Au{sup -}{sub 14} and Au{sup -}{sub 20}. Compared to gold clusters, tungsten clusters are characterized by a significantly higher electronic density of states in the valence region. Therefore electronic relaxation processes are much more likely and take place on a significantly faster time scale. The fast electronic relaxation processes are distinguished from pure vibrational relaxation. It is shown that already in the four atomic tungsten cluster W{sup -}{sub 4} electronic relaxation processes take place on a time scale of 30 fs. In all investigated tungsten cluster anions (W{sup -}{sub n}, n=3-14) an equilibrium between electronic and vibrational system is reached within around 1 ps after optical excitation which

  20. Optic disc detection and boundary extraction in retinal images.

    Science.gov (United States)

    Basit, A; Fraz, Muhammad Moazam

    2015-04-10

    With the development of digital image processing, analysis and modeling techniques, automatic retinal image analysis is emerging as an important screening tool for early detection of ophthalmologic disorders such as diabetic retinopathy and glaucoma. In this paper, a robust method for optic disc detection and extraction of the optic disc boundary is proposed to help in the development of computer-assisted diagnosis and treatment of such ophthalmic disease. The proposed method is based on morphological operations, smoothing filters, and the marker controlled watershed transform. Internal and external markers are used to first modify the gradient magnitude image and then the watershed transformation is applied on this modified gradient magnitude image for boundary extraction. This method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc. The proposed method has optic disc detection success rate of 100%, 100%, 100% and 98.9% for the DRIVE, Shifa, CHASE_DB1, and DIARETDB1 databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 61.88%, 70.96%, 45.61%, and 54.69% for these databases, respectively, which are higher than currents methods.

  1. Six-port optical switch for cluster-mesh photonic network-on-chip

    Science.gov (United States)

    Jia, Hao; Zhou, Ting; Zhao, Yunchou; Xia, Yuhao; Dai, Jincheng; Zhang, Lei; Ding, Jianfeng; Fu, Xin; Yang, Lin

    2018-05-01

    Photonic network-on-chip for high-performance multi-core processors has attracted substantial interest in recent years as it offers a systematic method to meet the demand of large bandwidth, low latency and low power dissipation. In this paper we demonstrate a non-blocking six-port optical switch for cluster-mesh photonic network-on-chip. The architecture is constructed by substituting three optical switching units of typical Spanke-Benes network to optical waveguide crossings. Compared with Spanke-Benes network, the number of optical switching units is reduced by 20%, while the connectivity of routing path is maintained. By this way the footprint and power consumption can be reduced at the expense of sacrificing the network latency performance in some cases. The device is realized by 12 thermally tuned silicon Mach-Zehnder optical switching units. Its theoretical spectral responses are evaluated by establishing a numerical model. The experimental spectral responses are also characterized, which indicates that the optical signal-to-noise ratios of the optical switch are larger than 13.5 dB in the wavelength range from 1525 nm to 1565 nm. Data transmission experiment with the data rate of 32 Gbps is implemented for each optical link.

  2. Optical filtering in directly modulated/detected OOFDM systems.

    Science.gov (United States)

    Sánchez, C; Ortega, B; Wei, J L; Capmany, J

    2013-12-16

    This work presents a theoretical investigation on the performance of directly modulated/detected (DM/DD) optical orthogonal frequency division multiplexed (OOFDM) systems subject to optical filtering. The impact of both linear and nonlinear distortion effects are taken into account to calculate the effective signal-to-noise ratio of each subcarrier. These results are then employed to optimize the design parameters of two simple optical filtering structures: a Mach Zehnder interferometer and a uniform fiber Bragg grating, leading to a significant optical power budget improvement given by 3.3 and 3dB, respectively. These can be further increased to 5.5 and 4.2dB respectively when balanced detection configurations are employed. We find as well that this improvement is highly dependent on the clipping ratio.

  3. An unexpected detection of bifurcated blue straggler sequences in the young globular cluster NGC 2173

    OpenAIRE

    Li, Chengyuan; Deng, Licai; de Grijs, Richard; Jiang, Dengkai; Xin, Yu

    2018-01-01

    Bifurcated patterns of blue straggler stars in their color--magnitude diagrams have atracted significant attention. This type of special (but rare) pattern of two distinct blue straggler sequences is commonly interpreted as evidence of cluster core-collapse-driven stellar collisions as an efficient formation mechanism. Here, we report the detection of a bifurcated blue straggler distribution in a young Large MagellanicCloud cluster, NGC 2173. Because of the cluster's low central stellar numbe...

  4. Generalized Optical Theorem Detection in Random and Complex Media

    Science.gov (United States)

    Tu, Jing

    The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. This Ph.D. dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection. This dissertation is composed of two main parts. The first part significantly expands the theory and understanding of the optical theorem for arbitrary probing fields and arbitrary media including nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The proposed formalism addresses both scalar and full vector electromagnetic fields. The second contribution of this dissertation is the application of the optical theorem to change detection with particular emphasis on random, complex, and active media, including single frequency probing fields and broadband probing fields. The first part of this work focuses on the generalization of the existing theoretical repertoire and interpretation of the scalar and electromagnetic optical theorem. Several fundamental generalizations of the optical theorem are developed. A new theory is developed for the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. The bounded media context is essential for applications such as intrusion detection and surveillance in enclosed environments such as indoor facilities, caves, tunnels, as well as for nondestructive testing and communication systems based on wave-guiding structures. The developed scalar

  5. Mainshock-Aftershocks Clustering Detection in Volcanic Regions

    Science.gov (United States)

    Garza Giron, R.; Brodsky, E. E.; Prejean, S. G.

    2017-12-01

    Crustal earthquakes tend to break their general Poissonean process behavior by gathering into two main kinds of seismic bursts: swarms and mainshock-aftershocks sequences. The former is commonly related to volcanic or geothermal processes whereas the latter is a characteristic feature of tectonically driven seismicity. We explore the mainshock-aftershock clustering behavior of different active volcanic regions in Japan and its comparison to non-volcanic regions. We find that aftershock production in volcanoes shows mainshock-aftershocks clustering similar to what is observed in non-volcanic areas. The ratio of volanic areas that cluster in mainshock-aftershocks sequences vs the areas that do not is comparable to the ratio of non-volcanic regions that show clustering vs the ones that do not. Furthermore, the level of production of aftershocks for most volcanic areas where clustering is present seems to be of the same order of magnitude, or slightly higher, as the median of the non-volcanic regions. An interesting example of highly aftershock-productive volcanoes emerges from the 2000 Miyakejima dike intrusion. A big seismic cluster started to build up rapidly in the south-west flank of Miyakejima to later propagate to the north-west towards the Kozushima and Niijima volcanoes. In Miyakejima the seismicity showed a swarm-like signature with a constant earthquake rate, whereas Kozushima and Niijima both had expressions of highly productive mainshock-aftershocks sequences. These findings are surprising given the alternative mechanisms available in volcanic systems for releasing deviatoric strain. We speculate that aftershock behavior might hold a relationship with the rheological properties of the rocks of each system and with the capacity of a system to accumulate or release the internal pressures caused by magmatic or hydrothermal systems.

  6. A Cluster-based Approach Towards Detecting and Modeling Network Dictionary Attacks

    Directory of Open Access Journals (Sweden)

    A. Tajari Siahmarzkooh

    2016-12-01

    Full Text Available In this paper, we provide an approach to detect network dictionary attacks using a data set collected as flows based on which a clustered graph is resulted. These flows provide an aggregated view of the network traffic in which the exchanged packets in the network are considered so that more internally connected nodes would be clustered. We show that dictionary attacks could be detected through some parameters namely the number and the weight of clusters in time series and their evolution over the time. Additionally, the Markov model based on the average weight of clusters,will be also created. Finally, by means of our suggested model, we demonstrate that artificial clusters of the flows are created for normal and malicious traffic. The results of the proposed approach on CAIDA 2007 data set suggest a high accuracy for the model and, therefore, it provides a proper method for detecting the dictionary attack.

  7. Uncertainty of a detected spatial cluster in 1D: quantification and visualization

    KAUST Repository

    Lee, Junho; Gangnon, Ronald E.; Zhu, Jun; Liang, Jingjing

    2017-01-01

    Spatial cluster detection is an important problem in a variety of scientific disciplines such as environmental sciences, epidemiology and sociology. However, there appears to be very limited statistical methodology for quantifying the uncertainty of a detected cluster. In this paper, we develop a new method for the quantification and visualization of uncertainty associated with a detected cluster. Our approach is defining a confidence set for the true cluster and visualizing the confidence set, based on the maximum likelihood, in time or in one-dimensional space. We evaluate the pivotal property of the statistic used to construct the confidence set and the coverage rate for the true cluster via empirical distributions. For illustration, our methodology is applied to both simulated data and an Alaska boreal forest dataset. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Uncertainty of a detected spatial cluster in 1D: quantification and visualization

    KAUST Repository

    Lee, Junho

    2017-10-19

    Spatial cluster detection is an important problem in a variety of scientific disciplines such as environmental sciences, epidemiology and sociology. However, there appears to be very limited statistical methodology for quantifying the uncertainty of a detected cluster. In this paper, we develop a new method for the quantification and visualization of uncertainty associated with a detected cluster. Our approach is defining a confidence set for the true cluster and visualizing the confidence set, based on the maximum likelihood, in time or in one-dimensional space. We evaluate the pivotal property of the statistic used to construct the confidence set and the coverage rate for the true cluster via empirical distributions. For illustration, our methodology is applied to both simulated data and an Alaska boreal forest dataset. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Optical detection of random features for high security applications

    Science.gov (United States)

    Haist, T.; Tiziani, H. J.

    1998-02-01

    Optical detection of random features in combination with digital signatures based on public key codes in order to recognize counterfeit objects will be discussed. Without applying expensive production techniques objects are protected against counterfeiting. Verification is done off-line by optical means without a central authority. The method is applied for protecting banknotes. Experimental results for this application are presented. The method is also applicable for identity verification of a credit- or chip-card holder.

  10. Spin microscope based on optically detected magnetic resonance

    Science.gov (United States)

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  11. Optical Materials with a Genome: Nanophotonics with DNA-Stabilized Silver Clusters

    Science.gov (United States)

    Copp, Stacy M.

    Fluorescent silver clusters with unique rod-like geometries are stabilized by DNA. The sizes and colors of these clusters, or AgN-DNA, are selected by DNA base sequence, which can tune peak emission from blue-green into the near-infrared. Combined with DNA nanostructures, AgN-DNA promise exciting applications in nanophotonics and sensing. Until recently, however, a lack of understanding of the mechanisms controlling AgN-DNA fluorescence has challenged such applications. This dissertation discusses progress toward understanding the role of DNA as a "genome" for silver clusters and toward using DNA to achieve atomic-scale precision of silver cluster size and nanometer-scale precision of silver cluster position on a DNA breadboard. We also investigate sensitivity of AgN-DNA to local solvent environment, with an eye toward applications in chemical and biochemical sensing. Using robotic techniques to generate large data sets, we show that fluorescent silver clusters are templated by certain DNA base motifs that select "magic-sized" cluster cores of enhanced stabilities. The linear arrangement of bases on the phosphate backbone imposes a unique rod-like geometry on the clusters. Harnessing machine learning and bioinformatics techniques, we also demonstrate that sequences of DNA templates can be selected to stabilize silver clusters with desired optical properties, including high fluorescence intensity and specific fluorescence wavelengths, with much higher rates of success as compared to current strategies. The discovered base motifs can be also used to design modular DNA host strands that enable individual silver clusters with atomically precise sizes to bind at specific programmed locations on a DNA nanostructure. We show that DNA-mediated nanoscale arrangement enables near-field coupling of distinct clusters, demonstrated by dual-color cluster assemblies exhibiting resonant energy transfer. These results demonstrate a new degree of control over the optical properties

  12. Microstructured Optical Fiber for X-ray Detection

    Science.gov (United States)

    DeHaven, Stanton L.

    2009-01-01

    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  13. Photodiode Based Detection for Multiple Trap Optical Tweezers

    DEFF Research Database (Denmark)

    Ott, Dino

    This thesis is concerned with the position tracking of microscopic, optically trapped particles and the quantification of the forces acting on them. A new detection method for simultaneous, three-dimensional tracking of multiple particles is presented, its performance is evaluated, and its...... usefulness is illustrated in specific application examples. Optical traps enable contact-less, all-optical manipulation of microscopic objects. Over the last decades, this laser-based micro-manipulation tool has facilitated numerous exciting discoveries within biology and physics, and it is today regarded...

  14. Integrated Micro-Optical Fluorescence Detection System for Microfluidic Electrochromatography

    International Nuclear Information System (INIS)

    ALLERMAN, ANDREW A.; ARNOLD, DON W.; ASBILL, RANDOLPH E.; BAILEY, CHRISTOPHER G.; CARTER, TONY RAY; KEMME, SHANALYN A.; MATZKE, CAROLYN M.; SAMORA, SALLY; SWEATT, WILLIAM C.; WARREN, MIAL E.; WENDT, JOEL R.

    1999-01-01

    The authors describe the design and microfabrication of an extremely compact optical system as a key element in an integrated capillary-channel electrochromatograph with laser induced fluorescence detection. The optical design uses substrate-mode propagation within the fused silica substrate. The optical system includes a vertical cavity surface-emitting laser (VCSEL) array, two high performance microlenses and a commercial photodetector. The microlenses are multilevel diffractive optics patterned by electron beam lithography and etched by reactive ion etching in fused silica. Two generations of optical subsystems are described. The first generation design is integrated directly onto the capillary channel-containing substrate with a 6 mm separation between the VCSEL and photodetector. The second generation design separates the optical system onto its own module and the source to detector length is further compressed to 3.5 mm. The systems are designed for indirect fluorescence detection using infrared dyes. The first generation design has been tested with a 750 nm VCSEL exciting a 10(sup -4) M solution of CY-7 dye. The observed signal-to-noise ratio of better than 100:1 demonstrates that the background signal from scattered pump light is low despite the compact size of the optical system and meets the system sensitivity requirements

  15. Optical detection of ultrasound from optically rough surfaces using a custom CMOS sensor

    International Nuclear Information System (INIS)

    Achamfuo-Yeboah, S O; Light, R A; Sharpies, S D

    2015-01-01

    The optical detection of ultrasound from optically rough surfaces is severely limited when using a conventional interferometric or optical beam deflection (OBD) setup because the detected light is speckled. This means that complicated and expensive setups are required to detect ultrasound optically on rough surfaces. We present a CMOS integrated circuit that can detect laser ultrasound in the presence of speckle. The detector circuit is based on the simple knife edge detector. It is self-adapting and is fast, inxepensive, compact and robust. The CMOS circuit is implemented as a widefield array of 32×32 pixels. At each pixel the received light is compared with an adjacent pixel in order to determine the local light gradient. The result of this comparison is stored and used to connect each pixel to the positive or negative gradient output as appropriate (similar to a balanced knife edge detector). The perturbation of the surface due to ultrasound preserves the speckle distribution whilst deflecting it. The spatial disturbance of the speckle pattern due to the ultrasound is detected by considering each pair of pixels as a knife edge detector. The sensor can adapt itself to match the received optical speckle pattern in less than 0.1 μs, and then detect the ultrasound within 0.5 μs of adaptation. This makes it possible to repeatedly detect ultrasound from optically rough surfaces very quickly. The detector is capable of independent operation controlled by a local microcontroller, or it may be connected to a computer for more sophisticated configuration and control. We present the theory of its operation and discuss results validating the concept and operation of the device. We also present preliminary results from an improved design which grants a higher bandwidth, allowing for optical detection of higher frequency ultrasound

  16. ICARES: a real-time automated detection tool for clusters of infectious diseases in the Netherlands.

    NARCIS (Netherlands)

    Groeneveld, Geert H; Dalhuijsen, Anton; Kara-Zaïtri, Chakib; Hamilton, Bob; de Waal, Margot W; van Dissel, Jaap T; van Steenbergen, Jim E

    2017-01-01

    Clusters of infectious diseases are frequently detected late. Real-time, detailed information about an evolving cluster and possible associated conditions is essential for local policy makers, travelers planning to visit the area, and the local population. This is currently illustrated in the Zika

  17. Side Information and Noise Learning for Distributed Video Coding using Optical Flow and Clustering

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Rakêt, Lars Lau; Huang, Xin

    2012-01-01

    Distributed video coding (DVC) is a coding paradigm which exploits the source statistics at the decoder side to reduce the complexity at the encoder. The coding efficiency of DVC critically depends on the quality of side information generation and accuracy of noise modeling. This paper considers...... Transform Domain Wyner-Ziv (TDWZ) coding and proposes using optical flow to improve side information generation and clustering to improve noise modeling. The optical flow technique is exploited at the decoder side to compensate weaknesses of block based methods, when using motion-compensation to generate...... side information frames. Clustering is introduced to capture cross band correlation and increase local adaptivity in the noise modeling. This paper also proposes techniques to learn from previously decoded (WZ) frames. Different techniques are combined by calculating a number of candidate soft side...

  18. Ophiuchus: An optical view of a very massive cluster of galaxies hidden behind the Milky Way ⋆

    Science.gov (United States)

    Durret, F.; Wakamatsu, K.; Nagayama, T.; Adami, C.; Biviano, A.

    2015-11-01

    Context. The Ophiuchus cluster, at a redshift z = 0.0296, is known from X-rays to be one of the most massive nearby clusters, but its optical properties have not been investigated in detail because of its very low Galactic latitude. Aims: We discuss the optical properties of the galaxies in the Ophiuchus cluster, in particular, with the aim of understanding its dynamical properties better. Methods: We have obtained deep optical imaging in several bands with various telescopes, and applied a sophisticated method to model and subtract the contributions of stars to measure galaxy magnitudes as accurately as possible. The colour-magnitude relations obtained show that there are hardly any blue galaxies in Ophiuchus (at least brighter than r' ≤ 19.5), and this is confirmed by the fact that we only detect two galaxies in Hα. We also obtained a number of spectra with ESO-FORS2, which we combined with previously available redshifts. Altogether, we have 152 galaxies with spectroscopic redshifts in the 0.02 ≤ z ≤ 0.04 range, and 89 galaxies with both a redshift within the cluster redshift range and a measured r' band magnitude (limited to the Megacam 1 × 1 deg2 field). Results: A complete dynamical analysis based on the galaxy redshifts available shows that the overall cluster is relaxed and has a mass of 1.1 × 1015 M⊙. The Sernal-Gerbal method detects a main structure and a much smaller substructure, which are not separated in projection. Conclusions: From its dynamical properties derived from optical data, the Ophiuchus cluster seems overall to be a relaxed structure, or at most a minor merger, though in X-rays the central region (radius ~ 150 kpc) may show evidence for merging effects. Based on observations obtained with MegaPrime/MegaCam (program 10AF02), a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the

  19. Optical properties of an atom in the presence of a two-nanosphere cluster

    International Nuclear Information System (INIS)

    Klimov, Vasilii V; Guzatov, D V

    2007-01-01

    The optical properties of an atom located near a cluster of two arbitrarily arranged nanospheres of an arbitrary composition are studied. Changes in the spontaneous decay rates of excited states and emission frequency shifts are considered for different orientations of the dipole moment and different positions of the atom with respect to the cluster. It is shown that a two-nanosphere cluster can be used to control efficiently the spontaneous decay rates of excited states of the atom by changing the distance between spheres. It is found that spontaneous decay rates of the excited states of an atom located between silver nanospheres and having the dipole moment directed along the axis connecting the centres of spheres can increase by a factor of 10 5 and more when nanospheres are brought closer together. (invited paper)

  20. Spatial cluster detection for repeatedly measured outcomes while accounting for residential history.

    Science.gov (United States)

    Cook, Andrea J; Gold, Diane R; Li, Yi

    2009-10-01

    Spatial cluster detection has become an important methodology in quantifying the effect of hazardous exposures. Previous methods have focused on cross-sectional outcomes that are binary or continuous. There are virtually no spatial cluster detection methods proposed for longitudinal outcomes. This paper proposes a new spatial cluster detection method for repeated outcomes using cumulative geographic residuals. A major advantage of this method is its ability to readily incorporate information on study participants relocation, which most cluster detection statistics cannot. Application of these methods will be illustrated by the Home Allergens and Asthma prospective cohort study analyzing the relationship between environmental exposures and repeated measured outcome, occurrence of wheeze in the last 6 months, while taking into account mobile locations.

  1. Prediction, Detection, and Validation of Isotope Clusters in Mass Spectrometry Data

    Directory of Open Access Journals (Sweden)

    Hendrik Treutler

    2016-10-01

    Full Text Available Mass spectrometry is a key analytical platform for metabolomics. The precise quantification and identification of small molecules is a prerequisite for elucidating the metabolism and the detection, validation, and evaluation of isotope clusters in LC-MS data is important for this task. Here, we present an approach for the improved detection of isotope clusters using chemical prior knowledge and the validation of detected isotope clusters depending on the substance mass using database statistics. We find remarkable improvements regarding the number of detected isotope clusters and are able to predict the correct molecular formula in the top three ranks in 92 % of the cases. We make our methodology freely available as part of the Bioconductor packages xcms version 1.50.0 and CAMERA version 1.30.0.

  2. Optical biopsy - a new armamentarium to detect disease using light

    Science.gov (United States)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Optical spectroscopy has been considered a promising method for cancer detection for past thirty years because of its advantages over the conventional diagnostic methods of no tissue removal, minimal invasiveness, rapid diagnoses, less time consumption and reproducibility since the first use in 1984. It offers a new armamentarium. Human tissue is mainly composed of extracellular matrix of collagen fiber, proteins, fat, water, and epithelial cells with key molecules in different structures. Tissues contain a number of key fingerprint native endogenous fluorophore molecules, such as tryptophan, collagen, elastin, reduced nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD) and porphyrins. It is well known that abnormalities in metabolic activity precede the onset of a lot of main diseases: carcinoma, diabetes mellitus, atherosclerosis, Alzheimer, and Parkinson's disease, etc. Optical spectroscopy may help in detecting various disorders. Conceivably the biochemical or morphologic changes that cause the spectra variations would appear earlier than the histological aberration. Therefore, "optical biopsy" holds a great promise as clinical tool for diagnosing early stage of carcinomas and other deceases by combining with available photonic technology (e.g. optical fibers, photon detectors, spectrographs spectroscopic ratiometer, fiber-optic endomicroscope and nasopharyngoscope) for in vivo use. This paper focuses on various methods available to detect spectroscopic changes in tissues, for example to distinguish cancerous prostate tissues and/or cells from normal prostate tissues and/or cells. The methods to be described are fluorescence, stokes shift, scattering, Raman, and time-resolved spectroscopy will be reviewed. The underlying physical and biological basis for these optical approaches will be discussed with examples. The idea is to present some of the salient works to show the usefulness and methods of Optical Biopsy for cancer detection and

  3. Research of detection depth for graphene-based optical sensor

    Science.gov (United States)

    Yang, Yong; Sun, Jialve; Liu, Lu; Zhu, Siwei; Yuan, Xiaocong

    2018-03-01

    Graphene-based optical sensors have been developed for research into the biological intercellular refractive index (RI) because they offer greater detection depths than those provided by the surface plasmon resonance technique. In this Letter, we propose an experimental approach for measurement of the detection depth in a graphene-based optical sensor system that uses transparent polydimethylsiloxane layers with different thicknesses. The experimental results show that detection depths of 2.5 μm and 3 μm can be achieved at wavelengths of 532 nm and 633 nm, respectively. These results prove that graphene-based optical sensors can realize long-range RI detection and are thus promising for use as tools in the biological cell detection field. Additionally, we analyze the factors that influence the detection depth and provide a feasible approach for detection depth control based on adjustment of the wavelength and the angle of incidence. We believe that this approach will be useful in RI tomography applications.

  4. Detection and quantification of solute clusters in a nanostructured ferritic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.K., E-mail: millermk@ornl.gov [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6139 (United States); Reinhard, D., E-mail: David.Reinhard@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States); Larson, D.J., E-mail: David.Larson@ametek.com [CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711 (United States)

    2015-07-15

    Highlights: • Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency. • Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP. • High densities, 1.8 × 10{sup 24} m{sup −3}, of solute clusters were detected in as-milled flakes of 14YWT. • Lower densities, 1.2 × 10{sup 24} m{sup −3}, were detected in the stir zone of a FSW. • Vacancies stabilize the clusters, which retard diffusion and confers excellent stability. - Abstract: A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8 × 10{sup 24} m{sup −3} and 1.2 × 10{sup 24} m{sup −3}, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.

  5. Fingerprint fake detection by optical coherence tomography

    Science.gov (United States)

    Meissner, Sven; Breithaupt, Ralph; Koch, Edmund

    2013-03-01

    The most established technique for the identification at biometric access control systems is the human fingerprint. While every human fingerprint is unique, fingerprints can be faked very easily by using thin layer fakes. Because commercial fingerprint scanners use only a two-dimensional image acquisition of the finger surface, they can only hardly differentiate between real fingerprints and fingerprint fakes applied on thin layer materials. A Swept Source OCT system with an A-line rate of 20 kHz and a lateral and axial resolution of approximately 13 μm, a centre wavelength of 1320 nm and a band width of 120 nm (FWHM) was used to acquire fingerprints and finger tips with overlying fakes. Three-dimensional volume stacks with dimensions of 4.5 mm x 4 mm x 2 mm were acquired. The layering arrangement of the imaged finger tips and faked finger tips was analyzed and subsequently classified into real and faked fingerprints. Additionally, sweat gland ducts were detected and consulted for the classification. The manual classification between real fingerprints and faked fingerprints results in almost 100 % correctness. The outer as well as the internal fingerprint can be recognized in all real human fingers, whereby this was not possible in the image stacks of the faked fingerprints. Furthermore, in all image stacks of real human fingers the sweat gland ducts were detected. The number of sweat gland ducts differs between the test persons. The typical helix shape of the ducts was observed. In contrast, in images of faked fingerprints we observe abnormal layer arrangements and no sweat gland ducts connecting the papillae of the outer fingerprint and the internal fingerprint. We demonstrated that OCT is a very useful tool to enhance the performance of biometric control systems concerning attacks by thin layer fingerprint fakes.

  6. Fault Detection Using the Clustering-kNN Rule for Gas Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Jingli Yang

    2016-12-01

    Full Text Available The k-nearest neighbour (kNN rule, which naturally handles the possible non-linearity of data, is introduced to solve the fault detection problem of gas sensor arrays. In traditional fault detection methods based on the kNN rule, the detection process of each new test sample involves all samples in the entire training sample set. Therefore, these methods can be computation intensive in monitoring processes with a large volume of variables and training samples and may be impossible for real-time monitoring. To address this problem, a novel clustering-kNN rule is presented. The landmark-based spectral clustering (LSC algorithm, which has low computational complexity, is employed to divide the entire training sample set into several clusters. Further, the kNN rule is only conducted in the cluster that is nearest to the test sample; thus, the efficiency of the fault detection methods can be enhanced by reducing the number of training samples involved in the detection process of each test sample. The performance of the proposed clustering-kNN rule is fully verified in numerical simulations with both linear and non-linear models and a real gas sensor array experimental system with different kinds of faults. The results of simulations and experiments demonstrate that the clustering-kNN rule can greatly enhance both the accuracy and efficiency of fault detection methods and provide an excellent solution to reliable and real-time monitoring of gas sensor arrays.

  7. Fault Detection Using the Clustering-kNN Rule for Gas Sensor Arrays

    Science.gov (United States)

    Yang, Jingli; Sun, Zhen; Chen, Yinsheng

    2016-01-01

    The k-nearest neighbour (kNN) rule, which naturally handles the possible non-linearity of data, is introduced to solve the fault detection problem of gas sensor arrays. In traditional fault detection methods based on the kNN rule, the detection process of each new test sample involves all samples in the entire training sample set. Therefore, these methods can be computation intensive in monitoring processes with a large volume of variables and training samples and may be impossible for real-time monitoring. To address this problem, a novel clustering-kNN rule is presented. The landmark-based spectral clustering (LSC) algorithm, which has low computational complexity, is employed to divide the entire training sample set into several clusters. Further, the kNN rule is only conducted in the cluster that is nearest to the test sample; thus, the efficiency of the fault detection methods can be enhanced by reducing the number of training samples involved in the detection process of each test sample. The performance of the proposed clustering-kNN rule is fully verified in numerical simulations with both linear and non-linear models and a real gas sensor array experimental system with different kinds of faults. The results of simulations and experiments demonstrate that the clustering-kNN rule can greatly enhance both the accuracy and efficiency of fault detection methods and provide an excellent solution to reliable and real-time monitoring of gas sensor arrays. PMID:27929412

  8. Detection of Abnormal Events via Optical Flow Feature Analysis

    Directory of Open Access Journals (Sweden)

    Tian Wang

    2015-03-01

    Full Text Available In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm.

  9. Detection of Abnormal Events via Optical Flow Feature Analysis

    Science.gov (United States)

    Wang, Tian; Snoussi, Hichem

    2015-01-01

    In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227

  10. Three-Dimensional Computer-Aided Detection of Microcalcification Clusters in Digital Breast Tomosynthesis

    Directory of Open Access Journals (Sweden)

    Ji-wook Jeong

    2016-01-01

    Full Text Available We propose computer-aided detection (CADe algorithm for microcalcification (MC clusters in reconstructed digital breast tomosynthesis (DBT images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%.

  11. Cluster analysis for DNA methylation profiles having a detection threshold

    Directory of Open Access Journals (Sweden)

    Siegmund Kimberly D

    2006-07-01

    Full Text Available Abstract Background DNA methylation, a molecular feature used to investigate tumor heterogeneity, can be measured on many genomic regions using the MethyLight technology. Due to the combination of the underlying biology of DNA methylation and the MethyLight technology, the measurements, while being generated on a continuous scale, have a large number of 0 values. This suggests that conventional clustering methodology may not perform well on this data. Results We compare performance of existing methodology (such as k-means with two novel methods that explicitly allow for the preponderance of values at 0. We also consider how the ability to successfully cluster such data depends upon the number of informative genes for which methylation is measured and the correlation structure of the methylation values for those genes. We show that when data is collected for a sufficient number of genes, our models do improve clustering performance compared to methods, such as k-means, that do not explicitly respect the supposed biological realities of the situation. Conclusion The performance of analysis methods depends upon how well the assumptions of those methods reflect the properties of the data being analyzed. Differing technologies will lead to data with differing properties, and should therefore be analyzed differently. Consequently, it is prudent to give thought to what the properties of the data are likely to be, and which analysis method might therefore be likely to best capture those properties.

  12. Automatic detection of erythemato-squamous diseases using k-means clustering.

    Science.gov (United States)

    Ubeyli, Elif Derya; Doğdu, Erdoğan

    2010-04-01

    A new approach based on the implementation of k-means clustering is presented for automated detection of erythemato-squamous diseases. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. The studied domain contained records of patients with known diagnosis. The k-means clustering algorithm's task was to classify the data points, in this case the patients with attribute data, to one of the five clusters. The algorithm was used to detect the five erythemato-squamous diseases when 33 features defining five disease indications were used. The purpose is to determine an optimum classification scheme for this problem. The present research demonstrated that the features well represent the erythemato-squamous diseases and the k-means clustering algorithm's task achieved high classification accuracies for only five erythemato-squamous diseases.

  13. Processing of Graphene combining Optical Detection and Scanning Probe Lithography

    Directory of Open Access Journals (Sweden)

    Zimmermann Sören

    2015-01-01

    Full Text Available This paper presents an experimental setup tailored for robotic processing of graphene with in-situ vision based control. A robust graphene detection approach is presented applying multiple image processing operations of the visual feedback provided by a high-resolution light microscope. Detected graphene flakes can be modified using a scanning probe based lithographical process that is directly linked to the in-situ optical images. The results of this process are discussed with respect to further application scenarios.

  14. THE REST-FRAME OPTICAL LUMINOSITY FUNCTION OF CLUSTER GALAXIES AT z < 0.8 AND THE ASSEMBLY OF THE CLUSTER RED SEQUENCE

    International Nuclear Information System (INIS)

    Rudnick, Gregory; Von der Linden, Anja; De Lucia, Gabriella; White, Simon; Pello, Roser; Aragon-Salamanca, Alfonso; Marchesini, Danilo; Clowe, Douglas; Halliday, Claire; Jablonka, Pascale; Milvang-Jensen, Bo; Poggianti, Bianca; Saglia, Roberto; Simard, Luc; Zaritsky, Dennis

    2009-01-01

    We present the rest-frame optical luminosity function (LF) of red-sequence galaxies in 16 clusters at 0.4 < z < 0.8 drawn from the ESO Distant Cluster Survey (EDisCS). We compare our clusters to an analogous sample from the Sloan Digital Sky Survey (SDSS) and match the EDisCS clusters to their most likely descendants. We measure all LFs down to M ∼ M * + (2.5-3.5). At z < 0.8, the bright end of the LF is consistent with passive evolution but there is a significant buildup of the faint end of the red sequence toward lower redshift. There is a weak dependence of the LF on cluster velocity dispersion for EDisCS but no such dependence for the SDSS clusters. We find tentative evidence that red-sequence galaxies brighter than a threshold magnitude are already in place, and that this threshold evolves to fainter magnitudes toward lower redshifts. We compare the EDisCS LFs with the LF of coeval red-sequence galaxies in the field and find that the bright end of the LFs agree. However, relative to the number of bright red galaxies, the field has more faint red galaxies than clusters at 0.6 < z < 0.8 but fewer at 0.4 < z < 0.6, implying differential evolution. We compare the total light in the EDisCS cluster red sequences to the total red-sequence light in our SDSS cluster sample. Clusters at 0.4 < z < 0.8 must increase their luminosity on the red sequence (and therefore stellar mass in red galaxies) by a factor of 1-3 by z = 0. The necessary processes that add mass to the red sequence in clusters predict local clusters that are overluminous as compared to those observed in the SDSS. The predicted cluster luminosities can be reconciled with observed local cluster luminosities by combining multiple previously known effects.

  15. Pyridine Vapors Detection by an Optical Fibre Sensor

    Directory of Open Access Journals (Sweden)

    Alberto Fernandez-Gutiérrez

    2008-02-01

    Full Text Available An optical fibre sensor has been implemented towards pyridine vapors detection;to achieve this, a novel vapochromic material has been used, which, in solid state, suffers achange in colour from blue to pink-white in presence of pyridine vapours. This complex isadded to a solution of PVC (Poly Vinyl Chloride, TBP (Tributylphosphate andtetrahydrofuran (THF, forming a plasticized matrix; by dip coating technique, the sensingmaterial is fixed onto a cleaved ended optical fibre. The fabrication process was optimizedin terms of number of dips and dipping speed, evaluating the final devices by dynamicrange. Employing a reflection set up, the absorbance spectra and changes in the reflectedoptical power of the sensors were registered to determine their response. A linear relationbetween optical power versus vapor concentration was obtained, with a detection limit of 1ppm (v/v.

  16. Automated detection of optical counterparts to GRBs with RAPTOR

    International Nuclear Information System (INIS)

    Wozniak, P. R.; Vestrand, W. T.; Evans, S.; White, R.; Wren, J.

    2006-01-01

    The RAPTOR system (RAPid Telescopes for Optical Response) is an array of several distributed robotic telescopes that automatically respond to GCN localization alerts. Raptor-S is a 0.4-m telescope with 24 arc min. field of view employing a 1k x 1k Marconi CCD detector, and has already detected prompt optical emission from several GRBs within the first minute of the explosion. We present a real-time data analysis and alert system for automated identification of optical transients in Raptor-S GRB response data down to the sensitivity limit of ∼ 19 mag. Our custom data processing pipeline is designed to minimize the time required to reliably identify transients and extract actionable information. The system utilizes a networked PostgreSQL database server for catalog access and distributes email alerts with successful detections

  17. Detection of a Double Relic in the Torpedo Cluster: SPT-CL J0245-5302

    Science.gov (United States)

    Zheng, Q.; Johnston-Hollitt, M.; Duchesne, S. W.; Li, W. T.

    2018-06-01

    The Torpedo cluster, SPT-CL J0245-5302 (S0295) is a massive, merging cluster at a redshift of z = 0.300, which exhibits a strikingly similar morphology to the Bullet cluster 1E 0657-55.8 (z = 0.296), including a classic bow shock in the cluster's intra-cluster medium revealed by Chandra X-ray observations. We present Australia Telescope Compact Array data centred at 2.1 GHz and Murchison Widefield Array data at frequencies between 72 MHz and 231 MHz which we use to study the properties of the cluster. We characterise a number of discrete and diffuse radio sources in the cluster, including the detection of two previously unknown radio relics on the cluster periphery. The average spectral index of the diffuse emission between 70 MHz and 3.1 GHz is α =-1.63_{-0.10}^{+0.10} and a radio-derived Mach number for the shock in the west of the cluster is calculated as M = 2.04. The Torpedo cluster is thus a double relic system at moderate redshift.

  18. Detecting Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Eric Jones [Univ. of Chicago, IL (United States)

    2014-08-01

    Clusters of galaxies gravitationally lens the Cosmic Microwave Background (CMB) leading to a distinct signal in the CMB on arcminute scales. Measurement of the cluster lensing effect offers the exciting possibility of constraining the masses of galaxy clusters using CMB data alone. Improved constraints on cluster masses are in turn essential to the use of clusters as cosmological probes: uncertainties in cluster masses are currently the dominant systematic affecting cluster abundance constraints on cosmology. To date, however, the CMB cluster lensing signal remains undetected because of its small magnitude and angular size. In this thesis, we develop a maximum likelihood approach to extracting the signal from CMB temperature data. We validate the technique by applying it to mock data designed to replicate as closely as possible real data from the South Pole Telescope’s (SPT) Sunyaev-Zel’dovich (SZ) survey: the effects of the SPT beam, transfer function, instrumental noise and cluster selection are incorporated. We consider the effects of foreground emission on the analysis and show that uncertainty in amount of foreground lensing results in a small systematic error on the lensing constraints. Additionally, we show that if unaccounted for, the SZ effect leads to unacceptably large biases on the lensing constraints and develop an approach for removing SZ contamination. The results of the mock analysis presented here suggest that a 4σ first detection of the cluster lensing effect can be achieved with current SPT-SZ data.

  19. Optical Detection of Sodium Salts of Fluoride, Acetate and ...

    Indian Academy of Sciences (India)

    Administrator

    Optical Detection of Sodium Salts of Fluoride, Acetate and Phosphate by a Diacylhydrazine. Ligand via the Formation of a Colour Alkali Metal Complex. Purnandhu Bose, Ranjan Dutta, I. Ravikumar and Pradyut Ghosh. ∗. Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja ...

  20. Optical detection of sodium salts of fluoride, acetate and phosphate

    Indian Academy of Sciences (India)

    Optical detection of sodium salts of fluoride, acetate and phosphate by a diacylhydrazine ligand by the formation of a colour alkali metal complex. Purnandhu Bose Ranjan Dutta I ... Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A and 2B Raja S C Mullick Road, Kolkata 700032, India ...

  1. Size-selective detection in integrated optical interferometric biosensors

    NARCIS (Netherlands)

    Mulder, Harmen K P; Ymeti, Aurel; Subramaniam, Vinod; Kanger, Johannes S

    2012-01-01

    We present a new size-selective detection method for integrated optical interferometric biosensors that can strongly enhance their performance. We demonstrate that by launching multiple wavelengths into a Young interferometer waveguide sensor it is feasible to derive refractive index changes from

  2. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    Science.gov (United States)

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  3. Ag clustering investigation in laser irradiated ion-exchanged glasses by optical and vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trave, E., E-mail: enrico.trave@unive.it [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Cattaruzza, E.; Gonella, F.; Calvelli, P. [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Quaranta, A. [Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, I-38050 Povo (Italy); Rahman, A.; Mariotto, G. [Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona (Italy)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We modify the properties of Ag{sup +} exchanged glasses by thermal and laser treatment. Black-Right-Pointing-Pointer The induced microstructural changes are analyzed by optical and Raman spectroscopy. Black-Right-Pointing-Pointer Ag-based species in the glass show a peculiar PL activity in the UV-Vis range. Black-Right-Pointing-Pointer Raman and OA analysis allow for determining the Ag cluster size evolution. Black-Right-Pointing-Pointer Laser processing leads to different cluster formation and fragmentation mechanisms. - Abstract: Ion exchange process is widely used to dope silicate glass layers with silver for several applications, ranging from light waveguide to nanostructured composite glass fabrication. The silver-doped structure and its physical properties depend on the preparation parameters as well as on subsequent treatments. In particular, laser irradiation of the ion exchanged glasses has been demonstrated to be an effective tool to control cluster size and size distribution. Nevertheless, a complete comprehension of the basic phenomena and a systematic characterization of these systems are still lacking. In this paper, an extended optical characterization is presented for soda-lime glass slides, doped with silver by Ag{sup +}-Na{sup +} ion exchange, thermally treated and irradiated with a Nd:YAG laser beam at different wavelengths, and for different energy density. The samples were characterized by various spectroscopic techniques, namely, optical absorption, photoluminescence and micro-Raman analysis. The availability of all these characterization techniques allowed pointing out a suitable scenario for the Ag clustering evolution as a function of the ion exchange, annealing and laser irradiation parameters.

  4. Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics

    Science.gov (United States)

    Safner, T.; Miller, M.P.; McRae, B.H.; Fortin, M.-J.; Manel, S.

    2011-01-01

    Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance. ?? 2011 by the authors; licensee MDPI, Basel, Switzerland.

  5. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  6. An improved data clustering algorithm for outlier detection

    Directory of Open Access Journals (Sweden)

    Anant Agarwal

    2016-12-01

    Full Text Available Data mining is the extraction of hidden predictive information from large databases. This is a technology with potential to study and analyze useful information present in data. Data objects which do not usually fit into the general behavior of the data are termed as outliers. Outlier Detection in databases has numerous applications such as fraud detection, customized marketing, and the search for terrorism. By definition, outliers are rare occurrences and hence represent a small portion of the data. However, the use of Outlier Detection for various purposes is not an easy task. This research proposes a modified PAM for detecting outliers. The proposed technique has been implemented in JAVA. The results produced by the proposed technique are found better than existing technique in terms of outliers detected and time complexity.

  7. Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography.

    Science.gov (United States)

    Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S; Wilson, David J; Huang, David; Li, Dengwang; Jia, Yali

    2017-12-01

    Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution.

  8. Evanescent Wave Fiber Optic Biosensor for Salmonella Detection in Food

    Directory of Open Access Journals (Sweden)

    Arun K. Bhunia

    2009-07-01

    Full Text Available Salmonella enterica is a major food-borne pathogen of world-wide concern. Sensitive and rapid detection methods to assess product safety before retail distribution are highly desirable. Since Salmonella is most commonly associated with poultry products, an evanescent wave fiber-optic assay was developed to detect Salmonella in shell egg and chicken breast and data were compared with a time-resolved fluorescence (TRF assay. Anti-Salmonella polyclonal antibody was immobilized onto the surface of an optical fiber using biotin-avidin interactions to capture Salmonella. Alexa Fluor 647-conjugated antibody (MAb 2F-11 was used as the reporter. Detection occurred when an evanescent wave from a laser (635 nm excited the Alexa Fluor and the fluorescence was measured by a laser-spectrofluorometer at 710 nm. The biosensor was specific for Salmonella and the limit of detection was established to be 103 cfu/mL in pure culture and 104 cfu/mL with egg and chicken breast samples when spiked with 102 cfu/mL after 2–6 h of enrichment. The results indicate that the performance of the fiber-optic sensor is comparable to TRF, and can be completed in less than 8 h, providing an alternative to the current detection methods.

  9. Fluorescence-Based Multiplex Protein Detection Using Optically Encoded Microbeads

    Directory of Open Access Journals (Sweden)

    Dae Hong Jeong

    2012-03-01

    Full Text Available Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based multiplex detection techniques. Among the various techniques for high-throughput protein screening, optically-encoded beads combined with fluorescence-based target monitoring have great advantages over the planar array-based multiplexing assays. This review discusses recent developments of analytical methods of screening protein molecules on microbead-based platforms. These include various strategies such as barcoded microbeads, molecular beacon-based techniques, and surface-enhanced Raman scattering-based techniques. Their applications for label-free protein detection are also addressed. Especially, the optically-encoded beads such as multilayer fluorescence beads and SERS-encoded beads are successful for generating a large number of coding.

  10. Assessment of detection limits of fiber-optic distributed temperature sensing for detection of illicit connections

    NARCIS (Netherlands)

    Nienhuis, J.; De Haan, C.; Langeveld, J.G.; Klootwijk, M.; Clemens, F.H.L.R.

    2012-01-01

    Distributed Temperature Sensing (DTS) with fiber-optic cables is a powerful tool to detect illicit connections in storm sewer systems. High frequency temperature measurements along the in-sewer cable create a detailed representation of temperature anomalies due to illicit discharges. The detection

  11. Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers

    Directory of Open Access Journals (Sweden)

    Ming Ren

    2017-11-01

    Full Text Available Optical detection is reliable in intrinsically characterizing partial discharges (PDs. Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT and a vacuum photomultiplier tube (PMT. Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring.

  12. Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters

    Directory of Open Access Journals (Sweden)

    Fonseca Carlos M

    2010-10-01

    detection of moderately irregularly shaped clusters. The multi-objective cohesion scan is most effective for the detection of highly irregularly shaped clusters.

  13. Periodic optical variability of radio-detected ultracool dwarfs

    International Nuclear Information System (INIS)

    Harding, L. K.; Golden, A.; Singh, Navtej; Sheehan, B.; Butler, R. F.; Hallinan, G.; Boyle, R. P.; Zavala, R. T.

    2013-01-01

    A fraction of very low mass stars and brown dwarfs are known to be radio active, in some cases producing periodic pulses. Extensive studies of two such objects have also revealed optical periodic variability, and the nature of this variability remains unclear. Here, we report on multi-epoch optical photometric monitoring of six radio-detected dwarfs, spanning the ∼M8-L3.5 spectral range, conducted to investigate the ubiquity of periodic optical variability in radio-detected ultracool dwarfs. This survey is the most sensitive ground-based study carried out to date in search of periodic optical variability from late-type dwarfs, where we obtained 250 hr of monitoring, delivering photometric precision as low as ∼0.15%. Five of the six targets exhibit clear periodicity, in all cases likely associated with the rotation period of the dwarf, with a marginal detection found for the sixth. Our data points to a likely association between radio and optical periodic variability in late-M/early-L dwarfs, although the underlying physical cause of this correlation remains unclear. In one case, we have multiple epochs of monitoring of the archetype of pulsing radio dwarfs, the M9 TVLM 513–46546, spanning a period of 5 yr, which is sufficiently stable in phase to allow us to establish a period of 1.95958 ± 0.00005 hr. This phase stability may be associated with a large-scale stable magnetic field, further strengthening the correlation between radio activity and periodic optical variability. Finally, we find a tentative spin-orbit alignment of one component of the very low mass binary, LP 349–25.

  14. Periodic optical variability of radio-detected ultracool dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L. K.; Golden, A.; Singh, Navtej; Sheehan, B.; Butler, R. F. [Centre for Astronomy, National University of Ireland, Galway, University Road, Galway (Ireland); Hallinan, G. [Cahill Center for Astrophysics, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Boyle, R. P. [Vatican Observatory Research Group, Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Zavala, R. T., E-mail: lkh@astro.caltech.edu [United States Naval Observatory, Flagstaff Station, Flagstaff, AZ 86001 (United States)

    2013-12-20

    A fraction of very low mass stars and brown dwarfs are known to be radio active, in some cases producing periodic pulses. Extensive studies of two such objects have also revealed optical periodic variability, and the nature of this variability remains unclear. Here, we report on multi-epoch optical photometric monitoring of six radio-detected dwarfs, spanning the ∼M8-L3.5 spectral range, conducted to investigate the ubiquity of periodic optical variability in radio-detected ultracool dwarfs. This survey is the most sensitive ground-based study carried out to date in search of periodic optical variability from late-type dwarfs, where we obtained 250 hr of monitoring, delivering photometric precision as low as ∼0.15%. Five of the six targets exhibit clear periodicity, in all cases likely associated with the rotation period of the dwarf, with a marginal detection found for the sixth. Our data points to a likely association between radio and optical periodic variability in late-M/early-L dwarfs, although the underlying physical cause of this correlation remains unclear. In one case, we have multiple epochs of monitoring of the archetype of pulsing radio dwarfs, the M9 TVLM 513–46546, spanning a period of 5 yr, which is sufficiently stable in phase to allow us to establish a period of 1.95958 ± 0.00005 hr. This phase stability may be associated with a large-scale stable magnetic field, further strengthening the correlation between radio activity and periodic optical variability. Finally, we find a tentative spin-orbit alignment of one component of the very low mass binary, LP 349–25.

  15. Sensitive Leptospira DNA detection using tapered optical fiber sensor.

    Science.gov (United States)

    Zainuddin, Nurul H; Chee, Hui Y; Ahmad, Muhammad Z; Mahdi, Mohd A; Abu Bakar, Muhammad H; Yaacob, Mohd H

    2018-03-23

    This paper presents the development of tapered optical fiber sensor to detect a specific Leptospira bacteria DNA. The bacteria causes Leptospirosis, a deadly disease but with common early flu-like symptoms. Optical single mode fiber (SMF) of 125 μm diameter is tapered to produce 12 μm waist diameter and 15 cm length. The novel DNA-based optical fiber sensor is functionalized by incubating the tapered region with sodium hydroxide (NaOH), (3-Aminopropyl) triethoxysilane and glutaraldehyde. Probe DNA is immobilized onto the tapered region and subsequently hybridized by its complementary DNA (cDNA). The transmission spectra of the DNA-based optical fiber sensor are measured in the 1500 to 1600 nm wavelength range. It is discovered that the shift of the wavelength in the SMF sensor is linearly proportional with the increase in the cDNA concentrations from 0.1 to 1.0 nM. The sensitivity of the sensor toward DNA is measured to be 1.2862 nm/nM and able to detect as low as 0.1 fM. The sensor indicates high specificity when only minimal shift is detected for non-cDNA testing. The developed sensor is able to distinguish between actual DNA of Leptospira serovars (Canicola and Copenhageni) against Clostridium difficile (control sample) at very low (femtomolar) target concentrations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. TRUSTWORTHY OPTIMIZED CLUSTERING BASED TARGET DETECTION AND TRACKING FOR WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    C. Jehan

    2016-06-01

    Full Text Available In this paper, an efficient approach is proposed to address the problem of target tracking in wireless sensor network (WSN. The problem being tackled here uses adaptive dynamic clustering scheme for tracking the target. It is a specific problem in object tracking. The proposed adaptive dynamic clustering target tracking scheme uses three steps for target tracking. The first step deals with the identification of clusters and cluster heads using OGSAFCM. Here, kernel fuzzy c-means (KFCM and gravitational search algorithm (GSA are combined to create clusters. At first, oppositional gravitational search algorithm (OGSA is used to optimize the initial clustering center and then the KFCM algorithm is availed to guide the classification and the cluster formation process. In the OGSA, the concept of the opposition based population initialization in the basic GSA to improve the convergence profile. The identified clusters are changed dynamically. The second step deals with the data transmission to the cluster heads. The third step deals with the transmission of aggregated data to the base station as well as the detection of target. From the experimental results, the proposed scheme efficiently and efficiently identifies the target. As a result the tracking error is minimized.

  17. Plasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection

    Directory of Open Access Journals (Sweden)

    Jaewook Lee

    2017-10-01

    Full Text Available Plasmonic nanomaterials (P-NM are receiving attention due to their excellent properties, which include surface-enhanced Raman scattering (SERS, localized surface plasmon resonance (LSPR effects, plasmonic resonance energy transfer (PRET, and magneto optical (MO effects. To obtain such plasmonic properties, many nanomaterials have been developed, including metal nanoparticles (MNP, bimetallic nanoparticles (bMNP, MNP-decorated carbon nanotubes, (MNP-CNT, and MNP-modified graphene (MNP-GRP. These P-NMs may eventually be applied to optical biosensing systems due to their unique properties. Here, probe biomolecules, such as antibodies (Ab, probe DNA, and probe aptamers, were modified on the surface of plasmonic materials by chemical conjugation and thiol chemistry. The optical property change in the plasmonic nanomaterials was monitored based on the interaction between the probe biomolecules and target virus. After bioconjugation, several optical properties, including fluorescence, plasmonic absorbance, and diffraction angle, were changed to detect the target biomolecules. This review describes several P-NMs as potential candidates of optical sensing platforms and introduces various applications in the optical biosensing field.

  18. A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters.

    Science.gov (United States)

    Tango, Toshiro; Takahashi, Kunihiko

    2012-12-30

    Spatial scan statistics are widely used tools for detection of disease clusters. Especially, the circular spatial scan statistic proposed by Kulldorff (1997) has been utilized in a wide variety of epidemiological studies and disease surveillance. However, as it cannot detect noncircular, irregularly shaped clusters, many authors have proposed different spatial scan statistics, including the elliptic version of Kulldorff's scan statistic. The flexible spatial scan statistic proposed by Tango and Takahashi (2005) has also been used for detecting irregularly shaped clusters. However, this method sets a feasible limitation of a maximum of 30 nearest neighbors for searching candidate clusters because of heavy computational load. In this paper, we show a flexible spatial scan statistic implemented with a restricted likelihood ratio proposed by Tango (2008) to (1) eliminate the limitation of 30 nearest neighbors and (2) to have surprisingly much less computational time than the original flexible spatial scan statistic. As a side effect, it is shown to be able to detect clusters with any shape reasonably well as the relative risk of the cluster becomes large via Monte Carlo simulation. We illustrate the proposed spatial scan statistic with data on mortality from cerebrovascular disease in the Tokyo Metropolitan area, Japan. Copyright © 2012 John Wiley & Sons, Ltd.

  19. A fibre optic chemical sensor for the detection of cocaine

    Science.gov (United States)

    Nguyen, T. Hien; Sun, Tong; Grattan, Kenneth T. V.; Hardwick, S. A.

    2010-09-01

    A fibre-optic chemical sensor for the detection of cocaine has been developed, based on a molecularly imprinted polymer (MIP) containing a fluorescein moiety as the signalling group. The fluorescent MIP was formed and covalently attached to the distal end of an optical fibre. The sensor exhibited an increase in fluorescence intensity in response to cocaine in the concentration range of 0 - 500 μM in aqueous acetonitrile mixtures with good reproducibility over 24 h. Selectivity for cocaine over others drugs has also been demonstrated.

  20. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  1. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  2. Distributed fiber optic system for oil pipeline leakage detection

    Science.gov (United States)

    Paranjape, R.; Liu, N.; Rumple, C.; Hara, Elmer H.

    2003-02-01

    We present a novel approach for the detection of leakage in oil pipelines using methods of fiber optic distributed sensors, a presence-of-oil based actuator, and Optical Time Domain Reflectometry (OTDR). While the basic concepts of our approach are well understood, the integration of the components into a complete system is a real world engineering design problem. Our focus has been on the development of the actuator design and testing using installed dark fiber. Initial results are promising, however environmental studies into the long term effects of exposure to the environment are still pending.

  3. Detection system using scintillating optical fibers and image tube readout

    International Nuclear Information System (INIS)

    Alspector, J.; Borenstein, S.

    1979-01-01

    The hodoscope subgroup has studied a detection system consisting of bundles of optical fibers with readout via image tubes. The basic building block is an optical fiber with a scintillator inner core. The inner core has refractive index n/sub o/ (1.58 for plastic scintillator), and the outer sheath has a low index (approx. 1.4). Light is created in the core by passage of a particle track; if the light strikes the sheath at an angle greater than the critical angle phi/sub c/, it is trapped in the fiber until it finds its way to the photon detector

  4. Detailed noise statistics for an optically preamplified direct detection receiver

    DEFF Research Database (Denmark)

    Danielsen, Søren Lykke; Mikkelsen, Benny; Durhuus, Terji

    1995-01-01

    We describe the exact statistics of an optically preamplified direct detection receiver by means of the moment generating function. The theory allows an arbitrary shaped electrical filter in the receiver circuit. The moment generating function (MGF) allows for a precise calculation of the error...... rate by using the inverse Fast Fourier transform (FFT). The exact results are compared with the usual Gaussian approximation (GA), the saddlepoint approximation (SAP) and the modified Chernoff bound (MCB). This comparison shows that the noise is not Gaussian distributed for all values of the optical...... and calculate the sensitivity degradation due to inter symbol interference (ISI)...

  5. Optical spectroscopy for the detection of ischemic tissue injury

    Science.gov (United States)

    Demos, Stavros [Livermore, CA; Fitzgerald, Jason [Sacramento, CA; Troppmann, Christoph [Sacramento, CA; Michalopoulou, Andromachi [Athens, GR

    2009-09-08

    An optical method and apparatus is utilized to quantify ischemic tissue and/or organ injury. Such a method and apparatus is non-invasive, non-traumatic, portable, and can make measurements in a matter of seconds. Moreover, such a method and apparatus can be realized through optical fiber probes, making it possible to take measurements of target organs deep within a patient's body. Such a technology provides a means of detecting and quantifying tissue injury in its early stages, before it is clinically apparent and before irreversible damage has occurred.

  6. Indirect photometric detection of boron cluster anions electrophoretically separated in methanol.

    Science.gov (United States)

    Vítová, Lada; Fojt, Lukáš; Vespalec, Radim

    2014-04-18

    3,5-Dinitrobenzoate and picrate are light absorbing anions pertinent to indirect photometric detection of boron cluster anions in buffered methanolic background electrolytes (BGEs). Tris(hydroxymethyl)aminomethane and morpholine have been used as buffering bases, which eliminated baseline steps, and minimized the baseline noise. In methanolic BGEs, mobilities of boron cluster anions depend on both ionic constituents of the BGE buffer. This dependence can be explained by ion pair interaction of detected anions with BGE cations, which are not bonded into ion pairs with the BGE anions. The former ion pair interaction decreases sensitivity of the indirect photometric detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. In vivo fluorescent detection of Fe-S clusters coordinated by human GRX2.

    Science.gov (United States)

    Hoff, Kevin G; Culler, Stephanie J; Nguyen, Peter Q; McGuire, Ryan M; Silberg, Jonathan J; Smolke, Christina D

    2009-12-24

    A major challenge to studying Fe-S cluster biosynthesis in higher eukaryotes is the lack of simple tools for imaging metallocluster binding to proteins. We describe the first fluorescent approach for in vivo detection of 2Fe2S clusters that is based upon the complementation of Venus fluorescent protein fragments via human glutaredoxin 2 (GRX2) coordination of a 2Fe2S cluster. We show that Escherichia coli and mammalian cells expressing Venus fragments fused to GRX2 exhibit greater fluorescence than cells expressing fragments fused to a C37A mutant that cannot coordinate a metallocluster. In addition, we find that maximal fluorescence in the cytosol of mammalian cells requires the iron-sulfur cluster assembly proteins ISCU and NFS1. These findings provide evidence that glutaredoxins can dimerize within mammalian cells through coordination of a 2Fe2S cluster as observed with purified recombinant proteins. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. An Improved Semisupervised Outlier Detection Algorithm Based on Adaptive Feature Weighted Clustering

    Directory of Open Access Journals (Sweden)

    Tingquan Deng

    2016-01-01

    Full Text Available There exist already various approaches to outlier detection, in which semisupervised methods achieve encouraging superiority due to the introduction of prior knowledge. In this paper, an adaptive feature weighted clustering-based semisupervised outlier detection strategy is proposed. This method maximizes the membership degree of a labeled normal object to the cluster it belongs to and minimizes the membership degrees of a labeled outlier to all clusters. In consideration of distinct significance of features or components in a dataset in determining an object being an inlier or outlier, each feature is adaptively assigned different weights according to the deviation degrees between this feature of all objects and that of a certain cluster prototype. A series of experiments on a synthetic dataset and several real-world datasets are implemented to verify the effectiveness and efficiency of the proposal.

  9. A Novel Automatic Detection System for ECG Arrhythmias Using Maximum Margin Clustering with Immune Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Bohui Zhu

    2013-01-01

    Full Text Available This paper presents a novel maximum margin clustering method with immune evolution (IEMMC for automatic diagnosis of electrocardiogram (ECG arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias.

  10. Media effects on the optical absorption spectra of silver clusters embedded in rara gas matrices

    International Nuclear Information System (INIS)

    Fedrigo, S.; Harbich, W.; Buttet, J.

    1993-01-01

    The optical absorption of small mass selected Ag n -clusters (n=7, 11, 15, 21) embedded in solid Ar, Kr and Xe has been measured. The absorption spectra show 1 to 3 major peaks between 3 and 4.5 eV, depending on the cluster size. Changing the matrix gas Ar→Kr→Xe induces a redshift which is comparable for all sizes studied and does not affect the main structure of the absorption spectra. We propose a scheme to estimate the gas phase value of the absorption energies which is in fair agreement with an estimation obtained by a simple model based on a Drude metal. (author). 10 refs, 2 figs

  11. Nonlocality and particle-clustering effects on the optical response of composite materials with metallic nanoparticles

    Science.gov (United States)

    Chen, C. W.; Chung, H. Y.; Chiang, H.-P.; Lu, J. Y.; Chang, R.; Tsai, D. P.; Leung, P. T.

    2010-10-01

    The optical properties of composites with metallic nanoparticles are studied, taking into account the effects due to the nonlocal dielectric response of the metal and the coalescing of the particles to form clusters. An approach based on various effective medium theories is followed, and the modeling results are compared with those from the cases with local response and particles randomly distributed through the host medium. Possible observations of our modeling results are illustrated via a calculation of the transmission of light through a thin film made of these materials. It is found that the nonlocal effects are particularly significant when the particles coalesce, leading to blue-shifted resonances and slightly lower values in the dielectric functions. The dependence of these effects on the volume fraction and fractal dimension of the metal clusters is studied in detail.

  12. A semi-supervised method to detect seismic random noise with fuzzy GK clustering

    International Nuclear Information System (INIS)

    Hashemi, Hosein; Javaherian, Abdolrahim; Babuska, Robert

    2008-01-01

    We present a new method to detect random noise in seismic data using fuzzy Gustafson–Kessel (GK) clustering. First, using an adaptive distance norm, a matrix is constructed from the observed seismic amplitudes. The next step is to find centres of ellipsoidal clusters and construct a partition matrix which determines the soft decision boundaries between seismic events and random noise. The GK algorithm updates the cluster centres in order to iteratively minimize the cluster variance. Multiplication of the fuzzy membership function with values of each sample yields new sections; we name them 'clustered sections'. The seismic amplitude values of the clustered sections are given in a way to decrease the level of noise in the original noisy seismic input. In pre-stack data, it is essential to study the clustered sections in a f–k domain; finding the quantitative index for weighting the post-stack data needs a similar approach. Using the knowledge of a human specialist together with the fuzzy unsupervised clustering, the method is a semi-supervised random noise detection. The efficiency of this method is investigated on synthetic and real seismic data for both pre- and post-stack data. The results show a significant improvement of the input noisy sections without harming the important amplitude and phase information of the original data. The procedure for finding the final weights of each clustered section should be carefully done in order to keep almost all the evident seismic amplitudes in the output section. The method interactively uses the knowledge of the seismic specialist in detecting the noise

  13. Recent developments in optical detection methods for microchip separations.

    Science.gov (United States)

    Götz, Sebastian; Karst, Uwe

    2007-01-01

    This paper summarizes the features and performances of optical detection systems currently applied in order to monitor separations on microchip devices. Fluorescence detection, which delivers very high sensitivity and selectivity, is still the most widely applied method of detection. Instruments utilizing laser-induced fluorescence (LIF) and lamp-based fluorescence along with recent applications of light-emitting diodes (LED) as excitation sources are also covered in this paper. Since chemiluminescence detection can be achieved using extremely simple devices which no longer require light sources and optical components for focusing and collimation, interesting approaches based on this technique are presented, too. Although UV/vis absorbance is a detection method that is commonly used in standard desktop electrophoresis and liquid chromatography instruments, it has not yet reached the same level of popularity for microchip applications. Current applications of UV/vis absorbance detection to microchip separations and innovative approaches that increase sensitivity are described. This article, which contains 85 references, focuses on developments and applications published within the last three years, points out exciting new approaches, and provides future perspectives on this field.

  14. Fast detection of vascular plaque in optical coherence tomography images using a reduced feature set

    Science.gov (United States)

    Prakash, Ammu; Ocana Macias, Mariano; Hewko, Mark; Sowa, Michael; Sherif, Sherif

    2018-03-01

    Optical coherence tomography (OCT) images are capable of detecting vascular plaque by using the full set of 26 Haralick textural features and a standard K-means clustering algorithm. However, the use of the full set of 26 textural features is computationally expensive and may not be feasible for real time implementation. In this work, we identified a reduced set of 3 textural feature which characterizes vascular plaque and used a generalized Fuzzy C-means clustering algorithm. Our work involves three steps: 1) the reduction of a full set 26 textural feature to a reduced set of 3 textural features by using genetic algorithm (GA) optimization method 2) the implementation of an unsupervised generalized clustering algorithm (Fuzzy C-means) on the reduced feature space, and 3) the validation of our results using histology and actual photographic images of vascular plaque. Our results show an excellent match with histology and actual photographic images of vascular tissue. Therefore, our results could provide an efficient pre-clinical tool for the detection of vascular plaque in real time OCT imaging.

  15. Optimal threshold detection for Málaga turbulent optical links

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Garrido-Balsellss, José María; del Castillo Vázquez, Miguel

    2016-01-01

    in this paper the role of the detection threshold in a free-space optical system employing an on-off keying modulation technique and involved in different scenarios, and taking into account the extinction ratio associated to the employed laser. First we have derived some analytical expressions for the lower......A new and generalized statistical model, called Málaga distribution (M distribution), has been derived recently to characterize the irradiance fluctuations of an unbounded optical wave front propagating through a turbulent medium under all irradiance fluctuation conditions. As great advantages...... associated to that model, we can indicate that it is written in a simple tractable closed-form expression and that it is able to unify most of the proposed statistical models for free-space optical communications derived until now in the scientific literature. Based on that Málaga model, we have analyzed...

  16. Optical detection of radio waves through a nanomechanical transducer

    DEFF Research Database (Denmark)

    Bagci, T.; Simonsen, A.; Schmid, Silvan

    2014-01-01

    Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would...... strong coupling between the voltage fluctuations in a radio-frequency resonance circuit and the membrane's displacement, which is simultaneously coupled to light reflected off its surface. The radio-frequency signals are detected as an optical phase shift with quantum-limited sensitivity....... The corresponding half-wave voltage is in the microvolt range, orders of magnitude less than that of standard optical modulators. The noise of the transducer--beyond the measured 800 pV Hz-1/2 Johnson noise of the resonant circuit--consists of the quantum noise of light and thermal fluctuations of the membrane...

  17. Optical sensor for real-time weld defect detection

    Science.gov (United States)

    Ancona, Antonio; Maggipinto, Tommaso; Spagnolo, Vincenzo; Ferrara, Michele; Lugara, Pietro M.

    2002-04-01

    In this work we present an innovative optical sensor for on- line and non-intrusive welding process monitoring. It is based on the spectroscopic analysis of the optical VIS emission of the welding plasma plume generated in the laser- metal interaction zone. Plasma electron temperature has been measured for different chemical species composing the plume. Temperature signal evolution has been recorded and analyzed during several CO2-laser welding processes, under variable operating conditions. We have developed a suitable software able to real time detect a wide range of weld defects like crater formation, lack of fusion, excessive penetration, seam oxidation. The same spectroscopic approach has been applied for electric arc welding process monitoring. We assembled our optical sensor in a torch for manual Gas Tungsten Arc Welding procedures and tested the prototype in a manufacturing industry production line. Even in this case we found a clear correlation between the signal behavior and the welded joint quality.

  18. Quantum optics meets quantum many-body theory: coupled cluster studies of the Rabi Hamiltonian

    International Nuclear Information System (INIS)

    Davidson, N.J.; Quick, R.M.; Bishop, R.F.; Van der Walt, D.M.

    1998-01-01

    The Rabi Hamiltonian, which describes the interaction of a single mode of electromagnetic radiation with a two level system, is one of the fundamental models of quantum optics. It is also of wider interest as it provides a generic model for the interaction of bosons and fermions. To allow for a systematic analysis of the strong-coupling behaviour, we have applied the coupled cluster method (CCM) to the Rabi Hamiltonian to calculate its spectrum. We find strong evidence for the existence of a somewhat subtle quantum phase transition. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  19. Solution of relativistic quantum optics problems using clusters of graphical processing units

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, D.F., E-mail: daviel.gordon@nrl.navy.mil; Hafizi, B.; Helle, M.H.

    2014-06-15

    Numerical solution of relativistic quantum optics problems requires high performance computing due to the rapid oscillations in a relativistic wavefunction. Clusters of graphical processing units are used to accelerate the computation of a time dependent relativistic wavefunction in an arbitrary external potential. The stationary states in a Coulomb potential and uniform magnetic field are determined analytically and numerically, so that they can used as initial conditions in fully time dependent calculations. Relativistic energy levels in extreme magnetic fields are recovered as a means of validation. The relativistic ionization rate is computed for an ion illuminated by a laser field near the usual barrier suppression threshold, and the ionizing wavefunction is displayed.

  20. The Magellanic Bridge Cluster NGC 796: Deep Optical AO Imaging Reveals the Stellar Content and Initial Mass Function of a Massive Open Cluster

    Science.gov (United States)

    Kalari, Venu M.; Carraro, Giovanni; Evans, Christopher J.; Rubio, Monica

    2018-04-01

    NGC 796 is a massive young cluster located 59 kpc from us in the diffuse intergalactic medium of the 1/5–1/10 Z⊙ Magellanic Bridge, allowing us to probe variations in star formation and stellar evolution processes as a function of metallicity in a resolved fashion, and providing a link between resolved studies of nearby solar-metallicity and unresolved distant metal-poor clusters located in high-redshift galaxies. In this paper, we present adaptive optics griHα imaging of NGC 796 (at 0.″5, which is ∼0.14 pc at the cluster distance) along with optical spectroscopy of two bright members to quantify the cluster properties. Our aim is to explore whether star formation and stellar evolution vary as a function of metallicity by comparing the properties of NGC 796 to higher-metallicity clusters. We find an age of {20}-5+12 Myr from isochronal fitting of the cluster main sequence in the color–magnitude diagram. Based on the cluster luminosity function, we derive a top-heavy stellar initial mass function (IMF) with a slope α = 1.99 ± 0.2, hinting at a metallicity and/or environmental dependence of the IMF, which may lead to a top-heavy IMF in the early universe. Study of the Hα emission-line stars reveals that classical Be stars constitute a higher fraction of the total B-type stars when compared with similar clusters at greater metallicity, providing some support to the chemically homogeneous theory of stellar evolution. Overall, NGC 796 has a total estimated mass of 990 ± 200 M⊙, and a core radius of 1.4 ± 0.3 pc, which classifies it as a massive young open cluster, unique in the diffuse interstellar medium of the Magellanic Bridge.

  1. Detecting edges in the X-ray surface brightness of galaxy clusters

    Science.gov (United States)

    Sanders, J. S.; Fabian, A. C.; Russell, H. R.; Walker, S. A.; Blundell, K. M.

    2016-08-01

    The effects of many physical processes in the intracluster medium of galaxy clusters imprint themselves in X-ray surface brightness images. It is therefore important to choose optimal methods for extracting information from and enhancing the interpretability of such images. We describe in detail a gradient filtering edge detection method that we previously applied to images of the Centaurus cluster of galaxies. The Gaussian gradient filter measures the gradient in the surface brightness distribution on particular spatial scales. We apply this filter on different scales to Chandra X-ray observatory images of two clusters with active galactic nucleus feedback, the Perseus cluster and M 87, and a merging system, A 3667. By combining filtered images on different scales using radial filters spectacular images of the edges in a cluster are produced. We describe how to assess the significance of features in filtered images. We find the gradient filtering technique to have significant advantages for detecting many kinds of features compared to other analysis techniques, such as unsharp masking. Filtering cluster images in this way in a hard energy band allows shocks to be detected.

  2. Rejuvenating direct modulation and direct detection for modern optical communications

    Science.gov (United States)

    Che, Di; Li, An; Chen, Xi; Hu, Qian; Shieh, William

    2018-02-01

    High-speed transoceanic optical fiber transmission using direct modulation (DM) and direct detection (DD) was one of the most stirring breakthroughs for telecommunication in 1990s, which drove the internet as a global phenomenon. However, the later evolution of optical coherent communications in 2000s gradually took over the long-haul applications, due to its superior optical spectral efficiency. Nowadays, DM-DD systems are dominant mainly in cost- and power-sensitive short-reach applications, because of its natural characteristics-the simplicity. This paper reviews the recent advances of DM-DD transceivers from both hardware and signal processing perspectives. It introduces a variety of modified DM and/or DD systems for 3 application scenarios: very-short-reach interconnect with little fiber channel impact; single or a few spans of fiber transmission up to several hundred km; and distance beyond the 2nd scenario. Besides the DM-DD and multi-dimension DM-DD with polarization diversity, this paper focuses on how to rejuvenate traditional DM and DD technologies in order to bridge the transmission application gap between DM-DD and coherent transceivers, using technologies such as dispersion compensation, signal field recovery from the intensity-only DD receiver, and complex direct modulation with coherent detection. More than 30 years since the birth, DM and DD still hold indispensable roles in modern optical communications.

  3. Extending electro-optic detection to ultrashort electron beams

    Directory of Open Access Journals (Sweden)

    M. H. Helle

    2012-05-01

    Full Text Available We propose a technique to extend noninvasive electro-optic detection of relativistic electron beams to bunch lengths of ≃10  fs. This is made possible by detecting the frequency mixing that occurs between the optical probe and the space charge fields of the beam, while simultaneously time resolving the resulting mixed frequency signal. The necessary formalism to describe this technique is developed and numerical solutions for various possible experimental conditions are made. These solutions are then compared to simulation results for consistency. Finally, the method to reconstruct the original bunch profile from the proposed diagnostic is discussed and an example showing a 15 fs test beam reconstructed to within an accuracy of 15% is given.

  4. Resonant optical transducers for in-situ gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tiziana C.; Cole, Garrett; Goddard, Lynford

    2018-01-30

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  5. Resonant optical transducers for in-situ gas detection

    Science.gov (United States)

    Bond, Tiziana C; Cole, Garrett; Goddard, Lynford

    2016-06-28

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  6. Detection of secondary structure elements in proteins by hydrophobic cluster analysis.

    Science.gov (United States)

    Woodcock, S; Mornon, J P; Henrissat, B

    1992-10-01

    Hydrophobic cluster analysis (HCA) is a protein sequence comparison method based on alpha-helical representations of the sequences where the size, shape and orientation of the clusters of hydrophobic residues are primarily compared. The effectiveness of HCA has been suggested to originate from its potential ability to focus on the residues forming the hydrophobic core of globular proteins. We have addressed the robustness of the bidimensional representation used for HCA in its ability to detect the regular secondary structure elements of proteins. Various parameters have been studied such as those governing cluster size and limits, the hydrophobic residues constituting the clusters as well as the potential shift of the cluster positions with respect to the position of the regular secondary structure elements. The following results have been found to support the alpha-helical bidimensional representation used in HCA: (i) there is a positive correlation (clearly above background noise) between the hydrophobic clusters and the regular secondary structure elements in proteins; (ii) the hydrophobic clusters are centred on the regular secondary structure elements; (iii) the pitch of the helical representation which gives the best correspondence is that of an alpha-helix. The correspondence between hydrophobic clusters and regular secondary structure elements suggests a way to implement variable gap penalties during the automatic alignment of protein sequences.

  7. ICGE: an R package for detecting relevant clusters and atypical units in gene expression

    Directory of Open Access Journals (Sweden)

    Irigoien Itziar

    2012-02-01

    Full Text Available Abstract Background Gene expression technologies have opened up new ways to diagnose and treat cancer and other diseases. Clustering algorithms are a useful approach with which to analyze genome expression data. They attempt to partition the genes into groups exhibiting similar patterns of variation in expression level. An important problem associated with gene classification is to discern whether the clustering process can find a relevant partition as well as the identification of new genes classes. There are two key aspects to classification: the estimation of the number of clusters, and the decision as to whether a new unit (gene, tumor sample... belongs to one of these previously identified clusters or to a new group. Results ICGE is a user-friendly R package which provides many functions related to this problem: identify the number of clusters using mixed variables, usually found by applied biomedical researchers; detect whether the data have a cluster structure; identify whether a new unit belongs to one of the pre-identified clusters or to a novel group, and classify new units into the corresponding cluster. The functions in the ICGE package are accompanied by help files and easy examples to facilitate its use. Conclusions We demonstrate the utility of ICGE by analyzing simulated and real data sets. The results show that ICGE could be very useful to a broad research community.

  8. Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications.

    Science.gov (United States)

    Karyotis, Vasileios; Tsitseklis, Konstantinos; Sotiropoulos, Konstantinos; Papavassiliou, Symeon

    2018-04-15

    In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan-Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing.

  9. Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications

    Directory of Open Access Journals (Sweden)

    Vasileios Karyotis

    2018-04-01

    Full Text Available In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan–Newman (GN community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing.

  10. System and Method for Outlier Detection via Estimating Clusters

    Science.gov (United States)

    Iverson, David J. (Inventor)

    2016-01-01

    An efficient method and system for real-time or offline analysis of multivariate sensor data for use in anomaly detection, fault detection, and system health monitoring is provided. Models automatically derived from training data, typically nominal system data acquired from sensors in normally operating conditions or from detailed simulations, are used to identify unusual, out of family data samples (outliers) that indicate possible system failure or degradation. Outliers are determined through analyzing a degree of deviation of current system behavior from the models formed from the nominal system data. The deviation of current system behavior is presented as an easy to interpret numerical score along with a measure of the relative contribution of each system parameter to any off-nominal deviation. The techniques described herein may also be used to "clean" the training data.

  11. Optical aptasensors for quantitative detection of small biomolecules: a review.

    Science.gov (United States)

    Feng, Chunjing; Dai, Shuang; Wang, Lei

    2014-09-15

    Aptasensors are aptamer-based biosensors with excellent recognition capability towards a wide range of targets. Specially, there have been ever-growing interests in the development of aptasensors for the detection of small molecules. This phenomenon is contributed to two reasons. On one hand, small biomolecules play an important role in living organisms with many kinds of biological function, such as antiarrhythmic effect and vasodilator activity of adenosine. On the other hand, the concentration of small molecules can be an indicator for disease diagnosis, for example, the concentration of ATP is closely associated with cell injury and cell viability. As a potential analysis tool in the construction of aptasensors, optical analysis has attracted much more interest of researchers due to its high sensitivity, quick response and simple operation. Besides, it promises the promotion of aptasensors in performance toward a new level. Review the development of optical aptasensors for small biomolecules will give readers an overall understanding of its progress and provide some theoretical guidelines for its future development. Hence, we give a mini-review on the advance of optical aptasensors for small biomolecules. This review focuses on recent achievements in the design of various optical aptasensors for small biomolecules, containing fluorescence aptasensors, colorimetric aptasensors, chemiluminescence aptasensors and other optical aptasensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Detection of biological molecules using chemical amplification and optical sensors

    Science.gov (United States)

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2000-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  13. Detecting high-frequency gravitational waves with optically levitated sensors.

    Science.gov (United States)

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  14. Improved axial position detection in optical tweezers measurements

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kisbye; Berg-Sørensen, Kirstine; Oddershede, Lene

    2004-01-01

    We investigate the axial position detection of a trapped microsphere in an optical trap by using a quadrant photodiode. By replacing the photodiode with a CCD camera, we obtain detailed information on the light scattered by the microsphere. The correlation of the interference pattern with the axial...... position displays complex behavior with regions of positive and negative interference. By analyzing the scattered light intensity as a function of the axial position of the trapped sphere, we propose a simple method to increase the sensitivity and control the linear range of axial position detection....

  15. Quantum dots as optical labels for ultrasensitive detection of polyphenols.

    Science.gov (United States)

    Akshath, Uchangi Satyaprasad; Shubha, Likitha R; Bhatt, Praveena; Thakur, Munna Singh

    2014-07-15

    Considering the fact that polyphenols have versatile activity in-vivo, its detection and quantification is very much important for a healthy diet. Laccase enzyme can convert polyphenols to yield mono/polyquinones which can quench Quantum dots fluorescence. This phenomenon of charge transfer from quinones to QDs was exploited as optical labels to detect polyphenols. CdTe QD may undergo dipolar interaction with quinones as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, "turn-off" fluorescence method was applied for ultrasensitive detection of polyphenols by using laccase. We observed proportionate quenching of QDs fluorescence with respect to polyphenol concentration in the range of 100 µg to 1 ng/mL. Also, quenching of the photoluminescence was highly efficient and stable and could detect individual and total polyphenols with high sensitivity (LOD-1 ng/mL). Moreover, proposed method was highly efficient than any other reported methods in terms of sensitivity, specificity and selectivity. Therefore, a novel optical sensor was developed for the detection of polyphenols at a sensitive level based on the charge transfer mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Detecting Casimir torque with an optically levitated nanorod

    Science.gov (United States)

    Xu, Zhujing; Li, Tongcang

    2017-09-01

    The linear momentum and angular momentum of virtual photons of quantum vacuum fluctuations can induce the Casimir force and the Casimir torque, respectively. While the Casimir force has been measured extensively, the Casimir torque has not been observed experimentally though it was predicted over 40 years ago. Here we propose to detect the Casimir torque with an optically levitated nanorod near a birefringent plate in vacuum. The axis of the nanorod tends to align with the polarization direction of the linearly polarized optical tweezer. When its axis is not parallel or perpendicular to the optical axis of the birefringent crystal, it will experience a Casimir torque that shifts its orientation slightly. We calculate the Casimir torque and Casimir force acting on a levitated nanorod near a birefringent crystal. We also investigate the effects of thermal noise and photon recoils on the torque and force detection. We prove that a levitated nanorod in vacuum will be capable of detecting the Casimir torque under realistic conditions, and will be an important tool in precision measurements.

  17. A relevance vector machine technique for the automatic detection of clustered microcalcifications (Honorable Mention Poster Award)

    Science.gov (United States)

    Wei, Liyang; Yang, Yongyi; Nishikawa, Robert M.

    2005-04-01

    Microcalcification (MC) clusters in mammograms can be important early signs of breast cancer in women. Accurate detection of MC clusters is an important but challenging problem. In this paper, we propose the use of a recently developed machine learning technique -- relevance vector machine (RVM) -- for automatic detection of MCs in digitized mammograms. RVM is based on Bayesian estimation theory, and as a feature it can yield a decision function that depends on only a very small number of so-called relevance vectors. We formulate MC detection as a supervised-learning problem, and use RVM to classify if an MC object is present or not at each location in a mammogram image. MC clusters are then identified by grouping the detected MC objects. The proposed method is tested using a database of 141 clinical mammograms, and compared with a support vector machine (SVM) classifier which we developed previously. The detection performance is evaluated using the free-response receiver operating characteristic (FROC) curves. It is demonstrated that the RVM classifier matches closely with the SVM classifier in detection performance, and does so with a much sparser kernel representation than the SVM classifier. Consequently, the RVM classifier greatly reduces the computational complexity, making it more suitable for real-time processing of MC clusters in mammograms.

  18. Trained neurons-based motion detection in optical camera communications

    Science.gov (United States)

    Teli, Shivani; Cahyadi, Willy Anugrah; Chung, Yeon Ho

    2018-04-01

    A concept of trained neurons-based motion detection (TNMD) in optical camera communications (OCC) is proposed. The proposed TNMD is based on neurons present in a neural network that perform repetitive analysis in order to provide efficient and reliable motion detection in OCC. This efficient motion detection can be considered another functionality of OCC in addition to two traditional functionalities of illumination and communication. To verify the proposed TNMD, the experiments were conducted in an indoor static downlink OCC, where a mobile phone front camera is employed as the receiver and an 8 × 8 red, green, and blue (RGB) light-emitting diode array as the transmitter. The motion is detected by observing the user's finger movement in the form of centroid through the OCC link via a camera. Unlike conventional trained neurons approaches, the proposed TNMD is trained not with motion itself but with centroid data samples, thus providing more accurate detection and far less complex detection algorithm. The experiment results demonstrate that the TNMD can detect all considered motions accurately with acceptable bit error rate (BER) performances at a transmission distance of up to 175 cm. In addition, while the TNMD is performed, a maximum data rate of 3.759 kbps over the OCC link is obtained. The OCC with the proposed TNMD combined can be considered an efficient indoor OCC system that provides illumination, communication, and motion detection in a convenient smart home environment.

  19. A hierarchical cluster analysis of normal-tension glaucoma using spectral-domain optical coherence tomography parameters.

    Science.gov (United States)

    Bae, Hyoung Won; Ji, Yongwoo; Lee, Hye Sun; Lee, Naeun; Hong, Samin; Seong, Gong Je; Sung, Kyung Rim; Kim, Chan Yun

    2015-01-01

    Normal-tension glaucoma (NTG) is a heterogenous disease, and there is still controversy about subclassifications of this disorder. On the basis of spectral-domain optical coherence tomography (SD-OCT), we subdivided NTG with hierarchical cluster analysis using optic nerve head (ONH) parameters and retinal nerve fiber layer (RNFL) thicknesses. A total of 200 eyes of 200 NTG patients between March 2011 and June 2012 underwent SD-OCT scans to measure ONH parameters and RNFL thicknesses. We classified NTG into homogenous subgroups based on these variables using a hierarchical cluster analysis, and compared clusters to evaluate diverse NTG characteristics. Three clusters were found after hierarchical cluster analysis. Cluster 1 (62 eyes) had the thickest RNFL and widest rim area, and showed early glaucoma features. Cluster 2 (60 eyes) was characterized by the largest cup/disc ratio and cup volume, and showed advanced glaucomatous damage. Cluster 3 (78 eyes) had small disc areas in SD-OCT and were comprised of patients with significantly younger age, longer axial length, and greater myopia than the other 2 groups. A hierarchical cluster analysis of SD-OCT scans divided NTG patients into 3 groups based upon ONH parameters and RNFL thicknesses. It is anticipated that the small disc area group comprised of younger and more myopic patients may show unique features unlike the other 2 groups.

  20. Artificial neural network techniques to improve the ability of optical coherence tomography to detect optic neuritis.

    Science.gov (United States)

    Garcia-Martin, Elena; Herrero, Raquel; Bambo, Maria P; Ara, Jose R; Martin, Jesus; Polo, Vicente; Larrosa, Jose M; Garcia-Feijoo, Julian; Pablo, Luis E

    2015-01-01

    To analyze the ability of Spectralis optical coherence tomography (OCT) to detect multiple sclerosis (MS) and to distinguish MS eyes with antecedent optic neuritis (ON). To analyze the capability of artificial neural network (ANN) techniques to improve the diagnostic precision. MS patients and controls were enrolled (n = 217). OCT was used to determine the 768 retinal nerve fiber layer thicknesses. Sensitivity and specificity were evaluated to test the ability of OCT to discriminate between MS and healthy eyes, and between MS with and without antecedent ON using ANN. Using ANN technique multilayer perceptrons, OCT could detect MS with a sensitivity of 89.3%, a specificity of 87.6%, and a diagnostic precision of 88.5%. Compared with the OCT-provided parameters, the ANN had a better sensitivity-specificity balance. ANN technique improves the capability of Spectralis OCT to detect MS disease and to distinguish MS eyes with or without antecedent ON.

  1. Measuring the Mean and Scatter of the X-ray Luminosity -- Optical Richness Relation for maxBCG Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Rykoff, E.S.; McKay, T.A.; Becker, M.A.; Evrard, A.; Johnston, D.E.; Koester, B.P.; Rozo, E.; Sheldon, E.S.; Wechsler, Risa H.

    2007-10-02

    We interpret and model the statistical weak lensing measurements around 130,000 groups and clusters of galaxies in the Sloan Digital Sky Survey presented by Sheldon et al. (2007). We present non-parametric inversions of the 2D shear profiles to the mean 3D cluster density and mass profiles in bins of both optical richness and cluster i-band luminosity. Since the mean cluster density profile is proportional to the cluster-mass correlation function, the mean profile is spherically symmetric by the assumptions of large-scale homogeneity and isotropy. We correct the inferred 3D profiles for systematic effects, including non-linear shear and the fact that cluster halos are not all precisely centered on their brightest galaxies. We also model the measured cluster shear profile as a sum of contributions from the brightest central galaxy, the cluster dark matter halo, and neighboring halos. We infer the relations between mean cluster virial mass and optical richness and luminosity over two orders of magnitude in cluster mass; the virial mass at fixed richness or luminosity is determined with a precision of {approx} 13% including both statistical and systematic errors. We also constrain the halo concentration parameter and halo bias as a function of cluster mass; both are in good agreement with predictions from N-body simulations of LCDM models. The methods employed here will be applicable to deeper, wide-area optical surveys that aim to constrain the nature of the dark energy, such as the Dark Energy Survey, the Large Synoptic Survey Telescope and space-based surveys.

  2. A density-based clustering model for community detection in complex networks

    Science.gov (United States)

    Zhao, Xiang; Li, Yantao; Qu, Zehui

    2018-04-01

    Network clustering (or graph partitioning) is an important technique for uncovering the underlying community structures in complex networks, which has been widely applied in various fields including astronomy, bioinformatics, sociology, and bibliometric. In this paper, we propose a density-based clustering model for community detection in complex networks (DCCN). The key idea is to find group centers with a higher density than their neighbors and a relatively large integrated-distance from nodes with higher density. The experimental results indicate that our approach is efficient and effective for community detection of complex networks.

  3. Clustering and Recurring Anomaly Identification: Recurring Anomaly Detection System (ReADS)

    Science.gov (United States)

    McIntosh, Dawn

    2006-01-01

    This viewgraph presentation reviews the Recurring Anomaly Detection System (ReADS). The Recurring Anomaly Detection System is a tool to analyze text reports, such as aviation reports and maintenance records: (1) Text clustering algorithms group large quantities of reports and documents; Reduces human error and fatigue (2) Identifies interconnected reports; Automates the discovery of possible recurring anomalies; (3) Provides a visualization of the clusters and recurring anomalies We have illustrated our techniques on data from Shuttle and ISS discrepancy reports, as well as ASRS data. ReADS has been integrated with a secure online search

  4. Automatic detection of arterial input function in dynamic contrast enhanced MRI based on affinity propagation clustering.

    Science.gov (United States)

    Shi, Lin; Wang, Defeng; Liu, Wen; Fang, Kui; Wang, Yi-Xiang J; Huang, Wenhua; King, Ann D; Heng, Pheng Ann; Ahuja, Anil T

    2014-05-01

    To automatically and robustly detect the arterial input function (AIF) with high detection accuracy and low computational cost in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In this study, we developed an automatic AIF detection method using an accelerated version (Fast-AP) of affinity propagation (AP) clustering. The validity of this Fast-AP-based method was proved on two DCE-MRI datasets, i.e., rat kidney and human head and neck. The detailed AIF detection performance of this proposed method was assessed in comparison with other clustering-based methods, namely original AP and K-means, as well as the manual AIF detection method. Both the automatic AP- and Fast-AP-based methods achieved satisfactory AIF detection accuracy, but the computational cost of Fast-AP could be reduced by 64.37-92.10% on rat dataset and 73.18-90.18% on human dataset compared with the cost of AP. The K-means yielded the lowest computational cost, but resulted in the lowest AIF detection accuracy. The experimental results demonstrated that both the AP- and Fast-AP-based methods were insensitive to the initialization of cluster centers, and had superior robustness compared with K-means method. The Fast-AP-based method enables automatic AIF detection with high accuracy and efficiency. Copyright © 2013 Wiley Periodicals, Inc.

  5. Detection of high mass cluster ions sputtered from Bi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, A; Hewitt, R W; Slusser, G J; Baitinger, W E; Cooks, R G; Winograd, N [Purdue Univ., Lafayette, Ind. (USA). Dept. of Chemistry; Delgass, W N [Purdue Univ., Lafayette, Ind. (USA); Varon, A; Devant, G [Societe RIBER, 92 - Rueil-Malmaison (France)

    1976-12-01

    The technique of secondary ion mass spectrometry (SIMS) has been employed to detect Bi/sup 3 +/ ions and associated oxides Bi/sub 3/Osub(x)sup(+)(x=1 to 4) from a Bi foil. Using a 3 keV Ar/sup +/ ion primary beam of 5x10/sup -7/ A/cm/sup 2/, mass resolution to nearly 700 with the requisite sensitivity has been achieved. The Bi surface was also monitored by X-ray photoelectron spectroscopy (XPS or ESCA). The presence of a weak O 1s peak at 532.7 eV and a strong SIMS Bi/sup 3 +/ peak is interpreted to mean that the oxygen is weakly incorporated into the Bi lattice without disrupting metal-metal bonds.

  6. A method of detecting spatial clustering of disease

    International Nuclear Information System (INIS)

    Openshaw, S.; Wilkie, D.; Binks, K.; Wakeford, R.; Gerrard, M.H.; Croasdale, M.R.

    1989-01-01

    A statistical technique has been developed to identify extreme groupings of a disease and is being applied to childhood cancers, initially to acute lymphoblastic leukaemia incidence in the Northern and North-Western Regions of England. The method covers the area with a square grid, the size of which is varied over a wide range and whose origin is moved in small increments in two directions. The population at risk within any square is estimated using the 1971 and 1981 censuses. The significance of an excess of disease is determined by random simulation. In addition, tests to detect a general departure from a background Poisson process are carried out. Available results will be presented at the conference. (author)

  7. Fiber Optic Sensors For Detection of Toxic and Biological Threats

    Directory of Open Access Journals (Sweden)

    Jianming Yuan

    2007-12-01

    Full Text Available Protection of public and military personnel from chemical and biological warfareagents is an urgent and growing national security need. Along with this idea, we havedeveloped a novel class of fiber optic chemical sensors, for detection of toxic and biologicalmaterials. The design of these fiber optic sensors is based on a cladding modificationapproach. The original passive cladding of the fiber, in a small section, was removed and thefiber core was coated with a chemical sensitive material. Any change in the opticalproperties of the modified cladding material, due to the presence of a specific chemicalvapor, changes the transmission properties of the fiber and result in modal powerredistribution in multimode fibers. Both total intensity and modal power distribution (MPDmeasurements were used to detect the output power change through the sensing fibers. TheMPD technique measures the power changes in the far field pattern, i.e. spatial intensitymodulation in two dimensions. Conducting polymers, such as polyaniline and polypyrrole,have been reported to undergo a reversible change in conductivity upon exposure tochemical vapors. It is found that the conductivity change is accompanied by optical propertychange in the material. Therefore, polyaniline and polypyrrole were selected as the modifiedcladding material for the detection of hydrochloride (HCl, ammonia (NH3, hydrazine(H4N2, and dimethyl-methl-phosphonate (DMMP {a nerve agent, sarin stimulant},respectively. Several sensors were prepared and successfully tested. The results showeddramatic improvement in the sensor sensitivity, when the MPD method was applied. In thispaper, an overview on the developed class of fiber optic sensors is presented and supportedwith successful achieved results.

  8. What if LIGO's gravitational wave detections are strongly lensed by massive galaxy clusters?

    Science.gov (United States)

    Smith, Graham P.; Jauzac, Mathilde; Veitch, John; Farr, Will M.; Massey, Richard; Richard, Johan

    2018-04-01

    Motivated by the preponderance of so-called `heavy black holes' in the binary black hole (BBH) gravitational wave (GW) detections to date, and the role that gravitational lensing continues to play in discovering new galaxy populations, we explore the possibility that the GWs are strongly lensed by massive galaxy clusters. For example, if one of the GW sources were actually located at z = 1, then the rest-frame mass of the associated BHs would be reduced by a factor of ˜2. Based on the known populations of BBH GW sources and strong-lensing clusters, we estimate a conservative lower limit on the number of BBH mergers detected per detector year at LIGO/Virgo's current sensitivity that are multiply-imaged, of Rdetect ≃ 10-5 yr-1. This is equivalent to rejecting the hypothesis that one of the BBH GWs detected to date was multiply-imaged at ≲4σ. It is therefore unlikely, but not impossible, that one of the GWs is multiply-imaged. We identify three spectroscopically confirmed strong-lensing clusters with well-constrained mass models within the 90 per cent credible sky localizations of the BBH GWs from LIGO's first observing run. In the event that one of these clusters multiply-imaged one of the BBH GWs, we predict that 20-60 per cent of the putative next appearances of the GWs would be detectable by LIGO, and that they would arrive at Earth within 3yr of first detection.

  9. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Directory of Open Access Journals (Sweden)

    Yuliang Wang

    Full Text Available Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  10. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images.

    Science.gov (United States)

    Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng

    2015-01-01

    Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.

  11. Optical Fiber Nanotips Coated with Molecular Beacons for DNA Detection

    Directory of Open Access Journals (Sweden)

    Ambra Giannetti

    2015-04-01

    Full Text Available Optical fiber sensors, thanks to their compactness, fast response and real-time measurements, have a large impact in the fields of life science research, drug discovery and medical diagnostics. In recent years, advances in nanotechnology have resulted in the development of nanotools, capable of entering the single cell, resulting in new nanobiosensors useful for the detection of biomolecules inside living cells. In this paper, we provide an application of a nanotip coupled with molecular beacons (MBs for the detection of DNA. The MBs were characterized by hybridization studies with a complementary target to prove their functionality both free in solution and immobilized onto a solid support. The solid support chosen as substrate for the immobilization of the MBs was a 30 nm tapered tip of an optical fiber, fabricated by chemical etching. With this set-up promising results were obtained and a limit of detection (LOD of 0.57 nM was reached, opening up the possibility of using the proposed nanotip to detect mRNAs inside the cytoplasm of living cells.

  12. A survey on object detection in optical remote sensing images

    Science.gov (United States)

    Cheng, Gong; Han, Junwei

    2016-07-01

    Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.

  13. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

  14. clusters

    Indian Academy of Sciences (India)

    environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

  15. A Cluster-Based Fuzzy Fusion Algorithm for Event Detection in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    ZiQi Hao

    2015-01-01

    Full Text Available As limited energy is one of the tough challenges in wireless sensor networks (WSN, energy saving becomes important in increasing the lifecycle of the network. Data fusion enables combining information from several sources thus to provide a unified scenario, which can significantly save sensor energy and enhance sensing data accuracy. In this paper, we propose a cluster-based data fusion algorithm for event detection. We use k-means algorithm to form the nodes into clusters, which can significantly reduce the energy consumption of intracluster communication. Distances between cluster heads and event and energy of clusters are fuzzified, thus to use a fuzzy logic to select the clusters that will participate in data uploading and fusion. Fuzzy logic method is also used by cluster heads for local decision, and then the local decision results are sent to the base station. Decision-level fusion for final decision of event is performed by base station according to the uploaded local decisions and fusion support degree of clusters calculated by fuzzy logic method. The effectiveness of this algorithm is demonstrated by simulation results.

  16. The NIDS Cluster: Scalable, Stateful Network Intrusion Detection on Commodity Hardware

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, Brian L; Vallentin, Matthias; Sommer, Robin; Lee, Jason; Leres, Craig; Paxson, Vern; Tierney, Brian

    2007-09-19

    In this work we present a NIDS cluster as a scalable solution for realizing high-performance, stateful network intrusion detection on commodity hardware. The design addresses three challenges: (i) distributing traffic evenly across an extensible set of analysis nodes in a fashion that minimizes the communication required for coordination, (ii) adapting the NIDS's operation to support coordinating its low-level analysis rather than just aggregating alerts; and (iii) validating that the cluster produces sound results. Prototypes of our NIDS cluster now operate at the Lawrence Berkeley National Laboratory and the University of California at Berkeley. In both environments the clusters greatly enhance the power of the network security monitoring.

  17. An Optimized Clustering Approach for Automated Detection of White Matter Lesions in MRI Brain Images

    Directory of Open Access Journals (Sweden)

    M. Anitha

    2012-04-01

    Full Text Available Settings White Matter lesions (WMLs are small areas of dead cells found in parts of the brain. In general, it is difficult for medical experts to accurately quantify the WMLs due to decreased contrast between White Matter (WM and Grey Matter (GM. The aim of this paper is to
    automatically detect the White Matter Lesions which is present in the brains of elderly people. WML detection process includes the following stages: 1. Image preprocessing, 2. Clustering (Fuzzy c-means clustering, Geostatistical Possibilistic clustering and Geostatistical Fuzzy clustering and 3.Optimization using Particle Swarm Optimization (PSO. The proposed system is tested on a database of 208 MRI images. GFCM yields high sensitivity of 89%, specificity of 94% and overall accuracy of 93% over FCM and GPC. The clustered brain images are then subjected to Particle Swarm Optimization (PSO. The optimized result obtained from GFCM-PSO provides sensitivity of 90%, specificity of 94% and accuracy of 95%. The detection results reveals that GFCM and GFCMPSO better localizes the large regions of lesions and gives less false positive rate when compared to GPC and GPC-PSO which captures the largest loads of WMLs only in the upper ventral horns of the brain.

  18. Optical system for object detection and delineation in space

    Science.gov (United States)

    Handelman, Amir; Shwartz, Shoam; Donitza, Liad; Chaplanov, Loran

    2018-01-01

    Object recognition and delineation is an important task in many environments, such as in crime scenes and operating rooms. Marking evidence or surgical tools and attracting the attention of the surrounding staff to the marked objects can affect people's lives. We present an optical system comprising a camera, computer, and small laser projector that can detect and delineate objects in the environment. To prove the optical system's concept, we show that it can operate in a hypothetical crime scene in which a pistol is present and automatically recognize and segment it by various computer-vision algorithms. Based on such segmentation, the laser projector illuminates the actual boundaries of the pistol and thus allows the persons in the scene to comfortably locate and measure the pistol without holding any intermediator device, such as an augmented reality handheld device, glasses, or screens. Using additional optical devices, such as diffraction grating and a cylinder lens, the pistol size can be estimated. The exact location of the pistol in space remains static, even after its removal. Our optical system can be fixed or dynamically moved, making it suitable for various applications that require marking of objects in space.

  19. Miniature endoscopic optical coherence tomography for calculus detection.

    Science.gov (United States)

    Kao, Meng-Chun; Lin, Chun-Li; Kung, Che-Yen; Huang, Yi-Fung; Kuo, Wen-Chuan

    2015-08-20

    The effective treatment of periodontitis involves the detection and removal of subgingival dental calculus. However, subgingival calculus is more difficult to detect than supragingival calculus because it is firmly attached to root surfaces within periodontal pockets. To achieve a smooth root surface, clinicians often remove excessive amounts of root structure because of decreased visibility. In addition, enamel pearl, a rare type of ectopic enamel formation on the root surface, can easily be confused with dental calculus in the subgingival environment. In this study, we developed a fiber-probe swept-source optical coherence tomography (SSOCT) technique and combined it with the quantitative measurement of an optical parameter [standard deviation (SD) of the optical coherence tomography (OCT) intensity] to differentiate subgingival calculus from sound enamel, including enamel pearl. Two-dimensional circumferential images were constructed by rotating the miniprobe (0.9 mm diameter) while acquiring image lines, and the adjacent lines in each rotation were stacked to generate a three-dimensional volume. In OCT images, compared to sound enamel and enamel pearls, dental calculus showed significant differences (Pdental calculus.

  20. Optical Kerr effect in graphene: Theoretical analysis of the optical heterodyne detection technique

    Science.gov (United States)

    Savostianova, N. A.; Mikhailov, S. A.

    2018-04-01

    Graphene is an atomically thin two-dimensional material demonstrating strong optical nonlinearities, including harmonics generation, four-wave mixing, Kerr, and other nonlinear effects. In this paper we theoretically analyze the optical heterodyne detection (OHD) technique of measuring the optical Kerr effect (OKE) in two-dimensional crystals and show how to relate the quantities measured in such experiments with components of the third-order conductivity tensor σαβ γ δ (3 )(ω1,ω2,ω3) of the two-dimensional crystal. Using results of a recently developed quantum theory of the third-order nonlinear electrodynamic response of graphene, we analyze the frequency, charge carrier density, temperature, and other dependencies of the OHD-OKE response of this material. We compare our results with a recent OHD-OKE experiment in graphene and find good agreement between the theory and experiment.

  1. Heartbeat detection from a hydraulic bed sensor using a clustering approach.

    Science.gov (United States)

    Rosales, Licet; Skubic, Marjorie; Heise, David; Devaney, Michael J; Schaumburg, Mark

    2012-01-01

    Encouraged by previous performance of a hydraulic bed sensor, this work presents a new hydraulic transducer configuration which improves the system's ability to capture a heartbeat signal from four subjects with different body weight and height, gender, age and cardiac history. It also proposes a new approach for detecting the occurrence of heartbeats from ballistocardiogram (BCG) signals through the use of the k-means clustering algorithm, based on finding the location of the J-peaks. Preliminary testing showed that the new transducer arrangement was able to capture the occurrence of heartbeats for all the participants, and the clustering approach achieved correct heartbeat detection ranging from 98.6 to 100% for three of them. Some considerations are discussed regarding adjustments that can be done in order to increase the correct detection of heartbeats for the participant whose percentage of correct detection ranged from 71.0 to 92.5%.

  2. A Distributed Algorithm for the Cluster-Based Outlier Detection Using Unsupervised Extreme Learning Machines

    Directory of Open Access Journals (Sweden)

    Xite Wang

    2017-01-01

    Full Text Available Outlier detection is an important data mining task, whose target is to find the abnormal or atypical objects from a given dataset. The techniques for detecting outliers have a lot of applications, such as credit card fraud detection and environment monitoring. Our previous work proposed the Cluster-Based (CB outlier and gave a centralized method using unsupervised extreme learning machines to compute CB outliers. In this paper, we propose a new distributed algorithm for the CB outlier detection (DACB. On the master node, we collect a small number of points from the slave nodes to obtain a threshold. On each slave node, we design a new filtering method that can use the threshold to efficiently speed up the computation. Furthermore, we also propose a ranking method to optimize the order of cluster scanning. At last, the effectiveness and efficiency of the proposed approaches are verified through a plenty of simulation experiments.

  3. A novel intrusion detection method based on OCSVM and K-means recursive clustering

    Directory of Open Access Journals (Sweden)

    Leandros A. Maglaras

    2015-01-01

    Full Text Available In this paper we present an intrusion detection module capable of detecting malicious network traffic in a SCADA (Supervisory Control and Data Acquisition system, based on the combination of One-Class Support Vector Machine (OCSVM with RBF kernel and recursive k-means clustering. Important parameters of OCSVM, such as Gaussian width o and parameter v affect the performance of the classifier. Tuning of these parameters is of great importance in order to avoid false positives and over fitting. The combination of OCSVM with recursive k- means clustering leads the proposed intrusion detection module to distinguish real alarms from possible attacks regardless of the values of parameters o and v, making it ideal for real-time intrusion detection mechanisms for SCADA systems. Extensive simulations have been conducted with datasets extracted from small and medium sized HTB SCADA testbeds, in order to compare the accuracy, false alarm rate and execution time against the base line OCSVM method.

  4. Optical detection of magnetic nanoparticles in colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, Alejandro J.; Ramirez-Wong, Diana G.; Favela-Camacho, Sarai E. [Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional Unidad Querétaro, Querétaro, México (Mexico); Sanchez, Isaac C. [Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); Yáñez-Limón, J.M.; Luna-Bárcenas, Gabriel [Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional Unidad Querétaro, Querétaro, México (Mexico)

    2016-03-15

    This study reports the change of light transmittance and light scattering dispersion by colloidal suspensions of magnetic nanoparticles. Optical changes were observed during the application of transversal magnetic fields to magnetic nanoparticles and nanowires at concentrations spanning from 20 µg/mL to 2 ng/mL. Results show that light scattering modulation is a simple, fast and inexpensive method for detection of magnetic nanoparticles at low concentrations. Frequency and time response of the optical modulation strongly depends on the geometry of the particles. In this regard, light transmittance and scattering measurements may prove useful in characterizing the morphology of suspended nanoparticles. - Highlights: • A simple route to characterize magnetic nanowire suspension is proposed. • Studied concentration as low as 2 ng/mL compares with more complex techniques. • Transmission and scattering modes allow full characterization of nanoparticles.

  5. Feature selection for anomaly–based network intrusion detection using cluster validity indices

    CSIR Research Space (South Africa)

    Naidoo, T

    2015-09-01

    Full Text Available for Anomaly–Based Network Intrusion Detection Using Cluster Validity Indices Tyrone Naidoo_, Jules–Raymond Tapamoy, Andre McDonald_ Modelling and Digital Science, Council for Scientific and Industrial Research, South Africa 1tnaidoo2@csir.co.za 3...

  6. Using Clustering Techniques To Detect Usage Patterns in a Web-based Information System.

    Science.gov (United States)

    Chen, Hui-Min; Cooper, Michael D.

    2001-01-01

    This study developed an analytical approach to detecting groups with homogenous usage patterns in a Web-based information system. Principal component analysis was used for data reduction, cluster analysis for categorizing usage into groups. The methodology was demonstrated and tested using two independent samples of user sessions from the…

  7. Computer aided detection of clusters of microcalcifications on full field digital mammograms

    International Nuclear Information System (INIS)

    Ge Jun; Sahiner, Berkman; Hadjiiski, Lubomir M.; Chan, H.-P.; Wei Jun; Helvie, Mark A.; Zhou Chuan

    2006-01-01

    We are developing a computer-aided detection (CAD) system to identify microcalcification clusters (MCCs) automatically on full field digital mammograms (FFDMs). The CAD system includes six stages: preprocessing; image enhancement; segmentation of microcalcification candidates; false positive (FP) reduction for individual microcalcifications; regional clustering; and FP reduction for clustered microcalcifications. At the stage of FP reduction for individual microcalcifications, a truncated sum-of-squares error function was used to improve the efficiency and robustness of the training of an artificial neural network in our CAD system for FFDMs. At the stage of FP reduction for clustered microcalcifications, morphological features and features derived from the artificial neural network outputs were extracted from each cluster. Stepwise linear discriminant analysis (LDA) was used to select the features. An LDA classifier was then used to differentiate clustered microcalcifications from FPs. A data set of 96 cases with 192 images was collected at the University of Michigan. This data set contained 96 MCCs, of which 28 clusters were proven by biopsy to be malignant and 68 were proven to be benign. The data set was separated into two independent data sets for training and testing of the CAD system in a cross-validation scheme. When one data set was used to train and validate the convolution neural network (CNN) in our CAD system, the other data set was used to evaluate the detection performance. With the use of a truncated error metric, the training of CNN could be accelerated and the classification performance was improved. The CNN in combination with an LDA classifier could substantially reduce FPs with a small tradeoff in sensitivity. By using the free-response receiver operating characteristic methodology, it was found that our CAD system can achieve a cluster-based sensitivity of 70, 80, and 90 % at 0.21, 0.61, and 1.49 FPs/image, respectively. For case

  8. Optics industry in Spain: a cluster approach to increasing competitiveness through collaboration in R&D and innovation

    Science.gov (United States)

    Cifuentes, Andrés F.

    2011-10-01

    The optics industry in Spain pooled together to create the Southern European Cluster in Photonics and Optics - SECPhO, founded in April 2009, with the mission to help the sector increase competitiveness, specially through collaboration. From 10 founding members, SECPhO no incorporates over 40 members, which is nearly 40% of the optics industry in the region. From the beginning of operations the cluster has focused on three strategic challenges: R&D+i and Productivity, Visibility and Internationalization, and Betterment and Retention of Talent. A brief summary of the clusters activities is given. In this article, the focus will be on R&D and innovation, through industry driven collaborative initiatives and the tools and actions that lead to successful partnerships. Topics discussed in this work are will be a cluster's role in promoting strategic change, the value chain approach to partnerships, international collaboration in projects and specific cluster activities. Some practical examples of initiatives relating to effective collaboration are described, focusing on one of the mayor challenges of our time: the greening of the planet. Examples will be addressed in smart cities, efficient LASER applications and lightweight optical sensors for civil security. In all cases the collaboration between the public and private sectors is shown.

  9. Enhancement of optic cup detection through an improved vessel kink detection framework

    Science.gov (United States)

    Wong, Damon W. K.; Liu, Jiang; Tan, Ngan Meng; Zhang, Zhuo; Lu, Shijian; Lim, Joo Hwee; Li, Huiqi; Wong, Tien Yin

    2010-03-01

    Glaucoma is a leading cause of blindness. The presence and extent of progression of glaucoma can be determined if the optic cup can be accurately segmented from retinal images. In this paper, we present a framework which improves the detection of the optic cup. First, a region of interest is obtained from the retinal fundus image, and a pallor-based preliminary cup contour estimate is determined. Patches are then extracted from the ROI along this contour. To improve the usability of the patches, adaptive methods are introduced to ensure the patches are within the optic disc and to minimize redundant information. The patches are then analyzed for vessels by an edge transform which generates pixel segments of likely vessel candidates. Wavelet, color and gradient information are used as input features for a SVM model to classify the candidates as vessel or non-vessel. Subsequently, a rigourous non-parametric method is adopted in which a bi-stage multi-resolution approach is used to probe and localize the location of kinks along the vessels. Finally, contenxtual information is used to fuse pallor and kink information to obtain an enhanced optic cup segmentation. Using a batch of 21 images obtained from the Singapore Eye Research Institute, the new method results in a 12.64% reduction in the average overlap error against a pallor only cup, indicating viable improvements in the segmentation and supporting the use of kinks for optic cup detection.

  10. Fiber Optic Thermographic Detection of Flaws in Composites

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.

    2009-01-01

    Optical fibers with multiple Bragg gratings bonded to surfaces of structures were used for thermographic detection of subsurface defects in structures. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The obtained data were analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with the simulation results.

  11. DETECTION OF SOLAR-LIKE OSCILLATIONS FROM KEPLER PHOTOMETRY OF THE OPEN CLUSTER NGC 6819

    International Nuclear Information System (INIS)

    Stello, Dennis; Bedding, Timothy R.; Huber, Daniel; Basu, Sarbani; Bruntt, Hans; Mosser, BenoIt; Barban, Caroline; Goupil, Marie-Jo; Stevens, Ian R.; Chaplin, William J.; Elsworth, Yvonne P.; Hekker, Saskia; Brown, Timothy M.; Christensen-Dalsgaard, Joergen; Kjeldsen, Hans; Arentoft, Torben; Gilliland, Ronald L.; Ballot, Jerome; GarcIa, Rafael A.; Mathur, Savita

    2010-01-01

    Asteroseismology of stars in clusters has been a long-sought goal because the assumption of a common age, distance, and initial chemical composition allows strong tests of the theory of stellar evolution. We report results from the first 34 days of science data from the Kepler Mission for the open cluster NGC 6819-one of the four clusters in the field of view. We obtain the first clear detections of solar-like oscillations in the cluster red giants and are able to measure the large frequency separation, Δν, and the frequency of maximum oscillation power, ν max . We find that the asteroseismic parameters allow us to test cluster membership of the stars, and even with the limited seismic data in hand, we can already identify four possible non-members despite their having a better than 80% membership probability from radial velocity measurements. We are also able to determine the oscillation amplitudes for stars that span about 2 orders of magnitude in luminosity and find good agreement with the prediction that oscillation amplitudes scale as the luminosity to the power of 0.7. These early results demonstrate the unique potential of asteroseismology of the stellar clusters observed by Kepler.

  12. INTERSECTION DETECTION BASED ON QUALITATIVE SPATIAL REASONING ON STOPPING POINT CLUSTERS

    Directory of Open Access Journals (Sweden)

    S. Zourlidou

    2016-06-01

    Full Text Available The purpose of this research is to propose and test a method for detecting intersections by analysing collectively acquired trajectories of moving vehicles. Instead of solely relying on the geometric features of the trajectories, such as heading changes, which may indicate turning points and consequently intersections, we extract semantic features of the trajectories in form of sequences of stops and moves. Under this spatiotemporal prism, the extracted semantic information which indicates where vehicles stop can reveal important locations, such as junctions. The advantage of the proposed approach in comparison with existing turning-points oriented approaches is that it can detect intersections even when not all the crossing road segments are sampled and therefore no turning points are observed in the trajectories. The challenge with this approach is that first of all, not all vehicles stop at the same location – thus, the stop-location is blurred along the direction of the road; this, secondly, leads to the effect that nearby junctions can induce similar stop-locations. As a first step, a density-based clustering is applied on the layer of stop observations and clusters of stop events are found. Representative points of the clusters are determined (one per cluster and in a last step the existence of an intersection is clarified based on spatial relational cluster reasoning, with which less informative geospatial clusters, in terms of whether a junction exists and where its centre lies, are transformed in more informative ones. Relational reasoning criteria, based on the relative orientation of the clusters with their adjacent ones are discussed for making sense of the relation that connects them, and finally for forming groups of stop events that belong to the same junction.

  13. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    Science.gov (United States)

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  14. Molecular limit of a bulk semiconductor: size dependent optical spectroscopy study of CdSe cluster molecules

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V.N.; Banin, U. [Hebrew Univ., Jerusalem (Israel). Dept. of Physical Chemistry; Eichhoefer, A. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Nanotechnologie; Fenske, D. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Nanotechnologie; Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Steady state and time-resolved photoluminescence measurements of a homologous series of CdSe cluster molecules were performed over a broad temperature range (T = 5-200 K). The absorption and low temperature PLE onset of the clusters shifts systematically to the blue in smaller clusters, manifesting the quantum confinement effect. The emission in all cluster molecules is observed only at low temperatures and is red-shifted significantly from the absorption onset. It is assigned to optically forbidden transitions involving surface states, as substantiated by the {mu}s range of lifetimes and by the involvement of low frequency vibrations of capping selenophenol ligands in the nonradiative relaxation of excited cluster molecules. (orig.)

  15. Chirality detection of enantiomers using twisted optical metamaterials

    Science.gov (United States)

    Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea

    2017-01-01

    Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies. PMID:28120825

  16. A porous silicon optical microcavity for sensitive bacteria detection

    International Nuclear Information System (INIS)

    Li Sha; Huang Jianfeng; Cai Lintao

    2011-01-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (∼10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml -1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml -1 . The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  17. A porous silicon optical microcavity for sensitive bacteria detection

    Science.gov (United States)

    Li, Sha; Huang, Jianfeng; Cai, Lintao

    2011-10-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (~10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml - 1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml - 1. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  18. A porous silicon optical microcavity for sensitive bacteria detection

    Energy Technology Data Exchange (ETDEWEB)

    Li Sha; Huang Jianfeng; Cai Lintao, E-mail: lt.cai@siat.ac.cn [CAS Key Lab of Health Informatics, Shenzhen Key Laboratory of Cancer Nanotechnology, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China)

    2011-10-21

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak ({approx}10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml{sup -1} at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml{sup -1}. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  19. Cluster Detection Tests in Spatial Epidemiology: A Global Indicator for Performance Assessment.

    Directory of Open Access Journals (Sweden)

    Aline Guttmann

    Full Text Available In cluster detection of disease, the use of local cluster detection tests (CDTs is current. These methods aim both at locating likely clusters and testing for their statistical significance. New or improved CDTs are regularly proposed to epidemiologists and must be subjected to performance assessment. Because location accuracy has to be considered, performance assessment goes beyond the raw estimation of type I or II errors. As no consensus exists for performance evaluations, heterogeneous methods are used, and therefore studies are rarely comparable. A global indicator of performance, which assesses both spatial accuracy and usual power, would facilitate the exploration of CDTs behaviour and help between-studies comparisons. The Tanimoto coefficient (TC is a well-known measure of similarity that can assess location accuracy but only for one detected cluster. In a simulation study, performance is measured for many tests. From the TC, we here propose two statistics, the averaged TC and the cumulated TC, as indicators able to provide a global overview of CDTs performance for both usual power and location accuracy. We evidence the properties of these two indicators and the superiority of the cumulated TC to assess performance. We tested these indicators to conduct a systematic spatial assessment displayed through performance maps.

  20. Cluster Detection Tests in Spatial Epidemiology: A Global Indicator for Performance Assessment

    Science.gov (United States)

    Guttmann, Aline; Li, Xinran; Feschet, Fabien; Gaudart, Jean; Demongeot, Jacques; Boire, Jean-Yves; Ouchchane, Lemlih

    2015-01-01

    In cluster detection of disease, the use of local cluster detection tests (CDTs) is current. These methods aim both at locating likely clusters and testing for their statistical significance. New or improved CDTs are regularly proposed to epidemiologists and must be subjected to performance assessment. Because location accuracy has to be considered, performance assessment goes beyond the raw estimation of type I or II errors. As no consensus exists for performance evaluations, heterogeneous methods are used, and therefore studies are rarely comparable. A global indicator of performance, which assesses both spatial accuracy and usual power, would facilitate the exploration of CDTs behaviour and help between-studies comparisons. The Tanimoto coefficient (TC) is a well-known measure of similarity that can assess location accuracy but only for one detected cluster. In a simulation study, performance is measured for many tests. From the TC, we here propose two statistics, the averaged TC and the cumulated TC, as indicators able to provide a global overview of CDTs performance for both usual power and location accuracy. We evidence the properties of these two indicators and the superiority of the cumulated TC to assess performance. We tested these indicators to conduct a systematic spatial assessment displayed through performance maps. PMID:26086911

  1. Automated detection of microcalcification clusters in digital mammograms based on wavelet domain hidden Markov tree modeling

    International Nuclear Information System (INIS)

    Regentova, E.; Zhang, L.; Veni, G.; Zheng, J.

    2007-01-01

    A system is designed for detecting microcalcification clusters (MCC) in digital mammograms. The system is intended for computer-aided diagnostic prompting. Further discrimination of MCC as benign or malignant is assumed to be performed by radiologists. Processing of mammograms is based on the statistical modeling by means of wavelet domain hidden markov trees (WHMT). Segmentation is performed by the weighted likelihood evaluation followed by the classification based on spatial filters for a single microcalcification (MC) and a cluster of MC detection. The analysis is carried out on FROC curves for 40 mammograms from the mini-MIAS database and for 100 mammograms with 50 cancerous and 50 benign cases from DDSM database. The designed system is capable to detect 100% of true positive cases in these sets. The rate of false positives is 2.9 per case for mini-MIAS dataset; and 0.01 for the DDSM images. (orig.)

  2. Nuclear radiation detected optical pumping of neutron deficient Hg isotopes

    International Nuclear Information System (INIS)

    Bonn, J.

    1975-01-01

    The extension of the Nuclear Radiation Detected Optical Pumping method to mass-separated samples of isotopes far off stability is presented for a series of light Hg isotopes produced at the ISOLDE facility at CERN. The isotope under investigation is transferred by an automatic transfer system into the optical pumping apparatus. Zeeman scanning of an isotopically pure Hg spectral lamp is used to reach energetic coincidence with the hyperfine structure components of the 6s 2 1 S 0 -6s6p 3 P 1 (lambda = 2537 A) resonance line of the investigated isotope and the Hg lamp. The orientation build up by optical pumping is monitored via the asymmetry or anisotropy of the nuclear radiation. Nuclear spins, magnetic moments, electric quadrupole moments and isotopic shift are obtained for 181 Hg- 191 Hg using the β-asymmetry as detector. The extension of the method using the γ-anisotropy is discussed and measurements on 193 Hg are presented. (orig./HK)

  3. Self-Homodyne Detection in Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Benjamin J. Puttnam

    2014-05-01

    Full Text Available We review work on self-homodyne detection (SHD for optical communication systems. SHD uses a transmitted pilot-tone (PT, originating from the transmitter laser, to exploit phase noise cancellation at a coherent receiver and to enable transmitter linewidth tolerance and potential energy savings. We give an overview of SHD performance, outlining the key contributors to the optical signal-to-noise ratio penalty compared to equivalent intradyne systems, and summarize the advantages, differences and similarities between schemes using polarization-division multiplexed PTs (PDM-SHD and those using space-division multiplexed PTs (SDM-SHD. For PDM-SHD, we review the extensive work on the transmission of advanced modulation formats and techniques to minimize the trade-off with spectral efficiency, as well as recent work on digital SHD, where the SHD receiver is combined with an polarization-diversity ID front-end receiver to provide both polarization and modulation format alignment. We then focus on SDM-SHD systems, describing experimental results using multi-core fibers (MCFs with up to 19 cores, including high capacity transmission with broad-linewidth lasers and experiments incorporating SDM-SHD in networking. Additionally, we discuss the requirement for polarization tracking of the PTs at the receiver and path length alignment and review some variants of SHD before outlining the future challenges of self-homodyne optical transmission and gaps in current knowledge.

  4. Phase-detected Brillouin optical correlation-domain reflectometry

    Science.gov (United States)

    Mizuno, Yosuke; Hayashi, Neisei; Fukuda, Hideyuki; Nakamura, Kentaro

    2018-05-01

    Optical fiber sensing techniques based on Brillouin scattering have been extensively studied for structural health monitoring owing to their capability of distributed strain and temperature measurement. Although a higher signal-to-noise ratio (leading to high spatial resolution and high-speed measurement) is generally obtained for two-end-access systems, they reduce the degree of freedom in embedding the sensors into structures, and render the measurement no longer feasible when extremely high loss or breakage occurs at a point of the sensing fiber. To overcome these drawbacks, a one-end-access sensing technique called Brillouin optical correlation-domain reflectometry (BOCDR) has been developed. BOCDR has a high spatial resolution and cost efficiency, but its conventional configuration suffered from relatively low-speed operation. In this paper, we review the recently developed high-speed configurations of BOCDR, including phase-detected BOCDR, with which we demonstrate real-time distributed measurement by tracking a propagating mechanical wave. We also demonstrate breakage detection with a wide strain dynamic range.

  5. Pressure and Temperature Spin Crossover Sensors with Optical Detection

    Science.gov (United States)

    Linares, Jorge; Codjovi, Epiphane; Garcia, Yann

    2012-01-01

    Iron(II) spin crossover molecular materials are made of coordination centres switchable between two states by temperature, pressure or a visible light irradiation. The relevant macroscopic parameter which monitors the magnetic state of a given solid is the high-spin (HS) fraction denoted nHS, i.e., the relative population of HS molecules. Each spin crossover material is distinguished by a transition temperature T1/2 where 50% of active molecules have switched to the low-spin (LS) state. In strongly interacting systems, the thermal spin switching occurs abruptly at T1/2. Applying pressure induces a shift from HS to LS states, which is the direct consequence of the lower volume for the LS molecule. Each material has thus a well defined pressure value P1/2. In both cases the spin state change is easily detectable by optical means thanks to a thermo/piezochromic effect that is often encountered in these materials. In this contribution, we discuss potential use of spin crossover molecular materials as temperature and pressure sensors with optical detection. The ones presenting smooth transitions behaviour, which have not been seriously considered for any application, are spotlighted as potential sensors which should stimulate a large interest on this well investigated class of materials. PMID:22666041

  6. A GMBCG galaxy cluster catalog of 55,880 rich clusters from SDSS DR7

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; /Fermilab /Michigan U. /Chicago U., Astron. Astrophys. Ctr. /UC, Santa Barbara /KICP, Chicago /KIPAC, Menlo Park /SLAC /Caltech /Brookhaven

    2010-08-01

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  7. Fiber optic system design for vehicle detection and analysis

    Science.gov (United States)

    Nedoma, Jan; Zboril, Ondrej; Fajkus, Marcel; Zavodny, Petr; Kepak, Stanislav; Bednarek, Lukas; Martinek, Radek; Vasinek, Vladimir

    2016-04-01

    Fiber optic interferometers belong to a group of highly sensitive and precise devices enabling to measure small changes in the deformation shapes, changes in pressure, temperature, vibration and so on. The basis of their activity is to evaluate the number of fringes over time, not changes in the intensity of the optical signal. The methodology described in the article is based on using the interferometer to monitor traffic density. The base of the solution is a Mach-Zehnder interferometer operating with single-mode G.652 optical fiber at the wavelength of 1550 nm excited by a DFB laser. The power distribution of the laser light into the individual arms of the interferometer is in the ratio 1:1. Realized measuring scheme was terminated by an optical receiver including InGaAs PIN photodiode. Registered signal from the photodetector was through 8 Hz high pass filter fed to the measuring card that captures the analog input voltage using an application written in LabView development environment. The interferometer was stored in a waterproof box and placed at the side of the road. Here panned individual transit of cars in his environs. Vertically across the road was placed in contact removable belt simulating a retarder, which was used when passing cars to create sufficient vibration response detecting interferometer. The results demonstrated that the individual vehicles passing around boxing showed characteristic amplitude spectra, which was unique for each object, and had sufficient value signal to noise ratio (SNR). The signal was processed by applications developed for the amplitude-frequency spectrum. Evaluated was the maximum amplitude of the signal and compared to the noise. The results were verified by repeated transit of the different types of cars.

  8. Optical detection of ultrasound using an apertureless near-field scanning optical microscopy system

    Science.gov (United States)

    Ahn, Phillip; Zhang, Zhen; Sun, Cheng; Balogun, Oluwaseyi

    2013-01-01

    Laser ultrasonics techniques are power approaches for non-contact generation and detection of high frequency ultrasound on a local scale. In these techniques, optical diffraction limits the spatial information that can be accessed from a measurement. In order to improve the lateral spatial resolution, we incorporate an apertureless near-field scanning optical microscope (aNSOM) into laser ultrasonics setup for local detection of laser generated ultrasound. The aNSOM technique relies on the measurement of a weak backscattered near-field light intensity resulting from the oblique illumination of a nanoscale probe-tip positioned close to a sample surface. We enhance the optical near-field intensity by coupling light to surface plasmon polaritons (SPPs) on the shaft of an atomic force microscopy (AFM) cantilever. The SPPs propagate down the AFM shaft, localize at the tip apex, and are backscattered to the far-field when the separation distance between the probe tip and the sample surface is comparable to the probe-tip radius. The backscattered near-field intensity is dynamically modulated when an ultrasonic wave arrives at the sample surface leading to a transient change in the tip-sample separation distance. We present experimental results detailing measurement of broadband and narrowband laser generated ultrasound in solids with frequencies reaching up to 180 MHz range.

  9. Configuration of electro-optic fire source detection system

    Science.gov (United States)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  10. Fast EEG spike detection via eigenvalue analysis and clustering of spatial amplitude distribution

    Science.gov (United States)

    Fukami, Tadanori; Shimada, Takamasa; Ishikawa, Bunnoshin

    2018-06-01

    Objective. In the current study, we tested a proposed method for fast spike detection in electroencephalography (EEG). Approach. We performed eigenvalue analysis in two-dimensional space spanned by gradients calculated from two neighboring samples to detect high-amplitude negative peaks. We extracted the spike candidates by imposing restrictions on parameters regarding spike shape and eigenvalues reflecting detection characteristics of individual medical doctors. We subsequently performed clustering, classifying detected peaks by considering the amplitude distribution at 19 scalp electrodes. Clusters with a small number of candidates were excluded. We then defined a score for eliminating spike candidates for which the pattern of detected electrodes differed from the overall pattern in a cluster. Spikes were detected by setting the score threshold. Main results. Based on visual inspection by a psychiatrist experienced in EEG, we evaluated the proposed method using two statistical measures of precision and recall with respect to detection performance. We found that precision and recall exhibited a trade-off relationship. The average recall value was 0.708 in eight subjects with the score threshold that maximized the F-measure, with 58.6  ±  36.2 spikes per subject. Under this condition, the average precision was 0.390, corresponding to a false positive rate 2.09 times higher than the true positive rate. Analysis of the required processing time revealed that, using a general-purpose computer, our method could be used to perform spike detection in 12.1% of the recording time. The process of narrowing down spike candidates based on shape occupied most of the processing time. Significance. Although the average recall value was comparable with that of other studies, the proposed method significantly shortened the processing time.

  11. ALMA Detects CO(3-2) within a Super Star Cluster in NGC 5253

    Science.gov (United States)

    Turner, Jean L.; Consiglio, S. Michelle; Beck, Sara C.; Goss, W. M.; Ho, Paul. T. P.; Meier, David S.; Silich, Sergiy; Zhao, Jun-Hui

    2017-09-01

    We present observations of CO(3-2) and 13CO(3-2) emission near the supernebula in the dwarf galaxy NGC 5253, which contains one of the best examples of a potential globular cluster in formation. The 0.″3 resolution images reveal an unusual molecular cloud, “Cloud D1,” that is coincident with the radio-infrared supernebula. The ˜6 pc diameter cloud has a linewidth, Δ v = 21.7 {km} {{{s}}}-1, that reflects only the gravitational potential of the star cluster residing within it. The corresponding virial mass is 2.5 × 105 {M}⊙ . The cluster appears to have a top-heavy initial mass function, with M * ≳ 1-2 {M}⊙ . Cloud D1 is optically thin in CO(3-2), probably because the gas is hot. Molecular gas mass is very uncertain but constitutes <35% of the dynamical mass within the cloud boundaries. In spite of the presence of an estimated ˜1500-2000 O stars within the small cloud, the CO appears relatively undisturbed. We propose that Cloud D1 consists of molecular clumps or cores, possibly star-forming, orbiting with more evolved stars in the core of the giant cluster.

  12. Transmitted ion energy loss distributions to detect cluster formation in silicon

    International Nuclear Information System (INIS)

    Selen, L.J.M.; Loon, A. van; IJzendoorn, L.J. van; Voigt, M.J.A. de

    2002-01-01

    The energy loss distribution of ions transmitted through a 5.7±0.2 μm thick Si crystal was measured and simulated with the Monte Carlo channeling simulation code FLUX. A general resemblance between the measured and simulated energy loss distributions was obtained after incorporation of an energy dependent energy loss in the simulation program. The energy loss calculations are used to investigate the feasibility to detect the presence of light element dopant clusters in a host crystal from the shape of the energy loss distribution, with transmission ion channeling. A curved crystal structure is used as a model for a region in the host crystal with clusters. The presence of the curvature does have a large influence on the transmitted energy distribution, which offers the possibility to determine the presence of dopant clusters in a host crystal with transmission ion channeling

  13. Toward the detection of pure carbon clusters in the Interstellar Medium (ISM)

    Science.gov (United States)

    Heath, J. R.; Van Orden, A.; Hwang, H. J.; Kuo, E. W.; Tanaka, K.; Saykally, R. J.

    1995-01-01

    Determination of the form and distribution of carbon in the universe is critical to understanding the origin of life on Earth and elsewhere. Two potentially large reservoirs of carbon in the interstellar medium (ISM) remain unexplored. These are polycyclic aromatic hydrocarbons (PAH) and pure carbon clusters. Little information exists on the structures, properties, and transition frequencies of pure carbon clusters. The work described is designed to provide a specific inventory of laboratory frequencies and physical properties of this carbon clusters so that efforts can be made to detect them in cold interstellar sources by far-infrared astronomy. Data is given from infrared laser spectroscopy determination of the structure of C3, C4, C5, C6, C7, and C9.

  14. CHANDRA DETECTION OF A NEW DIFFUSE X-RAY COMPONENT FROM THE GLOBULAR CLUSTER 47 TUCANAE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, E. M. H.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Hui, C. Y. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Kong, A. K. H.; Tam, P. H. T. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Dogiel, V. A., E-mail: cyhui@cnu.ac.kr [I. E. Tamm Theoretical Physics Division of P. N. Lebedev Institute of Physics, Leninskii pr. 53, 119991 Moscow (Russian Federation)

    2014-06-20

    In re-analyzing the archival Chandra data of the globular cluster 47 Tucanae, we have detected a new diffuse X-ray emission feature within the half-mass radius of the cluster. The spectrum of the diffuse emission can be described by a power-law model plus a plasma component with photon index Γ ∼ 1.0 and plasma temperature kT ∼ 0.2 keV. While the thermal component is apparently uniform, the non-thermal contribution falls off exponentially from the core. The observed properties could possibly be explained in the context of multiple shocks resulting from the collisions among the stellar wind in the cluster and the inverse Compton scattering between the pulsar wind and the relic photons.

  15. Space-time clusters for early detection of grizzly bear predation.

    Science.gov (United States)

    Kermish-Wells, Joseph; Massolo, Alessandro; Stenhouse, Gordon B; Larsen, Terrence A; Musiani, Marco

    2018-01-01

    Accurate detection and classification of predation events is important to determine predation and consumption rates by predators. However, obtaining this information for large predators is constrained by the speed at which carcasses disappear and the cost of field data collection. To accurately detect predation events, researchers have used GPS collar technology combined with targeted site visits. However, kill sites are often investigated well after the predation event due to limited data retrieval options on GPS collars (VHF or UHF downloading) and to ensure crew safety when working with large predators. This can lead to missing information from small-prey (including young ungulates) kill sites due to scavenging and general site deterioration (e.g., vegetation growth). We used a space-time permutation scan statistic (STPSS) clustering method (SaTScan) to detect predation events of grizzly bears ( Ursus arctos ) fitted with satellite transmitting GPS collars. We used generalized linear mixed models to verify predation events and the size of carcasses using spatiotemporal characteristics as predictors. STPSS uses a probability model to compare expected cluster size (space and time) with the observed size. We applied this method retrospectively to data from 2006 to 2007 to compare our method to random GPS site selection. In 2013-2014, we applied our detection method to visit sites one week after their occupation. Both datasets were collected in the same study area. Our approach detected 23 of 27 predation sites verified by visiting 464 random grizzly bear locations in 2006-2007, 187 of which were within space-time clusters and 277 outside. Predation site detection increased by 2.75 times (54 predation events of 335 visited clusters) using 2013-2014 data. Our GLMMs showed that cluster size and duration predicted predation events and carcass size with high sensitivity (0.72 and 0.94, respectively). Coupling GPS satellite technology with clusters using a program based

  16. Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees.

    Science.gov (United States)

    Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H

    2017-10-25

    Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.

  17. Automated detection of very Low Surface Brightness galaxies in the Virgo Cluster

    Science.gov (United States)

    Prole, D. J.; Davies, J. I.; Keenan, O. C.; Davies, L. J. M.

    2018-04-01

    We report the automatic detection of a new sample of very low surface brightness (LSB) galaxies, likely members of the Virgo cluster. We introduce our new software, DeepScan, that has been designed specifically to detect extended LSB features automatically using the DBSCAN algorithm. We demonstrate the technique by applying it over a 5 degree2 portion of the Next-Generation Virgo Survey (NGVS) data to reveal 53 low surface brightness galaxies that are candidate cluster members based on their sizes and colours. 30 of these sources are new detections despite the region being searched specifically for LSB galaxies previously. Our final sample contains galaxies with 26.0 ≤ ⟨μe⟩ ≤ 28.5 and 19 ≤ mg ≤ 21, making them some of the faintest known in Virgo. The majority of them have colours consistent with the red sequence, and have a mean stellar mass of 106.3 ± 0.5M⊙ assuming cluster membership. After using ProFit to fit Sérsic profiles to our detections, none of the new sources have effective radii larger than 1.5 Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify them as ultra-faint dwarfs.

  18. Streak detection and analysis pipeline for optical images

    Science.gov (United States)

    Virtanen, J.; Granvik, M.; Torppa, J.; Muinonen, K.; Poikonen, J.; Lehti, J.; Säntti, T.; Komulainen, T.; Flohrer, T.

    2014-07-01

    We describe a novel data processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data to support the development and validation of population models, and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. We focus on the low signal-to-noise (SNR) detection of objects with high angular velocities, resulting in long and faint object trails, or streaks, in the optical images. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and, particularly for satellites, within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a 'track-before-detect' problem, resulting in streaks of arbitrary lengths. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, algorithms are not readily available yet. In the ESA-funded StreakDet (Streak detection and astrometric reduction) project, we develop and evaluate an automated processing pipeline applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The algorithmic

  19. Population clustering based on copy number variations detected from next generation sequencing data.

    Science.gov (United States)

    Duan, Junbo; Zhang, Ji-Gang; Wan, Mingxi; Deng, Hong-Wen; Wang, Yu-Ping

    2014-08-01

    Copy number variations (CNVs) can be used as significant bio-markers and next generation sequencing (NGS) provides a high resolution detection of these CNVs. But how to extract features from CNVs and further apply them to genomic studies such as population clustering have become a big challenge. In this paper, we propose a novel method for population clustering based on CNVs from NGS. First, CNVs are extracted from each sample to form a feature matrix. Then, this feature matrix is decomposed into the source matrix and weight matrix with non-negative matrix factorization (NMF). The source matrix consists of common CNVs that are shared by all the samples from the same group, and the weight matrix indicates the corresponding level of CNVs from each sample. Therefore, using NMF of CNVs one can differentiate samples from different ethnic groups, i.e. population clustering. To validate the approach, we applied it to the analysis of both simulation data and two real data set from the 1000 Genomes Project. The results on simulation data demonstrate that the proposed method can recover the true common CNVs with high quality. The results on the first real data analysis show that the proposed method can cluster two family trio with different ancestries into two ethnic groups and the results on the second real data analysis show that the proposed method can be applied to the whole-genome with large sample size consisting of multiple groups. Both results demonstrate the potential of the proposed method for population clustering.

  20. Distribution-based fuzzy clustering of electrical resistivity tomography images for interface detection

    Science.gov (United States)

    Ward, W. O. C.; Wilkinson, P. B.; Chambers, J. E.; Oxby, L. S.; Bai, L.

    2014-04-01

    A novel method for the effective identification of bedrock subsurface elevation from electrical resistivity tomography images is described. Identifying subsurface boundaries in the topographic data can be difficult due to smoothness constraints used in inversion, so a statistical population-based approach is used that extends previous work in calculating isoresistivity surfaces. The analysis framework involves a procedure for guiding a clustering approach based on the fuzzy c-means algorithm. An approximation of resistivity distributions, found using kernel density estimation, was utilized as a means of guiding the cluster centroids used to classify data. A fuzzy method was chosen over hard clustering due to uncertainty in hard edges in the topography data, and a measure of clustering uncertainty was identified based on the reciprocal of cluster membership. The algorithm was validated using a direct comparison of known observed bedrock depths at two 3-D survey sites, using real-time GPS information of exposed bedrock by quarrying on one site, and borehole logs at the other. Results show similarly accurate detection as a leading isosurface estimation method, and the proposed algorithm requires significantly less user input and prior site knowledge. Furthermore, the method is effectively dimension-independent and will scale to data of increased spatial dimensions without a significant effect on the runtime. A discussion on the results by automated versus supervised analysis is also presented.

  1. The Gemini/HST Galaxy Cluster Project: Redshift 0.2–1.0 Cluster Sample, X-Ray Data, and Optical Photometry Catalog

    Science.gov (United States)

    Jørgensen, Inger; Chiboucas, Kristin; Hibon, Pascale; Nielsen, Louise D.; Takamiya, Marianne

    2018-04-01

    The Gemini/HST Galaxy Cluster Project (GCP) covers 14 z = 0.2–1.0 clusters with X-ray luminosity of {L}500≥slant {10}44 {erg} {{{s}}}-1 in the 0.1–2.4 keV band. In this paper, we provide homogeneously calibrated X-ray luminosities, masses, and radii, and we present the complete catalog of the ground-based photometry for the GCP clusters. The clusters were observed with either Gemini North or South in three or four of the optical passbands g‧, r‧, i‧, and z‧. The photometric catalog includes consistently calibrated total magnitudes, colors, and geometrical parameters. The photometry reaches ≈25 mag in the passband closest to the rest-frame B band. We summarize comparisons of our photometry with data from the Sloan Digital Sky Survey. We describe the sample selection for our spectroscopic observations, and establish the calibrations to obtain rest-frame magnitudes and colors. Finally, we derive the color–magnitude relations for the clusters, and briefly discuss these in the context of evolution with redshift. Consistent with our results based on spectroscopic data, the color–magnitude relations support passive evolution of the red sequence galaxies. The absence of change in the slope with redshift constrains the allowable age variation along the red sequence to <0.05 dex between the brightest cluster galaxies and those four magnitudes fainter. This paper serves as the main reference for the GCP cluster and galaxy selection, X-ray data, and ground-based photometry.

  2. Minimal disease detection of B-cell lymphoproliferative disorders by flow cytometry: multidimensional cluster analysis.

    Science.gov (United States)

    Duque, Ricardo E

    2012-04-01

    Flow cytometric analysis of cell suspensions involves the sequential 'registration' of intrinsic and extrinsic parameters of thousands of cells in list mode files. Thus, it is almost irresistible to describe phenomena in numerical terms or by 'ratios' that have the appearance of 'accuracy' due to the presence of numbers obtained from thousands of cells. The concepts involved in the detection and characterization of B cell lymphoproliferative processes are revisited in this paper by identifying parameters that, when analyzed appropriately, are both necessary and sufficient. The neoplastic process (cluster) can be visualized easily because the parameters that distinguish it form a cluster in multidimensional space that is unique and distinguishable from neighboring clusters that are not of diagnostic interest but serve to provide a background. For B cell neoplasia it is operationally necessary to identify the multidimensional space occupied by a cluster whose kappa:lambda ratio is 100:0 or 0:100. Thus, the concept of kappa:lambda ratio is without meaning and would not detect B cell neoplasia in an unacceptably high number of cases.

  3. An Energy-Efficient Cluster-Based Vehicle Detection on Road Network Using Intention Numeration Method

    Directory of Open Access Journals (Sweden)

    Deepa Devasenapathy

    2015-01-01

    Full Text Available The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate.

  4. An energy-efficient cluster-based vehicle detection on road network using intention numeration method.

    Science.gov (United States)

    Devasenapathy, Deepa; Kannan, Kathiravan

    2015-01-01

    The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate.

  5. Optical and non-optical methods for detection and characterization of microparticles and exosomes.

    Science.gov (United States)

    van der Pol, E; Hoekstra, A G; Sturk, A; Otto, C; van Leeuwen, T G; Nieuwland, R

    2010-12-01

    Microparticles and exosomes are cell-derived microvesicles present in body fluids that play a role in coagulation, inflammation, cellular homeostasis and survival, intercellular communication, and transport. Despite increasing scientific and clinical interest, no standard procedures are available for the isolation, detection and characterization of microparticles and exosomes, because their size is below the reach of conventional detection methods. Our objective is to give an overview of currently available and potentially applicable methods for optical and non-optical determination of the size, concentration, morphology, biochemical composition and cellular origin of microparticles and exosomes. The working principle of all methods is briefly discussed, as well as their applications and limitations based on the underlying physical parameters of the technique. For most methods, the expected size distribution for a given microvesicle population is determined. The explanations of the physical background and the outcomes of our calculations provide insights into the capabilities of each method and make a comparison possible between the discussed methods. In conclusion, several (combinations of) methods can detect clinically relevant properties of microparticles and exosomes. These methods should be further explored and validated by comparing measurement results so that accurate, reliable and fast solutions come within reach. © 2010 International Society on Thrombosis and Haemostasis.

  6. Constraints on the Richness-Mass Relation and the Optical-SZE Positional Offset Distribution for SZE-Selected Clusters

    CERN Document Server

    Saro, A; Rozo, E; Benson, B A; Mohr, J; Rykoff, E S; Soares-Santos, M; Bleem, L; Dodelson, S; Melchior, P; Sobreira, F; Upadhyay, V; Weller, J; Abbott, T; Abdalla, F B; Allam, S; Armstrong, R; Banerji, M; Bauer, A H; Bayliss, M; Benoit-Lévy, A; Bernstein, G M; Bertin, E; Brodwin, M; Brooks, D; Buckley-Geer, E; Burke, D L; Carlstrom, J E; Capasso, R; Capozzi, D; Carnero Rosell, A; Carrasco Kind, M; Chiu, I; Covarrubias, R; Crawford, T M; Crocce, M; D'Andrea, C B; da Costa, L N; DePoy, D L; Desai, S; de Haan, T; Diehl, H T; Dietrich, J P; Doel, P; Cunha, C E; Eifler, T F; Evrard, A E; Fausti Neto, A; Fernandez, E; Flaugher, B; Fosalba, P; Frieman, J; Gangkofner, C; Gaztanaga, E; Gerdes, D; Gruen, D; Gruendl, R A; Gupta, N; Hennig, C; Holzapfel, W L; Honscheid, K; Jain, B; James, D; Kuehn, K; Kuropatkin, N; Lahav, O; Li, T S; Lin, H; Maia, M A G; March, M; Marshall, J L; Martini, Paul; McDonald, M; Miller, C J; Miquel, R; Nord, B; Ogando, R; Plazas, A A; Reichardt, C L; Romer, A K; Roodman, A; Sako, M; Sanchez, E; Schubnell, M; Sevilla, I; Smith, R C; Stalder, B; Stark, A A; Strazzullo, V; Suchyta, E; Swanson, M E C; Tarle, G; Thaler, J; Thomas, D; Tucker, D; Vikram, V; von der Linden, A; Walker, A R; Wechsler, R H; Wester, W; Zenteno, A; Ziegler, K E

    2015-01-01

    We cross-match galaxy cluster candidates selected via their Sunyaev-Zel'dovich effect (SZE) signatures in 129.1 deg$^2$ of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey (DES) science verification data. We identify 25 clusters between $0.1\\lesssim z\\lesssim 0.8$ in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness $\\lambda$-mass relation with the following function $\\langle\\ln\\lambda|M_{500}\\rangle\\propto B_\\lambda\\ln M_{500}+C_\\lambda\\ln E(z)$ and use SPT-SZ cluster masses and RM richnesses $\\lambda$ to constrain the parameters. We find $B_\\lambda= 1.14^{+0.21}_{-0.18}$ and $C_\\lambda=0.73^{+0.77}_{-0.75}$. The associated scatter in mass at fixed richness is $\\sigma_{\\ln M|\\lambda} = 0.18^{+0.08}_{-0.05}$ at a characteristic richness $\\lambda=70$. We demonstrate that our model provides an adequate description of the ma...

  7. Performance improvement of haptic collision detection using subdivision surface and sphere clustering.

    Directory of Open Access Journals (Sweden)

    A Ram Choi

    Full Text Available Haptics applications such as surgery simulations require collision detections that are more precise than others. An efficient collision detection method based on the clustering of bounding spheres was proposed in our prior study. This paper analyzes and compares the applied effects of the five most common subdivision surface methods on some 3D models for haptic collision detection. The five methods are Butterfly, Catmull-Clark, Mid-point, Loop, and LS3 (Least Squares Subdivision Surface. After performing a number of experiments, we have concluded that LS3 method is the most appropriate for haptic simulations. The more we applied surface subdivision, the more the collision detection results became precise. However, it is observed that the performance becomes better until a certain threshold and degrades afterward. In order to reduce the performance degradation, we adopted our prior work, which was the fast and precise collision detection method based on adaptive clustering. As a result, we obtained a notable improvement of the speed of collision detection.

  8. Automatic video shot boundary detection using k-means clustering and improved adaptive dual threshold comparison

    Science.gov (United States)

    Sa, Qila; Wang, Zhihui

    2018-03-01

    At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.

  9. Detection of gamma rays using scintillation optical fibers

    International Nuclear Information System (INIS)

    Park, J. W.; Hong, S. B.

    2002-01-01

    Scintillating optical fibers have several advantages over other conventional materials used for radiation detection. We have used glass and plastic scintillating fibers to detect gamma rays emitted from 60 Co and 137 Cs, and beta rays from 90 Sr. The sensors are constructed of single strand or multi-strand fibers of 1 mm diameter. The glass scintillating fiber used contains cerium-activated lithium-silicate as scintillating material and the plastic scintillating fiber used is Bicron model BCF-12. In this paper, we report the pulse-height spectra obtained by both sensor types, and analyze them in the aspect of their usability for radiation detectors. Our investigation suggests that the glass fiber can be used to develop gamma ray detectors which will function in high and low gamma ray flux environments. Use of the sensor for the beta ray detection was not satisfactory. The plastic fiber sensor did not work satisfactorily for the weak gamma sources, but did produce somewhat promising results. The scintillating plastic fiber offers some feasibility as beta ray sensor material

  10. Passive radiation detection using optically active CMOS sensors

    Science.gov (United States)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  11. Optical coherence tomography detection of subclinical traumatic cartilage injury.

    Science.gov (United States)

    Bear, David M; Szczodry, Michal; Kramer, Scott; Coyle, Christian H; Smolinski, Patrick; Chu, Constance R

    2010-09-01

    Posttraumatic arthritis is a major cause of disability. Current clinical imaging modalities are unable to reliably evaluate articular cartilage damage before surface breakdown, when potentially reversible changes are occurring. Optical coherence tomography (OCT) is a nondestructive imaging technology that can detect degenerative changes in articular cartilage with an intact surface. This study tests the hypothesis that OCT detects acute articular cartilage injury after impact at energy levels resulting in chondrocyte death and microstructural changes, but insufficient to produce macroscopic surface damage. Bovine osteochondral cores underwent OCT imaging and were divided into a control with no impact or were subjected to low (0.175 J) or moderate (0.35 J) energy impact. Cores were reimaged with OCT after impact and the OCT signal intensity quantified. A ratio of the superficial to deep layer intensities was calculated and compared before and after impact. Chondrocyte viability was determined 1 day after impact followed by histology and polarized microscopy. Macroscopic changes to the articular surface were not observed after low and moderate impact. The OCT signal intensity ratio demonstrated a 27% increase (P = 0.006) after low impact and a 38% increase (P = 0.001) after moderate impact. Cell death increased by 150% (P death and microscopic matrix damage. This finding supports the use of OCT to detect microstructural subsurface cartilage damage that is poorly visualized with conventional imaging.

  12. Detection of herbs and spices irradiated through optically stimulated luminescence

    International Nuclear Information System (INIS)

    Preciado, S.; Agundez A, Z.; Barboza F, M.; Cruz Z, E.

    2003-01-01

    The irradiation of foods is one of the common practices in several countries of the American and European continents. In spite of the widespread use of irradiation methods and technics of nutritious products, it doesn't exist a method of general use at the present time for the detection of previously submitted foods to irradiation with pasteurization ends or sterilization. In the present work the results are presented obtained in the detection of herbs and spices exposed to radiation in the range of 0.1 - 3 KGy, by means of the photostimulation with light of 470 nm. It was used for it a RIS0 model team TL/OSL-GIVE-15 conditioned with a β ray source, 90 Sr/ 90 Y and a source of light of 50 mW/cm2. samples of chili guajillo were studied, pepper, cumin, mint and camomile; achieving you to detect exhibitions of the order of 8.33x10 -4 KGy that which is indicative of the high sensitivity of the luminescence technique optically stimulated. The answer of the samples with regard to the radiation dose presents a range of lineality for low dose of the order of 0.5 KGy; and supralineal for further dose without to arrive to a saturation stage. (Author)

  13. Hough transform for clustered microcalcifications detection in full-field digital mammograms

    Science.gov (United States)

    Fanizzi, A.; Basile, T. M. A.; Losurdo, L.; Amoroso, N.; Bellotti, R.; Bottigli, U.; Dentamaro, R.; Didonna, V.; Fausto, A.; Massafra, R.; Moschetta, M.; Tamborra, P.; Tangaro, S.; La Forgia, D.

    2017-09-01

    Many screening programs use mammography as principal diagnostic tool for detecting breast cancer at a very early stage. Despite the efficacy of the mammograms in highlighting breast diseases, the detection of some lesions is still doubtless for radiologists. In particular, the extremely minute and elongated salt-like particles of microcalcifications are sometimes no larger than 0.1 mm and represent approximately half of all cancer detected by means of mammograms. Hence the need for automatic tools able to support radiologists in their work. Here, we propose a computer assisted diagnostic tool to support radiologists in identifying microcalcifications in full (native) digital mammographic images. The proposed CAD system consists of a pre-processing step, that improves contrast and reduces noise by applying Sobel edge detection algorithm and Gaussian filter, followed by a microcalcification detection step performed by exploiting the circular Hough transform. The procedure performance was tested on 200 images coming from the Breast Cancer Digital Repository (BCDR), a publicly available database. The automatically detected clusters of microcalcifications were evaluated by skilled radiologists which asses the validity of the correctly identified regions of interest as well as the system error in case of missed clustered microcalcifications. The system performance was evaluated in terms of Sensitivity and False Positives per images (FPi) rate resulting comparable to the state-of-art approaches. The proposed model was able to accurately predict the microcalcification clusters obtaining performances (sensibility = 91.78% and FPi rate = 3.99) which favorably compare to other state-of-the-art approaches.

  14. Fermi Detection of a Luminous gamma-ray Pulsar in a Globular Cluster

    Science.gov (United States)

    Freire, P. C. C.; Abdo, A. A.; Ajello, M.; Allafort, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; hide

    2011-01-01

    We report the Fermi Large Area Telescope detection of gamma -ray (>100 mega-electron volts) pulsations from pulsar J1823--3021A in the globular cluster NGC 6624 with high significance (approx 7 sigma). Its gamma-ray luminosity L (sub 3) = (8:4 +/- 1:6) X 10(exp 34) ergs per second, is the highest observed for any millisecond pulsar (MSP) to date, and it accounts for most of the cluster emission. The non-detection of the cluster in the off-pulse phase implies that its contains < 32 gamma-ray MSPs, not approx 100 as previously estimated. The gamma -ray luminosity indicates that the unusually large rate of change of its period is caused by its intrinsic spin-down. This implies that J1823--3021A has the largest magnetic field and is the youngest MSP ever detected, and that such anomalous objects might be forming at rates comparable to those of the more normal MSPs.

  15. Regions of micro-calcifications clusters detection based on new features from imbalance data in mammograms

    Science.gov (United States)

    Wang, Keju; Dong, Min; Yang, Zhen; Guo, Yanan; Ma, Yide

    2017-02-01

    Breast cancer is the most common cancer among women. Micro-calcification cluster on X-ray mammogram is one of the most important abnormalities, and it is effective for early cancer detection. Surrounding Region Dependence Method (SRDM), a statistical texture analysis method is applied for detecting Regions of Interest (ROIs) containing microcalcifications. Inspired by the SRDM, we present a method that extract gray and other features which are effective to predict the positive and negative regions of micro-calcifications clusters in mammogram. By constructing a set of artificial images only containing micro-calcifications, we locate the suspicious pixels of calcifications of a SRDM matrix in original image map. Features are extracted based on these pixels for imbalance date and then the repeated random subsampling method and Random Forest (RF) classifier are used for classification. True Positive (TP) rate and False Positive (FP) can reflect how the result will be. The TP rate is 90% and FP rate is 88.8% when the threshold q is 10. We draw the Receiver Operating Characteristic (ROC) curve and the Area Under the ROC Curve (AUC) value reaches 0.9224. The experiment indicates that our method is effective. A novel regions of micro-calcifications clusters detection method is developed, which is based on new features for imbalance data in mammography, and it can be considered to help improving the accuracy of computer aided diagnosis breast cancer.

  16. Optics of Confined Liquid Crystals for Gas Detection

    Science.gov (United States)

    Charles, William; Carrozzi, Daniel; Vigilia, Lee Anne; Wang, Xiaoyurui; Guzman, Violet; Shibayev, Petr; Fordham University Students of Undergraduate Physics Team

    Cholesteric liquid crystals (CLCs) of a wide range of viscosities were studied experimentally in relation to their use as gas sensors and sensors of volatile organic compounds (VOCs), specifically ethanol, cyclohexane, toluene, acetic acid, and pyridine. CLCs were obtained by mixing low molar mass liquid crystals (MBBA and cholesterol derivatives with siloxane based oligomers). The droplets of CLCs were placed in containers with controlled atmospheres. The shift of the selective reflection band, predominantly from shorter to longer wavelengths, and the color changes were observed in the CLC illuminated by light coming from the various directions. Visible optical changes were observed in droplets with viscosities of CLCs ranging from c.a. 4 Pa*s to 105 Pa*s. The most responsive droplets in which the shift of the selective reflection band occurs at lower concentrations of VOCs were prepared from CLC mixtures with the lowest viscosities. Higher viscosities of CLCs lead to a slower response to VOCs, but the rate of response is different for each pair of VOC and CLC with a certain viscosity. This finding opens a possibility for selective detection of VOCs by CLCs with different viscosities. The mechanism of VOCs diffusion, interaction with CLC matrix and optical changes is discusse

  17. Improved optical ranging for space based gravitational wave detection

    International Nuclear Information System (INIS)

    Sutton, Andrew J; Shaddock, Daniel A; McKenzie, Kirk; Ware, Brent; De Vine, Glenn; Spero, Robert E; Klipstein, W

    2013-01-01

    The operation of 10 6  km scale laser interferometers in space will permit the detection of gravitational waves at previously unaccessible frequency regions. Multi-spacecraft missions, such as the Laser Interferometer Space Antenna (LISA), will use time delay interferometry to suppress the otherwise dominant laser frequency noise from their measurements. This is accomplished by performing sub-sample interpolation of the optical phase measurements recorded at each spacecraft for synchronization and cancellation of the otherwise dominant laser frequency noise. These sub-sample interpolation time shifts are dependent upon the inter-spacecraft range and will be measured using a pseudo-random noise ranging modulation upon the science laser. One limit to the ranging performance is mutual interference between the outgoing and incoming ranging signals upon each spacecraft. This paper reports on the demonstration of a noise cancellation algorithm which is shown to providing a factor of ∼8 suppression of the mutual interference noise. Demonstration of the algorithm in an optical test bed showed an rms ranging error of 0.06 m, improved from 0.19 m in previous results, surpassing the 1 m RMS LISA specification and potentially improving the cancellation of laser frequency noise. (paper)

  18. Remote measurement of microwave distribution based on optical detection

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhong; Ding, Wenzheng; Yang, Sihua; Chen, Qun, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn; Xing, Da, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China)

    2016-01-04

    In this letter, we present the development of a remote microwave measurement system. This method employs an arc discharge lamp that serves as an energy converter from microwave to visible light, which can propagate without transmission medium. Observed with a charge coupled device, quantitative microwave power distribution can be achieved when the operators and electronic instruments are in a distance from the high power region in order to reduce the potential risk. We perform the experiments using pulsed microwaves, and the results show that the system response is dependent on the microwave intensity over a certain range. Most importantly, the microwave distribution can be monitored in real time by optical observation of the response of a one-dimensional lamp array. The characteristics of low cost, a wide detection bandwidth, remote measurement, and room temperature operation make the system a preferred detector for microwave applications.

  19. Novel selective and non-selective optical detection of microorganisms.

    Science.gov (United States)

    Shelef, L A; Firstenberg-Eden, R

    1997-09-01

    A new instrument, capable of detecting metabolic changes due to microbiological activity, is described. Optical changes in growth media are monitored in a semi-fluid zone that separates the liquid medium containing the sample. Data demonstrate that common media can be utilized in conjunction with this rapid automated technology. Nutrient broth with the pH dye indicator. bromocresol purple was suitable for total counts. Selective media containing dyes were utilized to assess the presence or absence of specific groups of organisms. Biochemical reactions, such as lysine decarboxylase activity, were identified by the unique generated patterns, and specific enzymatic cleavage reactions with chromogenic substrates, such as 5-bromo-4 chloro-3 indolyl-beta-D-glucuronic acid (X-GLUC), were monitored.

  20. Optically detected magnetic resonance of sulfur doped gallium phosphide

    International Nuclear Information System (INIS)

    Brower, K.L.

    1990-01-01

    The authors have recently extended our magnetic resonance capabilities to include optically detected magnetic resonance (ODMR) for purposes of studying defects in III-V compound semiconductors systems. Some of the systems of particular interest with regard to defect studies are samples implanted with particular isotopes. For example, this technique may allow one to observe the hyperfine structure of impurity donors in GaP. Other interesting material systems are the strained layer superlattices and their interfaces. GaP is one of the III-V compound semiconductors of particular interest for ODMR studies. In this paper the authors report the results of preliminary ODMR observations on as-grown sulfur doped GaP

  1. A highly accurate positioning and orientation system based on the usage of four-cluster fibre optic gyros

    International Nuclear Information System (INIS)

    Zhang, Xiaoyue; Lin, Zhili; Zhang, Chunxi

    2013-01-01

    A highly accurate positioning and orientation technique based on four-cluster fibre optic gyros (FOGs) is presented. The four-cluster FOG inertial measurement unit (IMU) comprises three low-precision FOGs, one static high-precision FOG and three accelerometers. To realize high-precision positioning and orientation, the static alignment (north-seeking) before vehicle manoeuvre was divided into a low-precision self-alignment phase and a high-precision north-seeking (online calibration) phase. The high-precision FOG measurement information was introduced to obtain high-precision azimuth alignment (north-seeking) result and achieve online calibration of the low-precision three-cluster FOG. The results of semi-physical simulation were presented to validate the availability and utility of the highly accurate positioning and orientation technique based on the four-cluster FOGs. (paper)

  2. Fluorescence detection of a protein-bound 2Fe2S cluster.

    Science.gov (United States)

    Hoff, Kevin G; Goodlitt, Rochelle; Li, Rui; Smolke, Christina D; Silberg, Jonathan J

    2009-03-02

    A fluorescent biosensor is described for 2Fe2S clusters that is composed of green fluorescent protein (GFP) fused to glutaredoxin 2 (Grx2), as illustrated here. 2Fe2S detection is based on the reduction of GFP fluorescence upon the 2Fe2S-induced dimerization of GFP-Grx2. This assay is sufficiently sensitive to detect submicromolar changes in 2Fe2S levels, thus making it suitable for high-throughput measurements of metallocluster degradation and synthesis reactions.

  3. A portable cell-based optical detection device for rapid detection of Listeria and Bacillus toxins

    Science.gov (United States)

    Banerjee, Pratik; Banada, Padmapriya P.; Rickus, Jenna L.; Morgan, Mark T.; Bhunia, Arun K.

    2005-11-01

    A mammalian cell-based optical biosensor was built to detect pathogenic Listeria and Bacillus species. This sensor measures the ability of the pathogens to infect and induce cytotoxicity on hybrid lymphocyte cell line (Ped-2E9) resulting in the release of alkaline phosphatase (ALP) that can be detected optically using a portable spectrophotometer. The Ped-2E9 cells were encapsulated in collagen gel matrices and grown in 48-well plates or in specially designed filtration tube units. Toxin preparations or bacterial cells were introduced and ALP release was assayed after 3-5 h. Pathogenic L. monocytogenes strains or the listeriolysin toxins preparation showed cytotoxicity ranging from 55% - 92%. Toxin preparations (~20 μg/ml) from B. cereus strains showed 24 - 98% cytotoxicity. In contrast, a non-pathogenic L. innocua (F4247) and a B. substilis induced only 2% and 8% cytotoxicity, respectively. This cell-based detection device demonstrates its ability to detect the presence of pathogenic Listeria and Bacillus species and can potentially be used onsite for food safety or in biosecurity application.

  4. Coherent optical communication detection device based on modified balanced optical phase-locked loop

    Science.gov (United States)

    Zhang, Bo; Sun, Jianfeng; Xu, Mengmeng; Li, Guangyuan; Zhang, Guo; Lao, Chenzhe; He, Hongyu; Lu, Zhiyong

    2017-08-01

    In the field of satellite communication, space laser communication technology is famous for its high communication rate, good confidentiality, small size, low power consumption and so on. The design of coherent optical communication detection device based on modified balanced optical phase-locked loop (OPLL) is presented in the paper. It combined by local oscillator beam, modulator, voltage controlled oscillator, signal beam, optical filter, 180 degree hybrid, balanced detector, loop filter and signal receiver. Local oscillator beam and voltage controlled oscillator trace the phase variation of signal beam simultaneously. That taking the advantage of voltage controlled oscillator which responses sensitively and tunable local oscillator laser source with large tuning range can trace the phase variation of signal beam rapidly and achieve phase locking. The demand of the phase deviation is very low, and the system is easy to adjust. When the transmitter transmits the binary phase shift keying (BPSK) signal, the receiver can demodulate the baseband signal quickly, which has important significance for the free space coherent laser communication.

  5. Multiple-Features-Based Semisupervised Clustering DDoS Detection Method

    Directory of Open Access Journals (Sweden)

    Yonghao Gu

    2017-01-01

    Full Text Available DDoS attack stream from different agent host converged at victim host will become very large, which will lead to system halt or network congestion. Therefore, it is necessary to propose an effective method to detect the DDoS attack behavior from the massive data stream. In order to solve the problem that large numbers of labeled data are not provided in supervised learning method, and the relatively low detection accuracy and convergence speed of unsupervised k-means algorithm, this paper presents a semisupervised clustering detection method using multiple features. In this detection method, we firstly select three features according to the characteristics of DDoS attacks to form detection feature vector. Then, Multiple-Features-Based Constrained-K-Means (MF-CKM algorithm is proposed based on semisupervised clustering. Finally, using MIT Laboratory Scenario (DDoS 1.0 data set, we verify that the proposed method can improve the convergence speed and accuracy of the algorithm under the condition of using a small amount of labeled data sets.

  6. Gold atomic cluster mediated electrochemical aptasensor for the detection of lipopolysaccharide.

    Science.gov (United States)

    Posha, Biyas; Nambiar, Sindhu R; Sandhyarani, N

    2018-03-15

    We have constructed an aptamer immobilized gold atomic cluster mediated, ultrasensitive electrochemical biosensor (Apt/AuAC/Au) for LPS detection without any additional signal amplification strategy. The aptamer self-assemble onto the gold atomic clusters makes Apt/AuAC/Au an excellent platform for the LPS detection. Differential pulse voltammetry and EIS were used for the quantitative LPS detection. The Apt/AuAC/Au sensor offers an ultrasensitive and selective detection of LPS down to 7.94 × 10 -21 M level with a wide dynamic range from 0.01 attomolar to 1pM. The sensor exhibited excellent selectivity and stability. The real sample analysis was performed by spiking the diluted insulin sample with various concentration of LPS and obtained recovery within 2% error value. The sensor is found to be more sensitive than most of the literature reports. The simple and easy way of construction of this sensor provides an efficient and promising detection of an even trace amount of LPS. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    Science.gov (United States)

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  8. CLOUD DETECTION OF OPTICAL SATELLITE IMAGES USING SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    K.-Y. Lee

    2016-06-01

    Full Text Available Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012 uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+ and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate

  9. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    Science.gov (United States)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection

  10. A high-significance measurement of correlation between unresolved IRAS sources and optically-selected galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Hincks, Adam D.; Hajian, Amir [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Addison, Graeme E., E-mail: hincks@cita.utoronto.ca, E-mail: ahajian@cita.utoronto.ca, E-mail: gaddison@phas.ubc.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada)

    2013-05-01

    We cross-correlate the 100 μm Improved Reprocessing of the IRAS Survey (IRIS) map and galaxy clusters at 0.1 < z < 0.3 in the maxBCG catalogue taken from the Sloan Digital Sky Survey, measuring an angular cross-power spectrum over multipole moments 150 < l < 3000 at a total significance of over 40σ. The cross-spectrum, which arises from the spatial correlation between unresolved dusty galaxies that make up the cosmic infrared background (CIB) in the IRIS map and the galaxy clusters, is well-fit by a single power law with an index of −1.28±0.12, similar to the clustering of unresolved galaxies from cross-correlating far-infrared and submillimetre maps at longer wavelengths. Using a recent, phenomenological model for the spectral and clustering properties of the IRIS galaxies, we constrain the large-scale bias of the maxBCG clusters to be 2.6±1.4, consistent with existing analyses of the real-space cluster correlation function. The success of our method suggests that future CIB-optical cross-correlations using Planck and Herschel data will significantly improve our understanding of the clustering and redshift distribution of the faint CIB sources.

  11. [A cloud detection algorithm for MODIS images combining Kmeans clustering and multi-spectral threshold method].

    Science.gov (United States)

    Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei

    2011-04-01

    An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.

  12. MOCCA Code for Star Cluster Simulation: Comparison with Optical Observations using COCOA

    OpenAIRE

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz

    2014-01-01

    We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyrs of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observ...

  13. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  14. Scale invariant SURF detector and automatic clustering segmentation for infrared small targets detection

    Science.gov (United States)

    Zhang, Haiying; Bai, Jiaojiao; Li, Zhengjie; Liu, Yan; Liu, Kunhong

    2017-06-01

    The detection and discrimination of infrared small dim targets is a challenge in automatic target recognition (ATR), because there is no salient information of size, shape and texture. Many researchers focus on mining more discriminative information of targets in temporal-spatial. However, such information may not be available with the change of imaging environments, and the targets size and intensity keep changing in different imaging distance. So in this paper, we propose a novel research scheme using density-based clustering and backtracking strategy. In this scheme, the speeded up robust feature (SURF) detector is applied to capture candidate targets in single frame at first. And then, these points are mapped into one frame, so that target traces form a local aggregation pattern. In order to isolate the targets from noises, a newly proposed density-based clustering algorithm, fast search and find of density peak (FSFDP for short), is employed to cluster targets by the spatial intensive distribution. Two important factors of the algorithm, percent and γ , are exploited fully to determine the clustering scale automatically, so as to extract the trace with highest clutter suppression ratio. And at the final step, a backtracking algorithm is designed to detect and discriminate target trace as well as to eliminate clutter. The consistence and continuity of the short-time target trajectory in temporal-spatial is incorporated into the bounding function to speed up the pruning. Compared with several state-of-arts methods, our algorithm is more effective for the dim targets with lower signal-to clutter ratio (SCR). Furthermore, it avoids constructing the candidate target trajectory searching space, so its time complexity is limited to a polynomial level. The extensive experimental results show that it has superior performance in probability of detection (Pd) and false alarm suppressing rate aiming at variety of complex backgrounds.

  15. Detection of brain tumor margins using optical coherence tomography

    Science.gov (United States)

    Juarez-Chambi, Ronald M.; Kut, Carmen; Rico-Jimenez, Jesus; Campos-Delgado, Daniel U.; Quinones-Hinojosa, Alfredo; Li, Xingde; Jo, Javier

    2018-02-01

    In brain cancer surgery, it is critical to achieve extensive resection without compromising adjacent healthy, non-cancerous regions. Various technological advances have made major contributions in imaging, including intraoperative magnetic imaging (MRI) and computed tomography (CT). However, these technologies have pros and cons in providing quantitative, real-time and three-dimensional (3D) continuous guidance in brain cancer detection. Optical Coherence Tomography (OCT) is a non-invasive, label-free, cost-effective technique capable of imaging tissue in three dimensions and real time. The purpose of this study is to reliably and efficiently discriminate between non-cancer and cancer-infiltrated brain regions using OCT images. To this end, a mathematical model for quantitative evaluation known as the Blind End- Member and Abundances Extraction method (BEAE). This BEAE method is a constrained optimization technique which extracts spatial information from volumetric OCT images. Using this novel method, we are able to discriminate between cancerous and non-cancerous tissues and using logistic regression as a classifier for automatic brain tumor margin detection. Using this technique, we are able to achieve excellent performance using an extensive cross-validation of the training dataset (sensitivity 92.91% and specificity 98.15%) and again using an independent, blinded validation dataset (sensitivity 92.91% and specificity 86.36%). In summary, BEAE is well-suited to differentiate brain tissue which could support the guiding surgery process for tissue resection.

  16. Alcohol detection using carbon nanotubes acoustic and optical sensors

    Science.gov (United States)

    Penza, M.; Cassano, G.; Aversa, P.; Antolini, F.; Cusano, A.; Cutolo, A.; Giordano, M.; Nicolais, L.

    2004-09-01

    We demonstrate the integration of single-walled carbon nanotubes (SWCNTs) onto quartz crystal microbalance (QCM) and standard silica optical fiber (SOF) sensor for alcohol detection at room temperature. Different transducing mechanisms have been used in order to outline the sensing properties of this class of nanomaterials, in particular the attention has been focused on two key parameters in sensing applications: mass and refractive index changes due to gas absorption. Here, Langmuir-Blodgett (LB) films consisting of tangled bundles of SWCNTs without surfactant molecules have been successfully transferred onto QCM and SOF. Mass-sensitive 10MHz QCM SWCNTs sensor exhibited a resonant frequency decreasing upon tested alcohols exposure; also the normalized optoelectronic signal (λ=1310nm) of the refractive index-sensitive SOF SWCNTs sensor was found to decrease upon alcohols ambient. Highly sensitive, repeatable and reversible responses of the QCM and SOF SWCNTs sensors indicate that the detection, at room temperature, in a wide mmHg vapor pressures range of alcohols and potentially other volatile organic compounds is feasible.

  17. Fermi detection of a luminous γ-ray pulsar in a globular cluster.

    Science.gov (United States)

    2011-11-25

    We report on the Fermi Large Area Telescope's detection of γ-ray (>100 mega-electron volts) pulsations from pulsar J1823-3021A in the globular cluster NGC 6624 with high significance (~7 σ). Its γ-ray luminosity, L(γ) = (8.4 ± 1.6) × 10(34) ergs per second, is the highest observed for any millisecond pulsar (MSP) to date, and it accounts for most of the cluster emission. The nondetection of the cluster in the off-pulse phase implies that it contains <32 γ-ray MSPs, not ~100 as previously estimated. The γ-ray luminosity indicates that the unusually large rate of change of its period is caused by its intrinsic spin-down. This implies that J1823-3021A has the largest magnetic field and is the youngest MSP ever detected and that such anomalous objects might be forming at rates comparable to those of the more normal MSPs.

  18. Optical Myography: Detecting Finger Movements by Looking at the Forearm

    Directory of Open Access Journals (Sweden)

    Christian eNissler

    2016-04-01

    Full Text Available One of the crucial problems found in the scientific community of assistive / rehabilitation robotics nowadays is that of automatically detecting what a disabled subject (for instance, a hand amputee wants to do, exactly when she wants to do it and strictly for the time she wants to do it. This problem, commonly called intent detection, has traditionally been tackled using surface electromyography, a technique which suffers from a number of drawbacks, including the changes in the signal induced by sweat and muscle fatigue. With the advent of realistic, physically plausible augmented- and virtual-reality environments for rehabilitation, this approach does not suffice anymore. In this paper we explore a novel method to solve the problem, that we call Optical Myography (OMG. The idea is to visually inspect the human forearm (or stump to reconstruct what fingers are moving and to what extent. In a psychophysical experiment involving ten intact subjects, we used visual fiducial markers (AprilTags and a standard web-camera to visualize the deformations of the surface of the forearm, which then were mapped to the intended finger motions. As ground truth, a visual stimulus was used, avoiding the need for finger sensors (force/position sensors, datagloves, etc.. Two machine-learning approaches, a linear and a non-linear one, were comparatively tested in settings of increasing realism. The results indicate an average error in the range of 0.05 to 0.22 (root mean square error normalized over the signal range, in line with similar results obtained with more mature techniques such as electromyography. If further successfully tested in the large, this approach could lead to vision-based intent detection of amputees, with the main application of letting such disabled persons dexterously and reliably interact in an augmented- / virtual-reality setup.

  19. Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bulbul, Esra; Foster, Adam; Smith, Randall K.; Randall, Scott W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Markevitch, Maxim [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Loewenstein, Michael, E-mail: ebulbul@cfa.harvard.edu [CRESST and X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-01

    We detect a weak unidentified emission line at E = (3.55-3.57) ± 0.03 keV in a stacked XMM-Newton spectrum of 73 galaxy clusters spanning a redshift range 0.01-0.35. When the full sample is divided into three subsamples (Perseus, Centaurus+Ophiuchus+Coma, and all others), the line is seen at >3σ statistical significance in all three independent MOS spectra and the PN 'all others' spectrum. It is also detected in the Chandra spectra of the Perseus Cluster. However, it is very weak and located within 50-110 eV of several known lines. The detection is at the limit of the current instrument capabilities. We argue that there should be no atomic transitions in thermal plasma at this energy. An intriguing possibility is the decay of sterile neutrino, a long-sought dark matter particle candidate. Assuming that all dark matter is in sterile neutrinos with m{sub s} = 2E = 7.1 keV, our detection corresponds to a neutrino decay rate consistent with previous upper limits. However, based on the cluster masses and distances, the line in Perseus is much brighter than expected in this model, significantly deviating from other subsamples. This appears to be because of an anomalously bright line at E = 3.62 keV in Perseus, which could be an Ar XVII dielectronic recombination line, although its emissivity would have to be 30 times the expected value and physically difficult to understand. Another alternative is the above anomaly in the Ar line combined with the nearby 3.51 keV K line also exceeding expectation by a factor of 10-20. Confirmation with Astro-H will be critical to determine the nature of this new line.

  20. Comparative analysis on the selection of number of clusters in community detection

    Science.gov (United States)

    Kawamoto, Tatsuro; Kabashima, Yoshiyuki

    2018-02-01

    We conduct a comparative analysis on various estimates of the number of clusters in community detection. An exhaustive comparison requires testing of all possible combinations of frameworks, algorithms, and assessment criteria. In this paper we focus on the framework based on a stochastic block model, and investigate the performance of greedy algorithms, statistical inference, and spectral methods. For the assessment criteria, we consider modularity, map equation, Bethe free energy, prediction errors, and isolated eigenvalues. From the analysis, the tendency of overfit and underfit that the assessment criteria and algorithms have becomes apparent. In addition, we propose that the alluvial diagram is a suitable tool to visualize statistical inference results and can be useful to determine the number of clusters.

  1. An Unexpected Detection of Bifurcated Blue Straggler Sequences in the Young Globular Cluster NGC 2173

    Science.gov (United States)

    Li, Chengyuan; Deng, Licai; de Grijs, Richard; Jiang, Dengkai; Xin, Yu

    2018-03-01

    The bifurcated patterns in the color–magnitude diagrams of blue straggler stars (BSSs) have attracted significant attention. This type of special (but rare) pattern of two distinct blue straggler sequences is commonly interpreted as evidence that cluster core-collapse-driven stellar collisions are an efficient formation mechanism. Here, we report the detection of a bifurcated blue straggler distribution in a young Large Magellanic Cloud cluster, NGC 2173. Because of the cluster’s low central stellar number density and its young age, dynamical analysis shows that stellar collisions alone cannot explain the observed BSSs. Therefore, binary evolution is instead the most viable explanation of the origin of these BSSs. However, the reason why binary evolution would render the color–magnitude distribution of BSSs bifurcated remains unclear. C. Li, L. Deng, and R. de Grijs jointly designed this project.

  2. A fluorescence model of the murine lung for optical detection of pathogenic bacteria

    Science.gov (United States)

    Durkee, Madeleine S.; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2017-07-01

    We present a computer model of intravital excitation and external fluorescence detection in the murine lungs validated with a three-dimensional lung tissue phantom. The model is applied to optical detection of pulmonary tuberculosis infection.

  3. Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, I.; Dietrich, J. P.; Mohr, J.; Applegate, D. E.; Benson, B. A.; Bleem, L. E.; Bayliss, M. B.; Bocquet, S.; Carlstrom, J. E.; Capasso, R.; Desai, S.; Gangkofner, C.; Gonzalez, A. H.; Gupta, N.; Hennig, C.; Hoekstra, H.; von der Linden, A.; Liu, J.; McDonald, M.; Reichardt, C. L.; Saro, A.; Schrabback, T.; Strazzullo, V.; Stubbs, C. W.; Zenteno, A.

    2016-02-18

    We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE-) inferred masses in a sample of 19 galaxy clusters with median redshift z similar or equal to 0.42 selected from the South Pole Telescope SPT-SZ survey. These clusters are observed by the Megacam on the Magellan Clay Telescope though gri filters. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts zmedian similar or equal to 0.9 (low-z background) and z(median) similar or equal to 1.8 (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3 sigma and 1.3 sigma for the low-and high-z backgrounds, respectively. We fit Navarro, Frenk and White models simultaneously to all observed magnification bias profiles to estimate the multiplicative factor. that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in. resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting. for the combined background populations with 1 sigma uncertainties is 0.83 +/- 0.24(stat) +/- 0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We use our best-fitting eta to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. This work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys.

  4. Optical Production and Detection of Ultrasonic Waves in Metals for Nondestructive Testing

    Science.gov (United States)

    Morrison, R. A.

    1972-01-01

    Ultrasonic waves were produced by striking the surface of a metal with the focused one-joule pulse of a Q-switched ruby laser. Rayleigh (surface) waves and longitudinal waves were detected with conventional transducers. Optical methods of detection were tested and developed. Rayleigh waves were produced with an oscillator and transducer. They were optically detected on curved polished surfaces, and on unpolished surfaces. The technique uses a knife edge to detect small angle changes of the surface as the wave pulse passes the illuminated spot. Optical flaw detection using pulse echo and attenuation is demonstrated.

  5. Mixture model-based clustering and logistic regression for automatic detection of microaneurysms in retinal images

    Science.gov (United States)

    Sánchez, Clara I.; Hornero, Roberto; Mayo, Agustín; García, María

    2009-02-01

    Diabetic Retinopathy is one of the leading causes of blindness and vision defects in developed countries. An early detection and diagnosis is crucial to avoid visual complication. Microaneurysms are the first ocular signs of the presence of this ocular disease. Their detection is of paramount importance for the development of a computer-aided diagnosis technique which permits a prompt diagnosis of the disease. However, the detection of microaneurysms in retinal images is a difficult task due to the wide variability that these images usually present in screening programs. We propose a statistical approach based on mixture model-based clustering and logistic regression which is robust to the changes in the appearance of retinal fundus images. The method is evaluated on the public database proposed by the Retinal Online Challenge in order to obtain an objective performance measure and to allow a comparative study with other proposed algorithms.

  6. Detection and Symbol Synchronization for Multiple-bit Per Photon Optical Communications

    Science.gov (United States)

    Marshall, W. K.

    1985-01-01

    Methods of detection and synchronization in a highly efficient direct detection optical communication system are reported. Results of measurements on this moderate-rate demonstration system capable of transmitting 2.5 bits/detected photon in low-background situations indicate that symbol slot synchronization is not a problem, and that a simple symbol detection scheme is adequate for this situation. This system is a candidate for interplanetary optical communications.

  7. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas

    2016-09-15

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  8. Optical intensity modulation direct detection versus heterodyne detection: A high-SNR capacity comparison

    KAUST Repository

    Chaaban, Anas; Alouini, Mohamed-Slim

    2016-01-01

    An optical wireless communications system which employs either intensity-modulation and direct-detection (IM-DD) or heterodyne detection (HD) is considered. IM-DD has lower complexity and cost than HD, but on the other hand, has lower capacity. It is therefore interesting to investigate the capacity gap between the two systems. The main focus of this paper is to investigate this gap at high SNR. Bounds on this gap are established for two cases: between IM-DD and HD, and between IM-DD and an HD-PAM which is an HD system employing pulse-amplitude modulation (PAM). While the gap between IM-DD and HD increases as the signal-to-noise ratio (SNR) increases, the gap between IM-DD and an HD-PAM is upper bounded by a constant at high SNR. © 2015 IEEE.

  9. Frequency interleaving towards spectrally efficient directly detected optical OFDM for next-generation optical access networks.

    Science.gov (United States)

    Mehedy, Lenin; Bakaul, Masuduzzaman; Nirmalathas, Ampalavanapillai

    2010-10-25

    In this paper, we theoretically analyze and demonstrate that spectral efficiency of a conventional direct detection based optical OFDM system (DDO-OFDM) can be improved significantly using frequency interleaving of adjacent DDO-OFDM channels where OFDM signal band of one channel occupies the spectral gap of other channel and vice versa. We show that, at optimum operating condition, the proposed technique can effectively improve the spectral efficiency of the conventional DDO-OFDM system as much as 50%. We also show that such a frequency interleaved DDO-OFDM system, with a bit rate of 48 Gb/s within 25 GHz bandwidth, achieves sufficient power budget after transmission over 25 km single mode fiber to be used in next-generation time-division-multiplexed passive optical networks (TDM-PON). Moreover, by applying 64- quadrature amplitude modulation (QAM), the system can be further scaled up to 96 Gb/s with a power budget sufficient for 1:16 split TDM-PON.

  10. Grouped fuzzy SVM with EM-based partition of sample space for clustered microcalcification detection.

    Science.gov (United States)

    Wang, Huiya; Feng, Jun; Wang, Hongyu

    2017-07-20

    Detection of clustered microcalcification (MC) from mammograms plays essential roles in computer-aided diagnosis for early stage breast cancer. To tackle problems associated with the diversity of data structures of MC lesions and the variability of normal breast tissues, multi-pattern sample space learning is required. In this paper, a novel grouped fuzzy Support Vector Machine (SVM) algorithm with sample space partition based on Expectation-Maximization (EM) (called G-FSVM) is proposed for clustered MC detection. The diversified pattern of training data is partitioned into several groups based on EM algorithm. Then a series of fuzzy SVM are integrated for classification with each group of samples from the MC lesions and normal breast tissues. From DDSM database, a total of 1,064 suspicious regions are selected from 239 mammography, and the measurement of Accuracy, True Positive Rate (TPR), False Positive Rate (FPR) and EVL = TPR* 1-FPR are 0.82, 0.78, 0.14 and 0.72, respectively. The proposed method incorporates the merits of fuzzy SVM and multi-pattern sample space learning, decomposing the MC detection problem into serial simple two-class classification. Experimental results from synthetic data and DDSM database demonstrate that our integrated classification framework reduces the false positive rate significantly while maintaining the true positive rate.

  11. COHERENT DETECTION FOR SPECTRAL AMPLITUDE-CODED OPTICAL LABEL SWITCHING SYSTEMS

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Tafur Monroy, Idelfonso

    2010-01-01

    Coherent detection for spectrally encoded optical labels is proposed and experimentally demonstrated for three label tones spectrally spaced at 1 GHz. The proposed method utilizes a frequency swept local oscillator in a coherent receiver supported by digital signal processing for improved...... flexibility and upgradeability while reducing label detection subsystem complexity as compared with the conventional optical autocorrelation based approaches....

  12. Fusion of optical flow based motion pattern analysis and silhouette classification for person tracking and detection

    NARCIS (Netherlands)

    Tangelder, J.W.H.; Lebert, E.; Burghouts, G.J.; Zon, K. van; Den Uyl, M.J.

    2014-01-01

    This paper presents a novel approach to detect persons in video by combining optical flow based motion analysis and silhouette based recognition. A new fast optical flow computation method is described, and its application in a motion based analysis framework unifying human tracking and detection is

  13. Can MODIS detect trends in aerosol optical depth over land?

    Science.gov (United States)

    Fan, Xuehua; Xia, Xiang'ao; Chen, Hongbin

    2018-02-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Aqua satellite has been collecting valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth (AOD) trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002-15 at 53 Aerosol Robotic Network (AERONET) sites over land, Mann-Kendall (MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MODIS onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North America, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1-2 overpasses may be representative of those from daily measurements.

  14. Online technique for detecting state of onboard fiber optic gyroscope

    International Nuclear Information System (INIS)

    Miao, Zhiyong; He, Kunpeng; Pang, Shuwan; Xu, Dingjie; Tian, Chunmiao

    2015-01-01

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of “state of health” for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data

  15. Online technique for detecting state of onboard fiber optic gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhiyong; He, Kunpeng, E-mail: pengkhe@126.com; Pang, Shuwan [Department of Automation, Harbin Engineering University, Harbin, Heilongjiang 150000 (China); Xu, Dingjie [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang 150000 (China); Tian, Chunmiao [Department of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang 150000 (China)

    2015-02-15

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of “state of health” for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.

  16. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    Science.gov (United States)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  17. An automated three-dimensional detection and segmentation method for touching cells by integrating concave points clustering and random walker algorithm.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available Characterizing cytoarchitecture is crucial for understanding brain functions and neural diseases. In neuroanatomy, it is an important task to accurately extract cell populations' centroids and contours. Recent advances have permitted imaging at single cell resolution for an entire mouse brain using the Nissl staining method. However, it is difficult to precisely segment numerous cells, especially those cells touching each other. As presented herein, we have developed an automated three-dimensional detection and segmentation method applied to the Nissl staining data, with the following two key steps: 1 concave points clustering to determine the seed points of touching cells; and 2 random walker segmentation to obtain cell contours. Also, we have evaluated the performance of our proposed method with several mouse brain datasets, which were captured with the micro-optical sectioning tomography imaging system, and the datasets include closely touching cells. Comparing with traditional detection and segmentation methods, our approach shows promising detection accuracy and high robustness.

  18. Highly stable polymer coated nano-clustered silver plates: a multimodal optical contrast agent for biomedical imaging

    International Nuclear Information System (INIS)

    Ray, Aniruddha; Mukundan, Ananya; Karamchand, Leshern; Kopelman, Raoul; Xie, Zhixing; Wang, Xueding

    2014-01-01

    Here, we present a new optical contrast agent based on silver nanoplate clusters embedded inside of a polymer nano matrix. Unlike nanosphere clusters, which have been well studied, nanoplate clusters have unique properties due to the different possible orientations of interaction between the individual plates, resulting in a significant broadening of the absorption spectra. These nanoclusters were immobilized inside of a polymer cladding so as to maintain their stability and optical properties under in vivo conditions. The polymer-coated silver nanoplate clusters show a lower toxicity compared to the uncoated nanoparticles. At high nanoparticle concentrations, cell death occurs mostly due to apoptosis. These nanoparticles were used for targeted fluorescence imaging in a rat glioma cell line by incorporating a fluorescent dye into the matrix, followed by conjugation of a tumor targeting an F3 peptide. We further used these nanoparticles as photoacoustic contrast agents in vivo to enhance the contrast of the vasculature structures in a rat ear model. We observed a contrast enhancement of over 90% following the nanoparticle injection. It is also shown that these NPs can serve as efficient contrast agents, with specific targeting abilities for broadband multimodal imaging that are usable for diagnostic applications and that extend into use as therapeutic agents as well. (paper)

  19. MOCCA code for star cluster simulation: comparison with optical observations using COCOA

    Science.gov (United States)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Olech, Arkadiusz; Hypki, Arkadiusz

    2016-02-01

    We introduce and present preliminary results from COCOA (Cluster simulatiOn Comparison with ObservAtions) code for a star cluster after 12 Gyr of evolution simulated using the MOCCA code. The COCOA code is being developed to quickly compare results of numerical simulations of star clusters with observational data. We use COCOA to obtain parameters of the projected cluster model. For comparison, a FITS file of the projected cluster was provided to observers so that they could use their observational methods and techniques to obtain cluster parameters. The results show that the similarity of cluster parameters obtained through numerical simulations and observations depends significantly on the quality of observational data and photometric accuracy.

  20. Unsupervised Video Shot Detection Using Clustering Ensemble with a Color Global Scale-Invariant Feature Transform Descriptor

    Directory of Open Access Journals (Sweden)

    Yuchou Chang

    2008-02-01

    Full Text Available Scale-invariant feature transform (SIFT transforms a grayscale image into scale-invariant coordinates of local features that are invariant to image scale, rotation, and changing viewpoints. Because of its scale-invariant properties, SIFT has been successfully used for object recognition and content-based image retrieval. The biggest drawback of SIFT is that it uses only grayscale information and misses important visual information regarding color. In this paper, we present the development of a novel color feature extraction algorithm that addresses this problem, and we also propose a new clustering strategy using clustering ensembles for video shot detection. Based on Fibonacci lattice-quantization, we develop a novel color global scale-invariant feature transform (CGSIFT for better description of color contents in video frames for video shot detection. CGSIFT first quantizes a color image, representing it with a small number of color indices, and then uses SIFT to extract features from the quantized color index image. We also develop a new space description method using small image regions to represent global color features as the second step of CGSIFT. Clustering ensembles focusing on knowledge reuse are then applied to obtain better clustering results than using single clustering methods for video shot detection. Evaluation of the proposed feature extraction algorithm and the new clustering strategy using clustering ensembles reveals very promising results for video shot detection.

  1. Unsupervised Video Shot Detection Using Clustering Ensemble with a Color Global Scale-Invariant Feature Transform Descriptor

    Directory of Open Access Journals (Sweden)

    Hong Yi

    2008-01-01

    Full Text Available Abstract Scale-invariant feature transform (SIFT transforms a grayscale image into scale-invariant coordinates of local features that are invariant to image scale, rotation, and changing viewpoints. Because of its scale-invariant properties, SIFT has been successfully used for object recognition and content-based image retrieval. The biggest drawback of SIFT is that it uses only grayscale information and misses important visual information regarding color. In this paper, we present the development of a novel color feature extraction algorithm that addresses this problem, and we also propose a new clustering strategy using clustering ensembles for video shot detection. Based on Fibonacci lattice-quantization, we develop a novel color global scale-invariant feature transform (CGSIFT for better description of color contents in video frames for video shot detection. CGSIFT first quantizes a color image, representing it with a small number of color indices, and then uses SIFT to extract features from the quantized color index image. We also develop a new space description method using small image regions to represent global color features as the second step of CGSIFT. Clustering ensembles focusing on knowledge reuse are then applied to obtain better clustering results than using single clustering methods for video shot detection. Evaluation of the proposed feature extraction algorithm and the new clustering strategy using clustering ensembles reveals very promising results for video shot detection.

  2. Shocks and cold fronts in merging and massive galaxy clusters: new detections with Chandra

    Science.gov (United States)

    Botteon, A.; Gastaldello, F.; Brunetti, G.

    2018-06-01

    A number of merging galaxy clusters show the presence of shocks and cold fronts, i.e. sharp discontinuities in surface brightness and temperature. The observation of these features requires an X-ray telescope with high spatial resolution like Chandra, and allows to study important aspects concerning the physics of the intracluster medium (ICM), such as its thermal conduction and viscosity, as well as to provide information on the physical conditions leading to the acceleration of cosmic rays and magnetic field amplification in the cluster environment. In this work we search for new discontinuities in 15 merging and massive clusters observed with Chandra by using different imaging and spectral techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six shocks, eight cold fronts, and eight with uncertain origin. All the six shocks detected have Mdiverse approaches aimed to identify edges in the ICM. A radio follow-up of the shocks discovered in this paper will be useful to study the connection between weak shocks and radio relics.

  3. Digital breast tomosynthesis: computer-aided detection of clustered microcalcifications on planar projection images

    International Nuclear Information System (INIS)

    Samala, Ravi K; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir M; Wei, Jun; Helvie, Mark A

    2014-01-01

    This paper describes a new approach to detect microcalcification clusters (MCs) in digital breast tomosynthesis (DBT) via its planar projection (PPJ) image. With IRB approval, two-view (cranio-caudal and mediolateral oblique views) DBTs of human subject breasts were obtained with a GE GEN2 prototype DBT system that acquires 21 projection angles spanning 60° in 3° increments. A data set of 307 volumes (154 human subjects) was divided by case into independent training (127 with MCs) and test sets (104 with MCs and 76 free of MCs). A simultaneous algebraic reconstruction technique with multiscale bilateral filtering (MSBF) regularization was used to enhance microcalcifications and suppress noise. During the MSBF regularized reconstruction, the DBT volume was separated into high frequency (HF) and low frequency components representing microcalcifications and larger structures. At the final iteration, maximum intensity projection was applied to the regularized HF volume to generate a PPJ image that contained MCs with increased contrast-to-noise ratio (CNR) and reduced search space. High CNR objects in the PPJ image were extracted and labeled as microcalcification candidates. Convolution neural network trained to recognize the image pattern of microcalcifications was used to classify the candidates into true calcifications and tissue structures and artifacts. The remaining microcalcification candidates were grouped into MCs by dynamic conditional clustering based on adaptive CNR threshold and radial distance criteria. False positive (FP) clusters were further reduced using the number of candidates in a cluster, CNR and size of microcalcification candidates. At 85% sensitivity an FP rate of 0.71 and 0.54 was achieved for view- and case-based sensitivity, respectively, compared to 2.16 and 0.85 achieved in DBT. The improvement was significant (p-value = 0.003) by JAFROC analysis. (paper)

  4. NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE-STAR FORMATION RATE RELATION

    International Nuclear Information System (INIS)

    Randriamanakoto, Z.; Väisänen, P.; Escala, A.; Kankare, E.; Kotilainen, J.; Mattila, S.; Ryder, S.

    2013-01-01

    We have established a relation between the brightest super star cluster (SSC) magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near-infrared (NIR). The data come from a statistical sample of ∼40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, M K ∼ –2.6log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relation with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying together cluster-internal effects and host SFR properties to possibly explain the observed brightest SSC magnitude versus SFR dependency

  5. Health-related hot topic detection in online communities using text clustering.

    Directory of Open Access Journals (Sweden)

    Yingjie Lu

    Full Text Available Recently, health-related social media services, especially online health communities, have rapidly emerged. Patients with various health conditions participate in online health communities to share their experiences and exchange healthcare knowledge. Exploring hot topics in online health communities helps us better understand patients' needs and interest in health-related knowledge. However, the statistical topic analysis employed in previous studies is becoming impractical for processing the rapidly increasing amount of online data. Automatic topic detection based on document clustering is an alternative approach for extracting health-related hot topics in online communities. In addition to the keyword-based features used in traditional text clustering, we integrate medical domain-specific features to represent the messages posted in online health communities. Three disease discussion boards, including boards devoted to lung cancer, breast cancer and diabetes, from an online health community are used to test the effectiveness of topic detection. Experiment results demonstrate that health-related hot topics primarily include symptoms, examinations, drugs, procedures and complications. Further analysis reveals that there also exist some significant differences among the hot topics discussed on different types of disease discussion boards.

  6. Relationship between optical coherence tomography sector peripapillary angioflow-density and Octopus visual field cluster mean defect values.

    Directory of Open Access Journals (Sweden)

    Gábor Holló

    Full Text Available To compare the relationship of Octopus perimeter cluster mean-defect (cluster MD values with the spatially corresponding optical coherence tomography (OCT sector peripapillary angioflow vessel-density (PAFD and sector retinal nerve fiber layer thickness (RNFLT values.High quality PAFD and RNFLT images acquired on the same day with the Angiovue/RTVue-XR Avanti OCT (Optovue Inc., Fremont, USA on 1 eye of 27 stable early-to-moderate glaucoma, 22 medically controlled ocular hypertensive and 13 healthy participants were analyzed. Octopus G2 normal visual field test was made within 3 months from the imaging.Total peripapillary PAFD and RNFLT showed similar strong positive correlation with global mean sensitivity (r-values: 0.6710 and 0.6088, P<0.0001, and similar (P = 0.9614 strong negative correlation (r-values: -0.4462 and -0.4412, P≤0.004 with global MD. Both inferotemporal and superotemporal sector PAFD were significantly (≤0.039 lower in glaucoma than in the other groups. No significant difference between the corresponding inferotemporal and superotemporal parameters was seen. The coefficient of determination (R2 calculated for the relationship between inferotemporal sector PAFD and superotemporal cluster MD (0.5141, P<0.0001 was significantly greater than that between inferotemporal sector RNFLT and superotemporal cluster MD (0.2546, P = 0.0001. The R2 values calculated for the relationships between superotemporal sector PAFD and RNFLT, and inferotemporal cluster MD were similar (0.3747 and 0.4037, respectively, P<0.0001.In the current population the relationship between inferotemporal sector PAFD and superotemporal cluster MD was strong. It was stronger than that between inferotemporal sector RNFLT and superotemporal cluster MD. Further investigations are necessary to clarify if our results are valid for other populations and can be usefully applied for glaucoma research.

  7. Sensitive Detection: Photoacoustics, Thermography, and Optical Radiation Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, Gerald J. [Brown Univ., Providence, RI (United States)

    2017-04-21

    Research during the granting period has been carried out in several areas concerned with sensitive detection. An infrared pyrometer based on the photoacoustic effect has been developed. The sensitivity of this instrument to temperature differentials has been shown to be 50 mK. An investigation of transients that accompany photoacoustic waves generated by pulsed lasers has been carried out. Experiments have shown the existence of the transients, and a theory based on rapid heat diffusion has been developed. The photoacoustic effect in one dimension is known to increase without bound (in the linear acoustics regime) when an optical beam moves in a fluid at the sound speed. A solution to the wave equation for pressure has been found that describes the photoacoustic effect in a cell where an infrared optical grating moves at the sound speed. It was shown that the amplification effect exists along with a cavity resonance that can be used to great advantage in trace gas detection. The theory of the photoacoustic effect in a structure where the acoustic properties periodically vary in a one-dimensional based has been formulated based on solutions to a Mathieu equation. It was found that it is possible to excite photoacoustic waves within the band gaps to produce large amplitude acoustic waves. The idea of self-oscillation in a photoacoustic cell using a continuous laser has been investigated. A theory has been completed showing that in a compressive wave, the absorption increases as a result of the density increase leading to further absorption and hence an increased amplitude photoacoustic effect with the result that in a resonator, self-oscillation can place. Experiments have been carried out where irradiation of a suspension of absorbing carbon particles with a high power laser has been shown to result in cavitation luminescence. That is, following generation of CO and H2 from the carbon particles through the carbon-steam reaction, an expanding gas bubble is

  8. A spatial hazard model for cluster detection on continuous indicators of disease: application to somatic cell score.

    Science.gov (United States)

    Gay, Emilie; Senoussi, Rachid; Barnouin, Jacques

    2007-01-01

    Methods for spatial cluster detection dealing with diseases quantified by continuous variables are few, whereas several diseases are better approached by continuous indicators. For example, subclinical mastitis of the dairy cow is evaluated using a continuous marker of udder inflammation, the somatic cell score (SCS). Consequently, this study proposed to analyze spatialized risk and cluster components of herd SCS through a new method based on a spatial hazard model. The dataset included annual SCS for 34 142 French dairy herds for the year 2000, and important SCS risk factors: mean parity, percentage of winter and spring calvings, and herd size. The model allowed the simultaneous estimation of the effects of known risk factors and of potential spatial clusters on SCS, and the mapping of the estimated clusters and their range. Mean parity and winter and spring calvings were significantly associated with subclinical mastitis risk. The model with the presence of 3 clusters was highly significant, and the 3 clusters were attractive, i.e. closeness to cluster center increased the occurrence of high SCS. The three localizations were the following: close to the city of Troyes in the northeast of France; around the city of Limoges in the center-west; and in the southwest close to the city of Tarbes. The semi-parametric method based on spatial hazard modeling applies to continuous variables, and takes account of both risk factors and potential heterogeneity of the background population. This tool allows a quantitative detection but assumes a spatially specified form for clusters.

  9. Distributed Fiber-Optic Sensors for Vibration Detection.

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  10. Single molecule detection on the cell membrane with Near-field Scanning Optical Microscopy

    NARCIS (Netherlands)

    de Bakker, B.I.

    2004-01-01

    In this research we have developed a dedicated near- field scanning optical microscope (NSOM) for molecular biology and applied it to study the spatial organization of (fluorescently labeled) proteins at the cell surface. For the first time, protein clusters and individual molecules are resolved at

  11. Clustering algorithms for Stokes space modulation format recognition

    DEFF Research Database (Denmark)

    Boada, Ricard; Borkowski, Robert; Tafur Monroy, Idelfonso

    2015-01-01

    influences the performance of the detection process, particularly at low signal-to-noise ratios. This paper reports on an extensive study of six different clustering algorithms: k-means, expectation maximization, density-based DBSCAN and OPTICS, spectral clustering and maximum likelihood clustering, used...

  12. Planck early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations

    DEFF Research Database (Denmark)

    Poutanen, T.; Natoli, P.; Polenta, G.

    2011-01-01

    We present the Sunyaev-Zeldovich (SZ) signal-to-richness scaling relation (Y500 - N200) for the MaxBCG cluster catalogue. Employing a multi-frequency matched filter on the Planck sky maps, we measure the SZ signal for each cluster by adapting the filter according to weak-lensing calibrated mass-r...

  13. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    Science.gov (United States)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  14. Nuisance alarm suppression techniques for fibre-optic intrusion detection systems

    Science.gov (United States)

    Mahmoud, Seedahmed S.; Visagathilagar, Yuvaraja; Katsifolis, Jim

    2012-02-01

    The suppression of nuisance alarms without degrading sensitivity in fibre-optic intrusion detection systems is important for maintaining acceptable performance. Signal processing algorithms that maintain the POD and minimize nuisance alarms are crucial for achieving this. A level crossings algorithm is presented for suppressing torrential rain-induced nuisance alarms in a fibre-optic fence-based perimeter intrusion detection system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100 mm/hr, and intrusion events can be detected simultaneously during rain periods. The use of a level crossing based detection and novel classification algorithm is also presented demonstrating the suppression of nuisance events and discrimination of nuisance and intrusion events in a buried pipeline fibre-optic intrusion detection system. The sensor employed for both types of systems is a distributed bidirectional fibre-optic Mach Zehnder interferometer.

  15. [Measurement of plasma parameters in cluster hexagon pattern discharge by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Shen, Zhong-Kai; Li, Xin-Chun; Liu, Liang; Lu, Ning; Shang, Jie

    2012-09-01

    The cluster hexagon pattern was obtained in a dielectric barrier discharge in air/argon for the first time. Three plasma parameters, i. e. the molecular vibrational temperature, the molecular rotational temperature and the average electron energy of individual cluster in cluster hexagon pattern discharge, were studied by changing the air content. The molecular vibrational temperature and the molecular rotational temperature were calculated using the second positive band system of nitrogen molecules (C 3IIu --> B 3IIg) and the first negative band system of nitrogen molecular ions (B 2Sigma(u)+ --> Chi2 Sigma(g)+). The relative intensities of the first negative system of nitrogen molecular ions (391. 4 nm) and nitrogen molecules emission spectrum line (337.1 nm) were analyzed for studying the variations of the electron energy. It was found that the three plasma parameters of individual cluster in cluster hexagon pattern increase with air content increasing from 16% to 24%.

  16. Interference-free optical detection for Raman spectroscopy

    Science.gov (United States)

    Fischer, David G (Inventor); Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor)

    2012-01-01

    An architecture for spontaneous Raman scattering (SRS) that utilizes a frame-transfer charge-coupled device (CCD) sensor operating in a subframe burst gating mode to realize time-resolved combustion diagnostics is disclosed. The technique permits all-electronic optical gating with microsecond shutter speeds (<5 .mu.s), without compromising optical throughput or image fidelity. When used in conjunction with a pair of orthogonally-polarized excitation lasers, the technique measures time-resolved vibrational Raman scattering that is minimally contaminated by problematic optical background noise.

  17. Cluster analysis of the impact of air back-trajectories on aerosol optical properties at Hornsund, Spitsbergen

    Directory of Open Access Journals (Sweden)

    A. Rozwadowska

    2010-02-01

    Full Text Available In this paper, spectra of aerosol optical thickness from the AERONET (AErosol RObotic NETwork station at Hornsund in the southern part of Spitsbergen were employed to study the impact of air mass history on aerosol optical thickness for wavelength λ=500 nm – AOT(500 – and the Ångström exponent. Backward trajectories computed, using the NOAA HYSPLIT model, were used to trace air history. It was found that in spring, the changes in AOT values over the Hornsund station were strongly influenced by air mass trajectories 8 days or longer in duration, arriving both in the free troposphere and at an altitude of 1 km above sea level. Nevertheless, free tropospheric advection was dominant. AOT variability in summer was best explained by the local direction and speed of advection (1-day trajectories and was dominated by the effectiveness of cleansing processes. During the ASTAR 2007 campaign, the aerosols near Hornsund displayed low AOT values ranging from 0.06 to 0.09, which is lower than the mean AOT(500 for spring seasons from 2005 to 2007 (0.110±0.007; mean ± standard deviation of mean. 9 April 2007 with AOT(500=0.147 was exceptional. The back-trajectories belonged to clusters with low and average cluster mean AOT. Apart from the maximum AOT of 9 April 2007, the observed AOT values were close to or lower than the means for the clusters to which they belonged.

  18. STELLAR POPULATIONS AND EVOLUTION OF EARLY-TYPE CLUSTER GALAXIES: CONSTRAINTS FROM OPTICAL IMAGING AND SPECTROSCOPY OF z = 0.5–0.9 GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Jørgensen, Inger; Chiboucas, Kristin

    2013-01-01

    We present an analysis of stellar populations and evolutionary history of galaxies in three similarly rich galaxy clusters MS0451.6–0305 (z = 0.54), RXJ0152.7–1357 (z = 0.83), and RXJ1226.9+3332 (z = 0.89). Our analysis is based on high signal-to-noise ground-based optical spectroscopy and Hubble Space Telescope imaging for a total of 17-34 members in each cluster. Using the dynamical masses together with the effective radii and the velocity dispersions, we find no indication of evolution of sizes or velocity dispersions with redshift at a given galaxy mass. We establish the Fundamental Plane (FP) and scaling relations between absorption line indices and velocity dispersions. We confirm that the FP is steeper at z ≈ 0.86 compared to the low-redshift FP, indicating that under the assumption of passive evolution the formation redshift, z form , depends on the galaxy velocity dispersion (or alternatively mass). At a velocity dispersion of σ = 125 km s –1 (Mass = 10 10.55 M ☉ ) we find z form = 1.24 ± 0.05, while at σ = 225 km s –1 (Mass = 10 11.36 M ☉ ) the formation redshift is z form = 1.95 +0.3 –0.2 , for a Salpeter initial mass function. The three clusters follow similar scaling relations between absorption line indices and velocity dispersions as those found for low-redshift galaxies. The zero point offsets for the Balmer lines depend on cluster redshifts. However, the offsets indicate a slower evolution, and therefore higher formation redshift, than the zero point differences found from the FP, if interpreting the data using a passive evolution model. Specifically, the strength of the higher order Balmer lines Hδ and Hγ implies z form > 2.8. The scaling relations for the metal indices in general show small and in some cases insignificant zero point offsets, favoring high formation redshifts for a passive evolution model. Based on the absorption line indices and recent stellar population models from Thomas et al., we find that MS0451.6–0305

  19. Temperature monitoring and leak detection in sodium circuits of FBR using Raman distributed fiber optic sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Murali, N.; Sosamma, S.; Babu Rao, C.; Kumar, Anish; Purnachandra Rao, B.; Jayakumar, T.

    2013-01-01

    This paper discusses the fiber optic temperature sensor based leak detection in the coolant circuits of fast breeder reactor. These sensors measure the temperature based on spontaneous Raman scattering principle and is not influenced by the electromagnetic interference. Various experiments were conducted to evaluate the performance of the fiber optic sensor based leak detection using Raman distributed Temperature Sensor (RDTS). This paper also deals with the details of fiber optic sensor type leak detector layout for the coolant circuit of FBR, performance requirement of leak detection system, description of the test facility, experimental procedure and test results of various experiments conducted. (author)

  20. Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Petersen, Nickolaj Jacob; Hübner, Jörg

    2001-01-01

    . The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free-space optics. A 750 mum long U-shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U......The fabrication and performance of an electrophoretic separation chip with integrated of optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps...

  1. Transferability of antibody pairs from ELISA to fiber optic surface plasmon resonance for infliximab detection

    Science.gov (United States)

    Van Stappen, Thomas; Lu, Jiadi; Bloemen, Maarten; Geukens, Nick; Spasic, Dragana; Delport, Filip; Verbiest, Thierry; Lammertyn, Jeroen; Gils, Ann

    2015-03-01

    Tumor necrosis factor (TNF)-alpha is a pleiotropic cytokine up-regulated in inflammatory bowel disease, rheumatoid arthritis and psoriasis. The introduction of anti-TNF drugs such as infliximab has revolutionized the treatment of these diseases. Recently, therapeutic drug monitoring (TDM) of infliximab has been introduced in clinical decision making to increase cost-efficiency. Nowadays, TDM is performed using radio-immunoassays, homogeneous mobility shift assays or ELISA. Unfortunately, these assays do not allow for in situ treatment optimization, because of the required sample transportation to centralized laboratories and the subsequent assay execution time. In this perspective, we evaluated the potential of fiber optic-surface plasmon resonance (FO-SPR). To achieve this goal, a panel of 55 monoclonal anti-infliximab antibodies (MA-IFX) was developed and characterized in-house, leading to the identification of nine different clusters. Based on this high diversity, 22 antibody pairs were selected and tested for their reactivity towards IFX, using one MA-IFX as capture and one MA-IFX for detection, in a sandwich type ELISA and FO-SPR. This study showed that the reactivity towards IFX of each antibody pair in ELISA is highly similar to its reactivity on FO-SPR, indicating that antibody pairs are easily transferable between both platforms. Given the fact that FO-SPR shows the potential for miniaturization and fast assay time, it can be considered a highly promising platform for on-site infliximab monitoring.

  2. Supported silver clusters as nanoplasmonic transducers for protein sensing

    DEFF Research Database (Denmark)

    Fojan, Peter; Hanif, Muhammad; Bartling, Stephen

    2015-01-01

    Transducers for optical sensing of proteins are prepared using cluster beam deposition on quartz substrates. Surface plasmon resonance phenomenon of the supported silver clusters is used for the detection. It is shown that surface immobilisation procedure providing adhesion of the silver clusters...... stages and protein immobilisation scheme the sensing of protein of interest can be assured using a relatively simple optical spectroscopy method....... an enhancement of the plasmon absorption band used for the detection. Atomic force microscopy study allows to suggest that immobilisation of antibodies on silver clusters has been achieved, thus giving a possibility to incubate and detect an antigen of interest. Hence, by applying the developed preparation...

  3. Comparative Investigation of Guided Fuzzy Clustering and Mean Shift Clustering for Edge Detection in Electrical Resistivity Tomography Images of Mineral Deposits

    Science.gov (United States)

    Ward, Wil; Wilkinson, Paul; Chambers, Jon; Bai, Li

    2014-05-01

    Geophysical surveying using electrical resistivity tomography (ERT) can be used as a rapid non-intrusive method to investigate mineral deposits [1]. One of the key challenges with this approach is to find a robust automated method to assess and characterise deposits on the basis of an ERT image. Recent research applying edge detection techniques has yielded a framework that can successfully locate geological interfaces in ERT images using a minimal assumption data clustering technique, the guided fuzzy clustering method (gfcm) [2]. Non-parametric clustering techniques are statistically grounded methods of image segmentation that do not require any assumptions about the distribution of data under investigation. This study is a comparison of two such methods to assess geological structure based on the resistivity images. In addition to gfcm, a method called mean-shift clustering [3] is investigated with comparisons directed at accuracy, computational expense, and degree of user interaction. Neither approach requires the number of clusters as input (a common parameter and often impractical), rather they are based on a similar theory that data can be clustered based on peaks in the probability density function (pdf) of the data. Each local maximum in these functions represents the modal value of a particular population corresponding to a cluster and as such the data are assigned based on their relationships to these model values. The two methods differ in that gfcm approximates the pdf using kernel density estimation and identifies population means, assigning cluster membership probabilities to each resistivity value in the model based on its distance from the distribution averages. Whereas, in mean-shift clustering, the density function is not calculated, but a gradient ascent method creates a vector that leads each datum towards high density distributions iteratively using weighted kernels to calculate locally dense regions. The only parameter needed in both methods

  4. DETECTABILITY OF FREE FLOATING PLANETS IN OPEN CLUSTERS WITH THE JAMES WEBB SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Pacucci, Fabio; Ferrara, Andrea; D'Onghia, Elena

    2013-01-01

    Recent observations have shown the presence of extra-solar planets in Galactic open stellar clusters, such as in Praesepe (M44). These systems provide a favorable environment for planetary formation due to the high heavy-element content exhibited by the majority of their population. The large stellar density, and corresponding high close-encounter event rate, may induce strong perturbations of planetary orbits with large semimajor axes. Here we present a set of N-body simulations implementing a novel scheme to treat the tidal effects of external stellar perturbers on planetary orbit eccentricity and inclination. By simulating five nearby open clusters, we determine the rate of occurrence of bodies extracted from their parent stellar system by quasi-impulsive tidal interactions. We find that the specific free-floating planet production rate N-dot o (total number of free-floating planets per unit of time, normalized by the total number of stars), is proportional to the stellar density ρ * of the cluster: N-dot o =αρ ⋆ , with α = (23 ± 5) × 10 –6 pc 3 Myr –1 . For the Pleiades (M45), we predict that ∼26% of stars should have lost their planets. This raises the exciting possibility of directly observing these wandering planets with the James Webb Space Telescope in the near-infrared band. Assuming a surface temperature for the planet of ∼500 K, a free-floating planet of Jupiter size inside the Pleiades would have a specific flux of F ν (4.4 μm) ≈4 × 10 2  nJy, which would lead to a very clear detection (S/N ∼ 100) in only one hour of integration

  5. Detectability of Free Floating Planets in Open Clusters with the James Webb Space Telescope

    Science.gov (United States)

    Pacucci, Fabio; Ferrara, Andrea; D'Onghia, Elena

    2013-12-01

    Recent observations have shown the presence of extra-solar planets in Galactic open stellar clusters, such as in Praesepe (M44). These systems provide a favorable environment for planetary formation due to the high heavy-element content exhibited by the majority of their population. The large stellar density, and corresponding high close-encounter event rate, may induce strong perturbations of planetary orbits with large semimajor axes. Here we present a set of N-body simulations implementing a novel scheme to treat the tidal effects of external stellar perturbers on planetary orbit eccentricity and inclination. By simulating five nearby open clusters, we determine the rate of occurrence of bodies extracted from their parent stellar system by quasi-impulsive tidal interactions. We find that the specific free-floating planet production rate \\dot{N}_o (total number of free-floating planets per unit of time, normalized by the total number of stars), is proportional to the stellar density ρsstarf of the cluster: \\dot{N}_o = \\alpha \\rho _\\star, with α = (23 ± 5) × 10-6 pc3 Myr-1. For the Pleiades (M45), we predict that ~26% of stars should have lost their planets. This raises the exciting possibility of directly observing these wandering planets with the James Webb Space Telescope in the near-infrared band. Assuming a surface temperature for the planet of ~500 K, a free-floating planet of Jupiter size inside the Pleiades would have a specific flux of F ν (4.4 μm) ≈4 × 102 nJy, which would lead to a very clear detection (S/N ~ 100) in only one hour of integration.

  6. DETECTABILITY OF FREE FLOATING PLANETS IN OPEN CLUSTERS WITH THE JAMES WEBB SPACE TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Pacucci, Fabio; Ferrara, Andrea [Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); D' Onghia, Elena [University of Wisconsin, 475 Charter St., Madison, WI 53706 (United States)

    2013-12-01

    Recent observations have shown the presence of extra-solar planets in Galactic open stellar clusters, such as in Praesepe (M44). These systems provide a favorable environment for planetary formation due to the high heavy-element content exhibited by the majority of their population. The large stellar density, and corresponding high close-encounter event rate, may induce strong perturbations of planetary orbits with large semimajor axes. Here we present a set of N-body simulations implementing a novel scheme to treat the tidal effects of external stellar perturbers on planetary orbit eccentricity and inclination. By simulating five nearby open clusters, we determine the rate of occurrence of bodies extracted from their parent stellar system by quasi-impulsive tidal interactions. We find that the specific free-floating planet production rate N-dot {sub o} (total number of free-floating planets per unit of time, normalized by the total number of stars), is proportional to the stellar density ρ{sub *} of the cluster: N-dot {sub o}=αρ{sub ⋆}, with α = (23 ± 5) × 10{sup –6} pc{sup 3} Myr{sup –1}. For the Pleiades (M45), we predict that ∼26% of stars should have lost their planets. This raises the exciting possibility of directly observing these wandering planets with the James Webb Space Telescope in the near-infrared band. Assuming a surface temperature for the planet of ∼500 K, a free-floating planet of Jupiter size inside the Pleiades would have a specific flux of F {sub ν} (4.4 μm) ≈4 × 10{sup 2} nJy, which would lead to a very clear detection (S/N ∼ 100) in only one hour of integration.

  7. TAPERED OPTICAL FIBRES FOR LOCAL pH DETECTION

    Czech Academy of Sciences Publication Activity Database

    Martan, Tomáš; Pospíšilová, Marie; Aubrecht, Jan; Mrázek, Jan; Podrazký, Ondřej; Kašík, Ivan; Matějec, Vlastimil

    2010-01-01

    Roč. 206, č. 1 (2010), 0120171-0120172 ISSN 1742-6588. [8th International Workshop on Information Optics (WIO' 09). Paris, 20.07.2009-24.07.2009] R&D Projects: GA ČR(CZ) GP102/08/P639 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical planar sensor * fluorescence * pH Subject RIV: JB - Sensor s, Measurment, Regulation

  8. Detection of Arctic and European cluster of canine distemper virus in north and center of Iran.

    Science.gov (United States)

    Namroodi, Somayeh; Rostami, Amir; Majidzadeh-Ardebili, Keyvan; Ghalyanchi Langroudi, Arash; Morovvati, Abbas

    2015-01-01

    Canine distemper virus (CDV) creates a very contagious viral multi-systemic canine distemper (CD) disease that affects most species of Carnivora order. The virus is genetically heterogeneous, particularly in section of the hemagglutinin (H) gene. Sequence analysis of the H gene can be useful to investigate distinction of various lineages related to geographical distribution and CDV molecular epidemiology. Since vaccination program is conducted only in large cities of Iran, CD still remains as one of the major causes of death in dogs in this country. In order to monitor H gene, CDV has been detected in 14 out of 19 sampled dogs through the amplification of nucleoprotein (NP) gene in nested-PCR assay. In the next step 665 bp of H gene was amplified in 9 out of 14 NP-gene positive dogs. Phylogenetic analysis distinguished two distinct CDV genotypes in Iran. JN941238 has been embedded in European cluster and JN941239 has been embedded in Arctic cluster. Nucleic analysis has been shown high difference among both Iranian CDV lineages with CDV vaccine strains.

  9. Mixed clusters from the coexpansion of C2F6 and n2 in a pulsed, supersonic expansion cluster ion source and beam deflection time-of-flight mass spectrometer: A first application

    Science.gov (United States)

    Thompson, Steven D.

    The following topics are discussed: (1) cluster ion genesis; (2) cluster ion detection; (3) Ion source; (4) pulse valve; (5) e-gun; (6) Ion optics; (7) a first order model; and (8) a modified Bakker's model.

  10. Detecting groups of coevolving positions in a molecule: a clustering approach

    Directory of Open Access Journals (Sweden)

    Galtier Nicolas

    2007-11-01

    Full Text Available Abstract Background Although the patterns of co-substitutions in RNA is now well characterized, detection of coevolving positions in proteins remains a difficult task. It has been recognized that the signal is typically weak, due to the fact that (i amino-acid are characterized by various biochemical properties, so that distinct amino acids changes are not functionally equivalent, and (ii a given mutation can be compensated by more than one mutation, at more than one position. Results We present a new method based on phylogenetic substitution mapping. The two above-mentioned problems are addressed by (i the introduction of a weighted mapping, which accounts for the biochemical effects (volume, polarity, charge of amino-acid changes, (ii the use of a clustering approach to detect groups of coevolving sites of virtually any size, and (iii the distinction between biochemical compensation and other coevolutionary mechanisms. We apply this methodology to a previously studied data set of bacterial ribosomal RNA, and to three protein data sets (myoglobin of vertebrates, S-locus Receptor Kinase and Methionine Amino-Peptidase. Conclusion We succeed in detecting groups of sites which significantly depart the null hypothesis of independence. Group sizes range from pairs to groups of size ≃ 10, depending on the substitution weights used. The structural and functional relevance of these groups of sites are assessed, and the various evolutionary processes potentially generating correlated substitution patterns are discussed.

  11. Learning from unbalanced data: a cascade-based approach for detecting clustered microcalcifications.

    Science.gov (United States)

    Bria, A; Karssemeijer, N; Tortorella, F

    2014-02-01

    Finding abnormalities in diagnostic images is a difficult task even for expert radiologists because the normal tissue locations largely outnumber those with suspicious signs which may thus be missed or incorrectly interpreted. For the same reason the design of a Computer-Aided Detection (CADe) system is very complex because the large predominance of normal samples in the training data may hamper the ability of the classifier to recognize the abnormalities on the images. In this paper we present a novel approach for computer-aided detection which faces the class imbalance with a cascade of boosting classifiers where each node is trained by a learning algorithm based on ranking instead of classification error. Such approach is used to design a system (CasCADe) for the automated detection of clustered microcalcifications (μCs), which is a severely unbalanced classification problem because of the vast majority of image locations where no μC is present. The proposed approach was evaluated with a dataset of 1599 full-field digital mammograms from 560 cases and compared favorably with the Hologic R2CAD ImageChecker, one of the most widespread commercial CADe systems. In particular, at the same lesion sensitivity of R2CAD (90%) on biopsy proven malignant cases, CasCADe and R2CAD detected 0.13 and 0.21 false positives per image (FPpi), respectively (p-value=0.09), whereas at the same FPpi of R2CAD (0.21), CasCADe and R2CAD detected 93% and 90% of true lesions respectively (p-value=0.11) thus showing that CasCADe can compete with high-end CADe commercial systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. NGC 1866: First Spectroscopic Detection of Fast-rotating Stars in a Young LMC Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Dotter, A.; Johnson, C. I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Marino, A. F.; Milone, A. P. [Australian National University, The Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Weston Creek, ACT 2611 (Australia); Bailey, J. I. III [Leiden Observatory, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Crane, J. D. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mateo, M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Olszewski, E. W. [The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-09-01

    High-resolution spectroscopic observations were taken of 29 extended main-sequence turnoff (eMSTO) stars in the young (∼200 Myr) Large Magellanic Cloud (LMC) cluster, NGC 1866, using the Michigan/ Magellan Fiber System and MSpec spectrograph on the Magellan -Clay 6.5 m telescope. These spectra reveal the first direct detection of rapidly rotating stars whose presence has only been inferred from photometric studies. The eMSTO stars exhibit H α emission (indicative of Be-star decretion disks), others have shallow broad H α absorption (consistent with rotation ≳150 km s{sup −1}), or deep H α core absorption signaling lower rotation velocities (≲150 km s{sup −1}). The spectra appear consistent with two populations of stars—one rapidly rotating, and the other, younger and slowly rotating.

  13. Influence of the input database in detecting fire space-time clusters

    Science.gov (United States)

    Pereira, Mário; Costa, Ricardo; Tonini, Marj; Vega Orozco, Carmen; Parente, Joana

    2015-04-01

    Fire incidence variability is influenced by local environmental variables such as topography, land use, vegetation and weather conditions. These induce a cluster pattern of the fire events distribution. The space-time permutation scan statistics (STPSS) method developed by Kulldorff et al. (2005) and implemented in the SaTScanTM software (http://www.satscan.org/) proves to be able to detect space-time clusters in many different fields, even when using incomplete and/or inaccurate input data. Nevertheless, the dependence of the STPSS method on the different characteristics of different datasets describing the same environmental phenomenon has not been studied yet. In this sense, the objective of this study is to assess the robustness of the STPSS for detecting real clusters using different input datasets and to justify the obtained results. This study takes advantage of the existence of two very different official fire datasets currently available for Portugal, both provided by the Institute for the Conservation of Nature and Forests. The first one is the aggregated Portuguese Rural Fire Database PRFD (Pereira et al., 2011), which is based on ground measurements and provides detailed information about the ignition and extinction date/time and the area burnt by each fire in forest, scrubs and agricultural areas. However, in the PRFD, the fire location of each fire is indicated by the name of smallest administrative unit (the parish) where the ignition occurred. Consequently, since the application of the STPSS requires the geographic coordinates of the events, the centroid of the parishes was considered. The second fire dataset is the national mapping burnt areas (NMBA), which is based on satellite measurements and delivered in shape file format. The NMBA provides a detailed spatial information (shape and size of each fire) but the temporal information is restricted to the year of occurrence. Besides these differences, the two datasets cover different periods, they

  14. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Meicun; Li, Zhiyuan, E-mail: lizy@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China)

    2016-03-10

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10{sup 36} erg s{sup −1} are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10{sup 35} erg s{sup −1} per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission.

  15. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    International Nuclear Information System (INIS)

    Hou, Meicun; Li, Zhiyuan

    2016-01-01

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10 36 erg s −1 are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10 35 erg s −1 per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission

  16. Automated spoof-detection for fingerprints using optical coherence tomography

    CSIR Research Space (South Africa)

    Darlow, LN

    2016-05-01

    Full Text Available that they are highly separable, resulting in 100% accuracy regarding spoof-detection, with no false rejections of real fingers. This is the first attempt at fully automated spoof-detection using OCT....

  17. Resonantly enhanced nonlinear optics in semiconductor quantum wells: An application to sensitive infrared detection

    International Nuclear Information System (INIS)

    Yelin, S.F.; Hemmer, P.R.

    2002-01-01

    A novel class of coherent nonlinear optical phenomena, involving induced transparency in semiconductor quantum wells, is considered in the context of a particular application to sensitive long-wavelength infrared detection. It is shown that the strongest decoherence mechanisms can be suppressed or mitigated, resulting in substantial enhancement of nonlinear optical effects in semiconductor quantum wells

  18. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    Science.gov (United States)

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...

  19. Application of signal detection theory to optics. [image evaluation and restoration

    Science.gov (United States)

    Helstrom, C. W.

    1973-01-01

    Basic quantum detection and estimation theory, applications to optics, photon counting, and filtering theory are studied. Recent work on the restoration of degraded optical images received at photoelectrically emissive surfaces is also reported, the data used by the method are the numbers of electrons ejected from various parts of the surface.

  20. 16-level differential phase shift keying (D16PSK) in direct detection optical communication systems

    DEFF Research Database (Denmark)

    Sambaraju, R.; Tokle, Torger; Jensen, J.B.

    2006-01-01

    Optical 16-level differential phase shift keying (D16PSK) carrying four bits for every symbol is proposed for direct detection optical communication systems. Transmitter and receiver schematics are presented, and the receiver sensitivity is discussed. We numerically investigate the impact...

  1. Polymer slab waveguides for the optical detection of nanoparticles in evanescent field based biosensors

    NARCIS (Netherlands)

    Teigell Beneitez, N.; Missinne, J.; Schleipen, J.J.H.B.; Orsel, J.G.; Prins, M.W.J.; Steenberge, Van G.; Cartwright, A.N.; Nicolau, D.V.

    2010-01-01

    We present a polymer optical waveguide integration technology for the detection of nanoparticles in an evanescent field based biosensor. In the proposed biosensor concept, super-paramagnetic nanoparticles are used as optical contrast labels. The nanoparticles capture target molecules from a sample

  2. Optical design of an optical coherence tomography and multispectral fluorescence imaging endoscope to detect early stage ovarian cancer

    Science.gov (United States)

    Tate, Tyler; Keenan, Molly; Swan, Elizabeth; Black, John; Utzinger, Urs; Barton, Jennifer

    2014-12-01

    The five year survival rate for ovarian cancer is over 90% if early detection occurs, yet no effective early screening method exists. We have designed and are constructing a dual modality Optical Coherence Tomography (OCT) and Multispectral Fluorescence Imaging (MFI) endoscope to optically screen the Fallopian tube and ovary for early stage cancer. The endoscope reaches the ovary via the natural pathway of the vagina, cervix, uterus and Fallopian tube. In order to navigate the Fallopian tube the endoscope must have an outer diameter of 600 μm, be highly flexible, steerable, tracking and nonperforating. The imaging systems consists of six optical subsystems, two from OCT and four from MFI. The optical subsystems have independent and interrelated design criteria. The endoscope will be tested on realistic tissue models and ex vivo tissue to prove feasibility of future human trials. Ultimately the project aims to provide women the first effective ovarian cancer screening technique.

  3. Scintillating optical fibres and the detection of very short lived particles

    International Nuclear Information System (INIS)

    Fisher, C.M.

    1985-01-01

    The application of scintillating fiber optics to the problem of heavy flavour particle detection in both fixed target and collider experiments is reviewed. Brief specifications for both fibres and read-out systems are given. (orig.)

  4. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    Science.gov (United States)

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.

  5. A Test Bed for Short Pulse OA Detection of Optical Directors in Amphibious Operations

    National Research Council Canada - National Science Library

    Ertem, M

    1999-01-01

    ...) system to detect optical directors of potential threats in amphibious operations. The use of a short pulse duration allows discrimination of retroreflections from natural sources such as rock formations and vegetation...

  6. Image processing techniques applied to the detection of optic disk: a comparison

    Science.gov (United States)

    Kumari, Vijaya V.; Narayanan, Suriya N.

    2010-02-01

    In retinal image analysis, the detection of optic disk is of paramount importance. It facilitates the tracking of various anatomical features and also in the extraction of exudates, drusens etc., present in the retina of human eye. The health of retina crumbles with age in some people during the presence of exudates causing Diabetic Retinopathy. The existence of exudates increases the risk for age related macular Degeneration (AMRD) and it is the leading cause for blindness in people above the age of 50.A prompt diagnosis when the disease is at the early stage can help to prevent irreversible damages to the diabetic eye. Screening to detect diabetic retinopathy helps to prevent the visual loss. The optic disk detection is the rudimentary requirement for the screening. In this paper few methods for optic disk detection were compared which uses both the properties of optic disk and model based approaches. They are uniquely used to give accurate results in the retinal images.

  7. Prediction of the limit of detection of an optical resonant reflection biosensor.

    Science.gov (United States)

    Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong

    2007-07-09

    A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.

  8. Effects of shape and dopant on structural, optical absorption, Raman, and vibrational properties of silver and copper quantum clusters: A density functional theory study

    International Nuclear Information System (INIS)

    Li Wei-Yin; Chen Fu-Yi

    2014-01-01

    We investigate the effects of shape and single-atom doping on the structural, optical absorption, Raman, and vibrational properties of Ag 13 , Ag 12 Cu 1 , Cu 13 , and Cu 12 Ag 1 clusters by using the (time-dependent) density functional theory. The results show that the most stable structures are cuboctahedron (COh) for Ag 13 and icosahedron (Ih) for Cu 13 , Ag 12 Cu 1core , and Cu 12 Ag 1sur . In the visible—near infrared optical absorption, the transitions consist of the interband and the intraband transitions. Moreover, red shifts are observed as follows: 1) clusters change from Ag 12 Cu 1core to Ag 13 to Ag 12 Cu 1sur with the same motifs, 2) the shapes of pure Ag 13 and Ag 12 Cu 1core clusters change from COh to Ih to decahedron (Dh), 3) the shape of Ag 12 Cu 1sur clusters changes from Ih to COh to Dh, and 4) the shapes of pure Cu 13 and Cu 12 Ag 1 clusters change from Ih to Dh to COh. All of the Raman and vibrational spectra exhibit many significant vibrational modes related to the shapes and the compositions of the clusters. The ranges of vibrational spectra of Ag 13 , Ag 12 Cu 1 or Cu 13 , and Cu 12 Ag 1 clusters become narrower and the vibrational intensities increase as the shape of the clusters changes from Ih to Dh to COh. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. All-optical packet envelope detection using a slow semiconductor saturable absorber gate and a semiconductor optical amplifier

    NARCIS (Netherlands)

    Porzi, C.; Fresi, F.; Poti, L.; Bogoni, A.; Guina, M.; Orsila, L.; Okhotnikov, O.; Calabretta, N.

    2008-01-01

    Abstract—We propose a simple and effective scheme for alloptical packet envelope detection (AO-PED), exploiting a slow saturable absorber-based vertical cavity semiconductor gate and a semiconductor optical amplifier. A high extinction ratio of 15 dB was measured for the recovered envelope signal.

  10. Detection of avian influenza antigens in proximity fiber, droplet, and optical waveguide microfluidics

    Science.gov (United States)

    Yoon, Jeong-Yeol; Heinze, Brian C.; Gamboa, Jessica; You, David J.

    2009-05-01

    Virus antigens of avian influenza subtype H3N2 were detected on two different microfluidic platforms: microchannel and droplet. Latex immunoagglutination assays were performed using 920-nm highly carboxylated polystyrene beads that are conjugated with antibody to avian influenza virus. The bead suspension was merged with the solutions of avian influenza virus antigens in a Y-junction of a microchannel made by polydimethylsiloxane soft lithography. The resulting latex immunoagglutinations were measured with two optical fibers in proximity setup to detect 45° forward light scattering. Alternatively, 10 μL droplets of a bead suspension and an antigen solution were merged on a superhydrophobic surface (water contact angle = 155°), whose movement was guided by a metal wire, and 180° back light scattering is measured with a backscattering optical probe. Detection limits were 0.1 pg mL-1 for both microchannel with proximity fibers and droplet microfluidics, thanks to the use of micro-positioning stages to help generate reproducible optical signals. Additionally, optical waveguide was tested by constructing optical waveguide channels (filled with mineral oil) within a microfluidic device to detect the same light scattering. Detection limit was 0.1 ng mL-1 for an optical waveguide device, with a strong potential of improvement in the near future. The use of optical waveguide enabled smaller device setup, easier operation, smaller standard deviations and broader linear range of assay than proximity fiber microchannel and droplet microfluidics. Total assay time was less than 10 min.

  11. Electron cascades in sensors for optical detection of ionizing radiation

    International Nuclear Information System (INIS)

    London, Richard A.; Lowry, Mark E.; Vernon, Stephen P.; Stewart, Richard E.

    2013-01-01

    A new class of high-speed detectors, called RadOptic detectors, measures ionizing radiation incident on a transparent semiconductor by sensing changes in the refractive index with an optical probe beam. We describe the role of radiation-initiated electron cascades in setting the sensitivity and the spatial and temporal resolution of RadOptic detectors. We model electron cascades with both analytical and Monte Carlo computational methods. We find that the timescale for the development of an electron cascade is less than of order 100 fs and is not expected to affect the time response of a detector. The characteristic size of the electron cloud is typically less than 2 μm, enabling high spatial resolution in imaging systems. The electron-hole pair density created by single x-rays is much smaller than the saturation density and, therefore, single events should not saturate the detector

  12. Machine Learning Techniques for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Thrane, Jakob; Wass, Jesper; Piels, Molly

    2017-01-01

    Linear signal processing algorithms are effective in dealing with linear transmission channel and linear signal detection, while the nonlinear signal processing algorithms, from the machine learning community, are effective in dealing with nonlinear transmission channel and nonlinear signal...... detection. In this paper, a brief overview of the various machine learning methods and their application in optical communication is presented and discussed. Moreover, supervised machine learning methods, such as neural networks and support vector machine, are experimentally demonstrated for in-band optical...

  13. Simulation and detection of massive Dirac fermions with cold atoms in one-dimensional optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yafei, E-mail: yfyuks@hotmail.com [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); Shan Chuanjia [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China); College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002 (China); Mei Feng; Zhang Zhiming [Laboratory of Nanophotonic Functional Materials and Devices, LQIT and SIPSE, South China Normal University, Guangzhou 510006 (China)

    2012-09-15

    We propose a simple but feasible experimental scheme to simulate and detect Dirac fermions with cold atoms trapped in one-dimensional optical lattice. In our scheme, through tuning the laser intensity, the one-dimensional optical lattice can have two sites in each unit cell and the atoms around the low energy behave as massive Dirac fermions. Furthermore, we show that these relativistic quasiparticles can be detected experimentally by using atomic density profile measurements and Bragg scattering.

  14. Remote detection of single emitters via optical waveguides

    Science.gov (United States)

    Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert

    2014-05-01

    The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.

  15. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques

    Directory of Open Access Journals (Sweden)

    Kemal Akyol

    2016-01-01

    Full Text Available With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC.

  16. Guided wave and damage detection in composite laminates using different fiber optic sensors.

    Science.gov (United States)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-01-01

    Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent.

  17. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  18. Production and detection of light bosons using optical resonators

    International Nuclear Information System (INIS)

    Hoogeveen, F.; Ziegenhagen, T.

    1990-11-01

    Experiments looking for light spin zero particles using the 'shining light through walls' technique can be improved by enclosing the light in an optical resonator. In this paper we analyze this technique. The effect of using cavities factorizes into a gainfactor for both the emitting and the receiving cavity and a modecoupling constant. The gain factor only depends on the optical quality of the two cavities, whereas the modecoupling constant depends, but not sensitively, in a calculable way on the geometry, axion mass and magnetic fields used. An increase in sensitivity by a factor 10 in the axion photon coupling constant is within reach. (orig.)

  19. Detection of optic nerve lesions in optic neuritis using frequency-selective fat-saturation sequences

    International Nuclear Information System (INIS)

    Miller, D.H.; MacManus, D.G.; Bartlett, P.A.; Kapoor, R.; Morrissey, S.P.; Moseley, I.F.

    1993-01-01

    MRI was performed on seven patients with acute optic neuritis, using two sequences which suppress the signal from orbital fat: frequency-selective fat-saturation and inversion recovery with a short inversion time. Lesions were seen on both sequences in all the symptomatic optic nerves studied. (orig.)

  20. An optical-near-IR study of a triplet of super star clusters in the starburst core of M82

    Energy Technology Data Exchange (ETDEWEB)

    Westmoquette, M. S. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Bastian, N. [Excellence Cluster Universe, Boltzmannstrasse 2, D-85748 Garching bei München (Germany); Smith, L. J. [Space Telescope Science Institute and European Space Agency, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Seth, A. C. [University of Utah, Salt Lake City, UT 84112 (United States); Gallagher III, J. S.; Ryon, J. E. [Department of Astronomy, University of Wisconsin-Madison, 5534 Sterling, 475 North Charter Street, Madison, WI 53706 (United States); O' Connell, R. W. [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Silich, S.; Mayya, Y. D.; González, D. Rosa [Instituto Nacional de Astrofísica, Optica y Electronica, Luis Enrique Erro 1, Tonantzintla, C.P. 72840, Puebla (Mexico); Muñoz-Tuñón, C., E-mail: westmoquette@gmail.com [Instituto de Astrofísica de Canarias, C/vía Láctea s/n, E-38200 La Laguna, Tenerife (Spain)

    2014-07-10

    We present HST/STIS optical and Gemini/NIFS near-IR IFU spectroscopy and archival Hubble Space Telescope (HST) imaging of the triplet of super star clusters (A1, A2, and A3) in the core of the M82 starburst. Using model fits to the Space Telescope Imaging Spectrograph (STIS) spectra and the weakness of red supergiant CO absorption features (appearing at ∼6 Myr) in the NIFS H-band spectra, the ages of A2 and A3 are 4.5 ± 1.0 Myr. A1 has strong CO bands, consistent with our previously determined age of 6.4 ± 0.5 Myr. The photometric masses of the three clusters are 4-7 × 10{sup 5} M{sub ☉}, and their sizes are R{sub eff} = 159, 104, 59 mas (∼2.8, 1.8, 1.0 pc) for A1, A2, and A3. The STIS spectra yielded radial velocities of 320 ± 2, 330 ± 6, and 336 ± 5 km s{sup –1} for A1, A2, and A3, placing them at the eastern end of the x{sub 2} orbits of M82's bar. Clusters A2 and A3 are in high-density (800-1000 cm{sup –3}) environments, and like A1, are surrounded by compact H II regions. We suggest the winds from A2 and A3 have stalled, as in A1, due to the high ISM ambient pressure. We propose that the three clusters were formed in situ on the outer x{sub 2} orbits in regions of dense molecular gas subsequently ionized by the rapidly evolving starburst. The similar radial velocities of the three clusters and their small projected separation of ∼25 pc suggest that they may merge in the near future unless this is prevented by velocity shearing.

  1. Evolution of the cluster optical galaxy luminosity function in the CFHTLS: breaking the degeneracy between mass and redshift

    Science.gov (United States)

    Sarron, F.; Martinet, N.; Durret, F.; Adami, C.

    2018-06-01

    Obtaining large samples of galaxy clusters is important for cosmology: cluster counts as a function of redshift and mass can constrain the parameters of our Universe. They are also useful in order to understand the formation and evolution of clusters. We develop an improved version of the Adami & MAzure Cluster FInder (AMACFI), now the Adami, MAzure & Sarron Cluster FInder (AMASCFI), and apply it to the 154 deg2 of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) to obtain a large catalogue of 1371 cluster candidates with mass M200 > 1014 M⊙ and redshift z ≤ 0.7. We derive the selection function of the algorithm from the Millennium simulation, and cluster masses from a richness-mass scaling relation built from matching our candidates with X-ray detections. We study the evolution of these clusters with mass and redshift by computing the i'-band galaxy luminosity functions (GLFs) for the early-type (ETGs) and late-type galaxies (LTGs). This sample is 90% pure and 70% complete, and therefore our results are representative of a large fraction of the cluster population in these redshift and mass ranges. We find an increase in both the ETG and LTG faint populations with decreasing redshift (with Schechter slopes αETG = -0.65 ± 0.03 and αLTG = -0.95 ± 0.04 at z = 0.6, and αETG = -0.79 ± 0.02 and αLTG = -1.26 ± 0.03 at z = 0.2) and also a decrease in the LTG (but not the ETG) bright end. Our large sample allows us to break the degeneracy between mass and redshift, finding that the redshift evolution is more pronounced in high-mass clusters, but that there is no significant dependence of the faint end on mass for a given redshift. These results show that the cluster red sequence is mainly formed at redshift z > 0.7, and that faint ETGs continue to enrich the red sequence through quenching of brighter LTGs at z ≤ 0.7. The efficiency of this quenching is higher in large-mass clusters, while the accretion rate of faint LTGs is lower as the more massive

  2. LeARN: a platform for detecting, clustering and annotating non-coding RNAs

    Directory of Open Access Journals (Sweden)

    Schiex Thomas

    2008-01-01

    Full Text Available Abstract Background In the last decade, sequencing projects have led to the development of a number of annotation systems dedicated to the structural and functional annotation of protein-coding genes. These annotation systems manage the annotation of the non-protein coding genes (ncRNAs in a very crude way, allowing neither the edition of the secondary structures nor the clustering of ncRNA genes into families which are crucial for appropriate annotation of these molecules. Results LeARN is a flexible software package which handles the complete process of ncRNA annotation by integrating the layers of automatic detection and human curation. Conclusion This software provides the infrastructure to deal properly with ncRNAs in the framework of any annotation project. It fills the gap between existing prediction software, that detect independent ncRNA occurrences, and public ncRNA repositories, that do not offer the flexibility and interactivity required for annotation projects. The software is freely available from the download section of the website http://bioinfo.genopole-toulouse.prd.fr/LeARN

  3. Near-Duplicate Web Page Detection: An Efficient Approach Using Clustering, Sentence Feature and Fingerprinting

    Directory of Open Access Journals (Sweden)

    J. Prasanna Kumar

    2013-02-01

    Full Text Available Duplicate and near-duplicate web pages are the chief concerns for web search engines. In reality, they incur enormous space to store the indexes, ultimately slowing down and increasing the cost of serving results. A variety of techniques have been developed to identify pairs of web pages that are aldquo;similarardquo; to each other. The problem of finding near-duplicate web pages has been a subject of research in the database and web-search communities for some years. In order to identify the near duplicate web pages, we make use of sentence level features along with fingerprinting method. When a large number of web documents are in consideration for the detection of web pages, then at first, we use K-mode clustering and subsequently sentence feature and fingerprint comparison is used. Using these steps, we exactly identify the near duplicate web pages in an efficient manner. The experimentation is carried out on the web page collections and the results ensured the efficiency of the proposed approach in detecting the near duplicate web pages.

  4. Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach

    Science.gov (United States)

    Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin

    2017-08-01

    Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.

  5. How to detect the gravitationally induced phase shift of electromagnetic waves by optical-fiber interferometry

    International Nuclear Information System (INIS)

    Tanaka, K.

    1983-01-01

    Attention is called to a laboratory experiment of an optical-fiber interferometer which can show the gravitationally induced phase shift of optical waves. A phase shift of approx.10 -6 rad is anticipated for the Earth's gravitational potential difference of 1 m when a He-Ne laser and two multiple-turn optical-fiber loops of length 5 km are used. The phase shift can be varied by rotating the loops about an axis parallel to the Earth's surface. This order of phase shifts can be detected by current optical-fiber interferometric techniques

  6. Functionalization of optical nanotip arrays with an electrochemical microcantilever for multiplexed DNA detection.

    Science.gov (United States)

    Descamps, Emeline; Duroure, Nathalie; Deiss, Frédérique; Leichlé, Thierry; Adam, Catherine; Mailley, Pascal; Aït-Ikhlef, Ali; Livache, Thierry; Nicu, Liviu; Sojic, Neso

    2013-08-07

    Optical nanotip arrays fabricated on etched fiber bundles were functionalized with DNA spots. Such unconventional substrates (3D and non-planar) are difficult to pattern with standard microfabrication techniques but, using an electrochemical cantilever, up to 400 spots were electrodeposited on the nanostructured optical surface in 5 min. This approach allows each spot to be addressed individually and multiplexed fluorescence detection is demonstrated. Finally, remote fluorescence detection was performed by imaging through the optical fiber bundle itself after hybridisation with the complementary sequence.

  7. Automated Detection of Short Optical Transients of Astrophysical Origin in Real Time

    Directory of Open Access Journals (Sweden)

    Marcin Sokołowski

    2010-01-01

    Full Text Available The detection of short optical transients of astrophysical origin in real time is an important task for existing robotic telescopes. The faster a new optical transient is detected, the earlier follow-up observations can be started. The sooner the object is identified, the more data can be collected before the source fades away, particularly in the most interesting early period of the transient. In this the real-time pipeline designed for identification of optical flashes with the “Pi of the Sky” project will be presented in detail together with solutions used by other experiments.

  8. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Richard Karl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiemann, Dora K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Choi, Junoh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howell, Stephen W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.

  9. Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey

    Science.gov (United States)

    Almazroa, Ahmed; Burman, Ritambhar; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2015-01-01

    Glaucoma is the second leading cause of loss of vision in the world. Examining the head of optic nerve (cup-to-disc ratio) is very important for diagnosing glaucoma and for patient monitoring after diagnosis. Images of optic disc and optic cup are acquired by fundus camera as well as Optical Coherence Tomography. The optic disc and optic cup segmentation techniques are used to isolate the relevant parts of the retinal image and to calculate the cup-to-disc ratio. The main objective of this paper is to review segmentation methodologies and techniques for the disc and cup boundaries which are utilized to calculate the disc and cup geometrical parameters automatically and accurately to help the professionals in the glaucoma to have a wide view and more details about the optic nerve head structure using retinal fundus images. We provide a brief description of each technique, highlighting its classification and performance metrics. The current and future research directions are summarized and discussed. PMID:26688751

  10. Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey

    Directory of Open Access Journals (Sweden)

    Ahmed Almazroa

    2015-01-01

    Full Text Available Glaucoma is the second leading cause of loss of vision in the world. Examining the head of optic nerve (cup-to-disc ratio is very important for diagnosing glaucoma and for patient monitoring after diagnosis. Images of optic disc and optic cup are acquired by fundus camera as well as Optical Coherence Tomography. The optic disc and optic cup segmentation techniques are used to isolate the relevant parts of the retinal image and to calculate the cup-to-disc ratio. The main objective of this paper is to review segmentation methodologies and techniques for the disc and cup boundaries which are utilized to calculate the disc and cup geometrical parameters automatically and accurately to help the professionals in the glaucoma to have a wide view and more details about the optic nerve head structure using retinal fundus images. We provide a brief description of each technique, highlighting its classification and performance metrics. The current and future research directions are summarized and discussed.

  11. Optical Detection of Ketoprofen by Its Electropolymerization on an Indium Tin Oxide-Coated Optical Fiber Probe.

    Science.gov (United States)

    Bogdanowicz, Robert; Niedziałkowski, Paweł; Sobaszek, Michał; Burnat, Dariusz; Białobrzeska, Wioleta; Cebula, Zofia; Sezemsky, Petr; Koba, Marcin; Stranak, Vitezslav; Ossowski, Tadeusz; Śmietana, Mateusz

    2018-04-27

    In this work an application of optical fiber sensors for real-time optical monitoring of electrochemical deposition of ketoprofen during its anodic oxidation is discussed. The sensors were fabricated by reactive magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm-long core of polymer-clad silica fibers. ITO tuned in optical properties and thickness allows for achieving a lossy-mode resonance (LMR) phenomenon and it can be simultaneously applied as an electrode in an electrochemical setup. The ITO-LMR electrode allows for optical monitoring of changes occurring at the electrode during electrochemical processing. The studies have shown that the ITO-LMR sensor’s spectral response strongly depends on electrochemical modification of its surface by ketoprofen. The effect can be applied for real-time detection of ketoprofen. The obtained sensitivities reached over 1400 nm/M (nm·mg −1 ·L) and 16,400 a.u./M (a.u.·mg −1 ·L) for resonance wavelength and transmission shifts, respectively. The proposed method is a valuable alternative for the analysis of ketoprofen within the concentration range of 0.25⁻250 μg mL −1 , and allows for its determination at therapeutic and toxic levels. The proposed novel sensing approach provides a promising strategy for both optical and electrochemical detection of electrochemical modifications of ITO or its surface by various compounds.

  12. Damage and failure detection of composites using optical fiber vibration sensor

    International Nuclear Information System (INIS)

    Yang, Y. C.; Han, K. S.

    2001-01-01

    An intensity-based optical fiber vibration sensor is applied to detect and evaluate damages and fiber failure of composites. The optical fiber vibration sensor is constructed by placing two cleaved fiber end, one of which is cantilevered in a hollow glass tube. The movement of the cantilevered section lags behind the rest of the sensor in response to an applied vibration and the amount of light coupled between the two fibers is thereby modulated. Vibration characteristics of the optical fiber vibration sensor are investigated. Surface mounted optical fiber vibration sensor is used in tensile and indentation test. Experimental results show that the optical fiber sensor can detect damages and fiber failure of composites correctly

  13. Development of Laser LEDs Based a Programmable Optical Sensor for Detection of Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Amit K. Sharma

    2009-01-01

    Full Text Available The laser LED based optical sensor and its multifunctional operation for detection of environmental pollutants are described. The work will provide the instructions to design of circuitry for optical sensor instrument with a program based on a microcontroller (8902051-24PI, and to allow this program to communicate via RS-232 with computer. An algorithm is outlined by which the sensor instrument can use three laser LEDs (blue, Green and red to quantify the composition of pollutant. The operation of measurement through optical sensor has been applied to the study of detection and rate of reaction of pollutant i.e. methyl parathion and the produced informative data were also correlated with UV-vis spectrophotometry for the validation of results. The purpose of designed optical sensor is that the sophisticated analytical techniques show costly impact, time taking process, high consumable solvents and not suit for field application purpose which focuses the merits of the optical sensor.

  14. Analysis of a continuous-variable quadripartite cluster state from a single optical parametric oscillator

    International Nuclear Information System (INIS)

    Midgley, S. L. W.; Olsen, M. K.; Bradley, A. S.; Pfister, O.

    2010-01-01

    We examine the feasibility of generating continuous-variable multipartite entanglement in an intracavity concurrent downconversion scheme that has been proposed for the generation of cluster states by Menicucci et al. [Phys. Rev. Lett. 101, 130501 (2008)]. By calculating optimized versions of the van Loock-Furusawa correlations we demonstrate genuine quadripartite entanglement and investigate the degree of entanglement present. Above the oscillation threshold the basic cluster state geometry under consideration suffers from phase diffusion. We alleviate this problem by incorporating a small injected signal into our analysis. Finally, we investigate squeezed joint operators. While the squeezed joint operators approach zero in the undepleted regime, we find that this is not the case when we consider the full interaction Hamiltonian and the presence of a cavity. In fact, we find that the decay of these operators is minimal in a cavity, and even depletion alone inhibits cluster state formation.

  15. Near field ice detection using infrared based optical imaging technology

    Science.gov (United States)

    Abdel-Moati, Hazem; Morris, Jonathan; Zeng, Yousheng; Corie, Martin Wesley; Yanni, Victor Garas

    2018-02-01

    If not detected and characterized, icebergs can potentially pose a hazard to oil and gas exploration, development and production operations in arctic environments as well as commercial shipping channels. In general, very large bergs are tracked and predicted using models or satellite imagery. Small and medium bergs are detectable using conventional marine radar. As icebergs decay they shed bergy bits and growlers, which are much smaller and more difficult to detect. Their low profile above the water surface, in addition to occasional relatively high seas, makes them invisible to conventional marine radar. Visual inspection is the most common method used to detect bergy bits and growlers, but the effectiveness of visual inspections is reduced by operator fatigue and low light conditions. The potential hazard from bergy bits and growlers is further increased by short detection range (<1 km). As such, there is a need for robust and autonomous near-field detection of such smaller icebergs. This paper presents a review of iceberg detection technology and explores applications for infrared imagers in the field. Preliminary experiments are performed and recommendations are made for future work, including a proposed imager design which would be suited for near field ice detection.

  16. A model-based clustering method to detect infectious disease transmission outbreaks from sequence variation.

    Directory of Open Access Journals (Sweden)

    Rosemary M McCloskey

    2017-11-01

    Full Text Available Clustering infections by genetic similarity is a popular technique for identifying potential outbreaks of infectious disease, in part because sequences are now routinely collected for clinical management of many infections. A diverse number of nonparametric clustering methods have been developed for this purpose. These methods are generally intuitive, rapid to compute, and readily scale with large data sets. However, we have found that nonparametric clustering methods can be biased towards identifying clusters of diagnosis-where individuals are sampled sooner post-infection-rather than the clusters of rapid transmission that are meant to be potential foci for public health efforts. We develop a fundamentally new approach to genetic clustering based on fitting a Markov-modulated Poisson process (MMPP, which represents the evolution of transmission rates along the tree relating different infections. We evaluated this model-based method alongside five nonparametric clustering methods using both simulated and actual HIV sequence data sets. For simulated clusters of rapid transmission, the MMPP clustering method obtained higher mean sensitivity (85% and specificity (91% than the nonparametric methods. When we applied these clustering methods to published sequences from a study of HIV-1 genetic clusters in Seattle, USA, we found that the MMPP method categorized about half (46% as many individuals to clusters compared to the other methods. Furthermore, the mean internal branch lengths that approximate transmission rates were significantly shorter in clusters extracted using MMPP, but not by other methods. We determined that the computing time for the MMPP method scaled linearly with the size of trees, requiring about 30 seconds for a tree of 1,000 tips and about 20 minutes for 50,000 tips on a single computer. This new approach to genetic clustering has significant implications for the application of pathogen sequence analysis to public health, where

  17. Miniaturised Optical Fibre Sensor for Dew Detection Inside Organ Pipes

    Directory of Open Access Journals (Sweden)

    Francesco Baldini

    2008-01-01

    Full Text Available A new optical sensor for the continuous monitoring of the dew formation inside organ pipes was designed. This aspect is particularly critical for the conservation of organs in unheated churches since the dew formation or the condensation on the pipe surfaces can contribute to many kinds of physical and chemical disruptive mechanisms. The working principle is based on the change in the reflectivity which is observed on the surface of the fibre tip, when a water layer is formed on its distal end. Intensity changes of the order of 35% were measured, following the formation of the water layer on the distal end of a 400/430 μm optical fibre. Long-term tests carried out placing the fibre tip inside the base of an in-house-made metallic foot of an organ pipe located in an external environment revealed the consistency of the proposed system.

  18. ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection

    Directory of Open Access Journals (Sweden)

    SARACOGLU, O. G.

    2016-08-01

    Full Text Available This paper presents a modeling approach based on the use of fuzzy reasoning mechanism to define a measured data set obtained from an optical sensing circuit. For this purpose, we implemented a simple but effective an in vitro optical sensor to measure glucose content of an aqueous solution. Measured data contain analog voltages representing the absorbance values of three wavelengths measured from an RGB LED in different glucose concentrations. To achieve a desired model performance, the parameters of the fuzzy models are optimized by using the artificial bee colony (ABC algorithm. The modeling results presented in this paper indicate that the fuzzy model optimized by the algorithm provide a successful modeling performance having the minimum mean squared error (MSE of 0.0013 which are in clearly good agreement with the measurements.

  19. Revisiting Bragg's X-ray microscope: scatter based optical transient grating detection of pulsed ionising radiation.

    Science.gov (United States)

    Fullagar, Wilfred K; Paganin, David M; Hall, Chris J

    2011-06-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    OpenAIRE

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.

    2014-01-01

    Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguo...

  1. Detection of hydrocarbons using suspended core microstructured optical fiber

    Czech Academy of Sciences Publication Activity Database

    Martan, Tomáš; Aubrecht, Ivo; Podrazký, Ondřej; Matějec, Vlastimil; Kašík, Ivan

    2014-01-01

    Roč. 202, October (2014), s. 123-128 ISSN 0925-4005 R&D Projects: GA MŠk(CZ) LF11001; GA MŠk(CZ) LD11030 Grant - others:COST(XE) TD1001 Institutional support: RVO:67985882 Keywords : Evanescent wave * Microstructured optical fiber * Refractive index Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 4.097, year: 2014

  2. Detection of hydrocarbons using suspended core microstructured optical fiber

    Czech Academy of Sciences Publication Activity Database

    Martan, Tomáš; Aubrecht, Ivo; Podrazký, Ondřej; Matějec, Vlastimil; Kašík, Ivan

    2014-01-01

    Roč. 202, October (2014), s. 123-128 ISSN 0925-4005 R&D Projects: GA MŠk(CZ) LF11001; GA MŠk(CZ) LD11030 Grant - others:COST(XE) TD1001 Institutional support: RVO:67985882 Keywords : Evanescent wave * Microstructured optic al fiber * Refractive index Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 4.097, year: 2014

  3. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  4. A laser optical method for detecting corn kernel defects

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekaran, S.; Paulsen, M. R.; Shove, G. C.

    1984-01-01

    An opto-electronic instrument was developed to examine individual corn kernels and detect various kernel defects according to reflectance differences. A low power helium-neon (He-Ne) laser (632.8 nm, red light) was used as the light source in the instrument. Reflectance from good and defective parts of corn kernel surfaces differed by approximately 40%. Broken, chipped, and starch-cracked kernels were detected with nearly 100% accuracy; while surface-split kernels were detected with about 80% accuracy. (author)

  5. Rapid Optical Detection and Classification of Microbes in Suspicious Powders

    Science.gov (United States)

    2018-06-01

    Asher, “A New 224nm Hollow Cathode UV Laser Raman Spectrometer”, J. App. Spectroscopy, Vol. 55, No. 1, Jan 2001. [5] Storrie-Lombardi, M. C., W. F...Bhartia,R., E.C. Salas, W.F. Hug, R.D. Reid, A.L. Lane, K.J. Edwards, and K.J. Nealson, “Label-free bacterial imaging with deep UV laser induced...on natural surfaces using solar-blind deep UV excitation and detection. Detection is typically accomplished in less one second. The detection method

  6. High speed low power optical detection of sub-wavelength scatterer

    NARCIS (Netherlands)

    Roy, S.; Bouwens, M.A.J.; Wei, L.; Pereira, S.F.; Urbach, H.P.; Walle, P. van der

    2015-01-01

    Optical detection of scatterers on a flat substrate, generally done using dark field microscopy technique, is challenging since it requires high power illumination to obtain sufficient SNR (Signal to Noise Ratio) to be able to detect sub-wavelength particles. We developed a bright field technique,

  7. A Fossil Bulge Globular Cluster Revealed by very Large Telescope Multi-conjugate Adaptive Optics

    Czech Academy of Sciences Publication Activity Database

    Ortolani, S.; Barbuy, B.; Momany, Y.; Saviane, I.; Bica, E.; Jílková, L.; Salerno, G.M.; Jungwiert, Bruno

    2011-01-01

    Roč. 737, č. 1 (2011), 31/1-31/9 ISSN 0004-637X Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxy * globular clusters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.024, year: 2011

  8. Non-Linear Optically Active Metal Clusters in Nanoscaled Systems Including Self-Assembled Organic Films

    DEFF Research Database (Denmark)

    Balzer, Frank; Jett, S. D.; Rubahn, Horst-Günter

    2000-01-01

    are initially monitored in ultrahigh vacuum by comparison of calculated with measured polarization-dependent extinction spectra. We find that at low surface temperatures (150 K) the cluster growth is very similar to growth directly on insulating substrates. With increasing surface temperature the size...

  9. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Wei, Jun; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Lu, Yao; Zhou, Chuan; Samala, Ravi

    2014-01-01

    Purpose: To investigate the feasibility of a new two-dimensional (2D) multichannel response (MCR) analysis approach for the detection of clustered microcalcifications (MCs) in digital breast tomosynthesis (DBT). Methods: With IRB approval and informed consent, a data set of two-view DBTs from 42 breasts containing biopsy-proven MC clusters was collected in this study. The authors developed a 2D approach for MC detection using projection view (PV) images rather than the reconstructed three-dimensional (3D) DBT volume. Signal-to-noise ratio (SNR) enhancement processing was first applied to each PV to enhance the potential MCs. The locations of MC candidates were then identified with iterative thresholding. The individual MCs were decomposed with Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) basis functions and the channelized Hotelling model was trained to produce the MCRs for each MC on the 2D images. The MCRs from the PVs were fused in 3D by a coincidence counting method that backprojects the MC candidates on the PVs and traces the coincidence of their ray paths in 3D. The 3D MCR was used to differentiate the true MCs from false positives (FPs). Finally a dynamic clustering method was used to identify the potential MC clusters in the DBT volume based on the fact that true MCs of clinical significance appear in clusters. Using two-fold cross validation, the performance of the 3D MCR for classification of true and false MCs was estimated by the area under the receiver operating characteristic (ROC) curve and the overall performance of the MCR approach for detection of clustered MCs was assessed by free response receiver operating characteristic (FROC) analysis. Results: When the HG basis function was used for MCR analysis, the detection of MC cluster achieved case-based test sensitivities of 80% and 90% at the average FP rates of 0.65 and 1.55 FPs per DBT volume, respectively. With LG basis function, the average FP rates were 0.62 and 1.57 per DBT volume at

  10. The application of signal detection theory to optics

    Science.gov (United States)

    Helstrom, C. W.

    1972-01-01

    The role of measurements of noncommuting quantum observables is considered in the detection of signals and estimation of signal parameters by quantum receivers. The restoration of images focused on a photosensitive surface is discussed for data as numbers of photoelectrons ejected from various parts of the surface. The detection of an image formed on a photosensitive surface in the presence of background illumination for similar data is also considered.

  11. Fiber-Optic Magnetometry and Thermometry Using Optically Detected Magnetic Resonance With Nitrogen-Vacancy Centers in Diamond

    Science.gov (United States)

    Blakley, Sean Michael

    Nitrogen--vacancy diamond (NVD) quantum sensors are an emerging technology that has shown great promise in areas like high-resolution thermometry and magnetometry. Optical fibers provide attractive new application paradigms for NVD technology. A detailed description of the fabrication processes associated with the development of novel fiber-optic NVD probes are presented in this work. The demonstrated probes are tested on paradigmatic model systems designed to ascertain their suitability for use in challenging biological environments. Methods employing optically detected magnetic resonance (ODMR) are used to accurately measure and map temperature distributions of small objects and to demonstrate emergent temperature-dependent phenomena in genetically modified living organisms. These methods are also used to create detailed high resolution spatial maps of both magnetic scalar and magnetic vector field distributions of spatially localized weak field features in the presence of a noisy, high-field background.

  12. The Detection of Helicobacter hepaticus Using Whispering-Gallery Mode Microcavity Optical Sensors

    Directory of Open Access Journals (Sweden)

    Mark E. Anderson

    2015-08-01

    Full Text Available Current bacterial detection techniques are relatively slow, require bulky instrumentation, and usually require some form of specialized training. The gold standard for bacterial detection is culture testing, which can take several days to receive a viable result. Therefore, simpler detection techniques that are both fast and sensitive could greatly improve bacterial detection and identification. Here, we present a new method for the detection of the bacteria Helicobacter hepaticus using whispering-gallery mode (WGM optical microcavity-based sensors. Due to minimal reflection losses and low material adsorption, WGM-based sensors have ultra-high quality factors, resulting in high-sensitivity sensor devices. In this study, we have shown that bacteria can be non-specifically detected using WGM optical microcavity-based sensors. The minimum detection for the device was 1 × 104 cells/mL, and the minimum time of detection was found to be 750 s. Given that a cell density as low as 1 × 103 cells/mL for Helicobacter hepaticus can cause infection, the limit of detection shown here would be useful for most levels where Helicobacter hepaticus is biologically relevant. This study suggests a new approach for H. hepaticus detection using label-free optical sensors that is faster than, and potentially as sensitive as, standard techniques.

  13. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland)

    2015-07-01

    Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.

  14. Optical detection of singlet oxygen from single cells

    DEFF Research Database (Denmark)

    Snyder, John; Skovsen, Esben; Lambert, John D. C.

    2006-01-01

    The lowest excited electronic state of molecular oxygen, singlet molecular oxygen, O2(a 1g), is a reactive species involved in many chemical and biological processes. To better understand the roles played by singlet oxygen in biological systems, particularly at the sub-cellular level, optical tools...... including across the cell membrane into the extracellular environment. On one hand, these results demonstrate that the behavior of singlet oxygen in an intact cell can be significantly different from that inferred from model bulk studies. More generally, these results provide a new perspective...

  15. A fluorescent optical fibre chemosensor for mercury detection

    Science.gov (United States)

    Wren, Stephen P.; Sun, Tong; Grattan, Kenneth T. V.

    2015-09-01

    A proof-of-concept mercury probe was developed based on covalent attachment of a chemical coating to optical fibre. The sensing element comprised a dansyl derivative and crown ether moiety, acting as fluorophore and metal ion chelator respectively. An ON-OFF type fluorescence (quench) occurred upon binding of mercury ions, via an intramolecular charge transfer mechanism, in aqueous solution in the 909nM-90.9μM (247 ppb -24.7 ppm) concentration range. A washing protocol was identified for sensor regeneration allowing the probe to be re-used.

  16. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    Science.gov (United States)

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.

    2015-03-01

    Based on the Bardeen-Cooper-Schrieffer theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the photon pairs produced can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.

  17. Detection of bladder tumors using optical coherence tomography

    Science.gov (United States)

    Pan, Yingtian; Xie, Tuqiang; Wang, Zhenguo

    2004-07-01

    This paper summarizes the engineering development of our lab for endoscopic optical coherence tomography toward the ultimate goal to image bladder micro architecture and to diagnose bladder cancers. To test the utility and potential limitations of OCT setups for bladder tumor diagnosis, we used a rat bladder cancer model to track the morphological changes following tumor growth. Image results are presented, suggesting that OCT is able to differentiate cancerous lesions from inflammatory lesions based on OCT characterizations of epithelial thickness and backscattering changes of bladder tissue.

  18. Highly-sensitive and large-dynamic diffuse optical tomography system for breast tumor detection

    Science.gov (United States)

    Du, Wenwen; Zhang, Limin; Yin, Guoyan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Diffuse optical tomography (DOT) as a new functional imaging has important clinical applications in many aspects such as benign and malignant breast tumor detection, tumor staging and so on. For quantitative detection of breast tumor, a three-wavelength continuous-wave DOT prototype system combined the ultra-high sensitivity of the photon-counting detection and the measurement parallelism of the lock-in technique was developed to provide high temporal resolution, high sensitivity, large dynamic detection range and signal-to-noise ratio. Additionally, a CT-analogous scanning mode was proposed to cost-effectively increase the detection data. To evaluate the feasibility of the system, a series of assessments were conducted. The results demonstrate that the system can obtain high linearity, stability and negligible inter-wavelength crosstalk. The preliminary phantom experiments show the absorption coefficient is able to be successfully reconstructed, indicating that the system is one of the ideal platforms for optical breast tumor detection.

  19. Scanning Laser Polarimetry and Optical Coherence Tomography for Detection of Retinal Nerve Fiber Layer Defects

    Science.gov (United States)

    Oh, Jong-Hyun

    2009-01-01

    Purpose To compare the ability of scanning laser polarimetry with variable corneal compensation (GDx-VCC) and Stratus optical coherence tomography (OCT) to detect photographic retinal nerve fiber layer (RNFL) defects. Methods This retrospective cross-sectional study included 45 eyes of 45 consecutive glaucoma patients with RNFL defects in red-free fundus photographs. The superior and inferior temporal quadrants in each eye were included for data analysis separately. The location and presence of RNFL defects seen in red-free fundus photographs were compared with those seen in GDx-VCC deviation maps and OCT RNFL analysis maps for each quadrant. Results Of the 90 quadrants (45 eyes), 31 (34%) had no apparent RNFL defects, 29 (32%) had focal RNFL defects, and 30 (33%) had diffuse RNFL defects in red-free fundus photographs. The highest agreement between GDx-VCC and red-free photography was 73% when we defined GDx-VCC RNFL defects as a cluster of three or more color-coded squares (p<5%) along the traveling line of the retinal nerve fiber in the GDx-VCC deviation map (kappa value, 0.388; 95% confidence interval (CI), 0.195 to 0.582). The highest agreement between OCT and red-free photography was 85% (kappa value, 0.666; 95% CI, 0.506 to 0.825) when a value of 5% outside the normal limit for the OCT analysis map was used as a cut-off value for OCT RNFL defects. Conclusions According to the kappa values, the agreement between GDx-VCC deviation maps and red-free photography was poor, whereas the agreement between OCT analysis maps and red-free photography was good. PMID:19794943

  20. Application of Novel Software Algorithms to Spectral-Domain Optical Coherence Tomography for Automated Detection of Diabetic Retinopathy.

    Science.gov (United States)

    Adhi, Mehreen; Semy, Salim K; Stein, David W; Potter, Daniel M; Kuklinski, Walter S; Sleeper, Harry A; Duker, Jay S; Waheed, Nadia K

    2016-05-01

    To present novel software algorithms applied to spectral-domain optical coherence tomography (SD-OCT) for automated detection of diabetic retinopathy (DR). Thirty-one diabetic patients (44 eyes) and 18 healthy, nondiabetic controls (20 eyes) who underwent volumetric SD-OCT imaging and fundus photography were retrospectively identified. A retina specialist independently graded DR stage. Trained automated software generated a retinal thickness score signifying macular edema and a cluster score signifying microaneurysms and/or hard exudates for each volumetric SD-OCT. Of 44 diabetic eyes, 38 had DR and six eyes did not have DR. Leave-one-out cross-validation using a linear discriminant at missed detection/false alarm ratio of 3.00 computed software sensitivity and specificity of 92% and 69%, respectively, for DR detection when compared to clinical assessment. Novel software algorithms applied to commercially available SD-OCT can successfully detect DR and may have potential as a viable screening tool for DR in future. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:410-417.]. Copyright 2016, SLACK Incorporated.

  1. Detecting Massive, High-Redshift Galaxy Clusters Using the Thermal Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Adams, Carson; Steinhardt, Charles L.; Loeb, Abraham; Karim, Alexander; Staguhn, Johannes; Erler, Jens; Capak, Peter L.

    2017-01-01

    We develop the thermal Sunyaev-Zel'dovich (SZ) effect as a direct astrophysical measure of the mass distribution of dark matter halos. The SZ effect increases with cosmological distance, a unique astronomical property, and is highly sensitive to halo mass. We find that this presents a powerful methodology for distinguishing between competing models of the halo mass function distribution, particularly in the high-redshift domain just a few hundred million years after the Big Bang. Recent surveys designed to probe this epoch of initial galaxy formation such as CANDELS and SPLASH report an over-abundance of highly massive halos as inferred from stellar ultraviolet (UV) luminosities and the stellar mass to halo mass ratio estimated from nearby galaxies. If these UV luminosity to halo mass relations hold to high-redshift, observations estimate several orders of magnitude more highly massive halos than predicted by hierarchical merging and the standard cosmological paradigm. Strong constraints on the masses of these galaxy clusters are essential to resolving the current tension between observation and theory. We conclude that detections of thermal SZ sources are plausible at high-redshift only for the halo masses inferred from observation. Therefore, future SZ surveys will provide a robust determination between theoretical and observational predictions.

  2. HOTSPOTS DETECTION FROM TRAJECTORY DATA BASED ON SPATIOTEMPORAL DATA FIELD CLUSTERING

    Directory of Open Access Journals (Sweden)

    K. Qin

    2017-09-01

    Full Text Available City hotspots refer to the areas where residents visit frequently, and large traffic flow exist, which reflect the people travel patterns and distribution of urban function area. Taxi trajectory data contain abundant information about urban functions and citizen activities, and extracting interesting city hotspots from them can be of importance in urban planning, traffic command, public travel services etc. To detect city hotspots and discover a variety of changing patterns among them, we introduce a data field-based cluster analysis technique to the pick-up and drop-off points of taxi trajectory data and improve the method by introducing the time weight, which has been normalized to estimate the potential value in data field. Thus, in the light of the new potential function in data field, short distance and short time difference play a powerful role. So the region full of trajectory points, which is regarded as hotspots area, has a higher potential value, while the region with thin trajectory points has a lower potential value. The taxi trajectory data of Wuhan city in China on May 1, 6 and 9, 2015, are taken as the experimental data. From the result, we find the sustaining hotspots area and inconstant hotspots area in Wuhan city based on the spatiotemporal data field method. Further study will focus on optimizing parameter and the interaction among hotspots area.

  3. Detection of gold cluster ions by ion-to-ion conversion using a CsI-converter

    International Nuclear Information System (INIS)

    Nguyen, V.-T.; Novilkov, A.C.; Obnorskii, V.V.

    1997-01-01

    Gold cluster ions in the m/z range of 10 4 -2 x 10 6 u were produced by bombarding a thin film of gold with 252 Cf-fission fragments. The gold covering a C-Al substrate formed islets having a mean diameter of 44 A. Their size- and mass-distribution was determined by means of electron microscopy. The main task was to measure the m/z distribution of the cluster ions ejected from the sample surface. For this purpose we built a time-of-flight (TOF) mass spectrometer, which could be used as a linear TOF instrument or, alternatively, as a tandem-TOF instrument being equipped with an ion-to-ion converter. Combining the results obtained in both modes, it turned out that the linear TOF instrument equipped with micro-channel plates had a mean detection efficiency for 20 keV cluster ions of about 40%. In the tandem mode, the cluster ions hit a CsI converter with energies of 40z keV (z = charge state), from where secondary ions - mainly Cs + and (CsI) n Cs + cluster ions - were ejected. These ions were used to measure the TOF spectrum of the gold cluster ions. The detection efficiency of the cluster ions was found to vary in the available mass range from 99.7% to 96.5%. The complete mass distribution between 4 x 10 4 and 4 x 10 6 u was determined and compared with the corresponding mass distribution of the gold islets covering the substrate. (orig.)

  4. Detection of pH-induced aggregation of "smart" gold nanoparticles with photothermal optical coherence tomography.

    Science.gov (United States)

    Xiao, Peng; Li, Qingyun; Joo, Yongjoon; Nam, Jutaek; Hwang, Sekyu; Song, Jaejung; Kim, Sungjee; Joo, Chulmin; Kim, Ki Hean

    2013-11-01

    We report the feasibility of a novel contrast agent, namely "smart" gold nanoparticles (AuNPs), in the detection of cancer cells with photothermal optical coherence tomography (PT-OCT). "Smart" AuNPs form aggregation in low pH condition, which is typical for cancer cells, and this aggregation results in a shift of their absorption spectrum. A PT-OCT system was developed to detect this pH-induced aggregation by combining an OCT light source and a laser with 660 nm in wavelength for photothermal excitation. Optical detection of pH-induced aggregation was tested with solution samples at two different pH conditions. An increase in optical path length (OPL) variation was measured at mild acidic condition, while there was not much change at neutral condition. Detection of cancer cells was tested with cultured cell samples. HeLa and fibroblast cells, as cancer and normal cells respectively, were incubated with "smart" gold nanoparticles and measured with PT-OCT. An elevated OPL variation signal was detected with the HeLa cells while not much of a signal was detected with the fibroblast cells. With the novel optical property of "smart" AuNPs and high sensitivity of PT-OCT, this technique is promising for cancer cell detection.

  5. X-RAY DETECTION OF THE CLUSTER CONTAINING THE CEPHEID S MUS

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nancy Remage; Pillitteri, Ignazio; Wolk, Scott; Karovska, Margarita; DePasquale, Joseph; Tingle, Evan [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Guinan, Edward; Engle, Scott [Department of Astronomy and Astrophysics, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Schaefer, Gail H., E-mail: nevans@cfa.harvard.edu [The CHARA Array of Georgia State University, Mount Wilson, CA 91023 (United States)

    2014-04-20

    The galactic Cepheid S Muscae has recently been added to the important list of Cepheids linked to open clusters, in this case the sparse young cluster ASCC 69. Low-mass members of a young cluster are expected to have rapid rotation and X-ray activity, making X-ray emission an excellent way to discriminate them from old field stars. We have made an XMM-Newton observation centered on S Mus and identified a population of X-ray sources whose near-IR Two Micron All Sky Survey counterparts lie at locations in the J, (J – K) color-magnitude diagram consistent with cluster membership at the distance of S Mus. Their median energy and X-ray luminosity are consistent with young cluster members as distinct from field stars. These strengthen the association of S Mus with the young cluster, making it a potential Leavitt law (period-luminosity relation) calibrator.

  6. X-Ray Detection of the Cluster Containing the Cepheid S Mus

    Science.gov (United States)

    Evans, Nancy Remage; Pillitteri, Ignazio; Wolk, Scott; Guinan, Edward; Engle, Scott; Bond, Howard E.; Schaefer, Gail H.; Karovska, Margarita; DePasquale, Joseph; Tingle, Evan

    2014-04-01

    The galactic Cepheid S Muscae has recently been added to the important list of Cepheids linked to open clusters, in this case the sparse young cluster ASCC 69. Low-mass members of a young cluster are expected to have rapid rotation and X-ray activity, making X-ray emission an excellent way to discriminate them from old field stars. We have made an XMM-Newton observation centered on S Mus and identified a population of X-ray sources whose near-IR Two Micron All Sky Survey counterparts lie at locations in the J, (J - K) color-magnitude diagram consistent with cluster membership at the distance of S Mus. Their median energy and X-ray luminosity are consistent with young cluster members as distinct from field stars. These strengthen the association of S Mus with the young cluster, making it a potential Leavitt law (period-luminosity relation) calibrator.

  7. X-RAY DETECTION OF THE CLUSTER CONTAINING THE CEPHEID S MUS

    International Nuclear Information System (INIS)

    Evans, Nancy Remage; Pillitteri, Ignazio; Wolk, Scott; Karovska, Margarita; DePasquale, Joseph; Tingle, Evan; Guinan, Edward; Engle, Scott; Bond, Howard E.; Schaefer, Gail H.

    2014-01-01

    The galactic Cepheid S Muscae has recently been added to the important list of Cepheids linked to open clusters, in this case the sparse young cluster ASCC 69. Low-mass members of a young cluster are expected to have rapid rotation and X-ray activity, making X-ray emission an excellent way to discriminate them from old field stars. We have made an XMM-Newton observation centered on S Mus and identified a population of X-ray sources whose near-IR Two Micron All Sky Survey counterparts lie at locations in the J, (J – K) color-magnitude diagram consistent with cluster membership at the distance of S Mus. Their median energy and X-ray luminosity are consistent with young cluster members as distinct from field stars. These strengthen the association of S Mus with the young cluster, making it a potential Leavitt law (period-luminosity relation) calibrator

  8. Theory of force detection using optically levitated nanoparticles

    Science.gov (United States)

    Rodenburg, Brandon; Neukirch, Levi; Pettit, Robert; Vamivakas, Nick; Bhattacharya, Mishkat

    2016-05-01

    Levitated nanoparticles offer the potential of being incredibly well isolated from the environment. This isolation makes such systems excellent candidates for tests of quantum mechanics at the macroscale and as versatile platforms for ultrasensitive metrology. Systems involving an optical cavity mode to provide the trapping field, as well as cooling mechanism of the particle's center of mass motion are well understood theoretically and provide a canonical system for the field of quantum optomechanics. However, techniques based on measurement based parametric cooling and feedback stabilization have made it possible to trap and manipulate a nanoparticle without the need for an optical cavity, even at extremely high vacuum where gas damping cannot stabilize the motion of the particle. For these cavityless systems, a fully quantum theory has recently been developed. In this talk we will present recent work that we have carried out to apply this theory to the use of such devices as force sensors, including a discussion of the ultimate limits placed on the sensitivity by the sources of fundamental quantum noise. Office of Naval Research.

  9. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    OpenAIRE

    Ivan, M.G.; Vivet, F.; Meinders, E.R.

    2010-01-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure to plasma and UV treatment, its transparency in UV-Vis regions of the light spectrum, and biocompatibility. The dual-detection mechanism allows the user more freedom in choosing the detection tool, ...

  10. Detection of weak optical signals with a laser amplifier

    International Nuclear Information System (INIS)

    Kozlovskii, A. V.

    2006-01-01

    Detection of weak and extremely weak light signals amplified by linear and four-wave mixing laser amplifiers is analyzed. Photoelectron distributions are found for different input photon statistics over a wide range of gain. Signal-to-noise ratios are calculated and analyzed for preamplification schemes using linear and four-wave mixing amplifiers. Calculations show that the high signal-to-noise ratio (much higher than unity), ensuring reliable detection of weak input signals, can be attained only with a four-wave mixing preamplification scheme. Qualitative dependence of the signal-to-noise ratio on the quantum statistical properties of both signal and idler waves is demonstrated

  11. Stellar mass black holes in star clusters: gravitational wave emission and detection rates

    OpenAIRE

    Banerjee, Sambaran

    2011-01-01

    We investigate the dynamics of stellar-mass black holes (BH) in star clusters focusing on the dynamical formation of BH-BH binaries, which are very important sources of gravitational waves (GW). We examine the properties of these BH-BH binaries through direct N-body computations of Plummer clusters, having initially N(0) = 5 X 10^4, typically a few of them dynamically harden to the extent that they can merge via GW emission within the cluster. Also, for each of such clusters, there are a few ...

  12. The use of the temporal scan statistic to detect methicillin-resistant Staphylococcus aureus clusters in a community hospital.

    Science.gov (United States)

    Faires, Meredith C; Pearl, David L; Ciccotelli, William A; Berke, Olaf; Reid-Smith, Richard J; Weese, J Scott

    2014-07-08

    In healthcare facilities, conventional surveillance techniques using rule-based guidelines may result in under- or over-reporting of methicillin-resistant Staphylococcus aureus (MRSA) outbreaks, as these guidelines are generally unvalidated. The objectives of this study were to investigate the utility of the temporal scan statistic for detecting MRSA clusters, validate clusters using molecular techniques and hospital records, and determine significant differences in the rate of MRSA cases using regression models. Patients admitted to a community hospital between August 2006 and February 2011, and identified with MRSA>48 hours following hospital admission, were included in this study. Between March 2010 and February 2011, MRSA specimens were obtained for spa typing. MRSA clusters were investigated using a retrospective temporal scan statistic. Tests were conducted on a monthly scale and significant clusters were compared to MRSA outbreaks identified by hospital personnel. Associations between the rate of MRSA cases and the variables year, month, and season were investigated using a negative binomial regression model. During the study period, 735 MRSA cases were identified and 167 MRSA isolates were spa typed. Nine different spa types were identified with spa type 2/t002 (88.6%) the most prevalent. The temporal scan statistic identified significant MRSA clusters at the hospital (n=2), service (n=16), and ward (n=10) levels (P ≤ 0.05). Seven clusters were concordant with nine MRSA outbreaks identified by hospital staff. For the remaining clusters, seven events may have been equivalent to true outbreaks and six clusters demonstrated possible transmission events. The regression analysis indicated years 2009-2011, compared to 2006, and months March and April, compared to January, were associated with an increase in the rate of MRSA cases (P ≤ 0.05). The application of the temporal scan statistic identified several MRSA clusters that were not detected by hospital

  13. Role of misalignment-induced angular chirp in the electro-optic detection of THz waves

    CERN Document Server

    Walsh, D A; Pan, R; Snedden, E W; Graham, D M; Gillespie, W A; Jamison, S P

    2014-01-01

    A general description of electro-optic detection including non-collinear phase matching and finite transverse beam profiles is presented. It is shown theoretically and experimentally that non-collinear phase matching in ZnTe (and similar materials) produces an angular chirp in the chi((2))-generated optical signal. Due to this, in non-collinear THz and probe arrangements such as single-shot THz measurements or through accidental misalignment, measurement of an undistorted THz signal is critically dependent on having sufficient angular acceptance in the optical probe path. The associated spatial walk-off can also preclude the phase retardation approximation used in THz-TDS. The rate of misalignment-induced chirping in commonly used ZnTe and GaP schemes is tabulated, allowing ready analysis of a detection system. (C) 2014 Optical Society of America.

  14. End point detection in ion milling processes by sputter-induced optical emission spectroscopy

    International Nuclear Information System (INIS)

    Lu, C.; Dorian, M.; Tabei, M.; Elsea, A.

    1984-01-01

    The characteristic optical emission from the sputtered material during ion milling processes can provide an unambiguous indication of the presence of the specific etched species. By monitoring the intensity of a representative emission line, the etching process can be precisely terminated at an interface. Enhancement of the etching end point is possible by using a dual-channel photodetection system operating in a ratio or difference mode. The installation of the optical detection system to an existing etching chamber has been greatly facilitated by the use of optical fibers. Using a commercial ion milling system, experimental data for a number of etching processes have been obtained. The result demonstrates that sputter-induced optical emission spectroscopy offers many advantages over other techniques in detecting the etching end point of ion milling processes

  15. Design and development of an optical fiber sensor for hydrogen detection

    International Nuclear Information System (INIS)

    Perrotton, Cedric

    2012-01-01

    Hydrogen detection is an environmental priority. Numerous hydrogen sensors have been developed, but none of them meet the industry requirements. Optical fiber sensors, electrically isolated, are excellent candidates for operating in explosive environments. Our goal is to develop an intrinsic optical fiber sensor based on Surface Plasmon Resonance. In this thesis, we study two optical fiber hydrogen sensors. The first sensor, based on amplitude modulation, consists of a thin Pd layer deposited on the multimode fiber core, after removing the optical cladding. The second design, based on wavelength modulation, consists of replacing the single Pd layer by a Au/SiO 2 /Pd multilayer stack. We demonstrate in this thesis that plasmonic sensors may be a solution to develop fast and reliable fiber hydrogen sensors. Finally, we study Mg alloys as hydrogen sensitive material in order to improve the detection range of hydrogen sensors. (author)

  16. ADAPTIVE OPTICS OBSERVATIONS OF 3 {mu}m WATER ICE IN SILHOUETTE DISKS IN THE ORION NEBULA CLUSTER AND M43

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Hiroshi; Pyo, Tae-Soo; Minowa, Yosuke; Hayano, Yutaka; Oya, Shin; Hattori, Masayuki; Takami, Hideki [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Tokunaga, Alan T. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Watanabe, Makoto [Department of Cosmosciences, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Saito, Yoshihiko [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Ito, Meguru [Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2 (Canada); Iye, Masanori, E-mail: terada@subaru.naoj.org [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-12-01

    We present the near-infrared images and spectra of four silhouette disks in the Orion Nebula Cluster (M42) and M43 using the Subaru Adaptive Optics system. While d053-717 and d141-1952 show no water ice feature at 3.1 {mu}m, a moderately deep ({tau}{sub ice} {approx} 0.7) water ice absorption is detected toward d132-1832 and d216-0939. Taking into account the water ice so far detected in the silhouette disks, the critical inclination angle to produce a water ice absorption feature is confirmed to be 65 Degree-Sign -75 Degree-Sign . As for d216-0939, the crystallized water ice profile is exactly the same as in the previous observations taken 3.63 years ago. If the water ice material is located at 30 AU, then the observations suggest it is uniform at a scale of about 3.5 AU.

  17. Development of optical immunosensors for detection of proteins in serum.

    Science.gov (United States)

    Kyprianou, Dimitris; Chianella, Iva; Guerreiro, Antonio; Piletska, Elena V; Piletsky, Sergey A

    2013-01-15

    The detection of proteins in biological samples such as blood, serum or plasma by biosensors is very challenging due to the complex nature of the matrix, which contains a high level of many interfering compounds. Here we show the application of a novel polymeric immobilisation matrix that helps in the detection of specific protein analytes in biological samples by surface plasmon resonance (SPR) immunosensors. This polymer matrix contains thioacetal functional groups included in the network, and these groups do not require any further activation in order to react with proteins, making it attractive for sensor fabrication. The protein prostate specific antigen (PSA) was selected as a model target analyte. A sandwich format with two primary antibodies recognising different parts (epitopes) of the analyte was used for the detection of PSA in serum. The efficiency of the reduction of non-specific binding achieved with novel polymer was compared with those of other techniques such as coating of sensor surface with polyethylene glycol (PEG), use of charged hydrophilic aspartic acid and surfactants such as Tween20. The detection limit of the polymer based immunosensor was 0.1 ng ml(-1) for free form PSA (f-PSA) in buffer and 5 ng ml(-1) in 20% serum. This is an improvement compared with similar devices reported on literature, indicating the potential of the immunosensor developed here for the analysis of real samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Planck intermediate results. XXVI. Optical identification and redshifts of Planck clusters with the RTT150 telescope

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    2015-01-01

    We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark...

  19. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    Energy Technology Data Exchange (ETDEWEB)

    Tsantis, Stavros [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504 (Greece); Spiliopoulos, Stavros; Karnabatidis, Dimitrios [Department of Radiology, School of Medicine, University of Patras, Rion, GR 26504 (Greece); Skouroliakou, Aikaterini [Department of Energy Technology Engineering, Technological Education Institute of Athens, Athens 12210 (Greece); Hazle, John D. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Kagadis, George C., E-mail: gkagad@gmail.com, E-mail: George.Kagadis@med.upatras.gr, E-mail: GKagadis@mdanderson.org [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504, Greece and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-07-15

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A

  20. Multiresolution edge detection using enhanced fuzzy c-means clustering for ultrasound image speckle reduction

    International Nuclear Information System (INIS)

    Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitrios; Skouroliakou, Aikaterini; Hazle, John D.; Kagadis, George C.

    2014-01-01

    Purpose: Speckle suppression in ultrasound (US) images of various anatomic structures via a novel speckle noise reduction algorithm. Methods: The proposed algorithm employs an enhanced fuzzy c-means (EFCM) clustering and multiresolution wavelet analysis to distinguish edges from speckle noise in US images. The edge detection procedure involves a coarse-to-fine strategy with spatial and interscale constraints so as to classify wavelet local maxima distribution at different frequency bands. As an outcome, an edge map across scales is derived whereas the wavelet coefficients that correspond to speckle are suppressed in the inverse wavelet transform acquiring the denoised US image. Results: A total of 34 thyroid, liver, and breast US examinations were performed on a Logiq 9 US system. Each of these images was subjected to the proposed EFCM algorithm and, for comparison, to commercial speckle reduction imaging (SRI) software and another well-known denoising approach, Pizurica's method. The quantification of the speckle suppression performance in the selected set of US images was carried out via Speckle Suppression Index (SSI) with results of 0.61, 0.71, and 0.73 for EFCM, SRI, and Pizurica's methods, respectively. Peak signal-to-noise ratios of 35.12, 33.95, and 29.78 and edge preservation indices of 0.94, 0.93, and 0.86 were found for the EFCM, SIR, and Pizurica's method, respectively, demonstrating that the proposed method achieves superior speckle reduction performance and edge preservation properties. Based on two independent radiologists’ qualitative evaluation the proposed method significantly improved image characteristics over standard baseline B mode images, and those processed with the Pizurica's method. Furthermore, it yielded results similar to those for SRI for breast and thyroid images significantly better results than SRI for liver imaging, thus improving diagnostic accuracy in both superficial and in-depth structures. Conclusions: A

  1. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  2. Optical photon detection in Al superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Brammertz, G.; Peacock, A.; Verhoeve, P.; Martin, D.; Venn, R.

    2004-01-01

    We report on the successful fabrication of low leakage aluminium superconducting tunnel junctions with very homogeneous and transparent insulating barriers. The junctions were tested in an adiabatic demagnetisation refrigerator with a base temperature of 35 mK. The normal resistance of the junctions is equal to ∼7 μΩ cm 2 with leakage currents in the bias voltage domain as low as 100 fA/μm 2 . Optical single photon counting experiments show a very high responsivity with charge amplification factors in excess of 100. The total resolving power λ/Δλ (including electronic noise) for 500 nm photons is equal to 13 compared to a theoretical tunnel limited value of 34. The current devices are found to be limited spectroscopically by spatial inhomogeneities in the detectors response

  3. Fiber-optic laser sensor for mine detection and verification

    International Nuclear Information System (INIS)

    Bohling, Christian; Scheel, Dirk; Hohmann, Konrad; Schade, Wolfgang; Reuter, Matthias; Holl, Gerhard

    2006-01-01

    What we believe to be a new optical approach for the identification of mines and explosives by analyzing the surface materials and not only bulk is developed. A conventional manually operated mine prodder is upgraded by laser-induced breakdown spectroscopy (LIBS). In situ and real-time information of materials that are in front of the prodder are obtained during the demining process in order to optimize the security aspects and the speed of demining. A Cr4+:Nd3+:YAG microchip laser is used as a seed laser for an ytterbium-fiber amplifier to generate high-power laser pulses at 1064 nm with pulse powers up to Ep=1 mJ, a repetition rate of frep.=2-20 kHz and a pulse duration of tp=620 ps. The recorded LIBS signals are analyzed by applying neural networks for the data analysis

  4. Optical Detection of Polarons in High - Tc Cuprate

    International Nuclear Information System (INIS)

    Calvani, P.; Capizzi, M.; Lupi, S.; Maselli, P.; Paolone, A.; Roy LURE, P.; Berger, H.

    1995-01-01

    The optical conductivity σ (ω) of slightly e-doped single-crystals of (Nd,Gd) 2 CuO 4-y shows local modes in the far-infrared as well as a broad infrared absorption centered at ∼ 0.1 eV (d-band). This latter shows a fine structure, in agreement with recent calculations of Alexandrov et al., which is made up by intense overtones of the local modes observed in the far-infrared. Similar polaronic structures are shown to exist in the normal metallic phase of Nd 2-x Ce x CuO 4-y and even in the σ (ω ) of YBCO crystals, measured by different authors. The present observations provide evidence for the existence of small polarons in all materials with a Cu-O plane

  5. Diagnostic ability of Barrett's index to detect dysthyroid optic neuropathy using multidetector computed tomography

    International Nuclear Information System (INIS)

    Monteiro, Mario L.R.; Goncalves, Allan C.P.; Silva, Carla T.M.; Moura, Janete P.; Ribeiro, Carolina S.; Gebrim, Eloisa M.M.S.; Universidade de Sao Paulo; Universidade de Sao Paulo

    2008-01-01

    Objectives: The objective of this study was to evaluate the ability of a muscular index (Barrett's Index), calculated with multidetector computed tomography, to detect dysthyroid optic neuropathy in patients with Graves' orbitopathy. Methods: Thirty-six patients with Graves' orbitopathy were prospectively studied and submitted to neuro-ophthalmic evaluation and multidetector computed tomography scans of the orbits. Orbits were divided into two groups: those with and without dysthyroid optic neuropathy. Barrett's index was calculated as the percentage of the orbit occupied by muscles. Sensitivity and specificity were determined for several index values. Results: Sixty-four orbits (19 with and 45 without dysthyroid optic neuropathy) met the inclusion criteria for the study. The mean Barrett's index values (±SD) were 64.47% ± 6.06% and 49.44% ± 10.94% in the groups with and without dysthyroid optic neuropathy, respectively (p 60% should be carefully examined and followed for the development of dysthyroid optic neuropathy. (author)

  6. Distributed Fiber-Optic Sensor for Detection and Localization of Acoustic Vibrations

    Directory of Open Access Journals (Sweden)

    Sifta Radim

    2015-03-01

    Full Text Available A sensing system utilizing a standard optical fiber as a distributed sensor for the detection and localization of mechanical vibrations is presented. Vibrations can be caused by various external factors, like moving people, cars, trains, and other objects producing mechanical vibrations that are sensed by a fiber. In our laboratory we have designed a sensing system based on the Φ-OTDR (phase sensitive Optical Time Domain Reflectometry using an extremely narrow laser and EDFAs.

  7. Optical architecture design for detection of absorbers embedded in visceral fat.

    Science.gov (United States)

    Francis, Robert; Florence, James; MacFarlane, Duncan

    2014-05-01

    Optically absorbing ducts embedded in scattering adipose tissue can be injured during laparoscopic surgery. Non-sequential simulations and theoretical analysis compare optical system configurations for detecting these absorbers. For absorbers in deep scattering volumes, trans-illumination is preferred instead of diffuse reflectance. For improved contrast, a scanning source with a large area detector is preferred instead of a large area source with a pixelated detector.

  8. A promising new mechanism of ionizing radiation detection for positron emission tomography: Modulation of optical properties

    OpenAIRE

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-01-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we...

  9. Laser cooling and optical detection of excitations in a LC electrical circuit

    DEFF Research Database (Denmark)

    Taylor, J. M.; Sørensen, Anders Søndberg; Marcus, Charles Masamed

    2011-01-01

    We explore a method for laser cooling and optical detection of excitations in a room temperature LC electrical circuit. Our approach uses a nanomechanical oscillator as a transducer between optical and electronic excitations. An experimentally feasible system with the oscillator capacitively...... coupled to the LC and at the same time interacting with light via an optomechanical force is shown to provide strong electromechanical coupling. Conditions for improved sensitivity and quantum limited readout of electrical signals with such an “optical loud speaker” are outlined....

  10. Full distributed fiber optical sensor for intrusion detection in application to buried pipelines

    Science.gov (United States)

    Gao, Jianzhong; Jiang, Zhuangde; Zhao, Yulong; Zhu, Li; Zhao, Guoxian

    2005-11-01

    Based on the microbend effect of optical fiber, a distributed sensor for real-time continuous monitoring of intrusion in application to buried pipelines is proposed. The sensing element is a long cable with a special structure made up of an elastic polymer wire, an optical fiber, and a metal wire. The damage point is located with an embedded optical time domain reflectometry (OTDR) instrument. The intrusion types can be indicated by the amplitude of output voltage. Experimental results show that the detection system can alarm adequately under abnormal load and can locate the intrusion point within 22.4 m for distance of 3.023 km.

  11. Evaluation of the Detection Efficiency of LYSO Scintillator in the Fiber-Optic Radiation Sensor

    Directory of Open Access Journals (Sweden)

    Chan Hee Park

    2014-01-01

    Full Text Available The aim of this study was to develop and evaluate fiber-optic sensors for the remote detection of gamma rays in areas that are difficult to access, such as a spent fuel pool. The fiber-optic sensor consists of a light-generating probe, such as scintillators for radiation detection, plastic optical fibers, and light-measuring devices, such as PMT. The (Lu,Y2SiO5:Ce(LYSO:Ce scintillator was chosen as the light-generating probe. The (Lu,Y2SiO5:Ce(LYSO:Ce scintillator has higher scintillation efficiency than the others and transmits light well through an optical fiber because its refraction index is similar to the refractive index of the optical fiber. The fiber-optic radiation sensor using the (Lu,Y2SiO5:Ce(LYSO:Ce scintillator was evaluated in terms of the detection efficiency and reproducibility for examining its applicability as a radiation sensor.

  12. The use of balanced homodyne and squeezed states for detecting weak optical signals in a Michelson interferometer

    International Nuclear Information System (INIS)

    Ben-Aryeh, Y.

    2011-01-01

    The possibility of using squeezed states and balanced homodyne detection of optical signals in a Michelson interferometer is discussed. The present analysis describes photon statistics measurements effects related to quadrature balanced homodyne detection showing the advantage of using this scheme for detecting weak optical signals.

  13. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering

    International Nuclear Information System (INIS)

    Ott, Dino; Oddershede, Lene B.; Reihani, S. Nader S.

    2014-01-01

    In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of the trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts

  14. THE SWIFT AGN AND CLUSTER SURVEY. II. CLUSTER CONFIRMATION WITH SDSS DATA

    International Nuclear Information System (INIS)

    Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.

    2016-01-01

    We study 203 (of 442) Swift AGN and Cluster Survey extended X-ray sources located in the SDSS DR8 footprint to search for galaxy over-densities in three-dimensional space using SDSS galaxy photometric redshifts and positions near the Swift cluster candidates. We find 104 Swift clusters with a >3σ galaxy over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmation as galaxy clusters. We present a series of cluster properties including the redshift, brightest cluster galaxy (BCG) magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in ∼85% of the 104 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≲ 0.3 and is still 80% complete up to z ≃ 0.4, consistent with the SDSS survey depth. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further study of cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 23, and 1 matches in optical, X-ray, and Sunyaev–Zel’dovich catalogs, respectively, and so the majority of these clusters are new detections

  15. Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering.

    Science.gov (United States)

    Xia, Yong; Han, Junze; Wang, Kuanquan

    2015-01-01

    Based on the idea of telemedicine, 24-hour uninterrupted monitoring on electrocardiograms (ECG) has started to be implemented. To create an intelligent ECG monitoring system, an efficient and quick detection algorithm for the characteristic waveforms is needed. This paper aims to give a quick and effective method for detecting QRS-complexes and R-waves in ECGs. The real ECG signal from the MIT-BIH Arrhythmia Database is used for the performance evaluation. The method proposed combined a wavelet transform and the K-means clustering algorithm. A wavelet transform is adopted in the data analysis and preprocessing. Then, based on the slope information of the filtered data, a segmented K-means clustering method is adopted to detect the QRS region. Detection of the R-peak is based on comparing the local amplitudes in each QRS region, which is different from other approaches, and the time cost of R-wave detection is reduced. Of the tested 8 records (total 18201 beats) from the MIT-BIH Arrhythmia Database, an average R-peak detection sensitivity of 99.72 and a positive predictive value of 99.80% are gained; the average time consumed detecting a 30-min original signal is 5.78s, which is competitive with other methods.

  16. Drugs of abuse detection in saliva based on actuated optical method

    Science.gov (United States)

    Shao, Jie; Li, Zhenyu; Jiang, Hong; Wang, Wenlong; Wu, Yixuan

    2014-12-01

    There has been a considerable increase in the abuse of drugs during the past decade. Combing drug use with driving is very dangerous. More than 11% of drivers in a roadside survey tested positive for drugs, while 18% of drivers killed in accidents tested positive for drugs as reported in USA, 2007. Toward developing a rapid drug screening device, we use saliva as the sample, and combining the traditional immunoassays method with optical magnetic technology. There were several methods for magnetic nanoparticles detection, such as magnetic coils, SQUID, microscopic imaging, and Hall sensors. All of these methods were not suitable for our demands. By developing a novel optical scheme, we demonstrate high-sensitivity detection in saliva. Drugs of abuse are detected at sub-nano gram per milliliter levels in less than 120 seconds. Evanescent wave principle has been applied to sensitively monitor the presence of magnetic nanoparticles on the binding surface. Like the total internal reflection fluorescence microscope (TIRFM), evanescent optical field is generated at the plastic/fluid interface, which decays exponentially and penetrates into the fluid by only a sub-wavelength distance. By disturbance total internal reflection with magnetic nanoparticles, the optical intensity would be influenced. We then detected optical output by imaging the sensor surface onto a CCD camera. We tested four drugs tetrahydrocannabinol (THC), methamphetamine (MAMP), ketamine (KET), morphine (OPI), using this technology. 100 ng mL-1 sensitivity was achieved, and obvious evidence showed that this results could be improved in further researches.

  17. Automated detection of kinks from blood vessels for optic cup segmentation in retinal images

    Science.gov (United States)

    Wong, D. W. K.; Liu, J.; Lim, J. H.; Li, H.; Wong, T. Y.

    2009-02-01

    The accurate localization of the optic cup in retinal images is important to assess the cup to disc ratio (CDR) for glaucoma screening and management. Glaucoma is physiologically assessed by the increased excavation of the optic cup within the optic nerve head, also known as the optic disc. The CDR is thus an important indicator of risk and severity of glaucoma. In this paper, we propose a method of determining the cup boundary using non-stereographic retinal images by the automatic detection of a morphological feature within the optic disc known as kinks. Kinks are defined as the bendings of small vessels as they traverse from the disc to the cup, providing physiological validation for the cup boundary. To detect kinks, localized patches are first generated from a preliminary cup boundary obtained via level set. Features obtained using edge detection and wavelet transform are combined using a statistical approach rule to identify likely vessel edges. The kinks are then obtained automatically by analyzing the detected vessel edges for angular changes, and these kinks are subsequently used to obtain the cup boundary. A set of retinal images from the Singapore Eye Research Institute was obtained to assess the performance of the method, with each image being clinically graded for the CDR. From experiments, when kinks were used, the error on the CDR was reduced to less than 0.1 CDR units relative to the clinical CDR, which is within the intra-observer variability of 0.2 CDR units.

  18. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection.

    Science.gov (United States)

    Yao, B C; Wu, Y; Yu, C B; He, J R; Rao, Y J; Gong, Y; Fu, F; Chen, Y F; Li, Y R

    2016-03-24

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel 'FRET on Fiber' concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based 'FRET on fiber' configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated 'FRET on Fiber' sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response.

  19. Optical detection of Prorocentrum donghaiense blooms based on multispectral reflectance

    Institute of Scientific and Technical Information of China (English)

    TAO Bangyi; PAN Delu; MAO Zhihua; SHEN Yuzhang; ZHU Qiankun; CHEN Jianyu

    2013-01-01

    Prorocentrum donghaiense is one of the most common red tide causative dinoflagellates in the Changjiang (Yangtze) River Estuary and the adjacent area of the East China Sea. It causes large-scale blooms in late spring and early summer that lead to widespread ecologic and economic damage. A means for distinguish-ing dinoflagellate blooms from diatom (Skeletonema costatum) blooms is desired. On the basis of measure-ments of remote sensing reflectance [Rrs(λ)] and inherent optical parameters, the potential of using a mul-tispectral approach is assessed for discriminating the algal blooms due to P. donghaiense from those due to S. costatum. The behavior of two reflectance ratios [R1 =Rrs(560)/Rrs(532) and R2 =Rrs(708)/Rrs(665)], suggests that differentiation of P. donghaiense blooms from diatom bloom types is possible from the current band setup of ocean color sensors. It is found that there are two reflectance ratio regimes that indicate a bloom is dominated by P. donghaiense: (1) R1 >1.55 and R2 1.75 and R2 ?1.0. Various sensitivity analyses are conducted to investigate the effects of the variation in varying levels of chlorophyll concentration and colored dissolved organic matter (CDOM) as well as changes in the backscattering ratio (bbp/bp) on the efficacy of this multispectral approach. Results indicate that the intensity and inherent op-tical properties of the algal species explain much of the behavior of the two ratios. Although backscattering influences the amplitude of Rrs(λ), especially in the 530 and 560 nm bands, the discrimination between P. donghaiense and diatoms is not significantly affected by the variation of bbp/bp. Since a CDOM(440) in coastal areas of the ECS is typically lower than 1.0 m−1 in most situations, the presence of CDOM does not interfere with this discrimination, even as SCDOM varies from 0.01 to 0.026 nm−1. Despite all of these effects, the dis-crimination of P. donghaiense blooms from diatom blooms based on multispectral

  20. High-resolution optical imaging of the core of the globular cluster M15 with FastCam

    Science.gov (United States)

    Díaz-Sánchez, Anastasio; Pérez-Garrido, Antonio; Villó, Isidro; Rebolo, Rafael; Pérez-Prieto, Jorge A.; Oscoz, Alejandro; Hildebrandt, Sergi R.; López, Roberto; Rodríguez, Luis F.

    2012-07-01

    We present high-resolution I -band imaging of the core of the globular cluster M15 obtained at the 2.5-m Nordic Optical Telescope with FastCam, a low readout noise L3CCD-based instrument. Short exposure times (30 ms) were used to record 200 000 images (512 × 512 pixels each) over a period of 2 h and 43 min. The lucky imaging technique was then applied to generate a final image of the cluster centre with full width at half-maximum ˜0.1 arcsec and 13 × 13 arcsec 2 field of view. We obtained a catalogue of objects in this region with a limiting magnitude of I = 19.5. I -band photometry and astrometry are reported for 1181 stars. This is the deepest I -band observation of the M15 core at this spatial resolution. Simulations show that crowding is limiting the completeness of the catalogue. At shorter wavelengths, a similar number of objects have been reported using Hubble Space Telescope (HST )/Wide Field Planetary Camera observations of the same field. The cross-match with the available HST catalogues allowed us to produce colour-magnitude diagrams where we identify new blue straggler star candidates and previously known stars of this class.