WorldWideScience

Sample records for optical clock transition

  1. Toward A Neutral Mercury Optical Lattice Clock: Determination of the Magic Wavelength for the Ultraviolet clock Transition

    International Nuclear Information System (INIS)

    Mejri, Sinda

    2012-01-01

    A lattice clock combines the advantages of ion and neutral atom based clocks, namely the recoil and first order Doppler free spectroscopy allowed by the Lamb-Dicke regime. This lattice light field shifts the energy levels of the clock transition. However a wavelength can be found where the light-shift of the clock states cancelled to first order. In this thesis, we present the latest advances in optical lattice clock with mercury atoms developed at LNE-SYRTE. After a review of the current performances of different optical clock are currently under development, we focus on the concept of optical lattice clock and the features of the mercury that make him an excellent candidate for the realization of an optical lattice clock achievement the uncertainty of the level of 10 -17 . The second part is devoted to the characterization of the mercury MOT, using a sensitive detection system, which allowed us to evaluate the temperature of different isotopes present in the MOT and have a good evidence of sub-Doppler cooling for the fermionic isotopes. The third part of this these, present the experimental aspects of the implementation and the development of the laser source required for trapping mercury atoms operating near the predicted magic wavelength. Finally, we report on the Lamb-Dicke spectroscopy of the 1S0 →3 P0 clock transition in the 199 Hg atoms confined in lattice trap. With use of the ultra-stable laser system, linked to LNE-SYRTE primary frequency reference, we have determined the center frequency of the transition for a range of lattice wavelengths and different lattice depths. Analyzing these measurement, we have carried out the first experimental determination of the magic wavelength, which is the crucial step towards achieving a highly accurate frequency standard using mercury. (author)

  2. Compact Optical Atomic Clock Based on a Two-Photon Transition in Rubidium

    Science.gov (United States)

    Martin, Kyle W.; Phelps, Gretchen; Lemke, Nathan D.; Bigelow, Matthew S.; Stuhl, Benjamin; Wojcik, Michael; Holt, Michael; Coddington, Ian; Bishop, Michael W.; Burke, John H.

    2018-01-01

    Extralaboratory atomic clocks are necessary for a wide array of applications (e.g., satellite-based navigation and communication). Building upon existing vapor-cell and laser technologies, we describe an optical atomic clock, designed around a simple and manufacturable architecture, that utilizes the 778-nm two-photon transition in rubidium and yields fractional-frequency instabilities of 4 ×10-13/√{τ (s ) } for τ from 1 to 10 000 s. We present a complete stability budget for this system and explore the required conditions under which a fractional-frequency instability of 1 ×10-15 can be maintained on long time scales. We provide a precise characterization of the leading sensitivities to external processes, including magnetic fields and fluctuations of the vapor-cell temperature and 778-nm laser power. The system is constructed primarily from commercially available components, an attractive feature from the standpoint of the commercialization and deployment of optical frequency standards.

  3. Optically trapped atom interferometry using the clock transition of large 87Rb Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Altin, P A; McDonald, G; Doering, D; Debs, J E; Barter, T H; Close, J D; Robins, N P; Haine, S A; Hanna, T M; Anderson, R P

    2011-01-01

    We present a Ramsey-type atom interferometer operating with an optically trapped sample of 10 6 Bose-condensed 87 Rb atoms. We investigate this interferometer experimentally and theoretically with an eye to the construction of future high precision atomic sensors. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise-limited, large atom number BEC-based interferometer. The optical trap allows us to couple the |F=1, m F =0)→|F=2, m F =0) clock states using a single photon 6.8 GHz microwave transition, while state selective readout is achieved with absorption imaging. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 10 6 condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and present theoretical and experimental results on interferometer contrast, de-phasing and miscibility.

  4. Optical lattice clock with Strontium atoms

    International Nuclear Information System (INIS)

    Baillard, X.

    2008-01-01

    This thesis presents the latest achievements regarding the optical lattice clock with Strontium atoms developed at LNE-SYRTE. After a review of the different types of optical clocks that are currently under development, we stress on the concept of optical lattice clock which was first imagined for Sr 87 using the 1 S 0 → 3 P 0 transition. We exhibit the features of this atom, in particular the concept of magic wavelength for the trap, and the achievable performances for this kind of clock. The second part presents the experimental aspects, insisting particularly on the ultra-stable laser used for the interrogation of the atoms which is a central part of the experiment. Among the latest improvements, an optical pumping phase and an interrogation phase using a magnetic field have been added in order to refine the evaluation of the Zeeman effect. Finally, the last part presents the experimental results. The last evaluation of the clock using Sr 87 atoms allowed us to reach a frequency accuracy of 2.6*10 -15 and a measurement in agreement with the one made at JILA (Tokyo university) at the 10 -15 level. On another hand, thanks to recent theoretical proposals, we made a measurement using the bosonic isotope Sr 88 by adapting the experimental setup. This measurement represents the first evaluation for this type of clock, with a frequency accuracy of 7*10 -14 . (author)

  5. Optically trapped atom interferometry using the clock transition of large {sup 87}Rb Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Altin, P A; McDonald, G; Doering, D; Debs, J E; Barter, T H; Close, J D; Robins, N P [Department of Quantum Science, ARC Centre of Excellence for Quantum Atom Optics, the Australian National University, ACT 0200 (Australia); Haine, S A [School of Mathematics and Physics, ARC Centre of Excellence for Quantum-Atom Optics, The University of Queensland, Queensland 4072 (Australia); Hanna, T M [Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, 100 Bureau Drive, Stop 8423, Gaithersburg, MD 20899-8423 (United States); Anderson, R P, E-mail: paul.altin@anu.edu.au [School of Physics, Monash University, VIC 3800 (Australia)

    2011-06-15

    We present a Ramsey-type atom interferometer operating with an optically trapped sample of 10{sup 6} Bose-condensed {sup 87}Rb atoms. We investigate this interferometer experimentally and theoretically with an eye to the construction of future high precision atomic sensors. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise-limited, large atom number BEC-based interferometer. The optical trap allows us to couple the |F=1, m{sub F}=0){yields}|F=2, m{sub F}=0) clock states using a single photon 6.8 GHz microwave transition, while state selective readout is achieved with absorption imaging. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 10{sup 6} condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and present theoretical and experimental results on interferometer contrast, de-phasing and miscibility.

  6. Hanle Detection for Optical Clocks

    Directory of Open Access Journals (Sweden)

    Xiaogang Zhang

    2015-01-01

    Full Text Available Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard.

  7. An optical clock to go

    Science.gov (United States)

    Ludlow, Andrew D.

    2018-05-01

    Bringing next-generation atomic clocks out of the lab is not an easy task, but doing so will unlock many new possibilities. As a crucial first step, a portable atomic clock has now been deployed for relativistic geodesy measurements in the Alps.

  8. Sugars, the clock and transition to flowering

    Directory of Open Access Journals (Sweden)

    Mohammad Reza eBolouri Moghaddam

    2013-02-01

    Full Text Available Sugars do not only act as source of energy, but they also act as signals in plants. This mini review summarizes the emerging links between sucrose-mediated signaling and the cellular networks involved in flowering time control and defense. Cross-talks with gibberellin (GA and jasmonate (JA signaling pathways are highlighted. The circadian clock fulfills a crucial role at the heart of cellular networks and the bilateral relation between sugar signaling and the clock is discussed. It is proposed that important factors controlling plant growth (DELLAs, PIFs, invertases and trehalose- 6-phosphate or T6P might fulfill central roles in the transition to flowering as well. The emerging concept of ‘sweet immunity’, modulated by the clock, might at least partly rely on a sucrose-specific signaling pathway that needs further exploration.

  9. Optical lattice clock with strontium atoms: a second generation of cold atom clocks

    International Nuclear Information System (INIS)

    Le Targat, R.

    2007-07-01

    Atomic fountains, based on a microwave transition of Cesium or Rubidium, constitute the state of the art atomic clocks, with a relative accuracy close to 10 -16 . It nevertheless appears today that it will be difficult to go significantly beyond this level with this kind of device. The use of an optical transition, the other parameters being unchanged, gives hope for a 4 or 5 orders of magnitude improvement of the stability and of the relative uncertainty on most systematic effects. As for motional effects on the atoms, they can be controlled on a very different manner if they are trapped in an optical lattice instead of experiencing a free ballistic flight stage, characteristic of fountains. The key point of this approach lies in the fact that the trap can be operated in such a way that a well chosen, weakly allowed, J=0 → J=0 clock transition can be free from light shift effects. In this respect, the strontium atom is one of the most promising candidate, the 1S 0 → 3P 0 transition has a natural width of 1 mHz, and several other easily accessible transitions can be used to efficiently laser cool atoms down to 10 μK. This thesis demonstrates the experimental feasibility of an optical lattice clock based on the strontium atom, and reports on a preliminary evaluation of the relative accuracy with the fermionic isotope 87 Sr, at a level of a few 10 -15 . (author)

  10. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.

    Science.gov (United States)

    Akamatsu, Daisuke; Kobayashi, Takumi; Hisai, Yusuke; Tanabe, Takehiko; Hosaka, Kazumoto; Yasuda, Masami; Hong, Feng-Lei

    2018-06-01

    We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping 87 Sr and 171 Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of between the trapped Sr and Yb atoms. The 1 S 0 - 3 P 0 clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.

  11. Polarizabilities of the beryllium clock transition

    International Nuclear Information System (INIS)

    Mitroy, J.

    2010-01-01

    The polarizabilities of the three lowest states of the beryllium atom are determined from a large basis configuration interaction calculation. The polarizabilities of the 2s 2 1 S e ground state (37.73a 0 3 ) and the 2s2p 3 P 0 o metastable state (39.04a 0 3 ) are found to be very similar in size and magnitude. This leads to an anomalously small blackbody radiation shift at 300 K of -0.018(4) Hz for the 2s 2 1 S e -2s2p 3 P 0 o clock transition. Magic wavelengths for simultaneous trapping of the ground and metastable states are also computed.

  12. Systematic evaluation of a 171Yb optical clock by synchronous comparison between two lattice systems.

    Science.gov (United States)

    Gao, Qi; Zhou, Min; Han, Chengyin; Li, Shangyan; Zhang, Shuang; Yao, Yuan; Li, Bo; Qiao, Hao; Ai, Di; Lou, Ge; Zhang, Mengya; Jiang, Yanyi; Bi, Zhiyi; Ma, Longsheng; Xu, Xinye

    2018-05-22

    Optical clocks are the most precise measurement devices. Here we experimentally characterize one such clock based on the 1 S 0 - 3 P 0 transition of neutral 171 Yb atoms confined in an optical lattice. Given that the systematic evaluation using an interleaved stabilization scheme is unable to avoid noise from the clock laser, synchronous comparisons against a second 171 Yb lattice system were implemented to accelerate the evaluation. The fractional instability of one clock falls below 4 × 10 -17 after an averaging over a time of 5,000 seconds. The systematic frequency shifts were corrected with a total uncertainty of 1.7 × 10 -16 . The lattice polarizability shift currently contributes the largest source. This work paves the way to measuring the absolute clock transition frequency relative to the primary Cs standard or against the International System of Units (SI) second.

  13. All-optical clock recovery of NRZ-DPSK signals using optical resonator-type filters

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Seoane, Jorge; Ji, Hua

    2009-01-01

    It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock.......It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock....

  14. Geodesy and metrology with a transportable optical clock

    Science.gov (United States)

    Grotti, Jacopo; Koller, Silvio; Vogt, Stefan; Häfner, Sebastian; Sterr, Uwe; Lisdat, Christian; Denker, Heiner; Voigt, Christian; Timmen, Ludger; Rolland, Antoine; Baynes, Fred N.; Margolis, Helen S.; Zampaolo, Michel; Thoumany, Pierre; Pizzocaro, Marco; Rauf, Benjamin; Bregolin, Filippo; Tampellini, Anna; Barbieri, Piero; Zucco, Massimo; Costanzo, Giovanni A.; Clivati, Cecilia; Levi, Filippo; Calonico, Davide

    2018-05-01

    Optical atomic clocks, due to their unprecedented stability1-3 and uncertainty3-6, are already being used to test physical theories7,8 and herald a revision of the International System of Units9,10. However, to unlock their potential for cross-disciplinary applications such as relativistic geodesy11, a major challenge remains: their transformation from highly specialized instruments restricted to national metrology laboratories into flexible devices deployable in different locations12-14. Here, we report the first field measurement campaign with a transportable 87Sr optical lattice clock12. We use it to determine the gravity potential difference between the middle of a mountain and a location 90 km away, exploiting both local and remote clock comparisons to eliminate potential clock errors. A local comparison with a 171Yb lattice clock15 also serves as an important check on the international consistency of independently developed optical clocks. This campaign demonstrates the exciting prospects for transportable optical clocks.

  15. Blackbody radiation shift of the Ga+ clock transition

    International Nuclear Information System (INIS)

    Cheng, Yongjun; Mitroy, J

    2013-01-01

    The blackbody radiation shift of the Ga + clock transition is computed to be −0.0140 ± 0.0062 Hz at 300 K. The small shift is consistent with the blackbody radiation shifts of the clock transitions of other group III ions which are of a similar size. The polarizabilities of the Ga + states were computed using the configuration interaction method with an underlying semi-empirical core potential. Quadrupole and non-adiabatic dipole polarizabilities were also computed. A byproduct of the analysis involved calculations of the low-lying spectrum and oscillator strengths, including polarizabilities, of the Ga 2+ ion. (paper)

  16. Optical lattice clock with Strontium atoms; Horloge a reseau optique a atomes de strontium

    Energy Technology Data Exchange (ETDEWEB)

    Baillard, X

    2008-01-15

    This thesis presents the latest achievements regarding the optical lattice clock with Strontium atoms developed at LNE-SYRTE. After a review of the different types of optical clocks that are currently under development, we stress on the concept of optical lattice clock which was first imagined for Sr{sup 87} using the {sup 1}S{sub 0} {yields} {sup 3}P{sub 0} transition. We exhibit the features of this atom, in particular the concept of magic wavelength for the trap, and the achievable performances for this kind of clock. The second part presents the experimental aspects, insisting particularly on the ultra-stable laser used for the interrogation of the atoms which is a central part of the experiment. Among the latest improvements, an optical pumping phase and an interrogation phase using a magnetic field have been added in order to refine the evaluation of the Zeeman effect. Finally, the last part presents the experimental results. The last evaluation of the clock using Sr{sup 87} atoms allowed us to reach a frequency accuracy of 2.6*10{sup -15} and a measurement in agreement with the one made at JILA (Tokyo university) at the 10{sup -15} level. On another hand, thanks to recent theoretical proposals, we made a measurement using the bosonic isotope Sr{sup 88} by adapting the experimental setup. This measurement represents the first evaluation for this type of clock, with a frequency accuracy of 7*10{sup -14}. (author)

  17. Lattice-induced nonadiabatic frequency shifts in optical lattice clocks

    International Nuclear Information System (INIS)

    Beloy, K.

    2010-01-01

    We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10 -18 and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.

  18. Strontium Optical Lattice Clock: In Quest of the Ultimate Performance

    International Nuclear Information System (INIS)

    Westergaard, Ph.G.

    2010-10-01

    This thesis presents the latest achievements regarding the Sr optical lattice clock experiment at LNESYRTE, Observatoire de Paris. After having described the general principles for optical lattice clocks and the operation of the clock in question, the emphasis is put on the features that have been added to the experiment since 2007. The most important new elements are an ultra-stable reference cavity for the clock laser, the development of a non-destructive detection technique, and the construction of a second Sr lattice clock. The ultra-stable cavity is constructed from a ULE spacer and fused silica mirrors and has shown a thermal noise floor at 6.5 * 10 -16 , placing it among the best in the world. The non-destructive detection is effectuated by a phase measurement of a weak probe beam that traverses the atoms placed in one arm of a Mach-Zender interferometer. The non-destructive aspect enables a recycling of the atoms from cycle to cycle which consequently increases the duty cycle, allowing for an increase of the stability of the clock. With these new tools the frequency stability is expected to be 2.2 * 10 -16 /√τ for an optimized sequence. The most recent comparisons between the two Sr clocks reach an accuracy level of 10 -16 after about 1000 s, and this way we have been able to characterize lattice related frequency shifts with an unprecedented accuracy. The measurements ensure a control of lattice related effects at the 10 -18 level even for trap depths as large as 50E r . (authors)

  19. Recent results of the pulsed optically pumped rubidium clock

    Science.gov (United States)

    Levi, F.; Micalizio, S.; Godone, A.; Calosso, C.; Bertacco, E.

    2017-11-01

    A laboratory prototype of a pulsed optically pumped (POP) clock based on a rubidium cell with buffer gas is described. This clock has shown very interesting physical and metrological features, such as negligible light-shift, strongly reduced cavity-pulling and very good frequency stability. In this regard, an Allan deviation of σy(τ) = 1.2 τ-1/2 for measurement times up to τ = 105 s has been measured. These results confirm the interesting perspectives of such a frequency standard and make it very attractive for several technological applications, such as radionavigation.

  20. Two Clock Transitions in Neutral Yb for the Highest Sensitivity to Variations of the Fine-Structure Constant

    Science.gov (United States)

    Safronova, Marianna S.; Porsev, Sergey G.; Sanner, Christian; Ye, Jun

    2018-04-01

    We propose a new frequency standard based on a 4 f146 s 6 p P0 3 -4 f136 s25 d (J =2 ) transition in neutral Yb. This transition has a potential for high stability and accuracy and the advantage of the highest sensitivity among atomic clocks to variation of the fine-structure constant α . We find its dimensionless α -variation enhancement factor to be K =-15 , in comparison to the most sensitive current clock (Yb+ E 3 , K =-6 ), and it is 18 times larger than in any neutral-atomic clocks (Hg, K =0.8 ). Combined with the unprecedented stability of an optical lattice clock for neutral atoms, this high sensitivity opens new perspectives for searches for ultralight dark matter and for tests of theories beyond the standard model of elementary particles. Moreover, together with the well-established 1S0-3P0 transition, one will have two clock transitions operating in neutral Yb, whose interleaved interrogations may further reduce systematic uncertainties of such clock-comparison experiments.

  1. Ultrafast all-optical clock recovery based on phase-only linear optical filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael

    2014-01-01

    We report on a novel technique for all-optical clock recovery from RZ OOK data based on phase-only filtering, significantly enhancing the recovered clock quality and energy-efficiency compared to the use of a Fabry-Perot filter....

  2. Probing many-body interactions in an optical lattice clock

    Energy Technology Data Exchange (ETDEWEB)

    Rey, A.M., E-mail: arey@jilau1.colorado.edu [JILA, NIST and University of Colorado, Department of Physics, Boulder, CO 80309 (United States); Gorshkov, A.V. [Joint Quantum Institute, NIST and University of Maryland, Department of Physics, College Park, MD 20742 (United States); Kraus, C.V. [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria); Martin, M.J. [JILA, NIST and University of Colorado, Department of Physics, Boulder, CO 80309 (United States); Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 (United States); Bishof, M.; Swallows, M.D.; Zhang, X.; Benko, C.; Ye, J. [JILA, NIST and University of Colorado, Department of Physics, Boulder, CO 80309 (United States); Lemke, N.D.; Ludlow, A.D. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2014-01-15

    We present a unifying theoretical framework that describes recently observed many-body effects during the interrogation of an optical lattice clock operated with thousands of fermionic alkaline earth atoms. The framework is based on a many-body master equation that accounts for the interplay between elastic and inelastic p-wave and s-wave interactions, finite temperature effects and excitation inhomogeneity during the quantum dynamics of the interrogated atoms. Solutions of the master equation in different parameter regimes are presented and compared. It is shown that a general solution can be obtained by using the so called Truncated Wigner Approximation which is applied in our case in the context of an open quantum system. We use the developed framework to model the density shift and decay of the fringes observed during Ramsey spectroscopy in the JILA {sup 87}Sr and NIST {sup 171}Yb optical lattice clocks. The developed framework opens a suitable path for dealing with a variety of strongly-correlated and driven open-quantum spin systems. -- Highlights: •Derived a theoretical framework that describes many-body effects in a lattice clock. •Validated the analysis with recent experimental measurements. •Demonstrated the importance of beyond mean field corrections in the dynamics.

  3. Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation.

    Science.gov (United States)

    Lipphardt, Burghard; Gerginov, Vladislav; Weyers, Stefan

    2017-04-01

    We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary cesium fountain clocks. Because of its superior phase noise properties, this scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the frequency instability limitations of fountain clocks given by the previously utilized quartz-oscillator-based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of several weeks. The utilization of the twofold stabilization scheme on the one hand ensures the referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables fountain frequency instabilities at the 2.5 ×10 -14 (τ/s) -1/2 level that are quantum projection noise limited.

  4. Collisional shifts in optical-lattice atom clocks

    International Nuclear Information System (INIS)

    Band, Y. B.; Vardi, A.

    2006-01-01

    We theoretically study the effects of elastic collisions on the determination of frequency standards via Ramsey-fringe spectroscopy in optical-lattice atom clocks. Interparticle interactions of bosonic atoms in multiply occupied lattice sites can cause a linear frequency shift, as well as generate asymmetric Ramsey-fringe patterns and reduce fringe visibility due to interparticle entanglement. We propose a method of reducing these collisional effects in an optical lattice by introducing a phase difference of π between the Ramsey driving fields in adjacent sites. This configuration suppresses site-to-site hopping due to interference of two tunneling pathways, without degrading fringe visibility. Consequently, the probability of double occupancy is reduced, leading to cancellation of collisional shifts

  5. Optical lattice clock with strontium atoms; Horloge a reseau optique a atomes de strontium

    Energy Technology Data Exchange (ETDEWEB)

    Baillard, X.; Le Targat, R.; Fouche, M.; Brusch, A.; Westergaard, Ph.G.; Lecallier, A.; Lodewyck, J.; Lemonde, P. [Observatoire de Paris, LNE-SYRTE, Systemes de Reference Temps Espace, 75 (France)

    2009-07-01

    Optical lattice clocks, which were first imagined in 2000, should allow one to achieve unprecedented performances in the domain of atomic clocks. We present here the Strontium lattice clock, developed at LNE-SYRTE. The principle, in particular trapping atoms in the Lamb-Dicke regime and the notion of magic wavelength, is first explained. We then present the results obtained for the {sup 87}Sr isotope, with a frequency accuracy of 2,6.10{sup -15}, and the {sup 88}Sr isotope, with. which we perform the first frequency measurement of an optical lattice clock with bosonic atoms. (authors)

  6. High Time-Resolution 640-Gb/s Clock Recovery Using Time-Domain Optical Fourier Transformation and Narrowband Optical Filter

    DEFF Research Database (Denmark)

    Guan, P.; Mulvad, Hans Christian Hansen; Kasai, K.

    2010-01-01

    We present a novel scheme for subharmonic clock recovery from an optical time-division-multiplexing signal using time-domain optical Fourier transformation and a narrowband optical filter. High-resolution 640-Gb/s clock recovery is successfully demonstrated with no pattern dependence. The clock...

  7. First observation of the strongly forbidden transition 1S0 - 3P0 in Strontium, for an atomic clock with trapped atoms

    International Nuclear Information System (INIS)

    Courtillot, I.

    2003-11-01

    This thesis reports the first results towards the realization of an optical clock using trapped strontium atoms. This set up would combine advantages of the different approaches commonly used to develop an atomic frequency standard. The first part describes the cold atoms source which is implemented. A magneto-optical trap operating on the 1 S 0 - 1 P 1 transition at 461 nm is loaded from an atomic beam decelerated by a Zeeman slower. The 461 nm laser is obtained by sum-frequency mixing in a potassium titanyl phosphate (KTP) crystal. The second part is devoted to the different stages developed to achieve the direct excitation of the 1 S 0 - 3 P 0 clock transition in 87 Sr. This line has a theoretical natural width of 10 -3 Hz. Before this detection, we obtained an estimate of the resonance frequency by measuring absolute frequencies of several allowed optical transitions. (author)

  8. Remote atomic clock synchronization via satellites and optical fibers

    OpenAIRE

    Piester, D.; Rost, M.; Fujieda, M.; Feldmann, T.; Bauch, A.

    2011-01-01

    In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10−15 (relative, 1 day averaging) and time scales can be synchronized...

  9. Optical lattice clock with strontium atoms: a second generation of cold atom clocks; Horloge a reseau optique au strontium: une 2. generation d'horloges a atomes froids

    Energy Technology Data Exchange (ETDEWEB)

    Le Targat, R

    2007-07-15

    Atomic fountains, based on a microwave transition of Cesium or Rubidium, constitute the state of the art atomic clocks, with a relative accuracy close to 10{sup -16}. It nevertheless appears today that it will be difficult to go significantly beyond this level with this kind of device. The use of an optical transition, the other parameters being unchanged, gives hope for a 4 or 5 orders of magnitude improvement of the stability and of the relative uncertainty on most systematic effects. As for motional effects on the atoms, they can be controlled on a very different manner if they are trapped in an optical lattice instead of experiencing a free ballistic flight stage, characteristic of fountains. The key point of this approach lies in the fact that the trap can be operated in such a way that a well chosen, weakly allowed, J=0 {yields} J=0 clock transition can be free from light shift effects. In this respect, the strontium atom is one of the most promising candidate, the 1S{sub 0} {yields} 3P{sub 0} transition has a natural width of 1 mHz, and several other easily accessible transitions can be used to efficiently laser cool atoms down to 10 {mu}K. This thesis demonstrates the experimental feasibility of an optical lattice clock based on the strontium atom, and reports on a preliminary evaluation of the relative accuracy with the fermionic isotope {sup 87}Sr, at a level of a few 10{sup -15}. (author)

  10. Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition.

    Science.gov (United States)

    Portalupi, Simone Luca; Widmann, Matthias; Nawrath, Cornelius; Jetter, Michael; Michler, Peter; Wrachtrup, Jörg; Gerhardt, Ilja

    2016-11-25

    Hybrid quantum systems integrating semiconductor quantum dots (QDs) and atomic vapours become important building blocks for scalable quantum networks due to the complementary strengths of individual parts. QDs provide on-demand single-photon emission with near-unity indistinguishability comprising unprecedented brightness-while atomic vapour systems provide ultra-precise frequency standards and promise long coherence times for the storage of qubits. Spectral filtering is one of the key components for the successful link between QD photons and atoms. Here we present a tailored Faraday anomalous dispersion optical filter based on the caesium-D 1 transition for interfacing it with a resonantly pumped QD. The presented Faraday filter enables a narrow-bandwidth (Δω=2π × 1 GHz) simultaneous filtering of both Mollow triplet sidebands. This result opens the way to use QDs as sources of single as well as cascaded photons in photonic quantum networks aligned to the primary frequency standard of the caesium clock transition.

  11. Determination of the thermal radiation effect on an optical strontium lattice clock; Bestimmung des Einflusses thermischer Strahlung auf eine optische Strontium-Gitteruhr

    Energy Technology Data Exchange (ETDEWEB)

    Middelmann, Thomas

    2013-05-31

    Optical clocks have the potential to be 100 times more accurate than current best cesium atomic clocks within a fraction of the averaging time. This corresponds to a fractional uncertainty of the clock frequency on the level of 10{sup -18} and requires highaccuracy knowledge of systematic frequency shifts, such that they can be avoided or corrected for. In strontium optical lattice clocks an ensemble of ultracold strontium atoms is confined in an optical lattice, to allow for spectroscopy of the reference transition 5s{sup 2} {sup 1}S{sub 0}-5s5p {sup 3}P{sub 0} in the Lamb-Dicke regime. The by far largest systematic frequency shift of the strontium clock transition is caused by its high sensitivity to blackbody radiation (BBR). The knowledge of the resulting frequency shift limited the achievable clock uncertainty to about 1 x 10{sup -16}. In this thesis for the first time an experimental approach was followed, to determine the sensitivity of the strontium clock transition to blackbody radiation. At an environmental temperature of 300 K the resulting frequency shift corresponds to 2.277 8(23) Hz. The achieved uncertainty contributes with 5 x 10{sup -18} to the fractional systematic uncertainty of the clock frequency. The determination is based on a precision measurement of the difference of static polarizabilities of the two clock states {Delta}{alpha}{sub dc} = {alpha}(5s5p {sup 3}P{sub 0})-{alpha}(5s{sup 2} {sup 1}S{sub 0}) = 4.078 73(11) x 10{sup -39} Cm{sup 2} /V. For this the de Stark shift of the clock transition has been measured in the accurately known electric field of a precision plate capacitor, which has been developed in this work. The attained static polarizability difference {Delta}{alpha}{sub dc} corresponds to the first term of a power series of the sensitivity to BBR. Higher orders are accumulated as dynamic part of the BBR shift. Which has been modelled using {Delta}{alpha}{sub dc} and experimental data for other atomic properties. To

  12. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    Science.gov (United States)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  13. Cancellation of collisional frequency shifts in optical lattice clocks with Rabi spectroscopy

    International Nuclear Information System (INIS)

    Lee, Sangkyung; Park, Chang Yong; Lee, Won-Kyu; Yu, Dai-Hyuk

    2016-01-01

    We analyze both the s- and p-wave collision induced frequency shifts and propose an over-π pulse scheme to cancel the shifts in optical lattice clocks interrogated by a Rabi pulse. The collisional frequency shifts are analytically solved as a function of the pulse area and the inhomogeneity of the Rabi frequencies. Experimentally measured collisional frequency shifts in an Yb optical lattice clock are in good agreement with the analytical calculations. Based on our analysis, the over-π pulse combined with a small inhomogeneity below 0.1 allows a fractional uncertainty on a level of 10 −18 in both Sr and Yb optical lattice clocks by canceling the collisional frequency shift. (paper)

  14. Transportable Optical Lattice Clock with 7×10^{-17} Uncertainty.

    Science.gov (United States)

    Koller, S B; Grotti, J; Vogt, St; Al-Masoudi, A; Dörscher, S; Häfner, S; Sterr, U; Lisdat, Ch

    2017-02-17

    We present a transportable optical clock (TOC) with ^{87}Sr. Its complete characterization against a stationary lattice clock resulted in a systematic uncertainty of 7.4×10^{-17}, which is currently limited by the statistics of the determination of the residual lattice light shift, and an instability of 1.3×10^{-15}/sqrt[τ] with an averaging time τ in seconds. Measurements confirm that the systematic uncertainty can be reduced to below the design goal of 1×10^{-17}. To our knowledge, these are the best uncertainties and instabilities reported for any transportable clock to date. For autonomous operation, the TOC has been installed in an air-conditioned car trailer. It is suitable for chronometric leveling with submeter resolution as well as for intercontinental cross-linking of optical clocks, which is essential for a redefinition of the International System of Units (SI) second. In addition, the TOC will be used for high precision experiments for fundamental science that are commonly tied to precise frequency measurements and its development is an important step to space-borne optical clocks.

  15. Transportable Optical Lattice Clock with 7 ×10-17 Uncertainty

    Science.gov (United States)

    Koller, S. B.; Grotti, J.; Vogt, St.; Al-Masoudi, A.; Dörscher, S.; Häfner, S.; Sterr, U.; Lisdat, Ch.

    2017-02-01

    We present a transportable optical clock (TOC) with Sr 87 . Its complete characterization against a stationary lattice clock resulted in a systematic uncertainty of 7.4 ×10-17, which is currently limited by the statistics of the determination of the residual lattice light shift, and an instability of 1.3 ×10-15/√{τ } with an averaging time τ in seconds. Measurements confirm that the systematic uncertainty can be reduced to below the design goal of 1 ×10-17. To our knowledge, these are the best uncertainties and instabilities reported for any transportable clock to date. For autonomous operation, the TOC has been installed in an air-conditioned car trailer. It is suitable for chronometric leveling with submeter resolution as well as for intercontinental cross-linking of optical clocks, which is essential for a redefinition of the International System of Units (SI) second. In addition, the TOC will be used for high precision experiments for fundamental science that are commonly tied to precise frequency measurements and its development is an important step to space-borne optical clocks.

  16. Test of Special Relativity Using a Fiber Network of Optical Clocks.

    Science.gov (United States)

    Delva, P; Lodewyck, J; Bilicki, S; Bookjans, E; Vallet, G; Le Targat, R; Pottie, P-E; Guerlin, C; Meynadier, F; Le Poncin-Lafitte, C; Lopez, O; Amy-Klein, A; Lee, W-K; Quintin, N; Lisdat, C; Al-Masoudi, A; Dörscher, S; Grebing, C; Grosche, G; Kuhl, A; Raupach, S; Sterr, U; Hill, I R; Hobson, R; Bowden, W; Kronjäger, J; Marra, G; Rolland, A; Baynes, F N; Margolis, H S; Gill, P

    2017-06-02

    Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson-Mansouri-Sexl parameter |α|≲1.1×10^{-8}, quantifying a violation of time dilation, thus improving by a factor of around 2 the best known constraint obtained with Ives-Stilwell type experiments, and by 2 orders of magnitude the best constraint obtained by comparing atomic clocks. This work is the first of a new generation of tests of fundamental physics using optical clocks and fiber links. As clocks improve, and as fiber links are routinely operated, we expect that the tests initiated in this Letter will improve by orders of magnitude in the near future.

  17. Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock

    Science.gov (United States)

    Beloy, K.; Zhang, X.; McGrew, W. F.; Hinkley, N.; Yoon, T. H.; Nicolodi, D.; Fasano, R. J.; Schäffer, S. A.; Brown, R. C.; Ludlow, A. D.

    2018-05-01

    We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10-20 level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.

  18. Study of additive manufactured microwave cavities for pulsed optically pumped atomic clock applications

    Science.gov (United States)

    Affolderbach, C.; Moreno, W.; Ivanov, A. E.; Debogovic, T.; Pellaton, M.; Skrivervik, A. K.; de Rijk, E.; Mileti, G.

    2018-03-01

    Additive manufacturing (AM) of passive microwave components is of high interest for the cost-effective and rapid prototyping or manufacture of devices with complex geometries. Here, we present an experimental study on the properties of recently demonstrated microwave resonator cavities manufactured by AM, in view of their applications to high-performance compact atomic clocks. The microwave cavities employ a loop-gap geometry using six electrodes. The critical electrode structures were manufactured monolithically using two different approaches: Stereolithography (SLA) of a polymer followed by metal coating and Selective Laser Melting (SLM) of aluminum. The tested microwave cavities show the desired TE011-like resonant mode at the Rb clock frequency of ≈6.835 GHz, with a microwave magnetic field highly parallel to the quantization axis across the vapor cell. When operated in an atomic clock setup, the measured atomic Rabi oscillations are comparable to those observed for conventionally manufactured cavities and indicate a good uniformity of the field amplitude across the vapor cell. Employing a time-domain Ramsey scheme on one of the SLA cavities, high-contrast (34%) Ramsey fringes are observed for the Rb clock transition, along with a narrow (166 Hz linewidth) central fringe. The measured clock stability of 2.2 × 10-13 τ-1/2 up to the integration time of 30 s is comparable to the current state-of-the-art stabilities of compact vapor-cell clocks based on conventional microwave cavities and thus demonstrates the feasibility of the approach.

  19. Solutions for ultra-high speed optical wavelength conversion and clock recovery

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    This paper reports on our recent advances in ultra-fast optical communications relying on ultra-short pulses densely stacked in ultra-high bit rate serial data signals at a single wavelength. The paper describes details in solutions for the network functionalities of wavelength conversion and clock...... recovery at bit rates up to 320 Gb/s...

  20. Ra+ ion trapping : toward an atomic parity violation measurement and an optical clock

    NARCIS (Netherlands)

    Portela, M. Nunez; Dijck, E. A.; Mohanty, A.; Bekker, H.; van den Berg, Joost E.; Giri, G. S.; Hoekstra, S.; Onderwater, C. J. G.; Schlesser, S.; Timmermans, R.G.E.; Versolato, O. O.; Willmann, L.; Wilschut, H. W.; Jungmann, K.

    2014-01-01

    A single Ra+ ion stored in a Paul radio frequency ion trap has excellent potential for a precision measurement of the electroweak mixing angle at low momentum transfer and as the most stable optical clock. The effective transport and cooling of singly charged ions of the isotopes Ra-209 to Ra-214 in

  1. All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-05-01

    Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.

  2. Helium Pressure Shift of the Hyperfine Clock Transition in Hg-201(+)

    Science.gov (United States)

    Larigani, S. Taghavi; Burt, E. A.; Tjoelker, R. L.

    2010-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave atomic clock: Hg-199(+) and Hg-201(+). We are investigating the viability of a trapped ion clock based on Hg-201(+) in a configuration that uses a buffer gas to increase ion loading efficiency and counter ion heating from rf trapping fields. Traditionally, either helium or neon is used as the buffer gas at approx. 10(exp -5) torr to confine mercury ions near room temperature. In addition to the buffer gas, other residual background gasses such as H2O, N2, O2, CO, CO2, and CH2 may be present in trace quantities. Collisions between trapped ions and buffer gas or background gas atoms/molecules produce a momentary shift of the ion clock transition frequency and constitute one of the largest systematic effects in this type of clock. Here we report an initial measurement of the He pressure shift in Hg-201(+) and compare this to Hg-199(+).

  3. Clock-distribution with instantaneous synchronisation for 160 Gbit/s optical time-domain multiplexed packet transmission

    NARCIS (Netherlands)

    Gomez-Agis, F.; Calabretta, N.; Albores Mejia, A.; Dorren, H.J.S.

    2010-01-01

    We demonstrate for the first time, to our knowledge, a clock-distribution method for ultra-high-speed optical time-domain multiplexed systems data packets that provides instantaneous synchronization, fast locking/unlocking times, and a highly stable bursty clock, enabling error-free operation of 160

  4. Buckling Transitions and Clock Order of Two-Dimensional Coulomb Crystals

    Directory of Open Access Journals (Sweden)

    Daniel Podolsky

    2016-08-01

    Full Text Available Crystals of repulsively interacting ions in planar traps form hexagonal lattices, which undergo a buckling instability towards a multilayer structure as the transverse trap frequency is reduced. Numerical and experimental results indicate that the new structure is composed of three planes, whose separation increases continuously from zero. We study the effects of thermal and quantum fluctuations by mapping this structural instability to the six-state clock model. A prominent implication of this mapping is that at finite temperature, fluctuations split the buckling instability into two thermal transitions, accompanied by the appearance of an intermediate critical phase. This phase is characterized by quasi-long-range order in the spatial tripartite pattern. It is manifested by broadened Bragg peaks at new wave vectors, whose line shape provides a direct measurement of the temperature-dependent exponent η(T characteristic of the power-law correlations in the critical phase. A quantum phase transition is found at the largest value of the critical transverse frequency: Here, the critical intermediate phase shrinks to zero. Moreover, within the ordered phase, we predict a crossover from classical to quantum behavior, signifying the emergence of an additional characteristic scale for clock order. We discuss experimental realizations with trapped ions and polarized dipolar gases, and propose that within accessible technology, such experiments can provide a direct probe of the rich phase diagram of the quantum clock model, not easily observable in condensed matter analogues. Therefore, this work highlights the potential for ionic and dipolar systems to serve as simulators for complex models in statistical mechanics and condensed matter physics.

  5. Patterning via optical saturable transitions

    Science.gov (United States)

    Cantu, Precious

    For the past 40 years, optical lithography has been the patterning workhorse for the semiconductor industry. However, as integrated circuits have become more and more complex, and as device geometries shrink, more innovative methods are required to meet these needs. In the far-field, the smallest feature that can be generated with light is limited to approximately half the wavelength. This, so called far-field diffraction limit or the Abbe limit (after Prof. Ernst Abbe who first recognized this), effectively prevents the use of long-wavelength photons >300nm from patterning nanostructures barrier is developed and experimentally verified. This approach, which I refer to as Patterning via Optical Saturable Transitions (POST) has the potential for massive parallelism, enabling the creation of nanostructures and devices at a speed far surpassing what is currently possible with conventional optical lithographic techniques. The fundamental understanding of this technique goes beyond optical lithography in the semiconductor industry and is applicable to any area that requires the rapid patterning of large-area two or three-dimensional complex geometries. At a basic level, this research intertwines the fields of electrochemistry, material science, electrical engineering, optics, physics, and mechanical engineering with the goal of developing a novel super-resolution lithographic technique.

  6. Could Atomic clocks be affected by neutrinos?

    CERN Document Server

    Hanafi, Hanaa

    2016-01-01

    An atomic clock is a clock device that uses an electronic transition frequency of the electromagnetic spectrum of atoms as a frequency standard in order to derive a time standard since time is the reciprocal of frequency. If the electronic transition frequencies are in an "optical region", we are talking in this case about optical atomic clocks. If they are in an "microwave region" these atomic clocks are made of the metallic element cesium so they are called Cesium atomic clocks. Atomic clocks are the most accurate time and frequency standards known despite the different perturbations that can affect them, a lot of researches were made in this domain to show how the transitions can be different for different type of perturbations..Since atomic clocks are very sensitive devices, based on coherent states (A coherent state tends to loose coherence after interacting). One question can arise (from a lot of questions) which is why cosmic neutrinos are not affecting these clocks? The answer to this question requir...

  7. Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock

    Science.gov (United States)

    Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.

    2018-04-01

    Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.

  8. Quantum optics and nuclear clocks: a look at the 2012 physics nobel prize

    International Nuclear Information System (INIS)

    Herrera-Sancho, Oscar-Andrey

    2013-01-01

    Pioneering researches in the field of quantum optics are presented. These have laid the foundation for photonics research, that has grasped the particle properties of light to create new technologies and deepen the understanding of the physical laws. The quantum computation and quantum clocks have been highlighted. Individual particles have managed to manipulate without losing its properties in quantum, using photons to immobilize atoms with electric charges (ions) and study their properties. Researches conducted by the French scientist Serge Haroche and American David Wineland nobel prize winners for Physics 2012, have been commented [es

  9. Optical Magnetometry Using Multiphoton Transitions

    Science.gov (United States)

    Degenkolb, Skyler M.

    Optical magnetometry plays a critical role in low-energy precision measurements and numerous other applications. In particular, permanent electric dipole moment (EDM) searches impose strict requirements on magnetic field sensitivity of the underlying atomic or molecular species. Other magnetometer properties - such as chemical reactivity, dielectric strength, and interaction cross-sections with other species - also impose limitations on experimental conditions. Here, we explore a novel approach to optical magnetometry, using multiphoton transitions of diamagnetic atoms to detect Larmor precession of polarized nuclei. Resonant probes are possible at moderate ultraviolet wavelengths, and hyperfine structure couples spin precession to fluorescence transitions with negligible backgrounds; paramagnetic rotation due to intensity-dependent dispersion may also be detectable. Nuclear spins and nonlinear optical excitation introduce new degrees of freedom, and evade limitations arising from rapid electronic decoherence. This dissertation reports progress towards two-photon optical magnetometry using ytterbium, rubidium, and xenon. We characterize the influence of probe polarization and magnetic fields on fluorescence spectra, for one- and two-photon continuous-wave (cw) excitation of ytterbium. Resolved hyperfine and isotope structure allow us to use spin-zero isotopes for diagnostics and normalization, and we develop analysis for overlapping two-photon resonances. We also report measurements of two-photon excitation in ytterbium and rubidium using picosecond laser pulses, and in xenon using a cw laser. Although hyperfine structure is unresolved, the rubidium measurements are sensitive to probe field polarization. Fluorescence spectra from two-photon excitation of ytterbium with femtosecond pulses show modulation when the repetition rate changes. Although techniques for polarizing noble gas nuclei are mature, existing cell designs are incompatible with two

  10. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  11. All-optical clocked flip-flops and random access memory cells using the nonlinear polarization rotation effect of low-polarization-dependent semiconductor optical amplifiers

    Science.gov (United States)

    Wang, Yongjun; Liu, Xinyu; Tian, Qinghua; Wang, Lina; Xin, Xiangjun

    2018-03-01

    Basic configurations of various all-optical clocked flip-flops (FFs) and optical random access memory (RAM) based on the nonlinear polarization rotation (NPR) effect of low-polarization-dependent semiconductor optical amplifiers (SOA) are proposed. As the constituent elements, all-optical logic gates and all-optical SR latches are constructed by taking advantage of the SOA's NPR switch. Different all-optical FFs (AOFFs), including SR-, D-, T-, and JK-types as well as an optical RAM cell were obtained by the combination of the proposed all-optical SR latches and logic gates. The effectiveness of the proposed schemes were verified by simulation results and demonstrated by a D-FF and 1-bit RAM cell experimental system. The proposed all-optical clocked FFs and RAM cell are significant to all-optical signal processing.

  12. Hg-201 (+) CO-Magnetometer for HG-199(+) Trapped Ion Space Atomic Clocks

    Science.gov (United States)

    Burt, Eric A. (Inventor); Taghavi, Shervin (Inventor); Tjoelker, Robert L. (Inventor)

    2011-01-01

    Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes. The second isotope's Zeeman transition provides the measure of magnetic field strength, and the measurement is used to compensate the first isotope's clock transition or to adjust the applied C-field to reduce the effects of ambient magnetic field perturbations.

  13. Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    International Nuclear Information System (INIS)

    Budker, D.; Hollberg, L.; Kimball, D.F.; Kitching, J.; Pustclny, S.; Robinson, H.G.; Yashchuk, V.V.

    2004-01-01

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between the components of the ground-state hyperfine structure for 85 Rb and 87 Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, which may be useful for atomic clocks and magnetometers

  14. Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    International Nuclear Information System (INIS)

    Budker, Dmitry; Hollberg, Leo; Kimball, Derek F.; Kitching, J.; Pustelny, Szymon; Yashchuk, Valeriy V.

    2004-01-01

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of 85 Rb and 87 Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers

  15. Egyptian "Star Clocks"

    Science.gov (United States)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  16. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy.

    Directory of Open Access Journals (Sweden)

    Aneesh Alex

    Full Text Available Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR and cardiac activity period (CAP of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays

  17. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy

    Science.gov (United States)

    Zeng, Xianxu; Tate, Rebecca E.; McKee, Mary L.; Capen, Diane E.; Zhang, Zhan; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential

  18. Time-variable gravity potential components for optical clock comparisons and the definition of international time scales

    International Nuclear Information System (INIS)

    Voigt, C.; Denker, H.; Timmen, L.

    2016-01-01

    The latest generation of optical atomic clocks is approaching the level of one part in 10 18 in terms of frequency stability and uncertainty. For clock comparisons and the definition of international time scales, a relativistic redshift effect of the clock frequencies has to be taken into account at a corresponding uncertainty level of about 0.1 m 2 s -2 and 0.01 m in terms of gravity potential and height, respectively. Besides the predominant static part of the gravity potential, temporal variations must be considered in order to avoid systematic frequency shifts. Time-variable gravity potential components induced by tides and non-tidal mass redistributions are investigated with regard to the level of one part in 10 18 . The magnitudes and dominant time periods of the individual gravity potential contributions are investigated globally and for specific laboratory sites together with the related uncertainty estimates. The basics of the computation methods are presented along with the applied models, data sets and software. Solid Earth tides contribute by far the most dominant signal with a global maximum amplitude of 4.2 m 2 s -2 for the potential and a range (maximum-to-minimum) of up to 1.3 and 10.0 m 2 s -2 in terms of potential differences between specific laboratories over continental and intercontinental scales, respectively. Amplitudes of the ocean tidal loading potential can amount up to 1.25 m 2 s -2 , while the range of the potential between specific laboratories is 0.3 and 1.1 m 2 s -2 over continental and intercontinental scales, respectively. These are the only two contributors being relevant at a 10 -17 level. However, several other time-variable potential effects can particularly affect clock comparisons at the 10 -18 level. Besides solid Earth pole tides, these are non-tidal mass redistributions in the atmosphere, the oceans and the continental water storage. (authors)

  19. Flattened optical frequency-locked multi-carrier generation by cascading one DML and one phase modulator driven by different RF frequency clocks

    International Nuclear Information System (INIS)

    Li, Xinying; Yu, Jianjun; Zhang, Junwen; Chi, Nan

    2013-01-01

    We propose a novel scheme for flattened optical frequency-locked multi-carrier generation based on one directly modulated laser (DML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. We experimentally demonstrate that when the clock frequencies for the cascaded DML and the PM are respectively 12.5 GHz and 25 GHz, over 24 optical subcarriers can be generated with 12.5-GHz frequency spacing and amplitude fluctuation less than 3 dB. Furthermore, the number of generated optical subcarriers can be further increased when we increase the driving power for the DML. (letter)

  20. Inelastic collisions and density-dependent excitation suppression in a 87Sr optical lattice clock

    International Nuclear Information System (INIS)

    Bishof, M.; Martin, M. J.; Swallows, M. D.; Benko, C.; Lin, Y.; Quemener, G.; Rey, A. M.; Ye, J.

    2011-01-01

    We observe two-body loss of 3 P 0 87 Sr atoms trapped in a one-dimensional optical lattice. We measure loss rate coefficients for atomic samples between 1 and 6 μK that are prepared either in a single nuclear-spin sublevel or with equal populations in two sublevels. The measured temperature and nuclear-spin preparation dependence of rate coefficients agree well with calculations and reveal that rate coefficients for distinguishable atoms are only slightly enhanced over those of indistinguishable atoms. We further observe a suppression of excitation and losses during interrogation of the 1 S 0 - 3 P 0 transition as density increases and Rabi frequency decreases, which suggests the presence of strong interactions in our dynamically driven many-body system.

  1. Trapped ultracold molecular ions: candidates for an optical molecular clock for a fundamental physics mission in space

    Science.gov (United States)

    Roth, B.; Koelemeij, J.; Daerr, H.; Ernsting, I.; Jorgensen, S.; Okhapkin, M.; Wicht, A.; Nevsky, A.; Schiller, S.

    2017-11-01

    Narrow ro-vibrational transitions in ultracold molecules are excellent candidates for frequency references in the near-IR to visible spectral domain and interesting systems for fundamental tests of physics, in particular for a satellite test of the gravitational redshift of clocks. We have performed laser spectroscopy of several ro-vibrational overtone transitions υ = 0 → υ = 4 in HD+ ions at around 1.4 μm. 1+1 REMPD was used as a detection method, followed by measurement of the number of remaining molecules. The molecular ions were stored in a linear radiofrequency trap and cooled to millikelvin temperatures, by sympathetic cooling using laser-cooled Be+ ions simultaneously stored in the same trap.

  2. Low-power, miniature {sup 171}Yb ion clock using an ultra-small vacuum package

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Y.-Y.; Schwindt, P. D. D. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Partner, H. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Center for Quantum Information and Control (CQuIC), Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Prestage, J. D.; Kellogg, J. R.; Yu, N. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2012-12-17

    We report a demonstration of a very small microwave atomic clock using the 12.6 GHz hyperfine transition of the trapped {sup 171}Yb ions inside a miniature, completely sealed-off 3 cm{sup 3} ion-trap vacuum package. In the ion clock system, all of the components are highly miniaturized with low power consumption except the 369 nm optical pumping laser still under development for miniaturization. The entire clock, including the control electronics, consumes <300 mW. The fractional frequency instability of the miniature Yb{sup +} clock reaches the 10{sup -14} range after a few days of integration.

  3. A strontium lattice clock with reduced blackbody radiation shift

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masoudi, Ali Khalas Anfoos

    2016-09-30

    Optical clocks have been quickly moving to the forefront of the frequency standards field due to their high spectral resolution, and therefore the potential high stability and accuracy. The accuracy and stability of the optical clocks are nowadays two orders of magnitude better than microwave Cs clocks, which realize the SI second. Envisioned applications of highly accurate optical clocks are to perform tests of fundamental physics, for example, searching for temporal drifts of the fine structure constant α, violations of the Local Position Invariance (LPI), dark matter and dark energy, or to performance relativistic geodesy. In this work, the uncertainty of a strontium lattice clock, based on the {sup 1}S{sub 0}-{sup 3}P{sub 0} transition in {sup 87}Sr, due to the blackbody radiation (BBR) shift has been reduced to less than 1 x 10{sup -18} by more than one order of magnitude compared to the previous evaluation of the BBR shift uncertainty in this clock. The BBR shift has been reduced by interrogating the atoms in a cryogenic environment. The systematic uncertainty of the cryogenic lattice clock is evaluated to be 1.3 x 10{sup -17} which is dominated by the uncertainty of the AC Stark shift of the lattice laser and the uncertainty contribution of the BBR shift is negligible. Concerning the instability of the clock, the detection noise of the clock has been measured, and a model linking noise and clock instability has been developed. This noise model shows that, in our lattice clock, quantum projection noise is reached if more than 130 atoms are interrogated. By combining the noise model with the degradation due to the Dick effect reflecting the frequency noise of the interrogation laser, the instability of the clock is estimated to be 1.6 x 10{sup -16}/√(τ/s) in regular operation. During this work, several high-accuracy comparisons to other atomic clocks have been performed, including several absolute frequency measurements. The Sr clock transition frequency

  4. First observation of the strongly forbidden transition {sup 1}S{sub 0} - {sup 3}P{sub 0} in Strontium, for an atomic clock with trapped atoms; Premiere observation de la transition fortement interdite {sup 1}S{sub 0} - {sup 3}P{sub 0} du strontium, pour une horloge optique a atomes pieges

    Energy Technology Data Exchange (ETDEWEB)

    Courtillot, I

    2003-11-01

    This thesis reports the first results towards the realization of an optical clock using trapped strontium atoms. This set up would combine advantages of the different approaches commonly used to develop an atomic frequency standard. The first part describes the cold atoms source which is implemented. A magneto-optical trap operating on the {sup 1}S{sub 0}-{sup 1}P{sub 1} transition at 461 nm is loaded from an atomic beam decelerated by a Zeeman slower. The 461 nm laser is obtained by sum-frequency mixing in a potassium titanyl phosphate (KTP) crystal. The second part is devoted to the different stages developed to achieve the direct excitation of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition in {sup 87}Sr. This line has a theoretical natural width of 10{sup -3} Hz. Before this detection, we obtained an estimate of the resonance frequency by measuring absolute frequencies of several allowed optical transitions. (author)

  5. Capacity upgrade in short-reach optical fibre networks: simultaneous 4-PAM 20 Gbps data and polarization-modulated PPS clock signal using a single VCSEL carrier

    Science.gov (United States)

    Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-11-01

    In this work, a four-level pulse amplitude modulation (4-PAM) format with a polarization-modulated pulse per second (PPS) clock signal using a single vertical cavity surface emitting laser (VCSEL) carrier is for the first time experimentally demonstrated. We propose uncomplex alternative technique for increasing capacity and flexibility in short-reach optical communication links through multi-signal modulation onto a single VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated onto a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by exploiting the inherent orthogonal polarization switching of the VCSEL carrier with changing bias in transmission of a PPS clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a polarization-based PPS clock signal using a single VCSEL carrier. It is the first time a signal VCSEL carrier is reported to simultaneously transmit a directly modulated 20 Gbps 4-PAM data signal and a polarization-based PPS clock signal. We further demonstrate on the design of a software-defined digital signal processing (DSP)-assisted receiver as an alternative to costly receiver hardware. Experimental results show that a 3.21 km fibre transmission with simultaneous 20 Gbps 4-PAM data signal and polarization-based PPS clock signal introduced a penalty of 3.76 dB. The contribution of polarization-based PPS clock signal to this penalty was found out to be 0.41 dB. Simultaneous distribution of data and timing clock signals over shared network infrastructure significantly increases the aggregated data rate at different optical network units (ONUs), without costly investment.

  6. Strontium Optical Lattice Clock: In Quest of the Ultimate Performance; Horloge a reseau optique au strontium: en quete de la performance ultime

    Energy Technology Data Exchange (ETDEWEB)

    Westergaard, Ph.G.

    2010-10-15

    This thesis presents the latest achievements regarding the Sr optical lattice clock experiment at LNESYRTE, Observatoire de Paris. After having described the general principles for optical lattice clocks and the operation of the clock in question, the emphasis is put on the features that have been added to the experiment since 2007. The most important new elements are an ultra-stable reference cavity for the clock laser, the development of a non-destructive detection technique, and the construction of a second Sr lattice clock. The ultra-stable cavity is constructed from a ULE spacer and fused silica mirrors and has shown a thermal noise floor at 6.5 * 10{sup -16}, placing it among the best in the world. The non-destructive detection is effectuated by a phase measurement of a weak probe beam that traverses the atoms placed in one arm of a Mach-Zender interferometer. The non-destructive aspect enables a recycling of the atoms from cycle to cycle which consequently increases the duty cycle, allowing for an increase of the stability of the clock. With these new tools the frequency stability is expected to be 2.2 * 10{sup -16}/{radical}{tau} for an optimized sequence. The most recent comparisons between the two Sr clocks reach an accuracy level of 10{sup -16} after about 1000 s, and this way we have been able to characterize lattice related frequency shifts with an unprecedented accuracy. The measurements ensure a control of lattice related effects at the 10{sup -18} level even for trap depths as large as 50E{sub r}. (authors)

  7. Robust Frequency Combs and Lasers for Optical Clocks and Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical frequency combs are the key enabling technology that enabled the immense fractional stability of highly-stabilized lasers in the optical regime to be...

  8. FROM STABLE LASERS TO OPTICAL-FREQUENCY CLOCKS:. Merging the UltraFast and the UltraStable, for a New Epoch of Optical Frequency Measurements, Standards, & Applications

    Science.gov (United States)

    Hall, J. L.; Ye, J.; Ma, L.-S.; Peng, J.-L.; Notcutt, M.; Jost, J. D.; Marian, A.

    2002-04-01

    This is a report on behalf of the World Team of Stable Laser and Optical Frequency Measurement Enthusiasts, even if most detailed illustrations draw mainly from our work at JILA. Specifically we trace some of the key ideas that have led from the first stabilized lasers, to frequency measurement up to 88 THz using frequency chains, revision of the Definition of the Metre, extension of coherent frequency chain technology into the visible, development of a vast array of stabilized lasers, and finally the recent explosive growth of direct frequency measurement capability in the visible using fs comb techniques. We present our recent work showing a Molecular Iodine-based Optical Clock which delivers, over a range of time scales, rf output at a stability level basically equivalent to the RF stability prototype, the Hydrogen Maser. We note the bifurcation between single-ion-based clocks - likely to be the stability/reproducibility ultimate winners in the next generation - and simpler systems based on gas cells, which can have impressive stabilities but may suffer from a variety of reproducibility-limiting processes. Active Phase-Lock synchronization of independent fs lasers allows sub-fs timing control. Copies of related works in our labs may be found/obtained at our website .

  9. Atomic clocks for geodesy

    Science.gov (United States)

    Mehlstäubler, Tanja E.; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O.; Denker, Heiner

    2018-06-01

    We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10‑17, opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein’s general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today’s best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10‑18, comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.

  10. A study of ultra-stable optical clocks, frequency sources and standards for space applications

    International Nuclear Information System (INIS)

    Klein, H.A.; Knight, D.J.E.

    1999-01-01

    Optical or laser-based communication systems are expected to supplement microwave based systems for satellite-to-satellite and spacecraft-to-satellite communications early in the next millennium. Optical systems can carry far more traffic than microwave and address the need to increase communication bandwidths to meet the demands of commerce and the entertainment industry. There is already significant research and commercial interest in this area (now driven particularly by the multi-media and Internet services delivery sector) and there is a strong need to establish which are the best choices of optical sources to develop for space based optical communications. In addition to communication requirements there are strong arguments for developing ultra-stable optical frequency sources and detectors in space for at least two other purposes. At present the microwave radiation that is used for communications is also used for other purposes, for example navigation or tracking, and 'space science' experiments. With the switch from the microwave to the optical for communications it may well be convenient to switch to the optical for these and other functions. This study has examined the potential stable laser requirements for a range of space applications. An interim report was presented in the form of a conference paper summarising our initial findings (see Appendix 5). This final report gives our conclusions in more detail and recommends areas for further study

  11. Cascaded optical fiber link using the internet network for remote clocks comparison.

    Science.gov (United States)

    Chiodo, Nicola; Quintin, Nicolas; Stefani, Fabio; Wiotte, Fabrice; Camisard, Emilie; Chardonnet, Christian; Santarelli, Giorgio; Amy-Klein, Anne; Pottie, Paul-Eric; Lopez, Olivier

    2015-12-28

    We report a cascaded optical link of 1100 km for ultra-stable frequency distribution over an Internet fiber network. The link is composed of four spans for which the propagation noise is actively compensated. The robustness and the performance of the link are ensured by five fully automated optoelectronic stations, two of them at the link ends, and three deployed on the field and connecting the spans. This device coherently regenerates the optical signal with the heterodyne optical phase locking of a low-noise laser diode. Optical detection of the beat-note signals for the laser lock and the link noise compensation are obtained with stable and low-noise fibered optical interferometer. We show 3.5 days of continuous operation of the noise-compensated 4-span cascaded link leading to fractional frequency instability of 4x10(-16) at 1-s measurement time and 1x10(-19) at 2000 s. This cascaded link was extended to 1480-km with the same performance. This work is a significant step towards a sustainable wide area ultra-stable optical frequency distribution and comparison network at a very high level of performance.

  12. Wave-function analysis of dynamic cancellation of ac Stark shifts in optical lattice clocks by use of pulsed Raman and electromagnetically-induced-transparency techniques

    International Nuclear Information System (INIS)

    Yoon, Tai Hyun

    2007-01-01

    We study analytically the dynamic cancellation of ac Stark shift in the recently proposed pulsed electromagnetically-induced-transparency (EIT-)Raman optical lattice clock based on the wave-function formalism. An explicit expression for the time evolution operator corresponding to the effective two-level interaction Hamiltonian has been obtained in order to explain the atomic phase shift cancellation due to the ac Stark shift induced by the time-separated laser pulses. We present how to determine an optimum value of the common detuning of the driving fields at which the atomic phase shift cancels completely with the parameters for the practical realization of the EIT-Raman optical lattice clock with alkaline-earth-metal atoms

  13. Libya: The Transition Clock

    Science.gov (United States)

    2012-03-01

    particularly important aspect will be the treat- ment of minorities such as the Berbers , who played an important role in the fighting apparently sup- ported by...will insist on the adoption of a strict inter- pretation of Shariah law, a position that led to Berber representatives walking out of at least one

  14. Performance of a 229Thorium solid-state nuclear clock

    International Nuclear Information System (INIS)

    Kazakov, G A; Schreitl, M; Winkler, G; Schumm, T; Litvinov, A N; Romanenko, V I; Yatsenko, L P; Romanenko, A V

    2012-01-01

    The 7.8 eV nuclear isomer transition in 229 thorium has been suggested as a clock transition in a new type of optical frequency standard. Here we discuss the construction of a ‘solid-state nuclear clock’ from thorium nuclei implanted into single crystals transparent in the vacuum ultraviolet range. We investigate crystal-induced line shifts and broadening effects for the specific system of calcium fluoride. At liquid nitrogen temperatures, the clock performance will be limited by decoherence due to magnetic coupling of the thorium nuclei to neighboring nuclear moments, ruling out the commonly used Rabi or Ramsey interrogation schemes. We propose clock stabilization based on a fluorescence spectroscopy method and present optimized operation parameters. Taking advantage of the large number of quantum oscillators under continuous interrogation, a fractional instability level of 10 −19 might be reached within the solid-state approach. (paper)

  15. Development of an atomic clock on an atom chip: Optimisation of the coherence time and preliminary characterisation

    International Nuclear Information System (INIS)

    Lacroute, Clement

    2010-01-01

    We describe the construction and preliminary characterization of an atomic clock on an atom chip. A sample of magnetically trapped 87 Rb atoms is cooled below 1 μK, close to Bose- Einstein condensation temperature. The trapped states |F = 1; m F = -1> and |F = 2;m F = 1> define our two-photon clock transition. Atoms are trapped around a field B0 = 3.23 G, where the clock frequency is first-order insensitive to magnetic field fluctuations. We have designed an atom chip that includes a microwave coplanar waveguide which drives the 6.835 GHz transition. The whole clock cycle is performed in the vicinity of the chip surface, making the physics package compact (5 cm) 3 . We first describe the experimental setup of the clock, and the optical bench that has been developed and characterized during this thesis. We then give the results obtained for atom cooling, which led to obtaining a 3 10 4 atoms Bose-Einstein condensate. We finally present the results obtained by Ramsey spectroscopy of the clock transition. We measure coherence times exceeding 10 seconds with our setup, dominated by atom losses. A preliminary measurement shows that the clock relative frequency stability is of 6 10 -12 at 1 s, limited by technical noise. Our goal is to reach a stability in the low 10 -13 at 1 s, i.e. better than commercial clocks and competitive with today's best compact clocks. (author)

  16. All-optical OXC transition strategy from WDM optical network to elastic optical network.

    Science.gov (United States)

    Chen, Xin; Li, Juhao; Guo, Bingli; Zhu, Paikun; Tang, Ruizhi; Chen, Zhangyuan; He, Yongqi

    2016-02-22

    Elastic optical network (EON) has been proposed recently as a spectrum-efficient optical layer to adapt to rapidly-increasing traffic demands instead of current deployed wavelength-division-multiplexing (WDM) optical network. In contrast with conventional WDM optical cross-connect (OXCs) based on wavelength selective switches (WSSs), the EON OXCs are based on spectrum selective switches (SSSs) which are much more expensive than WSSs, especially for large-scale switching architectures. So the transition cost from WDM OXCs to EON OXCs is a major obstacle to realizing EON. In this paper, we propose and experimentally demonstrate a transition OXC (TOXC) structure based on 2-stage cascading switching architectures, which make full use of available WSSs in current deployed WDM OXCs to reduce number and port count of required SSSs. Moreover, we propose a contention-aware spectrum allocation (CASA) scheme for EON built with the proposed TOXCs. We show by simulation that the TOXCs reduce the network capital expenditure transiting from WDM optical network to EON about 50%, with a minor traffic blocking performance degradation and about 10% accommodated traffic number detriment compared with all-SSS EON OXC architectures.

  17. History of early atomic clocks

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    2005-01-01

    This review of the history of early atomic clocks includes early atomic beam magnetic resonance, methods of separated and successive oscillatory fields, microwave absorption, optical pumping and atomic masers. (author)

  18. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  19. Full-asynchronous gigabit-symmetric DPSK downstream and OOK upstream OCDMA-PON with source-free ONUs employing all-optical self-clocked time gate.

    Science.gov (United States)

    Dai, Bo; Shimizu, Satoshi; Wang, Xu; Wada, Naoya

    2012-12-10

    We propose an asynchronous gigabit-symmetric optical code division multiplexing access passive optical network (OCDMA-PON) in which optical network units (ONUs) are source-free. In the experiment, we demonstrate a duplex OCDMA system with a 50 km 10 Gbit/s/user 4-user DPSK-OCDMA downlink and a 50 km 10 Gbit/s/user 4-user OOK-OCDMA uplink and error-free duplex transmissions are achieved. Besides, we investigate an all-optical self-clocked time gate, which is used for the signal regeneration of decoded signals and ensures asynchronization in the up/downstream transmissions. Furthermore, we evaluate the power budget of the proposed duplex transmission.

  20. Determining hyperfine transitions with electromagnetically induced transparency and optical pumping

    International Nuclear Information System (INIS)

    Lee Yi-Chi; Tsai Chin-Chun; Huang Chen-Han; Chui Hsiang-Chen; Chang Yung-Yung

    2011-01-01

    A system is designed to observe the phenomena of electromagnetically induced transparency and optical pumping in cesium D 1 and D 2 lines at room temperature. When a pump laser is frequency-locked on the top of a hyperfine transition and the frequency of the probe laser scans over another hyperfine transition, a spectrum of V-type electromagnetically induced transparency or an optical pumping can be observed depending on whether the two lasers share a common ground state. Therefore, these results can be used to identify the unknown hyperfine transitions of the D 1 line transitions. For educational purposes, this system is helpful for understanding the electromagnetically induced transparency and the optical pumping

  1. Decamp Clock Board Firmware

    International Nuclear Information System (INIS)

    Vicente, J. de; Castilla, J.; Martinez, G.

    2007-01-01

    Decamp (Dark Energy Survey Camera) is a new instrument designed to explore the universe aiming to reveal the nature of Dark Energy. The camera consists of 72 CCDs and 520 Mpixels. The readout electronics of DECam is based on the Monsoon system. Monsoon is a new image acquisition system developed by the NOAO (National Optical Astronomical Observatory) for the new generation of astronomical cameras. The Monsoon system uses three types of boards inserted in a Eurocard format based crate: master control board, acquisition board and clock board. The direct use of the Monsoon system for DECam readout electronics requires nine crates mainly due to the high number of clock boards needed. Unfortunately, the available space for DECam electronics is constrained to four crates at maximum. The major drawback to achieve such desired compaction degree resides in the clock board signal density. This document describes the changes performed at CIEMAT on the programmable logic of the Monsoon clock board aiming to meet such restricted space constraints. (Author) 5 refs

  2. Decamp Clock Board Firmware

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Castilla, J.; Martinez, G.

    2007-09-27

    Decamp (Dark Energy Survey Camera) is a new instrument designed to explore the universe aiming to reveal the nature of Dark Energy. The camera consists of 72 CCDs and 520 Mpixels. The readout electronics of DECam is based on the Monsoon system. Monsoon is a new image acquisition system developed by the NOAO (National Optical Astronomical Observatory) for the new generation of astronomical cameras. The Monsoon system uses three types of boards inserted in a Eurocard format based crate: master control board, acquisition board and clock board. The direct use of the Monsoon system for DECam readout electronics requires nine crates mainly due to the high number of clock boards needed. Unfortunately, the available space for DECam electronics is constrained to four crates at maximum. The major drawback to achieve such desired compaction degree resides in the clock board signal density. This document describes the changes performed at CIEMAT on the programmable logic of the Monsoon clock board aiming to meet such restricted space constraints. (Author) 5 refs.

  3. Optical diffraction from fractals with a structural transition

    International Nuclear Information System (INIS)

    Perez Rodriguez, F.; Canessa, E.

    1994-04-01

    A macroscopic characterization of fractals showing up a structural transition from dense to multibranched growth is made using optical diffraction theory. Such fractals are generated via the numerical solution of the 2D Poisson and biharmonic equations and are compared to more 'regular' irreversible clusters such as diffusion limited and Laplacian aggregates. The optical diffraction method enables to identify a decrease of the fractal dimension above the structural point. (author). 19 refs, 6 figs

  4. Empirical prediction of optical transitions in metallic armchair SWCNTs

    Directory of Open Access Journals (Sweden)

    G. R. Ahmed Jamal

    2015-12-01

    Full Text Available In this work, a quick and effective method to calculate the second and third optical transition energies of metallic armchair single-wall carbon nanotubes (SWCNT is presented. In this proposed method, the transition energy of any armchair SWCNT can be predicted directly by knowing its one chiral index as both of its chiral indices are same. The predicted results are compared with recent experimental data and found to be accurate over a wide diameter range from 2 to 4.8 nm. The empirical equation proposed here is also compared with that proposed in earlier works. The proposed way may help the research works or applications where information of optical transitions of armchair metallic nanotubes is needed.

  5. On Variations in the Level of PER in Glial Clocks of Drosophila Optic Lobe and Its Negative Regulation by PDF Signaling.

    Science.gov (United States)

    Górska-Andrzejak, Jolanta; Chwastek, Elżbieta M; Walkowicz, Lucyna; Witek, Kacper

    2018-01-01

    We show that the level of the core protein of the circadian clock Period (PER) expressed by glial peripheral oscillators depends on their location in the Drosophila optic lobe. It appears to be controlled by the ventral lateral neurons (LNvs) that release the circadian neurotransmitter Pigment Dispersing Factor (PDF). We demonstrate that glial cells of the distal medulla neuropil (dMnGl) that lie in the vicinity of the PDF-releasing terminals of the LNvs possess receptors for PDF (PDFRs) and express PER at significantly higher level than other types of glia. Surprisingly, the amplitude of PER molecular oscillations in dMnGl is increased twofold in PDF-free environment, that is in Pdf 0 mutants. The Pdf 0 mutants also reveal an increased level of glia-specific protein REPO in dMnGl. The photoreceptors of the compound eye (R-cells) of the PDF-null flies, on the other hand, exhibit de-synchrony of PER molecular oscillations, which manifests itself as increased variability of PER-specific immunofluorescence among the R-cells. Moreover, the daily pattern of expression of the presynaptic protein Bruchpilot (BRP) in the lamina terminals of the R-cells is changed in Pdf 0 mutant. Considering that PDFRs are also expressed by the marginal glia of the lamina that surround the R-cell terminals, the LNv pacemakers appear to be the likely modulators of molecular cycling in the peripheral clocks of both the glial cells and the photoreceptors of the compound eye. Consequently, some form of PDF-based coupling of the glial clocks and the photoreceptors of the eye with the central LNv pacemakers must be operational.

  6. Magneto-optical study of the Verwey transition in magnetite

    International Nuclear Information System (INIS)

    Neal, J.R.; Behan, A.J.; Mokhtari, A.; Ahmed, M.R.; Blythe, H.J.; Fox, A.M.; Gehring, G.A.

    2007-01-01

    We have made the first detailed Faraday measurements on thin films of Fe 3 O 4 for 10 xy , which is analysed for the changes in the energy, oscillator strength, and width of the transitions. A significant anomaly is seen in these optical parameters within about 10 K of the Verwey temperature. However, there are also some differences between the optical parameters above and below T v over a wider temperature range. The results are interpreted to give valuable information on the orbital ordering

  7. Older Persons’ Transitions in Care (OPTIC: a study protocol

    Directory of Open Access Journals (Sweden)

    Cummings Greta G

    2012-12-01

    Full Text Available Abstract Background Changes in health status, triggered by events such as infections, falls, and geriatric syndromes, are common among nursing home (NH residents and necessitate transitions between NHs and Emergency Departments (EDs. During transitions, residents frequently experience care that is delayed, unnecessary, not evidence-based, potentially unsafe, and fragmented. Furthermore, a high proportion of residents and their family caregivers report substantial unmet needs during transitions. This study is part of a program of research whose overall aim is to improve quality of care for frail older adults who reside in NHs. The purpose of this study is to identify successful transitions from multiple perspectives and to identify organizational and individual factors related to transition success, in order to inform improvements in care for frail elderly NH residents during transitions to and from acute care. Specific objectives are to: 1. define successful and unsuccessful elements of transitions from multiple perspectives; 2. develop and test a practical tool to assess transition success; 3. assess transition processes in a discrete set of transfers in two study sites over a one year period; 4. assess the influence of organizational factors in key practice locations, e.g., NHs, emergency medical services (EMS, and EDs, on transition success; and 5. identify opportunities for evidence-informed management and quality improvement decisions related to the management of NH – ED transitions. Methods/Design This is a mixed-methods observational study incorporating an integrated knowledge translation (IKT approach. It uses data from multiple levels (facility, care unit, individual and sources (healthcare providers, residents, health records, and administrative databases. Discussion Key to study success is operationalizing the IKT approach by using a partnership model in which the OPTIC governance structure provides for team decision-makers and

  8. Optical characterization of phase transitions in pure polymers and blends

    Energy Technology Data Exchange (ETDEWEB)

    Mannella, Gianluca A.; Brucato, Valerio; La Carrubba, Vincenzo, E-mail: vincenzo.lacarrubba@unipa.it [Department of Civil, Environmental, Aerospace and Materials Engineering (DICAM), University of Palermo, Viale delle Scienze, Ed. 8, 90128 Palermo (Italy)

    2015-12-17

    To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers and blends. The thermal history imposed to the sample consisted in a rapid heating from ambient temperature to a certain temperature below the melting point, a stabilization period, and then a heating at constant rate. After a second stabilization period, the sample was cooled. The data obtained were compared with DSC measurements performed with the same thermal history. In correspondence with transitions detected via DSC (e.g. melting, crystallization and cold crystallization), the optical signal showed a steep variation. In particular, crystallization resulted in a rapid decrease of transmitted light, whereas melting gave up an increase of light transmitted by the sample. Further variations in transmitted light were recorded for blends, after melting: those results may be related to other phase transitions, e.g. liquid-liquid phase separation. All things considered, the apparatus can be used to get reliable data on phase transitions in polymeric systems.

  9. Optical characterization of phase transitions in pure polymers and blends

    International Nuclear Information System (INIS)

    Mannella, Gianluca A.; Brucato, Valerio; La Carrubba, Vincenzo

    2015-01-01

    To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers and blends. The thermal history imposed to the sample consisted in a rapid heating from ambient temperature to a certain temperature below the melting point, a stabilization period, and then a heating at constant rate. After a second stabilization period, the sample was cooled. The data obtained were compared with DSC measurements performed with the same thermal history. In correspondence with transitions detected via DSC (e.g. melting, crystallization and cold crystallization), the optical signal showed a steep variation. In particular, crystallization resulted in a rapid decrease of transmitted light, whereas melting gave up an increase of light transmitted by the sample. Further variations in transmitted light were recorded for blends, after melting: those results may be related to other phase transitions, e.g. liquid-liquid phase separation. All things considered, the apparatus can be used to get reliable data on phase transitions in polymeric systems

  10. Magneto-optical transitions in multilayer semiconductor nanocrystals

    CERN Document Server

    Climente, J; Jaskolski, W; Aliaga, J I

    2003-01-01

    Absorption spectra of chemically synthesized uniform and multilayer semiconductor nanocrystals in a magnetic field are investigated theoretically. The nanocrystals are modelled by spherical barrier/well potentials. The electron states are calculated within the effective mass model. A four-band k centre dot p Hamiltonian, accounting for the valence subband mixing, is used to obtain the hole states. The magneto-optical transition spectrum depends strongly on the size and composition of the nanocrystals. In the case of small uniform quantum dots, only the linear Zeeman splitting of the electron and hole energy levels is observed even for very strong magnetic fields. In larger nanocrystals, the quadratic magnetic interaction turns out to be important and the transition spectrum becomes complicated. The most complicated influence of the magnetic field is found in quantum dot-quantum well systems in which the lowest electron and hole states are localized in a thin spherical layer. It is shown that transitions that ...

  11. Magneto-optical study of the Verwey transition in magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Neal, J.R. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Behan, A.J. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Mokhtari, A. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Ahmed, M.R. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Blythe, H.J. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Fox, A.M. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Gehring, G.A. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom)]. E-mail: G.A.Gehring@Sheffield.ac.uk

    2007-03-15

    We have made the first detailed Faraday measurements on thin films of Fe{sub 3}O{sub 4} for 10optic spectra and the diagonal component of the dielectric constant are used to obtain the complex off diagonal component of the dielectric constant, {epsilon}{sub xy} , which is analysed for the changes in the energy, oscillator strength, and width of the transitions. A significant anomaly is seen in these optical parameters within about 10 K of the Verwey temperature. However, there are also some differences between the optical parameters above and below T {sub v} over a wider temperature range. The results are interpreted to give valuable information on the orbital ordering.

  12. High power beam profile monitor with optical transition radiation

    International Nuclear Information System (INIS)

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-01-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 μm, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/γ is originated from a region of transverse dimension roughly λγ; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 μm beam sizes that are much smaller than the 3.2 mm λγ limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 μA of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy

  13. Optical transition radiation interferometry for A0 photoinjector

    International Nuclear Information System (INIS)

    Kazakevich, G.; Novosibirsk, IYF; Edwards, H.; Fliller, R.; Lebedev, V.; Nagaitsev, S.; Santucci, J.; Thurman-Keup, R.; Fermilab; Piot, P.; Fermilab; Northern Illinois U.; Li, J.; Tikhoplav, R.; UCLA

    2007-01-01

    A charged particle passing through the boundary of two medias with different permittivity values generates Transition Radiation (TR), [1]. The TR is caused by a variation of the particle electric field with variation of the permittivity. The TR for relativistic particles has a wide spectrum with a significant portion in the optical range. The Optical Transition Radiation (OTR) is widely used for a beam profile monitoring and measurements of a beam size. Moreover, OTR can be used to characterize the energy, energy spread and transverse angles in the beam by employing the interference of the OTR from two thin films [2] inserted in the beam trajectory. This method has been applied in number of works [3-5] demonstrating high results and good coincidence in measurements and calculations. In this paper we present and discuss in details a simulation of the interference pattern in several experimental setups. We consider the main optical effects, for diagnostics for the beam properties at A0 Photoinjector and the ILC module test area (NML) in a wide range of electron beam energy. In this paper, we first derive the OTR intensity formula for a single film at 90 degrees to the beam, then for two films at normal incidence, and finally with films at 45 degree incidence to the beam. The last section illustrates application with beam parameters like those at the A0 Photoinjector (electron energy 15 MeV)

  14. Relativistic Ideal Clock

    OpenAIRE

    Bratek, Łukasz

    2015-01-01

    Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...

  15. A coherent free space optical link for long distance clock comparison, navigation, and communication: The Mini-Doll project

    Science.gov (United States)

    Djerroud, K.; Samain, E.; Clairon, A.; Acef, O.; Man, N.; Lemonde, P.; Wolf, P.

    2017-11-01

    We describe the realization of a 5 km free space coherent optical link through the turbulent atmosphere between a telescope and a ground target. We present the phase noise of the link, limited mainly by atmospheric turbulence and mechanical vibrations of the telescope and the target. We discuss the implications of our results for applications, with particular emphasis on optical Doppler ranging to satellites and long distance frequency transfer.

  16. Lego clocks: building a clock from parts.

    Science.gov (United States)

    Brunner, Michael; Simons, Mirre J P; Merrow, Martha

    2008-06-01

    A new finding opens up speculation that the molecular mechanism of circadian clocks in Synechococcus elongatus is composed of multiple oscillator systems (Kitayama and colleagues, this issue, pp. 1513-1521), as has been described in many eukaryotic clock model systems. However, an alternative intepretation is that the pacemaker mechanism-as previously suggested-lies primarily in the rate of ATP hydrolysis by the clock protein KaiC.

  17. Towards Self-Clocked Gated OCDMA Receiver

    Science.gov (United States)

    Idris, S.; Osadola, T.; Glesk, I.

    2013-02-01

    A novel incoherent OCDMA receiver with incorporated all-optical clock recovery for self-synchronization of a time gate for the multi access interferences (MAI) suppression and minimizing the effect of data time jitter in incoherent OCDMA system was successfully developed and demonstrated. The solution was implemented and tested in a multiuser environment in an out of the laboratory OCDMA testbed with two-dimensional wavelength-hopping time-spreading coding scheme and OC-48 (2.5 Gbp/s) data rate. The self-clocked all-optical time gate uses SOA-based fibre ring laser optical clock, recovered all-optically from the received OCDMA traffic to control its switching window for cleaning the autocorrelation peak from the surrounding MAI. A wider eye opening was achieved when the all-optically recovered clock from received data was used for synchronization if compared to a static approach with the RF clock being generated by a RF synthesizer. Clean eye diagram was also achieved when recovered clock is used to drive time gating.

  18. Impurities in Antiferromagnetic Transition-Metal Oxides - Symmetry and Optical Transitions

    Science.gov (United States)

    Petersen, John Emil, III

    The study of antiferromagnetic transition-metal oxides is an extremely active area in the physical sciences, where condensed matter physics, inorganic chemistry, and materials science blend together. The sheer number of potential commercial applications is staggering, but much of the fundamental science remains unexplained. This is not due to a lack of effort, however, as theorists have been struggling to understand these materials for decades - particularly the character of the band edges and first optical transitions. The difficulty lies in the strong correlation or Coloumb attraction between the electrons in the anisotropic d orbitals, which conventional band theory cannot describe adequately. The correlation problem is approached here by the well-accepted method of adding a Hubbard potential energy term to the ground state Hamiltonian, calculated within Density Functional Theory. The frequency-dependent complex dielectric function is calculated within the Independent Particle Approximation, and optical transitions are evaluated in multiple different ways. Peaks in the imaginary part of the dielectric function are compared energetically to orbitally decomposed density of states calculations. Optical transitions are typically analyzed in terms of atomic orbitals, which, strictly speaking, gives misleading results. Here, however, from the calculated data, two alternative interpretations are analyzed for each material studied. The first employs rigorous group theoretical analysis to determine allowed electric-dipole transitions, taking into account both orbital hybridization and crystal symmetry. The second interpretation is that of metal cation site hopping. In this interpretation, carriers hop from the x2 - y2 d orbital of one metal cation lattice site to the next metal cation site which is antiferromagnetically aligned. At times, thoughout this work, one interpretation is favorable to the other. Which interpretation is most valid depends on the material

  19. Optical response of Al/Ti bilayer transition edge sensors

    International Nuclear Information System (INIS)

    Zhang Qing-Ya; Liu Jian-She; Dong Wen-Hui; He Gen-Fang; Li Tie-Fu; Chen Wei; Wang Tian-Shun; Zhou Xing-Xiang

    2014-01-01

    We report the optical response characteristics of Al/Ti bilayer transition edge sensors (TESs), which are mainly comprised of Al/Ti bilayer thermometers and suspended SiN membranes for thermal isolation. The measurement was performed in a 3 He sorption refrigerator and the device's response to optical pulses was investigated using a pulsed laser source. Based on these measurements, we obtained the effective recovery time (τ eff ) of the devices at different biases and discussed the dependence of τ eff on the bias. The device with a 940 μm × 940 μm continuous suspended SiN membrane demonstrated a fast response speed with τ eff = 3.9 μs, which indicates a high temperature sensitivity (α = T/R · dR/dT = 326). The results also showed that the TES exhibits good linearity under optical pulses of variable widths. (interdisciplinary physics and related areas of science and technology)

  20. Optical properties of bcc d-transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Kirillova, M M; Nomerovannaya, L V [AN SSSR, Sverdlovsk. Inst. Fiziki Metallov

    1978-04-01

    The optical properties of a niobium monocrystal in the spectral range of h..nu..=4.66 - 0.069 eV have been studied using the polarimetry method. The obtained results have been discussed on the basis of the zone calculations of the density of electron states for Nb and other isostructural metals of the 5 and 6 groups (Y, Ta, Cr, Mo, W). The existence of an intense low energy interband absorption in niobium in the range of h..nu..<0.1 eV is shown experimentally. The influence of the gapless and low-energy interzone transitions on the evaluations of the plasma and relaxation frequencies of conductivity electrons of d metals is discussed.

  1. Optical transition radiation interferometry for the A0 photoinjector

    International Nuclear Information System (INIS)

    Kazakevich, G.; Novosibirsk, IYF; Edwards, H.; Fliller, R.; Nagaitsev, S.; Ruan, J.; Thurman-Keup, R.; Fermilab

    2008-01-01

    Optical Transition Radiation Interferometry (OTRI) is a promising diagnostic technique and has been successfully developed and used for investigation of relativistic beams. For mid-energy accelerators the technique is traditionally based on thin polymer films (the first one is being transparent for visible light), which causes beam multiple scattering of about 1 mrad. A disadvantage of those films is unacceptable vacuum properties for photoinjectors and accelerators using superconducting cavities. We have studied the application of thin mica sheets for the OTRI diagnostics at the A0 Photoinjector in comparison with 2.5 (micro)m thick Mylar films. This diagnostic is also applicable for the ILCTA-NML accelerator test facility that is planned at Fermilab. This report discusses the experimental setups of the OTR interferometer for the A0 Photoinjector and presents comparisons of simulations and measurements obtained using Mylar and mica-based interferometers

  2. Multi Optical Transition Radiation System for ATF2

    International Nuclear Information System (INIS)

    Alabau-Gonzalvo, Javier

    2012-01-01

    In this paper we describe the design, installation and first calibration tests of a Multi Optical Transition Radiation System in the beam diagnostic section of the Extraction (EXT) line of ATF2, close to the multi wire scanner system. This system will be a valuable tool for measuring beam sizes and emittances coming from the ATF Damping Ring. With an optical resolution of about 2 (micro)m an original OTR design (OTR1X) located after the septum at the entrance of the EXT line demonstrated the ability to measure a 5.5 (micro)m beam size in one beam pulse and to take many fast measurements. This gives the OTR the ability to measure the beam emittance with high statistics, giving a low error and a good understanding of emittance jitter. Furthermore the nearby wire scanners will be a definitive test of the OTR as a beam emittance diagnostic device. The multi-OTR system design proposed here is based on the existing OTR1X.

  3. The transition radiation. 2. experimental study of the optical transition radiation

    International Nuclear Information System (INIS)

    Couillaud, Ch.; Haouat, G.; Seguin, S.; Striby, S.

    1999-01-01

    Optical-transition-radiation-based diagnostics have been widely used for many years on electron accelerators in order to measure beam energy and transverse and longitudinal emittances. These diagnostics are very attractive for high brightness electron beams used as drivers for radiation sources. Such diagnostics have been performed on the ELSA facility (18 MeV electron energy, 100 A peak current) using both a single interface and an OTR-Wartski interferometer. We present the accelerator, the experimental set-up and the method for analyzing the OTR angular distribution. Then, the experimental results are described and compared with those from the three gradient method. In addition, we present a beam energy measurement using OTR interferogram analysis. (author)

  4. GPS Composite Clock Analysis

    OpenAIRE

    Wright, James R.

    2008-01-01

    The GPS composite clock defines GPS time, the timescale used today in GPS operations. GPS time is illuminated by examination of its role in the complete estimation and control problem relative to UTC/TAI. The phase of each GPS clock is unobservable from GPS pseudorange measurements, and the mean phase of the GPS clock ensemble (GPS time) is unobservable. A new and useful observability definition is presented, together with new observability theorems, to demonstrate explicitly that GPS time is...

  5. LCLS-S1 optical transition radiation monitor

    International Nuclear Information System (INIS)

    Berg, W.J.; Yang, B.; Erwin, L.L.; Shoaf, S.E.

    2008-01-01

    Argonne National Laboratory has developed a high- resolution optical transition radiation (OTR) imaging monitor for the Linac Coherent Light Source (LCLS) injection linac at SLAC. The imaging station,OTR-S1, will be located at the S1 spectrometer with a beam energy of 135 MeV. The system will be used to acquire 2-D transverse beam distributions of the accelerated photocathode-gun-generated electron beam. We anticipate an average beam current of 0.2 to 1 nC and nominal beam spot size of 130 mum (sigmax), 100 mum (sigmay). The imaging system was designed for a field of view x/y: 10 times 7.5 mm. The spatial resolution of ∼12 microns was verified over the central 5times4 mm region in the visible. A 12-bit digital camera acquires the image and a Mac-based digital frame-capturing system was employed for the initial lab-based performance testing of the device. We report on system development, testing methods, and data analysis.

  6. Precision Clock Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Tests and evaluates high-precision atomic clocks for spacecraft, ground, and mobile applications. Supports performance evaluation, environmental testing,...

  7. Optical spectroscopy of an atomic nucleus: Progress toward direct observation of the {sup 229}Th isomer transition

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus P., E-mail: hehlen@lanl.gov [Los Alamos National Laboratory, Mailstop E549, Los Alamos, NM 87545 (United States); Greco, Richard R. [Los Alamos National Laboratory, Mailstop E549, Los Alamos, NM 87545 (United States); Rellergert, Wade G.; Sullivan, Scott T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); DeMille, David [Department of Physics, Yale University, New Haven, CT 06511 (United States); Jackson, Robert A. [School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Hudson, Eric R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Torgerson, Justin R. [Los Alamos National Laboratory, Mailstop E549, Los Alamos, NM 87545 (United States)

    2013-01-15

    The nucleus of the thorium-229 isotope possesses a first excited nuclear state ({sup 229m}Th) at an exceptionally low energy of 7.8{+-}0.5 eV above the nuclear ground state ({sup 229g}Th), as determined by earlier indirect measurements. This is the only nuclear excited state known that is within the range of optical spectroscopy. This paper reports progress toward detecting the {sup 229m}Th state directly by luminescence spectroscopy in the vacuum ultraviolet spectral region. The estimated natural linewidth of the {sup 229g}Th{r_reversible}{sup 229m}Th isomer transition of 2{pi} Multiplication-Sign 0.1 to 2{pi} Multiplication-Sign 10 mHz is expected to broaden to {approx}10 kHz for {sup 229}Th{sup 4+} doped into a suitable crystal. The factors governing the choice of crystal system and the substantial challenges in acquiring a sufficiently large quantity of {sup 229}Th are discussed. We show that the {sup 229g}Th{r_reversible}{sup 229m}Th transition energy can be identified to within 0.1 nm by luminescence excitation and luminescence spectroscopy using the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. This would open the door for subsequent laser-based measurements of the isomer transition and future applications of {sup 229}Th in nuclear clocks. We also show that {sup 233}U-doped materials should produce an intrinsic, continuous, and sufficiently high rate of {sup 229m}Th{yields}{sup 229g}Th luminescence and could be a useful aid in the initial direct search of the isomer transition. - Highlights: Black-Right-Pointing-Pointer Thorium-229 has a long-lived nuclear excited state. Black-Right-Pointing-Pointer It is the only known nuclear isomer within the reach of optical spectroscopy. Black-Right-Pointing-Pointer Thorium-229 doped fluoride crystals may offer sufficiently high luminescence rates. Black-Right-Pointing-Pointer Luminescence excitation spectroscopy in the vacuum ultraviolet spectral region may enable the first direct observation of

  8. Theory of optical transitions in conjugated polymers. I. Ideal systems.

    Science.gov (United States)

    Barford, William; Marcus, Max

    2014-10-28

    We describe a theory of linear optical transitions in conjugated polymers. The theory is based on three assumptions. The first is that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω ≪ J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. Using these assumptions we derive an expression for an effective Huang-Rhys parameter for a chain (or chromophore) of N monomers, given by S(N) = S(1)/IPR, where S(1) is the Huang-Rhys parameter for an isolated monomer. IPR is the inverse participation ratio, defined by IPR = (∑(n)|Ψ(n)|(4))(-1), where Ψ(n) is the exciton center-of-mass wavefunction. Since the IPR is proportional to the spread of the exciton center-of-mass wavefunction, this is a key result, as it shows that S(N) decreases with chain length. As in molecules, in a polymer S(N) has two interpretations. First, ℏωS(N) is the relaxation energy of an excited state caused by its coupling to the normal modes. Second, S(N) appears in the definition of an effective Franck-Condon factor, F(0v)(N) = S(N)(v)exp ( - S(N))/v! for the vth vibronic manifold. We show that the 0 - 0 and 0 - 1 optical intensities are proportional to F00(N) and F01(N), respectively, and thus the ratio of the 0 - 1 to 0 - 0 absorption and emission intensities are proportional to S(N). These analytical results are checked by extensive DMRG calculations and found to be generally valid, particularly for emission. However, for large chain lengths higher-lying quasimomentum exciton states become degenerate with the lowest vibrational excitation of the lowest exciton state. When this happens there is

  9. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  10. Initial atomic coherences and Ramsey frequency pulling in fountain clocks

    Science.gov (United States)

    Gerginov, Vladislav; Nemitz, Nils; Weyers, Stefan

    2014-09-01

    In the uncertainty budget of primary atomic cesium fountain clocks, evaluations of frequency-pulling shifts of the hyperfine clock transition caused by unintentional excitation of its nearby transitions (Rabi and Ramsey pulling) have been based so far on an approach developed for cesium beam clocks. We re-evaluate this type of frequency pulling in fountain clocks and pay particular attention to the effect of initial coherent atomic states. We find significantly enhanced frequency shifts caused by Ramsey pulling due to sublevel population imbalance and corresponding coherences within the state-selected hyperfine component of the initial atom ground state. Such shifts are experimentally investigated in an atomic fountain clock and quantitative agreement with the predictions of the model is demonstrated.

  11. The quantum beat principles and applications of atomic clocks

    CERN Document Server

    Major, F

    2007-01-01

    This work attempts to convey a broad understanding of the physical principles underlying the workings of these quantum-based atomic clocks, with introductory chapters placing them in context with the early development of mechanical clocks and the introduction of electronic time-keeping as embodied in the quartz-controlled clocks. While the book makes no pretense at being a history of atomic clocks, it nevertheless takes a historical perspective in its treatment of the subject. Intended for nonspecialists with some knowledge of physics or engineering, The Quantum Beat covers a wide range of salient topics relevant to atomic clocks, treated in a broad intuitive manner with a minimum of mathematical formalism. Detailed descriptions are given of the design principles of the rubidium, cesium, hydrogen maser, and mercury ion standards; the revolutionary changes that the advent of the laser has made possible, such as laser cooling, optical pumping, the formation of "optical molasses," and the cesium "fountain" stand...

  12. Atomic and gravitational clocks

    International Nuclear Information System (INIS)

    Canuto, V.M.; City Coll., New York; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous-whose rates are related by a non-constant function βsub(a)-is demonstrated. The cosmological character of βsub(a) is also discussed. (author)

  13. Clock synchronization and dispersion

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Wong, Franco N C

    2002-01-01

    We present a method to defeat effects of dispersion of timing signals when synchronizing clocks. It is based on the recently proposed 'conveyor belt synchronization' scheme and on the quantum dispersion cancellation effect

  14. The transition radiation. 2. experimental study of the optical transition radiation; Le rayonnement de transition: 2. etude experimentale du rayonnement de transition optique

    Energy Technology Data Exchange (ETDEWEB)

    Couillaud, Ch.; Haouat, G.; Seguin, S.; Striby, S

    1999-07-01

    Optical-transition-radiation-based diagnostics have been widely used for many years on electron accelerators in order to measure beam energy and transverse and longitudinal emittances. These diagnostics are very attractive for high brightness electron beams used as drivers for radiation sources. Such diagnostics have been performed on the ELSA facility (18 MeV electron energy, 100 A peak current) using both a single interface and an OTR-Wartski interferometer. We present the accelerator, the experimental set-up and the method for analyzing the OTR angular distribution. Then, the experimental results are described and compared with those from the three gradient method. In addition, we present a beam energy measurement using OTR interferogram analysis. (author)

  15. Algorithmic-Reducibility = Renormalization-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') Replacing CRUTCHES!!!: Gauss Modular/Clock-Arithmetic Congruences = Signal X Noise PRODUCTS..

    Science.gov (United States)

    Siegel, J.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!

  16. A clock network for geodesy and fundamental science.

    Science.gov (United States)

    Lisdat, C; Grosche, G; Quintin, N; Shi, C; Raupach, S M F; Grebing, C; Nicolodi, D; Stefani, F; Al-Masoudi, A; Dörscher, S; Häfner, S; Robyr, J-L; Chiodo, N; Bilicki, S; Bookjans, E; Koczwara, A; Koke, S; Kuhl, A; Wiotte, F; Meynadier, F; Camisard, E; Abgrall, M; Lours, M; Legero, T; Schnatz, H; Sterr, U; Denker, H; Chardonnet, C; Le Coq, Y; Santarelli, G; Amy-Klein, A; Le Targat, R; Lodewyck, J; Lopez, O; Pottie, P-E

    2016-08-09

    Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10(-17) via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10(-17) is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.

  17. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy John [Northern Illinois U.

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  18. Simultaneous 10 Gbps data and polarization-based pulse-per-second clock transmission using a single VCSEL for high-speed optical fibre access networks

    Science.gov (United States)

    Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    Access networks based on vertical cavity surface emitting laser (VCSEL) transmitters offer alternative solution in delivering different high bandwidth, cost effective services to the customer premises. Clock and reference frequency distribution is critical for applications such as Coordinated Universal Time (UTC), GPS, banking and big data science projects. Simultaneous distribution of both data and timing signals over shared infrastructure is thus desirable. In this paper, we propose and experimentally demonstrate a novel, cost-effective technique for multi-signal modulation on a single VCSEL transmitter. Two signal types, an intensity modulated 10 Gbps data signal and a polarization-based pulse per second (PPS) clock signal are directly modulated onto a single VCSEL carrier at 1310 nm. Spectral efficiency is maximized by exploiting inherent orthogonal polarization switching of the VCSEL with changing bias in transmission of the PPS signal. A 10 Gbps VCSEL transmission with PPS over 11 km of G.652 fibre introduced a transmission penalty of 0.52 dB. The contribution of PPS to this penalty was found to be 0.08 dB.

  19. Impedance Calculations of Non-Axisymmetric Transitions Using the Optical Approximation

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Stupakov, G.; Zagorodov, I.

    2007-01-01

    In a companion report, we have derived a method for finding the impedance at high frequencies of vacuum chamber transitions that are short compared to the catch-up distance, in a frequency regime that--in analogy to geometric optics for light--we call the optical regime. In this report we apply the method to various non-axisymmetric geometries such as irises/short collimators in a beam pipe, step-in transitions, step-out transitions, and more complicated transitions of practical importance. Most of our results are analytical, with a few given in terms of a simple one dimensional integral. Our results are compared to wakefield simulations with the time-domain, finite-difference program ECHO, and excellent agreement is found

  20. Impedance calculations of non-axisymmetric transitions using the optical approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bane, K.L.F.; Stupakov, G. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Zagorodnov, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2007-02-15

    In a companion report, we have derived a method for finding the impedance at high frequencies of vacuum chamber transitions that are short compared to the catch-up distance, in a frequency regime that---in analogy to geometric optics for light---we call the optical regime. In this report we apply the method to various non-axisymmetric geometries such as irises/short collimators in a beam pipe, step-in transitions, step-out transitions, and more complicated transitions of practical importance. Most of our results are analytical, with a few given in terms of a simple one dimensional integral. Our results are compared to wakefield simulations with the time-domain, finite-difference program ECHO, and excellent agreement is found. (orig.)

  1. A New Trapped Ion Clock Based on Hg-201(+)

    Science.gov (United States)

    Taghavi-Larigani, S.; Burt, E. A.; Lea, S. N.; Prestage, J. D.; Tjoelker, R. L.

    2009-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave clock: Hg-199(+) and Hg-201(+). Virtually all trapped mercury ion clocks to date have used the 199 isotope. We have begun to investigate the viability of a trapped ion clock based on Hg-201(+). We have measured the unperturbed frequency of the (S-2)(sub 1/2) F = 1, m(sub F) = 0 to (S-2)(sub 1/2) F = 2, m(sub F) = 0 clock transition to be 29.9543658211(2) GHz. In this paper we describe initial measurements with Hg-201(+) and new applications to clocks and fundamental physics.

  2. Active Faraday optical frequency standard.

    Science.gov (United States)

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  3. Optical excitations of transition-metal oxides under the orbital multiplicity effects

    International Nuclear Information System (INIS)

    Lee, J S; Kim, M W; Noh, T W

    2005-01-01

    We investigated optical excitations of transition-metal (TM) oxides with metal oxygen octahedra taking account of the orbital multiplicity effects. We predicted excitation energies of intersite d-d transitions and p-d transitions of TM oxides. We compared the evaluated excitation energies with reported experimental data, and found that they are in good agreement with each other. Moreover, we could demonstrate possible answers for a few long-standing problems of the low-frequency spectral features in some early 3d TM oxides: (i) the broad and multi-peak structures of the d-d transitions (ii) the low values (around 2 eV) of the d-d transition energies for some t 2g 1 and t 2g 2 systems, and (iii) the lack of the d-d transition below 4.0 eV region for LaCrO 3 , one of the t 2g 3 systems. These indicate that our approach considering the orbital multiplicity effects could provide good explanations of intriguing features in the optical spectra of some early TM oxides. In addition, we showed that optical spectroscopy can be useful as a powerful tool to investigate spin and/or orbital correlations in the TM ions. Finally, we discussed the implications of the orbital multiplicity in the Zannen-Sawatzky-Allen scheme, which has been used successfully to classify correlated electron systems

  4. A precise clock distribution network for MRPC-based experiments

    International Nuclear Information System (INIS)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-01-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  5. Transition polarizability model of induced resonance Raman optical activity

    Czech Academy of Sciences Publication Activity Database

    Yamamoto, S.; Bouř, Petr

    2013-01-01

    Roč. 34, č. 25 (2013), s. 2152-2158 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : induced resonance Raman optical activity * europium complexes * density functional computations * light scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.601, year: 2013

  6. Optical study of phase transitions in single-crystalline RuP

    Science.gov (United States)

    Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.

    2015-03-01

    RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.

  7. Effects of mass defect in atomic clocks

    Science.gov (United States)

    Taichenachev, A. V.; Yudin, V. I.

    2018-01-01

    We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (such as gravitational and quadratic Doppler shifts) can be interpreted as consequences of the mass defect, i.e., without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions..

  8. The electronic and optical properties of germanium tellurite glasses containing various transition metal oxides

    International Nuclear Information System (INIS)

    Khan, M.N.

    1988-01-01

    Various transition metal oxides, such as TiO 2 , V 2 O 5 , NiO, CuO, and ZnO are added to germanium-tellurite glass and measurements are reported of the electrical conductivity, density, optical absorption, infra-red absorption spectra, and electron spin resonance. It is found that the d.c. conductivity of glasses containing the same amount of V 2 O 5 is higher than that of germanium tellurite glasses containing a similar amount of other transition metal oxides, and is due to hopping between localized states. The optical absorption measurements show that the fundamental absorption edge is a function of glass composition and the optical absorption is due to forbidden indirect transitions. From the infra-red absorption spectra, it is found that the addition of transition metal oxides does not introduce any new absorption band in the infra-red spectrum of germanium tellurite glasses. A small shift of existing absorptions toward higher wave number is observed. The ESR measurements revealed that some transition metal ions are diamagnetic while others are paramagnetic in the glass network. (author)

  9. Optical frequency measurements of 6s 2S1/2-6p 2P3/2 transition in a 133Cs atomic beam using a femtosecond laser frequency comb

    International Nuclear Information System (INIS)

    Gerginov, V.; Tanner, C.E.; Diddams, S.; Bartels, A.; Hollberg, L.

    2004-01-01

    Optical frequencies of the hyperfine components of the D 2 line in 133 Cs are determined using high-resolution spectroscopy and a femtosecond laser frequency comb. A narrow-linewidth probe laser excites the 6s 2 S 1/2 (F=3,4)→6p 2 P 3/2 (F=2,3,4,5) transition in a highly collimated atomic beam. Fluorescence spectra are taken by scanning the laser frequency over the excited-state hyperfine structure. The laser optical frequency is referenced to a Cs fountain clock via a reference laser and a femtosecond laser frequency comb. A retroreflected laser beam is used to estimate and minimize the Doppler shift due to misalignment between the probe laser and the atomic beam. We achieve an angular resolution on the order of 5x10 -6 rad. The final uncertainties (∼±5 kHz) in the frequencies of the optical transitions are a factor of 20 better than previous results [T. Udem et al., Phys. Rev. A 62, 031801 (2000).]. We find the centroid of the 6s 2 S 1/2 →6p 2 P 3/2 transition to be f D2 =351 725 718.4744(51) MHz

  10. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    Science.gov (United States)

    Jayakumar, Anupriya; Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep

    2015-07-01

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  11. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Anupriya, E-mail: anupriya@uw.edu; Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep [Department of Physics, University of Washington, P.O. Box 351560, Seattle, Washington 98195-1560 (United States)

    2015-07-15

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  12. Electronic and optical properties of vacancy defects in single-layer transition metal dichalcogenides

    Science.gov (United States)

    Khan, M. A.; Erementchouk, Mikhail; Hendrickson, Joshua; Leuenberger, Michael N.

    2017-06-01

    A detailed first-principles study has been performed to evaluate the electronic and optical properties of single-layer (SL) transition metal dichalcogenides (TMDCs) (M X 2 ; M = transition metal such as Mo, W, and X = S, Se, Te), in the presence of vacancy defects (VDs). Defects usually play an important role in tailoring electronic, optical, and magnetic properties of semiconductors. We consider three types of VDs in SL TMDCs: (i) X vacancy, (ii) X2 vacancy, and (iii) M vacancy. We show that VDs lead to localized defect states (LDS) in the band structure, which in turn gives rise to sharp transitions in in-plane and out-of-plane optical susceptibilities, χ∥ and χ⊥. The effects of spin-orbit coupling (SOC) are also considered. We find that SOC splitting in LDS is directly related to the atomic number of the transition metal atoms. Apart from electronic and optical properties we also find magnetic signatures (local magnetic moment of ˜μB ) in MoSe2 in the presence of the Mo vacancy, which breaks the time-reversal symmetry and therefore lifts the Kramers degeneracy. We show that a simple qualitative tight-binding model (TBM), involving only the hopping between atoms surrounding the vacancy with an on-site SOC term, is sufficient to capture the essential features of LDS. In addition, the existence of the LDS can be understood from the solution of the two-dimensional Dirac Hamiltonian by employing infinite mass boundary conditions. In order to provide a clear description of the optical absorption spectra, we use group theory to derive the optical selection rules between LDS for both χ∥ and χ⊥.

  13. Subwavelength optics with hyperbolic metamaterials: Waveguides, scattering, and optical topological transitions

    DEFF Research Database (Denmark)

    Ishii, Satoshi; Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.

    2016-01-01

    Hyperbolic metamaterials possess unique optical properties owing to their hyperbolic dispersion. As hyperbolic metamaterials can be constructed just from periodic multilayers of metals and dielectrics, they have attracted considerable attention in the nanophotonics community. Here, we review some...

  14. Imaging Optical Frequencies with 100 μ Hz Precision and 1.1 μ m Resolution

    Science.gov (United States)

    Marti, G. Edward; Hutson, Ross B.; Goban, Akihisa; Campbell, Sara L.; Poli, Nicola; Ye, Jun

    2018-03-01

    We implement imaging spectroscopy of the optical clock transition of lattice-trapped degenerate fermionic Sr in the Mott-insulating regime, combining micron spatial resolution with submillihertz spectral precision. We use these tools to demonstrate atomic coherence for up to 15 s on the clock transition and reach a record frequency precision of 2.5 ×10-19. We perform the most rapid evaluation of trapping light shifts and record a 150 mHz linewidth, the narrowest Rabi line shape observed on a coherent optical transition. The important emerging capability of combining high-resolution imaging and spectroscopy will improve the clock precision, and provide a path towards measuring many-body interactions and testing fundamental physics.

  15. Comparisons of mental clocks.

    Science.gov (United States)

    Paivio, A

    1978-02-01

    Subjects in three experiments were presented with pairs of clock times and were required to choose the one in which the hour and minute hand formed the smaller angle. In Experiments 1 and 2, the times were presented digitally, necessitating a transformation into symbolic representations from which the angular size difference could be inferred. The results revealed orderly symbolic distance effects so that comparison reaction time increased as the angular size difference decreased. Moreover, subjects generally reported using imagery to make the judgment, and subjects scoring high on test of imagery ability were faster than those scoring low on such tests. Experiment 3 added a direct perceptual condition in which subjects compared angles between pairs of hands on two drawn (analog) clocks, as well as a mixed condition involving one digital and one analog clock time. The results showed comparable distance effects for all conditions. In addition, reaction time increased from the perceptual, to the mixed, to the pure-digital condition. These results are consistent with predictions from an image-based dual-coding theory.

  16. Investigation of optical properties and electronic transitions in bulk and nano-microribbons of molybdenum trioxide

    International Nuclear Information System (INIS)

    Lupan, O; Mishra, Y K; Adelung, R; Trofim, V; Cretu, V; Stamov, I; Syrbu, N N; Tiginyanu, I

    2014-01-01

    In this work, we report on crystalline quality and optical characteristics of molybdenum trioxide (MoO 3 ) bulk and nano-microribbons grown by rapid thermal oxidation (RTO). The developed RTO procedure allows one to synthesize highly crystalline (α-phase) bulk and nano-microribbons of MoO 3 . For R–Γ indirect transitions in bulk single crystals of MoO 3 , it has been found that the width of the bandgap along the E‖c polarization, associated with transitions R v1 –Γ c1 , is lower than the width of the band gap in polarization E ⊥ c, associated with transitions R v2 –Γ c2 . This result is indicative of splitting of the absorption edge due to α-MoO 3 structural anisotropy. Studies of the polarization dependence of the absorption in nano-microribbons (d ≈ 15–500 nm) demonstrated that the energy gap corresponding to R v1 –X c1 (E‖c) transition is smaller than that of R v2 –X c2 (E ⊥ c) transition. Similar dependence has been found for the R–Y indirect transitions. The results of the investigation of the reflectance spectra in the energy range from 3 to 6 eV are shown. By using the Kramers–Kronig method, the optical functions were derived from the reflection spectra of nano-microribbons, and the polarization dependence of direct energy transitions at the point R in the Brillouin zone are determined. The alternation in splitting caused by polarization of the absorption edge related to indirect transitions due to polarization opens new prospects for the design and fabricating interesting optoelectronic devices based on α-MoO 3 bulk and nano-microribbons with characteristics dependent on the polarization of light waves. (paper)

  17. Optically controlled polarizer using a ladder transition for high speed Stokesmetric Imaging and Quantum Zeno Effect based optical logic.

    Science.gov (United States)

    Krishnamurthy, Subramanian; Wang, Y; Tu, Y; Tseng, S; Shahriar, M S

    2013-10-21

    We demonstrate an optically controlled polarizer at ~1323 nm using a ladder transition in a Rb vapor cell. The lower leg of the 5S(1/2),F = 1->5P(1/2),F = 1,2->6S(1/2),F = 1,2 transitions is excited by a Ti:Sapphire laser locked to a saturated absorption signal, representing the control beam. A tunable fiber laser at ~1323 nm is used to excite the upper leg of the transitions, representing the signal beam. When the control beam is linearly polarized, it produces an excitation of the intermediate level with a particular orientation of the angular momentum. Under ideal conditions, this orientation is transparent to the signal beam if it has the same polarization as the control beam and is absorbed when it is polarized orthogonally. We also present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, and identify means to improve the performance of the polarizer. A novel algorithm to compute the evolution of large scale quantum system enabled us to perform this computation, which may have been considered too cumbersome to carry out previously. We describe how such a polarizer may serve as a key component for high-speed Stokesmetric imaging. We also show how such a polarizer, combined with an optically controlled waveplate, recently demonstrated by us, can be used to realize a high speed optical logic gate by making use of the Quantum Zeno Effect. Finally, we describe how such a logic gate can be realized at an ultra-low power level using a tapered nanofiber embedded in a vapor cell.

  18. Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Daniel Beom Soo [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Proliferation Signatures Discovery and Exploitation Department

    2017-08-01

    We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

  19. Optical transitions in Ge/SiGe multiple quantum wells with Ge-rich barriers

    Science.gov (United States)

    Bonfanti, M.; Grilli, E.; Guzzi, M.; Virgilio, M.; Grosso, G.; Chrastina, D.; Isella, G.; von Känel, H.; Neels, A.

    2008-07-01

    Direct-gap and indirect-gap transitions in strain-compensated Ge/SiGe multiple quantum wells with Ge-rich SiGe barriers have been studied by optical transmission spectroscopy and photoluminescence experiments. An sp3d5s∗ tight-binding model has been adopted to interpret the experimental results. Photoluminescence spectra and their comparison with theoretical calculations prove the existence of type-I band alignment in compressively strained Ge quantum wells grown on relaxed Ge-rich SiGe buffers. The high quality of the transmission spectra opens up other perspectives for application of these structures in near-infrared optical modulators.

  20. Design and Construction of an Atomic Clock on an Atom Chip

    International Nuclear Information System (INIS)

    Reinhard, Friedemann

    2009-01-01

    We describe the design and construction of an atomic clock on an atom chip, intended as a secondary standard, with a stability in the range of few 10 -13 at 1 s. This clock is based on a two-photon transition between the hyperfine states |F = 1; m F = -1> and |2; 1> of the electronic ground state of the 87 Rb atom. This transition is interrogated using a Ramsey scheme, operating on either a cloud of thermal atoms or a Bose-Einstein condensate. In contrast to atomic fountain clocks, this clock is magnetically trapped on an atom chip. We describe a theoretical model of the clock stability and the design and construction of a dedicated apparatus. It is able to control the magnetic field at the relative 10 -5 level and features a hybrid atom chip, containing DC conductors as well as a microwave transmission line for the clock interrogation. (author)

  1. A (201)Hg+ Comagnetometer for (199)Hg+ Trapped Ion Space Atomic Clocks

    Science.gov (United States)

    Burt, Eric A.; Taghavi, Shervin; Tjoelker, Robert L.

    2011-01-01

    A method has been developed for unambiguously measuring the exact magnetic field experienced by trapped mercury ions contained within an atomic clock intended for space applications. In general, atomic clocks are insensitive to external perturbations that would change the frequency at which the clocks operate. On a space platform, these perturbative effects can be much larger than they would be on the ground, especially in dealing with the magnetic field environment. The solution is to use a different isotope of mercury held within the same trap as the clock isotope. The magnetic field can be very accurately measured with a magnetic-field-sensitive atomic transition in the added isotope. Further, this measurement can be made simultaneously with normal clock operation, thereby not degrading clock performance. Instead of using a conventional magnetometer to measure ambient fields, which would necessarily be placed some distance away from the clock atoms, first order field-sensitive atomic transition frequency changes in the atoms themselves determine the variations in the magnetic field. As a result, all ambiguity over the exact field value experienced by the atoms is removed. Atoms used in atomic clocks always have an atomic transition (often referred to as the clock transition) that is sensitive to magnetic fields only in second order, and usually have one or more transitions that are first-order field sensitive. For operating parameters used in the (199)Hg(+) clock, the latter can be five orders of magnitude or more sensitive to field fluctuations than the clock transition, thereby providing an unambiguous probe of the magnetic field strength.

  2. Prediction of GNSS satellite clocks

    International Nuclear Information System (INIS)

    Broederbauer, V.

    2010-01-01

    This thesis deals with the characterisation and prediction of GNSS-satellite-clocks. A prerequisite to develop powerful algorithms for the prediction of clock-corrections is the thorough study of the behaviour of the different clock-types of the satellites. In this context the predicted part of the IGU-clock-corrections provided by the Analysis Centers (ACs) of the IGS was compared to the IGS-Rapid-clock solutions to determine reasonable estimates of the quality of already existing well performing predictions. For the shortest investigated interval (three hours) all ACs obtain almost the same accuracy of 0,1 to 0,4 ns. For longer intervals the individual predictions results start to diverge. Thus, for a 12-hours- interval the differences range from nearly 10 ns (GFZ, CODE) until up to some 'tens of ns'. Based on the estimated clock corrections provided via the IGS Rapid products a simple quadratic polynomial turns out to be sufficient to describe the time series of Rubidium-clocks. On the other hand Cesium-clocks show a periodical behaviour (revolution period) with an amplitude of up to 6 ns. A clear correlation between these amplitudes and the Sun elevation angle above the orbital planes can be demonstrated. The variability of the amplitudes is supposed to be caused by temperature-variations affecting the oscillator. To account for this periodical behaviour a quadratic polynomial with an additional sinus-term was finally chosen as prediction model both for the Cesium as well as for the Rubidium clocks. The three polynomial-parameters as well as amplitude and phase shift of the periodic term are estimated within a least-square-adjustment by means of program GNSS-VC/static. Input-data are time series of the observed part of the IGU clock corrections. With the estimated parameters clock-corrections are predicted for various durations. The mean error of the prediction of Rubidium-clock-corrections for an interval of six hours reaches up to 1,5 ns. For the 12-hours

  3. New trends in the optical and electronic applications of polymers containing transition-metal complexes.

    Science.gov (United States)

    Liu, Shu-Juan; Chen, Yang; Xu, Wen-Juan; Zhao, Qiang; Huang, Wei

    2012-04-13

    Polymers containing transition-metal complexes exhibit excellent optical and electronic properties, which are different from those of polymers with a pure organic skeleton and combine the advantages of both polymers and metal complexes. Hence, research about this class of polymers has attracted more and more interest in recent years. Up to now, a number of novel polymers containing transition-metal complexes have been exploited, and significant advances in their optical and electronic applications have been achieved. In this article, we summarize some new research trends in the applications of this important class of optoelectronic polymers, such as chemo/biosensors, electronic memory devices and photovoltaic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Analysis of optical transitions in Zn1-x Cdx Se quantum wells

    International Nuclear Information System (INIS)

    Diaz A, P.; Melo P, Osvaldo de; Hernandez C, I.; Martin A, J.

    1998-01-01

    In this work we will address our attention to three different but actual aspects concerning the physics of Zn 1-x Cd x Se/ Zn Se quantum wells (Q Ws). After a brief introduction where the main interest of these structures in the fabrication of blue-green laser and light emitting diodes will be discussed, we will touch first the problem of the band-offsets in Zn 1-x Cd x Se/Zn Se heterostructure. Then we will illustrate how the shape of a Zn 1-x Cd x Se/Zn Se Q W can be found from two measured transition energies in optical experiment. Finally, the main features of the optical transitions in these Q Ws are demonstrated. (Author)

  5. PHARAO space atomic clock: new developments on the laser source

    Science.gov (United States)

    Saccoccio, Muriel; Loesel, Jacques; Coatantiec, Claude; Simon, Eric; Laurent, Philippe; Lemonde, Pierre; Maksimovic, I.; Abgrall, M.

    2017-11-01

    The PHARAO project purpose is to open the way for a new atomic clock generation in space, where laser cooling techniques and microgravity allow high frequency stability and accuracy. The French space agency, CNES is funding and managing the clock construction. The French SYRTE and LKB laboratories are scientific and technical advisers for the clock requirements and the follow-up of subsystem development in industrial companies. EADS SODERN is developing two main subsystems of the PHARAO clock: the Laser Source and the Cesium Tube where atoms are cooled, launched, selected and detected by laser beams. The Laser Source includes an optical bench and electronic devices to generate the laser beams required. This paper describes PHARAO and the role laser beams play in its principle of operation. Then we present the Laser Source design, the technologies involved, and the status of development. Lastly, we focus of a key equipment to reach the performances expected, which is the Extended Cavity Laser Diode.

  6. A bunch clock for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Lenkszus, F.R.; Laird, R.J.

    1997-01-01

    A bunch clock timing module has been developed for use by Advanced Photon Source beamlines. The module provides bunch pattern and timing information that can be used to trigger beamline data collection equipment. The module is fully integrated into the control system software (EPICS) which automatically loads it with the storage ring fill pattern at injection time. Fast timing outputs (1 ns FWHM) for each stored bunch are generated using the storage ring low-level rf and revolution clock as input references. Fiber-optic-based transmitters and receivers are used to transmit a 352-MHz low-level rf reference to distributed bunch clock modules. The bunch clock module is a single-width VME module and may be installed in a VME crate located near beamline instrumentation. A prototype has been in use on the SRI CAT beamline for over a year. The design and integration into the control system timing software along with measured performance results are presented

  7. Time-dependent transitions with time–space noncommutativity and its implications in quantum optics

    International Nuclear Information System (INIS)

    Chandra, Nitin

    2012-01-01

    We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R 1,1 perturbatively to linear order in the noncommutativity θ. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a ‘squeezed’ state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics. (paper)

  8. Optical transitions and nature of Stokes shift in spherical CdS quantum dots

    OpenAIRE

    Demchenko, D. O.; Wang, Lin-Wang

    2006-01-01

    We study the structure of the energy spectra along with the character of the states participating in optical transitions in colloidal CdS quantum dots (QDs) using the {\\sl ab initio} accuracy charge patching method combined with the %pseudopotential based folded spectrum calculations of electronic structure of thousand-atom nanostructures. In particular, attention is paid to the nature of the large resonant Stokes shift observed in CdS quantum dots. We find that the top of the valence band st...

  9. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes).

    Science.gov (United States)

    Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela

    2014-05-01

    One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.

  10. Radioisotope clocks in archaeology

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, R E.M. [Oxford Univ. (UK). Research Lab. for Archaeology

    1979-09-06

    Methods of absolute dating which use the rate of disintegration of a radioactive nucleus as the clock, are reviewed. The use of the abundant radioisotopes (/sup 40/K, Th and U) and of the rare radioisotopes (/sup 14/C, /sup 10/Be, /sup 26/Al, /sup 32/Si, /sup 36/Cl, /sup 41/Ca, /sup 53/Mn) is discussed and radiation integration techniques (fission track dating, thermoluminescence and related techniques) are considered. Specific fields of use of the various methods and their accuracy are examined.

  11. Methodologies for steering clocks

    Science.gov (United States)

    Chadsey, Harold

    1995-01-01

    One of the concerns of the PTTI community is the coordination of one time scale with another. This is accomplished through steering one clock system to another, with a goal of a zero or constant offset in time and frequency. In order to attain this goal, rate differences are calculated and allowed for by the steering algorithm. This paper will present several of these different methods of determining rate differences. Ideally, any change in rate should not cause the offset to change sign (overshoot) by any amount, but certainly not by as much as its previous absolute value. The advantages and disadvantages of each depend on the user's situation.

  12. Clocks and special relativity

    International Nuclear Information System (INIS)

    MacRoberts, D.T.

    1980-01-01

    A kinematic theory without precise definitions of the 'space' and 'time' used is an uninterpreted calculus. The definition of 'time' in special relativity is based on light propagation and the 'constant velocity of light' is a tautological consequence of the definition. When this definition is reified in a 'clock' the phenomenon of 'time dilation' occurs, in terms of the defined time, but is not reciprocal between moving systems; the postulate of relativity is not observed. The new definition of time is compatible with an ether theory without the relativity principle. The derivation of the Lorentz transformations, which requires both postulates, is purely formalistic and is not ontologically sound. (Auth.)

  13. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    Directory of Open Access Journals (Sweden)

    E. U. Donev

    2008-01-01

    Full Text Available We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model. The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.

  14. Hybrid Perovskite Phase Transition and Its Ionic, Electrical and Optical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoque, Md Nadim Ferdous; Islam, Nazifah; Zhu, Kai; Fan, Zhaoyang

    2017-01-01

    Hybrid perovskite solar cells (PSCs) under normal operation will reach a temperature above ~ 60 °C, across the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). Whether the structural phase transition could result in dramatic changes of ionic, electrical and optical properties that may further impact the PSC performances should be studied. Herein, we report a structural phase transition temperature of MAPbI3thin film at ~ 55 °C, but a striking contrast occurred at ~ 45 °C in the ionic and electrical properties of MAPbI3due to a change of the ion activation energy from 0.7 eV to 0.5 eV. The optical properties exhibited no sharp transition except for the steady increase of the bandgap with temperature. It was also observed that the activation energy for ionic migration steadily increased with increased grain sizes, and reduction of the grain boundary density reduced the ionic migration.

  15. The excitonic insulator route through a dynamical phase transition induced by an optical pulse

    Energy Technology Data Exchange (ETDEWEB)

    Brazovskii, S., E-mail: brazov@lptms.u-psud.fr [Université Paris-Saclay, LPTMS, CNRS, Univ. Paris-sud (France); Kirova, N. [Université Paris-Saclay, LPS, CNRS, Univ. Paris-sud (France)

    2016-03-15

    We consider a dynamical phase transition induced by a short optical pulse in a system prone to thermodynamical instability. We address the case of pumping to excitons whose density contributes directly to the order parameter. To describe both thermodynamic and dynamic effects on equal footing, we adopt a view of the excitonic insulator for the phase transition and suggest a formation of the Bose condensate for the pumped excitons. The work is motivated by experiments in donor–acceptor organic compounds with a neutral- ionic phase transition coupled to the spontaneous lattice dimerization and to charge transfer excitons. The double nature of the ensemble of excitons leads to an intricate time evolution, in particular, to macroscopic quantum oscillations from the interference between the Bose condensate of excitons and the ground state of the excitonic insulator. The coupling of excitons and the order parameter also leads to self-trapping of their wave function, akin to self-focusing in optics. The locally enhanced density of excitons can surpass a critical value to trigger the phase transformation, even if the mean density is below the required threshold. The system is stratified in domains that evolve through dynamical phase transitions and sequences of merging. The new circumstances in experiments and theory bring to life, once again, some remarkable inventions made by L.V. Keldysh.

  16. Transition between inverse and direct energy cascades in multiscale optical turbulence

    Science.gov (United States)

    Malkin, V. M.; Fisch, N. J.

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  17. Transition between inverse and direct energy cascades in multiscale optical turbulence.

    Science.gov (United States)

    Malkin, V M; Fisch, N J

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  18. A Light Clock Satisfying the Clock Hypothesis of Special Relativity

    Science.gov (United States)

    West, Joseph

    2007-01-01

    The design of the FMEL, a floor-mirrored Einstein-Langevin "light clock", is introduced. The clock provides a physically intuitive manner to calculate and visualize the time dilation effects for a spatially extended set of observers (an accelerated "frame") undergoing unidirectional acceleration or observers on a rotating cylinder of constant…

  19. Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions

    Science.gov (United States)

    Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean-Christophe; Even, Jacky; Mohite, Aditya D.; Sfeir, Matthew Y.

    2017-11-01

    Connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered C H3N H3 + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R - and M -point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.

  20. Gauge systems and functions, hermitian operators and clocks as conjugate functions for the constraints

    International Nuclear Information System (INIS)

    Cuesta, Vladimir; Vergara, Jose David; Montesinos, Merced

    2011-01-01

    We work with gauge systems and using gauge invariant functions we study its quantum counterpart and we find if all these operators are self adjoint or not. Our study is divided in two cases, when we choose clock or clocks that its Poisson brackets with the set of constraints is one or it is different to one. We show some transition amplitudes.

  1. High Precision Clock Bias Prediction Model in Clock Synchronization System

    Directory of Open Access Journals (Sweden)

    Zan Liu

    2016-01-01

    Full Text Available Time synchronization is a fundamental requirement for many services provided by a distributed system. Clock calibration through the time signal is the usual way to realize the synchronization among the clocks used in the distributed system. The interference to time signal transmission or equipment failures may bring about failure to synchronize the time. To solve this problem, a clock bias prediction module is paralleled in the clock calibration system. And for improving the precision of clock bias prediction, the first-order grey model with one variable (GM(1,1 model is proposed. In the traditional GM(1,1 model, the combination of parameters determined by least squares criterion is not optimal; therefore, the particle swarm optimization (PSO is used to optimize GM(1,1 model. At the same time, in order to avoid PSO getting stuck at local optimization and improve its efficiency, the mechanisms that double subgroups and nonlinear decreasing inertia weight are proposed. In order to test the precision of the improved model, we design clock calibration experiments, where time signal is transferred via radio and wired channel, respectively. The improved model is built on the basis of clock bias acquired in the experiments. The results show that the improved model is superior to other models both in precision and in stability. The precision of improved model increased by 66.4%~76.7%.

  2. Clocks around Sgr A*

    Science.gov (United States)

    Angélil, Raymond; Saha, Prasenjit

    2014-11-01

    The S stars near the Galactic Centre and any pulsars that may be on similar orbits can be modelled in a unified way as clocks orbiting a black hole, and hence are potential probes of relativistic effects, including black hole spin. The high eccentricities of many S stars mean that relativistic effects peak strongly around pericentre; for example, orbit precession is not a smooth effect but almost a kick at pericentre. We argue that concentration around pericentre will be an advantage when analysing redshift or pulse-arrival data to measure relativistic effects, because cumulative precession will be drowned out by Newtonian perturbations from other mass in the Galactic Centre region. Wavelet decomposition may be a way to disentangle relativistic effects from Newton perturbations. Assuming a plausible model for Newtonian perturbations on S2, relativity appears to be strongest in a two-year interval around pericentre, in wavelet modes of time-scale ≈6 months.

  3. Mass defect effects in atomic clocks

    Science.gov (United States)

    Yudin, Valeriy; Taichenachev, Alexey

    2018-03-01

    We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (the gravitational shift and motion-induced shifts such as quadratic Doppler and micromotion shifts) can be interpreted as consequences of the mass defect in quantum atomic physics, i.e. without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions.

  4. Carrier Lifetime in Exfoliated Few-Layer Graphene Determined from Intersubband Optical Transitions

    Science.gov (United States)

    Limmer, Thomas; Feldmann, Jochen; Da Como, Enrico

    2013-05-01

    We report a femtosecond transient spectroscopy study in the near to middle infrared range, 0.8-0.35 eV photon energy, on graphene and few layer graphene single flakes. The spectra show an evolving structure of photoinduced absorption bands superimposed on the bleaching caused by Pauli blocking of the interband optically coupled states. Supported by tight-binding model calculations, we assign the photoinduced absorption features to intersubband transitions as the number of layers is increased. Interestingly, the intersubband photoinduced resonances show a longer dynamics than the interband bleaching, because of their independence from the absolute energy of the carriers with respect to the Dirac point. The dynamic of these intersubband transitions reflects the lifetime of the hot carriers and provides an elegant method to access it in this important class of semimetals.

  5. Carrier lifetime in exfoliated few-layer graphene determined from intersubband optical transitions.

    Science.gov (United States)

    Limmer, Thomas; Feldmann, Jochen; Da Como, Enrico

    2013-05-24

    We report a femtosecond transient spectroscopy study in the near to middle infrared range, 0.8-0.35 eV photon energy, on graphene and few layer graphene single flakes. The spectra show an evolving structure of photoinduced absorption bands superimposed on the bleaching caused by Pauli blocking of the interband optically coupled states. Supported by tight-binding model calculations, we assign the photoinduced absorption features to intersubband transitions as the number of layers is increased. Interestingly, the intersubband photoinduced resonances show a longer dynamics than the interband bleaching, because of their independence from the absolute energy of the carriers with respect to the Dirac point. The dynamic of these intersubband transitions reflects the lifetime of the hot carriers and provides an elegant method to access it in this important class of semimetals.

  6. Study of Transitions between Wetting States on Microcavity Arrays by Optical Transmission Microscopy

    DEFF Research Database (Denmark)

    Søgaard, Emil; Andersen, Nis Korsgaard; Smistrup, Kristian

    2014-01-01

    In this article, we present a simple and fast optical method based on transmission microscopy to study the stochastic wetting transitions on micro- and nanostructured polymer surfaces immersed in water. We analyze the influence of immersion time and the liquid pressure on the degree of water......-Laplace equation for the water menisci in the cavities and the diffusion of dissolved gas molecules in the water. In addition, the wetting transitions had a stochastic nature, which resulted from the short diffusion distance for dissolved gas molecules in the water between neighboring cavities. Furthermore, we...... compared the contact angle properties of two polymeric materials (COC and PP) with moderate hydrophobicity. We attributed the difference in the water repellency of the two materials to a difference in the wetting of their nanostructures. Our experimental observations thus indicate that both the diffusion...

  7. On the estimation of matrix elements for optical transitions in semiconductors

    International Nuclear Information System (INIS)

    Hassan, A.R.

    1992-09-01

    A semi-empirical method is used to calculate the numerical values of the interband momentum matrix elements of the allowed optical transitions in semiconductors. This method is based on the evaluation of the ratio of the two-photon and one-photon absorption coefficients and the compare the result with the corresponding experimental values in a number of semiconductors both for direct and indirect transition processes. The numerical values of the momentum matrix elements are compared with the convenient theoretical calculations available. The result is found to agree fairly well with the corresponding values computed using the k-vector · p-vector perturbation theory. (author). 19 refs, 2 figs, 2 tabs

  8. All-optical XOR logic gate using intersubband transition in III-V quantum well materials.

    Science.gov (United States)

    Feng, Jijun; Akimoto, Ryoichi; Gozu, Shin-ichiro; Mozume, Teruo

    2014-06-02

    A monolithically integrated all-optical exclusive-OR (XOR) logic gate is experimentally demonstrated based on a Michelson interferometer (MI) gating device in InGaAs/AlAsSb coupled double quantum wells (CDQWs). The MI arms can convert the pump data with return-to-zero ON-OFF keying (RZ OOK) to binary phase-shift keying (BPSK) format, then two BPSK signals can interfere with each other for realizing a desired logical operation. All-optical format conversion from the RZ OOK to BPSK is based on the cross-phase modulation to the transverse electric (TE) probe wave, which is caused by the intersubband transition excited by the transverse magnetic (TM) pump light. Bit error rate measurements show that error free operation for both BPSK format conversion and XOR logical operation can be achieved.

  9. Optical transition radiation measurements for the Los Alamos and Boeing Free-Electron Laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Feldman, D.W.; Apgar, S.A.; Calsten, B.E.; Fiorito, R.B.; Rule, D.W.

    1988-01-01

    Optical transition radiation (OTR) measurements of the electron-beam emittance have been performed at a location just before the wiggler in the Los Alamos Free-Electron Laser (FEL) experiment. Beam profiles and beam divergence patterns from a single macropulse were recorded simultaneously using two intensified charge-injection device (CID) television cameras and an optical beamsplitter. Both single-foil OTR and two-foil OTR interference experiments were performed. Preliminary results are compared to a reference variable quadrupole, single screen technique. New aspects of using OTR properties for pointing the e-beam on the FEL oscillator axis, as well as measuring e-beam emittance are addressed. 7 refs., 9 figs.

  10. Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles

    International Nuclear Information System (INIS)

    Aguilera, I.; Palacios, P.; Wahnon, P.

    2008-01-01

    The optical properties of a novel potential high-efficiency photovoltaic material have been studied. This material is based on a chalcopyrite-type semiconductor (CuGaS 2 ) with some Ga atom substituted by Ti and is characterized by the formation of an isolated transition-metal band between the valence band and the conduction band. We present a study in which ab-initio density functional theory calculations within the generalized gradient approximation are carried out to determine the optical reflectivity and absorption coefficient of the materials of interest. Calculations for the host semiconductor are in good agreement with experimental results within the limitations of the approach. We find, as desired, that because of the intermediate band, the new Ti-substituted material would be able to absorb photons of energy lower than the band-gap of the host chalcopyrite. We also analyze the partial contributions to the main peaks of its spectrum

  11. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    International Nuclear Information System (INIS)

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the beam profile will be described

  12. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    CERN Document Server

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the b...

  13. Flow restrictor silicon membrane microvalve actuated by optically controlled paraffin phase transition

    International Nuclear Information System (INIS)

    Kolari, K; Havia, T; Stuns, I; Hjort, K

    2014-01-01

    Restrictor valves allow proportional control of fluid flow but are rarely integrated in microfluidic systems. In this study, an optically actuated silicon membrane restrictor microvalve is demonstrated. Its actuation is based on the phase transition of paraffin, using a paraffin wax mixed with a suitable concentration of optically absorbing nanographite particles. Backing up the membrane with oil (the melted paraffin) allows for a compliant yet strong contact to the valve seat, which enables handling of high pressures. At flow rates up to 30 µL min −1 and at a pressure of 2 bars, the valve can successfully be closed and control the flow level by restriction. The use of this paraffin composite as an adhesive layer sandwiched between the silicon valve and glass eases fabrication. This type of restrictor valve is best suited for high pressure, low volume flow silicon-based nanofluidic systems. (paper)

  14. Optically and thermally controlled terahertz metamaterial via transition between direct and indirect electromagnetically induced transparency

    Directory of Open Access Journals (Sweden)

    Jiawei Sui

    2014-12-01

    Full Text Available This passage presents a design of tunable terahertz metamaterials via transition between indirect and direct electromagnetically induced transparency (EIT effects by changing semiconductor InSb’s properties to terahertz wave under optical and thermal stimuli. Mechanical model and its electrical circuit model are utilized in analytically calculating maximum transmission of transparency window. Simulated results show consistency with the analytical expressions. The results show that the metamaterials hold 98.4% modulation depth at 189 GHz between 300 K, σInSb =256000 S/m, and 80 K, σInSb =0.0162 S/m conditions , 1360 ps recovery time of the excited electrons in InSb under optical stimulus at 300 K mainly considering the direct EIT effect, and minimum bandwidth 1 GHz.

  15. Role of Symmetry Breaking on the Optical Transitions in Lead-Salt Quantum Dots

    KAUST Repository

    Nootz, Gero

    2010-09-08

    The influence of quantum confinement on the one- and two-photon absorption spectra (1PA and 2PA) of PbS and PbSe semiconductor quantum dots (QDs) is investigated. The results show 2PA peaks at energies where only 1PA transitions are predicted and 1PA peaks where only 2PA transitions are predicted by the often used isotropic k•p four-band envelope function formalism. The first experimentally identified two-photon absorption peak coincides with the energy of the first one photon allowed transition. This first two-photon peak cannot be explained by band anisotropy, verifying that the inversion symmetry of the wave functions is broken and relaxation of the parity selection rules has to be taken into account to explain optical transitions in lead-salt QDs. Thus, while the band anisotropy of the bulk semiconductor plays a role in the absorption spectra, especially for the more anisotropic PbSe QDs, a complete model of the absorption spectra, for both 1PA and 2PA, must also include symmetry breaking of the quantum confined wave functions. These studies clarify the controversy of the origin of spectral features in lead-salt QDs. © 2010 American Chemical Society.

  16. Role of Symmetry Breaking on the Optical Transitions in Lead-Salt Quantum Dots

    KAUST Repository

    Nootz, Gero; Padilha, Lazaro A.; Olszak, Peter D.; Webster, Scott; Hagan, David J.; Van Stryland, Eric W.; Levina, Larissa; Sukhovatkin, Vlad; Brzozowski, Lukasz; Sargent, Edward H.

    2010-01-01

    The influence of quantum confinement on the one- and two-photon absorption spectra (1PA and 2PA) of PbS and PbSe semiconductor quantum dots (QDs) is investigated. The results show 2PA peaks at energies where only 1PA transitions are predicted and 1PA peaks where only 2PA transitions are predicted by the often used isotropic k•p four-band envelope function formalism. The first experimentally identified two-photon absorption peak coincides with the energy of the first one photon allowed transition. This first two-photon peak cannot be explained by band anisotropy, verifying that the inversion symmetry of the wave functions is broken and relaxation of the parity selection rules has to be taken into account to explain optical transitions in lead-salt QDs. Thus, while the band anisotropy of the bulk semiconductor plays a role in the absorption spectra, especially for the more anisotropic PbSe QDs, a complete model of the absorption spectra, for both 1PA and 2PA, must also include symmetry breaking of the quantum confined wave functions. These studies clarify the controversy of the origin of spectral features in lead-salt QDs. © 2010 American Chemical Society.

  17. Mott Transition of Fermionic Atoms in a Three-Dimensional Optical Trap

    International Nuclear Information System (INIS)

    Helmes, R. W.; Rosch, A.; Costi, T. A.

    2008-01-01

    We study theoretically the Mott metal-insulator transition for a system of fermionic atoms confined in a three-dimensional optical lattice and a harmonic trap. We describe an inhomogeneous system of several thousand sites using an adaptation of dynamical mean-field theory solved efficiently with the numerical renormalization group method. Above a critical value of the on-site interaction, a Mott-insulating phase appears in the system. We investigate signatures of the Mott phase in the density profile and in time-of-flight experiments

  18. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Rule, D. W. [Unlisted, US, MD; Downer, M. C. [Texas U.

    2017-10-09

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  19. Strain-induced fundamental optical transition in (In,Ga)As/GaP quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Robert, C., E-mail: cedric.robert@insa-rennes.fr, E-mail: cedric.robert@tyndall.ie; Pedesseau, L.; Cornet, C.; Jancu, J.-M.; Even, J.; Durand, O. [Université Européenne de Bretagne, INSA Rennes, France and CNRS, UMR 6082 Foton, 20 Avenue des Buttes de Coësmes, 35708 Rennes (France); Nestoklon, M. O. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Pereira da Silva, K. [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain); Departamento de Física, Universidade Federal do Ceará, P.O. Box 6030, Fortaleza–CE, 60455-970 (Brazil); Alonso, M. I. [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain); Goñi, A. R. [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain); ICREA, Passeig Lluís Companys 23, 08010 Barcelona (Spain); Turban, P. [Equipe de Physique des Surfaces et Interfaces, Institut de Physique de Rennes UMR UR1-CNRS 6251, Université de Rennes 1, F-35042 Rennes Cedex (France)

    2014-01-06

    The nature of the ground optical transition in an (In,Ga)As/GaP quantum dot is thoroughly investigated through a million atoms supercell tight-binding simulation. Precise quantum dot morphology is deduced from previously reported scanning-tunneling-microscopy images. The strain field is calculated with the valence force field method and has a strong influence on the confinement potentials, principally, for the conduction band states. Indeed, the wavefunction of the ground electron state is spatially confined in the GaP matrix, close to the dot apex, in a large tensile strain region, having mainly Xz character. Photoluminescence experiments under hydrostatic pressure strongly support the theoretical conclusions.

  20. Impedance measurements on a fast transition-edge sensor for optical and near-infrared range

    International Nuclear Information System (INIS)

    Taralli, E; Portesi, C; Lolli, L; Monticone, E; Rajteri, M; Novikov, I; Beyer, J

    2010-01-01

    Impedance measurements of superconducting transition-edge sensors (TESs) are a powerful tool to obtain information about the TES thermal and electrical properties. We apply this technique to a 20 μm x 20 μm Ti/Au TES, suitable for application in the optical and near-infrared range, and extend the measurements up to 250 kHz in order to obtain a complete frequency response in the complex plane. From these measurements we obtain important thermal and electrical device parameters such as heat capacity C, thermal conductance G and effective thermal time constant τ eff that will be compared with the corresponding values obtained from noise measurements.

  1. Transverse phase space mapping of relativistic electron beams using optical transition radiation

    Directory of Open Access Journals (Sweden)

    G. P. Le Sage

    1999-12-01

    Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.

  2. Assembly, alignment and test of the Transiting Exoplanet Survey Satellite (TESS) optical assemblies

    Science.gov (United States)

    Balonek, Gregory; Brown, Joshua J.; Andre, James E.; Chesbrough, Christian D.; Chrisp, Michael P.; Dalpiaz, Michael; Lennon, Joseph; Richards, B. C.; Clark, Kristin E.

    2017-08-01

    The Transiting Exoplanet Survey Satellite (TESS) will carry four visible waveband, seven-element, refractive F/1.4 lenses, each with a 34 degree diagonal field of view. This paper describes the methods used for the assembly, alignment and test of the four flight optical assemblies. Prior to commencing the build of the four flight optical assemblies, a Risk Reduction Unit (RRU) was successfully assembled and tested [1]. The lessons learned from the RRU were applied to the build of the flight assemblies. The main modifications to the flight assemblies include the inking of the third lens element stray light mitigation, tighter alignment tolerances, and diamond turning for critical mechanical surfaces. Each of the optical assemblies was tested interferometrically and measured with a low coherence distance measuring interferometer (DMI) to predict the optimal shim thickness between the lens assembly and detector before -75°C environmental testing. In addition to individual test data, environmental test results from prior assemblies allow for the exploration of marginal performance differences between each of the optical assemblies.

  3. Physiological links of circadian clock and biological clock of aging.

    Science.gov (United States)

    Liu, Fang; Chang, Hung-Chun

    2017-07-01

    Circadian rhythms orchestrate biochemical and physiological processes in living organisms to respond the day/night cycle. In mammals, nearly all cells hold self-sustained circadian clocks meanwhile couple the intrinsic rhythms to systemic changes in a hierarchical manner. The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master pacemaker to initiate daily synchronization according to the photoperiod, in turn determines the phase of peripheral cellular clocks through a variety of signaling relays, including endocrine rhythms and metabolic cycles. With aging, circadian desynchrony occurs at the expense of peripheral metabolic pathologies and central neurodegenerative disorders with sleep symptoms, and genetic ablation of circadian genes in model organisms resembled the aging-related features. Notably, a number of studies have linked longevity nutrient sensing pathways in modulating circadian clocks. Therapeutic strategies that bridge the nutrient sensing pathways and circadian clock might be rational designs to defy aging.

  4. Phase noise analysis of clock recovery based on an optoelectronic phase-locked loop

    DEFF Research Database (Denmark)

    Zibar, Darko; Mørk, Jesper; Oxenløwe, Leif Katsuo

    2007-01-01

    A detailed theoretical analysis of a clock-recovery (CR) scheme based on an optoelectronic phase-locked loop is presented. The analysis emphasizes the phase noise performance, taking into account the noise of the input data signal, the local voltage-controlled oscillator (VCO), and the laser....... It is shown that a large loop length results in a higher timing jitter of the recovered clock signal. The impact of the loop length on the clock signal jitter can be reduced by using a low-noise VCO and a low loop filter bandwidth. Using the model, the timing jitter of the recovered optical and electrical...... clock signal can be evaluated. We numerically investigate the timing jitter requirements for combined electrical/optical local oscillators, in order for the recovered clock signal to have less jitter than that of the input signal. The timing jitter requirements for the free-running laser and the VCO...

  5. Optical gain for the interband optical transition in InAsP/InP quantum well wire in the influence of laser field intensity

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, S. [Dept.of Physics, GTN Arts College, Dindigul-624 005. India (India); Peter, A. John, E-mail: a.john.peter@gmail.com [P.G & Research Dept.of Physics, Government Arts College, Melur-625 106. Madurai. India (India)

    2016-05-23

    Intense high frequency laser field induced electronic and optical properties of heavy hole exciton in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire is studied taking into account the geometrical confinement effect. Laser field related exciton binding energies and the optical band gap in the InAs{sub 0.8}P{sub 0.2}/InP quantum well wire are investigated. The optical gain, for the interband optical transition, as a function of photon energy, in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The obtained optical gain in group III-V narrow quantum wire can be applied for achieving the preferred telecommunication wavelength.

  6. Micro Mercury Ion Clock (MMIC)

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate micro clock based on trapped Hg ions with more than 10x size reduction and power; Fractional frequency stability at parts per 1014 level, adequate for...

  7. Optical and Excitonic Properties of Atomically Thin Transition-Metal Dichalcogenides

    Science.gov (United States)

    Berkelbach, Timothy C.; Reichman, David R.

    2018-03-01

    Starting with the isolation of a single sheet of graphene, the study of layered materials has been one of the most active areas of condensed matter physics, chemistry, and materials science. Single-layer transition-metal dichalcogenides are direct-gap semiconducting analogs of graphene that exhibit novel electronic and optical properties. These features provide exciting opportunities for the discovery of both new fundamental physical phenomena as well as innovative device platforms. Here, we review the progress associated with the creation and use of a simple microscopic framework for describing the optical and excitonic behavior of few-layer transition-metal dichalcogenides, which is based on symmetry, band structure, and the effective interactions between charge carriers in these materials. This approach provides an often quantitative account of experiments that probe the physics associated with strong electron–hole interactions in these quasi two-dimensional systems and has been successfully employed by many groups to both describe and predict emergent excitonic behavior in these layered semiconducting systems.

  8. Controllable clock circuit design in PEM system

    International Nuclear Information System (INIS)

    Sun Yunhua; Wang Peihua; Hu Tingting; Feng Baotong; Shuai Lei; Huang Huan; Wei Shujun; Li Ke; Zhao Jingwei; Wei Long

    2011-01-01

    A high-precision synchronized clock circuit design will be presented, which can supply steady, reliable and anti-jamming clock signal for the data acquirement (DAQ) system of Positron Emission Mammography (PEM). This circuit design is based on the Single-Chip Microcomputer and high-precision clock chip, and can achieve multiple controllable clock signals. The jamming between the clock signals can be reduced greatly with the differential transmission. Meanwhile, the adoption of CAN bus control in the clock circuit can prompt the clock signals to be transmitted or masked simultaneously when needed. (authors)

  9. Controllable clock circuit design in PEM system

    International Nuclear Information System (INIS)

    Sun Yunhua; Wang Peilin; Hu Tingting; Feng Baotong; Shuai Lei; Huang Huan; Wei Shujun; Li Ke; Zhao Jingwei; Wei Long

    2010-01-01

    A high-precision synchronized clock circuit design will be presented, which can supply steady, reliable and anti-jamming clock signal for the data acquirement (DAQ) system of Positron Emission Mammography (PEM). This circuit design is based on the Single-Chip Microcomputer and high-precision clock chip, and can achieve multiple controllable clock signals. The jamming between the clock signals can be reduced greatly with the differential transmission. Meanwhile, the adoption of CAN bus control in the clock circuit can prompt the clock signals to be transmitted or masked simultaneously when needed. (authors)

  10. Time without clocks - an attempt

    International Nuclear Information System (INIS)

    Karpman, G.

    1978-01-01

    A definition of time intervals separating two states of systems of elementary particles and observers is attempted. The definition is founded on the notion of instant state of the system and uses no information connected with the use of a clock. Applying the definition to a classical clock and to a sample of unstable particles, results are obtained in agreement with experiment. However, if the system contains 'few' elementary particles, the properties of the time interval present some different features. (author)

  11. Physical Layer Ethernet Clock Synchronization

    Science.gov (United States)

    2010-11-01

    42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel, Georg...oeaw.ac.at Nikolaus Kerö Oregano Systems, Mohsgasse 1, 1030 Wien, Austria E-mail: nikolaus.keroe@oregano.at Abstract Clock synchronization ...is a service widely used in distributed networks to coordinate data acquisition and actions. As the requirement to achieve tighter synchronization

  12. Optical properties of 3d transition metal ion-doped sodium borosilicate glass

    International Nuclear Information System (INIS)

    Wen, Hongli; Tanner, Peter A.

    2015-01-01

    Graphical abstract: Photographs of undoped (SiO 2 ) 50 (Na 2 O) 25 (B 2 O 3 ) 25 (SiNaB) glass and transition metal ion-doped (TM) 0.5 (SiO 2 ) 49.5 (Na 2 O) 25 (B 2 O 3 ) 25 glass samples. - Highlights: • 3d transition metal ion (from Ti to Zn) doped SiO 2 -Na 2 O-B 2 O 3 glasses. • Optical properties of doped glasses investigated. • V(IV,V); Cr(III, VI); Mn(II,III); Fe(II,III); Co(II); Ni(II); Cu(II) by XANES, DRS. • Strong visible absorption but only vanadium ion gives strong emission in glass. - Abstract: SiO 2 -Na 2 O-B 2 O 3 glasses doped with 3d-transition metal species from Ti to Zn were prepared by the melting-quenching technique and their optical properties were investigated. The X-ray absorption near edge spectra of V, Cr, and Mn-doped glasses indicate that the oxidation states of V(IV, V), Cr(III, VI) and Mn(II, III) exist in the studied glasses. The oxidation states revealed from the diffuse reflectance spectra of the glasses are V(IV, V), Cr(III, VI), Mn(III), Fe(II, III), Co(II), Ni(II), and Cu(II). Most of the 3d transition element ions exhibit strong absorption in the visible spectral region in the glass. Under ultraviolet excitation, the undoped sodium borosilicate glass produces weak and broad emission, while doping of vanadium introduces strong and broad emission due to the V(V) charge transfer transition. Only weak emission is observed from Ti(IV), Mn(II), Fe(III) and Cu(II), partly resulting from the strong electron–phonon coupling of the 3d-electrons and the relatively high phonon energy of the studied glass host, with the former leading to dominant nonradiative relaxation based on multiphonon processes for most of the 3d excited states

  13. Phase transitions and spin excitations of spin-1 bosons in optical lattice

    Science.gov (United States)

    Zhu, Min-Jie; Zhao, Bo

    2018-03-01

    For spin-1 bosonic system trapped in optical lattice, we investigate two main problems, including MI-SF phase transition and magnetic phase separations in MI phase, with extended standard basis operator (SBO) method. For both ferromagnetic (U2 0) systems, we analytically figure out the symmetry properties in Mott-insulator and superfluid phases, which would provide a deeper insight into the MI-SF phase transition process. Then by applying self-consistent approach to the method, we include the effect of quantum and thermal fluctuations and derive the MI-SF transition phase diagram, which is in quantitative agreement with recent Monte-Carlo simulation at zero temperature, and at finite temperature, we find the underestimation of finite-temperature-effect in the mean-field approximation method. If we further consider the spin excitations in the insulating states of spin-1 system in external field, distinct spin phases are expected. Therefore, in the Mott lobes with n = 1 and n = 2 atoms per site, we give analytical and numerical boundaries of the singlet, nematic, partially magnetic and ferromagnetic phases in the magnetic phase diagrams.

  14. Phase controlled metal–insulator transition in multi-leg quasiperiodic optical lattices

    International Nuclear Information System (INIS)

    Maiti, Santanu K.; Sil, Shreekantha; Chakrabarti, Arunava

    2017-01-01

    A tight-binding model of a multi-leg ladder network with a continuous quasiperiodic modulation in both the site potential and the inter-arm hopping integral is considered. The model mimics optical lattices where ultra-cold fermionic or bosonic atoms are trapped in double well potentials. It is observed that, the relative phase difference between the on-site potential and the inter-arm hopping integral, which can be controlled by the tuning of the interfering laser beams trapping the cold atoms, can result in a mixed spectrum of one or more absolutely continuous subband(s) and point like spectral measures. This opens up the possibility of a re-entrant metal–insulator transition. The subtle role played by the relative phase difference mentioned above is revealed, and we corroborate it numerically by working out the multi-channel electronic transmission for finite two-, and three-leg ladder networks. The extension of the calculation beyond the two-leg case is trivial, and is discussed in the work. - Graphical abstract: ▪ - Highlights: • Phase controlled metal–insulator transition is discussed. • An analytical prescription is given to understand MI transition. • Our work provides a way of designing experiments involving laser beams.

  15. Optical properties and electronic transitions of DNA oligonucleotides as a function of composition and stacking sequence.

    Science.gov (United States)

    Schimelman, Jacob B; Dryden, Daniel M; Poudel, Lokendra; Krawiec, Katherine E; Ma, Yingfang; Podgornik, Rudolf; Parsegian, V Adrian; Denoyer, Linda K; Ching, Wai-Yim; Steinmetz, Nicole F; French, Roger H

    2015-02-14

    The role of base pair composition and stacking sequence in the optical properties and electronic transitions of DNA is of fundamental interest. We present and compare the optical properties of DNA oligonucleotides (AT)10, (AT)5(GC)5, and (AT-GC)5 using both ab initio methods and UV-vis molar absorbance measurements. Our data indicate a strong dependence of both the position and intensity of UV absorbance features on oligonucleotide composition and stacking sequence. The partial densities of states for each oligonucleotide indicate that the valence band edge arises from a feature associated with the PO4(3-) complex anion, and the conduction band edge arises from anti-bonding states in DNA base pairs. The results show a strong correspondence between the ab initio and experimentally determined optical properties. These results highlight the benefit of full spectral analysis of DNA, as opposed to reductive methods that consider only the 260 nm absorbance (A260) or simple purity ratios, such as A260/A230 or A260/A280, and suggest that the slope of the absorption edge onset may provide a useful metric for the degree of base pair stacking in DNA. These insights may prove useful for applications in biology, bioelectronics, and mesoscale self-assembly.

  16. Ultrafast all-optical order-to-chaos transition in silicon photonic crystal chips

    KAUST Repository

    Bruck, Roman

    2016-06-08

    The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all-optical laser-driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump-probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators. (Figure presented.) . © 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  17. Unique Optical Properties of Methylammonium Lead Iodide Nanocrystals Below the Bulk Tetragonal-Orthorhombic Phase Transition.

    Science.gov (United States)

    Diroll, Benjamin T; Guo, Peijun; Schaller, Richard D

    2018-02-14

    Methylammonium (MA) and formamidinium (FA) lead halides are widely studied for their potential as low-cost, high-performance optoelectronic materials. Here, we present measurements of visible and IR absorption, steady state, and time-resolved photoluminescence from 300 K to cryogenic temperatures. Whereas FAPbI 3 nanocrystals (NCs) are found to behave in a very similar manner to reported bulk behavior, colloidal nanocrystals of MAPbI 3 show a departure from the low-temperature optical behavior of the bulk material. Using photoluminescence, visible, and infrared absorption measurements, we demonstrate that unlike single crystals and polycrystalline films NCs of MAPbI 3 do not undergo optical changes associated with the bulk tetragonal-to-orthorhombic phase transition, which occurs near 160 K. We find no evidence of frozen organic cation rotation to as low as 80 K or altered exciton binding energy to as low as 3 K in MAPbI 3 NCs. Similar results are obtained in MAPbI 3 NCs ranging from 20 to over 100 nm and in morphologies including cubes and plates. Colloidal MAPbI 3 NCs therefore offer a window into the properties of the solar-relevant, room-temperature phase of MAPbI 3 at temperatures inaccessible with single crystals or polycrystalline samples. Exploiting this phenomenon, these measurements reveal the existence of an optically passive photoexcited state close to the band edge and persistent slow Auger recombination at low temperature.

  18. The dynamics of the optically driven Lambda transition of the 15N-V- center in diamond.

    Science.gov (United States)

    González, Gabriel; Leuenberger, Michael N

    2010-07-09

    Recent experimental results demonstrate the possibility of writing quantum information in the ground state triplet of the (15)N-V(-) center in diamond by means of an optically driven spin non-conserving two-photon Lambda transition in the presence of a strong applied electric field. Our calculations show that the hyperfine interaction in the (15)N-V(-) center is capable of mediating such a transition. We use a density matrix approach to describe the exact dynamics for the allowed optical spin non-conserving transitions between two sublevels of the ground state triplet. This approach allows us to calculate the Rabi oscillations, by means of which we obtain a Rabi frequency with an upper bound determined by the hyperfine interaction. This result is crucial for the success of implementing optically driven quantum information processing with the N-V center in diamond.

  19. Pitfalls of Insulin Pump Clocks

    Science.gov (United States)

    Reed, Amy J.

    2014-01-01

    The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713

  20. Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO:Cu films

    International Nuclear Information System (INIS)

    Darma, Yudi; Rusydi, Andrivo; Seng Herng, Tun; Marlina, Resti; Fauziah, Resti; Ding, Jun

    2014-01-01

    We study room temperature optics and electronic structures of ZnO:Cu films as a function of Cu concentration using a combination of spectroscopic ellipsometry, photoluminescence, and ultraviolet-visible absorption spectroscopy. Mid-gap optical states, interband transitions, and excitons are observed and distinguishable. We argue that the mid-gap states are originated from interactions of Cu and oxygen vacancy (Vo). They are located below conduction band (Zn4s) and above valence band (O2p) promoting strong green emission and narrowing optical band gap. Excitonic states are screened and its intensities decrease upon Cu doping. Our results show the importance of Cu and Vo driving the electronic structures and optical transitions in ZnO:Cu films

  1. Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO:Cu films

    Science.gov (United States)

    Darma, Yudi; Seng Herng, Tun; Marlina, Resti; Fauziah, Resti; Ding, Jun; Rusydi, Andrivo

    2014-02-01

    We study room temperature optics and electronic structures of ZnO:Cu films as a function of Cu concentration using a combination of spectroscopic ellipsometry, photoluminescence, and ultraviolet-visible absorption spectroscopy. Mid-gap optical states, interband transitions, and excitons are observed and distinguishable. We argue that the mid-gap states are originated from interactions of Cu and oxygen vacancy (Vo). They are located below conduction band (Zn4s) and above valence band (O2p) promoting strong green emission and narrowing optical band gap. Excitonic states are screened and its intensities decrease upon Cu doping. Our results show the importance of Cu and Vo driving the electronic structures and optical transitions in ZnO:Cu films.

  2. Monitoring of temperature-mediated phase transitions of adipose tissue by combined optical coherence tomography and Abbe refractometry.

    Science.gov (United States)

    Yanina, Irina Y; Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V; Tuchin, Valery V

    2018-01-01

    Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.; Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-12-31

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  4. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 [mu]s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  5. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States)); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  6. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States); Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-09-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  7. The phase transition and elastic and optical properties of polymorphs of CuI

    International Nuclear Information System (INIS)

    Zhu Jiajie; Pandey, Ravindra; Gu Mu

    2012-01-01

    The high-pressure polymorphs of CuI have attracted much attention due to the somewhat contradictory identification of their structures by means of x-ray diffraction measurements and theoretical calculations. In this paper, we report the results of a theoretical investigation of polymorphs of CuI including zinc-blende, rhombohedral, tetragonal, rocksalt and orthorhombic phases. We find that CuI follows the high-pressure transition path from the zinc-blende phase to the orthorhombic phase via the tetragonal phase, and the rhombohedral phase shows mechanical instability under high pressure. The bulk moduli are almost isotropic but the shear moduli show large anisotropy in these polymorphs. A relatively strong hybridization of I p and Cu d states appears to determine the electronic properties of the CuI polymorphs. The zinc-blende and tetragonal CuI are direct gap semiconductors and their optical properties are similar, whereas the orthorhombic CuI is metallic.

  8. Optical transitions in two-dimensional topological insulators with point defects

    Science.gov (United States)

    Sablikov, Vladimir A.; Sukhanov, Aleksei A.

    2016-12-01

    Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and boundary states, but to bound states localized at structure defects as well. We clarify how the unusual properties of the defect-induced bound states are manifested in optical absorption spectra in two-dimensional topological insulators. The calculations are carried out for defects with short-range potential. We find that the defects give rise to the appearance of specific features in the absorption spectrum, which are an inherent property of topological insulators. They have the form of two or three absorption peaks that are due to intracenter transitions between electron-like and hole-like bound states.

  9. Transition-edge sensor arrays for UV-optical-IR astrophysics

    International Nuclear Information System (INIS)

    Burney, J.; Bay, T.J.; Barral, J.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Miller, A.J.; Nam, S.; Rosenberg, D.; Romani, R.W.; Tomada, A.

    2006-01-01

    Our research group has developed and characterized transition-edge sensor (TES) arrays for near IR-optical-near UV astrophysical observations. These detectors have a time-stamp accuracy of 0.3μs and an energy resolution of 0.16eV for 2.33eV photons at very high rates (30kHz). We have installed a 6x6 array of these TESs in an adiabatic demagnetization refrigerator equipped with windows for direct imaging. We discuss new instrumentation progress and current data in all aspects related to successful operation of this camera system, including: detector and array performance, position dependence and cross-talk, low-temperature and readout electronics, quantum and system efficiency, IR filtering, and focus and imaging

  10. Sound Clocks and Sonic Relativity

    Science.gov (United States)

    Todd, Scott L.; Menicucci, Nicolas C.

    2017-10-01

    Sound propagation within certain non-relativistic condensed matter models obeys a relativistic wave equation despite such systems admitting entirely non-relativistic descriptions. A natural question that arises upon consideration of this is, "do devices exist that will experience the relativity in these systems?" We describe a thought experiment in which `acoustic observers' possess devices called sound clocks that can be connected to form chains. Careful investigation shows that appropriately constructed chains of stationary and moving sound clocks are perceived by observers on the other chain as undergoing the relativistic phenomena of length contraction and time dilation by the Lorentz factor, γ , with c the speed of sound. Sound clocks within moving chains actually tick less frequently than stationary ones and must be separated by a shorter distance than when stationary to satisfy simultaneity conditions. Stationary sound clocks appear to be length contracted and time dilated to moving observers due to their misunderstanding of their own state of motion with respect to the laboratory. Observers restricted to using sound clocks describe a universe kinematically consistent with the theory of special relativity, despite the preferred frame of their universe in the laboratory. Such devices show promise in further probing analogue relativity models, for example in investigating phenomena that require careful consideration of the proper time elapsed for observers.

  11. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma; Kinouchi, Kenichiro; Sassone-Corsi, Paolo

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  12. Titan's methane clock

    Science.gov (United States)

    Nixon, C. A.; Jennings, D. E.; Romani, P. N.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-04-01

    Measurements of the 12C/13C and D/H isotopic ratios in Titan's methane show intriguing differences from the values recorded in the giant planets. This implies that either (1) the atmosphere was differently endowed with material at the time of formation, or (2) evolutionary processes are at work in the moon's atmosphere - or some combination of the two. The Huygens Gas Chromatograph Mass Spectrometer Instrument (GCMS) found 12CH4/13CH4 = 82 +/- 1 (Niemann et al. 2005), some 7% lower than the giant planets' value of 88 +/- 7 (Sada et al. 1996), which closely matches the terrestrial inorganic standard of 89. The Cassini Composite Infrared Spectrometer (CIRS) has previously reported 12CH4/13CH4 of 77 +/-3 based on nadir sounding, which we now revise upwards to 80 +/- 4 based on more accurate limb sounding. The CIRS and GCMS results are therefore in agreement about an overall enrichment in 13CH4 of ~10%. The value of D/H in Titan's CH4 has long been controversial: historical measurements have ranged from about 8-15 x 10-5 (e.g. Coustenis et al. 1989, Coustenis et al. 2003). A recent measurement based on CIRS limb data by Bezard et al. (2007) puts the D/H in CH4 at (13 +/- 1) x 10-5, very much greater than in Jupiter and Saturn, ~2 x 10-5 (Mahaffy et al. 1998, Fletcher et al. 2009). To add complexity, the 12C/13C and D/H vary among molecules in Titan atmosphere, typically showing enhancement in D but depletion in 13C in the daughter species (H2, C2H2, C2H6), relative to the photochemical progenitor, methane. Jennings et al. (2009) have sought to interpret the variance in carbon isotopes as a Kinetic Isotope Effect (KIE), whilst an explanation for the D/H in all molecules remains elusive (Cordier et al. 2008). In this presentation we argue that evolution of isotopic ratios in Titan's methane over time forms a ticking 'clock', somewhat analogous to isotopic ratios in geochronology. Under plausible assumptions about the initial values and subsequent replenishment, various

  13. Differential dynamic optical microscopy for the characterization of soft matter: liquid crystal dynamics, volume phase transition of hydrogels, and phase transition of binary mixtures

    Science.gov (United States)

    Yoon, Beom-Jin; Park, Jung Ok; Srinivasarao, Mohan; Smith, Michael H.; Lyon, L. Andrew

    2011-03-01

    The structure and dynamics of soft matter were studied by differential dynamic optical microscopy. One can retrieve q-space information through image processing and Fourier analysis, even when the feature sizes in real space image are too small to be resolved or even visible in an optical microscope. The temporal sequence of real space images were Fourier transformed, and analyzed for the temporal and spatial fluctuations of power spectrum. Here, we present the results on liquid crystal dynamics and their elastic properties, volume phase transition of hydrogels when their dimensions are sub-micron, and critical opalescence of binary mixtures (water/2,6-lutidine).

  14. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    Science.gov (United States)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  15. Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers

    International Nuclear Information System (INIS)

    David, Sabrina N.; Zhai, Yao; Zande, Arend M. van der; O'Brien, Kevin; Huang, Pinshane Y.; Chenet, Daniel A.; Hone, James C.; Zhang, Xiang; Yin, Xiaobo

    2015-01-01

    Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques

  16. Complex Impedance of Fast Optical Transition Edge Sensors up to 30 MHz

    Science.gov (United States)

    Hattori, K.; Kobayashi, R.; Numata, T.; Inoue, S.; Fukuda, D.

    2018-03-01

    Optical transition edge sensors (TESs) are characterized by a very fast response, of the order of μs, which is 10^3 times faster than TESs for X-ray and gamma-ray. To extract important parameters associated with the optical TES, complex impedances at high frequencies (> 1 MHz) need to be measured, where the parasitic impedance in the circuit and reflections of electrical signals due to discontinuities in the characteristic impedance of the readout circuits become significant. This prevents the measurements of the current sensitivity β , which can be extracted from the complex impedance. In usual setups, it is hard to build a circuit model taking into account the parasitic impedances and reflections. In this study, we present an alternative method to estimate a transfer function without investigating the details of the entire circuit. Based on this method, the complex impedance up to 30 MHz was measured. The parameters were extracted from the impedance and were compared with other measurements. Using these parameters, we calculated the theoretical limit on an energy resolution and compared it with the measured energy resolution. In this paper, the reasons for the deviation of the measured value from theoretically predicted values will be discussed.

  17. Nonlocal optical response in topological phase transitions in the graphene family

    Science.gov (United States)

    Rodriguez-Lopez, Pablo; Kort-Kamp, Wilton J. M.; Dalvit, Diego A. R.; Woods, Lilia M.

    2018-01-01

    We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family and find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. We find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. The expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.

  18. Hydrostatic pressure effects on the state density and optical transitions in quantum dots

    International Nuclear Information System (INIS)

    Galindez-Ramirez, G; Perez-Merchancano, S T; Paredes Gutierrez, H; Gonzalez, J D

    2010-01-01

    Using the effective mass approximation and variational method we have computed the effects of hydrostatic pressure on the absorption and photoluminescence spectra in spherical quantum dot GaAs-(Ga, Al) As, considering a finite confinement potential of this particular work we show the optical transitions in quantum of various sizes in the presence of hydrogenic impurities and hydrostatic pressure effects. Our first result describes the spectrum of optical absorption of 500 A QD for different values of hydrostatic pressure P = 0, 20 and 40 Kbar. The absorption peaks are sensitive to the displacement of the impurity center to the edge of the quantum dot and even more when the hydrostatic pressure changes in both cases showing that to the extent that these two effects are stronger quantum dots respond more efficiently. Also this result can be seen in the study of the photoluminescence spectrum as in the case of acceptor impurities consider them more efficiently capture carriers or electrons that pass from the conduction band to the valence band. Density states with randomly distributed impurity show that the additional peaks in the curves of the density of impurity states appear due to the presence of the additional hydrostatic pressure effects.

  19. Linac-beam characterizations at 600 MeV using optical transition radiation diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H.

    1998-05-27

    Selected optical diagnostics stations were upgraded in anticipation of low-emittance, bright electron beams from a thermionic rf gun or a photoelectric rf gun on the Advanced Photon Source (APS) injector linac. These upgrades include installation of optical transition radiation (OTR) screens, transport lines, and cameras for use in transverse beam size measurements and longitudinal profile measurements. Using beam from the standard thermionic gun, tests were done at 50 MeV and 400 to 650 MeV. Data were obtained on the limiting spatial ({sigma} {approximately} 200 {micro}m) and temporal resolution (300 ms) of the Chromox (Al{sub 2}O{sub 3} : Cr) screen (250-{micro}n thick) in comparison to the OTR screens. Both charge-coupled device (CCD) and charge-injection device (CID) video cameras were used as well as the Hamamatsu C5680 synchroscan streak camera operating at a vertical deflection rate of 119.0 MHz (the 24th subharmonic of the S-band 2856-MHz frequency). Beam transverse sizes as small as {sigma}{sub x} = 60 {micro}m for a 600-MeV beam and micropulse bunch lengths of {sigma}{sub {tau}}<3 ps have been recorded for macropulse-averaged behavior with charges of about 2 to 3 nC per macropulse. These techniques are applicable to linac-driven, fourth-generation light source R and D experiments including the APS's SASE FEL experiment.

  20. Naming analog clocks conceptually facilitates naming digital clocks

    NARCIS (Netherlands)

    Meeuwissen, M.H.W.; Roelofs, A.P.A.; Levelt, W.J.M.

    2004-01-01

    Naming digital clocks (e.g., 2:45, say "quarter to three") requires conceptual operations on the minute and hour information displayed in the input for producing the correct relative time expression. The interplay of these conceptual operations was investigated using a repetition priming paradigm.

  1. Research activity on NaxCoO2 single crystals: A brief review on optical conductivity and metamagnetic transition phenomenon

    Directory of Open Access Journals (Sweden)

    N.L. Wang and J.L. Luo

    2005-01-01

    Full Text Available NaxCoO2 material is of great interest because of its rich electronic phase diagram, as well as for displaying superconductivity when intercalated with water. This paper briefly reviews our research activity on its optical properties and a metamagnetic transition phenomenon.

  2. Enhancement of the nonlinear optical absorption of the E7 liquid crystal at the nematic-isotropic transition

    International Nuclear Information System (INIS)

    Gomez, S.L.; Lenart, V.M.; Bechtold, I.H.; Figueiredo Neto, A.M.

    2012-01-01

    We present an experimental study of the nonlinear optical absorption of the eutectic mixture E7 at the nematic-isotropic phase transition by the Z-scan technique, under continuous-wave excitation at 532 nm. In the nematic region, the effective nonlinear optical coefficient P, which vanishes in the isotropic phase, is negative for the extraordinary beam and positive for an ordinary beam. The parameter SNL, whose definition in terms of the nonlinear absorption coefficient follows the definition of the optical-order parameter in terms of the linear dichroic ratio, behaves like an order parameter with critical exponent 0.22 ± 0.05, in good agreement with the tricritical hypothesis for the nematic isotropic transition. (author)

  3. Frequency measurement of the 2S(1/2)-2D(3/2) electric quadrupole transition in a single 171Yb+ ion.

    Science.gov (United States)

    Webster, Stephen; Godun, Rachel; King, Steven; Huang, Guilong; Walton, Barney; Tsatourian, Veronika; Margolis, Helen; Lea, Stephen; Gill, Patrick

    2010-03-01

    We report on precision laser spectroscopy of the 2S(1/2)(F = 0)-2D(3/2) (F = 2, m(F) = 0) clock transition in a single ion of 171Yb+. The absolute value of the transition frequency, determined using an optical frequency comb referenced to a hydrogen maser, is 688358979309310 +/- 9 Hz. This corresponds to a fractional frequency uncertainty of 1.3 x 10(-14).

  4. Biological clocks: riding the tides.

    Science.gov (United States)

    de la Iglesia, Horacio O; Johnson, Carl Hirschie

    2013-10-21

    Animals with habitats in the intertidal zone often display biological rhythms that coordinate with both the tidal and the daily environmental cycles. Two recent studies show that the molecular components of the biological clocks mediating tidal rhythms are likely different from the phylogenetically conserved components that mediate circadian (daily) rhythms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A network of (autonomic) clock outputs

    NARCIS (Netherlands)

    Kalsbeek, A.; Perreau-Lenz, S.; Buijs, R. M.

    2006-01-01

    The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each of which is dependent on the cell-autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock

  6. A network of (autonomic) clock outputs

    NARCIS (Netherlands)

    Kalsbeek, A.; Perreau-Lenz, S.; Buijs, R. M.

    2006-01-01

    The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each dependent on the cell-autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock that

  7. Light and the human circadian clock

    NARCIS (Netherlands)

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the

  8. TRANSIT

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...

  9. Frequency comparison of lattice clocks toward the redefinition of the second

    International Nuclear Information System (INIS)

    Ido, T

    2014-01-01

    Strontium is the most popular species for optical lattice clocks. Recent reports of the accuracies from Boulder, U.S. and Tokyo reach 10 −18 level, which is better than state-of-the-art caesium clocks more than one order of magnitude. While this achievement accelerates the discussion to redefine the second, the agreement of frequencies in separate laboratories is of critical importance. For this context, intercontinental comparison of Sr lattice clocks were demonstrated between Japan and Germany using a satellite-based technique. The frequency difference was consistent with zero with an uncertainty of 1.6 × 10 −15

  10. Different Levels of Expression of the Clock Protein PER and the Glial Marker REPO in Ensheathing and Astrocyte-Like Glia of the Distal Medulla of Drosophila Optic Lobe.

    Science.gov (United States)

    Krzeptowski, Wojciech; Walkowicz, Lucyna; Płonczyńska, Alicja; Górska-Andrzejak, Jolanta

    2018-01-01

    Circadian plasticity of the visual system of Drosophila melanogaster depends on functioning of both the neuronal and glial oscillators. The clock function of the former is already quite well-recognized. The latter, however, is much less known and documented. In this study we focus on the glial oscillators that reside in the distal part of the second visual neuropil, medulla (dMnGl), in vicinity of the PIGMENT-DISPERSING FACTOR (PDF) releasing terminals of the circadian clock ventral Lateral Neurons (LNvs). We reveal the heterogeneity of the dMnGl, which express the clock protein PERIOD (PER) and the pan-glial marker REVERSED POLARITY (REPO) at higher (P1) or lower (P2) levels. We show that the cells with stronger expression of PER display also stronger expression of REPO, and that the number of REPO-P1 cells is bigger during the day than during the night. Using a combination of genetic markers and immunofluorescent labeling with anti PER and REPO Abs, we have established that the P1 and P2 cells can be associated with two different types of the dMnGl, the ensheathing (EnGl), and the astrocyte-like glia (ALGl). Surprisingly, the EnGl belong to the P1 cells, whereas the ALGl, previously reported to play the main role in the circadian rhythms, display the characteristics of the P2 cells (express very low level of PER and low level of REPO). Next to the EnGl and ALGl we have also observed another type of cells in the distal medulla that express PER and REPO, although at very low levels. Based on their morphology we have identified them as the T1 interneurons. Our study reveals the complexity of the distal medulla circadian network, which appears to consist of different types of glial and neuronal peripheral clocks, displaying molecular oscillations of higher (EnGl) and lower (ALGl and T1) amplitudes.

  11. Frequency stabilization of a 1083 nm fiber laser to {sup 4}He transition lines with optical heterodyne saturation spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W.; Peng, X., E-mail: xiangpeng@pku.edu.cn; Li, W.; Guo, H., E-mail: hongguo@pku.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Center for Quantum Information Technology, and Center for Computational Science and Engineering (CCSE), Peking University, Beijing 100871 (China)

    2014-07-15

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable {sup 4}He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10{sup −12}@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  12. Optical transitions in semiconductor nanospherical core/shell/shell heterostructure in the presence of radial electrostatic field

    Energy Technology Data Exchange (ETDEWEB)

    Baghdasaryan, D.A. [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia); Hayrapetyan, D.B., E-mail: dhayrap82@gmail.com [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia); Yerevan State University, A. Manoogian 1, 0025 Yerevan (Armenia); Harutyunyan, V.A. [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia)

    2017-04-01

    The electronic states and optical properties of spherical nanolayer in the presence of the electrostatic radial field in the strong size quantization regime have been considered. Both analytical and numerical methods have been applied to the problem of one-electron states in the system. According to the intensity of the external electrostatic field, three regimes have been distinguished: week, intermediate and strong. Perturbative approach have been applied to the case of week, WKB to the case of intermediate and variation approach to the case of strong field intensities. The analytical dependencies of the one electron energy and wave function on the electric field value and geometrical parameters of the nanolayer have been achieved. The comparison of the results obtained by the analytical method with the results of the numerical method have been made. The interband and intraband optical transitions caused by incident optical light polarized in z direction have been considered in this system. The selection rules for this transitions have been obtained. The dependence of the absorption coefficient on the energy of incident light for both cases of interband and intraband transitions for every regime of the electrostatic field value have been received. - Highlights: • The electron energy analytical dependencies on the electric field value have been achieved. • The selection rules for transitions between levels with different quantum numbers are revealed. • The interband and intraband absorption coefficients have been studied.

  13. Metal-insulator transition in Si(111)-(4 x 1)/(8 x 2)-In studied by optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Speiser, E.; Hinrichs, K.; Cobet, C.; Esser, N. [Leibniz-Institut fuer Analytische Wissenschaften - ISAS - e.V., Albert-Einstein-Str. 9, 12489 Berlin (Germany); Chandola, S. [Leibniz-Institut fuer Analytische Wissenschaften - ISAS - e.V., Albert-Einstein-Str. 9, 12489 Berlin (Germany); School of Physics, Trinity College Dublin 2 (Ireland); Gensch, M. [Helmholtz Zentrum Berlin (Germany); Wippermann, S.; Schmidt, W.G. [Theoretische Physik, Universitaet Paderborn (Germany); Bechstedt, F. [Institut fuer Festkoerpertheorie und -Optik, Friedrich-Schiller-Universitaet, Jena (Germany); Richter, W. [Dipartimento di Fisica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Fleischer, K.; McGilp, J.F. [School of Physics, Trinity College Dublin 2 (Ireland)

    2010-08-15

    Measurements of the surface vibrational modes and optical response of Si(111)-(4 x 1)/(8 x 2)-In are compiled and a comparison to ab initio calculations performed within DFT-LDA formalism is given. Surface resonant Raman spectroscopy allows identifying a number of surface phonons with high spectral precision. The phase transition of the (4 x 1)-(8 x 2) surface structure is found to be accompanied by characteristic changes of the surface phonons, which are discussed with respect to various structural models suggested. The optical anisotropy of the (8 x 2) phase shows that the anisotropic Drude tail of the (4 x 1) phase is replaced by two peaks at 0.50 and 0.72 eV. The spectroscopic signatures of the (4 x 1) and (8 x 2) phases agree with a metal-insulator transition. The mid-IR-anisotropic optical response of the insulating (8 x 2) phase is interpreted in terms of electronic single particle excitations between surface electronic bands related to the In-nanowire surface. Comparison of the measured optical transitions with DFT ab initio calculations for the hexagon model and the trimer model of the (8 x 2) structure shows evidence for the existence of the hexagon structure. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Optical probing of quantum Hall effect of composite fermions and of the liquid-insulator transition

    International Nuclear Information System (INIS)

    Rossella, F; Bellani, V; Dionigi, F; Amado, M; Diez, E; Kowalik, K; Biasiol, G; Sorba, L

    2011-01-01

    In the photoluminescence spectra of a two-dimensional electron gas in the fractional quantum Hall regime we observe the states at filling factors ν = 4/5, 5/7, 4/11 and 3/8 as clear minima in the intensity or area emission peak. The first three states are described as interacting composite fermions in fractional quantum Hall regime. The minimum in the intensity at ν 3/8, which is not explained within this picture, can be an evidence of a suppression of the screening of the Coulomb interaction among the effective quasi-particles involved in this intriguing state. The magnetic field energy dispersion at very low temperatures is also discussed. At low field the emission follows a Landau dispersion with a screened magneto-Coulomb contribution. At intermediate fields the hidden symmetry manifests. At high field above ν = 1/3 the electrons correlate into an insulating phase, and the optical emission behaviour at the liquid-insulator transition is coherent with a charge ordering driven by Coulomb correlations.

  15. Automatic control of clock duty cycle

    Science.gov (United States)

    Feng, Xiaoxin (Inventor); Roper, Weston (Inventor); Seefeldt, James D. (Inventor)

    2010-01-01

    In general, this disclosure is directed to a duty cycle correction (DCC) circuit that adjusts a falling edge of a clock signal to achieve a desired duty cycle. In some examples, the DCC circuit may generate a pulse in response to a falling edge of an input clock signal, delay the pulse based on a control voltage, adjust the falling edge of the input clock signal based on the delayed pulse to produce an output clock signal, and adjust the control voltage based on the difference between a duty cycle of the output clock signal and a desired duty cycle. Since the DCC circuit adjusts the falling edge of the clock cycle to achieve a desired duty cycle, the DCC may be incorporated into existing PLL control loops that adjust the rising edge of a clock signal without interfering with the operation of such PLL control loops.

  16. Circadian clock, cell cycle and cancer

    Directory of Open Access Journals (Sweden)

    Cansu Özbayer

    2011-12-01

    Full Text Available There are a few rhythms of our daily lives that we are under the influence. One of them is characterized by predictable changes over a 24-hour timescale called circadian clock. This cellular clock is coordinated by the suprachiasmatic nucleus in the anterior hypothalamus. The clock consist of an autoregulatory transcription-translation feedback loop compose of four genes/proteins; BMAL1, Clock, Cyrptochrome, and Period. BMAL 1 and Clock are transcriptional factors and Period and Cyrptochrome are their targets. Period and Cyrptochrome dimerize in the cytoplasm to enter the nucleus where they inhibit Clock/BMAL activity.It has been demonstrate that circadian clock plays an important role cellular proliferation, DNA damage and repair mechanisms, checkpoints, apoptosis and cancer.

  17. Molecular cogs of the insect circadian clock.

    Science.gov (United States)

    Shirasu, Naoto; Shimohigashi, Yasuyuki; Tominaga, Yoshiya; Shimohigashi, Miki

    2003-08-01

    During the last five years, enormous progress has been made in understanding the molecular basis of circadian systems, mainly by molecular genetic studies using the mouse and fly. Extensive evidence has revealed that the core clock machinery involves "clock genes" and "clock proteins" functioning as molecular cogs. These participate in transcriptional/translational feedback loops and many homologous clock-components in the fruit fly Drosophila are also expressed in mammalian clock tissues with circadian rhythms. Thus, the mechanisms of the central clock seem to be conserved across animal kingdom. However, some recent studies imply that the present widely accepted molecular models of circadian clocks may not always be supported by the experimental evidence.

  18. Specific features of nonlinear optical properties of Eu3+ doped BiFeO3 nanopowders near antiferromagnetic transition

    Science.gov (United States)

    El Bahraoui, T.; Sekkati, M.; Taibi, M.; Abd-Lefdil, M.; El-Naggar, A. M.; AlZayed, N. S.; Albassam, A. A.; Kityk, I. V.; Maciag, A.

    2016-01-01

    The monitoring of the Eu3+ doped BiFeO3 nanopowders was performed near the antiferromagnetic transformation by photoinduced optical second harmonic generation. As photoinduced laser beams we have used bicolor coherent excitations of the Er:glass laser emitting at 1540 nm with frequency repetition about 15 ns. The studies of the photoinduced SHG were performed versus temperature including the temperature range of ferromagnetic-ferroelectric transition (350 °C…390 °C). The optimal light polarization and intensity ratio were chosen; the sensitivity of the photoinduced SHG to the multiferroic phase transitions was explored.

  19. Magneto-optical measurement of anisotropy energy constant(s) for amorphous rare earth, transition metal alloys

    International Nuclear Information System (INIS)

    Uber, R.E.; Mansuripur, M.

    1988-01-01

    Optical investigation of magneto-optical films is complementary to conventional torque and VSM magnetometry. In the authors' laboratory, they are now measuring anisotropy energy constants of RE-TM thin films at temperatures from ambient to 150 0 C. An in-plane magnetic field (up to 16.5 KOe) is applied to a saturated sample with perpendicular magnetization. The movement away from the perpendicular direction is monitored using the polar Kerr effect. At the HeNe wavelength, the Kerr effect is principally due to the top 500 angstroms of the transition metal subnetwork in the films

  20. Investigation of structural phase transition in strontium titanate single crystal by methods of generation of coherent and incoherent second optical harmonics

    International Nuclear Information System (INIS)

    Mishina, E.D.; Morozov, A.I.; Sigov, A.S.; Sherstyuk, N.Eh.; Aktsipetrov, O.A.; Lemanov, V.V.; Rasing, Th.

    2002-01-01

    The surface phase transition in the SrTiO 3 crystal is studied through the method of the second optical harmonic generation. The peculiarities in the nonlinear-optical response are identified at the temperature of T* = 145 K, which by 40 K exceeds the T c temperature of the structural phase transition in the crystal volume. The phenomenon of the nonlinear critical opalescence, caused by availability of the point defects, is studied. The second harmonic field and critical opalescence intensity are calculated on the basis of the phenomenological model of the nonlinear-optical processes with application of the Landau phase transition theory [ru

  1. Entanglement of quantum clocks through gravity.

    Science.gov (United States)

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-21

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  2. A VMEbus clock system for accelerator control

    International Nuclear Information System (INIS)

    Beechy, D.G.; McClure, C.R.

    1992-01-01

    Because an accelerator has many systems which must operate with a high degree of synchronization, a clock signal is typically generated which carries timing information to the various accelerator components. This paper discusses two VMEbus modules designed to generate and receive this clock signal. Together they implement a clock system which can generate timing markers with 200 nanosecond resolution and can generate timing delays of over one hour with one microsecond resolution. The Clock Generator module contains both a time line generator programmed to produce clock events at specific times and eight programmable input channels to produce clock events when externally triggered. Additional clock events are generated directly from the VMEbus. Generators can be cascaded for added capability. The Clock Timer module receives the signal from the generator. It can be programmed to recognize specific clock events which act as triggers to the eight timing channels on the module. Each timing channel is programmed with a 32-bit delay value. The channels are clocked at 1 MHz. At the end of the delay period, a timer channel produces an output pulse and optionally can generate a bus interrupt

  3. Conductive transition metal oxide nanostructured electrochromic material and optical switching devices constructed thereof

    Science.gov (United States)

    Mattox, Tracy M.; Koo, Bonil; Garcia, Guillermo; Milliron, Delia J.; Trizio, Luca De; Dahlman, Clayton

    2017-10-10

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant, a solid state electrolyte, and a counter electrode. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) spectrum and visible spectrum radiation as a function of an applied voltage to the device.

  4. Sexual Differentiation of Circadian Clock Function in the Adrenal Gland.

    Science.gov (United States)

    Kloehn, Ian; Pillai, Savin B; Officer, Laurel; Klement, Claire; Gasser, Paul J; Evans, Jennifer A

    2016-05-01

    Sex differences in glucocorticoid production are associated with increased responsiveness of the adrenal gland in females. However, the adrenal-intrinsic mechanisms that establish sexual dimorphic function remain ill defined. Glucocorticoid production is gated at the molecular level by the circadian clock, which may contribute to sexual dimorphic adrenal function. Here we examine sex differences in the adrenal gland using an optical reporter of circadian clock function. Adrenal glands were cultured from male and female Period2::Luciferase (PER2::LUC) mice to assess clock function in vitro in real time. We confirm that there is a pronounced sex difference in the intrinsic capacity to sustain PER2::LUC rhythms in vitro, with higher amplitude rhythms in adrenal glands collected from males than from females. Changes in adrenal PER2::LUC rhythms over the reproductive life span implicate T as an important factor in driving sex differences in adrenal clock function. By directly manipulating hormone levels in adult mice in vivo, we demonstrate that T increases the amplitude of PER2::LUC rhythms in adrenal glands of both male and female mice. In contrast, we find little evidence that ovarian hormones modify adrenal clock function. Lastly, we find that T in vitro can increase the amplitude of PER2::LUC rhythms in male adrenals but not female adrenals, which suggests the existence of sex differences in the mechanisms of T action in vivo. Collectively these results reveal that activational effects of T alter circadian timekeeping in the adrenal gland, which may have implications for sex differences in stress reactivity and stress-related disorders.

  5. Performance of horn-coupled transition edge sensors for L- and S-band optical detection on the SAFARI instrument

    Science.gov (United States)

    Goldie, D. J.; Glowacka, D. M.; Withington, S.; Chen, Jiajun; Ade, P. A. R.; Morozov, D.; Sudiwala, R.; Trappe, N. A.; Quaranta, O.

    2016-07-01

    We describe the geometry, architecture, dark- and optical performance of ultra-low-noise transition edge sensors as THz detectors for the SAFARI instrument. The TESs are fabricated from superconducting Mo/Au bilayers coupled to impedance-matched superconducting β-phase Ta thin-film absorbers. The detectors have phonon-limited dark noise equivalent powers of order 0.5 - 1.0 aW/ √ Hz and saturation powers of order 20 - 40 fW. The low temperature test configuration incorporating micro-machined backshorts is also described, and construction and typical performance characteristics for the optical load are shown. We report preliminary measurements of the optical performance of these TESs for two SAFARI bands; L-band at 110 - 210 μm and S-band 34 - 60 μm .

  6. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography.

    Science.gov (United States)

    Merkle, Conrad W; Srinivasan, Vivek J

    2016-01-15

    The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The Implementation of E1 Clock Recovery

    Directory of Open Access Journals (Sweden)

    Wang Ziyu

    2016-01-01

    Full Text Available Clock transform and recovery is of significant importance in microwave TDM service, and it is always extracted from the E1 line data stream in most cases. However, intrinsically uncertain delay and jitter caused by packet transmission of E1 data information, may lead to the indexes of the data recovery clock exceed the clock performance template. Through analysis of the E1 clock indexes and measuring methods, this paper proposes a new clock recovery method. The method employs two buffers, the first RAM is used as a buffer to deduct excess information, and the second FIFO is used as a buffer to recovery the clock and data. The first buffer has a feedback from the second one, and is able to actively respond to changes in the data link and requests from the second one. The test results validate the effectiveness of the method, and the corresponding scheme is also valuable for the other communication systems.

  8. A clock and data recovery method based on phase detector implemented by delay chain in FPGA

    International Nuclear Information System (INIS)

    Xie Mingpu; Wu Jie; Zhang Jie

    2009-01-01

    A clock and data recovery method based on charge pump PLL was developed to archive medium data rate serial digital communication with simple line transceivers. The phase detector was realized by FPGA. A delay chain was constructed by delay elements with the same fixed delay. Every output of the delay elements was latched by the VCO output clock when the input signal went through the delay chain. The latched result was used to detect the data transition, which reflected the phase difference between the input signal and the VCO output clock. The VCO control voltage was adjust by charge pump to reduce the phase difference and archive phase lock. The loop filter was a passive filter,parameters of which were calculated from parameters of the delay chain and VCO. The experimental result shows that the clock of a 64Mbps transmission was recovered with a jitter less than 200 ps. (authors)

  9. The Square Light Clock and Special Relativity

    Science.gov (United States)

    Galli, J. Ronald; Amiri, Farhang

    2012-01-01

    A thought experiment that includes a square light clock is similar to the traditional vertical light beam and mirror clock, except it is made up of four mirrors placed at a 45[degree] angle at each corner of a square of length L[subscript 0], shown in Fig. 1. Here we have shown the events as measured in the rest frame of the square light clock. By…

  10. Space experiments with high stability clocks

    International Nuclear Information System (INIS)

    Vessot, R.F.C.

    1993-01-01

    Modern metrology depends increasingly on the accuracy and frequency stability of atomic clocks. Applications of such high-stability oscillators (or clocks) to experiments performed in space are described and estimates of the precision of these experiments are made in terms of clock performance. Methods using time-correlation to cancel localized disturbances in very long signal paths and a proposed space borne four station VLBI system are described. (TEC). 30 refs., 14 figs., 1 tab

  11. Fluorescence quenching and the "ring-mode" to "red-mode" transition in alkali inductively coupled plasmas

    Science.gov (United States)

    Huang, M.; Bazurto, R.; Camparo, J.

    2018-01-01

    The ring-mode to red-mode transition in alkali metal inductively coupled plasmas (ICPs) (i.e., rf-discharge lamps) is perhaps the most important physical phenomenon affecting these devices as optical pumping light sources for atomic clocks and magnetometers. It sets the limit on useful ICP operating temperature, thereby setting a limit on ICP light output for atomic-clock/magnetometer signal generation, and it is a temperature region of ICP operation associated with discharge instability. Previous work has suggested that the mechanism driving the ring-mode to red-mode transition is associated with radiation trapping, but definitive experimental evidence validating that hypothesis has been lacking. Based on that hypothesis, one would predict that the introduction of an alkali-fluorescence quenching gas (i.e., N2) into the ICP would increase the ring-mode to red-mode transition temperature. Here, we test that prediction, finding direct evidence supporting the radiation-trapping hypothesis.

  12. TURNING BACK THE CLOCK: INFERRING THE HISTORY OF THE EIGHT O'CLOCK ARC

    International Nuclear Information System (INIS)

    Finkelstein, Steven L.; Papovich, Casey; Rudnick, Gregory; Egami, Eiichi; Rieke, Marcia J.; Willmer, Christopher N. A.; Le Floc'h, Emeric; Rigby, Jane R.

    2009-01-01

    We present the results from an optical and near-infrared (NIR) spectroscopic study of the ultraviolet-luminous z = 2.73 galaxy, the 8 o'clock arc. Due to gravitational lensing, this galaxy is magnified by a factor of μ > 10, allowing in-depth measurements which are usually unfeasible at such redshifts. In the optical spectra, we measured the systemic redshift of the galaxy, z = 2.7322± 0.0012, using stellar photospheric lines. This differs from the redshift of absorption lines in the interstellar medium, z = 2.7302 ± 0.0006, implying gas outflows on the order of 160 km s -1 . With H- and K-band NIR spectra, we have measured nebular emission lines of Hα, Hβ, Hγ, [N II], and [O III], which have a redshift z = 2.7333 ± 0.0001, consistent with the derived systemic redshift. From the Balmer decrement, we measured the dust extinction in this galaxy to be A 5500 = 1.17 ± 36 mag. Correcting the Hα line flux for dust extinction as well as the assumed lensing factor, we measure a star formation rate (SFR) of ∼270 M sun yr -1 , which is higher than ∼85% of star-forming galaxies at z ∼ 2-3. Using combinations of all detected emission lines, we find that the 8 o'clock arc has a gas-phase metallicity of ∼0.8 Z sun , showing that enrichment at high redshift is not rare, even in blue, star-forming galaxies. Studying spectra from two of the arc components separately, we find that one component dominates both the dust extinction and SFR, although the metallicities between the two components are similar. We derive the mass via stellar population modeling, and find that the arc has a total stellar mass of ∼4.2 x 10 11 M sun , which falls on the mass-metallicity relation at z ∼ 2. Finally, we estimate the total gas mass, and find it to be only ∼12% of the stellar mass, implying that the 8 o'clock arc is likely nearing the end of a starburst.

  13. High Performance Clocks and Gravity Field Determination

    Science.gov (United States)

    Müller, J.; Dirkx, D.; Kopeikin, S. M.; Lion, G.; Panet, I.; Petit, G.; Visser, P. N. A. M.

    2018-02-01

    Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in manufacturing high-precision atomic clocks have rapidly improved their accuracy and stability over the last decade that approached the level of 10^{-18}. This notable achievement along with the direct sensitivity of clocks to the strength of the gravitational field make them practically important for various geodetic applications that are addressed in the present paper. Based on a fully relativistic description of the background gravitational physics, we discuss the impact of those highly-precise clocks on the realization of reference frames and time scales used in geodesy. We discuss the current definitions of basic geodetic concepts and come to the conclusion that the advances in clocks and other metrological technologies will soon require the re-definition of time scales or, at least, clarification to ensure their continuity and consistent use in practice. The relative frequency shift between two clocks is directly related to the difference in the values of the gravity potential at the points of clock's localization. According to general relativity the relative accuracy of clocks in 10^{-18} is equivalent to measuring the gravitational red shift effect between two clocks with the height difference amounting to 1 cm. This makes the clocks an indispensable tool in high-precision geodesy in addition to laser ranging and space geodetic techniques. We show how clock measurements can provide geopotential numbers for the realization of gravity-field-related height systems and can resolve discrepancies in classically-determined height systems as well as between national height systems. Another application of clocks is the direct use of observed potential differences for the improved recovery of regional gravity field solutions. Finally, clock measurements for space-borne gravimetry are analyzed along with

  14. Long-Term Clock Behavior of GPS IIR Satellites

    National Research Council Canada - National Science Library

    Epstein, Marvin; Dass, Todd; Rajan, John; Gilmour, Paul

    2007-01-01

    .... Rubidium clocks, as opposed to cesium clocks, have significant long-term drift. The current literature describes an initial model of drift aging for rubidium atomic clocks followed by a long-term characteristic...

  15. A clock synchronization skeleton based on RTAI

    NARCIS (Netherlands)

    Huang, Y.; Visser, P.M.; Broenink, Johannes F.

    2006-01-01

    This paper presents a clock synchronization skeleton based on RTAI (Real Time Application Interface). The skeleton is a thin layer that provides unified but extendible interfaces to the underlying operating system, the synchronization algorithms and the upper level applications in need of clock

  16. The clock paradox as a cosmological problem

    International Nuclear Information System (INIS)

    Fu, K.Y.

    1975-01-01

    In this paper the clock paradox is discussed within the framework of the general theory of relativity. It is shown that in general the aging asymmetry exists. It is also argued that the clock paradox, according to Mach's principle, is essentially a cosmological problem. (author)

  17. Fast Clock Recovery for Digital Communications

    Science.gov (United States)

    Tell, R. G.

    1985-01-01

    Circuit extracts clock signal from random non-return-to-zero data stream, locking onto clock within one bit period at 1-gigabitper-second data rate. Circuit used for synchronization in opticalfiber communications. Derives speed from very short response time of gallium arsenide metal/semiconductor field-effect transistors (MESFET's).

  18. Internal Clock Drift Estimation in Computer Clusters

    Directory of Open Access Journals (Sweden)

    Hicham Marouani

    2008-01-01

    Full Text Available Most computers have several high-resolution timing sources, from the programmable interrupt timer to the cycle counter. Yet, even at a precision of one cycle in ten millions, clocks may drift significantly in a single second at a clock frequency of several GHz. When tracing the low-level system events in computer clusters, such as packet sending or reception, each computer system records its own events using an internal clock. In order to properly understand the global system behavior and performance, as reported by the events recorded on each computer, it is important to estimate precisely the clock differences and drift between the different computers in the system. This article studies the clock precision and stability of several computer systems, with different architectures. It also studies the typical network delay characteristics, since time synchronization algorithms rely on the exchange of network packets and are dependent on the symmetry of the delays. A very precise clock, based on the atomic time provided by the GPS satellite network, was used as a reference to measure clock drifts and network delays. The results obtained are of immediate use to all applications which depend on computer clocks or network time synchronization accuracy.

  19. Optical transition probabilities in electron-vibration-rotation spectra of diatomic molecules

    International Nuclear Information System (INIS)

    Kuznetsova, L.A.; Kuz'menko, N.E.; Kuzyakov, Yu.Ya.; Plastinin, Yu.A.

    1974-01-01

    The present review systematizes the data on the absolute probabilities of electron transitions in diatomic molecules, which have been published since the beginning of 1961 and up to the end of 1973, and those on the relative transition probabilities, which have been published since the beginning of 1966 till the end of 1973. The review discussed the theoretical relationships underlying the experimental techniques of determining the absolute transition probabilities. Modifications of the techniques under discussion are not specially examined; the details of interest can be found, however, in the references cited. The factual material-, such as the values of the absolute probabilities of electron transitions, the dependences of the electron transition moments on the internuclear distance and the values of the Franck-Condon factors,- is presented in tables 1, 2 and 4, respectively, embracing all the relevant works known to the present authors. Along with a complete systematization of the transition probability data, the authors have attempted a critical analysis of the available data in order to select the most reliable results. The recommended values of the squared matrix elements of the electron transition dipole moments are given in table 3. The last chaper of the work compares the results of calculations of the Franck-Condon factors obtained with the different milecular potentials [ru

  20. Processing of visually presented clock times.

    Science.gov (United States)

    Goolkasian, P; Park, D C

    1980-11-01

    The encoding and representation of visually presented clock times was investigated in three experiments utilizing a comparative judgment task. Experiment 1 explored the effects of comparing times presented in different formats (clock face, digit, or word), and Experiment 2 examined angular distance effects created by varying positions of the hands on clock faces. In Experiment 3, encoding and processing differences between clock faces and digitally presented times were directly measured. Same/different reactions to digitally presented times were faster than to times presented on a clock face, and this format effect was found to be a result of differences in processing that occurred after encoding. Angular separation also had a limited effect on processing. The findings are interpreted within the framework of theories that refer to the importance of representational codes. The applicability to the data of Bank's semantic-coding theory, Paivio's dual-coding theory, and the levels-of-processing view of memory are discussed.

  1. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure

    Science.gov (United States)

    Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2016-01-01

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters. PMID:27491952

  2. Optical Response of Cu1-xZnxIr2S4 Due to Metal--Insulator Transition

    International Nuclear Information System (INIS)

    Chen, L.; Matsunami, M.; Nanba, T.; Cao, G.; Suzuki, H.; Isobe, M.; Matsumoto, T.

    2003-01-01

    The mother material CuIr 2 S 4 of the thiospinel system Cu 1-x Zn x Ir 2 S 4 undergoes a temperature-induced metal--insulator (Mi) transition. We report the temperature dependence of the optical reflection spectra of Cu 1-x Zn x Ir 2 S 4 (x ≤ 0.5) at the temperatures of 8-300 K in the energy regions of 0.005--30 eV in order to study the change in the electronic structure due to the Zn substitution for Cu. Zn substitution induced mainly the splitting of the hybridization band between the Ir-5d(t 2g ) and S-3 p states crossing the E F . Obtained optical conductivity (σ ) spectrum is discussed in relation to the change in the electronic structure close to the E F . (author)

  3. Optical transitions of Ho(3+) in oxyfluoride glasses and upconversion luminescence of Ho(3+)/Yb(3+)-codoped oxyfluoride glasses.

    Science.gov (United States)

    Feng, Li; Wu, Yinsu

    2015-05-05

    Optical properties of Ho(3+)-doped SiO2-BaF2-ZnF2 glasses have been investigated on the basis of the Judd-Ofelt theory. Judd-Ofelt intensity parameters, radiative transition probabilities, fluorescence branching ratios and radiative lifetimes have been calculated for different glass compositions. Upconversion emissions were observed in Ho(3+)/Yb(3+)-codoped SiO2-BaF2-ZnF2 glasses under 980nm excitation. The effects of composition, concentration of the doping ions, and excitation pump power on the upconversion emissions were also systematically studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nonlinear narrow Doppler-free resonances for optical transitions and annihilation radiation of a positronium atom

    International Nuclear Information System (INIS)

    Letokhov, V.S.; Minogin, V.G.

    1976-01-01

    The possibilities of obtaining narrow resonances without the Doppler broadening for transition between the fine structure levels of the ground and first excited states of a positronium atom are considered. An analysis is carried out of the conditions required for observation of the narrow resonances of saturation of single quantum absorption in the 1S-2P transitions and observation of narrow two-photon absorption resonances in the 1S-2S transitions. It is shown that narrow 2γ annihilation radiation lines of a positronium atom may be obtained with a width much smaller than the Doppler one

  5. Colour As a Signal for Entraining the Mammalian Circadian Clock

    Science.gov (United States)

    Walmsley, Lauren; Hanna, Lydia; Mouland, Josh; Martial, Franck; West, Alexander; Smedley, Andrew R.; Bechtold, David A.; Webb, Ann R.; Lucas, Robert J.; Brown, Timothy M.

    2015-01-01

    Twilight is characterised by changes in both quantity (“irradiance”) and quality (“colour”) of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue–yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision. PMID:25884537

  6. Colour as a signal for entraining the mammalian circadian clock.

    Directory of Open Access Journals (Sweden)

    Lauren Walmsley

    2015-04-01

    Full Text Available Twilight is characterised by changes in both quantity ("irradiance" and quality ("colour" of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue-yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under photoperiods with simulated dawn/dusk transitions, we confirm that spectral changes occurring during twilight are required for appropriate circadian alignment under natural conditions. Together, these data reveal a new sensory mechanism for telling time of day that would be available to any mammalian species capable of chromatic vision.

  7. Structural phase transition and erasable optically memorized effect in layered γ-In2Se3 crystals

    International Nuclear Information System (INIS)

    Ho, Ching-Hwa; Chen, Ying-Cen; Pan, Chia-Chi

    2014-01-01

    We have grown In 2 Se 3 layered-type crystals using chemical vapor transport method with ICl 3 as the transport agent. The as-grown crystals show two different color groups of black shiny for α-phase In 2 Se 3 and red to yellow for γ-phase In 2 Se 3 . High-resolution transmission electron micro scopy verifies crystalline state and structural polytype of the as-grown In 2 Se 3 . The results indicate that the α-In 2 Se 3 crystals present more crystalline states than those of the other amorphous γ-In 2 Se 3 . The amorphous effect on the advancing of optoelectronic property of γ-In 2 Se 3 shows erasable optical-memorized effect in the disordered and polycrystalline γ-In 2 Se 3 layers. Laser-induced photodarkening and annealed-recovery test verified that a reversible structural-phase transition of γ↔α can occur inside the γ-In 2 Se 3 . Thermoreflectance and Raman scattering measurements are carried out to identify the inter-phase transformation of the γ-In 2 Se 3 polycrystals using different heat treatments. Direct band gaps and Raman vibration modes for the γ- and α-In 2 Se 3 crystalline phases are, respectively, characterized and identified. The character of γ↔α inter-phase transition promotes feasible optical and optoelectronic applications of the γ-In 2 Se 3 material in optical memory, optics, and solar-energy devices

  8. Structural phase transition and erasable optically memorized effect in layered γ-In2Se3 crystals

    Science.gov (United States)

    Ho, Ching-Hwa; Chen, Ying-Cen; Pan, Chia-Chi

    2014-01-01

    We have grown In2Se3 layered-type crystals using chemical vapor transport method with ICl3 as the transport agent. The as-grown crystals show two different color groups of black shiny for α-phase In2Se3 and red to yellow for γ-phase In2Se3. High-resolution transmission electron micro scopy verifies crystalline state and structural polytype of the as-grown In2Se3. The results indicate that the α-In2Se3 crystals present more crystalline states than those of the other amorphous γ-In2Se3. The amorphous effect on the advancing of optoelectronic property of γ-In2Se3 shows erasable optical-memorized effect in the disordered and polycrystalline γ-In2Se3 layers. Laser-induced photodarkening and annealed-recovery test verified that a reversible structural-phase transition of γ↔α can occur inside the γ-In2Se3. Thermoreflectance and Raman scattering measurements are carried out to identify the inter-phase transformation of the γ-In2Se3 polycrystals using different heat treatments. Direct band gaps and Raman vibration modes for the γ- and α-In2Se3 crystalline phases are, respectively, characterized and identified. The character of γ↔α inter-phase transition promotes feasible optical and optoelectronic applications of the γ-In2Se3 material in optical memory, optics, and solar-energy devices.

  9. Global synchronization of parallel processors using clock pulse width modulation

    Science.gov (United States)

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  10. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.

    Science.gov (United States)

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A

    2014-07-08

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.

  11. Dilatation effect of ''quantum clocks''

    International Nuclear Information System (INIS)

    Chylinski, Z.

    1981-01-01

    The relativistic dilatation effect of the life-time of unstable microparticles combined with quantum symmetry of their description results in the ''quantum-dilatation'' dilemma. It is due to the classical character of the relativity theory which here reveals itself in the classical world-line of the clock necessary in order to deduce the dilatation effect from the Lorentz transformation. It is shown how to solve this dilemma, basing on the relation continuum C 4 . Two types of measurements of time intervals, the direct and indirect one, are analyzed. The former type corresponds to the external space-time continuum, where any direct measurement takes place, and the latter, to the internal relation continuum C 4 , where the internal structures of isolated micro-systems are sunk. (author)

  12. Hardware-assisted software clock synchronization for homogeneous distributed systems

    Science.gov (United States)

    Ramanathan, P.; Kandlur, Dilip D.; Shin, Kang G.

    1990-01-01

    A clock synchronization scheme that strikes a balance between hardware and software solutions is proposed. The proposed is a software algorithm that uses minimal additional hardware to achieve reasonably tight synchronization. Unlike other software solutions, the guaranteed worst-case skews can be made insensitive to the maximum variation of message transit delay in the system. The scheme is particularly suitable for large partially connected distributed systems with topologies that support simple point-to-point broadcast algorithms. Examples of such topologies include the hypercube and the mesh interconnection structures.

  13. Optical studies of intersublevel-transitions in self-organized InGaAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Weber, A.

    2005-01-01

    In this thesis intersublevel-transitions in self-organized InGaAs/GaAs quantum dots are studied with spectroscopic methods. The charge-dependent absorption behaviour of the nanostructures in the intermediate infrared is studied by a new combination of Fourier spectroscopy and calorimetric absorption spectroscopy. Optical absorption in the quantum dots leads to a sample heating by charge-carrier relaxations, whereby non-radiative intersublevel transitions in the quantum dots are directly determined. The effects observed thereby are explained by different charge-carrier occupation, Pauli blocking, and many-=particle effects in the quantum dots. Furthermore intermediate-infrared emission from quantum dots is spectroscopically studied both under optical and electrical excitation. Each according to the structure of the waveguides in the samples emission peaks are shown, the intensity of which grows either sublinearly with the excitation power and finally saturates or exhibits a significantly superlinear growth. Simulations of an intermediate-infrared quantum-dot laser, which regard also the simultaneous intermediate-infrared emission, show that the observed superlinear growth is to be explained by intersublevel emission in the laser mode. The principal feasibility of a bipolar two-colour laser, which emits in the near- and in the intermediate infrared, is shown by this

  14. Transmission delays in hardware clock synchronization

    Science.gov (United States)

    Shin, Kang G.; Ramanathan, P.

    1988-01-01

    Various methods, both with software and hardware, have been proposed to synchronize a set of physical clocks in a system. Software methods are very flexible and economical but suffer an excessive time overhead, whereas hardware methods require no time overhead but are unable to handle transmission delays in clock signals. The effects of nonzero transmission delays in synchronization have been studied extensively in the communication area in the absence of malicious or Byzantine faults. The authors show that it is easy to incorporate the ideas from the communication area into the existing hardware clock synchronization algorithms to take into account the presence of both malicious faults and nonzero transmission delays.

  15. Circadian clock components in the rat neocortex

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Fahrenkrug, Jan

    2013-01-01

    in the rat neocortex. Among these, Per1, Per2, Per3, Cry1, Bmal1, Nr1d1 and Dbp were found to exhibit daily rhythms. The amplitude of circadian oscillation in neocortical clock gene expression was damped and the peak delayed as compared with the SCN. Lesions of the SCN revealed that rhythmic clock gene...... expression in the neocortex is dependent on the SCN. In situ hybridization and immunohistochemistry showed that products of the canonical clock gene Per2 are located in perikarya throughout all areas of the neocortex. These findings show that local circadian oscillators driven by the SCN reside within...... neurons of the neocortex....

  16. Nonadiabatic optical transitions as a turn-on switch for pulse shaping

    International Nuclear Information System (INIS)

    Hashmi, F. A.; Bouchene, M. A.

    2010-01-01

    A strong nonresonant, asymmetric ultrashort pulse drives an atomic transition and causes a complete population inversion because of a sudden nonadiabatic jump. This jump is probed in real time by propagating a weak ultrashort pulse in the system which is resonant on an adjacent transition. The probe at the exit of the medium presents an oscillatory structure with the nonadiabatic jump marked in time by the onset of oscillations. The nonadiabatic jump thus acts as a 'turn-on' switch for the shaping of the probe.

  17. Electron-impact excitation of Fe II: Effective collision strengths for optically allowed fine-structure transitions

    International Nuclear Information System (INIS)

    Ramsbottom, C.A.

    2009-01-01

    In this paper, we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of Fe II. We consider specifically the optically allowed lines for transitions from the 3d 6 4s and 3d 7 even parity configuration states to the 3d 6 4p odd parity configuration levels. The parallel suite of Breit-Pauli codes are utilized to compute the collision cross-sections where relativistic effects are included explicitly in both the target and the scattering approximation. A total of 100 LS or 262-jj levels formed from the basis configurations 3d 6 4s, 3d 7 and 3d 6 4p were included in the wavefunction representation of the target, including all doublet, quartet and sextet terms. The Maxwellian averaged effective collision strengths are computed across a wide range of electron temperatures from 100 to 100,000 K, temperatures of importance in astrophysical and plasma applications. A detailed comparison is made with previous works and significant differences were found to occur for some of the transitions considered. We conclude that in order to obtain converged collision strengths and effective collision strengths for these allowed transitions it is necessary to include contributions from partial waves up to L = 50 explicitly in the calculation, and in addition, account for contributions from even higher partial waves through a 'top up' procedure.

  18. Changes of the optical characteristics of radiochromic films in the transition from EBT3 to EBT-XD films

    Science.gov (United States)

    Schoenfeld, Andreas A.; Wieker, Soeren; Harder, Dietrich; Poppe, Bjoern

    2016-07-01

    A new type of radiochromic film, the EBT-XD film, has been introduced with the aim to reduce the orientation effect and the lateral response artifact occurring in the use of radiochromic films together with flatbed scanners. The task of the present study is to quantify the changes of optical characteristics involved with the transition from the well-known EBT3 films to the new EBT-XD films, using the optical bench arrangement already applied by Schoenfeld et al (2014 Phys. Med. Biol. 59 3575-97). Largely reduced polarization effects and the almost complete loss of the anisotropy of the scattered light produced in a radiation-exposed film have been observed. The Rayleigh-Debye-Gans theory is used to understand these optical changes as arising from the reduced length-to-width ratio of the LiPCDA polymer crystals in the active layer of the EBT-XD film. The effect of these changes on the flatbed scanning artifacts will be shortly addressed, but treated in more detail in a further paper.

  19. The First Continuous Optical Monitoring of the Transitional Millisecond Pulsar PSR J1023+0038 with Kepler

    Science.gov (United States)

    Papitto, A.; Rea, N.; Coti Zelati, F.; de Martino, D.; Scaringi, S.; Campana, S.; de Ońa Wilhelmi, E.; Knigge, C.; Serenelli, A.; Stella, L.; Torres, D. F.; D’Avanzo, P.; Israel, G. L.

    2018-05-01

    We report on the first continuous, 80-day optical monitoring of the transitional millisecond pulsar PSR J1023+0038 carried out in mid 2017 with Kepler in the K2 configuration, when an X-ray subluminous accretion disk was present in the binary. Flares lasting from minutes to 14 hr were observed for 15.6% of the time, which is a larger fraction than previously reported on the basis of X-ray and past optical observations, and more frequently when the companion was at superior conjunction of the orbit. A sinusoidal modulation at the binary orbital period was also present with an amplitude of ≃16%, which varied by a few percent over timescales of days, and with a maximum that took place 890 ± 85 s earlier than the superior conjunction of the donor. We interpret this phenomena in terms of reprocessing of the X-ray emission by an asymmetrically heated companion star surface and/or a non-axisymmetric outflow possibly launched close to the inner Lagrangian point. Furthermore, the non-flaring average emission varied by up to ≈40% over a timescale of days in the absence of correspondingly large variations of the irradiating X-ray flux. The latter suggests that the observed changes in the average optical luminosity might be due to variations of the geometry, size, and/or mass accretion rate in the outer regions of the accretion disk.

  20. 75 FR 10799 - Transitions Optical, Inc.; Analysis to Aid Public Comment

    Science.gov (United States)

    2010-03-09

    ... has foreclosed rivals from key distribution channels and limited competition in the relevant market... - of the retailer and wholesale lab distribution channels. D. Competitive Impact of Transitions... distribution channels are often found to have this proscribed effect and are deemed illegal.\\3\\ \\2\\ See, e.g...

  1. Transition dipole coupling modeling of optical activity enhancements in macromolecular protein systems

    Czech Academy of Sciences Publication Activity Database

    Průša, Jiří; Bouř, Petr

    2018-01-01

    Roč. 30, č. 1 (2018), s. 55-64 ISSN 0899-0042 R&D Projects: GA ČR GA15-09072S; GA MŠk(CZ) LTC17012 Institutional support: RVO:61388963 Keywords : optical activity * vibrational circular dichroism * protein fibrils Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 1.956, year: 2016

  2. Identification and tunable optical coherent control of transition-metal spins in silicon carbide

    NARCIS (Netherlands)

    Bosma, Tom; Lof, Gerrit J. J.; Gilardoni, Carmem M.; Zwier, Olger V.; Hendriks, Freddie; Ellison, Alexandre; Magnusson, Björn; Gällström, Andreas; Ivanov, Ivan G.; Son, N. T.; Havenith, Remco W. A.; Wal, Caspar H. van der

    2018-01-01

    Color centers in wide-bandgap semiconductors are attractive systems for quantum technologies since they can combine long-coherent electronic spin and bright optical properties. Several suitable centers have been identified, most famously the nitrogen-vacancy defect in diamond. However, integration

  3. Interband magneto-optical transitions in a layer of semiconductor nano-rings

    NARCIS (Netherlands)

    Voskoboynikov, O.; Wijers, Christianus M.J.; Liu, J.L.; Lee, C.P.

    2005-01-01

    We have developed a quantitative theory of the collective electromagnetic response of layers of semiconductor nano-rings. The response can be controlled by means of an applied magnetic field through the optical Aharonov-Bohm effect and is ultimately required for the design of composite materials. We

  4. Regulation of circadian clock transcriptional output by CLOCK:BMAL1

    Science.gov (United States)

    Trott, Alexandra J.

    2018-01-01

    The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes. PMID:29300726

  5. Clock Drawing in Spatial Neglect: A Comprehensive Analysis of Clock Perimeter, Placement, and Accuracy

    Science.gov (United States)

    Chen, Peii; Goedert, Kelly M.

    2012-01-01

    Clock drawings produced by right-brain-damaged (RBD) individuals with spatial neglect often contain an abundance of empty space on the left while numbers and hands are placed on the right. However, the clock perimeter is rarely compromised in neglect patients’ drawings. By analyzing clock drawings produced by 71 RBD and 40 healthy adults, this study investigated whether the geometric characteristics of the clock perimeter reveal novel insights to understanding spatial neglect. Neglect participants drew smaller clocks than either healthy or non-neglect RBD participants. While healthy participants’ clock perimeter was close to circular, RBD participants drew radially extended ellipses. The mechanisms for these phenomena were investigated by examining the relation between clock-drawing characteristics and performance on six subtests of the Behavioral Inattention Test (BIT). The findings indicated that the clock shape was independent of any BIT subtest or the drawing placement on the test sheet and that the clock size was significantly predicted by one BIT subtest: the poorer the figure and shape copying, the smaller the clock perimeter. Further analyses revealed that in all participants, clocks decreased in size as they were placed farther from the center of the paper. However, even when neglect participants placed their clocks towards the center of the page, they were smaller than those produced by healthy or non-neglect RBD participants. These results suggest a neglect-specific reduction in the subjectively available workspace for graphic production from memory, consistent with the hypothesis that neglect patients are impaired in the ability to enlarge the attentional aperture. PMID:22390278

  6. Transcripts from the Circadian Clock: Telling Time and Season

    NARCIS (Netherlands)

    K. Brand (Karl)

    2011-01-01

    textabstractWe all know it when we wake mere moments before an alarm clock is scheduled to wake us: our body clock made the alarm clock redundant. This phenomenon is driven by an endogenous timer known as the biological, or circadian clock. Each revolution of the Earth about its own axis produces

  7. Pittendrigh: The Darwinian Clock-Watcher

    Indian Academy of Sciences (India)

    to our current understanding of how timing systems work in living organisms. .... to periodic factors in the geophysical environment. He postulated .... clocks against temperature, nutrition and light, while the latter needs maintenance of a stable.

  8. Cell-permeable Circadian Clock Proteins

    National Research Council Canada - National Science Library

    Johnson, Carl

    2002-01-01

    .... These 'biological clocks' are important to human physiology. For example, psychiatric and medical studies have shown that circadian rhythmicity is involved in some forms of depressive illness, 'jet lag', drug tolerance/efficacy, memory, and insomnia...

  9. Programmable Clock Waveform Generation for CCD Readout

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Castilla, J.; Martinez, G.; Marin, J.

    2006-07-01

    Charge transfer efficiency in CCDs is closely related to the clock waveform. In this paper, an experimental framework to explore different FPGA based clock waveform generator designs is described. Two alternative design approaches for controlling the rise/fall edge times and pulse width of the CCD clock signal have been implemented: level-control and time-control. Both approaches provide similar characteristics regarding the edge linearity and noise. Nevertheless, dissimilarities have been found with respect to the area and frequency range of application. Thus, while the time-control approach consumes less area, the level control approach provides a wider range of clock frequencies since it does not suffer capacitor discharge effect. (Author) 8 refs.

  10. The Mechanics of Mechanical Watches and Clocks

    CERN Document Server

    Du, Ruxu

    2013-01-01

    "The Mechanics of Mechanical Watches and Clocks" presents historical views and mathematical models of mechanical watches and clocks. Although now over six hundred years old, mechanical watches and clocks are still popular luxury items that fascinate many people around the world. However few have examined the theory of how they work as presented in this book. The illustrations and computer animations are unique and have never been published before. It will be of significant interest to researchers in mechanical engineering, watchmakers and clockmakers, as well as people who have an engineering background and are interested in mechanical watches and clocks. It will also inspire people in other fields of science and technology, such as mechanical engineering and electronics engineering, to advance their designs. Professor Ruxu Du works at the Chinese University of Hong Kong, China. Assistant Professor Longhan Xie works at the South China University of Technology, China.

  11. Cellular Reprogramming–Turning the Clock Back

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 6. Cellular Reprogramming - Turning the Clock Back - Nobel Prize in Physiology or Medicine, 2012. Deepa Subramanyam. General Article Volume 18 Issue 6 June 2013 pp 514-521 ...

  12. A GPS Satellite Clock Offset Prediction Method Based on Fitting Clock Offset Rates Data

    Directory of Open Access Journals (Sweden)

    WANG Fuhong

    2016-12-01

    Full Text Available It is proposed that a satellite atomic clock offset prediction method based on fitting and modeling clock offset rates data. This method builds quadratic model or linear model combined with periodic terms to fit the time series of clock offset rates, and computes the model coefficients of trend with the best estimation. The clock offset precisely estimated at the initial prediction epoch is directly adopted to calculate the model coefficient of constant. The clock offsets in the rapid ephemeris (IGR provided by IGS are used as modeling data sets to perform certain experiments for different types of GPS satellite clocks. The results show that the clock prediction accuracies of the proposed method for 3, 6, 12 and 24 h achieve 0.43, 0.58, 0.90 and 1.47 ns respectively, which outperform the traditional prediction method based on fitting original clock offsets by 69.3%, 61.8%, 50.5% and 37.2%. Compared with the IGU real-time clock products provided by IGS, the prediction accuracies of the new method have improved about 15.7%, 23.7%, 27.4% and 34.4% respectively.

  13. Synthesis of bis(oxamato) transition metal complexes and Ni nanoparticles and their structural, magnetic, optical, and magneto-optical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Braeuer, Bjoern

    2008-07-02

    In the framework of this thesis mono- and oligonuclear Cu(II)- anf Ni(II)-bis(oxamato) complexes are synthesized in view on their magneto-optical properties and structurally characterized. About transition-charge and transition-metal induced deviations from the general reaction behaviour described in literature is reported. From electron-spin-resonance studies the spin-density distribution in the mononuclear Cu(II) complexes is derived. The influence on this by coordination geometry as well as the effects of the superexchange interaction are discussed and compared with results from the density functional theory (DFT). Trinuclear bis(oxamato) complexes are for the first time deposited on Si(111) substrates by spin coating and studied by means of the spectroscopic ellipsometry as well as the Raman spectroscopy and evaluated by means of DFT calculations. Magneto-optical Kerr-effect studies were performed on thin layers of these complexes as well as phthalocyanines. For the comparison the magnetic and magneto-optical properties of Ni nanoparticles in different organic matrices were studied. By means of the photoelectron spectroscopy the oxidation behaviour of these is studied and conclusions on charge-transfer processes between the matrices and the nanoparticles are drawn. [German] Im Rahmen dieser Arbeit werden ein- und mehrkernige Cu(II)- und Ni(II)-bis-(oxamato)-Komplexe im Hinblick auf ihre magneto-optischen Eigenschaften gezielt hergestellt und strukturell charakterisiert. Ueber ladungs- und uebergangsmetallinduzierte Abweichungen vom allgemeinen in der Literatur beschriebenen Reaktionsverhalten wird berichtet. Aus Elektronenspinresonanz-Untersuchungen wird die Spindichteverteilung in den einkernigen Cu(II)-Komplexen abgeleitet. Die Beeinflussung dieser durch die Koordinationsgeometrie sowie die Auswirkungen auf die Superaustausch- Wechselwirkung werden diskutiert und mit Ergebnissen der Dichtefunktionaltheorie (DFT) verglichen. Dreikernige bis

  14. Ultrafast Phase Comparator for Phase-Locked Loop-Based Optoelectronic Clock Recovery Systems

    DEFF Research Database (Denmark)

    Gomez-Agis, F.; Oxenløwe, Leif Katsuo; Kurimura, S.

    2009-01-01

    The authors report on a novel application of a chi((2)) nonlinear optical device as an ultrafast phase comparator, an essential element that allows an optoelectronic phase-locked loop to perform clock recovery of ultrahigh-speed optical time-division multiplexed (OTDM) signals. Particular interest...... is devoted to a quasi-phase-matching adhered-ridge-waveguide periodically poled lithium niobate (PPLN) device, which shows a sufficient high temporal resolution to resolve a 640 Gbits OTDM signal....

  15. Clock gene variation in Tachycineta swallows.

    Science.gov (United States)

    Dor, Roi; Cooper, Caren B; Lovette, Irby J; Massoni, Viviana; Bulit, Flor; Liljesthrom, Marcela; Winkler, David W

    2012-01-01

    Many animals use photoperiod cues to synchronize reproduction with environmental conditions and thereby improve their reproductive success. The circadian clock, which creates endogenous behavioral and physiological rhythms typically entrained to photoperiod, is well characterized at the molecular level. Recent work provided evidence for an association between Clock poly-Q length polymorphism and latitude and, within a population, an association with the date of laying and the length of the incubation period. Despite relatively high overall breeding synchrony, the timing of clutch initiation has a large impact on the fitness of swallows in the genus Tachycineta. We compared length polymorphism in the Clock poly-Q region among five populations from five different Tachycineta species that breed across a hemisphere-wide latitudinal gradient (Fig. 1). Clock poly-Q variation was not associated with latitude; however, there was an association between Clock poly-Q allele diversity and the degree of clutch size decline within breeding seasons. We did not find evidence for an association between Clock poly-Q variation and date of clutch initiation in for any of the five Tachycineta species, nor did we found a relationship between incubation duration and Clock genotype. Thus, there is no general association between latitude, breeding phenology, and Clock polymorphism in this clade of closely related birds.Figure 1Photos of Tachycineta swallows that were used in this study: A) T. bicolor from Ithaca, New York, B) T. leucorrhoa from Chascomús, Argentina, C) T. albilinea from Hill Bank, Belize, D) T. meyeni from Puerto Varas, Chile, and E) T. thalassina from Mono Lake, California, Photographers: B: Valentina Ferretti; A, C-E: David Winkler.

  16. Reduced Kalman Filters for Clock Ensembles

    Science.gov (United States)

    Greenhall, Charles A.

    2011-01-01

    This paper summarizes the author's work ontimescales based on Kalman filters that act upon the clock comparisons. The natural Kalman timescale algorithm tends to optimize long-term timescale stability at the expense of short-term stability. By subjecting each post-measurement error covariance matrix to a non-transparent reduction operation, one obtains corrected clocks with improved short-term stability and little sacrifice of long-term stability.

  17. An open source digital servo for atomic, molecular, and optical physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leibrandt, D. R., E-mail: david.leibrandt@nist.gov; Heidecker, J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2015-12-15

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  18. An open source digital servo for atomic, molecular, and optical physics experiments

    Science.gov (United States)

    Leibrandt, D. R.; Heidecker, J.

    2015-12-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  19. An open source digital servo for atomic, molecular, and optical physics experiments

    International Nuclear Information System (INIS)

    Leibrandt, D. R.; Heidecker, J.

    2015-01-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27 Al + in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser

  20. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  1. Light-Shifts of an Integrated Filter-Cell Rubidium Atomic Clock

    Science.gov (United States)

    2015-05-25

    the light-shift coefficient for two different rf- discharge lamps (i.e., a pure 87Rb lamp and a lamp filled with the natural Rb isotope abundance...for the Galileo Rb clock under the assumption of a natural (or 85Rb isotopically enriched) rf- discharge lamp for the Galileo clock. I...satellites [14]. 6.8347… GHz 85Rb Filter Cell Cell Resonance Photodiode Microwave Cavity 87Rb Discharge Lamp 87Rb & N2 Rb & Xe, Kr Optical Pumping 87Rb

  2. Forbidden optical transition in Ti-like Xe, Ba, and Ir

    International Nuclear Information System (INIS)

    Bekker, H.; Windberger, A.; Binder, M.; López-Urrutia, J. R. Crespo; Versolato, O. O.; Klawitter, R.

    2015-01-01

    We present measurements of the (3d 4 ) 5 D 2 − 5 D 3 transitions in the Ti-like ions Xe 32+ , Ba 34+ , and Ir 55+ produced and trapped in the Heidelberg electron beam ion trap. The obtained wavelengths have a precision at the few ppm-level and are thereby the most precise measurements of these transitions up to date. For Z=60−75 semi-empirical calculations have shown excellent agreement, however our measurements combined with data from other works shows that outside this range predictions quickly deviate. The value obtained for Ir 55+ 357.434(2) nm confirms the linear mismatch to ab initio calculations for Z > 70, as hypothesized in Utter et al., Phys. Rev. A 67, 012508 (2003)

  3. Do Caucasian and Asian clocks tick differently?

    Directory of Open Access Journals (Sweden)

    A.A. Barbosa

    Full Text Available The Period 3 and Clock genes are important components of the mammalian molecular circadian system. Studies have shown association between polymorphisms in these clock genes and circadian phenotypes in different populations. Nevertheless, differences in the pattern of allele frequency and genotyping distribution are systematically observed in studies with different ethnic groups. To investigate and compare the pattern of distribution in a sample of Asian and Caucasian populations living in Brazil, we evaluated two well-studied polymorphisms in the clock genes: a variable number of tandem repeats (VNTR in PER3 and a single nucleotide polymorphism (SNP in CLOCK. The aim of this investigation was to search for clues about human evolutionary processes related to circadian rhythms. We selected 109 Asian and 135 Caucasian descendants. The frequencies of the shorter allele (4 repeats in the PER3 gene and the T allele in the CLOCK gene among Asians (0.86 and 0.84, respectively were significantly higher than among Caucasians (0.69 and 0.71, respectively. Our results directly confirmed the different distribution of these polymorphisms between the Asian and Caucasian ethnic groups. Given the genetic differences found between groups, two points became evident: first, ethnic variations may have implications for the interpretation of results in circadian rhythm association studies, and second, the question may be raised about which evolutionary conditions shaped these genetic clock variations.

  4. Transition operators in electromagnetic-wave diffraction theory. II - Applications to optics

    Science.gov (United States)

    Hahne, G. E.

    1993-01-01

    The theory developed by Hahne (1992) for the diffraction of time-harmonic electromagnetic waves from fixed obstacles is briefly summarized and extended. Applications of the theory are considered which comprise, first, a spherical harmonic expansion of the so-called radiation impedance operator in the theory, for a spherical surface, and second, a reconsideration of familiar short-wavelength approximation from the new standpoint, including a derivation of the so-called physical optics method on the basis of quasi-planar approximation to the radiation impedance operator, augmented by the method of stationary phase. The latter includes a rederivation of the geometrical optics approximation for the complete Green's function for the electromagnetic field in the presence of a smooth- and a convex-surfaced perfectly electrically conductive obstacle.

  5. Report on the Radiation Effects Testing of the Infrared and Optical Transition Radiation Camera Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    Presented in this report are the results tests performed at Argonne National Lab in collaboration with Los Alamos National Lab to assess the reliability of the critical 99Mo production facility beam monitoring diagnostics. The main components of the beam monitoring systems are two cameras that will be exposed to radiation during accelerator operation. The purpose of this test is to assess the reliability of the cameras and related optical components when exposed to operational radiation levels. Both X-ray and neutron radiation could potentially damage camera electronics as well as the optical components such as lenses and windows. This report covers results of the testing of component reliability when exposed to X-ray radiation. With the information from this study we provide recommendations for implementing protective measures for the camera systems in order to minimize the occurrence of radiation-induced failure within a ten month production run cycle.

  6. Optical Design of the Camera for Transiting Exoplanet Survey Satellite (TESS)

    Science.gov (United States)

    Chrisp, Michael; Clark, Kristin; Primeau, Brian; Dalpiaz, Michael; Lennon, Joseph

    2015-01-01

    The optical design of the wide field of view refractive camera, 34 degrees diagonal field, for the TESS payload is described. This fast f/1.4 cryogenic camera, operating at -75 C, has no vignetting for maximum light gathering within the size and weight constraints. Four of these cameras capture full frames of star images for photometric searches of planet crossings. The optical design evolution, from the initial Petzval design, took advantage of Forbes aspheres to develop a hybrid design form. This maximized the correction from the two aspherics resulting in a reduction of average spot size by sixty percent in the final design. An external long wavelength pass filter was replaced by an internal filter coating on a lens to save weight, and has been fabricated to meet the specifications. The stray light requirements were met by an extended lens hood baffle design, giving the necessary off-axis attenuation.

  7. Synthesis, structural and optical properties of PVP coated transition metal doped ZnS nanoparticles

    Science.gov (United States)

    Desai, N. V.; Shaikh, I. A.; Rawal, K. G.; Shah, D. V.

    2018-05-01

    The room temperature photoluminescence (PL) of transition metal doped ZnS nanoparticles is investigated in the present study. The PVP coated ZnS nanoparticles doped with transition metals are synthesized by facile wet chemical co-precipitation method with the concentration of impurity 1%. The UV-Vis absorbance spectra have a peak at 324nm which shifts slightly to 321nm upon introduction of the impurity. The incorporation of the transition metal as dopant is confirmed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The particle size and the morphology are characterized by scanning electron microscopy (SEM), XRD and UV-Vis spectroscopy. The average size of synthesized nanoparticles is about 2.6nm. The room temperature photoluminescence (PL) of undoped and doped ZnS nanoparticles show a strong and sharp peak at 782nm and 781.6nm respectively. The intensity of the PL changes with the type of doping having maximum for manganese (Mn).

  8. Quadrupole Transition Spectrum Measurement of Single Ca+ Ions Toward Optical Frequency Standards

    Science.gov (United States)

    2007-01-01

    Gill, 2005, “Optical frequency standards,” Metrologia , 42, S125-S137. [2] M. Kajita, K. Matsubara, Y. Li, K. Hayasaka, and M. Hosokawa, 2004...Interval (PTTI) Meeting 1 10 100 1000 10-15 10-14 10-13 10-12 10-11 Averaging Time [s] R oo t Al la n Va ria nc e 729nm LD by FC8003 729nm LD by

  9. Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide.

    Science.gov (United States)

    Thyrrestrup, Henri; Kiršanskė, Gabija; Le Jeannic, Hanna; Pregnolato, Tommaso; Zhai, Liang; Raahauge, Laust; Midolo, Leonardo; Rotenberg, Nir; Javadi, Alisa; Schott, Rüdiger; Wieck, Andreas D; Ludwig, Arne; Löbl, Matthias C; Söllner, Immo; Warburton, Richard J; Lodahl, Peter

    2018-03-14

    Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise are of importance, and the influence of photonic nanostructures on the broadening has not been clarified. We present near-lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of 66 ± 4%, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out; i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.

  10. Effects of hydrostatic pressure and temperature on interband optical transitions in InAs/GaAs vertically coupled double quantum dots

    International Nuclear Information System (INIS)

    Baghramyan, H M; Barseghyan, M G; Kirakosyan, A A

    2012-01-01

    We consider the effect of hydrostatic pressure, temperature and the variations of structure's sizes on interband transition energy and absorption coefficient in InAs/GaAs vertically coupled double quantum dots. The threshold energy of interband optical transitions is examined as a function of hydrostatic pressure and temperature for the different geometries of the structure. We also investigated the dependencies of the interband light absorption coefficient on the incident photon energy.

  11. Optical atomic phase reference and timing.

    Science.gov (United States)

    Hollberg, L; Cornell, E H; Abdelrahmann, A

    2017-08-06

    Atomic clocks based on laser-cooled atoms have made tremendous advances in both accuracy and stability. However, advanced clocks have not found their way into widespread use because there has been little need for such high performance in real-world/commercial applications. The drive in the commercial world favours smaller, lower-power, more robust compact atomic clocks that function well in real-world non-laboratory environments. Although the high-performance atomic frequency references are useful to test Einstein's special relativity more precisely, there are not compelling scientific arguments to expect a breakdown in special relativity. On the other hand, the dynamics of gravity, evidenced by the recent spectacular results in experimental detection of gravity waves by the LIGO Scientific Collaboration, shows dramatically that there is new physics to be seen and understood in space-time science. Those systems require strain measurements at less than or equal to 10 -20 As we discuss here, cold atom optical frequency references are still many orders of magnitude away from the frequency stability that should be achievable with narrow-linewidth quantum transitions and large numbers of very cold atoms, and they may be able to achieve levels of phase stability, Δ Φ / Φ total  ≤ 10 -20 , that could make an important impact in gravity wave science.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).

  12. Optical atomic phase reference and timing

    Science.gov (United States)

    Hollberg, L.; Cornell, E. H.; Abdelrahmann, A.

    2017-06-01

    Atomic clocks based on laser-cooled atoms have made tremendous advances in both accuracy and stability. However, advanced clocks have not found their way into widespread use because there has been little need for such high performance in real-world/commercial applications. The drive in the commercial world favours smaller, lower-power, more robust compact atomic clocks that function well in real-world non-laboratory environments. Although the high-performance atomic frequency references are useful to test Einstein's special relativity more precisely, there are not compelling scientific arguments to expect a breakdown in special relativity. On the other hand, the dynamics of gravity, evidenced by the recent spectacular results in experimental detection of gravity waves by the LIGO Scientific Collaboration, shows dramatically that there is new physics to be seen and understood in space-time science. Those systems require strain measurements at less than or equal to 10-20. As we discuss here, cold atom optical frequency references are still many orders of magnitude away from the frequency stability that should be achievable with narrow-linewidth quantum transitions and large numbers of very cold atoms, and they may be able to achieve levels of phase stability, ΔΦ/Φtotal ≤ 10-20, that could make an important impact in gravity wave science. This article is part of the themed issue 'Quantum technology for the 21st century'.

  13. Mean-Field Scaling of the Superfluid to Mott Insulator Transition in a 2D Optical Superlattice.

    Science.gov (United States)

    Thomas, Claire K; Barter, Thomas H; Leung, Tsz-Him; Okano, Masayuki; Jo, Gyu-Boong; Guzman, Jennie; Kimchi, Itamar; Vishwanath, Ashvin; Stamper-Kurn, Dan M

    2017-09-08

    The mean-field treatment of the Bose-Hubbard model predicts properties of lattice-trapped gases to be insensitive to the specific lattice geometry once system energies are scaled by the lattice coordination number z. We test this scaling directly by comparing coherence properties of ^{87}Rb gases that are driven across the superfluid to Mott insulator transition within optical lattices of either the kagome (z=4) or the triangular (z=6) geometries. The coherent fraction measured for atoms in the kagome lattice is lower than for those in a triangular lattice with the same interaction and tunneling energies. A comparison of measurements from both lattices agrees quantitatively with the scaling prediction. We also study the response of the gas to a change in lattice geometry, and observe the dynamics as a strongly interacting kagome-lattice gas is suddenly "hole doped" by introducing the additional sites of the triangular lattice.

  14. Optical transitions of Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 glass.

    Science.gov (United States)

    Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Gao, Yuan

    2005-10-01

    Optical absorption and emission properties of the Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 (TWB) glass has been investigated. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. The broad 1.5 microm fluorescence was observed under 970 nm excitation, and its full width at half maximum (FWHM) is 77 nm. The emission cross-section is calculated using the McCumber theory, and the peak emission cross-section is 1.03 x 10(-21) cm2 at 1.531 microm. This value is much larger than those of the silicate and phosphate glasses. Efficient green and weak red upconversion luminescence from Er3+ centers in the glass sample was observed at room temperature, and the upconversion excitation processes have been analyzed.

  15. Calculation of the electronic structure optical transitions and contact hyperfine parameters of interstitial hydrogen in alkaline halogen crystals

    International Nuclear Information System (INIS)

    Maciel, A.K.A.

    1977-03-01

    The electronic structure of the interstitial hydrogen atom in KF, NaCl, KCl, and RbCl cristals has been studied using the self-consistent-field multiple-scattering Xα method. In the present calculation a cluster constituted by the hydrogen atom surrounded by its first anion and cation neighbors in a cubic shell has been used. The optical transition energies and hyperfine contact parameters with the interstitial proton and the first shell nuclei have been evaluated. The agreement obtained with the experimental data and the relative independence of the method under variations of its intrinsic parameters, indicate that this method can be adequate to the study of defects in ionic cristals. (author) [pt

  16. Optical absorption of carbon nanotube diodes: Strength of the electronic transitions and sensitivity to the electric field polarization

    Science.gov (United States)

    Mencarelli, Davide; Pierantoni, Luca; Rozzi, Tullio

    2008-03-01

    Aim of this work is to model electrostatically doped carbon nanotubes (CNT), which have recently proved to perform as ideal PN diodes, also showing photovoltaic properties. The new model is able to predict the optical absorption of semiconducting CNT as function of size and chirality. We justify theoretically, for the first time, the experimentally observed capability of CNTs to detect and select not only a well defined set of frequencies, as resulting from their discrete band structure, but also the polarization of the incident radiation. The analysis develops from an approach proposed in a recent contribution. The periodic structure of CNTs is formally modeled as a photonic crystal, that is characterized by means of numerical simulators. Longitudinal and transverse components of the electric field are shown to excite distinct interband transitions between well defined energy levels. Equivalently, for a given energy of the incident radiation, absorption may show polarization ratios strongly exceeding unity.

  17. Pressure dependence of optical transitions in In0.15Ga0.85N/GaN multiple quantum wells

    International Nuclear Information System (INIS)

    Shan, W.; Ager, J.W. III; Walukiewicz, W.; Haller, E.E.; McCluskey, M.D.; Johnson, N.M.; Bour, D.P.

    1998-01-01

    The effects of hydrostatic pressure on optical transitions in In 0.15 Ga 0.85 N/GaN multiple quantum wells (MQW close-quote s) have been studied. The optical transition associated with confined electron and hole states in the MQW close-quote s was found to shift linearly to higher energy with pressure but exhibit a significantly weaker pressure dependence compared to bulklike thick epitaxial-layer samples. Similar pressure coefficients obtained by both photomodulation and photoluminescence measurements rule out the possibility of the transition involving localized states deep in the band gap. We found that the difference in the compressibility of In x Ga 1-x N and GaN induces a tensile strain in the compressively strained In x Ga 1-x N well layers, partially compensating the externally applied hydrostatic pressure. This mechanical effect is primarily responsible for the smaller pressure dependence of the optical transitions in the In x Ga 1-x N/GaN MQW close-quote s. In addition, the pressure-dependent measurements allow us to identify a spectral feature observed at an energy below the GaN band gap. We conclude that this feature is due to transitions from ionized Mg acceptor states to the conduction band in the p-type GaN cladding layer rather than a confined transition in the MQW close-quote s. copyright 1998 The American Physical Society

  18. The Chemical and Educational Appeal of the Orange Juice Clock

    Science.gov (United States)

    Kelter, Paul B.; Carr, James D.; Johnson, Tanya; Mauricio Castro-Acuña, Carlos

    1996-12-01

    editted by Jerry Jacobson at the University of Wisconsin - Madison. The Chemistry Basics When we ask students or precollege teacher groups about the reduction and oxidation reactions that are occurring, they invariably answer that the magnesium metal is being oxidized and the copper metal is being reduced. This response is important because we use it to impress upon students and workshop participants the importance of looking carefully at the system before giving what might seem like an obvious answer. The copper cannot be reduced because there is no copper ion in solution, and transition metals cannot be reduced to anions. Given what is actually in solution, participants can conclude that hydrogen ion can be reduced to molecular hydrogen (in orange juice) or that hydrogen in the water molecule is being reduced to molecular hydrogen (in hard tap water). In distilled water, the clock does not run because the internal resistance of the solution is too high, thus forcing the current to be very small. The reactions of interest are given as eqs 1-3: oxidation: Mg -> Mg2+ + 2e- Eo = 2.37 vs. SHE (1) reduction 2H+ + 2e- -> H2 Eo = 0.00 vs. SHE (2) (acid solution) reduction (water) 2H2O + 2e- -> H2 + 2OH- Eo = -0.8277 vs. SHE (3) where Eo = the voltage under standard conditions and SHE = standard hydrogen electrode. At standard conditions, under zero load (all activities equal to one and 298 K) the cell voltage should theoretically be 2.37 V in acid (pH = 1) and about 1.54 V in neutral solution, either of which is enough to allow the clock to run. It is important to remember the IUPAC convention for electrochemical cells: that voltage of the cell equals voltage of the cathodic half-cell minus voltage of the anodic half-cell. In this case, Eo = 0.00 V - (-2.37 V) = 2.37 V The standard free energy calculation is straightforward in each case (eq 4), DeltaGo = -nFEo in which n = number of moles of electrons transferred, as dictated by the stoichiometry of the reaction (in all

  19. Clock and trigger distribution for CBM-TOF quality evaluation of RPC super module detector assemblies

    Science.gov (United States)

    Li, C.; Huang, X.; Cao, P.; Wang, J.; An, Q.

    2018-03-01

    RPC Super module (SM) detector assemblies are used for charged hadron identification in the Time-of-Flight (TOF) spectrometer at the Compressed Baryonic Matter (CBM) experiment. Each SM contains several multi-gap Resistive Plate Chambers (MRPCs) and provides up to 320 electronic channels in total for high-precision time measurements. Time resolution of the Time-to-Digital Converter (TDC) is required to be better than 20 ps. During mass production, the quality of each SM needs to be evaluated. In order to meet the requirements, the system clock signal as well as the trigger signal should be distributed precisely and synchronously to all electronics modules within the evaluation readout system. In this paper, a hierarchical clock and trigger distribution method is proposed for the quality evaluation of CBM-TOF SM detectors. In a first stage, the master clock and trigger module (CTM) allocated in a 6U PXI chassis distributes the clock and trigger signals to the slave CTM in the same chassis. In a second stage, the slave CTM transmits the clock and trigger signals to the TDC readout module (TRM) through one optical link. In a third stage, the TRM distributes the clock and trigger signals synchronously to 10 individual TDC boards. Laboratory test results show that the clock jitter at the third stage is less than 4 ps (RMS) and the trigger transmission latency from the master CTM to the TDC is about 272 ns with 11 ps (RMS) jitter. The overall performance complies well with the required specifications.

  20. Turning Back the Clock: Inferring the History of the Eight O'clock Arc

    Science.gov (United States)

    Finkelstein, Steven L.; Papovich, Casey; Rudnick, Gregory; Egami, Eiichi; Le Floc'h, Emeric; Rieke, Marcia J.; Rigby, Jane R.; Willmer, Christopher N. A.

    2009-07-01

    We present the results from an optical and near-infrared (NIR) spectroscopic study of the ultraviolet-luminous z = 2.73 galaxy, the 8 o'clock arc. Due to gravitational lensing, this galaxy is magnified by a factor of μ > 10, allowing in-depth measurements which are usually unfeasible at such redshifts. In the optical spectra, we measured the systemic redshift of the galaxy, z = 2.7322± 0.0012, using stellar photospheric lines. This differs from the redshift of absorption lines in the interstellar medium, z = 2.7302 ± 0.0006, implying gas outflows on the order of 160 km s-1. With H- and K-band NIR spectra, we have measured nebular emission lines of Hα, Hβ, Hγ, [N II], and [O III], which have a redshift z = 2.7333 ± 0.0001, consistent with the derived systemic redshift. From the Balmer decrement, we measured the dust extinction in this galaxy to be A 5500 = 1.17 ± 36 mag. Correcting the Hα line flux for dust extinction as well as the assumed lensing factor, we measure a star formation rate (SFR) of ~270 M sun yr-1, which is higher than ~85% of star-forming galaxies at z ~ 2-3. Using combinations of all detected emission lines, we find that the 8 o'clock arc has a gas-phase metallicity of ~0.8 Z sun, showing that enrichment at high redshift is not rare, even in blue, star-forming galaxies. Studying spectra from two of the arc components separately, we find that one component dominates both the dust extinction and SFR, although the metallicities between the two components are similar. We derive the mass via stellar population modeling, and find that the arc has a total stellar mass of ~4.2 × 1011 M sun, which falls on the mass-metallicity relation at z ~ 2. Finally, we estimate the total gas mass, and find it to be only ~12% of the stellar mass, implying that the 8 o'clock arc is likely nearing the end of a starburst. Based partly on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy

  1. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  2. Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry

    KAUST Repository

    Liu, Hsiang-Lin

    2014-11-17

    Spectroscopic ellipsometry was used to characterize the complex refractive index of chemical-vapor-deposited monolayer transition metal dichalcogenides (TMDs). The extraordinary large value of the refractive index in the visible frequency range is obtained. The absorption response shows a strong correlation between the magnitude of the exciton binding energy and band gap energy. Together with the observed giant spin-orbit splitting, these findings advance the fundamental understanding of their novel electronic structures and the development of monolayer TMDs-based optoelectronic and spintronic devices.

  3. Optical and electrical experiments at some transition-metal oxide foil-electrolyte interfaces

    International Nuclear Information System (INIS)

    Sari, S.O.; Ahlgren, W.L.

    1977-01-01

    Metal-oxide layers formed from transition-metal foils oxidized by heating in air have been examined for their photoelectrolytic response. The metals examined are Y, Ti, Zr, Hf, V, Nb, Ta, Mo, W, and Pt. Weak photoeffects are observed for oxide layers of all of these metals. Sizable light-dependent oxygen gas evolution rates are found in Ti and also in W oxides. The spectral dependence of the oxygen response in these compounds is investigated, and interpretation is given of these experiments

  4. Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry

    KAUST Repository

    Liu, Hsiang-Lin; Shen, Chih-Chiang; Su, Sheng-Han; Hsu, Chang-Lung; Li, Ming-Yang; Li, Lain-Jong

    2014-01-01

    Spectroscopic ellipsometry was used to characterize the complex refractive index of chemical-vapor-deposited monolayer transition metal dichalcogenides (TMDs). The extraordinary large value of the refractive index in the visible frequency range is obtained. The absorption response shows a strong correlation between the magnitude of the exciton binding energy and band gap energy. Together with the observed giant spin-orbit splitting, these findings advance the fundamental understanding of their novel electronic structures and the development of monolayer TMDs-based optoelectronic and spintronic devices.

  5. Optical transitions and electronic interactions in self-assembled cobalt-fullerene mixture films

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Chvostová, Dagmar; Lavrentieva, Inna; Vacík, Jiří; Daskal, Y.; Barchuk, M.; Rafaja, D.; Dejneka, Alexandr

    2017-01-01

    Roč. 50, č. 48 (2017), č. článku 485305. ISSN 0022-3727 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015088; GA MŠk LM2015056 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : fullerene * cobalt * electronic interaction * optical absorption * mixture film Subject RIV: BM - Solid Matter Physics ; Magnetism; BO - Biophysics (FZU-D) OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.); Biophysics (FZU-D) Impact factor: 2.588, year: 2016

  6. Photoabsorption Spectrum and Optically Forbidden Transitions of Krypton by Electron Impact

    Institute of Scientific and Technical Information of China (English)

    苑震生; 朱林繁; 李文斌; 成华东; 徐克尊

    2002-01-01

    A high resolution fast electron energy loss spectrometer with multi-channel energy analysis was employed. The maxima just above the threshold 4p-1(2P1/2), which is regarded as a shape resonance, was obtained at 16.3 eV. The optically forbidden excitations of 4s electron were measured for the first time, and the energy positions are 23.75 eV(4s-15s), 25.66 eV (4s-16s/4d) and 26.60 eV(4s-17s/5d).

  7. Infrared optical constants, dielectric constants, molar polarizabilities, transition moments, dipole moment derivatives and Raman spectrum of liquid cyclohexane

    Science.gov (United States)

    Keefe, C. Dale; Pickup, Janet E.

    2009-06-01

    Previous studies have been done in this laboratory focusing on the optical properties of several liquid aromatic and aliphatic hydrocarbons in the infrared. The current study reports the infrared and absorption Raman spectra of liquid cyclohexane. Infrared spectra were recorded at 25 °C over a wavenumber range of 7400-490 cm -1. Infrared measurements were taken using transmission cells with pathlengths ranging from 3 to 5000 μm. Raman spectra were recorded between 3700 and 100 cm -1 at 25 °C using a 180° reflection geometry. Ab initio calculations of the vibrational wavenumbers at the B3LYP/6311G level of theory were performed and used to help assign the observed IR and Raman spectra. Extensive assignments of the fundamentals and binary combinations observed in the infrared imaginary molar polarizability spectrum are reported. The imaginary molar polarizability spectrum was curve fitted to separate the intensity from the various transitions and used to determine the transition moments and magnitudes of the derivatives of the dipole moment with respect to the normal coordinates for the fundamentals.

  8. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures

    Science.gov (United States)

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-01-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices. PMID:27553787

  9. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.

    Science.gov (United States)

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-08-24

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices.

  10. Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling

    International Nuclear Information System (INIS)

    Lent, Craig S; Liu Mo; Lu Yuhui

    2006-01-01

    We examine power dissipation in different clocking schemes for molecular quantum-dot cellular automata (QCA) circuits. 'Landauer clocking' involves the adiabatic transition of a molecular cell from the null state to an active state carrying data. Cell layout creates devices which allow data in cells to interact and thereby perform useful computation. We perform direct solutions of the equation of motion for the system in contact with the thermal environment and see that Landauer's Principle applies: one must dissipate an energy of at least k B T per bit only when the information is erased. The ideas of Bennett can be applied to keep copies of the bit information by echoing inputs to outputs, thus embedding any logically irreversible circuit in a logically reversible circuit, at the cost of added circuit complexity. A promising alternative which we term 'Bennett clocking' requires only altering the timing of the clocking signals so that bit information is simply held in place by the clock until a computational block is complete, then erased in the reverse order of computation. This approach results in ultralow power dissipation without additional circuit complexity. These results offer a concrete example in which to consider recent claims regarding the fundamental limits of binary logic scaling

  11. Optical studies on individual transitions in GaN:Zn,Si/AlGaN heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mohajerani, Matin; Behrends, Arne; Bakin, Andrey; Waag, Andreas [Institute for Semiconductor Technology, Braunschweig (Germany); Peters, Silke; Hofer, Helmut; Schmunk, Waldemar; Kueck, Stefan [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2012-07-01

    During the past few years many methods have been developed to generate single-photon sources including atoms, ions, molecules or impurities in semiconductors and quantum dots. In this work, we have investigated Si and Zn co-doped GaN/AlGaN heterostructures. This approach could potentially allow room temperature electrically driven single photon emission. The samples studied were fabricated by metal-organic chemical vapor deposition and were patterned by photolithography and plasma etching processes in 3D pillar structures in order to confine individual emitters. Photoluminescence (PL) images were obtained by a confocal fluorescence microscope with a spatial resolution of 0.3 {mu}m and focal resolution of 0.5 {mu}m demonstrating well separated pillars. PL spectra measured under 325 nm He-Cd laser excitation show a broad emission around 2.9 eV (blue luminescence band) which is attributed to transition between the shallow donor band and the Zn deep acceptor. In addition, time-resolved PL was utilized to study the recombination lifetime of the BL transitions by 375 nm pulsed laser excitation. The potential of the GaN:Zn system for single photon emission is discussed in detail.

  12. Circular dichroism and Raman optical activity in antiferromagnetic transition metal fluorides

    International Nuclear Information System (INIS)

    Hoffman, K.R.; Lockwood, D.J.; Yen, W.M.

    2005-01-01

    The Raman optical activity (ROA) of magnons in rutile-structure antiferromagnetic FeF 2 (T N = 78 K) has been studied as a function of temperature and applied magnetic field. For exciting light incident along the c axis, ROA is observed for magnons but not for phonons. In zero field, a small splitting (0.09 cm -1 ) of the two acoustic-magnon branches is observed for the first time by inelastic light scattering. The splitting in applied magnetic field is found to reduce with increasing temperature in accordance with theory. No ROA was detected for two-magnon excitations. In optical absorption measurements performed over thirty years ago, a very small circular dichroism (CD) was observed in the magnon sidebands of other simple rutile antiferromagnetic fluorides (MnF 2 and CoF 2 ). The origin of this CD was not understood at the time. The Raman studies of the one-magnon Raman scattering in FeF 2 have demonstrated that in zero field the degeneracy of the antiferromagnetic magnon branches is lifted by a weak magnetic dipole-dipole interaction, as predicted by Pincus and Loudon and by White four decades ago. The source of the observed CD in the magnon sidebands can now be traced to this same magnetic-dipole induced splitting

  13. Testing the Foundations of Relativity Using Cryogenic Optical Resonators

    Science.gov (United States)

    Müller, H.; Braxmaier, C.; Herrmann, S.; Pradl, O.; Lämmerzahl, C.; Mlynek, J.; Schiller, S.; Peters, A.

    We present a new generation of experiments using cryogenic optical resonators(COREs) to test the foundations of relativity. The experiments test the isotropy of the speed of light (Michelson-Morley experiment), the independece of the speed of light from the velocity of the laboratory (Kennedy-Thorndike experiments), and the gravitational redshift for clocks based on an electronic transition. Compared with the best previous results, our tests have already yielded improvements up to a factor of three. Future versions promise significant improvements.

  14. Dynamic conductivity from audio to optical frequencies of semiconducting manganites approaching the metal-insulator transition

    Science.gov (United States)

    Lunkenheimer, P.; Mayr, F.; Loidl, A.

    2006-07-01

    We report the frequency-dependent conductivity of the manganite system La1-xSrxMnO3 (x0.2) when approaching the metal-insulator transition from the insulating side. Results from low-frequency dielectric measurements are combined with spectra in the infrared region. For low doping levels the behavior is dominated by hopping transport of localized charge carriers at low frequencies and by phononic and electronic excitations in the infrared region. For the higher Sr contents the approach of the metallic state is accompanied by the successive suppression of the hopping contribution at low frequencies and by the development of polaronic excitations in the infrared region, which finally become superimposed by a strong Drude contribution in the fully metallic state.

  15. Dynamic conductivity from audio to optical frequencies of semiconducting manganites approaching the metal-insulator transition

    International Nuclear Information System (INIS)

    Lunkenheimer, P.; Mayr, F.; Loidl, A.

    2006-01-01

    We report the frequency-dependent conductivity of the manganite system La 1-x Sr x MnO 3 (x≤0.2) when approaching the metal-insulator transition from the insulating side. Results from low-frequency dielectric measurements are combined with spectra in the infrared region. For low doping levels the behavior is dominated by hopping transport of localized charge carriers at low frequencies and by phononic and electronic excitations in the infrared region. For the higher Sr contents the approach of the metallic state is accompanied by the successive suppression of the hopping contribution at low frequencies and by the development of polaronic excitations in the infrared region, which finally become superimposed by a strong Drude contribution in the fully metallic state. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  16. Interfacial Microstructures in Martensitic Transitions: From Optical Observations to Mathematical Modeling

    Czech Academy of Sciences Publication Activity Database

    Seiner, Hanuš; Glatz, Ondřej; Landa, Michal

    2009-01-01

    Roč. 7, č. 5 (2009), s. 445-456 ISSN 1543-1649 R&D Projects: GA ČR GP202/09/P164; GA AV ČR(CZ) IAA200100627; GA ČR GA101/06/0768; GA MŠk(CZ) 1M06031 Institutional research plan: CEZ:AV0Z20760514 Keywords : martensitic transition * shape memory alloy s * X-interface * Cu-Al-Ni Subject RIV: BJ - Thermodynamics Impact factor: 0.734, year: 2009 http://dl.begellhouse.com/journals/61fd1b191cf7e96f,5d71ecb1241e6f50,6d4705726d8226cf.html09

  17. Spin Flips versus Spin Transport in Nonthermal Electrons Excited by Ultrashort Optical Pulses in Transition Metals

    Science.gov (United States)

    Shokeen, V.; Sanchez Piaia, M.; Bigot, J.-Y.; Müller, T.; Elliott, P.; Dewhurst, J. K.; Sharma, S.; Gross, E. K. U.

    2017-09-01

    A joint theoretical and experimental investigation is performed to understand the underlying physics of laser-induced demagnetization in Ni and Co films with varying thicknesses excited by 10 fs optical pulses. Experimentally, the dynamics of spins is studied by determining the time-dependent amplitude of the Voigt vector, retrieved from a full set of magnetic and nonmagnetic quantities performed on both sides of films, with absolute time reference. Theoretically, ab initio calculations are performed using time-dependent density functional theory. Overall, we demonstrate that spin-orbit induced spin flips are the most significant contributors with superdiffusive spin transport, which assumes only that the transport of majority spins without spin flips induced by scattering does not apply in Ni. In Co it plays a significant role during the first ˜20 fs only. Our study highlights the material dependent nature of the demagnetization during the process of thermalization of nonequilibrium spins.

  18. Pressure Sensor via Optical Detection Based on a 1D Spin Transition Coordination Polymer

    Science.gov (United States)

    Jureschi, Cătălin M.; Linares, Jorge; Rotaru, Aurelian; Ritti, Marie Hélène; Parlier, Michel; Dîrtu, Marinela M.; Wolff, Mariusz; Garcia, Yann

    2015-01-01

    We have investigated the suitability of using the 1D spin crossover coordination polymer [Fe(4-(2′-hydroxyethyl)-1,2,4-triazole)3]I2·H2O, known to crossover around room temperature, as a pressure sensor via optical detection using various contact pressures up to 250 MPa. A dramatic persistent colour change is observed. The experimental data, obtained by calorimetric and Mössbauer measurements, have been used for a theoretical analysis, in the framework of the Ising-like model, of the thermal and pressure induced spin state switching. The pressure (P)-temperature (T) phase diagram calculated for this compound has been used to obtain the P-T bistability region. PMID:25621610

  19. Optical transitions driven by self-induced walk-off in nematic liquid crystals

    International Nuclear Information System (INIS)

    Brasselet, E.

    2004-01-01

    Optical field induced reorientation of a nematic liquid crystals film is investigated for finite cross-section of the excitation beam. An approach based on self-induced walk-off between extraordinary and ordinary waves is proposed, including the geometrical aspect ratio between the beam diameter and the cell thickness in a perturbative fashion. The bifurcation scenario when the intensity is taken as the control parameter is calculated in the case of a circularly polarized excitation beam at normal incidence. The sudden appearance of a new saddle-node bifurcation is predicted for a walk-off corresponding to realistic experimental conditions. Changes of the light angular momentum transfer induced by walk-off are singled out as a valid candidate to explain observed nonlinear dynamics whose origin is not yet well understood

  20. From optics to superconductivity. Many body effects in transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Roesner, Malte; Schoenhoff, Gunnar; Wehling, Tim [Institute for Theoretical Physics, University of Bremen (Germany); Bremen Center for Computational Material Sciences, University of Bremen (Germany); Steinhoff, Alexander; Jahnke, Frank; Gies, Christopher [Institute for Theoretical Physics, University of Bremen (Germany); Haas, Stephan [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA (United States)

    2015-07-01

    We discuss many body effects in MoS{sub 2} ranging from optical properties to the emergence superconductivity (SC) and charge density wave phases (CDW). Combining ab-initio theory and semiconductor Bloch equations we show that excited carriers cause a redshift of the excitonic ground-state absorption line, while higher excitonic lines disappear successively due to a huge Coulomb-induced band gap shrinkage of more than 500 meV and concomitant exciton binding-energy reductions. Upon strong charge doping, we observe a succession of semiconducting, metallic, SC, and CDW regimes. Both, the SC and the CDW instabilities trace back to a Kohn anomaly and related softening of Brillouin zone boundary phonons.

  1. Nature of the optical transition in (In,Ga)AS(N)/GaP quantum dots (QDs): effect of QD size, indium composition and nitrogen incorporation

    NARCIS (Netherlands)

    Robert, C.; Cornet, C.; da Silva, K.P.; Turban, G.; Mauger, S.J.C.; Thanh, T.N.; Even, J.; Jancu, J.M.; Perrin, M.; Folliot, H.; Rohel, T.; Tricot, S.; Balocchi, A.; Barate, P.; Marie, X.; Koenraad, P.M.; Alonso, M.I.; Goni, N.; Bertru, N.; Durand, O.; Corre, Le A.

    2013-01-01

    The structural properties of (In,Ga)As/GaP quantum dots (QDs) are studied by plane view and cross scanning tunneling microscopy. Time-resolved and pressure dependent photoluminescence experiments show a ground optical transition of indirect type. Mixed k.p/tight-binding simulations indicate a

  2. Optical to ultraviolet spectra of sandwiches of benzene and transition metal atoms: Time dependent density functional theory and many-body calculations

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; García Lastra, Juan Maria; Lopez, M. J.

    2010-01-01

    The optical spectra of sandwich clusters formed by transition metal atoms (titanium, vanadium, and chromium) intercalated between parallel benzene molecules have been studied by time-dependent density functional theory (TDDFT) and many-body perturbation theory. Sandwiches with different number...

  3. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet

    DEFF Research Database (Denmark)

    Pauly, N; Yubero, F; Espinós, J P

    2017-01-01

    Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 ke...

  4. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  5. A model of guarded recursion with clock synchronisation

    DEFF Research Database (Denmark)

    Bizjak, Aleš; Møgelberg, Rasmus Ejlers

    2015-01-01

    productivity to be captured in types. The calculus uses clocks representing time streams and clock quantifiers which allow limited and controlled elimination of modalities. The calculus has since been extended to dependent types by Møgelberg. Both works give denotational semantics but no rewrite semantics....... In previous versions of this calculus, different clocks represented separate time streams and clock synchronisation was prohibited. In this paper we show that allowing clock synchronisation is safe by constructing a new model of guarded recursion and clocks. This result will greatly simplify the type theory...... by removing freshness restrictions from typing rules, and is a necessary step towards defining rewrite semantics, and ultimately implementing the calculus....

  6. Observation and investigation of narrow optical transitions of 167Er3+ ions in femtosecond laser printed waveguides in 7LiYF4 crystal

    Science.gov (United States)

    Minnegaliev, M. M.; Dyakonov, I. V.; Gerasimov, K. I.; Kalinkin, A. A.; Kulik, S. P.; Moiseev, S. A.; Saygin, M. Yu; Urmancheev, R. V.

    2018-04-01

    We produced optical waveguides in the 167Er3+:7 LiYF4 crystal with diameters ranging from 30 to 100 μm by using the depressed-cladding approach with femtosecond laser. Stationary and coherent spectroscopy was performed on the 809 nm optical transitions between the hyperfine sublevels of 4I15/2 and 4I9/2 multiplets of 167Er3+ ions both inside and outside of waveguides. It was found that the spectra of 167Er3+ were slightly broadened and shifted inside the waveguides compared to the bulk crystal spectra. We managed to observe a two-pulse photon echo on this transition and determined phase relaxation times for each waveguide. The experimental results show that the created crystal waveguides doped by rare-earth ions can be used in optical quantum memory and integrated quantum schemes.

  7. Role of Defects and Adsorbed Water Film in Influencing the Electrical, Optical and Catalytic Properties of Transition Metal Oxides

    Science.gov (United States)

    Wang, Qi

    Transition metal oxides (TMOs) constitute a large group of materials that exhibit a wide range of optical, electrical, electrochemical, dielectric and catalytic properties, and thus making them highly regarded as promising materials for a variety of applications in next generation electronic, optoelectronic, catalytic, photonic, energy storage and energy conversion devices. Some of the unique properties of TMOs are their strong electron-electron correlations that exists between the valence electrons of narrow d- or f-shells and their ability to exist in variety of oxidation states. This gives TMOs an enormous range of fascinating electronic and other physical properties. Many of these remarkable properties of TMOs arises from the complex surface charge transfer processes at the oxide surface/electrochemical redox species interface and non-stoichiometry due to the presence of lattice vacancies that may cause significant perturbation to the electronic structure of the material. Stoichiometry, oxidation state of the metal center and lattice vacancy defects all play important roles in affecting the physical properties, electronic structures, device behavior and other functional properties of TMOs. However, the underlying relationships between them is not clearly known. For instance, the exchange of electrons between adsorbates and defects can lead to the passivation of existing defect states or formation of new defects, both of which affect defect equilibria, and consequently, functional properties. In depth understanding of the role of lattice defects on the electrical, catalytic and optical properties of TMOs is central to further expansion of the technological applications of TMO based devices. The focus of this work is to elucidate the interactions of vacancy defects with various electrochemical adsorbates in TMOs. The ability to directly probe the interactions of vacancy defects with gas and liquid phase species under in-operando conditions is highly desirable to

  8. Intact interval timing in circadian CLOCK mutants.

    Science.gov (United States)

    Cordes, Sara; Gallistel, C R

    2008-08-28

    While progress has been made in determining the molecular basis for the circadian clock, the mechanism by which mammalian brains time intervals measured in seconds to minutes remains a mystery. An obvious question is whether the interval-timing mechanism shares molecular machinery with the circadian timing mechanism. In the current study, we trained circadian CLOCK +/- and -/- mutant male mice in a peak-interval procedure with 10 and 20-s criteria. The mutant mice were more active than their wild-type littermates, but there were no reliable deficits in the accuracy or precision of their timing as compared with wild-type littermates. This suggests that expression of the CLOCK protein is not necessary for normal interval timing.

  9. Optical transition pathways in type-II Ga(As)Sb quantum dots

    International Nuclear Information System (INIS)

    Gradkowski, Kamil; Ochalski, Tomasz J.; Williams, David P.; Tatebayashi, Jun; Khoshakhlagh, Arezou; Balakrishnan, Ganesh; O'Reilly, Eoin P.; Huyet, Guillaume; Dawson, Larry R.; Huffaker, Diana L.

    2009-01-01

    We present results of room temperature photoreflectance (PR) and photoluminescence (PL) measurements of molecular-beam epitaxy (MBE)-grown GaAsSb/GaAs quantum dot structures: one with an In 0.14 Ga 0.86 As capping quantum well and one without it. PL was used to determine the structures' ground-state transition energies. This result was employed in an 8-band k.p Hamiltonian to achieve a band structure of the structures, which have different electron confinement. The dot emission energies suggest a large amount of As incorporation into the dots, which is due to enhanced adatom mixing at a higher than normal growth temperature of 510 deg. C. Our calculations indicate a dot composition of 25-50% Sb gives the best fit to experiment. This uncertainty in composition arises due to the fact that different bowing parameters of the ternary alloy could be applied in the calculations. The theoretical analysis accounts well for the main feature in the PR spectra of both samples

  10. Correlation between the structure and optical transition characteristic energies of annealed tin oxide films

    International Nuclear Information System (INIS)

    Majid, W.H.A.; Muhamad, M.R.

    1990-01-01

    Thin films of tin oxide were prepared by room temperature thermal evaporation of blue-black stannous-oxide, SnO powder synthesized from metal tin. X-ray diffractograms reveal that as prepared amorphous samples form polycrystal of SnO by annealing at 300 0 C in air ambient for 30 minutes and they will be oxidized to polycrystal of SnO 2 with further annealing at 500 0 C or above. Optical measurements indicate that the dispersion energy E d and the single oscillator strength E 0 are highest for SnO polycrystal with a magnitude for about 14.0 eV and 4.0 eV respectively compared to 10.4 eV and 3.4 eV for SnO 2 . Further, the plasma energy E p was determined to be in the range of 3.4 eV to 8 eV; increases with increasing composition of SnO 2 . The density of valence electron N(E) can be estimated from the plasma energy E p

  11. Searching for dilaton dark matter with atomic clocks

    Science.gov (United States)

    Arvanitaki, Asimina; Huang, Junwu; Van Tilburg, Ken

    2015-01-01

    We propose an experiment to search for ultralight scalar dark matter (DM) with dilatonic interactions. Such couplings can arise for the dilaton as well as for moduli and axion-like particles in the presence of C P violation. Ultralight dilaton DM acts as a background field that can cause tiny but coherent oscillations in Standard Model parameters such as the fine-structure constant and the proton-electron mass ratio. These minute variations can be detected through precise frequency comparisons of atomic clocks. Our experiment extends current searches for drifts in fundamental constants to the well-motivated high-frequency regime. Our proposed setups can probe scalars lighter than 1 0-15 eV with a discovery potential of dilatonic couplings as weak as 1 0-11 times the strength of gravity, improving current equivalence principle bounds by up to 8 orders of magnitude. We point out potential 1 04 sensitivity enhancements with future optical and nuclear clocks, as well as possible signatures in gravitational-wave detectors. Finally, we discuss cosmological constraints and astrophysical hints of ultralight scalar DM, and show they are complimentary to and compatible with the parameter range accessible to our proposed laboratory experiments.

  12. Crime clocks and target performance maps

    CSIR Research Space (South Africa)

    Cooper, Antony K

    1999-12-01

    Full Text Available the period of analysis. Each segment of a pie chart represents a selected part of the day (eg: a two- or three-hour period) or a day of the week. The first and last segments in the day or week are then adjacent, ensuring that there is no artificial break... clocks We have also used crime clocks to map the proportion of crimes that occur during normal police working hours (07:00 to 16:00, Monday to Friday, in the case of the Johannesburg Area), against those that occur outside these hours. 3. Target...

  13. The Fermilab D0 Master Clock System

    International Nuclear Information System (INIS)

    Rotolo, C.; Fachin, M.; Chappa, S.; Rauch, M.; Needles, C.; Dyer, A.

    1991-11-01

    The Clock System provides bunch crossing related timing signals to various detector subsystems. Accelerator synchronization and monitoring as well as timing signal generation and distribution are discussed. The system is built using three module types implemented in Eurostandard hardware with a VME communications interface. The first two types of modules are used to facilitate synchronization with the accelerator and to generate 23 timing signals that are programmable with one RF bucket (18.8 ns) resolution and 1 ns accuracy. Fifty-four of the third module type are used to distribute the timing signals and two synchronous 53 MHz and 106 MHz clocks to various detector subsystems. 6 refs., 5 figs

  14. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  15. Novel transcriptional networks regulated by CLOCK in human neurons.

    Science.gov (United States)

    Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve

    2017-11-01

    The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Susceptibility of Redundant Versus Singular Clock Domains Implemented in SRAM-Based FPGA TMR Designs

    Science.gov (United States)

    Berg, Melanie D.; LaBel, Kenneth A.; Pellish, Jonathan

    2016-01-01

    We present the challenges that arise when using redundant clock domains due to their clock-skew. Radiation data show that a singular clock domain (DTMR) provides an improved TMR methodology for SRAM-based FPGAs over redundant clocks.

  17. Optical transitions involving unconfined energy states in In/sub x/Ga/sub 1-//sub x/As/GaAs multiple quantum wells

    International Nuclear Information System (INIS)

    Ji, G.; Dobbelaere, W.; Huang, D.; Morkoc, H.

    1989-01-01

    Optical transitions with energies higher than that of the GaAs band gap in highly strained In/sub x/Ga/sub 1-//sub x/As/GaAs multiple--quantum-well structures have been observed in photoreflectance spectra. In some samples as many as seven such structures were present. We identify them as transitions between the unconfined electron states and the confined heavy-hole states. For energies below the GaAs signal, intense transitions corresponding to such unconfined electron subbands were also observed. The intensity of the transitions involving unconfined electron subbands decreases with increasing well width, but is weakly dependent on the mole fraction x. The transmission coefficients are calculated in order to locate the positions of the unconfined electron subband energies. Good agreement is obtained between the experimental data and the theoretical calculation

  18. High-power Al-free active region (λ= 852nm) DFB laser diodes for atomic clocks and interferometry applications

    Science.gov (United States)

    Ligeret, V.; Vermersch, F.-J.; Bansropun, S.; Lecomte, M.; Calligaro, M.; Parillaud, O.; Krakowski, M.

    2017-11-01

    Atomic clocks will be used in the future European positioning system Galileo. Among them, the optically pumped clocks provide a better alternative with comparable accuracy for a more compact system. For these systems, diode lasers emitting at 852nm are strategic components. The laser in a conventional bench for atomic clocks presents disadvantages for spatial applications. A better approach would be to realise a system based on a distributed-feedback laser (DFB). We have developed the technological foundations of such lasers operating at 852nm. These include an Al free active region, a single spatial mode ridge waveguide and a DFB structure. The device is a separate confinement heterostructure with a GaInP large optical cavity and a single compressive strained GaInAsP quantum well. The broad area laser diodes are characterised by low internal losses (value of less than 2MHz.

  19. Quantifying fluctuations in reversible enzymatic cycles and clocks

    Science.gov (United States)

    Wierenga, Harmen; ten Wolde, Pieter Rein; Becker, Nils B.

    2018-04-01

    Biochemical reactions are fundamentally noisy at a molecular scale. This limits the precision of reaction networks, but it also allows fluctuation measurements that may reveal the structure and dynamics of the underlying biochemical network. Here, we study nonequilibrium reaction cycles, such as the mechanochemical cycle of molecular motors, the phosphorylation cycle of circadian clock proteins, or the transition state cycle of enzymes. Fluctuations in such cycles may be measured using either of two classical definitions of the randomness parameter, which we show to be equivalent in general microscopically reversible cycles. We define a stochastic period for reversible cycles and present analytical solutions for its moments. Furthermore, we associate the two forms of the randomness parameter with the thermodynamic uncertainty relation, which sets limits on the timing precision of the cycle in terms of thermodynamic quantities. Our results should prove useful also for the study of temporal fluctuations in more general networks.

  20. Clock Synchronization for Multihop Wireless Sensor Networks

    Science.gov (United States)

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  1. Food at work around the clock

    DEFF Research Database (Denmark)

    Dahl Lassen, Anne; Beck, Anne Marie; Thorsen, Anne Vibeke

    This report brings together 12 invited presentations and outcomes of a workshop on food and meals for employees working irregular hours “around the clock”. The workshop, “Food at work around the clock – The Nordic Model”, was hosted by the National Food Institute at the Technical University...

  2. Hands Together! An Analog Clock Problem

    Science.gov (United States)

    Earnest, Darrell; Radtke, Susan; Scott, Siri

    2017-01-01

    In this article, the authors first present the Hands Together! task. The mathematics in this problem concerns the relationship of hour and minute durations as reflected in the oft-overlooked proportional movements of the two hands of an analog clock. The authors go on to discuss the importance of problem solving in general. They then consider…

  3. The mammalian retina as a clock

    Science.gov (United States)

    Tosini, Gianluca; Fukuhara, Chiaki

    2002-01-01

    Many physiological, cellular, and biochemical parameters in the retina of vertebrates show daily rhythms that, in many cases, also persist under constant conditions. This demonstrates that they are driven by a circadian pacemaker. The presence of an autonomous circadian clock in the retina of vertebrates was first demonstrated in Xenopus laevis and then, several years later, in mammals. In X. laevis and in chicken, the retinal circadian pacemaker has been localized in the photoreceptor layer, whereas in mammals, such information is not yet available. Recent advances in molecular techniques have led to the identification of a group of genes that are believed to constitute the molecular core of the circadian clock. These genes are expressed in the retina, although with a slightly different 24-h profile from that observed in the central circadian pacemaker. This result suggests that some difference (at the molecular level) may exist between the retinal clock and the clock located in the suprachiasmatic nuclei of hypothalamus. The present review will focus on the current knowledge of the retinal rhythmicity and the mechanisms responsible for its control.

  4. Analytic clock frequency selection for global DVFS

    NARCIS (Netherlands)

    Gerards, Marco Egbertus Theodorus; Hurink, Johann L.; Holzenspies, P.K.F.; Kuper, Jan; Smit, Gerardus Johannes Maria

    2014-01-01

    Computers can reduce their power consumption by decreasing their speed using Dynamic Voltage and Frequency Scaling (DVFS). A form of DVFS for multicore processors is global DVFS, where the voltage and clock frequency is shared among all processor cores. Because global DVFS is efficient and cheap to

  5. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    Directory of Open Access Journals (Sweden)

    A. H. Lumpkin

    2009-04-01

    Full Text Available Observations of strongly enhanced optical transition radiation (OTR following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source accelerator and recently at the Advanced Photon Source (APS linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge microbunching instability which leads to coherent OTR emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE free-electron laser (FEL data at APS in the visible regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those “prebunched” structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  6. Crystal phase transition in LixNa1-xGdF4 solid solution nanocrystals - Tuning of optical properties

    KAUST Repository

    Bański, Mateusz

    2014-01-01

    The influence of precursor composition on the crystallization of LixNa1-xGdF4 is investigated and discussed. Nanocrystals are prepared from the thermal decomposition of trifluoroacetates in the presence of trioctylphosphine oxide to provide control over particle size. A crystal phase transition from hexagonal to cubic and to tetragonal is observed by increasing lithium trifluoroacetate (Li-TFA) in the solution. Controlling the composition of LixNa1-xGdF4 nanocrystals results in modified crystal field symmetry and emission properties from doped europium (Eu3+) ions. We report that for lithium (Li+) substitution <15%, the hexagonal crystal field is preferred, while the Eu3+ emission is already tuned, whereas at higher Li+ substitution, a phase change takes place and the number of crystalline matrix defects increases which is reflected in the optical properties of Eu3+. From Eu3+ emission properties, the optimum Li+ content is determined to be ∼6.2% in the prepared LixNa1-xGdF4 nanocrystals.

  7. Low-to-high refractive index contrast transition (RICT) device for low loss polymer-based optical coupling

    Science.gov (United States)

    Calabretta, N.; Cooman, I. A.; Stabile, R.

    2018-04-01

    We propose for the first time a coupling device concept for passive low-loss optical coupling, which is compatible with the ‘generic’ indium phosphide (InP) multi-project-wafer manufacturing. A low-to-high vertical refractive index contrast transition InP waveguide is designed and tapered down to adiabatically couple light into a top polymer waveguide. The on-chip embedded polymer waveguide is engineered at the chip facets for offering refractive-index and spot-size-matching to silica fiber-arrays. Numerical analysis shows that coupling losses lower than 1.5 dB can be achieved for a TE-polarized light between the InP waveguide and the on-chip embedded polymer waveguide at 1550 nm wavelength. The performance is mainly limited by the difficulty to control single-mode operation. However, coupling losses lower than 1.9 dB can be achieved for a bandwidth as large as 200 nm. Moreover, the foreseen fabrication process steps are indicated, which are compatible with the ‘generic’ InP multi-project-wafer manufacturing. A fabrication error tolerance study is performed, indicating that fabrication errors occur only in 0.25 dB worst case excess losses, as long as high precision lithography is used. The obtained results are promising and may open the route to large port counts and cheap packaging of InP-based photonic integrated chips.

  8. Time Inter-Comparison Using Transportable Optical Combs, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — AOSense proposes a free-space, two-way optical time transfer system compatible with global-scale synchronization of current-generation optical atomic clocks. In...

  9. The potential of continuous, local atomic clock measurements for earthquake prediction and volcanology

    Directory of Open Access Journals (Sweden)

    Bondarescu Mihai

    2015-01-01

    Full Text Available Modern optical atomic clocks along with the optical fiber technology currently being developed can measure the geoid, which is the equipotential surface that extends the mean sea level on continents, to a precision that competes with existing technology. In this proceeding, we point out that atomic clocks have the potential to not only map the sea level surface on continents, but also look at variations of the geoid as a function of time with unprecedented timing resolution. The local time series of the geoid has a plethora of applications. These include potential improvement in the predictions of earthquakes and volcanoes, and closer monitoring of ground uplift in areas where hydraulic fracturing is performed.

  10. Influence of the annealing temperature on the optical transitions of InGaAsP-based quantum well structures investigated by photoreflectance spectroscopy

    International Nuclear Information System (INIS)

    Podhorodecki, A.; Kudrawiec, R.; Andrzejewski, J.; Misiewicz, J.; Wojcik, J.; Robinson, B.J.; Thompson, D.A.; Mascher, P.

    2005-01-01

    Photoreflectance (PR) and photoluminescence (PL) spectroscopies have been used to study the effect of the rapid thermal annealing (RTA) on InGaAsP-based quantum wells (QWs) which are the active part of a laser structure tailored at 1.5 μm. In the case of PL, it has been observed that the RTA enhances PL intensity and tunes the emission wavelength of the laser structure to blue. In case of PR due to its absorption character, we were able to study QW transitions related to excited states, besides the fundamental transition observed in PL. In addition, optical transitions related to other part of the laser structure have been observed in PR. It has been shown that there exists a ''critical'' annealing temperature (720 C) where the energy shift appears. We have observed a blueshift for both the ground and excited state transitions, but in the case of the ground state transitions the blueshift has been found to be bigger. The magnitude of this blueshift has been found to change linearly from 0 to ∝15 meV with the rise of temperature from 720 to 780 C. Below 720 C no significant change in the energy of the QW transitions is observed. In the case of PR transitions related to the other part of the laser structure, i.e., the quaternary InGaAsP barriers, it has been observed that after annealing PR features associated with these layers rather do not shift, they change only their line-shape. Also, it has been shown that RTA does not destroy the optical quality of the samples. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Intra- and inter-atomic optical transitions of Fe, Co, and Ni ferrocyanides studied using first-principles many-electron calculations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shinta, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp; Sawada, Yuki; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Onoe, Jun, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp [Department of Materials, Physics and Energy Engineering, Graduated School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Kameyama, Tatsuya; Torimoto, Tsukasa [Department of Crystalline Materials Science, Graduated School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Inaba, Yusuke; Takahashi, Hideharu; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-16 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-06-21

    We have investigated the electronic structures and optical properties of Fe, Co, and Ni ferrocyanide nanoparticles using first-principles relativistic many-electron calculations. The overall features of the theoretical absorption spectra for Fe, Ni, and Co ferrocyanides calculated using a first-principles many-electron method well reproduced the experimental one. The origins of the experimental absorption spectra were clarified by performing a configuration analysis based on the many-electron wave functions. For Fe ferrocyanide, the experimental absorption peaks originated from not only the charge-transfer transitions from Fe{sup 2+} to Fe{sup 3+} but also the 3d-3d intra-transitions of Fe{sup 3+} ions. In addition, the spin crossover transition of Fe{sup 3+} predicted by the many-electron calculations was about 0.24 eV. For Co ferrocyanide, the experimental absorption peaks were mainly attributed to the 3d-3d intra-transitions of Fe{sup 2+} ions. In contrast to the Fe and Co ferrocyanides, Ni ferrocyanide showed that the absorption peaks originated from the 3d-3d intra-transitions of Ni{sup 3+} ions in a low-energy region, while from both the 3d-3d intra-transitions of Fe{sup 2+} ions and the charge-transfer transitions from Fe{sup 2+} to Ni{sup 3+} in a high-energy region. These results were quite different from those of density-functional theory (DFT) calculations. The discrepancy between the results of DFT calculations and those of many-electron calculations suggested that the intra- and inter-atomic transitions of transition metal ions are significantly affected by the many-body effects of strongly correlated 3d electrons.

  12. Thermal properties and optical transition probabilities of Tm3 + doped TeO2-WO3 glass.

    Science.gov (United States)

    Cenk, S; Demirata, B; Oveçoglu, M L; Ozen, G

    2001-10-01

    Glasses with the composition of (1 - x)TeO2 + (x)WO3, where x = 0.15, 0.25 and 0.3 were prepared and, their thermal and absorption measurements were carried out. Differential thermal analysis (DTA) curves taken in the 23-600 degrees C temperature range with a heating rate of 10 degrees C/min reveal a change in the value of the glass transition temperature, Tg, while crystallization was not observed for the glasses containing a WO3 content of more than 15 mol%. All the glasses were found to be moisture-resistant. The absorption bands corresponding to the absorption of the 1G4, 3F2, 3F3 and 3F4, 3H5 and 3H4 levels from the 3H6 ground level of the Tm3+ ion were observed in the optical absorption spectra. Integrated absorption cross-sections of each band except that of 3H5 level was found to vary with the glass composition. Judd-Ofelt analysis was carried out for the samples doped with 1.0 mol% Tm2O3. The omega2 parameter shows the strongest dependence on the host composition and it increases with the increasing WO3 amount. The value of omega4 increases rather slowly while the value of omega6 is practically independent of the composition. The strong dependence of the parameter omega2 indicates that this parameter is related to the structural change and the symmetry of the local environment of the Tm3+ ions in this glass.

  13. Structural, optical and dielectric properties of transition metal (MFe2O4; M = Co, Ni and Zn) nanoferrites

    Science.gov (United States)

    Chand, Prakash; Vaish, Swapnil; Kumar, Praveen

    2017-11-01

    In the present work, transition metal spinel ferrite (MFe2O4; M = Co, Ni, Zn) nanostructures synthesized by chemical co-precipitation method. XRD analysis confirms the formation of cubic spinel-type structure with space group Fd3m and the average crystallite size calculated by Scherrer's formula found to be in 9-14 nm range. Scanning electron microscopy was used to study surface morphology of the samples. Moreover, Raman and PL spectra also confirm the formation of the cubic structure. The Raman spectra measured on cobalt, nickel and zinc ferrite revealed a larger number of phonon bands than expected for the cubic spinel structure. The calculated optical energy band gaps, obtained by Tauc's relation from UV-Vis absorption spectra are found to be as 2.44, 3.54 and 3.25 eV for CoFe2O4, NiFe2O4&ZnFe2O, respectively. The analysis of the complex impedance spectra of all ferrites samples shows the presence of one semicircular arc at all selected temperatures, signifying a key role of the grain boundary contribution. The dielectric constants (ε ‧) were measured in the frequency range from 10 Hz to 5 MHz at different temperatures and is found to be decreased suddenly with an increase in frequency and maintain a steady state or constant at higher frequencies for all the three samples. The AC conductivity is found to be increased with frequency and temperature of all the three samples which is explained on the basis of Koop's phenomenological theory.

  14. Optical and rheological studies on weak gel-sol transition in aqueous solutions of poly(N-isopropylacrylamide-block-polystyrene

    Directory of Open Access Journals (Sweden)

    S. Sanjeevi Prasath

    2017-07-01

    Full Text Available The optical and rheological properties of aqueous solutions of block copolymer composed of low molecular weight poly(N-isopropylacrylamide-b-polystyrene are studied as a function of temperature. From light scattering measurements the block copolymer solution is found to form micelles at very low concentrations and the critical micellar concentration is identified as 0.005 wt%. Apart from the concentration dependence, a unique temperature dependent micelle formation is noted at 34 °C. Further, temperature dependent refractive index measurements shows that the refractive index increases with temperature (beyond the lower critical solution temperature, 31.6 °C of the polymer, and is attributed to the stable rearrangement of the proximal hydrophobic isopropyl-polystyrene chains in the collapsed polymer so as to overcome the steric hindrance effects offered by the hydrophobic chains. In the polymer concentrations investigated for rheological studies, the solution flows, yet manifested solid like behavior with G' > G" with the modulus being frequency dependent and the magnitude of G' two-fold higher than G" implying a weak gel state. Weak gel states are in general noted at high temperatures in most of the polymer systems, contrary to this, in our studies weak gel state is observed at lower temperature. Further, a transition from weak gel to sol state is observed at slightly elevated temperatures. The reason for the existence of weak gel state below the lower critical solution temperature is due to the micellar entanglements of poly(N-isopropylacrylamide-b-polystyrene with one another and whereas above the lower critical solution temperature disentanglement of the micelles makes the system behave like a viscoelastic liquid.

  15. Particularities of optical pumping effects in cold and ultra-slow beams of Na and Cs in the case of cyclic transitions

    KAUST Repository

    Bruvelis, M.; Cinins, A.; Leitis, A.; Efimov, D. K.; Bezuglov, N. N.; Chirtsov, A. S.; Fuso, F.; Ekers, Aigars

    2015-01-01

    The time-dependent population dynamics of hyperfine (HF) levels of n2p3/2 states is examined for cyclic transitions in alkali atoms. We study a slow and cold atomic beam of Na (n = 3) and Cs (n = 6), taking into account the long interaction time of light with atoms (~200 μs) inside the resonant laser beam. Simple analytical expressions for the populations of the excited states and for the intensities of the absorption lines are derived for a three-level system model. We show that at moderate pump laser power the mixing of HF levels is sufficient to form a flow of population from a cyclic transition to partially open transitions. We discuss various phenomena associated with the evolution of optical pumping that cannot be explained by general analysis of two-level system model.

  16. Particularities of optical pumping effects in cold and ultra-slow beams of Na and Cs in the case of cyclic transitions

    KAUST Repository

    Bruvelis, M.

    2015-12-09

    The time-dependent population dynamics of hyperfine (HF) levels of n2p3/2 states is examined for cyclic transitions in alkali atoms. We study a slow and cold atomic beam of Na (n = 3) and Cs (n = 6), taking into account the long interaction time of light with atoms (~200 μs) inside the resonant laser beam. Simple analytical expressions for the populations of the excited states and for the intensities of the absorption lines are derived for a three-level system model. We show that at moderate pump laser power the mixing of HF levels is sufficient to form a flow of population from a cyclic transition to partially open transitions. We discuss various phenomena associated with the evolution of optical pumping that cannot be explained by general analysis of two-level system model.

  17. Molecular clock on a neutral network.

    Science.gov (United States)

    Raval, Alpan

    2007-09-28

    The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.

  18. Supporting Family Awareness with the Whereabouts Clock

    Science.gov (United States)

    Sellen, Abigail; Taylor, Alex S.; Kaye, Joseph ‘Jofish'; Brown, Barry; Izadi, Shahram

    We report the results of a field trial of a situated awareness device for families called the “Whereabouts Clock”. The Clock displays the location of family members using cellphone data as one of four privacy-preserving, deliberately coarse-grained categories ( HOME, WORK, SCHOOL or ELSEWHERE). The results show that awareness of others through the Clock supports not only family communication and coordination but also more emotive aspects of family life such as reassurance, connectedness, identity and social touch. We discuss how the term “awareness” means many things in practice and highlight the importance of designing not just for family activities, but in order to support the emotional, social and even moral aspects of family life.

  19. Clock error models for simulation and estimation

    International Nuclear Information System (INIS)

    Meditch, J.S.

    1981-10-01

    Mathematical models for the simulation and estimation of errors in precision oscillators used as time references in satellite navigation systems are developed. The results, based on all currently known oscillator error sources, are directly implementable on a digital computer. The simulation formulation is sufficiently flexible to allow for the inclusion or exclusion of individual error sources as desired. The estimation algorithms, following from Kalman filter theory, provide directly for the error analysis of clock errors in both filtering and prediction

  20. Molecular clock in neutral protein evolution

    Directory of Open Access Journals (Sweden)

    Wilke Claus O

    2004-08-01

    Full Text Available Abstract Background A frequent observation in molecular evolution is that amino-acid substitution rates show an index of dispersion (that is, ratio of variance to mean substantially larger than one. This observation has been termed the overdispersed molecular clock. On the basis of in silico protein-evolution experiments, Bastolla and coworkers recently proposed an explanation for this observation: Proteins drift in neutral space, and can temporarily get trapped in regions of substantially reduced neutrality. In these regions, substitution rates are suppressed, which results in an overall substitution process that is not Poissonian. However, the simulation method of Bastolla et al. is representative only for cases in which the product of mutation rate μ and population size Ne is small. How the substitution process behaves when μNe is large is not known. Results Here, I study the behavior of the molecular clock in in silico protein evolution as a function of mutation rate and population size. I find that the index of dispersion decays with increasing μNe, and approaches 1 for large μNe . This observation can be explained with the selective pressure for mutational robustness, which is effective when μNe is large. This pressure keeps the population out of low-neutrality traps, and thus steadies the ticking of the molecular clock. Conclusions The molecular clock in neutral protein evolution can fall into two distinct regimes, a strongly overdispersed one for small μNe, and a mostly Poissonian one for large μNe. The former is relevant for the majority of organisms in the plant and animal kingdom, and the latter may be relevant for RNA viruses.

  1. Light and the human circadian clock.

    Science.gov (United States)

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the field's pioneers, and the astonishing finding that circadian rhythms continue a self-sustained oscillation in constant conditions has become central to our understanding of entrainment.Here, we argue that we have to rethink these initial circadian dogmas to fully understand the circadian programme and how it entrains. Light is also the prominent zeitgeber for the human clock, as has been shown experimentally in the laboratory and in large-scale epidemiological studies in real life, and we hypothesise that social zeitgebers act through light entrainment via behavioural feedback loops (zeitnehmer). We show that human entrainment can be investigated in detail outside of the laboratory, by using the many 'experimental' conditions provided by the real world, such as daylight savings time, the 'forced synchrony' imposed by the introduction of time zones, or the fact that humans increasingly create their own light environment. The conditions of human entrainment have changed drastically over the past 100 years and have led to an increasing discrepancy between biological and social time (social jetlag). The increasing evidence that social jetlag has detrimental consequences for health suggests that shift-work is only an extreme form of circadian misalignment, and that the majority of the population in the industrialised world suffers from a similarly 'forced synchrony'.

  2. Analytic clock frequency selection for global DVFS

    OpenAIRE

    Gerards, Marco Egbertus Theodorus; Hurink, Johann L.; Holzenspies, P.K.F.; Kuper, Jan; Smit, Gerardus Johannes Maria

    2014-01-01

    Computers can reduce their power consumption by decreasing their speed using Dynamic Voltage and Frequency Scaling (DVFS). A form of DVFS for multicore processors is global DVFS, where the voltage and clock frequency is shared among all processor cores. Because global DVFS is efficient and cheap to implement, it is used in modern multicore processors like the IBM Power 7, ARM Cortex A9 and NVIDIA Tegra 2. This theory oriented paper discusses energy optimal DVFS algorithms for such processors....

  3. The circadian clock, reward and memory

    Directory of Open Access Journals (Sweden)

    Urs eAlbrecht

    2011-11-01

    Full Text Available During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance and reward may be related to one another. This review will summarize data that describes the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes.

  4. GLONASS orbit/clock combination in VNIIFTRI

    Science.gov (United States)

    Bezmenov, I.; Pasynok, S.

    2015-08-01

    An algorithm and a program for GLONASS satellites orbit/clock combination based on daily precise orbits submitted by several Analytic Centers were developed. Some theoretical estimates for combine orbit positions RMS were derived. It was shown that under condition that RMS of satellite orbits provided by the Analytic Centers during a long time interval are commensurable the RMS of combine orbit positions is no greater than RMS of other satellite positions estimated by any of the Analytic Centers.

  5. Clock distribution system for digital computers

    International Nuclear Information System (INIS)

    Loomis, H.H.; Wyman, R.H.

    1981-01-01

    An apparatus is disclosed for eliminating, in each clock distribution amplifier of a clock distribution system, sequential pulse catch-up error due to one pulse ''overtaking'' a prior clock pulse. The apparatus includes timing means to produce a periodic electromagnetic signal with a fundamental frequency having a fundamental frequency component v'01(T); an array of N signal characteristic detector means, with detector means no. 1 receiving the timing means signal and producing a change-of-state signal v1(T) in response to receipt of a signal above a predetermined threshold; N substantially identical filter means, one filter means being operatively associated with each detector means, for receiving the change-of-state signal vn(T) and producing a modified change-of-state signal v'n(T) (N 1, . . . , n) having a fundamental frequency component that is substantially proportional to v'01(T- theta n(T) with a cumulative phase shift theta n(T) having a time derivative that may be made uniformly and arbitrarily small; and with the detector means n+1 (1 < or = n< n) receiving a modified change-of-state signal vn(T) from filter means no. N and, in response to receipt of such a signal above a predetermined threshold, producing a change-of-state signal vn+1

  6. Biological timing and the clock metaphor: oscillatory and hourglass mechanisms.

    Science.gov (United States)

    Rensing, L; Meyer-Grahle, U; Ruoff, P

    2001-05-01

    Living organisms have developed a multitude of timing mechanisms--"biological clocks." Their mechanisms are based on either oscillations (oscillatory clocks) or unidirectional processes (hourglass clocks). Oscillatory clocks comprise circatidal, circalunidian, circadian, circalunar, and circannual oscillations--which keep time with environmental periodicities--as well as ultradian oscillations, ovarian cycles, and oscillations in development and in the brain, which keep time with biological timescales. These clocks mainly determine time points at specific phases of their oscillations. Hourglass clocks are predominantly found in development and aging and also in the brain. They determine time intervals (duration). More complex timing systems combine oscillatory and hourglass mechanisms, such as the case for cell cycle, sleep initiation, or brain clocks, whereas others combine external and internal periodicities (photoperiodism, seasonal reproduction). A definition of a biological clock may be derived from its control of functions external to its own processes and its use in determining temporal order (sequences of events) or durations. Biological and chemical oscillators are characterized by positive and negative feedback (or feedforward) mechanisms. During evolution, living organisms made use of the many existing oscillations for signal transmission, movement, and pump mechanisms, as well as for clocks. Some clocks, such as the circadian clock, that time with environmental periodicities are usually compensated (stabilized) against temperature, whereas other clocks, such as the cell cycle, that keep time with an organismic timescale are not compensated. This difference may be related to the predominance of negative feedback in the first class of clocks and a predominance of positive feedback (autocatalytic amplification) in the second class. The present knowledge of a compensated clock (the circadian oscillator) and an uncompensated clock (the cell cycle), as well

  7. Sleep Loss Reduces the DNA-Binding of BMAL1, CLOCK, and NPAS2 to Specific Clock Genes in the Mouse Cerebral Cortex

    OpenAIRE

    Mongrain, Valerie; La Spada, Francesco; Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory s...

  8. Photoperiodic plasticity in circadian clock neurons in insects

    Directory of Open Access Journals (Sweden)

    Sakiko eShiga

    2013-08-01

    Full Text Available Since Bünning’s observation of circadian rhythms and photoperiodism in the runner bean Phaseolus multiflorus in 1936, many studies have shown that photoperiodism is based on the circadian clock system. In insects, involvement of circadian clock genes or neurons has been recently shown in the photoperiodic control of developmental arrests, diapause. Based on molecular and neuronal studies in Drosophila melanogaster, photoperiodic changes have been reported for expression patterns of the circadian clock genes, subcellular distribution of clock proteins, fiber distribution, or the number of plausible clock neurons in different species. Photoperiod sets peaks of per or tim mRNA abundance at lights-off in Sarcophaga crassipalpis, Chymomyza costata and Protophormia terraenovae. Abundance of per and Clock mRNA changes by photoperiod in Pyrrhocoris apterus. Subcellular Per distribution in circadian clock neurons changes with photoperiod in P. terraenovae. Although photoperiodism is not known in Leucophaea maderae, under longer day length, more stomata and longer commissural fibers of circadian clock neurons have been found. These plastic changes in the circadian clock neurons could be an important constituent for photoperiodic clock mechanisms to integrate repetitive photoperiodic information and produce different outputs based on day length.

  9. Zero-field optical magnetic resonance study of phosphorus donors in 28-silicon

    Science.gov (United States)

    Morse, Kevin J.; Dluhy, Phillip; Huber, Julian; Salvail, Jeff Z.; Saeedi, Kamyar; Riemann, Helge; Abrosimov, Nikolay V.; Becker, Peter; Pohl, Hans-Joachim; Simmons, S.; Thewalt, M. L. W.

    2018-03-01

    Donor spins in silicon are some of the most promising qubits for upcoming solid-state quantum technologies. The nuclear spins of phosphorus donors in enriched silicon have among the longest coherence times of any solid-state system as well as simultaneous high fidelity qubit initialization, manipulation, and readout. Here we characterize the phosphorus in silicon system in the regime of "zero" magnetic field, where a singlet-triplet spin clock transition can be accessed, using laser spectroscopy and magnetic resonance methods. We show the system can be optically hyperpolarized and has ˜10 s Hahn echo coherence times, even for applied static magnetic fields below Earth's field.

  10. Clock recovery PLL with gated PFD for NRZ ON-OFF Modulated Signals in a retinal implant system.

    Science.gov (United States)

    Brendler, Christian; Aryan, Naser Pour; Rieger, Viola; Rothermel, Albrecht

    2013-01-01

    A Clock Recovery Phase Locked Loop with Gated Phase Frequency Detector (GPLL) for NRZ ON-OFF Modulated Signals with low data transmission rates for an inductively powered subretinal implant system is presented. Low data transmission rate leads to a long absence of inductive powering in the system when zeros are transmitted. Consequently there is no possibility to extract any clock in these pauses, thus the digital circuitry can not work any more. Compared to a commonly used PLL for clock extraction, no certain amount of data transitions is needed. This is achieved by having two operating modes. In one mode the GPLL tracks the HF input signal. In the other, the GPLL is an adjustable oscillator oscillating at the last used frequency. The proposed GPLL is fabricated and measured using a 350 nm High Voltage CMOS technology.

  11. 5-Gb/s 0.18-{mu}m CMOS 2:1 multiplexer with integrated clock extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changchun; Wang Zhigong; Shi Si; Miao Peng [Institute of RF- and OE-ICs, Southeast University, Nanjing 210096 (China); Tian Ling, E-mail: zgwang@seu.edu.c [School of Science and Engineering, Southeast University, Nanjing 210096 (China)

    2009-09-15

    A 5-Gb/s 2:1 MUX (multiplexer) with an on-chip integrated clock extraction circuit which possesses the function of automatic phase alignment (APA), has been designed and fabricated in SMIC's 0.18 {mu}m CMOS technology. The chip area is 670 x 780 {mu}m{sup 2}. At a single supply voltage of 1.8 V, the total power consumption is 112 mW with an input sensitivity of less than 50 mV and an output single-ended swing of above 300 mV. The measurement results show that the IC can work reliably at any input data rate between 1.8 and 2.6 Gb/s with no need for external components, reference clock, or phase alignment between data and clock. It can be used in a parallel optic-fiber data interconnecting system.

  12. 5-Gb/s 0.18-μm CMOS 2:1 multiplexer with integrated clock extraction

    International Nuclear Information System (INIS)

    Zhang Changchun; Wang Zhigong; Shi Si; Miao Peng; Tian Ling

    2009-01-01

    A 5-Gb/s 2:1 MUX (multiplexer) with an on-chip integrated clock extraction circuit which possesses the function of automatic phase alignment (APA), has been designed and fabricated in SMIC's 0.18 μm CMOS technology. The chip area is 670 x 780 μm 2 . At a single supply voltage of 1.8 V, the total power consumption is 112 mW with an input sensitivity of less than 50 mV and an output single-ended swing of above 300 mV. The measurement results show that the IC can work reliably at any input data rate between 1.8 and 2.6 Gb/s with no need for external components, reference clock, or phase alignment between data and clock. It can be used in a parallel optic-fiber data interconnecting system.

  13. 5-Gb/s 0.18-μm CMOS 2:1 multiplexer with integrated clock extraction

    Science.gov (United States)

    Changchun, Zhang; Zhigong, Wang; Si, Shi; Peng, Miao; Ling, Tian

    2009-09-01

    A 5-Gb/s 2:1 MUX (multiplexer) with an on-chip integrated clock extraction circuit which possesses the function of automatic phase alignment (APA), has been designed and fabricated in SMIC's 0.18 μm CMOS technology. The chip area is 670 × 780 μm2. At a single supply voltage of 1.8 V, the total power consumption is 112 mW with an input sensitivity of less than 50 mV and an output single-ended swing of above 300 mV. The measurement results show that the IC can work reliably at any input data rate between 1.8 and 2.6 Gb/s with no need for external components, reference clock, or phase alignment between data and clock. It can be used in a parallel optic-fiber data interconnecting system.

  14. Specific features of nonlinear optical properties of Eu{sup 3+} doped BiFeO{sub 3} nanopowders near antiferromagnetic transition

    Energy Technology Data Exchange (ETDEWEB)

    El Bahraoui, T.; Sekkati, M. [University of Mohammed V, Materials Physics Laboratory, P.B. 1014 Rabat (Morocco); Taibi, M. [University of Mohammed V, LPCMIO, Ecole Normale Supérieure, Rabat (Morocco); Abd-Lefdil, M. [University of Mohammed V, Materials Physics Laboratory, P.B. 1014 Rabat (Morocco); El-Naggar, A.M. [Research chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Abassia, Cairo 11566 (Egypt); AlZayed, N.S. [Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabi (Saudi Arabia); Albassam, A.A. [Research chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia); Kityk, I.V., E-mail: iwank74@gmail.com [Faculty of Electrical Engineering, Czestochowa University Technology, Armii Krajowej 17, PL-42201 Czestochowa (Poland); Maciag, A. [Faculty of Electrical Engineering, Czestochowa University Technology, Armii Krajowej 17, PL-42201 Czestochowa (Poland)

    2016-01-15

    The monitoring of the Eu{sup 3+} doped BiFeO{sub 3} nanopowders was performed near the antiferromagnetic transformation by photoinduced optical second harmonic generation. As photoinduced laser beams we have used bicolor coherent excitations of the Er:glass laser emitting at 1540 nm with frequency repetition about 15 ns. The studies of the photoinduced SHG were performed versus temperature including the temperature range of ferromagnetic–ferroelectric transition (350 °C…390 °C). The optimal light polarization and intensity ratio were chosen; the sensitivity of the photoinduced SHG to the multiferroic phase transitions was explored. - Highlights: • The photoinduced optical second harmonic generation for the Eu{sup 3+} doped BiFeO{sub 3} nanopowders which use two bicolor coherent laser beams incident under different angles gives some enhancement of the SHG. • The photoinduced SHG may be used as sensitive tools for detection of multiferroelectricity. • The nonlinear optical scattering processes play here principal role.

  15. Relativity theory and time perception: single or multiple clocks?

    Science.gov (United States)

    Buhusi, Catalin V; Meck, Warren H

    2009-07-22

    Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset) independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock. Rats were trained to time three durations (e.g., 10, 30, and 90 s). When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results. These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.

  16. Relativity theory and time perception: single or multiple clocks?

    Directory of Open Access Journals (Sweden)

    Catalin V Buhusi

    2009-07-01

    Full Text Available Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock.Rats were trained to time three durations (e.g., 10, 30, and 90 s. When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results.These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.

  17. Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock

    OpenAIRE

    David M. Virshup; Rajesh Narasimamurthy

    2017-01-01

    An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep–wake cycle, feeding–fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entr...

  18. System-wide power management control via clock distribution network

    Science.gov (United States)

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  19. Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10(-11).

    Science.gov (United States)

    Okubo, Sho; Nakayama, Hirotaka; Iwakuni, Kana; Inaba, Hajime; Sasada, Hiroyuki

    2011-11-21

    We determine the absolute frequencies of 56 rotation-vibration transitions of the ν(3) band of CH(4) from 88.2 to 90.5 THz with a typical uncertainty of 2 kHz corresponding to a relative uncertainty of 2.2 × 10(-11) over an average time of a few hundred seconds. Saturated absorption lines are observed using a difference-frequency-generation source and a cavity-enhanced absorption cell, and the transition frequencies are measured with a fiber-laser-based optical frequency comb referenced to a rubidium atomic clock linked to the international atomic time. The determined value of the P(7) F(2)((2)) line is consistent with the International Committee for Weights and Measures recommendation within the uncertainty. © 2011 Optical Society of America

  20. Diamond Electron-Spin Clocks For Space Navigation and Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision clocks are needed in a broad range of applications, including satellite communication, high-bandwidth wireless communication, computing systems, and...

  1. The role of the mechanical clock in medieval science.

    Science.gov (United States)

    Álvarez, Víctor Pérez

    2015-03-01

    The invention and spread of the mechanical clock is a complex and multifaceted historical phenomenon. Some of these facets, such as its social impact, have been widely studied, but their scientific dimensions have often been dismissed. The mechanical clock was probably born as a scientific instrument for driving a model of the universe, and not only natural philosophers but also kings, nobles and other members of the social elites showed an interest in clocks as scientific instruments. Public clocks later spread a new way of telling time based on equal hours, laying the foundations for changes in time consciousness that would accelerate scientific thinking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Synthesizing genetic sequential logic circuit with clock pulse generator.

    Science.gov (United States)

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  3. Improvement of an Atomic Clock using Squeezed Vacuum

    DEFF Research Database (Denmark)

    Kruse, I.; Lange, K; Peise, Jan

    2016-01-01

    , the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.......75 atoms to improve the clock sensitivity of 10000 atoms by 2.05+0.34−0.37  dB. The SQL poses a significant limitation for today’s microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks...

  4. Electromagnetic synchronisation of clocks with finite separation in a rotating system

    International Nuclear Information System (INIS)

    Cohen, J.M.; Moses, H.E.; Rosenblum, A.; Temple Univ., Philadelphia, PA

    1984-01-01

    For clocks on the vertices of a triangle, it is shown that clock synchronisation using electromagnetic signals between finitely spaced clocks in a rotating frame leads to the same synchronisation error as a closely spaced band of clocks along the same light path. In addition, the above result is generalised to n equally spaced clocks. (author)

  5. Optical vector network analysis of ultranarrow transitions in 166Er3+ : 7LiYF4 crystal.

    Science.gov (United States)

    Kukharchyk, N; Sholokhov, D; Morozov, O; Korableva, S L; Cole, J H; Kalachev, A A; Bushev, P A

    2018-02-15

    We present optical vector network analysis (OVNA) of an isotopically purified Er166 3+ :LiYF 4 7 crystal. The OVNA method is based on generation and detection of a modulated optical sideband by using a radio-frequency vector network analyzer. This technique is widely used in the field of microwave photonics for the characterization of optical responses of optical devices such as filters and high-Q resonators. However, dense solid-state atomic ensembles induce a large phase shift on one of the optical sidebands that results in the appearance of extra features on the measured transmission response. We present a simple theoretical model that accurately describes the observed spectra and helps to reconstruct the absorption profile of a solid-state atomic ensemble as well as corresponding change of the refractive index in the vicinity of atomic resonances.

  6. Circadian rhythms and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the rat retina.

    Science.gov (United States)

    Namihira, M; Honma, S; Abe, H; Tanahashi, Y; Ikeda, M; Honma, K

    1999-08-13

    Circadian expression and light-responsiveness of the mammalian clock genes, Clock and BMAL1, in the rat retina were examined by in situ hydbribization under constant darkness. A small but significant daily variation was detected in the Clock transcript level, but not in BMAL1. Light increased the Clock and BMAL1 expressions significantly when examined 60 min after exposure. The light-induced gene expression was phase-dependent for Clock and peaked at ZT2, while rather constant throughout the day for BMAL1. These findings suggest that Clock and BMAL1 play different roles in the generation of circadian rhytm in the retina from those in the suprachiasmatic nucleus. Different roles are also suggested between the two genes in the photic signal transduction in the retina.

  7. Circadian expression of clock genes and clock-controlled genes in the rat retina

    NARCIS (Netherlands)

    Kamphuis, Willem; Cailotto, Cathy; Dijk, Frederike; Bergen, Arthur; Buijs, Ruud M.

    2005-01-01

    The circadian expression patterns of genes encoding for proteins that make up the core of the circadian clock were measured in rat retina using real-time quantitative PCR (qPCR). Transcript levels of several genes previously used for normalization of qPCR assays were determined and the effect of

  8. An association between clock genes and clock-controlled cell cycle genes in murine colorectal tumors

    Czech Academy of Sciences Publication Activity Database

    Soták, Matúš; Polidarová, Lenka; Ergang, Peter; Sumová, Alena; Pácha, Jiří

    2013-01-01

    Roč. 132, č. 5 (2013), s. 1032-1041 ISSN 0020-7136 R&D Projects: GA MZd(CZ) NS9982 Institutional research plan: CEZ:AV0Z50110509 Keywords : cancer * circadian rhythm * peripheral circadian clock Subject RIV: FE - Other Internal Medicine Disciplines Impact factor: 5.007, year: 2013

  9. Electronic and structural aspects of spin transitions observed by optical microscopy. The case of [Fe(ptz)6](BF4)2.

    Science.gov (United States)

    Chong, Christian; Mishra, Haritosh; Boukheddaden, Kamel; Denise, Stéphane; Bouchez, Guillaume; Collet, Eric; Ameline, Jean-Claude; Naik, Anil D; Garcia, Yann; Varret, François

    2010-02-11

    The colorimetric analysis of images recorded with an optical microscope during the onset of the spin crossover transformation allows monitoring separately the involved electronic and structural aspects, through the separation of resonant absorption and scattering effects. Complementary information can also be obtained by using the polarized modes of the microscope. These potentialities are illustrated by the observation of [Fe(ptz)(6)](BF(4))(2) single crystals during the onset of the thermal transitions in the 110-140 K range. We characterized the interplay between the electronic (HS LS) and structural (order disorder) transformations. Elastic stresses and mechanical effects (hopping, self-cleavage) generated by the volume change upon electronic transition are also illustrated, with their impact on the photoswitching properties of the crystals.

  10. In-situ investigation of the order-disorder transition in Cu2ZnSnSe4 by optical transmission spectroscopy

    Directory of Open Access Journals (Sweden)

    Christiane Stroth

    2017-02-01

    Full Text Available The existence of disorder is one possible reason for the limited performance of kesterite solar cells. Therefore further knowledge of the order-disorder phase transition, of factors which influence the degree of order and of methods to determine this material property is still required. In this study we investigated the order-disorder transition in the kesterite material Cu2ZnSnSe4 by in-situ optical transmission spectroscopy during heat treatments. We show in-situ results for the temperature dependence of the band gap and its tailing properties. The influence of cooling rates on the phase transition was analyzed as well as the ordering kinetics during annealing at a constant temperature. The critical temperature of the phase transition was determined and the existence of a control temperature range is shown, which allows for controlling the degree of order by the cooling rate within this range. Additionally we performed Raman analysis to link Raman spectra to the degree of order in Cu2ZnSnSe4. A correlation between the intensity ratio of A-modes as well as B-/ E- Raman modes and the degree of order was found.

  11. New sources of cold atoms for atomic clocks

    International Nuclear Information System (INIS)

    Aucouturier, E.

    1997-01-01

    The purpose of this doctoral work is the realisation of new sources of cold cesium atoms that could be useful for the conception of a compact and high-performance atomic clock. It is based on experiences of atomic physics using light induced atomic manipulation. We present here the experiences of radiative cooling of atoms that have been realised at the Laboratoire de l'Horloge Atomique from 1993 to 1996. Firstly, we applied the techniques of radiative cooling and trapping of atoms in order to create a three-dimensional magneto-optical trap. For this first experience, we developed high quality laser sources, that were used for other experiments. We imagined a new configuration of trapping (two-dimensional magneto-optical trap) that was the basis for a cold atom source. This design gives the atoms a possibility to escape towards one particular direction. Then, we have extracted the atoms from this anisotropic trap in order to create a continuous beam of cold atoms. We have applied three methods of extraction. Firstly, the launching of atoms was performed by reducing the intensity of one of the cooling laser beams in the desired launching direction. Secondly, a frequency detuning between the two laser laser beams produced the launching of atoms by a so-called 'moving molasses'. The third method consisted in applying a static magnetic field that induced the launching of atoms in the direction of this magnetic field. At the same time, another research on cold atoms was initiated at the I.H.A. It consisted in cooling a large volume of atoms from a cell, using an isotropic light. This offers an interesting alternative to the traditional optical molasses. (author)

  12. Optical transitions of Tm3+ in oxyfluoride glasses and compositional and thermal effect on upconversion luminescence of Tm3+/Yb3+-codoped oxyfluoride glasses.

    Science.gov (United States)

    Feng, Li; Wu, Yinsu; Liu, Zhuo; Guo, Tao

    2014-01-24

    Optical properties of Tm(3+)-doped SiO2-BaF2-ZnF2 glasses have been investigated on the basis of the Judd-Ofelt theory. Judd-Ofelt intensity parameters, radiative transition probabilities, fluorescence branching ratios and radiative lifetimes have been calculated for different glass compositions. Upconversion emissions were observed in Tm(3+)/Yb(3+)-codoped SiO2-BaF2-ZnF2 glasses under 980 nm excitation. The effects of composition, concentration of the doping ions, temperature, and excitation pump power on the upconversion emissions were also systematically studied. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Animal clocks: when science meets nature.

    Science.gov (United States)

    Kronfeld-Schor, Noga; Bloch, Guy; Schwartz, William J

    2013-08-22

    Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian 'clock'), with the alternation of environmental light and darkness synchronizing (entraining) these rhythms to the natural day-night cycle. Our knowledge of the circadian system of animals at the molecular, cellular, tissue and organismal levels is remarkable, and we are beginning to understand how each of these levels contributes to the emergent properties and increased complexity of the system as a whole. For the most part, these analyses have been carried out using model organisms in standard laboratory housing, but to begin to understand the adaptive significance of the clock, we must expand our scope to study diverse animal species from different taxonomic groups, showing diverse activity patterns, in their natural environments. The seven papers in this Special Feature of Proceedings of the Royal Society B take on this challenge, reviewing the influences of moonlight, latitudinal clines, evolutionary history, social interactions, specialized temporal niches, annual variation and recently appreciated post-transcriptional molecular mechanisms. The papers emphasize that the complexity and diversity of the natural world represent a powerful experimental resource.

  14. Ultradian feeding in mice not only affects the peripheral clock in the liver, but also the master clock in the brain

    NARCIS (Netherlands)

    Sen, Satish; Raingard, Hélène; Dumont, Stéphanie; Kalsbeek, A.; Vuillez, Patrick; Challet, Etienne

    2017-01-01

    Restricted feeding during the resting period causes pronounced shifts in a number of peripheral clocks, but not the central clock in the suprachiasmatic nucleus (SCN). By contrast, daily caloric restriction impacts also the light-entrained SCN clock, as indicated by shifted oscillations of clock

  15. A Novel Method of Clock Synchronization in Distributed Systems

    Science.gov (United States)

    Li, Gun; Niu, Meng-jie; Chai, Yang-shun; Chen, Xin; Ren, Yan-qiu

    2017-04-01

    Time synchronization plays an important role in the spacecraft formation flight and constellation autonomous navigation, etc. For the application of clock synchronization in a network system, it is not always true that all the observed nodes in the network are interconnected, therefore, it is difficult to achieve the high-precision time synchronization of a network system in the condition that a certain node can only obtain the measurement information of clock from a single neighboring node, but cannot obtain it from other nodes. Aiming at this problem, a novel method of high-precision time synchronization in a network system is proposed. In this paper, each clock is regarded as a node in the network system, and based on the definition of different topological structures of a distributed system, the three control algorithms of time synchronization under the following three cases are designed: without a master clock (reference clock), with a master clock (reference clock), and with a fixed communication delay in the network system. And the validity of the designed clock synchronization protocol is proved by both stability analysis and numerical simulation.

  16. Verge and Foliot Clock Escapement: A Simple Dynamical System

    Science.gov (United States)

    Denny, Mark

    2010-01-01

    The earliest mechanical clocks appeared in Europe in the 13th century. From about 1250 CE to 1670 CE, these simple clocks consisted of a weight suspended from a rope or chain that was wrapped around a horizontal axle. To tell time, the weight must fall with a slow uniform speed, but, under the action of gravity alone, such a suspended weight would…

  17. The Chip-Scale Atomic Clock - Recent Development Progress

    Science.gov (United States)

    2004-09-01

    35th Annual Precise Time and Time Interval (PTTI) Meeting 467 THE CHIP-SCALE ATOMIC CLOCK – RECENT DEVELOPMENT PROGRESS R. Lutwak ...1] R. Lutwak , et al., 2003, “The Chip-Scale Atomic Clock – Coherent Population Trapping vs. Conventional Interrogation,” in

  18. The role of biological clock in glucose homeostasis 

    Directory of Open Access Journals (Sweden)

    Piotr Chrościcki

    2013-06-01

    Full Text Available The mechanism of the biological clock is based on a rhythmic expression of clock genes and clock-controlled genes. As a result of their transcripto-translational associations, endogenous rhythms in the synthesis of key proteins of various physiological and metabolic processes are created. The major timekeeping mechanism for these rhythms exists in the central nervous system. The master circadian clock, localized in suprachiasmatic nucleus (SCN, regulates multiple metabolic pathways, while feeding behavior and metabolite availability can in turn regulate the circadian clock. It is also suggested that in the brain there is a food entrainable oscillator (FEO or oscillators, resulting in activation of both food anticipatory activity and hormone secretion that control digestion processes. Moreover, most cells and tissues express autonomous clocks. Maintenance of the glucose homeostasis is particularly important for the proper function of the body, as this sugar is the main source of energy for the brain, retina, erythrocytes and skeletal muscles. Thus, glucose production and utilization are synchronized in time. The hypothalamic excited orexin neurons control energy balance of organism and modulate the glucose production and utilization. Deficiency of orexin action results in narcolepsy and weight gain, whereas glucose and amino acids can affect activity of the orexin cells. Large-scale genetic studies in rodents and humans provide evidence for the involvement of disrupted clock gene expression rhythms in the pathogenesis of obesity and type 2 diabetes. In general, the current lifestyle of the developed modern societies disturbs the action of biological clock

  19. ClockWork: a Real-Time Feasibility Analysis Tool

    NARCIS (Netherlands)

    Jansen, P.G.; Hanssen, F.T.Y.; Mullender, Sape J.

    ClockWork shows that we can improve the flexibility and efficiency of real-time kernels. We do this by proposing methods for scheduling based on so-called Real-Time Transactions. ClockWork uses Real-Time Transactions which allow scheduling decisions to be taken by the system. A programmer does not

  20. Development and entrainment of the colonic circadian clock during ontogenesis

    Czech Academy of Sciences Publication Activity Database

    Polidarová, Lenka; Olejníková, Lucie; Paušlyová, Lucia; Sládek, Martin; Soták, Matúš; Pácha, Jiří; Sumová, Alena

    2014-01-01

    Roč. 306, č. 4 (2014), G346-G356 ISSN 0193-1857 R&D Projects: GA ČR(CZ) GAP303/12/1108 Institutional support: RVO:67985823 Keywords : circadian clock * clock gene * ontogenesis * circadian entrainment Subject RIV: ED - Physiology Impact factor: 3.798, year: 2014

  1. Clock synchronisation experiment in India using symphonie satellite

    Science.gov (United States)

    Somayajulu, Y. V.; Mathur, B. S.; Banerjee, P.; Garg, S. C.; Singh, L.; Sood, P. C.; Tyagi, T. R.; Jain, C. L.; Kumar, K.

    1979-01-01

    A recent clock synchronization experiment between the National Physical Laboratory (NPL), New Delhi and Space Applications Center (SAC), Ahemedabad, in India via geostationary satellite symphonie 2, stationed at 49 E longitude, is reported. A two-way transmission using a microwave transponder considered to provide the greatest precision in synchronization of two remote clocks is described.

  2. Clock transport synchronisation and the dragging of inertial frames

    International Nuclear Information System (INIS)

    Rosenblum, Arnold

    1987-01-01

    It is shown that it is possible, by using the lack of synchronisation of clocks by clock transport synchronisation in circular orbits, to test for the dragging of inertial frames in Einstein's theory of general relativity. Possible experiments are discussed. (author)

  3. A non-typical sequence of phase transitions in (NH4)3GeF7: optical and structural characterization.

    Science.gov (United States)

    Mel'nikova, S V; Molokeev, M S; Laptash, N M; Misyul, S V

    2016-03-28

    Single crystals of germanium double salt (NH4)3GeF7 = (NH4)2GeF6·NH4F = (NH4)3[GeF6]F were grown and studied by the methods of polarization optics and X-ray diffraction. The birefringence Δn = (no - ne), the rotation angle of the optical indicatrix ϕ(T) and unit cell parameters were measured in the temperature range 100-400 K. Three structural phase transitions were found at the temperatures: T1↓ = 279.2 K (T1↑ = 279.4 K), T2↑ = 270 K (T2↓ = 268.9 K), T3↓ = 218 K (T3↑ = 227 K). An unusual sequence of symmetry transformations with temperature change was established: P4/mbm (Z = 2) (G1) ↔ Pbam (Z = 4) (G2) ↔ P21/c (Z = 4) (G3) ↔ Pa3[combining macron] (Z = 8) (G4). The crystal structures of different phases were determined. The experimental data were additionally interpreted by a group-theoretical analysis of the complete condensate of order parameters taking into account the critical and noncritical atomic displacements. Strengthening of the N-HF hydrogen bonds can be a driving force of the observed phase transitions.

  4. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2.

    Science.gov (United States)

    Dhakal, Krishna P; Duong, Dinh Loc; Lee, Jubok; Nam, Honggi; Kim, Minsu; Kan, Min; Lee, Young Hee; Kim, Jeongyong

    2014-11-07

    We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5-3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV displayed a gradual redshift as the MoS2 film thickness increased from the monolayer, to the bilayer, to the bulk MoS2 and this shift was attributed to the reduction of the gap energy in the Brillouin zone at the K-point as the atomic thickness increased. We also performed n-type chemical doping of MoS2 films using reduced benzyl viologen (BV) and the confocal absorption spectra modified by the doping showed a strong dependence on the atomic thickness: A and B exciton peaks were greatly quenched in the monolayer MoS2 while much less effect was shown in larger thickness and the BG peak either showed very small quenching for 1 L MoS2 or remained constant for larger thicknesses. Our results indicate that confocal absorption spectral imaging can provide comprehensive information on optical transitions of microscopic size intrinsic and doped two-dimensional layered materials.

  5. A self-interfering clock as a "which path" witness.

    Science.gov (United States)

    Margalit, Yair; Zhou, Zhifan; Machluf, Shimon; Rohrlich, Daniel; Japha, Yonathan; Folman, Ron

    2015-09-11

    In Einstein's general theory of relativity, time depends locally on gravity; in standard quantum theory, time is global-all clocks "tick" uniformly. We demonstrate a new tool for investigating time in the overlap of these two theories: a self-interfering clock, comprising two atomic spin states. We prepare the clock in a spatial superposition of quantum wave packets, which evolve coherently along two paths into a stable interference pattern. If we make the clock wave packets "tick" at different rates, to simulate a gravitational time lag, the clock time along each path yields "which path" information, degrading the pattern's visibility. In contrast, in standard interferometry, time cannot yield "which path" information. This proof-of-principle experiment may have implications for the study of time and general relativity and their impact on fundamental effects such as decoherence and the emergence of a classical world. Copyright © 2015, American Association for the Advancement of Science.

  6. Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock.

    Science.gov (United States)

    Narasimamurthy, Rajesh; Virshup, David M

    2017-01-01

    An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep-wake cycle, feeding-fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entrain the peripheral circadian clocks. But, unlike other chemical reactions, the output of the clock system remains nearly constant with fluctuations in ambient temperature, a phenomenon known as temperature compensation. In this brief review, we focus on recent advances in our understanding of the posttranslational modifications, especially a phosphoswitch mechanism controlling the stability of PER2 and its implications for the regulation of temperature compensation.

  7. Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock

    Directory of Open Access Journals (Sweden)

    David M. Virshup

    2017-04-01

    Full Text Available An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep–wake cycle, feeding–fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entrain the peripheral circadian clocks. But, unlike other chemical reactions, the output of the clock system remains nearly constant with fluctuations in ambient temperature, a phenomenon known as temperature compensation. In this brief review, we focus on recent advances in our understanding of the posttranslational modifications, especially a phosphoswitch mechanism controlling the stability of PER2 and its implications for the regulation of temperature compensation.

  8. Standard Clock in primordial density perturbations and cosmic microwave background

    International Nuclear Information System (INIS)

    Chen, Xingang; Namjoo, Mohammad Hossein

    2014-01-01

    Standard Clocks in the primordial epoch leave a special type of features in the primordial perturbations, which can be used to directly measure the scale factor of the primordial universe as a function of time a(t), thus discriminating between inflation and alternatives. We have started to search for such signals in the Planck 2013 data using the key predictions of the Standard Clock. In this Letter, we summarize the key predictions of the Standard Clock and present an interesting candidate example in Planck 2013 data. Motivated by this candidate, we construct and compute full Standard Clock models and use the more complete prediction to make more extensive comparison with data. Although this candidate is not yet statistically significant, we use it to illustrate how Standard Clocks appear in Cosmic Microwave Background (CMB) and how they can be further tested by future data. We also use it to motivate more detailed theoretical model building

  9. A highly miniaturized vacuum package for a trapped ion atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather; Casias, Adrian; Wagner, Adrian R.; Moorman, Matthew; Manginell, Ronald P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Kellogg, James R.; Prestage, John D. [Jet Propulsion Laboratory, Pasadena, California 91109 (United States)

    2016-05-15

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it was sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.

  10. Program to make remote time measurement on the new precise clock system on totem

    CERN Document Server

    Martin, David

    2016-01-01

    For my project at CERN, I worked in the TOTEM team with Michele Quinto and Francesco Cafagna as supervisors. Their team is currently working on an update on TOTEM that includes a module able to measure precisely the time of flight of particles emitted from the collision at CMS. With this additional data, TOTEM will be able to reconstruct precisely the point of the collision in CMS. The main problem posed for this new module is to provide a precise synchronized clock signal to both the TOTEM detectors situated 200 meters after and before CMS. In fact, due to some external parameters, as temperature, the length of the optical fiber guiding the clock signal can vary yielding thus a unwanted phase difference of the clock between the two detectors. The idea is to get rid of the noisy phase difference to make very precise time of flight measurement of the order of the picosecond. This is achieved by continuously measuring the phase difference and correcting the time measurements according to the current phase diffe...

  11. Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA

    International Nuclear Information System (INIS)

    Bellato, M; Isocrate, R; Rampazzo, G; Bazzacco, D; Bortolato, D; Triossi, A; Chavas, J; Mengoni, D; Recchia, F

    2013-01-01

    The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors

  12. Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA

    Science.gov (United States)

    Bellato, M.; Bortolato, D.; Chavas, J.; Isocrate, R.; Rampazzo, G.; Triossi, A.; Bazzacco, D.; Mengoni, D.; Recchia, F.

    2013-07-01

    The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors.

  13. Math Clock: Perangkat Penunjuk Waktu Kreatif untuk Olahraga Otak

    Directory of Open Access Journals (Sweden)

    Galuh Boy Hertantyo

    2014-11-01

    Full Text Available Brain is one of the most vital parts for humans, with the number of brain function that is needed for the body, the brain becomes a very important part of the human body. If there is damage to the brain will certainly cause the performance of the human body will not run properly. Because of that, it’s very important to maintain brain health. There is a way to maintain brain health, for example is by doing brain exercise. Examples of brain exercise is to do simple math calculations or doing brain games like sudoku. Because of that, created a tool that can help the brain to maintain brain exercise. The tool is called math clock. Making math clock tool consists of hardware and software. The hardware consists of RTC as real time data input, ATmega328 as microcontroller and dot matrix 32x16 as a tool to display the output that has been processed by the microcontroller. The software is built using C with Arduino IDE. Math clock will process the data from RTC then processed it, in microcontroller so when output displayed on dot matrix, output will be simple mathematical operation with real time clock data on it. Test results show that, math clock is capable of displaying a simple mathematical calculation operations such as addition, subtraction, multiplication and division. The mathematical operation that display on math clock, appears to be random, so it’s not triggered by same mathematical operation. In math clock the display will change every 20 second, so in 1 minute there are 3 different kinds of mathematical operations. The results of questionnaires of 10 different students, showed 9 out of 10 students said math clock is a tool that easy to use as a clock. Math clock will be alternative for doing brain exercise every day.

  14. Toward a High-Stability Coherent Population Trapping Cs Vapor-Cell Atomic Clock Using Autobalanced Ramsey Spectroscopy

    Science.gov (United States)

    Abdel Hafiz, Moustafa; Coget, Grégoire; Petersen, Michael; Rocher, Cyrus; Guérandel, Stéphane; Zanon-Willette, Thomas; de Clercq, Emeric; Boudot, Rodolphe

    2018-06-01

    Vapor-cell atomic clocks are widely appreciated for their excellent short-term fractional frequency stability and their compactness. However, they are known to suffer on medium and long time scales from significant frequency instabilities, generally attributed to light-induced frequency-shift effects. In order to tackle this limitation, we investigate the application of the recently proposed autobalanced Ramsey (ABR) interrogation protocol onto a pulsed hot-vapor Cs vapor-cell clock based on coherent population trapping (CPT). We demonstrate that the ABR protocol, developed initially to probe the one-photon resonance of quantum optical clocks, can be successfully applied to a two-photon CPT resonance. The applied method, based on the alternation of two successive Ramsey-CPT sequences with unequal free-evolution times and the subsequent management of two interconnected phase and frequency servo loops, is found to allow a relevant reduction of the clock-frequency sensitivity to laser-power variations. This original ABR-CPT approach, combined with the implementation of advanced electronics laser-power stabilization systems, yields the demonstration of a CPT-based Cs vapor-cell clock with a short-term fractional frequency stability at the level of 3.1×10 -13τ-1 /2 , averaging down to the level of 6 ×10-15 at 2000-s integration time. These encouraging performances demonstrate that the use of the ABR interrogation protocol is a promising option towards the development of high-stability CPT-based frequency standards. Such clocks could be attractive candidates in numerous applications including next-generation satellite-based navigation systems, secure communications, instrumentation, or defense systems.

  15. An analysis of clock-shift experiments: is scatter increased and deflection reduced in clock-shifted homing pigeons?

    Science.gov (United States)

    Chappell

    1997-01-01

    Clock-shifting (altering the phase of the internal clock) in homing pigeons leads to a deflection in the vanishing bearing of the clock-shifted group relative to controls. However, two unexplained phenomena are common in clock-shift experiments: the vanishing bearings of the clock-shifted group are often more scattered (with a shorter vector length) than those of the control group, and the deflection of the mean bearing of the clock-shifted group from that of the controls is often smaller than expected theoretically. Here, an analysis of 55 clock-shift experiments performed in four countries over 21 years is reported. The bearings of the clock-shifted groups were significantly more scattered than those of controls and less deflected than expected, but these effects were not significantly different at familiar and unfamiliar sites. The possible causes of the effects are discussed and evaluated with reference to this analysis and other experiments. The most likely causes appear to be conflict between the directions indicated by the sun compass and either unshifted familiar visual landmarks (at familiar sites only) or the unshifted magnetic compass (possible at both familiar and unfamiliar sites).

  16. Theoretical formulation of optical conductivity of La0.7Ca0.3MnO3 exhibiting paramagnetic insulator - ferromagnetic metal transition

    Science.gov (United States)

    Satiawati, L.; Majidi, M. A.

    2017-07-01

    A theory of high-energy optical conductivity of La0.7Ca0.3MnO3 has been proposed previously. The proposed theory works to explain the temperature-dependence of the optical conductivity for the photon energy region above ˜0.5 eV for up to ˜22 eV, but fails to capture the correct physics close to the dc limit in which metal-insulator transition occurs. The missing physics at the low energy has been acknowledged as mainly due to not incorporating phonon degree of freedom and electron-phonon interactions. In this study, we aim to complete the above theory by proposing a more complete Hamiltonian incorporating additional terms such as crystal field, two modes of Jahn-Teller vibrations, and coupling between electrons and the two Jahn-Teller vibrational modes. We solve the model by means of dynamical mean-field theory. At this stage, we aim to derive the analytical formulae involved in the calculation, and formulate the algorithmic implementation for the self-consistent calculation process. Our final goal is to compute the density of states and the optical conductivity for the complete photon energy range from 0 to 22 eV at various temperatures, and compare them with the experimental data. We expect that the improved model preserves the correct temperature-dependent physics at high photon energies, as already captured by the previous model, while it would also reveal ferromagnetic metal - paramagnetic insulator transition at the dc limit.

  17. Cosmic time dilation: The clock paradox revisited

    International Nuclear Information System (INIS)

    Tomaschitz, Roman

    2004-01-01

    The relativistic time dilation is reviewed in a cosmological context. We show that a clock or twin paradox does not arise if cosmic time is properly taken into account. The receding galaxy background provides a unique frame of reference, and the proper times of geodesic as well as accelerated observers can be linked to the universal cosmic time parameter. This suggests to compare the proper time differentials of the respective observers by determining their state of motion in the galaxy grid. In this way, each observer can figure out whether his proper time is dilated or contracted relative to any other. In particular one can come to unambiguous conclusions on the aging of uniformly moving observers, without reference to asymmetries in measurement procedures or accelerations they may have undergone

  18. Nuclear Iran: the race against the clock

    International Nuclear Information System (INIS)

    Delpech, Therese; )

    2005-01-01

    The recent election of an ultra-conservative during the Iranian presidential race seems to further distance the idea of a positive conclusion to negotiations with Tehran. Confronted with a dangerous Iranian agenda, the Europeans have been leading negotiations that have had some positive effect so far, but which also pose the risk of a useless prolongation of discussion. A race against the clock has started in August 2005 when Iran resumed a suspended uranium conversion activity in Isfahan. Time has come for the Security Council to take over - what it should have already done in 2003 - in a way that will make Moscow and, even more Beijing, step out of their somewhat ambiguous stances

  19. A molecular clock for autoionization decay

    International Nuclear Information System (INIS)

    Medišauskas, Lukas; Bello, Roger Y; Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando; Morales, Felipe; Plimak, Lev; Smirnova, Olga; Ivanov, Misha Yu

    2017-01-01

    The ultrafast decay of highly excited electronic states is resolved with a molecular clock technique, using the vibrational motion associated to the ionic bound states as a time-reference. We demonstrate the validity of the method in the context of autoionization of the hydrogen molecule, where nearly exact full dimensional ab-initio calculations are available. The vibrationally resolved photoionization spectrum provides a time–energy mapping of the autoionization process into the bound states that is used to fully reconstruct the decay in time. A resolution of a fraction of the vibrational period is achieved. Since no assumptions are made on the underlying coupled electron–nuclear dynamics, the reconstruction procedure can be applied to describe the general problem of the decay of highly excited states in other molecular targets. (paper)

  20. Parity-Forbidden Transitions and Their Impact on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites.

    Science.gov (United States)

    Meng, Weiwei; Wang, Xiaoming; Xiao, Zewen; Wang, Jianbo; Mitzi, David B; Yan, Yanfa

    2017-07-06

    Using density functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB 2+ X 3 ) and double perovskites (A 2 B + B 3+ X 6 ) (A = Cs or monovalent organic ion, B 2+ = non-Pb divalent metal, B + = monovalent metal, B 3+ = trivalent metal, X = halogen). We show that if B 2+ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect band gap nature. Among the nine possible types of Pb-free metal halide double perovskites, six have direct band gaps. Of these six types, four show inversion symmetry-induced parity-forbidden or weak transitions between band edges, making them not ideal for thin-film solar cell applications. Only one type of Pb-free double perovskite shows optical absorption and electronic properties suitable for solar cell applications, namely, those with B + = In, Tl and B 3+ = Sb, Bi. Our results provide important insights for designing new metal halide perovskites and double perovskites for optoelectronic applications.

  1. Servo Driven Corotation: Development of AN Inertial Clock.

    Science.gov (United States)

    Cheung, Wah-Kwan Stephen

    An inertial clock to test non-metricity of gravity is proposed here. A first, room-temperature, servo corotation -protected, double magnetically suspended precision rotor system is developed for this purpose. The specific goal was to exhibit the properties of such a clock in its entirety at whatever level of precision was achievable. A monolithic system has been completed for these preliminary studies. It includes particular development of individual experimental sub-systems (a hybrid double magnetic suspension; a diffusion pumping system; a microcomputer -controlled eddy-current drive system; and the angular period measuring schemes for the doubly suspended rotors). Double magnetic suspension had been investigated by Beams for other purposes. The upper transducer is optical but parametrized and the lower transducer employs the frequency modulation characteristic of a LC tank circuit. The doubly suspended rotors corotate so that the upper rotor is servoed to rotate at the same angular velocity as that of the lower rotor. This creates a "drag free" environment for the lower rotor and effectively eliminates the gas drag on the lower rotor. Consequently, the decay time constant of the lower rotor increases. With other means of protection, the lower rotor will then, with perfect system operation, suffer no drag and therefore become the inertial time keeper. A commercial microcomputer is introduced to execute the servo-corotation. The tests thus far are, with one exception, run at atmospheric pressure. An idealized analysis for open and closed loop corotation is shown. Such analysis includes only the viscous drag acting on the corotating rotors. The analysis suggests that angular position control be added to the present feedback drive which is of derivative nature only. Open and closed corotation runs show that a strong torsional coupling besides that of the gas drag exists between the rotors. When misalignment of the support pole pieces is deliberately made significant

  2. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock.

    Directory of Open Access Journals (Sweden)

    Taishi Yoshii

    2009-04-01

    Full Text Available Since 1960, magnetic fields have been discussed as Zeitgebers for circadian clocks, but the mechanism by which clocks perceive and process magnetic information has remained unknown. Recently, the radical-pair model involving light-activated photoreceptors as magnetic field sensors has gained considerable support, and the blue-light photoreceptor cryptochrome (CRY has been proposed as a suitable molecule to mediate such magnetosensitivity. Since CRY is expressed in the circadian clock neurons and acts as a critical photoreceptor of Drosophila's clock, we aimed to test the role of CRY in magnetosensitivity of the circadian clock. In response to light, CRY causes slowing of the clock, ultimately leading to arrhythmic behavior. We expected that in the presence of applied magnetic fields, the impact of CRY on clock rhythmicity should be altered. Furthermore, according to the radical-pair hypothesis this response should be dependent on wavelength and on the field strength applied. We tested the effect of applied static magnetic fields on the circadian clock and found that flies exposed to these fields indeed showed enhanced slowing of clock rhythms. This effect was maximal at 300 muT, and reduced at both higher and lower field strengths. Clock response to magnetic fields was present in blue light, but absent under red-light illumination, which does not activate CRY. Furthermore, cry(b and cry(OUT mutants did not show any response, and flies overexpressing CRY in the clock neurons exhibited an enhanced response to the field. We conclude that Drosophila's circadian clock is sensitive to magnetic fields and that this sensitivity depends on light activation of CRY and on the applied field strength, consistent with the radical pair mechanism. CRY is widespread throughout biological systems and has been suggested as receptor for magnetic compass orientation in migratory birds. The present data establish the circadian clock of Drosophila as a model system

  3. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock.

    Science.gov (United States)

    Kamioka, Mari; Takao, Saori; Suzuki, Takamasa; Taki, Kyomi; Higashiyama, Tetsuya; Kinoshita, Toshinori; Nakamichi, Norihito

    2016-03-01

    The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of the Arabidopsis thaliana PSEUDO-RESPONSE REGULATOR(PRR) family is crucial for proper clock function, and transcriptional control of PRRs remains incompletely defined. Here, we demonstrate that direct regulation of PRR5 by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state of PRR5 in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream of PRR5 CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressed PRR5 promoter activity in a transient assay. The regions bound by CCA1 in the PRR5 promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore,ChIP-seq revealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated incca1 lhy double mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression of PRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includes PRR5. © 2016 American Society of Plant Biologists. All rights reserved.

  4. GPS satellite clock determination in case of inter-frequency clock biases for triple-frequency precise point positioning

    Science.gov (United States)

    Guo, Jiang; Geng, Jianghui

    2017-12-01

    Significant time-varying inter-frequency clock biases (IFCBs) within GPS observations prevent the application of the legacy L1/L2 ionosphere-free clock products on L5 signals. Conventional approaches overcoming this problem are to estimate L1/L5 ionosphere-free clocks in addition to their L1/L2 counterparts or to compute IFCBs between the L1/L2 and L1/L5 clocks which are later modeled through a harmonic analysis. In contrast, we start from the undifferenced uncombined GNSS model and propose an alternative approach where a second satellite clock parameter dedicated to the L5 signals is estimated along with the legacy L1/L2 clock. In this manner, we do not need to rely on the correlated L1/L2 and L1/L5 ionosphere-free observables which complicates triple-frequency GPS stochastic models, or account for the unfavorable time-varying hardware biases in undifferenced GPS functional models since they can be absorbed by the L5 clocks. An extra advantage over the ionosphere-free model is that external ionosphere constraints can potentially be introduced to improve PPP. With 27 days of triple-frequency GPS data from globally distributed stations, we find that the RMS of the positioning differences between our GPS model and all conventional models is below 1 mm for all east, north and up components, demonstrating the effectiveness of our model in addressing triple-frequency observations and time-varying IFCBs. Moreover, we can combine the L1/L2 and L5 clocks derived from our model to calculate precisely the L1/L5 clocks which in practice only depart from their legacy counterparts by less than 0.006 ns in RMS. Our triple-frequency GPS model proves convenient and efficient in combating time-varying IFCBs and can be generalized to more than three frequency signals for satellite clock determination.

  5. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    Directory of Open Access Journals (Sweden)

    Juliana Marcolino-Gomes

    Full Text Available Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i drought stress affects gene expression of circadian clock components and (ii several stress responsive genes display diurnal oscillation in soybeans.

  6. Redox rhythm reinforces the circadian clock to gate immune response.

    Science.gov (United States)

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  7. Microstructure processes induced by phase transitions in a CuAu alloy as studied by acoustic emission and optical cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Masek, P.; Chmelik, F.; Sima, V. [Charles Univ., Prague (Czech Republic). Dept. of Metal Physics; Brinck, A.; Neuhaeuser, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Metallphysik und Nukleare Festkoerperphysik

    1999-01-15

    Combined acoustic emission measurements and surface cinematography observations have been applied to determine the structure evolution during thermal loading of the CuAu alloy. Thermal history and the fashion of thermal loading have been shown to affect considerably the structure response of the CuAu alloy on temperature changes. On thermal loading, intense plastic deformation occurs in certain temperature intervals due to the relaxation of internal stresses induced by phase transitions and structure anisotropy. The main mechanism is twinning taking place most probably in (110) planes. Dislocation glide and grain-boundary sliding have also been observed as minor mechanisms. A shape-restoration effect associated with the order-disorder transition is revealed. Thermal cycling with upper temperatures over 500 C may also result in structural damage.

  8. Ultrafast optically induced ferromagnetic/anti-ferromagnetic phase transition in GdTiO3 from first principles

    Science.gov (United States)

    Khalsa, Guru; Benedek, Nicole A.

    2018-03-01

    Epitaxial strain and chemical substitution have been the workhorses of functional materials design. These static techniques have shown immense success in controlling properties in complex oxides through the tuning of subtle structural distortions. Recently, an approach based on the excitation of an infrared active phonon with intense midinfrared light has created an opportunity for dynamical control of structure through special nonlinear coupling to Raman phonons. We use first-principles techniques to show that this approach can dynamically induce a magnetic phase transition from the ferromagnetic ground state to a hidden antiferromagnetic phase in the rare earth titanate GdTiO3 for realistic experimental parameters. We show that a combination of a Jahn-Teller distortion, Gd displacement, and infrared phonon motion dominate this phase transition with little effect from the octahedral rotations, contrary to conventional wisdom.

  9. Anomalous optical switching and thermal hysteresis during semiconductor-metal phase transition of VO2 films on Si substrate

    International Nuclear Information System (INIS)

    Leahu, G.; Li Voti, R.; Sibilia, C.; Bertolotti, M.

    2013-01-01

    We present a detailed infrared study of the semiconductor-to-metal transition (SMT) in a vanadium dioxide (VO 2 ) film deposited on silicon wafer. The VO 2 phase transition is studied in the mid-infrared region by analyzing the transmittance and the reflectance measurements, and the calculated emissivity. The reflectance has been measured in two configurations: from the side of the VO 2 film and from that of Si wafer. The results show a strong asymmetry between the emissivity in the two configurations, and the fact that the emissivity dynamic range from the silicon side is twice as large than that from the VO 2 side. The temperature behaviour of the emissivity during the SMT put into evidence the phenomenon of the anomalous absorption in VO 2 , which has been explained by applying the Maxwell Garnett effective medium approximation theory

  10. A quantum analogy to the classical gravitomagnetic clock effect

    Science.gov (United States)

    Faruque, S. B.

    2018-06-01

    We present an approximation to the solution of Dirac equation in Schwarzschild field found through the use of Foldy-Wouthuysen Hamiltonian. We solve the equation for the positive energy states and found the frequencies by which the states oscillate. Difference of the periods of oscillation of the two states with two different total angular momentum quantum number j has an analogical form of the classical clock effect found in general relativity. But unlike the term that appears as clock effect in classical physics, here the term is quantized. Thus, we find a quantum analogue of the classical gravitomagnetic clock effect.

  11. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.

    Science.gov (United States)

    Dodd, Antony N; Salathia, Neeraj; Hall, Anthony; Kévei, Eva; Tóth, Réka; Nagy, Ferenc; Hibberd, Julian M; Millar, Andrew J; Webb, Alex A R

    2005-07-22

    Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.

  12. High-precision multi-node clock network distribution.

    Science.gov (United States)

    Chen, Xing; Cui, Yifan; Lu, Xing; Ci, Cheng; Zhang, Xuesong; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2017-10-01

    A high precision multi-node clock network for multiple users was built following the precise frequency transmission and time synchronization of 120 km fiber. The network topology adopts a simple star-shaped network structure. The clock signal of a hydrogen maser (synchronized with UTC) was recovered from a 120 km telecommunication fiber link and then was distributed to 4 sub-stations. The fractional frequency instability of all substations is in the level of 10 -15 in a second and the clock offset instability is in sub-ps in root-mean-square average.

  13. Clock synchronization by remote detection of correlated photon pairs

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Caleb; Lamas-Linares, AntIa; Kurtsiefer, Christian [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 (Singapore)], E-mail: christian.kurtsiefer@gmail.com

    2009-04-15

    In this study, we present an algorithm to detect the time and frequency differences of independent clocks based on observation of time-correlated photon pairs. This enables remote coincidence identification in entanglement-based quantum key distribution schemes without dedicated coincidence hardware, pulsed sources with a timing structure or very stable reference clocks. We discuss the method for typical operating conditions and show that the requirement for reference clock accuracy can be relaxed by about five orders of magnitude in comparison with previous schemes.

  14. Optical potentials and isoscalar transition rates from 104 MeV alpha-particle scattering by the N=28 isotopes 48Ca, 50Ti and 52Cr

    International Nuclear Information System (INIS)

    Friedman, E.; Pesl, R.; Gils, H.J.; Rebel, H.; Buschmann, J.; Klewe-Nebenius, H.; Zagromski, S.

    1983-02-01

    Precisely measured differential cross sections for elastic and inelastic scattering from 104 MeV alpha-particles by 48 Ca, 50 Ti and 52 Cr are reported. The analyses aim primarily at the determination of strength, radial shapes and deformation of the scattering potentials, looking for isotonic differences of N = 28 isotones. The mean square radii of the (real) potentials are discussed in terms of mean square radius differences of the matter distributions. The isoscalar transition rates derived by coupled channel analyses of the measured cross sections are compared with electromagnetic rates. In addition to the analyses on the basis of a slightly generalized extended optical model a semi-microscopic deformed folding model has been applied, using a density-dependent effective alpha-bound nucleon interaction. Though an excellent description of the data over the full angular range is obtained the resulting values of the deformation parameters appear to be not consistent with results from various different methods. (orig.) [de

  15. Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2

    DEFF Research Database (Denmark)

    Yang, Yaoming; Duguay, David; Bédard, Nathalie

    2012-01-01

    Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock...

  16. Time measurement - technical importance of most exact clocks

    International Nuclear Information System (INIS)

    Goebel, E.O.; Riehle, F.

    2004-01-01

    The exactness of the best atomic clocks currently shows a temporal variation of 1 second in 30 million years. This means that we have reached the point of the most exact frequency and time measurement ever. In the past, there was a trend towards increasing the exactness in an increasingly fast sequence. Will this trend continue? And who will profit from it? This article is meant to give answers to these questions. This is done by presenting first the level reached currently with the best atomic clocks and describing the research activities running worldwide with the aim of achieving even more exact clocks. In the second part, we present examples of various areas of technical subjects and research in which the most exact clocks are being applied presently and even more exact ones will be needed in the future [de

  17. The New PTB Caesium Fountain Clock CSF2

    National Research Council Canada - National Science Library

    Wynands, R; Bauch, A; Griebsch, D; Schroeder, R; Weyers, S

    2005-01-01

    At PTB a second caesium fountain clock, CSF2, is in the process of being set up. It differs from the first PTB caesium fountain standard CSF1 in a number of details, which are consecutively specified...

  18. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2004-01-01

    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  19. L-lysine-L-tartaric acid: New molecular complex with nonlinear optical properties. Structure, vibrational spectra and phase transitions

    International Nuclear Information System (INIS)

    Debrus, S.; Marchewka, M.K.; Baran, J.; Drozd, M.; Czopnik, R.; Pietraszko, A.; Ratajczak, H.

    2005-01-01

    The first X-ray diffraction and vibrational spectroscopic analysis of a novel complex between L-lysine and L-tartaric acid is reported. The structure was solved in two temperatures (320 and 260 K) showing incommensurate phase between them. Room-temperature powder infrared and Raman measurements for the L-lysine-L-tartaric acid molecular complex (1:1) were carried out. DSC measurements on powder samples indicate two phase transitions points at about 295, 300 and 293, 300 K, for heating and cooling, respectively, with noticeable temperature interval between them. Second harmonic generation efficiency d eff =0.35 d eff (KDP)

  20. Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.

    Science.gov (United States)

    Kim, Jimyung; Delfyett, Peter J

    2008-07-21

    We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.

  1. Reduced Voltage Scaling in Clock Distribution Networks

    Directory of Open Access Journals (Sweden)

    Khader Mohammad

    2009-01-01

    Full Text Available We propose a novel circuit technique to generate a reduced voltage swing (RVS signals for active power reduction on main buses and clocks. This is achieved without performance degradation, without extra power supply requirement, and with minimum area overhead. The technique stops the discharge path on the net that is swinging low at a certain voltage value. It reduces active power on the target net by as much as 33% compared to traditional full swing signaling. The logic 0 voltage value is programmable through control bits. If desired, the reduced-swing mode can also be disabled. The approach assumes that the logic 0 voltage value is always less than the threshold voltage of the nMOS receivers, which eliminate the need of the low to high voltage translation. The reduced noise margin and the increased leakage on the receiver transistors using this approach have been addressed through the selective usage of multithreshold voltage (MTV devices and the programmability of the low voltage value.

  2. Maternal feeding controls fetal biological clock.

    Directory of Open Access Journals (Sweden)

    Hidenobu Ohta

    Full Text Available BACKGROUND: It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD cycle. METHODOLOGY/PRINCIPAL FINDINGS: To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy.

  3. Clock Face Drawing Test Performance in Children with ADHD

    Directory of Open Access Journals (Sweden)

    Ahmad Ghanizadeh

    2013-01-01

    Full Text Available  Introduction: The utility and discriminatory pattern of the clock face drawing test in ADHD is unclear. This study therefore compared Clock Face Drawing test performance in children with ADHD and controls.   Material & methods: 95 children with ADHD and 191 school children were matched for gender ratio and age. ADHD symptoms severities were assessed using DSM-IV ADHD checklist and their intellectual functioning was assessed. The participants completed three clock-drawing tasks, and the following four functions were assessed: Contour score, Numbers score, Hands setting score, and Center score    Results: All the subscales scores of the three clock drawing tests of the ADHD group were lower than that of the control group. In ADHD children, inattention and hyperactivity/impulsivity scores were not related with free drawn clock test scores. When pre-drawn contour test was performed, inattentiveness score was statistically associated with Number score. None of the other variables of age, gender, intellectual functioning, and hand use preference were associated with Numbers score. In pre-drawn clock, no association of ADHD symptoms with any CDT subscales was significant. In addition, more errors are observed with free drawn clock and Pre-drawn contour than pre-drawn clock.    Conclusion: Putting Numbers and Hands setting are more sensitive measures to screen ADHD than Contour and Center drawing. Test performance, except Hands setting, may have already reached a developmental plateau. It is probable that Hand setting deficit in children with ADHD may not decrease from age 8 to 14 years. Performance of children with ADHD is associated with the complexity of CDT.

  4. Highly Accurate Timestamping for Ethernet-Based Clock Synchronization

    OpenAIRE

    Loschmidt, Patrick; Exel, Reinhard; Gaderer, Georg

    2012-01-01

    It is not only for test and measurement of great importance to synchronize clocks of networked devices to timely coordinate data acquisition. In this context the seek for high accuracy in Ethernet-based clock synchronization has been significantly supported by enhancements to the Network Time Protocol (NTP) and the introduction of the Precision Time Protocol (PTP). The latter was even applied to instrumentation and measurement applications through the introduction of LXI....

  5. Clocking In Turbines: Remarks On Physical Nature And Geometric Requirements

    Directory of Open Access Journals (Sweden)

    Swirydczuk Jerzy

    2015-04-01

    Full Text Available The article discusses two issues relating to the clocking phenomenon in turbines, which are the physical course of stator wake deformation in rotor passages and its further interaction with downstream stator blades, and turbine geometry parameters which are believed to be most favourable for clocking. In both cases, the results presented in the article have made it possible to verify and reformulate the previously accepted opinions.

  6. Clock face drawing test performance in children with ADHD.

    Science.gov (United States)

    Ghanizadeh, Ahmad; Safavi, Salar; Berk, Michael

    2013-01-01

    The utility and discriminatory pattern of the clock face drawing test in ADHD is unclear. This study therefore compared Clock Face Drawing test performance in children with ADHD and controls. 95 school children with ADHD and 191 other children were matched for gender ratio and age. ADHD symptoms severities were assessed using DSM-IV ADHD checklist and their intellectual functioning was assessed. The participants completed three clock-drawing tasks, and the following four functions were assessed: Contour score, Numbers score, Hands setting score, and Center score. All the subscales scores of the three clock drawing tests of the ADHD group were lower than that of the control group. In ADHD children, inattention and hyperactivity/ impulsivity scores were not related to free drawn clock test scores. When pre-drawn contour test was performed, inattentiveness score was statistically associated with Number score while none of the other variables of age, gender, intellectual functioning, and hand use preference were associated with that kind of score. In pre-drawn clock, no association of ADHD symptoms with any CDT subscales found significant. In addition, more errors are observed with free drawn clock and Pre-drawn contour than pre-drawn clock. Putting Numbers and Hands setting are more sensitive measures to screen ADHD than Contour and Center drawing. Test performance, except Hands setting, may have already reached a developmental plateau. It is probable that Hand setting deficit in children with ADHD may not decrease from age 8 to 14 years. Performance of children with ADHD is associated with complexity of CDT.

  7. Master Clock and Time-Signal-Distribution System

    Science.gov (United States)

    Tjoelker, Robert; Calhoun, Malcolm; Kuhnle, Paul; Sydnor, Richard; Lauf, John

    2007-01-01

    A timing system comprising an electronic master clock and a subsystem for distributing time signals from the master clock to end users is undergoing development to satisfy anticipated timing requirements of NASA s Deep Space Network (DSN) for the next 20 to 30 years. This system has a modular, flexible, expandable architecture that is easier to operate and maintain than the present frequency and timing subsystem (FTS).

  8. Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition

    International Nuclear Information System (INIS)

    Sun, Jian; Wang, Huihui; Cao, Hui; Ding, Hangjun; Yang, Zhou; Yang, Huai; Wang, Ling; Xie, Hui; Luo, Xueyao; Xiao, Jiumei

    2014-01-01

    A smart polymer stabilized liquid crystal (PSLC) thin film with temperature-controllable light transmittance was prepared based on a smectic-A (SmA)–chiral nematic (N*) phase transition, and then the effect of the composition and the preparation condition of the PSLC film on its thermo-optical (T-O) characteristics has been investigated in detail. Within the temperature range of the SmA phase, the PSLC shows a strong opaque state due to the focal conic alignment of liquid crystal (LC) molecules, while the film exhibits a transparent state result from the parallel alignment of N* phase LC molecules at a higher temperature. Importantly, the PSLC films with different temperature of phase transition and contrast ratio can be prepared by changing the composition of photo-polymerizable monomer/LC/chiral dopant. According to the competition between the polymerization of the curable monomers and the diffusion of LC molecules, the ultraviolet (UV) curing surrounding temperature and the intensity of UV irradiation play a critical role in tuning the size of the polymer network meshes, which in turn influence the contrast ratio and the switching speed of the film. Our observations are expected to pave the way for preparing smart PSLC thin films for applications in areas of smart windows, thermo-detectors and other information recording devices. (paper)

  9. High-pressure Raman and optical absorption studies on lead pyroniobate (Pb2Nb2O7) and pressure-induced phase transitions

    International Nuclear Information System (INIS)

    Jayaraman, A.; Kourouklis, G.A.; Cooper, A.S.; Espinosa, G.P.

    1990-01-01

    High-pressure Raman scattering and optical absorption studies have been carried out on lead pyroniobate (Pb 2 Nb 2 O 7 ) up to 33 GPa, using a gasketed diamond anvil cell. The Raman study reveals the occurrence of two, possibly three, pressure-induced phase changes; a rather subtle change is indicated near 4.5 GPa. The transition near 13 GPa is attributed to a structural transition from the rhombohedral to the cubic pyrochlore structure. The third phase change occurs near 20 GPa. From the broad Raman feature that is observed at about 800 cm -1 , it is concluded that the system turns amorphous at pressures above 20 GPa. The amorphous phase recrystallizes to the original rhombohedral phase, on release of pressure. The broad Raman peaks of the recrystallized phase indicate a high degree of disorder in the material. Lead pyroniobate turns deep red near 30 GPa, from light yellow at ambient pressure. Semi quantitative absorption measurements show that the energy gap shifts red at a rate of 30 meV/GPa. This shift is attributed to the downward motion of the 5d (es) conduction band of Pb

  10. Precision spectroscopy of the 2S-4P{sub 1/2} transition in atomic hydrogen on a cold thermal beam of optically excited 2S atoms

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Axel; Kolachevsky, Nikolai; Alnis, Janis; Yost, Dylan C.; Matveev, Arthur; Parthey, Christian G.; Pohl, Randolf; Udem, Thomas [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Khabarova, Ksenia [FSUE ' VNIIFTRI' , 141570 Moscow (Russian Federation); Haensch, Theodor W. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Ludwig-Maximilians-Universitaet, 80799 Muenchen (Germany)

    2013-07-01

    The 'proton size puzzle', i.e. the discrepancy between the values for the proton r.m.s. charge radius deduced from precision spectroscopy of atomic hydrogen and electron-proton-scattering on one side and the value deduced from muonic hydrogen spectroscopy on the other side, has been persisting for more than two years now. Although huge efforts have been put into trying to resolve this discrepancy from experimental and theoretical side, no convincing argument could be found so far. In this talk, we report on a unique precision spectroscopy experiment on atomic hydrogen, which is aiming to bring some light to the hydrogen part of the puzzle: In contrast to any previous high resolution experiment probing a transition frequency between the meta-stable 2S state and a higher lying nL state (n=3,4,6,8,12, L=S,P,D), our measurement of the 2S-4P{sub 1/2} transition frequency is the first experiment being performed on a cold thermal beam of hydrogen atoms optically excited to the 2S state. We will discuss how this helps to efficiently suppresses leading systematic effects of previous measurements and present the preliminary results we obtained so far.

  11. Shining a light on the Arabidopsis circadian clock.

    Science.gov (United States)

    Oakenfull, Rachael J; Davis, Seth J

    2017-11-01

    The circadian clock provides essential timing information to ensure optimal growth to prevailing external environmental conditions. A major time-setting mechanism (zeitgeber) in clock synchronization is light. Differing light wavelengths, intensities, and photoperiodic duration are processed for the clock-setting mechanism. Many studies on light-input pathways to the clock have focused on Arabidopsis thaliana. Photoreceptors are specific chromic proteins that detect light signals and transmit this information to the central circadian oscillator through a number of different signalling mechanisms. The most well-characterized clock-mediating photoreceptors are cryptochromes and phytochromes, detecting blue, red, and far-red wavelengths of light. Ultraviolet and shaded light are also processed signals to the oscillator. Notably, the clock reciprocally generates rhythms of photoreceptor action leading to so-called gating of light responses. Intermediate proteins, such as Phytochrome interacting factors (PIFs), constitutive photomorphogenic 1 (COP1) and EARLY FLOWERING 3 (ELF3), have been established in signalling pathways downstream of photoreceptor activation. However, the precise details for these signalling mechanisms are not fully established. This review highlights both historical and recent efforts made to understand overall light input to the oscillator, first looking at how each wavelength of light is detected, this is then related to known input mechanisms and their interactions. © 2017 John Wiley & Sons Ltd.

  12. The Molecular Circadian Clock and Alcohol-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Uduak S. Udoh

    2015-10-01

    Full Text Available Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases.

  13. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  14. Polarization dependence of double-resonance optical pumping and electromagnetically induced transparency in the 5S1/2-5P3/2-5D5/2 transition of 87Rb atoms

    International Nuclear Information System (INIS)

    Moon, Han Seb; Noh, Heung-Ryoul

    2011-01-01

    The polarization dependence of double-resonance optical pumping (DROP) in the ladder-type electromagnetically induced transparency (EIT) of the 5S 1/2 -5P 3/2 -5D 5/2 transition of 87 Rb atoms is studied. The transmittance spectra in the 5S 1/2 (F=2)-5P 3/2 (F'=3)-5D 5/2 (F''=2,3,4) transition were observed as caused by EIT, DROP, and saturation effects in the various polarization combinations between the probe and coupling lasers. The features of the double-structure transmittance spectra in the 5S 1/2 (F=2)-5P 3/2 (F'=3)-5D 5/2 (F''=4) cycling transition were attributed to the difference in saturation effect according to the transition routes between the Zeeman sublevels and the EIT according to the two-photon transition probability.

  15. Ellipsometric spectroscopy on polycrystalline CuIn1-xGaxSe2: Identification of optical transitions

    International Nuclear Information System (INIS)

    El Haj Moussa, G.W.; Ajaka, M.; El Tahchi, M.; Eid, E.; Llinares, C.

    2005-01-01

    Bulk materials have been synthesized by the Bridgman technique using the elements Cu, Ga, In, Se. Bulk samples have been characterized by EDS (Energy Dispersive Spectrometer), hot point, X-ray diffraction, photoluminescence and spectroscopic ellipsometry (SE). The samples used were well crystallized and lended strong support to the achievement of a good stoichiometry. Energy levels above the gap in the band scheme were determined by measuring the dielectric function at ambient temperature for energies lying between 1.5 and 5.5 eV. Many transitions were observed above the gap for different samples of CuIn 1-x Ga x Se 2 (0≤x≤1) alloy. Spectroscopic ellipsometry gave evidence for the interpretation of the choice of gap values which were compatible with that obtained from solar spectrum [1]. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Thermophysical, Electrical, and Optical Properties of Selected Metal-Nonmetal Transition Materials: Comprehensive Bibliography with Typical Data.

    Science.gov (United States)

    1978-02-01

    Brueckner, G., " Positron Annihilation in Vanadium(IV) Oxide and Vanadium(III) Oxide," Zentralinst. Kernforsch., Rossendorf, Dresden, ZEK-295, 93-4, 1975...Phys.-Solid State, 17(5), 851-5, 1975. A000130. Andreeff, A. and Brauer, G., " Positron Annihilation Study of the Metal- Insulator Transition in V20 3...thermal expansion at 298 K. Sample N o. a TH l Mkta1 l c phase X - 0 . 0 0 20.2 0.3 - b6 . 0.3 0.04 TI 24.4 -5.6 4-moleli Mgo 25.5 2.0 -9.5 * 2.0 16

  17. Study of thermal pressure and phase transitions in H2O using optical pressure sensors in the diamond anvil cell

    International Nuclear Information System (INIS)

    Sundberg, Sara; Lazor, Peter

    2004-01-01

    We present results of a study on the phase equilibria and pressure-volume-temperature relations for water and ice VII using an optical system designed for Raman spectroscopy and pressure-temperature measurements. The study shows that the strontium borate sensor represents an important tool for high-pressure-high-temperature manometry for temperatures below 600 K. In the pressure-temperature ranges 0-5 GPa and 240-600 K we detected phase transformations between four phases of H 2 O as documented by Raman spectra, pressure-temperature scans, and visual observations. Analysis of the interference fringes and comparison of the experimental data on thermal pressure with the published equations of state (EOSs) show that the heating/cooling cycles were carried out under quasi-isochoric conditions. The experimental results are discussed/analysed on the basis of different EOSs for water and ice

  18. k-dependent spectrum and optical conductivity near metal-insulator transition in multi-orbital hubbard bands

    International Nuclear Information System (INIS)

    Miura, Oki; Fujiwara, Takeo

    2006-01-01

    We apply the dynamical mean field theory (DMFT) combined with the iterative perturbation theory (IPT) to the doubly degenerate e g and the triply degenerate f 2g bands on a simple cubic lattice and a body-centered cubic lattice and calculate the spectrum and optical conductivity in arbitrary electron occupation. The spectrum simultaneously shows the effects of multiplet structure together with the electron ionization and affinity levels of different electron occupations, coherent peaks at the Fermi energy in the metallic phase and an energy gap at an integer filling of electrons for sufficiently large Coulomb U. We also discuss the critical value of the Coulomb U for degenerate orbitals on a simple cubic lattice and a body-centered cubic lattice. (author)

  19. Using Distributed Fiber Optic Sensing to Monitor Large Scale Permafrost Transitions: Preliminary Results from a Controlled Thaw Experiment

    Science.gov (United States)

    Ajo Franklin, J. B.; Wagner, A. M.; Lindsey, N.; Dou, S.; Bjella, K.; Daley, T. M.; Freifeld, B. M.; Ulrich, C.; Gelvin, A.; Morales, A.; James, S. R.; Saari, S.; Ekblaw, I.; Wood, T.; Robertson, M.; Martin, E. R.

    2016-12-01

    In a warming world, permafrost landscapes are being rapidly transformed by thaw, yielding surface subsidence and groundwater flow alteration. The same transformations pose a threat to arctic infrastructure and can induce catastrophic failure of the roads, runways, and pipelines on which human habitation depends. Scalable solutions to monitoring permafrost thaw dynamics are required to both quantitatively understand biogeochemical feedbacks as well as to protect built infrastructure from damage. Unfortunately, permafrost alteration happens over the time scale of climate change, years to decades, a decided challenge for testing new sensing technologies in a limited context. One solution is to engineer systems capable of rapidly thawing large permafrost units to allow short duration experiments targeting next-generation sensing approaches. We present preliminary results from a large-scale controlled permafrost thaw experiment designed to evaluate the utility of different geophysical approaches for tracking the cause, precursors, and early phases of thaw subsidence. We focus on the use of distributed fiber optic sensing for this challenge and deployed distributed temperature (DTS), strain (DSS), and acoustic (DAS) sensing systems in a 2D array to detect thaw signatures. A 10 x 15 x 1 m section of subsurface permafrost was heated using an array of 120 downhole heaters (60 w) at an experimental site near Fairbanks, AK. Ambient noise analysis of DAS datasets collected at the plot, coupled to shear wave inversion, was utilized to evaluate changes in shear wave velocity associated with heating and thaw. These measurements were confirmed by seismic surveys collected using a semi-permanent orbital seismic source activated on a daily basis. Fiber optic measurements were complemented by subsurface thermistor and thermocouple arrays, timelapse total station surveys, LIDAR, secondary seismic measurements (geophone and broadband recordings), timelapse ERT, borehole NMR, soil

  20. Prediction of Navigation Satellite Clock Bias Considering Clock's Stochastic Variation Behavior with Robust Least Square Collocation

    Directory of Open Access Journals (Sweden)

    WANG Yupu

    2016-06-01

    Full Text Available In order to better express the characteristic of satellite clock bias (SCB and further improve its prediction precision, a new SCB prediction model is proposed, which can take the physical feature, cyclic variation and stochastic variation behaviors of the space-borne atomic clock into consideration by using a robust least square collocation (LSC method. The proposed model firstly uses a quadratic polynomial model with periodic terms to fit and abstract the trend term and cyclic terms of SCB. Then for the residual stochastic variation part and possible gross errors hidden in SCB data, the model employs a robust LSC method to process them. The covariance function of the LSC is determined by selecting an empirical function and combining SCB prediction tests. Using the final precise IGS SCB products to conduct prediction tests, the results show that the proposed model can get better prediction performance. Specifically, the results' prediction accuracy can enhance 0.457 ns and 0.948 ns respectively, and the corresponding prediction stability can improve 0.445 ns and 1.233 ns, compared with the results of quadratic polynomial model and grey model. In addition, the results also show that the proposed covariance function corresponding to the new model is reasonable.

  1. Vane clocking effects in an embedded compressor stage

    Science.gov (United States)

    Key, Nicole Leanne

    The objective of this research was to experimentally investigate the effects of vane clocking, the circumferential indexing of adjacent vane rows with similar vane counts, in an embedded compressor stage. Experiments were performed in the Purdue 3-Stage Compressor, which consists of an IGV followed by three stages. The IGV, Stator 1, and Stator 2 have identical vane counts of 44, and the effects of clocking were studied on Stage 2. The clocking configuration that located the upstream vane wake on the Stator 2 leading edge was identified with total pressure measurements at the inlet to Stator 2 and confirmed with measurements at the exit of Stator 2. For both loading conditions, the total temperature results showed that there was no measurable change associated with vane clocking in the amount of work done on the flow. At design loading, the change in stage efficiency with vane clocking was 0.27 points between the maximum and minimum efficiency clocking configurations. The maximum efficiency configuration was the case where the Stator 1 wake impinged on the Stator 2 leading edge. This condition produced a shallower and thinner Stator 2 wake compared to the clocking configuration that located the wake in the middle of the Stator 2 passage. By locating the Stator 1 wake at the leading edge, it dampened the Stator 2 boundary layer response to inlet fluctuations associated with the Rotor 2 wakes. At high loading, the change in Stage 2 efficiency increased to 1.07 points; however, the maximum efficiency clocking configuration was the case where the Stator 1 wake passed through the middle of the downstream vane passage. At high loading, the flow physics associated with vane clocking were different than at design loading because the location of the Stator 1 wake fluid on the Stator 2 leading edge triggered a boundary layer separation on the suction side of Stator 2 producing a wider and deeper wake. Vane clocking essentially affects the amount of interaction between the

  2. The retinal clock in mammals: role in health and disease

    Directory of Open Access Journals (Sweden)

    Felder-Schmittbuhl MP

    2017-05-01

    Full Text Available Marie-Paule Felder-Schmittbuhl,1,* Hugo Calligaro,2 Ouria Dkhissi-Benyahya2,* 1Institute of Cellular and Integratives Neurosciences, UPR3212, CNRS, Université de Strasbourg, Strasbourg, 2University of Lyon, Stem Cell and Brain Research Institute, INSERM U1208, Bron, France *These authors contributed equally to this work Abstract: The mammalian retina contains an extraordinary diversity of cell types that are highly organized into precise circuits to perceive and process visual information in a dynamic manner and transmit it to the brain. Above this builds up another level of complex dynamic, orchestrated by a circadian clock located within the retina, which allows retinal physiology, and hence visual function, to adapt to daily changes in light intensity. The mammalian retina is a remarkable model of circadian clock because it harbors photoreception, self-sustained oscillator function, and physiological outputs within the same tissue. However, the location of the retinal clock in mammals has been a matter of long debate. Current data have shown that clock properties are widely distributed among retinal cells and that the retina is composed of a network of circadian clocks located within distinct cellular layers. Nevertheless, the identity of the major pacemaker, if any, still warrants identification. In addition, the retina coordinates rhythmic behavior by providing visual input to the master hypothalamic circadian clock in the suprachiasmatic nuclei (SCN. This light entrainment of the SCN to the light/dark cycle involves a network of retinal photoreceptor cells: rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs. Although it was considered that these photoreceptors synchronized both retinal and SCN clocks, new data challenge this view, suggesting that none of these photoreceptors is involved in photic entrainment of the retinal clock. Because circadian organization is a ubiquitous feature of the retina and controls

  3. Optical dephasing, hyperfine structure, and hyperfine relaxation associated with the 580.8-nm 7F0-5D0 transition of europium in Eu/sup 3+/:Y2O3

    International Nuclear Information System (INIS)

    Babbitt, W.R.; Lezama, A.; Mossberg, T.W.

    1989-01-01

    We have employed spectral-hole-burning, coherent-transient, and optical-rf double-resonance techniques to measure various parameters associated with the 580.8-nm 7 F 0 - 5 D 0 transition of Eu/sup 3+/ doped into Y 2 O 3 . In particular, we have measured the hyperfine splittings of the terminal levels (for both /sup 151/Eu and /sup 153/Eu), an effective thermalization rate of the ground-state ( 7 F 0 ) hyperfine manifold over the temperature range of ≅4--15 K, and the homogeneous linewidth of the optical transition over the range of ≅14--35 K. Large ratios of inhomogeneous to homogeneous linewidth at elevated temperatures (10 3 at 25 K) and long ground-state hyperfine thermalization times (>30 h at 4 K) make this an interesting crystal in the context of spectrally addressable optical memories

  4. Minimal tool set for a prokaryotic circadian clock.

    Science.gov (United States)

    Schmelling, Nicolas M; Lehmann, Robert; Chaudhury, Paushali; Beck, Christian; Albers, Sonja-Verena; Axmann, Ilka M; Wiegard, Anika

    2017-07-21

    Circadian clocks are found in organisms of almost all domains including photosynthetic Cyanobacteria, whereby large diversity exists within the protein components involved. In the model cyanobacterium Synechococcus elongatus PCC 7942 circadian rhythms are driven by a unique KaiABC protein clock, which is embedded in a network of input and output factors. Homologous proteins to the KaiABC clock have been observed in Bacteria and Archaea, where evidence for circadian behavior in these domains is accumulating. However, interaction and function of non-cyanobacterial Kai-proteins as well as homologous input and output components remain mainly unclear. Using a universal BLAST analyses, we identified putative KaiC-based timing systems in organisms outside as well as variations within Cyanobacteria. A systematic analyses of publicly available microarray data elucidated interesting variations in circadian gene expression between different cyanobacterial strains, which might be correlated to the diversity of genome encoded clock components. Based on statistical analyses of co-occurrences of the clock components homologous to Synechococcus elongatus PCC 7942, we propose putative networks of reduced and fully functional clock systems. Further, we studied KaiC sequence conservation to determine functionally important regions of diverged KaiC homologs. Biochemical characterization of exemplary cyanobacterial KaiC proteins as well as homologs from two thermophilic Archaea demonstrated that kinase activity is always present. However, a KaiA-mediated phosphorylation is only detectable in KaiC1 orthologs. Our analysis of 11,264 genomes clearly demonstrates that components of the Synechococcus elongatus PCC 7942 circadian clock are present in Bacteria and Archaea. However, all components are less abundant in other organisms than Cyanobacteria and KaiA, Pex, LdpA, and CdpA are only present in the latter. Thus, only reduced KaiBC-based or even simpler, solely KaiC-based timing systems

  5. Synthesis of CdSe colloidal quantum dots and quantum transitions under action of low power optical excitation

    International Nuclear Information System (INIS)

    Geru, I.I.; Mirzac, A.V.; Tarabukin, A.B.

    2013-01-01

    CdSe colloidal quantum dots were synthesized at low temperature (80-85 0C) on the basis of chemical reactions in colloidal solutions using trioctylphosphine (TOP), pure Se, oleic acid and cadmium acetate Cd(CH 3 COO) 2 . The average size of the synthesized nanocrystals is 2.04 nm, that is less then exciton Bohr radius in the bulk material, which is equal to 5.6 nm. Therefore in such QDs the electron with spin ? and the hole with total angular momentum 3/2 are in localized or slightly delocalized states. In absorption spectra in the UV-VIS range the lines corresponding to quantum transitions between hole state 1S 3/2 (h), 2S 3/2 (h), 1P 3/2 (h) and electron state 1S 1/2 (e), 1P 1/2 (1S 3/2 (h)→1S 1/2 (e), 2S 3/2 (h)→1S 1/2 (e) and 1P 3/2 (h) →1P 1/2 (e)) are detected. The location of photoluminescence maxima of QDs in hexane and in powder state coincide in the limits of experimental errors (570 and 568 nm, respectively). In photoluminescence spectra of powder QDs a broad long-wavelength band of low intensity with maximum at 570 nm was detected. (authors)

  6. On a possible origin of the 2.87 eV optical transition in GaNP

    International Nuclear Information System (INIS)

    Buyanova, I A; Izadifard, M; Chen, W M; Xin, H P; Tu, C W

    2006-01-01

    Temperature dependent photoluminescence excitation spectroscopy is employed to evaluate basic physical properties of the 2.87 eV absorption peak, recently discovered for the GaN x P 1-x alloys. Whereas the appearance of this transition is found to be facilitated by incorporation of N and also H atoms, its intensity does not scale with the N content in the alloys. This questions the possible association of this feature with an N-related localized state. On the basis of the results of temperature dependent measurements, it is concluded that the state involved has a non-Γ character. Excitation of the known N-related localized states via this state is found to be non-selective, unlike that between the N-related centres. The observed properties are shown to be barely consistent with those predicted for the higher lying localized state of the isolated N atom derived from the Γ conduction band minimum (CBM). Alternative explanations for the '2.87 eV' state as being due to either a t 2 component of the X 3 c (or L 1 c ) CBM or a level arising from a complex of N and H (in some form) are also discussed

  7. Nonlinear magneto-optical rotation produced by atoms near a J=1→J=0 transition

    International Nuclear Information System (INIS)

    Roscinski, Vitalij; Czub, Janusz; Miklaszewski, Wieslaw

    2004-01-01

    The nonlinear magneto-optical rotation in a medium consisting of J=1→J=0 atoms placed in a static magnetic field is studied. The density matrix approach and irreducible atomic basis are used to describe the state of the atomic system. The stationary propagation equations for two collinear laser beams with perpendicular circular polarizations are derived and analyzed in the case of the magnetic field perpendicular to the light propagation direction. The effect of the linear polarization rotation toward the direction parallel or perpendicular to the magnetic field vector and lossless propagation of the resulting light are predicted. The conversion of the circularly polarized beam into linearly polarized one is shown. The propagation of the leading edges of switched on cw-laser beams and their stationary propagation are analyzed numerically. The dependence of the considered effects on the light detuning and on the additional magnetic field component parallel to the light propagation direction is discussed. The destructive role of the collisional relaxation is demonstrated

  8. Magnetic Phase Transition in Ion-Irradiated Ultrathin CoN Films via Magneto-Optic Faraday Effect.

    Science.gov (United States)

    Su, Chiung-Wu; Chang, Yen-Chu; Chang, Sheng-Chi

    2013-11-15

    The magnetic properties of 1 nm thick in-plane anisotropic Co ultrathin film on ZnO(0001) were investigated through successive 500 eV nitrogen-ion sputtering. Magneto-optical Faraday effects were used to observe the evolution of the ion-irradiated sample in longitudinal and perpendicular magnetic fields. The ferromagnetic phase of the initial in-plane anisotropic fcc β-Co phase transformation to β-Co(N) phase was terminated at paramagnetic CoN x phase. In-plane anisotropy with weak out-of-plane anisotropy of the Co/ZnO sample was initially observed in the as-grown condition. In the sputtering process, the N⁺ ions induced simultaneous sputtering and doping. An abrupt spin reorientation behavior from in-plane to out-of-plane was found under prolonged sputtering condition. The existence of perpendicular anisotropy measured from the out-of-plane Faraday effect may be attributed to the co-existence of residual β-Co and Co₄N exchange bonding force by the gradual depletion of Co-N thickness.

  9. Optical to near-infrared transit observations of super-Earth GJ 1214b: water-world or mini-Neptune?

    Science.gov (United States)

    de Mooij, E. J. W.; Brogi, M.; de Kok, R. J.; Koppenhoefer, J.; Nefs, S. V.; Snellen, I. A. G.; Greiner, J.; Hanse, J.; Heinsbroek, R. C.; Lee, C. H.; van der Werf, P. P.

    2012-02-01

    Context. GJ 1214b, the 6.55 Earth-mass transiting planet recently discovered by the MEarth team, has a mean density of ~35% of that of the Earth. It is thought that this planet is either a mini-Neptune, consisting of a rocky core with a thick, hydrogen-rich atmosphere, or a planet with a composition dominated by water. Aims: In the case of a hydrogen-rich atmosphere, molecular absorption and scattering processes may result in detectable radius variations as a function of wavelength. The aim of this paper is to measure these variations. Methods: We have obtained observations of the transit of GJ 1214b in the r- and I-band with the Isaac Newton Telescope (INT), in the g-, r-, i- and z-bands with the 2.2 m MPI/ESO telescope, in the Ks-band with the Nordic Optical Telescope (NOT), and in the Kc-band with the William Herschel Telescope (WHT). By comparing the transit depth between the the different bands, which is a measure for the planet-to-star size ratio, the atmosphere is investigated. Results: We do not detect clearly significant variations in the planet-to-star size ratio as function of wavelength. Although the ratio at the shortest measured wavelength, in g-band, is 2σ larger than in the other bands. The uncertainties in the Ks and Kc bands are large, due to systematic features in the light curves. Conclusions: The tentative increase in the planet-to-star size ratio at the shortest wavelength could be a sign of an increase in the effective planet-size due to Rayleigh scattering, which would require GJ 1214b to have a hydrogen-rich atmosphere. If true, then the atmosphere has to have both clouds, to suppress planet-size variations at red optical wavelengths, as well as a sub-solar metallicity, to suppress strong molecular features in the near- and mid-infrared. However, star spots, which are known to be present on the host-star's surface, can (partly) cancel out the expected variations in planet-to-star size ratio, because the lower surface temperature of the

  10. British domestic synchronous clocks 1930-1980 the rise and fall of a technology

    CERN Document Server

    Pook, Leslie Philip

    2015-01-01

    This book complements available one-make books on domestic synchronous clocks. It is also a history of science book that sets British domestic synchronous clocks, their manufacturers and technology in their social context. Part I covers the historical background, British domestic synchronous clock manufacturers and brands, how synchronous clocks work, domestic synchronous clock cases, practical advice on the servicing of domestic synchronous clocks, and analysis of the marketing and reliability of British domestic synchronous clocks. This analysis provides an explanation of the rise and eventual fall of their technology. Part II contains galleries of a selection of British domestic synchronous clocks, and of the movements with which they are fitted. There is a front and back view of each clock, together with a brief description. Views of each movement include views with the movement partly dismantled, together with a brief technical description of the movement. This profusely illustrated book is primarily fo...

  11. FUNCTIONAL IMPLICATIONS OF THE CLOCK 3111T/C SINGLE-NUCLEOTIDE POLYMORPHISM

    Directory of Open Access Journals (Sweden)

    Angela Renee Ozburn

    2016-04-01

    Full Text Available Circadian rhythm disruptions are prominently associated with Bipolar Disorder (BD. Circadian rhythms are regulated by the molecular clock, a family of proteins that function together in a transcriptional-translational feedback loop. The CLOCK protein is a key transcription factor of this feedback loop, and previous studies have found that manipulations of the Clock gene are sufficient to produce manic-like behavior in mice (Roybal et al., 2007. The Clock 3111T/C single-nucleotide polymorphism (SNP; rs1801260 is a genetic variation of the human Clock gene that is significantly associated with increased frequency of manic episodes in BD patients (Benedetti et al., 2003. The 3111T/C SNP is located in the 3’ untranslated region of the Clock gene. In this study, we sought to examine the functional implications of the human Clock 3111T/C SNP by transfecting a mammalian cell line (mouse embryonic fibroblasts isolated from Clock -/- knockout mice with pcDNA plasmids containing the human Clock gene with either the T or C SNP at position 3111. We then measured circadian gene expression over a 24 hour time period. We found that the Clock3111C SNP resulted in higher mRNA levels than the Clock 3111T SNP. Further, we found that Per2, a transcriptional target of CLOCK, was also more highly expressed with Clock 3111C expression, indicating the 3’UTR SNP affects the expression, function and stability of Clock mRNA.

  12. Effect of Annealing Temperature on Morphological and Optical Transition of Silver Nanoparticles on c-Plane Sapphire.

    Science.gov (United States)

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Lee, Jihoon

    2018-05-01

    As a promising candidate for the improved performance, silver nanoparticles (Ag NPs) have been successfully adapted in various applications such as photovoltaics, light emitting diodes (LEDs), sensors and catalysis by taking the advantage of their controllable plasmonic properties. In this paper, the control on the morphologies and optical properties of Ag NPs on c-plane sapphire (0001) is demonstrated by the systematic control of annealing temperature (between 200 and 950 °C) with 20 and 6 nm thick Ag films through the solid state dewetting. With the relatively thicker film of 20 nm, various configuration and size of Ag NPs are fabricated such as irregular, round dome-shaped and tiny Ag NPs depending on the annealing temperature. In a shrill contrast, the 6 nm Ag set exhibits a sharp distinction with the formation of densely packed small NPs and ultra-highly dense tiny Ag NPs due to the higher dewetting rate. While, the surface diffusion assumes the main driving force in the evolution process of Ag NP morphologies up to 550 °C, the sublimation of Ag atoms has played a significant role on top on the surface diffusion between 600 and 950 °C. The reflectance spectra of Ag NPs exhibit the quadrupolar resonance and dipolar resonance peaks, and the evolution of peaks, shift and average reflectance were discussed based on the Ag NPs size and surface coverage. In particular, the dipolar resonance peak in the reflectance spectra red shifts from ~475 to ~570 nm due to the size increment of Ag NPs (38.31 to 74.68 nm). The wide surface coverage of Ag NPs exhibits the highest average reflectance (~27%) and the lowest Raman intensity.

  13. The Circadian Clock-controlled Transcriptome of Developing Soybean Seeds

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson

    2010-07-01

    Full Text Available A number of metabolic and physiological processes in plants are controlled by the circadian clock, which enables a plant to anticipate daily changes in the environment. Relatively little is known about circadian rhythms in developing seeds, which may be important for determining the extent and timing of nutrient storage in grain. Microarray expression profiling was used to identify genes expressed in developing soybean ( seeds that are controlled by the circadian clock. Genes with predicted functions in protein synthesis, fatty acid metabolism, and photosynthesis totaling 1.8% of the mRNAs detected in seed were found to be expressed in a circadian rhythm. Known circadian and light-controlled promoter elements were identified as over-represented in the promoters of clock-controlled seed genes, with the over-represented elements varying according to the phase of circadian expression. A subset of circadian-regulated genes were found to be expressed in different phases in developing seeds with respect to leaves from the same plants, many of which have roles in photosynthesis and carbon metabolism. These results help to characterize the genes and processes in seeds that may be regulated by the circadian clock, and provide some insight into organ-specific phasing of clock controlled gene expression.

  14. A high-precision synchronization circuit for clock distribution

    International Nuclear Information System (INIS)

    Lu Chong; Tan Hongzhou; Duan Zhikui; Ding Yi

    2015-01-01

    In this paper, a novel structure of a high-precision synchronization circuit, HPSC, using interleaved delay units and a dynamic compensation circuit is proposed. HPSCs are designed for synchronization of clock distribution networks in large-scale integrated circuits, where high-quality clocks are required. The application of a hybrid structure of a coarse delay line and dynamic compensation circuit performs roughly the alignment of the clock signal in two clock cycles, and finishes the fine tuning in the next three clock cycles with the phase error suppressed under 3.8 ps. The proposed circuit is implemented and fabricated using a SMIC 0.13 μm 1P6M process with a supply voltage at 1.2 V. The allowed operation frequency ranges from 200 to 800 MHz, and the duty cycle ranges between [20%, 80%]. The active area of the core circuits is 245 × 134 μm 2 , and the power consumption is 1.64 mW at 500 MHz. (paper)

  15. Neurogenetics of Drosophila circadian clock: expect the unexpected.

    Science.gov (United States)

    Jarabo, Patricia; Martin, Francisco A

    2017-12-01

    Daily biological rhythms (i.e. circadian) are a fundamental part of animal behavior. Numerous reports have shown disruptions of the biological clock in neurodegenerative disorders and cancer. In the latter case, only recently we have gained insight into the molecular mechanisms. After 45 years of intense study of the circadian rhtythms, we find surprising similarities among species on the molecular clock that governs biological rhythms. Indeed, Drosophila is one of the most widely used models in the study of chronobiology. Recent studies in the fruit fly have revealed unpredicted roles for the clock machinery in different aspects of behavior and physiology. Not only the central pacemaker cells do have non-classical circadian functions but also circadian genes work in other cells and tissues different from central clock neurons. In this review, we summarize these new evidences. We also recapitulate the most basic features of Drosophila circadian clock, including recent data about the inputs and outputs that connect the central pacemaker with other regions of the brain. Finally, we discuss the advantages and drawbacks of using natural versus laboratory conditions.

  16. Data and clock transmission interface for the WCDA in LHAASO

    International Nuclear Information System (INIS)

    Chu, S.P.; Zhao, L.; Jiang, Z.Y.; Ma, C.; Gao, X.S.; Yang, Y.F.; Liu, S.B.; An, Q.

    2016-01-01

    The Water Cherenkov Detector Array (WCDA) is one of the major components of the Large High Altitude Air Shower Observatory (LHAASO). In the WCDA, 3600 Photomultiplier Tubes (PMTs) and the Front End Electronics (FEEs) are scattered over a 90000 m 2 area, while high precision time measurements (0.5 ns RMS) are required in the readout electronics. To meet this requirement, the clock has to be distributed to the FEEs with high precision. Due to the ''triggerless'' architecture, high speed data transfer is required based on the TCP/IP protocol. To simplify the readout electronics architecture and be consistent with the whole LHAASO readout electronics, the White Rabbit (WR) switches are used to transfer clock, data, and commands via a single fiber of about 400 meters. In this paper, a prototype of data and clock transmission interface for LHAASO WCDA is developed. The performance tests are conducted and the results indicate that the clock synchronization precision of the data and clock transmission is better than 50 ps. The data transmission throughput can reach 400 Mbps for one FEE board and 180 Mbps for 4 FEE boards sharing one up link port in WR switch, which is better than the requirement of the LHAASO WCDA.

  17. Protecting Clock Synchronization: Adversary Detection through Network Monitoring

    Directory of Open Access Journals (Sweden)

    Elena Lisova

    2016-01-01

    Full Text Available Nowadays, industrial networks are often used for safety-critical applications with real-time requirements. Such applications usually have a time-triggered nature with message scheduling as a core property. Scheduling requires nodes to share the same notion of time, that is, to be synchronized. Therefore, clock synchronization is a fundamental asset in real-time networks. However, since typical standards for clock synchronization, for example, IEEE 1588, do not provide the required level of security, it raises the question of clock synchronization protection. In this paper, we identify a way to break synchronization based on the IEEE 1588 standard, by conducting a man-in-the-middle (MIM attack followed by a delay attack. A MIM attack can be accomplished through, for example, Address Resolution Protocol (ARP poisoning. Using the AVISPA tool, we evaluate the potential to perform a delay attack using ARP poisoning and analyze its consequences showing both that the attack can, indeed, break clock synchronization and that some design choices, such as a relaxed synchronization condition mode, delay bounding, and using knowledge of environmental conditions, can make the network more robust/resilient against these kinds of attacks. Lastly, a Configuration Agent is proposed to monitor and detect anomalies introduced by an adversary performing attacks targeting clock synchronization.

  18. Multi-wavelength time-coincident optical communications system and methods thereof

    Science.gov (United States)

    Lekki, John (Inventor); Nguyen, Quang-Viet (Inventor)

    2009-01-01

    An optical communications transmitter includes a oscillator source, producing a clock signal, a data source, producing a data signal, a modulating circuit for modulating the clock signal using the data signal to produce modulating signals, optical drivers, receiving the modulating signals and producing optical driving signals based on the modulating signals and optical emitters, producing small numbers of photons based on the optical driving signals. The small numbers of photons are time-correlated between at least two separate optical transmission wavelengths and quantum states and the small number of photons can be detected by a receiver to reform the data signal.

  19. Fault-tolerant clock synchronization validation methodology. [in computer systems

    Science.gov (United States)

    Butler, Ricky W.; Palumbo, Daniel L.; Johnson, Sally C.

    1987-01-01

    A validation method for the synchronization subsystem of a fault-tolerant computer system is presented. The high reliability requirement of flight-crucial systems precludes the use of most traditional validation methods. The method presented utilizes formal design proof to uncover design and coding errors and experimentation to validate the assumptions of the design proof. The experimental method is described and illustrated by validating the clock synchronization system of the Software Implemented Fault Tolerance computer. The design proof of the algorithm includes a theorem that defines the maximum skew between any two nonfaulty clocks in the system in terms of specific system parameters. Most of these parameters are deterministic. One crucial parameter is the upper bound on the clock read error, which is stochastic. The probability that this upper bound is exceeded is calculated from data obtained by the measurement of system parameters. This probability is then included in a detailed reliability analysis of the system.

  20. CIRCADIAN CLOCK-ASSOCIATED 1 Inhibits Leaf Senescence in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yi Song

    2018-03-01

    Full Text Available Leaf senescence is an integral part of plant development, and the timing and progressing rate of senescence could substantially affect the yield and quality of crops. It has been known that a circadian rhythm synchronized with external environmental cues is critical for the optimal coordination of various physiological and metabolic processes. However, the reciprocal interactions between the circadian clock and leaf senescence in plants remain unknown. Here, through measuring the physiological and molecular senescence related markers of several circadian components mutants, we found that CIRCADIAN CLOCK-ASSOCIATED 1 inhibits leaf senescence. Further molecular and genetic studies revealed that CCA1 directly activates GLK2 and suppresses ORE1 expression to counteract leaf senescence. As plants age, the expression and periodic amplitude of CCA1 declines and thus weakens the inhibition of senescence. Our findings reveal an age-dependent circadian clock component of the process of leaf senescence.