WorldWideScience

Sample records for optical clock transition

  1. The absolute frequency of the 87Sr optical clock transition

    DEFF Research Database (Denmark)

    Campbell, Gretchen K.; Ludlow, Andrew D.; Blatt, Sebastian;

    2008-01-01

    The absolute frequency of the 1S0–3P0 clock transition of 87Sr has been measured to be 429 228 004 229 873.65 (37) Hz using lattice-confined atoms, where the fractional uncertainty of 8.6 × 10-16 represents one of the most accurate measurements of an atomic transition frequency to date. After a d...... is made possible using a femtosecond laser based optical frequency comb to phase coherently connect the optical and microwave spectral regions and by a 3.5 km fibre transfer scheme to compare the remotely located clock signals....

  2. Optical clock networks

    Science.gov (United States)

    Riehle, Fritz

    2017-01-01

    Within the last decade, optical atomic clocks have surpassed the best cesium clocks, which are used to realize the unit of time and frequency, in terms of accuracy and stability by about two orders of magnitude. When remote optical atomic clocks are connected by links without degradation in the clock signals, an optical clock network is formed, with distinct advantages for the dissemination of time, geodesy, astronomy and basic and applied research. Different approaches for time and frequency transfer in the microwave and optical regime, via satellites and free-space links, optical fibre links, or transportable optical atomic clocks, can be used to form a hybrid clock network that may allow a future redefinition of the unit of time based on an optical reference transition.

  3. Optical Lattice Clocks

    Science.gov (United States)

    Oates, Chris

    2012-06-01

    Since they were first proposed in 2003 [1], optical lattice clocks have become one of the leading technologies for the next generation of atomic clocks, which will be used for advanced timing applications and in tests of fundamental physics [2]. These clocks are based on stabilized lasers whose frequency is ultimately referenced to an ultra-narrow neutral atom transition (natural linewidths magic'' value so as to yield a vanishing net AC Stark shift for the clock transition. As a result lattice clocks have demonstrated the capability of generating high stability clock signals with small absolute uncertainties (˜ 1 part in 10^16). In this presentation I will first give an overview of the field, which now includes three different atomic species. I will then use experiments with Yb performed in our laboratory to illustrate the key features of a lattice clock. Our research has included the development of state-of-the-art optical cavities enabling ultra-high-resolution optical spectroscopy (1 Hz linewidth). Together with the large atom number in the optical lattice, we are able to achieve very low clock instability (< 0.3 Hz in 1 s) [3]. Furthermore, I will show results from some of our recent investigations of key shifts for the Yb lattice clock, including high precision measurements of ultracold atom-atom interactions in the lattice and the dc Stark effect for the Yb clock transition (necessary for the evaluation of blackbody radiation shifts). [4pt] [1] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003). [0pt] [2] Andrei Derevianko and Hidetoshi Katori, Rev. Mod. Phys. 83, 331 (2011). [0pt] [3] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, Nature Photonics 5, 158 (2011).

  4. Magnetic-dipole transitions in highly charged ions as a basis of ultraprecise optical clocks.

    Science.gov (United States)

    Yudin, V I; Taichenachev, A V; Derevianko, A

    2014-12-05

    We evaluate the feasibility of using magnetic-dipole (M1) transitions in highly charged ions as a basis of an optical atomic clockwork of exceptional accuracy. We consider a range of possibilities, including M1 transitions between clock levels of the same fine-structure and hyperfine-structure manifolds. In highly charged ions these transitions lie in the optical part of the spectra and can be probed with lasers. The most direct advantage of our proposal comes from the low degeneracy of clock levels and the simplicity of atomic structure in combination with negligible quadrupolar shift. We demonstrate that such clocks can have projected fractional accuracies below the 10^{-20}-10^{-21} level for all common systematic effects, such as blackbody radiation, Zeeman, ac-Stark, and quadrupolar shifts.

  5. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks.

    Science.gov (United States)

    Taichenachev, A V; Yudin, V I; Oates, C W; Hoyt, C W; Barber, Z W; Hollberg, L

    2006-03-01

    We develop a method of spectroscopy that uses a weak static magnetic field to enable direct optical excitation of forbidden electric-dipole transitions that are otherwise prohibitively weak. The power of this scheme is demonstrated using the important application of optical atomic clocks based on neutral atoms confined to an optical lattice. The simple experimental implementation of this method--a single clock laser combined with a dc magnetic field--relaxes stringent requirements in current lattice-based clocks (e.g., magnetic field shielding and light polarization), and could therefore expedite the realization of the extraordinary performance level predicted for these clocks. We estimate that a clock using alkaline-earth-like atoms such as Yb could achieve a fractional frequency uncertainty of well below 10(-17) for the metrologically preferred even isotopes.

  6. Optical atomic clocks

    CERN Document Server

    Poli, N; Gill, P; Tino, G M

    2014-01-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femto-second optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in $10^{18}$. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  7. Inner-shell magnetic dipole transition in Tm atom as a candidate for optical lattice clocks

    CERN Document Server

    Sukachev, D; Tolstikhina, I; Kalganova, E; Vishnyakova, G; Khabarova, K; Tregubov, D; Golovizin, A; Sorokin, V; Kolachevsky, N

    2016-01-01

    We consider a narrow magneto-dipole transition in the $^{169}$Tm atom at the wavelength of $1.14\\,\\mu$m as a candidate for a 2D optical lattice clock. Calculating dynamic polarizabilities of the two clock levels $[\\text{Xe}]4f^{13}6s^2 (J=7/2)$ and $[\\text{Xe}]4f^{13}6s^2 (J=5/2)$ in the spectral range from $250\\,$nm to $1200\\,$nm, we suggest the "magic" wavelength for the optical lattice at $807\\,$nm. Frequency shifts due to black-body radiation (BBR), the van der Waals interaction, the magnetic dipole-dipole interaction and other effects which can perturb the transition frequency are calculated. The transition at $1.14\\,\\mu$m demonstrates low sensitivity to the BBR shift corresponding to $8\\times10^{-17}$ in fractional units at room temperature which makes it an interesting candidate for high-performance optical clocks. The total estimated frequency uncertainty is less than $5 \\times 10^{-18}$ in fractional units. By direct excitation of the $1.14\\,\\mu$m transition in Tm atoms loaded into an optical dipole ...

  8. Synthetic dimensions and spin-orbit coupling with an optical clock transition

    CERN Document Server

    Livi, L F; Diem, M; Franchi, L; Clivati, C; Frittelli, M; Levi, F; Calonico, D; Catani, J; Inguscio, M; Fallani, L

    2016-01-01

    We demonstrate a novel way of synthesizing spin-orbit interactions in ultracold quantum gases, based on a single-photon optical clock transition coupling two long-lived electronic states of two-electron $^{173}$Yb atoms. By mapping the electronic states onto effective sites along a synthetic "electronic" dimension, we have engineered synthetic fermionic ladders with tunable magnetic fluxes. We have detected the spin-orbit coupling with fiber-link-enhanced clock spectroscopy and directly measured the emergence of chiral edge currents, probing them as a function of the magnetic field flux. These results open new directions for the investigation of topological states of matter with ultracold atomic gases.

  9. Extended Coherence Time on the Clock Transition of Optically Trapped Rubidium

    DEFF Research Database (Denmark)

    Kleine Büning, G.; Will, J.; Ertmer, W.

    2011-01-01

    Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock...... transition of 87Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant...... frequency shifts and noise contributions yields a stability of 2.4×10-11τ-1/2, where τ is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup....

  10. Relativity and Al^+ Optical Clocks

    Science.gov (United States)

    Chou, Chin-Wen; Hume, David B.; Wineland, David J.; Rosenband, Till

    2010-03-01

    We have constructed an optical clock based on quantum logic spectroscopy of an Al+ ion that has a fractional frequency inaccuracy of 8.6x10-18. The frequency of the ^1S0^3P0 clock transition is compared to that of a previously constructed Al^+ optical clock with a statistical measurement uncertainty of 7.0x10-18. The two clocks exhibit a relative stability of 2.8x10-15&-1/2circ;, and a fractional frequency difference of -1.8x10-17, consistent with the accuracy limit of the older clock. By comparing the frequencies of the clocks, we have observed relativistic effects, such as time dilation due to velocities less than 10 m/s and the gravitational red shift from a 0.33 m height change of one of the clocks.

  11. Optical Clocks in Space

    CERN Document Server

    Schiller, S; Nevsky, A; Koelemeij, J C J; Wicht, A; Gill, P; Klein, H A; Margolis, H S; Mileti, G; Sterr, U; Riehle, F; Peik, E; Tamm, C; Ertmer, W; Rasel, E; Klein, V; Salomon, C; Tino, G M; Lemonde, P; Holzwarth, R; Hänsch, T W; Tamm, Chr.

    2007-01-01

    The performance of optical clocks has strongly progressed in recent years, and accuracies and instabilities of 1 part in 10^18 are expected in the near future. The operation of optical clocks in space provides new scientific and technological opportunities. In particular, an earth-orbiting satellite containing an ensemble of optical clocks would allow a precision measurement of the gravitational redshift, navigation with improved precision, mapping of the earth's gravitational potential by relativistic geodesy, and comparisons between ground clocks.

  12. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.

    Science.gov (United States)

    Taichenachev, A V; Yudin, V I; Ovsiannikov, V D; Pal'chikov, V G; Oates, C W

    2008-11-01

    We report a hitherto undiscovered frequency shift for forbidden J = 0-->J = 0 clock transitions excited in atoms confined to an optical lattice. These shifts result from magnetic-dipole and electric-quadrupole transitions, which have a spatial dependence in an optical lattice that differs from that of the stronger electric-dipole transitions. In combination with the residual translational motion of atoms in an optical lattice, this spatial mismatch leads to a frequency shift via differential energy level spacing in the lattice wells for ground state and excited state atoms. We estimate that this effect could lead to fractional frequency shifts as large as 10(-16), which might prevent lattice-based optical clocks from reaching their predicted performance levels. Moreover, these effects could shift the magic wavelength in lattice clocks in three dimensions by as much as 100 MHz, depending on the lattice configuration.

  13. Active optical clock

    Institute of Scientific and Technical Information of China (English)

    CHEN JingBiao

    2009-01-01

    This article presents the principles and techniques of active optical clock, a special laser combining the laser physics of one-atom laser, bad-cavity gas laser, super-cavity stabilized laser and optical atomic clock together. As a simple example, an active optical clock based on thermal strontium atomic beam shows a quantum-limited linewidth of 0.51 Hz, which is insensitive to laser cavity-length noise, and may surpass the recorded narrowest 6.7 Hz of Hg ion optical clock and 1.5 Hz of very recent optical lattice clock. The estimated 0.1 Hz one-second instability and 0.27 Hz uncertainty are limited only by the rela-tivistic Doppler effect, and can be improved by cold atoms.

  14. Spectroscopy and frequency measurement of the $^{87}$Sr clock transition by laser linewidth transfer using an optical frequency comb

    CERN Document Server

    Akamatsu, Daisuke; Hosaka, Kazumoto; Yasuda, Masami; Onae, Atsushi; Suzuyama, Tomonari; Amemiya, Masaki; Hong, Feng-Lei

    2014-01-01

    We perform spectroscopic observations of the 698-nm clock transition in $^{87}$Sr confined in an optical lattice using a laser linewidth transfer technique. A narrow-linewidth laser interrogating the clock transition is prepared by transferring the linewidth of a master laser (1064 nm) to that of a slave laser (698 nm) with a high-speed controllable fiber-based frequency comb. The Fourier-limited spectrum is observed for an 80-ms interrogating pulse. We determine that the absolute frequency of the 5s$^{2}$ $^{1}$S$_{0}$ - 5s5p $^{3}$P$_{0}$ clock transition in $^{87}$Sr is 429 228 004 229 872.0 (1.6) Hz referenced to the SI second.

  15. Optical Clocks and Relativity

    Science.gov (United States)

    Chou, C. W.; Hume, D. B.; Rosenband, T.; Wineland, D. J.

    2010-09-01

    Observers in relative motion or at different gravitational potentials measure disparate clock rates. These predictions of relativity have previously been observed with atomic clocks at high velocities and with large changes in elevation. We observed time dilation from relative speeds of less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter length of optical fiber. We can now also detect time dilation due to a change in height near Earth’s surface of less than 1 meter. This technique may be extended to the field of geodesy, with applications in geophysics and hydrology as well as in space-based tests of fundamental physics.

  16. Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock

    CERN Document Server

    Lodewyck, Jérôme; Bookjans, Eva; Robyr, Jean-Luc; Shi, Chunyan; Vallet, Grégoire; Targat, Rodolphe Le; Nicolodi, Daniele; Coq, Yann Le; Guéna, Jocelyne; Abgrall, Michel; Rosenbusch, Peter; Bize, Sébastien

    2016-01-01

    Optical lattice clocks are at the forefront of frequency metrology. Both the instability and systematic uncertainty of these clocks have been reported to be two orders of magnitude smaller than the best microwave clocks. For this reason, a redefinition of the SI second based on optical clocks seems possible in the near future. However, the operation of optical lattice clocks has not yet reached the reliability that microwave clocks have achieved so far. In this paper, we report on the operation of a strontium optical lattice clock that spans several weeks, with more than 80% uptime. We make use of this long integration time to demonstrate a reproducible measurement of frequency ratios between the strontium clock transition and microwave Cs primary and Rb secondary frequency standards.

  17. The absolute frequency of the 87Sr optical clock transition

    DEFF Research Database (Denmark)

    Campbell, Gretchen K.; Ludlow, Andrew D.; Blatt, Sebastian

    2008-01-01

    a detailed study of systematic effects, which reduced the total systematic uncertainty of the Sr lattice clock to 1.5 × 10-16, the clock frequency is measured against a hydrogen maser which is simultaneously calibrated to the US primary frequency standard, the NIST Cs fountain clock, NIST-F1. The comparison...

  18. Absolute measurement of the ${}^{1}S_{0}$ - ${}^{3}P_{0}$ clock transition in neutral ${}^{88}$Sr over the 330 km-long stabilized fibre optic link

    CERN Document Server

    Morzynski, Piotr; Bartoszek-Bober, Dobroslawa; Nawrocki, Jerzy; Krehlik, Przemyslaw; Sliwczynski, Lukasz; Lipinski, Marcin; Maslowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michal; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czeslaw; Ciurylo, Roman; Zawada, Michal

    2015-01-01

    We report a stability below $7\\times 10{}^{-17}$ of two independent optical lattice clocks operating with bosonic ${}^{88}$Sr isotope. The value (429228066418008.3(1.9)${}_{syst}$(0.9)${}_{stat}$~Hz) of the absolute frequency of the ${}^{1}S_{0}$ - ${}^{3}P_{0}$ transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures.

  19. Radium single-ion optical clock

    NARCIS (Netherlands)

    Versolato, O. O.; Wansbeek, L. W.; Jungmann, K.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.

    2011-01-01

    We explore the potential of the electric quadrupole transitions $7s\\,^2S_{1/2}$ - $6d\\,^2D_{3/2}$, $6d\\,^2D_{5/2}$ in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated.

  20. High-accuracy optical clock based on the octupole transition in 171Yb+

    CERN Document Server

    Huntemann, N; Lipphardt, B; Weyers, S; Tamm, Chr; Peik, E

    2011-01-01

    We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition 2S1/2(F=0) -> F7/2(F=3) in a single trapped 171Yb+ ion. The extraordinary features of this transition result from the long natural lifetime and from the 4f136s2 configuration of the upper state. The electric quadrupole moment of the 2F7/2 state is measured as -0.041(5) e(a0)^2, where e is the elementary charge and a0 the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe light induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1x10^(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz with the uncertainty essentially determined by the employed caesium fountain reference.

  1. High-accuracy optical clock based on the octupole transition in 171Yb+.

    Science.gov (United States)

    Huntemann, N; Okhapkin, M; Lipphardt, B; Weyers, S; Tamm, Chr; Peik, E

    2012-03-02

    We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition (2)S(1/2)(F=0)→(2)F(7/2)(F=3) in a single trapped (171)Yb(+) ion. The extraordinary features of this transition result from the long natural lifetime and from the 4f(13)6s(2) configuration of the upper state. The electric-quadrupole moment of the (2)F(7/2) state is measured as -0.041(5)ea(0)(2), where e is the elementary charge and a(0) the Bohr radius. We also obtain information on the differential scalar and tensorial components of the static polarizability and of the probe-light-induced ac Stark shift of the octupole transition. With a real-time extrapolation scheme that eliminates this shift, the unperturbed transition frequency is realized with a fractional uncertainty of 7.1×10(-17). The frequency is measured as 642 121 496 772 645.15(52) Hz.

  2. Feasibility of an optical fiber clock

    Science.gov (United States)

    Ilinova, Ekaterina; Babb, James F.; Derevianko, Andrei

    2017-09-01

    We explore the feasibility of a fiber clock, i.e., a compact, high-precision, optical lattice atomic clock based on atoms trapped inside a hollow-core optical fiber. Such a setup offers an intriguing potential both for a substantially increased number of interrogated atoms (and thereby an improved clock stability) and for miniaturization. We evaluate the sensitivity of the 1S0-3P0 clock transition in Hg and other divalent atoms to the fiber inner core surface at nonzero temperatures. The Casimir-Polder interaction induced 1S0-3P0 transition frequency shift is calculated for the atom inside the hollow capillary as a function of atomic position, capillary material, and geometric parameters. For Hg atoms on the axis of a silica capillary with inner radius ≥15 μ m and optimally chosen thickness d ˜1 μ m , the atom-surface interaction induced 1S0-3P0 clock transition frequency shift can be kept on the level δ ν /νHg˜10-19 . We also estimate the atom loss and heating due to collisions with the buffer gas, lattice intensity noise induced heating, spontaneous photon scattering heating, and residual birefringence induced frequency shifts.

  3. Miniature Optical Atomic Clock: Stabilization of a Kerr Comb Oscillator

    CERN Document Server

    Savchenkov, A A; Liang, W; Ilchenko, V S; Byrd, J; Matsko, A B; Seidel, D; Maleki, L

    2013-01-01

    Mechanical clocks consist of a pendulum and a clockwork that translates the pendulum period to displayed time. The most advanced clocks utilize optical transitions in atoms in place of the pendulum and an optical frequency comb generated by a femtosecond laser as the clockwork. The comb must be stabilized at two points along its frequency spectrum: one with a laser to lock a comb line to a transition in the atom, and another through self referencing to stabilize the frequency interval between the comb lines. This approach requires advanced techniques, so optical atomic clocks are currently laboratory devices in specialized labs. In this paper we leverage unique properties of Kerr comb oscillators for realization of optical atomic clocks in miniature form factors. In particular, we describe a clock based on D1 transition of 87Rb that fits in the palm of the hand, and can be further miniaturized to chip scale.

  4. Ion clock and search for the variation of the fine structure constant using optical transitions in Nd$^{13+}$ and Sm$^{15+}$

    CERN Document Server

    Dzuba, V A; Flambaum, V V

    2012-01-01

    We study ultranarrow $5s_{1/2}$ - $4f_{5/2}$ transitions in Nd$^{13+}$ and Sm$^{15+}$ and demonstrate that they lie in the optical region. The transitions are insensitive to external perturbations. At the same time they are sensitive to the variation of the fine structure constant $\\alpha$. The fractional accuracy of the frequency of the transitions can be smaller than $10^{-19}$, which may provide a basis for atomic clocks of superb accuracy. Sensitivity to the variation of $\\alpha$ approaches $10^{-20}$ per year.

  5. Microresonator Frequency Comb Optical Clock

    Science.gov (United States)

    2014-07-22

    Number Microresonator frequency comb optical clock Block 13: Supplementary Note © 2014 . Published in Optica , Vol. Ed. 0 1, (1) (2014), (, (1). DoD...Oscillators. http://dx.doi.org/10.1364/ OPTICA .1.000010 1. INTRODUCTION Optical frequency combs enable extraordinary measurement precision and accuracy...1, No. 1 / July 2014 / Optica 10 deviation for 1 s averaging is completely dominated by the Rb reference, and the microcomb contribution is only ɚ

  6. Hanle Detection for Optical Clocks

    Directory of Open Access Journals (Sweden)

    Xiaogang Zhang

    2015-01-01

    Full Text Available Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard.

  7. A microresonator frequency comb optical clock

    CERN Document Server

    Papp, Scott B; DelHaye, Pascal; Quinlan, Franklyn; Lee, Hansuek; Vahala, Kerry J; Diddams, Scott A

    2013-01-01

    Optical-frequency combs enable measurement precision at the 20th digit, and accuracy entirely commensurate with their reference oscillator. A new direction in experiments is the creation of ultracompact frequency combs by way of nonlinear parametric optics in microresonators. We refer to these as microcombs, and here we report a silicon-chip-based microcomb optical clock that phase-coherently converts an optical-frequency reference to a microwave signal. A low-noise comb spectrum with 25 THz span is generated with a 2 mm diameter silica disk and broadening in nonlinear fiber. This spectrum is stabilized to rubidium frequency references separated by 3.5 THz by controlling two teeth 108 modes apart. The optical clocks output is the electronically countable 33 GHz microcomb line spacing, which features an absolute stability better than the rubidium transitions by the expected factor of 108. Our work demonstrates the comprehensive set of tools needed for interfacing microcombs to state-of-the-art optical clocks.

  8. Superradiance on the milliHertz linewidth strontium clock transition

    CERN Document Server

    Norcia, Matthew A; Cline, Julia R K; Thompson, James K

    2016-01-01

    Today's best atomic clocks are limited by frequency noise on the lasers used to interrogate the atoms. A proposed solution to this problem is to create a superradiant laser using an optical clock transition as its gain medium. This laser would act as an active atomic clock, and would be highly immune to the fluctuations in reference cavity length that limit today's best lasers. Here, we demonstrate and characterize superradiant emission from the mHz linewidth clock transition in an ensemble of laser-cooled $^{87}$Sr atoms trapped within a high-finesse optical cavity. We measure a collective enhancement of the emission rate into the cavity mode by a factor of more than 10,000 compared to independently radiating atoms. We also demonstrate a method for seeding superradiant emission and observe interference between two independent transitions lasing simultaneously. We use this interference to characterize the relative spectral properties of the two lasing sub-ensembles.

  9. Realization of a time-scale with an optical clock

    CERN Document Server

    Grebing, C; Dörscher, S; Häfner, S; Gerginov, V; Weyers, S; Lipphardt, B; Riehle, F; Sterr, U; Lisdat, C

    2015-01-01

    Optical clocks are not only powerful tools for prime fundamental research, but are also deemed for the re-definition of the SI base unit second as they surpass the performance of caesium atomic clocks in both accuracy and stability by more than an order of magnitude. However, an important obstacle in this transition has so far been the limited reliability of the optical clocks that made a continuous realization of a time-scale impractical. In this paper, we demonstrate how this dilemma can be resolved and that a time-scale based on an optical clock can be established that is superior to one based on even the best caesium fountain clocks. The paper also gives further proof of the international consistency of strontium lattice clocks on the $10^{-16}$ accuracy level, which is another prerequisite for a change in the definition of the second.

  10. Measurement of Magic Wavelengths for the ^{40}Ca^{+} Clock Transition.

    Science.gov (United States)

    Liu, Pei-Liang; Huang, Yao; Bian, Wu; Shao, Hu; Guan, Hua; Tang, Yong-Bo; Li, Cheng-Bin; Mitroy, J; Gao, Ke-Lin

    2015-06-05

    We demonstrate experimentally the existence of magic wavelengths and determine the ratio of oscillator strengths for a single trapped ion. For the first time, two magic wavelengths near 396 nm for the ^{40}Ca^{+} clock transition are measured simultaneously with high precision. By tuning the applied laser to an intermediate wavelength between transitions 4s_{1/2}→4p_{1/2} and 4s_{1/2}→4p_{3/2}, the sensitivity of the clock transition Stark shift to the oscillator strengths is greatly enhanced. Furthermore, with the measured magic wavelengths, we determine the ratio of the oscillator strengths with a deviation of less than 0.5%. Our experimental method may be applied to measure magic wavelengths for other ion clock transitions. Promisingly, the measurement of these magic wavelengths paves the way to building all-optical trapped ion clocks.

  11. Colloquium: Physics of optical lattice clocks

    CERN Document Server

    Derevianko, Andrei

    2010-01-01

    Recently invented and demonstrated, optical lattice clocks hold great promise for improving the precision of modern timekeeping. These clocks aim at the 10^-18 fractional accuracy, which translates into a clock that would neither lose or gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here we discuss the principles of operation of these clocks and, in particular, a novel concept of "magic" trapping of atoms in optical lattices. We also highlight recently proposed microwave lattice clocks and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.

  12. Radium single-ion optical clock

    CERN Document Server

    Versolato, O O; Jungmann, K; Timmermans, R G E; Willmann, L; Wilschut, H W

    2011-01-01

    We explore the potential of the electric quadrupole transitions $7s\\,^2S_{1/2}$ - $6d\\,^2D_{3/2}$, $6d\\,^2D_{5/2}$ in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated. Several competitive $^A$Ra$^+$ candidates with $A=$ 223 - 229 are identified. In particular, we show that the transition $7s\\,^2S_{1/2}\\,(F=2,m_F=0)$ - $6d\\,^2D_{3/2}\\,(F=0,m_F=0)$ at 828 nm in $^{223}$Ra$^+$, with no linear Zeeman and electric quadrupole shifts, stands out as a relatively simple case, which could be exploited as a compact, robust, and low-cost atomic clock operating at a fractional frequency uncertainty of $10^{-17}$. With more experimental effort, the $^{223,225,226}$Ra$^+$ clocks could be pushed to a projected performance reaching the $10^{-18}$ level.

  13. Nuclear clocks based on resonant excitation of gamma-transitions

    CERN Document Server

    Peik, Ekkehard

    2015-01-01

    We review the ideas and concepts for a clock that is based on a radiative transition in the nucleus rather than in the electron shell. This type of clock offers advantages like an insensitivity against field-induced systematic frequency shifts and the opportunity to obtain high stability from interrogating many nuclei in the solid state. Experimental work concentrates on the low-energy (about 8 eV) isomeric transition in Th-229. We review the status of the experiments that aim at a direct optical observation of this transition and outline the plans for high-resolution laser spectroscopy experiments.

  14. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock

    Science.gov (United States)

    Wall, Michael L.; Koller, Andrew P.; Li, Shuming; Zhang, Xibo; Cooper, Nigel R.; Ye, Jun; Rey, Ana Maria

    2016-01-01

    We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s -wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p - and s -wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures.

  15. Stability Transfer between Two Clock Lasers Operating at Different Wavelengths for Absolute Frequency Measurement of Clock Transition in 87Sr

    CERN Document Server

    Yamaguchi, A; Nagano, S; Li, Y; Ishijima, H; Hachisu, H; Kumagai, M; Ido, T; 10.1143/APEX.5.022701

    2012-01-01

    We demonstrated transferring the stability of one highly stable clock laser operating at 729 nm to another less stable laser operating at 698 nm. The two different wavelengths were bridged using an optical frequency comb. The improved stability of the clock laser at 698 nm enabled us to evaluate the systematic frequency shifts of the Sr optical lattice clock with shorter averaging time. We determined the absolute frequency of the clock transition 1S0 - 3P0 in 87Sr to be 429 228 004 229 873.9 (1.4) Hz referenced to the SI second on the geoid via International Atomic Time (TAI).

  16. Absolute measurement of the 1S0 - 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link.

    Science.gov (United States)

    Morzyński, Piotr; Bober, Marcin; Bartoszek-Bober, Dobrosława; Nawrocki, Jerzy; Krehlik, Przemysław; Śliwczyński, Łukasz; Lipiński, Marcin; Masłowski, Piotr; Cygan, Agata; Dunst, Piotr; Garus, Michał; Lisak, Daniel; Zachorowski, Jerzy; Gawlik, Wojciech; Radzewicz, Czesław; Ciuryło, Roman; Zawada, Michał

    2015-12-07

    We report a stability below 7 × 10(-17) of two independent optical lattice clocks operating with bosonic (88)Sr isotope. The value (429 228 066 418 008.3(1.9)(syst) (0.9)(stat) Hz) of the absolute frequency of the (1)S(0) - (3)P(0) transition was measured with an optical frequency comb referenced to the local representation of the UTC by the 330 km-long stabilized fibre optical link. The result was verified by series of measurements on two independent optical lattice clocks and agrees with recommendation of Bureau International des Poids et Mesures.

  17. Ultrastable optical clock with two cold-atom ensembles

    Science.gov (United States)

    Schioppo, M.; Brown, R. C.; McGrew, W. F.; Hinkley, N.; Fasano, R. J.; Beloy, K.; Yoon, T. H.; Milani, G.; Nicolodi, D.; Sherman, J. A.; Phillips, N. B.; Oates, C. W.; Ludlow, A. D.

    2017-01-01

    Atomic clocks based on optical transitions are the most stable, and therefore precise, timekeepers available. These clocks operate by alternating intervals of atomic interrogation with the 'dead' time required for quantum state preparation and readout. This non-continuous interrogation of the atom system results in the Dick effect, an aliasing of frequency noise from the laser interrogating the atomic transition. Despite recent advances in optical clock stability that have been achieved by improving laser coherence, the Dick effect has continually limited the performance of optical clocks. Here we implement a robust solution to overcome this limitation: a zero-dead-time optical clock that is based on the interleaved interrogation of two cold-atom ensembles. This clock exhibits vanishingly small Dick noise, thereby achieving an unprecedented fractional frequency instability assessed to be for an averaging time τ in seconds. We also consider alternate dual-atom-ensemble schemes to extend laser coherence and reduce the standard quantum limit of clock stability, achieving a spectroscopy line quality factor of Q > 4 × 1015.

  18. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

    CERN Document Server

    Chou, C -W; Koelemeij, J C J; Wineland, D J; Rosenband, T

    2009-01-01

    We have constructed an optical clock with a fractional frequency inaccuracy of 8.6e-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser-cool the Al+ ion and detect its quantum state. The frequency of the 1S0->3P0 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0e-18. The two clocks exhibit a relative stability of 2.8e-15/ sqrt(tau), and a fractional frequency difference of -1.8e-17, consistent with the accuracy limit of the older clock.

  19. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

    Science.gov (United States)

    Chou, C. W.; Hume, D. B.; Koelemeij, J. C. J.; Wineland, D. J.; Rosenband, T.

    2010-02-01

    We have constructed an optical clock with a fractional frequency inaccuracy of 8.6×10-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser cool the Al+ ion and detect its quantum state. The frequency of the S01↔P03 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0×10-18. The two clocks exhibit a relative stability of 2.8×10-15τ-1/2, and a fractional frequency difference of -1.8×10-17, consistent with the accuracy limit of the older clock.

  20. Frequency comparison of optical lattice clocks beyond the Dick limit

    Science.gov (United States)

    Takamoto, Masao; Takano, Tetsushi; Katori, Hidetoshi

    2011-05-01

    The supreme accuracy of atomic clocks relies on the universality of atomic transition frequencies. The stability of a clock, meanwhile, measures how quickly the clock's statistical uncertainties are reduced. The ultimate measure of stability is provided by the quantum projection noise, which improves as 1/√N by measuring N uncorrelated atoms. Quantum projection noise limited stabilities have been demonstrated in caesium clocks and in single-ion optical clocks, where the quantum noise overwhelms the Dick effect attributed to local oscillator noise. Here, we demonstrate a synchronous frequency comparison of two optical lattice clocks using 87Sr and 88Sr atoms, respectively, for which the Allan standard deviation reached 1 × 10-17 in an averaging time of 1,600 s by cancelling out the Dick effect to approach the quantum projection noise limit. The scheme demonstrates the advantage of using a large number (N ~ 1,000) of atoms in optical clocks and paves the way to investigating the inherent uncertainties of clocks and relativistic geodesy on a timescale of tens of minutes.

  1. Magic Wavelengths for Terahertz Clock Transitions

    OpenAIRE

    Zhou, Xiaoji; Xu, Xia; Chen, Xuzong; Chen, Jingbiao

    2010-01-01

    Magic wavelengths for laser trapping of boson isotopes of alkaline-earth Sr, Ca and Mg atoms are investigated while considering terahertz clock transitions between the $^{3}P_{0}, ^{3}P_{1}, ^{3}P_{2}$ metastable triplet states. Our calculation shows that magic wavelengths of trapping laser do exist. This result is important because those metastable states have already been used to realize accurate clocks in the terahertz frequency domain. Detailed discussions for magic wavelength for teraher...

  2. Automatic minimisation of micromotion in a 88Sr+ optical clock

    Science.gov (United States)

    Barwood, G. P.; Huang, G.; Klein, H. A.; Gill, P.

    2015-07-01

    Optical clocks based on narrow linewidth transitions in single cold ions confined in RF traps are being developed at a number of laboratories worldwide. For these ion clock systems, excess micromotion can cause both Stark and Doppler frequency shifts and also a degradation of frequency stability as a result of a reduced excitation rate to the clock transition. At NPL, we detect micromotion in our 88Sr+ optical clocks by observing the correlation between photon arrival times and the zero crossing of the RF trap drive signal. Recently, two nominally identical 88Sr+ optical clocks have been operated over several days and their frequencies compared against one another. During this time the dc voltages on the endcap and compensation voltage electrodes required to minimise the micromotion can change significantly, particularly following the loading of an ion. This paper describes an automatic method to monitor and minimise micromotion applicable to single ion clocks and which we demonstrate using our two NPL 88Sr+ ion clocks.

  3. Laser controlled atom source for optical clocks

    Science.gov (United States)

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-11-01

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy.

  4. A low maintenance Sr optical lattice clock

    CERN Document Server

    Hill, Ian R; Bowden, William; Bridge, Elizabeth M; Donnellan, Sean; Curtis, E Anne; Gill, Patrick

    2016-01-01

    We describe the Sr optical lattice clock apparatus at NPL with particular emphasis on techniques used to increase reliability and minimise the human requirement in its operation. Central to this is a clock-referenced transfer cavity scheme for the stabilisation of cooling and trapping lasers. We highlight several measures to increase the reliability of the clock with a view towards the realisation of an optical time-scale. The clock contributed 502 hours of data over a 25 day period (84% uptime) in a recent measurement campaign with several uninterrupted periods of more than 48 hours. An instability of $2\\times10^{-17}$ was reached after $10^5$ s of averaging in an interleaved self-comparison of the clock.

  5. Optical lattice clocks and frequency comparison

    Energy Technology Data Exchange (ETDEWEB)

    Katori, Hidetoshi; Takano, Tetsushi; Takamoto, Masao, E-mail: katori@amo.t.u-tokyo.ac.jp [Department of Applied Physics, University of Tokyo, Tokyo (Japan); CREST, Japan Science and Technology Agency, Saitama (Japan)

    2011-01-10

    We consider designs of optical lattice clocks in view of the quantum statistics, relevant atomic spins, and atom-lattice interactions. The first two issues lead to two optimal constructions for the clock: a one-dimensional (1D) optical lattice loaded with spin-polarized fermions and a 3D optical lattice loaded with bosons. By taking atomic multipolar interactions with the lattice fields into account, an 'atomic motion insensitive' wavelength is proposed to provide a precise definition of the 'magic wavelength'. We then present a frequency comparison of these two optical lattice clocks: spin-polarized fermionic {sup 87}Sr and bosonic {sup 88}Sr prepared in 1D and 3D optical lattices, respectively. Synchronous interrogations of these two optical lattice clocks by the same probe laser allowed canceling out its frequency noise as a common mode noise to achieve a relative stability of 3x10{sup -17} for an averaging time of {tau} = 350 s. The scheme, therefore, provides us with a powerful means to investigate intrinsic uncertainty of the clocks regardless of the probe laser stability. We discuss prospects of the synchronous operation of the clocks on the measurement of the geoid height difference and on the search of constancy of fundamental constants.

  6. Sugars, the clock and transition to flowering

    Directory of Open Access Journals (Sweden)

    Mohammad Reza eBolouri Moghaddam

    2013-02-01

    Full Text Available Sugars do not only act as source of energy, but they also act as signals in plants. This mini review summarizes the emerging links between sucrose-mediated signaling and the cellular networks involved in flowering time control and defense. Cross-talks with gibberellin (GA and jasmonate (JA signaling pathways are highlighted. The circadian clock fulfills a crucial role at the heart of cellular networks and the bilateral relation between sugar signaling and the clock is discussed. It is proposed that important factors controlling plant growth (DELLAs, PIFs, invertases and trehalose- 6-phosphate or T6P might fulfill central roles in the transition to flowering as well. The emerging concept of ‘sweet immunity’, modulated by the clock, might at least partly rely on a sucrose-specific signaling pathway that needs further exploration.

  7. Making optical atomic clocks more stable with $10^{-16}$ level laser stabilization

    CERN Document Server

    Jiang, Y Y; Lemke, N D; Fox, R W; Sherman, J A; Ma, L -S; Oates, C W

    2011-01-01

    The superb precision of an atomic clock is derived from its stability. Atomic clocks based on optical (rather than microwave) frequencies are attractive because of their potential for high stability, which scales with operational frequency. Nevertheless, optical clocks have not yet realized this vast potential, due in large part to limitations of the laser used to excite the atomic resonance. To address this problem, we demonstrate a cavity-stabilized laser system with a reduced thermal noise floor, exhibiting a fractional frequency instability of $2 \\times 10^{-16}$. We use this laser as a stable optical source in a Yb optical lattice clock to resolve an ultranarrow 1 Hz transition linewidth. With the stable laser source and the signal to noise ratio (S/N) afforded by the Yb optical clock, we dramatically reduce key stability limitations of the clock, and make measurements consistent with a clock instability of $5 \\times 10^{-16} / \\sqrt{\\tau}$.

  8. Ultra-stable optical clock with two cold-atom ensembles

    CERN Document Server

    Schioppo, M; McGrew, W F; Hinkley, N; Fasano, R J; Beloy, K; Yoon, T H; Milani, G; Nicolodi, D; Sherman, J A; Phillips, N B; Oates, C W; Ludlow, A D

    2016-01-01

    Atomic clocks based on optical transitions are the most stable, and therefore precise, timekeepers available. These clocks operate by alternating intervals of atomic interrogation with dead time required for quantum state preparation and readout. This non-continuous interrogation of the atom system results in the Dick effect, an aliasing of frequency noise of the laser interrogating the atomic transition. Despite recent advances in optical clock stability achieved by improving laser coherence, the Dick effect has continually limited optical clock performance. Here we implement a robust solution to overcome this limitation: a zero-dead-time optical clock based on the interleaved interrogation of two cold-atom ensembles. This clock exhibits vanishingly small Dick noise, thereby achieving an unprecedented fractional frequency instability of $6 \\times 10^{-17} / \\sqrt{\\tau}$ for an averaging time $\\tau$ in seconds. We also consider alternate dual-atom-ensemble schemes to extend laser coherence and reduce the stan...

  9. Miniaturized optical system for atomic fountain clock

    Institute of Scientific and Technical Information of China (English)

    Lü De-Sheng; Qu Qiu-Zhi; Wang Bin; Zhao Jian-Bo; Li Tang; Liu Liang; Wang Yu-Zhu

    2011-01-01

    Using modularized components, we have built a miniaturized optical system for 87Rb atomic fountain clock that is fitted on an 80 cm × 60 cm optical breadboard. Compared with the conventional optical setup on the table, our system is more compact, more robust and miniaturized. Taking advantage of this system, laser beams are transmitted through eight optical fibre patch cords from the optical breadboard to an ultra high vacuum system. This optical setup has operated for five months in our fountain system and required no alignment.

  10. Direct laser cooling Al+ ions optical clocks

    CERN Document Server

    Zhang, J; Luo, J; Lu, Z H

    2016-01-01

    Al$^+$ ions optical clock is a very promising optical frequency standard candidate due to its extremely small blackbody radiation shift. It has been successfully demonstrated with indirect cooled, quantum-logic-based spectroscopy technique. Its accuracy is limited by second-order Doppler shift, and its stability is limited by the number of ions that can be probed in quantum logic processing. We propose a direct laser cooling scheme of Al$^+$ ions optical clocks where both the stability and accuracy of the clocks are greatly improved. In the proposed scheme, two Al$^+$ ions traps are utilized. The first trap is used to trap a large number of Al$^+$ ions to improve the stability of the clock laser, while the second trap is used to trap a single Al$^+$ ions to provide the ultimate accuracy. Both traps are cooled with a continuous wave 167 nm laser. The expected clock laser stability can reach $9.0\\times10^{-17}/\\sqrt{\\tau}$. For the second trap, in addition to 167 nm laser Doppler cooling, a second stage pulsed ...

  11. Suppression of Clock Shifts at Magnetic-Field-Insensitive Transitions

    Science.gov (United States)

    Arnold, K. J.; Barrett, M. D.

    2016-10-01

    We show that it is possible to significantly reduce rank 2 tensor shifts of a clock transition by operating at a judiciously chosen magnetic-field-insensitive point. In some cases shifts are almost completely eliminated making the transition an effective J =0 to J =0 candidate. This significantly improves the feasibility of a recent proposal for clock operation with large ion crystals. For such multi-ion clocks, geometric constraints and selection rules naturally divide clock operation into two categories based on the orientation of the magnetic field. We discuss the limitations imposed on each type and how calibrations might be carried out for clock operation.

  12. Suppression of clock shifts at field-insensitive transitions

    CERN Document Server

    Arnold, Kyle J

    2016-01-01

    We show that it is possible to significantly reduce quadrupole and tensor polarizability shifts of a clock transition by operating at a judiciously chosen field-insensitive point. In some cases shifts are almost completely eliminated making the transition an effective J = 0 to J = 0 candidate. This significantly improves the feasibility of a recent proposal for clock operation with large ion crystals. For such multi-ion clocks, geometric constraints and selection rules naturally divide clock operation into two categories based on the orientation of the magnetic field. We discuss the limitations imposed on each type and how calibrations might be carried out for clock operation.

  13. Laser Cooling of Lanthanides: from Optical Clocks to Quantum Simulators

    Directory of Open Access Journals (Sweden)

    Golovizin A.

    2015-01-01

    Full Text Available We discuss current progress in laser cooling of lanthanides (Er, Yb, Dy, Tm etc. focusing on applications. We describe some important peculiarities taking Thulium atom as an example: Two stage laser cooling, trapping in an optical lattice, anisotropic interactions and spectroscopy of narrow transitions. Specific level structure and presence of magic wavelengths make ultracold Thulium a favorable candidate for optical clock applications. On the other hand, abundance of Feshbach resonances allow to tune interactions in ultracold gases and thus reach quantum degeneracy. It opens intriguing perspectives for novel quantum simulators employing dipole-dipole interactions in an optical lattice.

  14. Frequency ratios of Sr, Yb and Hg based optical lattice clocks and their applications

    CERN Document Server

    Takamoto, Masao; Das, Manoj; Nemitz, Nils; Ohkubo, Takuya; Yamanaka, Kazuhiro; Ohmae, Noriaki; Takano, Tetsushi; Akatsuka, Tomoya; Yamaguchi, Atsushi; Katori, Hidetoshi

    2015-01-01

    This article describes the recent progress of optical lattice clocks with neutral strontium ($^{87}$Sr), ytterbium ($^{171}$Yb) and mercury ($^{199}$Hg) atoms. In particular, we present frequency comparison between the clocks locally via an optical frequency comb and between two Sr clocks at remote sites using a phase-stabilized fibre link. We first review cryogenic Sr optical lattice clocks that reduce the room-temperature blackbody radiation shift by two orders of magnitude and serve as a reference in the following clock comparisons. Similar physical properties of Sr and Yb atoms, such as transition wavelengths and vapour pressure, have allowed our development of a compatible clock for both species. A cryogenic Yb clock is evaluated by referencing a Sr clock. We also report on a Hg clock, which shows one order of magnitude less sensitivity to blackbody radiation, while its large nuclear charge makes the clock sensitive to the variation of fine-structure constant. Connecting all three types of clocks by an o...

  15. Spin-orbit coupled fermions in an optical lattice clock

    CERN Document Server

    Kolkowitz, S; Bothwell, T; Wall, M L; Marti, G E; Koller, A P; Zhang, X; Rey, A M; Ye, J

    2016-01-01

    Engineered spin-orbit coupling (SOC) in cold atom systems can aid in the study of novel synthetic materials and complex condensed matter phenomena. Despite great advances, alkali atom SOC systems are hindered by heating from spontaneous emission, which limits the observation of many-body effects. Here we demonstrate the use of optical lattice clocks (OLCs) to engineer and study SOC with metrological precision and negligible heating. We show that clock spectroscopy of the ultra-narrow transition in fermionic 87Sr represents a momentum- and spin-resolved in situ probe of the SOC band structure and eigenstates, providing direct access to the SOC dynamics and control over lattice band populations, internal electronic states, and quasimomenta. We utilize these capabilities to study Bloch oscillations, spin-momentum locking, and van Hove singularities in the transition density of states. Our results lay the groundwork for the use of OLCs to probe novel SOC phases including magnetic crystals, helical liquids, and to...

  16. Raman transitions between hyperfine clock states in a magnetic trap

    CERN Document Server

    Naber, J B; Hubert, T; Spreeuw, R J C

    2016-01-01

    We present our experimental investigation of an optical Raman transition between the magnetic clock states of $^{87}$Rb in an atom chip magnetic trap. The transfer of atomic population is induced by a pair of diode lasers which couple the two clock states off-resonantly to an intermediate state manifold. This transition is subject to destructive interference of two excitation paths, which leads to a reduction of the effective two-photon Rabi-frequency. Furthermore, we find that the transition frequency is highly sensitive to the intensity ratio of the diode lasers. Our results are well described in terms of light shifts in the multi-level structure of $^{87}$Rb. The differential light shifts vanish at an optimal intensity ratio, which we observe as a narrowing of the transition linewidth. We also observe the temporal dynamics of the population transfer and find good agreement with a model based on the system's master equation and a Gaussian laser beam profile. Finally, we identify several sources of decoheren...

  17. Experimental Progress on the NIST ^27Al^+ Optical Clock

    Science.gov (United States)

    Chou, Chin-Wen; Hume, David B.; Koelemeij, Jeroen C. J.; Rosenband, Till; Bergquist, James C.; Wineland, Dave J.

    2009-05-01

    A recent measurement of the frequency ratio between single-ion optical clocks based on ^27Al^+ and ^199Hg^+ at NIST showed a combined statistical and systematic uncertainty of 5.2 x 10-17[1]. Here we report progress on improving both the accuracy and stability of the ^27Al^+ optical clock. We have developed a new trap and laser systems that enable the use of ^25Mg^+ for sympathetic cooling and clock-state detection of ^27Al^+. These developments should reduce time-dilation shifts caused by harmonic motion of the ions and thus lower the dominant systematic uncertainty below 10-17. In the new clock apparatus we have demonstrated spectroscopy of the ^27Al^+ ^1S0 to ^3P0 transition with a quality factor of Q = 3.5 x 10^14 and simultaneously a contrast approaching unity. In addition, we have developed techniques for the sympathetic laser cooling and quantum logic spectroscopy of multiple aluminum ions with the goal of further improving measurement stability [2]. *supported by ONR and NIST [1] T. Rosenband et al., Science 319, 1808 (2008) [2] D. B. Hume et al., Phys. Rev. Lett. 99, 120502 (2007)

  18. Comparing a mercury optical lattice clock with microwave and optical frequency standards

    CERN Document Server

    Tyumenev, R; Bilicki, S; Bookjans, E; Targat, R Le; Lodewyck, J; Nicolodi, D; Coq, Y Le; Abgrall, M; Guéna, J; De Sarlo, L; Bize, S

    2016-01-01

    In this paper we report the evaluation of an optical lattice clock based on neutral mercury down to a relative uncertainty of $1.7\\times 10^{-16}$. Comparing this characterized frequency standard to a Cs atomic fountain we determine the absolute frequency of the $^1S_0 \\rightarrow \\phantom{}^3P_0$ transition of $^{199}$Hg as $\

  19. Experimenting an optical second with strontium lattice clocks

    CERN Document Server

    Targat, R Le; Coq, Y Le; Zawada, M; Guéna, J; Abgrall, M; Gurov, M; Rosenbusch, P; Rovera, D G; Nagórny, B; Gartman, R; Westergaard, P G; Tobar, M E; Lours, M; Santarelli, G; Clairon, A; Bize, S; Laurent, P; Lemonde, P; Lodewyck, J

    2013-01-01

    Progress in realizing the SI second had multiple technological impacts and enabled to further constraint theoretical models in fundamental physics. Caesium microwave fountains, realizing best the second according to its current definition with a relative uncertainty of 2-4x10^(-16), have already been superseded by atomic clocks referenced to an optical transition, both more stable and more accurate. Are we ready for a new definition of the second? Here we present an important step in this direction: our system of five clocks connects with an unprecedented consistency the optical and the microwave worlds. For the first time, two state-of-the-art strontium optical lattice clocks are proven to agree within their accuracy budget, with a total uncertainty of 1.6x10^(-16). Their comparison with three independent caesium fountains shows a degree of reproducibility henceforth solely limited at the level of 3.1x10^(-16) by the best realizations of the microwave-defined second.

  20. Development of a strontium optical lattice clock for the SOC mission on the ISS

    Science.gov (United States)

    Origlia, S.; Schiller, S.; Pramod, M. S.; Smith, L.; Singh, Y.; He, W.; Viswam, S.; Świerad, D.; Hughes, J.; Bongs, K.; Sterr, U.; Lisdat, Ch.; Vogt, S.; Bize, S.; Lodewyck, J.; Le Targat, R.; Holleville, D.; Venon, B.; Gill, P.; Barwood, G.; Hill, I. R.; Ovchinnikov, Y.; Kulosa, A.; Ertmer, W.; Rasel, E.-M.; Stuhler, J.; Kaenders, W.

    2016-04-01

    The ESA mission "Space Optical Clock" project aims at operating an optical lattice clock on the ISS in approximately 2023. The scientific goals of the mission are to perform tests of fundamental physics, to enable space-assisted relativistic geodesy and to intercompare optical clocks on the ground using microwave and optical links. The performance goal of the space clock is less than 1 × 10-17 uncertainty and 1 × 10-15 τ-1/2 instability. Within an EU-FP7-funded project, a strontium optical lattice clock demonstrator has been developed. Goal performances are instability below 1 × 10-15 τ-1/2 and fractional inaccuracy 5 × 10-17. For the design of the clock, techniques and approaches suitable for later space application are used, such as modular design, diode lasers, low power consumption subunits, and compact dimensions. The Sr clock apparatus is fully operational, and the clock transition in 88Sr was observed with linewidth as small as 9 Hz.

  1. Development of a strontium optical lattice clock for the SOC mission on the ISS

    CERN Document Server

    Origlia, S; Pramod, M S; Smith, L; Singh, Y; He, W; Viswam, S; Świerad, D; Hughes, J; Bongs, K; Sterr, U; Lisdat, Ch; Vogt, S; Bize, S; Lodewyck, J; Targat, R Le; Holleville, D; Venon, B; Gill, P; Barwood, G; Hill, I R; Ovchinnikov, Y; Kulosa, A; Ertmer, W; Rasel, E -M; Stuhler, J; Kaenders, W

    2016-01-01

    The ESA mission "Space Optical Clock" project aims at operating an optical lattice clock on the ISS in approximately 2023. The scientific goals of the mission are to perform tests of fundamental physics, to enable space-assisted relativistic geodesy and to intercompare optical clocks on the ground using microwave and optical links. The performance goal of the space clock is less than $1 \\times 10^{-17}$ uncertainty and $1 \\times 10^{-15} {\\tau}^{-1/2}$ instability. Within an EU-FP7-funded project, a strontium optical lattice clock demonstrator has been developed. Goal performances are instability below $1 \\times 10^{-15} {\\tau}^{-1/2}$ and fractional inaccuracy $5 \\times 10^{-17}$. For the design of the clock, techniques and approaches suitable for later space application are used, such as modular design, diode lasers, low power consumption subunits, and compact dimensions. The Sr clock apparatus is fully operational, and the clock transition in $^{88}$Sr was observed with linewidth as small as 9 Hz.

  2. Magic wavelengths for lattice trapped Rubidium four-level active optical clock

    CERN Document Server

    Zang, Xiaorun; Chen, Jingbiao

    2012-01-01

    After pumped from $5s_{1/2}$ ground state to $6p_{1/2}$ state, the population inversion between $6s_{1/2}$ and $5p_{1/2,3/2}$ will be established for Rubidium four-level active optical clock. In this paper, we calculate AC Stark shift due to lattice trapping laser which dominates the frequency shift of clock transition in lattice trapped Rubidium four-level active optical clock. Several blue detuned magic wavelengths are found that can form desired optical lattice trapping potential. When the trapping laser is tuned to the magic wavelength, with 1 MHz frequency uncertainty and 10 kW$\\cdot$cm$^{-2}$ intensity, the frequency uncertainty of clock transition due to AC Stark shift of trapping laser, is estimated to be below 0.05 mHz.

  3. Testing spatial α-variation with optical atomic clocks based on highly charged ions

    Directory of Open Access Journals (Sweden)

    Berengut J. C.

    2013-08-01

    Full Text Available We review recent works illustrating the potential use of highly charged ions as the basis of optical atomic clocks of exceptional accuracy and very high sensitivity to variation of the fine structure constant, α. The tendency towards large transition energies in highly charged ions can be overcome using level crossings, which allow transitions between different orbitals to be within the range of usual lasers. We present simple scaling laws that demonstrate reduced systematics that could be realised in highly charged ion clocks. Such clocks could allow us to corroborate astronomical studies that suggest a spatial gradient in values of α across the Universe.

  4. Observation of the $^1$S$_0$ to $^3$D$_1$ clock transition in $^{175}$Lu$^+$

    CERN Document Server

    Arnold, Kyle J; Roy, A; Paez, E; Wang, S; Barrett, M D

    2016-01-01

    We report the first laser spectroscopy of the $^1$S$_0$ to $^3$D$_1$ clock transition in $^{175}$Lu$^+$. Clock operation is demonstrated on three pairs of Zeeman transitions, one pair from each hyperfine manifold of the $^3$D$_1$ term. We measure the hyperfine intervals of the $^3$D$_1$ to 10 ppb uncertainty and infer the optical frequency averaged over the three hyperfine transitions to be 353.639 915 952 2 (6) THz. The lifetime of the $^3$D$_1$ state is inferred to be $174^{+23}_{-32}$ hours from the M1 coupling strength.

  5. All-optical clock recovery of NRZ-DPSK signals using optical resonator-type filters

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Seoane, Jorge; Ji, Hua

    2009-01-01

    It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock.......It is shown how introducing a limited rise time to the driving signal enables all-optical clock recovery of NRZ-DPSK signals generated using a phase modulator. A Fabry-Perot filter is used to generate the optical clock....

  6. Comparing a mercury optical lattice clock with microwave and optical frequency standards

    Science.gov (United States)

    Tyumenev, R.; Favier, M.; Bilicki, S.; Bookjans, E.; Le Targat, R.; Lodewyck, J.; Nicolodi, D.; Le Coq, Y.; Abgrall, M.; Guéna, J.; De Sarlo, L.; Bize, S.

    2016-11-01

    In this paper we report the evaluation of an optical lattice clock based on neutral mercury with a relative uncertainty of 1.7× {10}-16. Comparing this characterized frequency standard to a 133Cs atomic fountain we determine the absolute frequency of the {}1{{{S}}}0\\to {}3{{{P}}}0 transition of 199Hg as {ν }{Hg}=1128 575 290 808 154.62 {Hz}+/- 0.19 {Hz}({statistical})+/- 0.38 {Hz} (systematic), limited solely by the realization of the SI second. Furthermore, by comparing the mercury optical lattice clock to a 87Rb atomic fountain, we determine for the first time to our knowledge the ratio between the 199Hg clock transition and the 87Rb ground state hyperfine transition. Finally we present a direct optical to optical measurement of the 199Hg/87Sr frequency ratio. The obtained value of {ν }{Hg}/{ν }{Sr} = 2.629 314 209 898 909 15 with a fractional uncertainty of 1.8× {10}-16 is in excellent agreement with a similar measurement obtained by Yamanaka et al (2015 Phys. Rev. Lett. 114 230801). This makes this frequency ratio one of the few physical quantities agreed upon by different laboratories to this level of uncertainty. Frequency ratio measurements of the kind reported in this paper have a strong impact for frequency metrology and fundamental physics as they can be used to monitor putative variations of fundamental constants.

  7. Atomic fountains and optical clocks at SYRTE: status and perspectives

    CERN Document Server

    Abgrall, M; De Sarlo, L; Guéna, J; Laurent, Ph; Coq, Y Le; Targat, R Le; Lodewyck, J; Lours, M; Rosenbusch, P; Rovera, D; Bize, S

    2015-01-01

    In this article, we report on the work done with the LNE-SYRTE atomic clock ensemble during the last 10 years. We cover progress made in atomic fountains and in their application to timekeeping. We also cover the development of optical lattice clocks based on strontium and on mercury. We report on tests of fundamental physical laws made with these highly accurate atomic clocks. We also report on work relevant to a future possible redefinition of the SI second.

  8. The Space Optical Clock project: status and perspectives

    Science.gov (United States)

    Schiller, Stephan; Tino, Guglielmo M.; Sterr, Uwe; Lemonde, Pierre; Görlitz, Axel; Salomon, Christophe

    The Space Optical Clocks project aims at operating lattice clocks on the ISS for tests of funda-mental physics and for providing high-accuracy comparisons of future terrestrial optical clocks. A pre-phase-A study (2007-10), funded partially by ESA and DLR, includes the implementa-tion of several optical lattice clock systems using Strontium and Ytterbium as atomic systems and their characterization. Subcomponents of clock demonstrators with the added specification of transportability and using techniques that are suitable for later space use, such as all-solid-state lasers, low power consumption, and compact dimensions, have been developed and are being validated. The talk will give a brief overview over the achieved results and outline future developments.

  9. Geopotential measurements with synchronously linked optical lattice clocks

    Science.gov (United States)

    Takano, Tetsushi; Takamoto, Masao; Ushijima, Ichiro; Ohmae, Noriaki; Akatsuka, Tomoya; Yamaguchi, Atsushi; Kuroishi, Yuki; Munekane, Hiroshi; Miyahara, Basara; Katori, Hidetoshi

    2016-10-01

    According to Einstein's theory of relativity, the passage of time changes in a gravitational field. On Earth, raising a clock by 1 cm increases its apparent tick rate by 1.1 parts in 1018, allowing chronometric levelling through comparison of optical clocks. Here, we demonstrate such geopotential measurements by determining the height difference of master and slave clocks separated by 15 km with an uncertainty of 5 cm. A subharmonic of the master clock laser is delivered through a telecom fibre to synchronously operate the distant clocks. Clocks operated under such phase coherence reject clock laser noise and facilitate proposals for linking clocks and interferometers. Taken over half a year, 11 measurements determine the fractional frequency difference between the two clocks to be 1,652.9(5.9) × 10-18, consistent with an independent measurement by levelling and gravimetry. Our system demonstrates a building block for an internet of clocks, which may constitute ‘quantum benchmarks’, serving as height references with dynamic responses.

  10. Superradiance on the mHz linewidth clock transition in 87Sr

    Science.gov (United States)

    Norcia, Matthew; Winchester, Matthew; Cline, Julia; Thompson, James

    2016-05-01

    In this talk, I will discuss our recent experimental explorations of superradiant emission from the mHz linewidth clock transition in an ensemble of cold 87 Sr atoms confined within a high-finesse optical cavity. Recent proposals suggest that superradiant lasers based on such dipole-forbidden transitions in alkaline earth atoms could achieve linewidths below the current state of the art, with reduced sensitivity to environmental perturbations.

  11. Using a transportable optical clock for chronometric levelling

    Science.gov (United States)

    Lisdat, Christian; Sterr, Uwe; Koller, Silvio; Grotti, Jacopo; Vogt, Stefan; Häfner, Sebastian; Herbers, Sofia; Al-Masoudi, Ali

    2016-07-01

    With their supreme accuracy and precision, optical clocks in combination with new methods of long-distance frequency transfer can be used to determine height differences by measuring the gravitational red shift between two clocks without accumulation of measurement errors, as in classical levelling. We are developing transportable optical clocks for this purpose that will also serve for the technology development regarding optical clocks in Space and for international comparisons between optical clocks that cannot be linked with sufficient accuracy otherwise. In this talk we will focus on the transportable strontium lattice clock that we are developing and its first evaluation. Presently, we achieve a fractional frequency instability of 3 × 10^{-17} after 1000 s averaging time, which is equivalent to a height resolution of 30 cm. The first uncertainty evaluation of the system yielded 7 × 10^{-17}. We expect rapid improvements to an uncertainty of a few parts in 10^{17}. The clock is now located within a car trailer, which requires compact and rugged lasers systems and physics package. Special care has been taken in the design of the ultra-frequency stable interrogation laser that has to achieve fractional frequency instabilities of considerably below 10^{-15}. Typical laboratory constructions of the reference resonator system used to pre-stabilize the laser frequency are not compatible with the requirement of transportability. In an actual levelling campaign, this clock will be connected via a stabilized optical fibre link with another, stationary frequency standard. The measured gravitational red shift will be compared with the ones calculated from potential differences derived with state of the art geodetic data and models. We will discuss the status of measurements of geodetic relevance with optical clocks and give an outlook on our next steps. This work is supported by QUEST, DFG (RTG 1729, CRC 1128), EU-FP7 (FACT) and EMRP (ITOC). The EMRP is jointly funded

  12. Optical lattice clock with Strontium atoms; Horloge a reseau optique a atomes de strontium

    Energy Technology Data Exchange (ETDEWEB)

    Baillard, X

    2008-01-15

    This thesis presents the latest achievements regarding the optical lattice clock with Strontium atoms developed at LNE-SYRTE. After a review of the different types of optical clocks that are currently under development, we stress on the concept of optical lattice clock which was first imagined for Sr{sup 87} using the {sup 1}S{sub 0} {yields} {sup 3}P{sub 0} transition. We exhibit the features of this atom, in particular the concept of magic wavelength for the trap, and the achievable performances for this kind of clock. The second part presents the experimental aspects, insisting particularly on the ultra-stable laser used for the interrogation of the atoms which is a central part of the experiment. Among the latest improvements, an optical pumping phase and an interrogation phase using a magnetic field have been added in order to refine the evaluation of the Zeeman effect. Finally, the last part presents the experimental results. The last evaluation of the clock using Sr{sup 87} atoms allowed us to reach a frequency accuracy of 2.6*10{sup -15} and a measurement in agreement with the one made at JILA (Tokyo university) at the 10{sup -15} level. On another hand, thanks to recent theoretical proposals, we made a measurement using the bosonic isotope Sr{sup 88} by adapting the experimental setup. This measurement represents the first evaluation for this type of clock, with a frequency accuracy of 7*10{sup -14}. (author)

  13. Real-time geopotentiometry with synchronously linked optical lattice clocks

    CERN Document Server

    Takano, Tetsushi; Ushijima, Ichiro; Ohmae, Noriaki; Akatsuka, Tomoya; Yamaguchi, Atsushi; Kuroishi, Yuki; Munekane, Hiroshi; Miyahara, Basara; Katori, Hidetoshi

    2016-01-01

    According to the Einstein's theory of relativity, the passage of time changes in a gravitational field. On earth, raising a clock by one centimetre increases its tick rate by 1.1 parts in 10$^{18}$, enabling optical clocks to perform precision geodesy. Here, we demonstrate geopotentiometry by determining the height difference of master and slave clocks separated by 15 km with uncertainty of 5 cm. The subharmonic of the master clock is delivered through a telecom fibre to phase-lock and synchronously interrogate the slave clock. This protocol rejects laser noise in the comparison of two clocks, which improves the stability of measuring the gravitational red shift. Such phase-coherently operated clocks facilitate proposals for linking clocks and interferometers. Over half a year, 11 measurements determine the fractional frequency difference between the two clocks to be $1,652.9(5.9)\\times 10^{-18}$, or a height difference of 1,516(5) cm, consistent with an independent measurement by levelling and gravimetry. Ou...

  14. Improved frequency measurement of the $^1S_{0}$-$^3P_{0}$ clock transition in $^{87}$Sr using the Cs fountain clock at NMIJ as a transfer oscillator

    CERN Document Server

    Tanabe, Takehiko; Kobayashi, Takumi; Takamizawa, Akifumi; Yanagimachi, Shinya; Ikegami, Takeshi; Suzuyama, Tomonari; Inaba, Hajime; Okubo, Sho; Yasuda, Masami; Hong, Feng-Lei; Onae, Atsushi; Hosaka, Kazumoto

    2015-01-01

    We performed an absolute frequency measurement of the $^1S_{0}$-$^3P_{0}$ transition in $^{87}$Sr with a fractional uncertainty of $1.2 \\times 10^{-15}$, which is less than one third that of our previous measurement. A caesium fountain atomic clock was used as a transfer oscillator to reduce the uncertainty of the link between a strontium optical lattice clock and the SI second. The absolute value of the transition frequency is 429 228 004 229 873.56(49) Hz.

  15. Experimental constraint on dark matter detection with optical atomic clocks

    Science.gov (United States)

    Wcisło, P.; Morzyński, P.; Bober, M.; Cygan, A.; Lisak, D.; Ciuryło, R.; Zawada, M.

    2016-12-01

    The total mass density of the Universe appears to be dominated by dark matter. However, beyond its gravitational interactions at the galactic scale, little is known about its nature1. Several proposals have been advanced in recent years for the detection of dark matter2-4. In particular, a network of atomic clocks could be used to search for transient indicators of hypothetical dark matter5 in the form of stable topological defects; for example, monopoles, strings or domain walls6. The clocks become desynchronized when a dark-matter object sweeps through the network. This pioneering approach5 requires a comparison between at least two distant optical atomic clocks7-9. Here, by exploiting differences in the susceptibilities of the atoms and the cavity to the fine-structure constant10,11, we show that a single optical atomic clock12 is already sensitive to dark-matter events. This implies that existing optical atomic clocks13,14 can serve as a global topological-defect dark-matter observatory, without any further developments in experimental apparatus or the need for long phase-noise-compensated optical-fibre links15. Using optical atomic clocks, we explored a new dimension of astrophysical observations by constraining the strength of atomic coupling to hypothetical dark-matter cosmic objects. Under the conditions of our experiments, the degree of constraint was found to exceed the previously reported limits16 by more than three orders of magnitude.

  16. Remote atomic clock synchronization via satellites and optical fibers

    CERN Document Server

    Piester, D; Fujieda, M; Feldmann, T; Bauch, A

    2011-01-01

    In the global network of institutions engaged with the realization of International Atomic Time (TAI), atomic clocks and time scales are compared by means of the Global Positioning System (GPS) and by employing telecommunication satellites for two-way satellite time and frequency transfer (TWSTFT). The frequencies of the state-of-the-art primary caesium fountain clocks can be compared at the level of 10e-15 (relative, 1 day averaging) and time scales can be synchronized with an uncertainty of one nanosecond. Future improvements of worldwide clock comparisons will require also an improvement of the local signal distribution systems. For example, the future ACES (atomic clock ensemble in space) mission shall demonstrate remote time scale comparisons at the uncertainty level of 100 ps. To ensure that the ACES ground instrument will be synchronized to the local time scale at PTB without a significant uncertainty contribution, we have developed a means for calibrated clock comparisons through optical fibers. An un...

  17. The Physics of Miniature Atomic Clocks: 0-0 Versus "End" Transitions

    Science.gov (United States)

    Post, Amber; Jau, Yuan-Yu; Kuzma, Nicholas; Happer, William

    2003-05-01

    The majority of traditional atomic-clock designs are based on the 0-0 hyperfine transition of a Cs 133 atom. We are currently investigating the advantages of operating a miniature optical atomic clock using the "end" transitions, e.g. connecting states |f=1, mf =+/-1> and |f=2, mf=+/-2> in 87Rb. In our paper we present extensive new measurements of relevant relaxation rates, such as those due to spin-exchange collisions, buffer-gas pressure shifts, Carver Rates and others, which ultimately determine the choices of an operating regime for the miniature optical atomic clock. The relationship between these rates is non-trivial: for example, using higher laser power will increase polarization and reduce the spin-exchange rate [1], but it can simultaneously increase the linewidth due to the optical pumping rate. The dependence of these and other relaxation rates on the cell size, temperature, pressure, a choice of buffer gas, and other parameters will be reported. Based on these measured rates, our modeling can be used to predict the transition linewidths, signal-to-noise ratios and thus the stability of the clock in different operating regimes. The trade-off between the stability of the clock and the desired small cell size and low power consumption needs to be carefully considered in order to optimize our design. In our experiments we used optical, microwave, and radio-frequency excitation to study hyperfine and Zeeman resonance lines in heated glass cells containing pure-isotope alkali-metal vapor and buffer gasses (N2, Ar, He, etc.) at low (0 - 10 G) magnetic fields. Simultaneous use of light, microwave and radio-frequency fields allowed us to calibrate surrounding magnetic fields by observing the corresponding shifts of the resonance, thus leading us to a quantitative understanding of our system. [1] S. Appelt, A. B. Baranga, A. R. Young, W. Happer, Phys. Rev. A 59, 2078 (1999).

  18. Microchip-Based Trapped-Atom Clocks

    CERN Document Server

    Vuletic, Vladan; Schleier-Smith, Monika H

    2011-01-01

    This is a chapter of a recently published book entitled Atom Chips, edited by Jakob Reichel and Vladan Vuletic. The contents of this chapter include: Basic Principles; Atomic-Fountain versus Trapped-Atom Clocks; Optical-Transition Clocks versus Microwave Clocks; Clocks with Magnetically Trapped Atoms--Fundamental Limits and Experimental Demonstrations; Readout in Trapped-Atom Clocks; and Spin Squeezing.

  19. Ultrafast all-optical clock recovery based on phase-only linear optical filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Kong, Deming; Galili, Michael

    2014-01-01

    We report on a novel, efficient technique for all-optical clock recovery from RZ-OOK data signals based on spectral phase-only (all-pass) optical filtering. This technique significantly enhances both the recovered optical clock quality and energy efficiency in comparison with conventional amplitude...... optical filtering approaches using a Fabry-Perot filter. The proposed concept is validated through recovery of the optical clock from a 640 Gbit/s RZ-OOK data signal using a commercial linear optical waveshaper. (C) 2014 Optical Society of America...

  20. Development of a strontium optical lattice clock for space applications

    Science.gov (United States)

    Singh, Yeshpal

    2016-07-01

    With timekeeping being of paramount importance for modern life, much research and major scientific advances have been undertaken in the field of frequency metrology, particularly over the last few years. New Nobel-prize winning technologies have enabled a new era of atomic clocks; namely the optical clock. These have been shown to perform significantly better than the best microwave clocks reaching an inaccuracy of 1.6x10-18 [1]. With such results being found in large lab based apparatus, the focus now has shifted to portability - to enable the accuracy of various ground based clocks to be measured, and compact autonomous performance - to enable such technologies to be tested in space. This could lead to a master clock in space, improving not only the accuracy of technologies on which modern life has come to require such as GPS and communication networks. But also more fundamentally, this could lead to the redefinition of the second and tests of fundamental physics including applications in the fields of ground based and satellite geodesy, metrology, positioning, navigation, transport and logistics etc. Within the European collaboration, Space Optical Clocks (SOC2) [2-3] consisting of various institutes and industry partners across Europe we have tried to tackle this problem of miniaturisation whilst maintaining stability, accuracy (5x10-17) and robustness whilst keeping power consumption to a minimum - necessary for space applications. We will present the most recent results of the Sr optical clock in SOC2 and also the novel compact design features, new methods employed and outlook. References [1] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, "An optical lattice clock with accuracy and stability at the 10-18 level," Nature 506, 71-75 (2014). [2] S. Schiller et al. "Towards Neutral-atom Space Optical Clocks (SOC2): Development of high-performance transportable and breadboard optical clocks and

  1. The ac Stark shifts of the terahertz clock transitions of barium

    Institute of Scientific and Technical Information of China (English)

    余庚华; 耿鹰鸽; 李隆; 周超; 段丞博; 柴瑞鹏; 杨永明

    2015-01-01

    Wavelength-dependent AC Stark shifts and magic wavelengths of the terahertz clock transitions between the metastable triplet states 6s5d 3D1 and 6s5d 3D2 are investigated with considering the optical lattice trapping of barium atoms with the linearly polarized laser. The trap depths and the slopes of light shift difference with distinct magic wave-lengths of the optical lattices are also discussed in detail. Several potentially suitable working points for the optical lattice trapping laser are recommended and selected from these magic wavelengths.

  2. Black-body radiation shift of the Ga$^{+}$ clock transition

    CERN Document Server

    Cheng, Yongjun

    2013-01-01

    The blackbody radiation shift of the Ga$^+$ $4s^2 \\ ^1S^e_0 \\to 4s4p \\ ^3P^o_0$ clock transition is computed to be $-$$0.0140 \\pm 0.0048$ Hz at 300 K. The small shift is consistent with the blackbody shifts of the clock transitions of other group III ions which are of a similar size. The polarizabilities of the Ga$^+$ $4s^2 \\ ^1S^e_0$, $4s4p \\ ^3P^o_0$, and $4s4p \\ ^1P^o_1$ states were computed using the configuration interaction method with an underlying semi-empirical core potential. A byproduct of the analysis involved large scale calculations of the low lying spectrum and oscillator strengths of the Ga$^{2+}$ ion.

  3. Stability improvements for the NIST Yb optical lattice clock

    Science.gov (United States)

    Fasano, R. J.; Schioppo, M.; McGrew, W. F.; Brown, R. C.; Hinkley, N.; Yoon, T. H.; Beloy, K.; Oates, C. W.; Ludlow, A. D.

    2016-05-01

    To reach the fundamental limit given by quantum projection noise, optical lattice clocks require advanced laser stabilization techniques. The NIST ytterbium clock has benefited from several generations of extremely high finesse optical cavities, with cavity linewidths below 1 kHz. Characterization of the cavity drift rate has allowed compensation to the mHz/s level, improving the medium-term stability of the cavity. Based on recent measurements using Ramsey spectroscopy with synchronous interrogation, we report a fractional instability σy(1s) thermal noise floor, which will improve our Dick-limited fractional instability at 1 s to below 10-16. Also at University of Colorado.

  4. One single trapped and laser cooled radium ion: Towards an all-optical atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    Versolato, Oscar; Wansbeek, Lotje; Willmann, Lorenz; Timmermans, Rob; Jungmann, Klaus [KVI, University of Groningen (Netherlands)

    2008-07-01

    One single trapped radium ion is an ideal candidate for an all-optical frequency standard (*clock*). This system provides a long coherence time and tractable systematics. If the ion is laser cooled to the Lamb-Dicke regime, first order Doppler shifts are eliminated. Ultra-narrow transitions in radium ions provide an excellent basis for such a high stability clock, using commercially available semiconductor lasers in the visible regime. In certain odd isotopes of radium, the nuclear electric quadrupole shift is absent. Further, the radium ion is an excellent candidate for a high sensitivity experiment to search for a time variation of the finestructure constant.

  5. Enhancing coherence in molecular spin qubits via atomic clock transitions

    Science.gov (United States)

    Shiddiq, Muhandis; Komijani, Dorsa; Duan, Yan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Hill, Stephen

    2016-03-01

    Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest. There are many competing candidates for qubits, including superconducting circuits, quantum optical cavities, ultracold atoms and spin qubits, and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction. To minimize it, spins are typically diluted in a diamagnetic matrix. For example, this dilution can be taken to the extreme of a single phosphorus atom in silicon, whereas in molecular matrices a typical ratio is one magnetic molecule per 10,000 matrix molecules. However, there is a fundamental contradiction between reducing decoherence by dilution and allowing quantum operations via the interaction between spin qubits. To resolve this contradiction, the design and engineering of quantum hardware can benefit from a ‘bottom-up’ approach whereby the electronic structure of magnetic molecules is chemically tailored to give the desired physical behaviour. Here we present a way of enhancing coherence in solid-state molecular spin qubits without resorting to extreme dilution. It is based on the design of molecular structures with crystal field ground states possessing large tunnelling gaps that give rise to optimal operating points, or atomic clock transitions, at which the quantum spin dynamics become protected against dipolar decoherence. This approach is illustrated with a holmium molecular nanomagnet in which long coherence times (up to 8.4 microseconds at 5 kelvin) are obtained at unusually high concentrations. This finding opens new avenues for quantum computing based on molecular spin qubits.

  6. Synchronization of Fourier-Synthesized Optical Pulses to a Mode-Locked Optical Clock

    Institute of Scientific and Technical Information of China (English)

    Masaharu; Hyodo; Kazi; Sarwal; Abedin; Noriaki; Onodera; Masayoshi; Watanabe

    2003-01-01

    A Fourier-synthesized 40-GHz optical pulse train was successfully synchronized to an 8-GHz optical clock generated from a mode-locked fiber ring laser. The measured timing jitter of the synchronization was 0.43 ps.

  7. Searching for dark matter with optical atomic clocks

    CERN Document Server

    Wcislo, Piotr; Bober, Marcin; Cygan, Agata; Lisak, Daniel; Ciurylo, Roman; Zawada, Michal

    2016-01-01

    One of the most fundamental questions of modern physics is the existence of yet unknown forms of matter and interactions. The total mass density of the Universe appears to be dominated by some hypothetical dark matter (DM). However, beyond its gravitational interaction at galactic scale, little is known about the DM nature and properties. One possibility is that it has a form of stable topological defects built from light scalar fields which, for nonzero DM-SM coupling, would result in transient variations of fundamental constants. Optical atomic clocks, highly sensitive to variations of the fine-structure constant, seem to be natural candidates for such searches. Here we demonstrate the first experimental constraint on the strength of transient DM-SM coupling determined with optical atomic clocks. Instead of measuring the phase difference between two distant clocks we determine a common component of their readouts. We show that our constraint, even for one-day measurement, greatly exceeds previous laboratory...

  8. A compact ultranarrow high-power laser system for experiments with 578 nm ytterbium clock transition

    Energy Technology Data Exchange (ETDEWEB)

    Cappellini, G., E-mail: cappellini@lens.unifi.it [LENS European Laboratory for Nonlinear Spectroscopy, 50019 Sesto Fiorentino (Italy); Lombardi, P. [Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino (Italy); INO-CNR Istituto Nazionale di Ottica del CNR, Sezione di Sesto Fiorentino, 50019 Sesto Fiorentino (Italy); Mancini, M.; Pagano, G. [Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino (Italy); Pizzocaro, M. [INRIM Istituto Nazionale di Ricerca Metrologica, Torino 10135 (Italy); Fallani, L. [LENS European Laboratory for Nonlinear Spectroscopy, 50019 Sesto Fiorentino (Italy); Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino (Italy); Catani, J. [LENS European Laboratory for Nonlinear Spectroscopy, 50019 Sesto Fiorentino (Italy); INO-CNR Istituto Nazionale di Ottica del CNR, Sezione di Sesto Fiorentino, 50019 Sesto Fiorentino (Italy)

    2015-07-15

    In this paper, we present the realization of a compact, high-power laser system able to excite the ytterbium clock transition at 578 nm. Starting from an external-cavity laser based on a quantum dot chip at 1156 nm with an intra-cavity electro-optic modulator, we were able to obtain up to 60 mW of visible light at 578 nm via frequency doubling. The laser is locked with a 500 kHz bandwidth to an ultra-low-expansion glass cavity stabilized at its zero coefficient of thermal expansion temperature through an original thermal insulation and correction system. This laser allowed the observation of the clock transition in fermionic {sup 173}Y b with a <50 Hz linewidth over 5 min, limited only by a residual frequency drift of some 0.1 Hz/s.

  9. Probing beyond the laser coherence time in optical clock comparisons

    Science.gov (United States)

    Hume, David B.; Leibrandt, David R.

    2016-03-01

    We develop differential measurement protocols that circumvent the laser noise limit in the stability of optical clock comparisons by synchronous probing of two clocks using phase-locked local oscillators. This allows for probe times longer than the laser coherence time, avoids the Dick effect, and supports Heisenberg-limited measurement precision. We present protocols for such frequency comparisons and develop numerical simulations of the protocols with realistic noise sources. These methods provide a route to reduce frequency ratio measurement durations by more than an order of magnitude.

  10. 10Gb/s Bang-Bang Clock and Data Recovery (CDR for optical transmission systems

    Directory of Open Access Journals (Sweden)

    N. Dodel

    2005-01-01

    Full Text Available A Bang-Bang Clock-Data Recovery (CDR for 10Gb/s optical transmission systems is presented. A direct modulated architecture is used for the design. Its loop characteristics can be derived using an analogy to Σ Δ theory. The circuit was produced and measured in a commercial 0.25μm BiCMOS technology with a transition frequency fT70=GHz.

  11. 10Gb/s Bang-Bang Clock and Data Recovery (CDR) for optical transmission systems

    OpenAIRE

    N. Dodel; Klar, H.

    2005-01-01

    A Bang-Bang Clock-Data Recovery (CDR) for 10Gb/s optical transmission systems is presented. A direct modulated architecture is used for the design. Its loop characteristics can be derived using an analogy to Σ Δ theory. The circuit was produced and measured in a commercial 0.25μm BiCMOS technology with a transition frequency fT70=GHz.

  12. Atomic clock with nuclear transition: current status in TU Wien

    OpenAIRE

    Kazakov, G. A.; Schreitl, M.; Winkler, G.; Sterba, J. H.; Steinhauser, G; Schumm, T.

    2011-01-01

    The nucleus of 229Thorium presents a unique isomer state of very low energy and long lifetime, current estimates are around 7.8 eV and seconds to hours respectively. This nuclear transitions therefore is a promising candidate for a novel type of frequency standard and several groups worldwide have set out to investigate this system. Our aim is to construct a "solid state nuclear clock", i.e. a frequency standard where Thorium ions are implanted into Calciumfluoride crystals transparent in vac...

  13. Delivering pulsed and phase stable light to atoms of an optical clock

    CERN Document Server

    Falke, Stephan; Sterr, Uwe; Lisdat, Christian

    2011-01-01

    In optical clocks, transitions of ions or neutral atoms are interrogated using pulsed ultra-narrow laser fields. Systematic phase chirps of the laser or changes of the optical path length during the measurement cause a shift of the frequency seen by the interrogated atoms. While the stabilization of cw-optical links is now a well established technique even on long distances, phase stable links for pulsed light pose additional challanges and have not been demonstrated so far. In addition to possible temperature or pressure drift of the laboratory, which may lead to a Doppler shift by steadily changing the optical path length, the pulsing of the clock laser light calls for short settling times of stabilization locks. Our optical path length stabilization uses retro-reflected light from a mirror that is fixed with respect to the interrogated atoms and synthetic signals during the dark time. Length changes and frequency chirps are compensated for by the switching AOM. For our strontium optical lattice clock we ha...

  14. Gravitational wave detection with optical lattice atomic clocks

    CERN Document Server

    Kolkowitz, Shimon; Langellier, Nicholas; Lukin, Mikhail D; Walsworth, Ronald L; Ye, Jun

    2016-01-01

    We propose a space-based gravitational wave detector consisting of two spatially separated, drag-free satellites sharing ultra-stable optical laser light over a single baseline. Each satellite contains an optical lattice atomic clock, which serves as a sensitive, narrowband detector of the local frequency of the shared laser light. A synchronized two-clock comparison between the satellites will be sensitive to the effective Doppler shifts induced by incident gravitational waves (GWs) at a level competitive with other proposed space-based GW detectors, while providing complementary features. The detected signal is a differential frequency shift of the shared laser light due to the relative velocity of the satellites, rather than a phase shift arising from the relative satellite positions, and the detection window can be tuned through the control sequence applied to the atoms' internal states. This scheme enables the detection of GWs from continuous, spectrally narrow sources, such as compact binary inspirals, ...

  15. Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation

    CERN Document Server

    Lipphardt, Burghard; Weyers, Stefan

    2016-01-01

    We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary caesium fountain clocks. Because of its superior phase noise properties, the new scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the fountain clock frequency instability limitations given by the previously utilized quartz oscillator based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of weeks. The utilization of the twofold stabilization scheme on the one hand ensures referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables quantum projection noise limited fountain fre...

  16. Research on the optical system for space optical clock at NTSC

    Science.gov (United States)

    Tian, X.; Han, J. X.; Zhang, S.; Zou, H. X.; Chang, H.

    2016-11-01

    Optical clocks surpass the primary Cs microwave clocks with excellent performances. This allows new studies both in fundamental physics and engineering. The paper presents the optical system for our space optical clock at NTSC. Different from it in the laboratory, novel approaches and techniques were used to meet the space requirement of compactness and reliability. The modular consisting of three robust subunits was developed, which was one laser sources breadboard and two optical paths systems breadboards. The compact dimension of the optical system is 540mm×440mm×130mm and the total mass was approximate 28 kilogram. The deformation of two optical paths systems was calculated under an overload test by a mechanical analysis and it could meet the requirement. It is a advancement from lab to engineering application based on the work, which provides effective foundation for improving the optical system.

  17. Feasibility of Extreme Ultraviolet Active Optical Clock

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Wei; CHEN Jing-Biao

    2011-01-01

    @@ We propose an experimental scheme of vacuum ultraviolet(VUV)and extreme ultraviolet(XUV)optical fre-quency standards with noble gas atoms.Considering metastable state 3P2 noble atoms pumped by a conventional discharging method,the atomic beam is collimated with transverse laser cooling at the metastable state and en-ters into the laser cavity in the proposed setup.Due to stimulated emission from the metasable state to the ground state inside the laser cavity consisting of VUV reflection coating mirrors,our calculations show that with enough population inversion to compensate for the cavity loss,an active optical frequency standard at VUV and XUV is feasible.

  18. Generating and probing entangled states for optical atomic clocks

    Science.gov (United States)

    Braverman, Boris; Kawasaki, Akio; Vuletic, Vladan

    2016-05-01

    The precision of quantum measurements is inherently limited by projection noise caused by the measurement process itself. Spin squeezing and more complex forms of entanglement have been proposed as ways of surpassing this limitation. In our system, a high-finesse asymmetric micromirror-based optical cavity can mediate the atom-atom interaction necessary for generating entanglement in an 171 Yb optical lattice clock. I will discuss approaches for creating, characterizing, and optimally utilizing these nonclassical states for precision measurement, as well as recent progress toward their realization. This research is supported by DARPA QuASAR, NSF, and NSERC.

  19. Towards a Re-definition of the Second Based on Optical Atomic Clocks

    CERN Document Server

    Riehle, Fritz

    2015-01-01

    The rapid increase in accuracy and stability of optical atomic clocks compared to the caesium atomic clock as primary standard of time and frequency asks for a future re-definition of the second in the International System of Units (SI). The status of the optical clocks based on either single ions in radio-frequency traps or on neutral atoms stored in an optical lattice is described with special emphasis of the current work at the Physikalisch-Technische Bundesanstalt (PTB). Besides the development and operation of different optical clocks with estimated fractional uncertainties in the 10^-18 range, the supporting work on ultra-stable lasers as core elements and the means to compare remote optical clocks via transportable standards, optical fibers, or transportable clocks is reported. Finally, the conditions, methods and next steps are discussed that are the prerequisites for a future re-definition of the second.

  20. Optimized geometries for future generation optical lattice clocks

    CERN Document Server

    Krämer, Sebastian; Ritsch, Helmut

    2015-01-01

    Atoms trapped in magic wavelength optical lattices provide a Doppler- and collision-free dense ensemble of quantum emitters ideal for fast high precision spectroscopy and thus they are the basis of the best optical clock setups to date. Despite the minute optical dipole moments the inherent long range dipole-dipole interactions in such lattices at high densities generate measurable line shifts, increased dephasing and modified decay rates. We show that these effects can be resonantly enhanced or suppressed depending on lattice constant, geometry and excitation procedure. While these interactions generally limit the accuracy and precision of Ramsey spectroscopy, under optimal conditions collective effects can be exploited to yield zero effective shifts and long dipole lifetimes for a measurement precision beyond a noninteracting ensemble. In particular, 2D lattices with a lattice constant below the optical wavelength feature an almost ideal performance.

  1. Frequency Ratio of ${}^{199}$Hg and ${}^{87}$Sr Optical Lattice Clocks beyond the SI Limit

    CERN Document Server

    Yamanaka, Kazuhiro; Ushijima, Ichiro; Takamoto, Masao; Katori, Hidetoshi

    2015-01-01

    We report on a frequency ratio measurement of a ${}^{199}$Hg-based optical lattice clock referencing a ${}^{87}$Sr-based clock. Evaluations of lattice light shift, including atomic-motion-dependent shift, enable us to achieve a total systematic uncertainty of $7.2 \\times 10^{-17}$ for the Hg clock. The frequency ratio is measured to be $\

  2. High accuracy measure of atomic polarizability in an optical lattice clock

    OpenAIRE

    Sherman, J. A.; Lemke, N. D.; Hinkley, N.; Pizzocaro, M.; Fox, R. W.; Ludlow, A. D.; Oates, C. W.

    2011-01-01

    Despite being a canonical example of quantum mechanical perturbation theory, as well as one of the earliest observed spectroscopic shifts, the Stark effect contributes the largest source of uncertainty in a modern optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we characterize the quadratic Stark effect with unprecedented precision. We report the ytterbium optical clock's sensitivity to electric fields (suc...

  3. Designing Zeeman slower for strontium atoms - towards optical atomic clock

    CERN Document Server

    Bober, Marcin; Gawlik, Wojciech

    2010-01-01

    We report on design and construction of a Zeeman slower for strontium atoms which will be used in an optical atomic clock experiment. The paper describes briefly required specifications of the device, possible solutions, and concentrates on the chosen design. The magnetic field produced by the built Zeeman slower has been measured and compared with the simulations. The system consisting of an oven and Zeeman slower are designed to produce an atomic beam of 10-12 s-1 flux and final velocity of ~30 m/s.

  4. Designing Zeeman slower for strontium atoms - towards optical atomic clock

    OpenAIRE

    Bober, Marcin; Zachorowski, Jerzy; Gawlik, Wojciech

    2010-01-01

    We report on design and construction of a Zeeman slower for strontium atoms which will be used in an optical atomic clock experiment. The paper describes briefly required specifications of the device, possible solutions, and concentrates on the chosen design. The magnetic field produced by the built Zeeman slower has been measured and compared with the simulations. The system consisting of an oven and Zeeman slower are designed to produce an atomic beam of 10-12 s-1 flux and final velocity of...

  5. High-resolution 640 Gbit/s clock recovery using time-domain optical Fourier transformation and narrowband optical filter

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Guan, P.; Kasai, K.

    2010-01-01

    We demonstrate pre-scaled 40 GHz clock recovery from 640 Gbit/s optical time-division-multiplexed data using LiNbO$_3$ modulators, based on time-domain optical Fourier transformation and optical filtering. The clock recovery is used in a 640 Gbit/s error-free transmission over 300 km....

  6. Absolute frequency measurement of the 88Sr+ clock transition using a GPS link to the SI second

    Science.gov (United States)

    Dubé, Pierre; E Bernard, John; Gertsvolf, Marina

    2017-06-01

    We report the results of a recent measurement of the absolute frequency of the 5s{{ }2}{{S}1/2} - 4d{{ }2}{{D}5/2} transition of the {{}88}\\text{Sr}{{}+} ion. The optical frequency was measured against the international atomic time realization of the SI second on the geoid as obtained by frequency transfer using a global positioning system link and the precise point positioning technique. The measurement campaign yielded more than 100 h of frequency data. It was performed with improvements to the stability and accuracy of the single-ion clock compared to the last measurement made in 2012. The single ion clock uncertainty is evaluated at 1.5× {{10}-17} when contributions from acousto-optic modulator frequency chirps and servo errors are taken into account. The stability of the ion clock is 3× {{10}-15} at 1 s averaging, a factor of three better than in the previous measurement. The results from the two measurement campaigns are in good agreement. The uncertainty of the measurement, primarily from the link to the SI second, is 0.75 Hz (1.7× {{10}-15} ). The frequency measured for the S-D clock transition of {{}88}\\text{S}{{\\text{r}}+} is {ν0}= 444 779 044 095 485.27(75) Hz.

  7. Reduction of Timing Jitter by Clock Recovery based on an Optical Phase-Locked Loop

    DEFF Research Database (Denmark)

    Zibar, Darko; Mørk, Jesper; Oxenløwe, Leif Katsuo

    2006-01-01

    We numerically investigate the phase noise requirements for combined electrical/optical local oscillators in a PLL-based clock recovery. Suggestions for reducing the timing jitter are given.......We numerically investigate the phase noise requirements for combined electrical/optical local oscillators in a PLL-based clock recovery. Suggestions for reducing the timing jitter are given....

  8. Ultrastable laser system for spectroscopy of the 1S0-3P0 clock transition in Sr atoms

    Science.gov (United States)

    Berdasov, O. I.; Gribov, A. Yu.; Belotelov, G. S.; Pal'chikov, V. G.; Strelkin, S. A.; Khabarova, K. Yu.; Kolachevsky, N. N.; Slyusarev, S. N.

    2017-06-01

    A laser system with a spectral linewidth less than 1 Hz for spectroscopy of the 1S0-3P0 clock transition in strontium atoms has been demonstrated. A semiconductor laser emitting at a wavelength of 698 nm was stabilised to an external high-finesse Fabry-Perot cavity with vibration and temperature compensation near the zero expansion point. After laser cooling to a temperature below 3 μK, 88Sr atoms were loaded into an optical lattice at a magic wavelength of 813 nm. The laser system was used to characterise the 88Sr clock transition by magnetically induced spectroscopy. The resonance spectral width was determined to be 130 ± 17 Hz, which corresponds to a quality factor of 3 × 1012.

  9. Optical clock recovery employing an optical PLL using cross-phase modulation in a Sagnac-interferometer

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Schubert, C.; Schmidt, C.

    2001-01-01

    Clock recovery (CR) is an essential part of any transmission system. In this paper, we propose a new type of optical clock recovery based on an optical PLL, where a SLALOM (Eiselt et al., 1995) acts as an ultrafast phase comparator. The scheme has been demonstrated successfully at bit rates up...

  10. Optical clock recovery employing an optical PLL using cross-phase modulation in a Sagnac-interferometer

    OpenAIRE

    Oxenløwe, Leif Katsuo; Schubert, C.; Schmidt, C.; Hilliger, E.; Berger, J.; Feiste, U; R. Ludwig; Weber, H. G.

    2001-01-01

    Clock recovery (CR) is an essential part of any transmission system. In this paper, we propose a new type of optical clock recovery based on an optical PLL, where a SLALOM (Eiselt et al., 1995) acts as an ultrafast phase comparator. The scheme has been demonstrated successfully at bit rates up to 160 Gb/s.

  11. Development of a strontium optical lattice clock for the SOC mission on the ISS

    CERN Document Server

    Bongs, K; Smith, L; He, W; Kock, O; Swierad, D; Hughes, J; Schiller, S; Alighanbari, S; Origlia, S; Vogt, S; Sterr, U; Lisdat, Ch; Targat, R Le; Lodewyck, J; Holleville, D; Venon, B; Bize, S; Barwood, G P; Gill, P; Hill, I R; Ovchinnikov, Y B; Poli, N; Tino, G M; Stuhler, J; Kaenders, W

    2015-01-01

    Ultra-precise optical clocks in space will allow new studies in fundamental physics and astronomy. Within an European Space Agency (ESA) program, the Space Optical Clocks (SOC) project aims to install and to operate an optical lattice clock on the International Space Station (ISS) towards the end of this decade. It would be a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Within the EU-FP7-SPACE-2010-1 project no. 263500, during the years 2011-2015 a compact, modular and robust strontium lattice optical clock demonstrator has been developed. Goal performance is a fractional frequency instability below 1x10^{-15}, tau^{-1/2} and a fractional inaccuracy below 5x10^{-17}. Here we describe the current status of the apparatus' development, i...

  12. Hyperfine-induced electric dipole contributions to the electric octupole and magnetic quadrupole atomic clock transitions

    CERN Document Server

    Dzuba, V A

    2016-01-01

    Hyperfine-induced electric dipole contributions may significantly increase probabilities of otherwise very weak electric octupole and magnetic quadrupole atomic clock transitions (e.g. transitions between $s$ and $f$ electron orbitals). These transitions can be used for exceptionally accurate atomic clocks, quantum information processing and search for dark matter. They are very sensitive to new physics beyond the Standard Model, such as temporal variation of the fine structure constant, the Lorentz invariance and Einstein equivalence principle violation. We formulate conditions under which the hyperfine-induced electric dipole contribution dominates. Due to the hyperfine quenching the electric octupole clock transition in $^{173}$Yb$^+$ is two orders of magnitude stronger than that in currently used $^{171}$Yb$^+$. Some enhancement is found in $^{143}$Nd$^{13+}$, $^{149}$Pm$^{14+}$, $^{147}$Sm$^{14+}$, and $^{147}$Sm$^{15+}$ ions.

  13. High Time-Resolution 640-Gb/s Clock Recovery Using Time-Domain Optical Fourier Transformation and Narrowband Optical Filter

    DEFF Research Database (Denmark)

    Guan, P.; Mulvad, Hans Christian Hansen; Kasai, K.

    2010-01-01

    We present a novel scheme for subharmonic clock recovery from an optical time-division-multiplexing signal using time-domain optical Fourier transformation and a narrowband optical filter. High-resolution 640-Gb/s clock recovery is successfully demonstrated with no pattern dependence. The clock...

  14. Optical transitions in semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rupasov, Valery I. [ALTAIR Center LLC, Shrewsbury, MA 01545 (United States) and Landau Institute for Theoretical Physics, Moscow (Russian Federation)]. E-mail: rupasov@townisp.com

    2007-03-19

    Employing the Maxwell equations and conventional boundary conditions for the radiation field on the nanostructure interfaces, we compute the radiative spontaneous decay rate of optical transitions in spherical semiconductor nanocrystals, core-shell nanocrystals and nanostructures comprising more than one shell. We also show that the coupling between optical transitions localized in the shell of core-shell nanocrystals and radiation field is determined by both conventional electro-multipole momenta and electro-multipole 'inverse' momenta. The latter are proportional to the core radius even for interband transitions that should result in very strong optical transitions.

  15. Blackbody radiation shift in the Sr optical atomic clock

    CERN Document Server

    Safronova, M S; Safronova, U I; Kozlov, M G; Clark, Charles W

    2012-01-01

    We evaluated the static and dynamic polarizabilities of the 5s^2 ^1S_0 and 5s5p ^3P_0^o states of Sr using the high-precision relativistic configuration interaction + all-order method. Our calculation explains the discrepancy between the recent experimental 5s^2 ^1S_0 - 5s5p ^3P_0^o dc Stark shift measurement \\Delta \\alpha = 247.374(7) a.u. [Middelmann et. al, arXiv:1208.2848 (2012)] and the earlier theoretical result of 261(4) a.u. [Porsev and Derevianko, Phys. Rev. A 74, 020502R (2006)]. Our present value of 247.5 a.u. is in excellent agreement with the experimental result. We also evaluated the dynamic correction to the BBR shift with 1 % uncertainty; -0.1492(16) Hz. The dynamic correction to the BBR shift is unusually large in the case of Sr (7 %) and it enters significantly into the uncertainty budget of the Sr optical lattice clock. We suggest future experiments that could further reduce the present uncertainties.

  16. Optical lattice clock with strontium atoms: a second generation of cold atom clocks; Horloge a reseau optique au strontium: une 2. generation d'horloges a atomes froids

    Energy Technology Data Exchange (ETDEWEB)

    Le Targat, R

    2007-07-15

    Atomic fountains, based on a microwave transition of Cesium or Rubidium, constitute the state of the art atomic clocks, with a relative accuracy close to 10{sup -16}. It nevertheless appears today that it will be difficult to go significantly beyond this level with this kind of device. The use of an optical transition, the other parameters being unchanged, gives hope for a 4 or 5 orders of magnitude improvement of the stability and of the relative uncertainty on most systematic effects. As for motional effects on the atoms, they can be controlled on a very different manner if they are trapped in an optical lattice instead of experiencing a free ballistic flight stage, characteristic of fountains. The key point of this approach lies in the fact that the trap can be operated in such a way that a well chosen, weakly allowed, J=0 {yields} J=0 clock transition can be free from light shift effects. In this respect, the strontium atom is one of the most promising candidate, the 1S{sub 0} {yields} 3P{sub 0} transition has a natural width of 1 mHz, and several other easily accessible transitions can be used to efficiently laser cool atoms down to 10 {mu}K. This thesis demonstrates the experimental feasibility of an optical lattice clock based on the strontium atom, and reports on a preliminary evaluation of the relative accuracy with the fermionic isotope {sup 87}Sr, at a level of a few 10{sup -15}. (author)

  17. Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition

    Science.gov (United States)

    Portalupi, Simone Luca; Widmann, Matthias; Nawrath, Cornelius; Jetter, Michael; Michler, Peter; Wrachtrup, Jörg; Gerhardt, Ilja

    2016-11-01

    Hybrid quantum systems integrating semiconductor quantum dots (QDs) and atomic vapours become important building blocks for scalable quantum networks due to the complementary strengths of individual parts. QDs provide on-demand single-photon emission with near-unity indistinguishability comprising unprecedented brightness--while atomic vapour systems provide ultra-precise frequency standards and promise long coherence times for the storage of qubits. Spectral filtering is one of the key components for the successful link between QD photons and atoms. Here we present a tailored Faraday anomalous dispersion optical filter based on the caesium-D1 transition for interfacing it with a resonantly pumped QD. The presented Faraday filter enables a narrow-bandwidth (Δω=2π × 1 GHz) simultaneous filtering of both Mollow triplet sidebands. This result opens the way to use QDs as sources of single as well as cascaded photons in photonic quantum networks aligned to the primary frequency standard of the caesium clock transition.

  18. Simultaneous Faraday filtering of the Mollow triplet sidebands with the Cs-D1 clock transition.

    Science.gov (United States)

    Portalupi, Simone Luca; Widmann, Matthias; Nawrath, Cornelius; Jetter, Michael; Michler, Peter; Wrachtrup, Jörg; Gerhardt, Ilja

    2016-11-25

    Hybrid quantum systems integrating semiconductor quantum dots (QDs) and atomic vapours become important building blocks for scalable quantum networks due to the complementary strengths of individual parts. QDs provide on-demand single-photon emission with near-unity indistinguishability comprising unprecedented brightness-while atomic vapour systems provide ultra-precise frequency standards and promise long coherence times for the storage of qubits. Spectral filtering is one of the key components for the successful link between QD photons and atoms. Here we present a tailored Faraday anomalous dispersion optical filter based on the caesium-D1 transition for interfacing it with a resonantly pumped QD. The presented Faraday filter enables a narrow-bandwidth (Δω=2π × 1 GHz) simultaneous filtering of both Mollow triplet sidebands. This result opens the way to use QDs as sources of single as well as cascaded photons in photonic quantum networks aligned to the primary frequency standard of the caesium clock transition.

  19. Compact Yb$^+$ optical atomic clock project: design principle and current status

    CERN Document Server

    Lacroûte, Clément; Bourgeois, Pierre-Yves; Millo, Jacques; Saleh, Khaldoun; Bigler, Emmanuel; Boudot, Rodolphe; Giordano, Vincent; Kersalé, Yann

    2016-01-01

    We present the design of a compact optical clock based on the $^2S_{1/2} \\rightarrow ^2D_{3/2}$ 435.5 nm transition in $^{171}$Yb$^+$. The ion trap will be based on a micro-fabricated circuit, with surface electrodes generating a trapping potential to localize a single Yb ion a few hundred $\\mu$m from the electrodes. We present our trap design as well as simulations of the resulting trapping pseudo-potential. We also present a compact, multi-channel wavelength meter that will permit the frequency stabilization of the cooling, repumping and clear-out lasers at 369.5 nm, 935.2 nm and 638.6 nm needed to cool the ion. We use this wavelength meter to characterize and stabilize the frequency of extended cavity diode lasers at 369.5 nm and 638.6 nm.

  20. Magic-Wavelengths Measurements of 40Ca+ Clock-Transition for Determining Oscillator Strength Ratio

    CERN Document Server

    Liu, Peiliang; Bian, Wu; Shao, Hu; Guan, Hua; Tang, Yongbo; Li, Chengbin; Mitroy, J; Gao, Kelin

    2014-01-01

    The ratio of the oscillator strengths for the 40Ca+ resonance transition was determined by measuring the magic wavelengths for the 4s1/2 - 3d5/2 clock transition. Tuning a perturbing laser to a wavelength intermediate between those of the 4s1/2 - 4p1/2 and 4s1/2 - 4p3/2 transitions, the sensitivity of the clock transition Stark shift to the oscillator strengths for the resonance transition is greatly enhanced. Two magic wavelengths were measured with high precision, giving {\\lambda}|mj|=1/2 = 395.7992(7) nm and {\\lambda}|mj|=3/2 = 395.7990(7) nm respectively. The ratio of the 4s1/2 - 4p1/2 to the 4s1/2 - 4p3/2 line strengths is found to 2.011(6).

  1. All-optical link for direct comparison of distant optical clocks

    CERN Document Server

    Fujieda, Miho; Nagano, Shigeo; Yamaguchi, Atsushi; Hachisu, Hidekazu; Ido, Tetsuya

    2011-01-01

    We developed an all-optical link system for making remote comparisons of two distant ultra-stable optical clocks. An optical carrier transfer system based on a fiber interferometer was employed to compensate the phase noise accumulated during the propagation through a fiber link. Transfer stabilities of $2\\times10^{-15}$ at 1 second and $4\\times10^{-18}$ at 1000 seconds were achieved in a 90-km link. An active polarization control system was additionally introduced to maintain the transmitted light in an adequate polarization, and consequently, a stable and reliable comparison was accomplished. The instabilities of the all-optical link system, including those of the erbium doped fiber amplifiers (EDFAs) which are free from phase-noise compensation, were below $2\\times10^{-15}$ at 1 second and $7\\times10^{-17}$ at 1000 seconds. The system was available for the direct comparison of two distant $^{87}$Sr lattice clocks via an urban fiber link of 60 km. This technique will be essential for the measuring the repro...

  2. High accuracy correction of blackbody radiation shift in an optical lattice clock

    CERN Document Server

    Middelmann, Thomas; Lisdat, Christian; Sterr, Uwe

    2012-01-01

    We have determined the frequency shift that blackbody radiation is inducing on the $5s^2$ $^1$S$_0$ -- $5s5p$ $^3$P$_0$ clock transition in strontium. Previously its uncertainty limited the uncertainty of strontium lattice clocks to $1\\times10^{-16}$. Now the uncertainty associated to the black body radiation shift correction translates to $5\\times 10^{-18}$ relative frequency uncertainty at room temperature. Our evaluation is based on a measurement of the differential dc-polarizability of the two clock states and on a modeling of the dynamic contribution using this value and experimental data for other atomic properties.

  3. Direct comparison of optical lattice clocks with an intercontinental baseline of 9 000 km

    CERN Document Server

    Hachisu, H; Nagano, S; Gotoh, T; Nogami, A; Ido, T; Falke, St; Huntemann, N; Grebing, C; Lipphardt, B; Lisdat, Ch; Piester, D

    2014-01-01

    We have demonstrated a direct frequency comparison between two $^{87}{\\rm Sr}$ lattice clocks operated in intercontinentally separated laboratories in real time. Two-way satellite time and frequency transfer technique based on the carrier phase was employed for a direct comparison with a baseline of 9 000 km between Japan and Germany. A clock comparison was achieved for 83 640 s resulting in a fractional difference of $(1.1\\pm1.6) \\times 10^{-15}$, where the statistical part is the biggest contribution to the uncertainty. This measurement directly confirms the agreement of the two optical clocks on an intercontinental scale.

  4. Determination of the thermal radiation effect on an optical strontium lattice clock; Bestimmung des Einflusses thermischer Strahlung auf eine optische Strontium-Gitteruhr

    Energy Technology Data Exchange (ETDEWEB)

    Middelmann, Thomas

    2013-05-31

    Optical clocks have the potential to be 100 times more accurate than current best cesium atomic clocks within a fraction of the averaging time. This corresponds to a fractional uncertainty of the clock frequency on the level of 10{sup -18} and requires highaccuracy knowledge of systematic frequency shifts, such that they can be avoided or corrected for. In strontium optical lattice clocks an ensemble of ultracold strontium atoms is confined in an optical lattice, to allow for spectroscopy of the reference transition 5s{sup 2} {sup 1}S{sub 0}-5s5p {sup 3}P{sub 0} in the Lamb-Dicke regime. The by far largest systematic frequency shift of the strontium clock transition is caused by its high sensitivity to blackbody radiation (BBR). The knowledge of the resulting frequency shift limited the achievable clock uncertainty to about 1 x 10{sup -16}. In this thesis for the first time an experimental approach was followed, to determine the sensitivity of the strontium clock transition to blackbody radiation. At an environmental temperature of 300 K the resulting frequency shift corresponds to 2.277 8(23) Hz. The achieved uncertainty contributes with 5 x 10{sup -18} to the fractional systematic uncertainty of the clock frequency. The determination is based on a precision measurement of the difference of static polarizabilities of the two clock states {Delta}{alpha}{sub dc} = {alpha}(5s5p {sup 3}P{sub 0})-{alpha}(5s{sup 2} {sup 1}S{sub 0}) = 4.078 73(11) x 10{sup -39} Cm{sup 2} /V. For this the de Stark shift of the clock transition has been measured in the accurately known electric field of a precision plate capacitor, which has been developed in this work. The attained static polarizability difference {Delta}{alpha}{sub dc} corresponds to the first term of a power series of the sensitivity to BBR. Higher orders are accumulated as dynamic part of the BBR shift. Which has been modelled using {Delta}{alpha}{sub dc} and experimental data for other atomic properties. To

  5. Frequency comparison of ${}^{171}$Yb${}^+$ ion optical clocks at PTB and NPL via GPS PPP

    CERN Document Server

    Leute, J; Lipphardt, B; Tamm, Chr; Nisbet-Jones, P B R; King, S A; Godun, R M; Jones, J M; Margolis, H S; Whibberley, P B; Wallin, A; Merimaa, M; Gill, P; Peik, E

    2015-01-01

    We used Precise Point Positioning, a well-established GPS carrier-phase frequency transfer method to perform a direct remote comparison of two optical frequency standards based on single laser-cooled $^{171}$Yb$^+$ ions operated at NPL, UK and PTB, Germany. At both institutes an active hydrogen maser serves as a flywheel oscillator; it is connected to a GPS receiver as an external frequency reference and compared simultaneously to a realization of the unperturbed frequency of the ${{}^2S_{1/2}(F=0)-{}^2D_{3/2}(F=2)}$ electric quadrupole transition in ${}^{171}$Yb${}^+$ via an optical femtosecond frequency comb. To profit from long coherent GPS link measurements we extrapolate over the various data gaps in the optical clock to maser comparisons which introduces maser noise to the frequency comparison but improves the uncertainty from the GPS link. We determined the total statistical uncertainty consisting of the GPS link uncertainty and the extrapolation uncertainties for several extrapolation schemes. Using t...

  6. Potential of electric quadrupole transitions in radium isotopes for single-ion optical frequency standards

    NARCIS (Netherlands)

    Versolato, O. O.; Wansbeek, L. W.; Jungmann, K.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.

    2011-01-01

    We explore the potential of the electric quadrupole transitions 7s (2)S(1/2)-(6)d (2)D(3/2), 6d (2)D(5/2) in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated. Several

  7. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    Science.gov (United States)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  8. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    Science.gov (United States)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  9. Cryogenic optical lattice clocks with a relative frequency difference of $1\\times 10^{-18}$

    CERN Document Server

    Ushijima, Ichiro; Das, Manoj; Ohkubo, Takuya; Katori, Hidetoshi

    2014-01-01

    Time and frequency are the most accurately measurable quantities, providing foundations for science and modern technologies. The accuracy relies on the SI (Syst\\'eme International) second that refers to Cs microwave clocks with fractional uncertainties at $10^{-16}$. Recent revolutionary progress of optical clocks aims to achieve $1\\times 10^{-18}$ uncertainty, which however has been hindered by long averaging-times or by systematic uncertainties. Here, we demonstrate optical lattice clocks with $^{87}$Sr atoms interrogated in a cryogenic environment to address the blackbody radiation-induced frequency-shift, which remains the primary source of clocks' uncertainties and has initiated vigorous theoretical and experimental investigations. The quantum-limited stability for $N \\sim 1,000$ atoms allows investigation of the uncertainties at $2\\times 10^{-18}$ in two hours of clock operation. After 11 measurements performed over a month, the two cryo-clocks agree to within $(-1.1\\pm 1.6)\\times 10^{-18}$. Besides its...

  10. Digital Square-Wave Frequency Modulated Microwave Sources for a Miniature Optically Pumped Cesium Beam Clock

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; ZHU Chengjin; LIU Ge; WANG Fengzhi; WANG Yiqiu; YANG Donghai

    2001-01-01

    Three different digital frequencymodulated microwave sources have been designed andapplied to our miniature optically pumped cesiumbeam clock.The main features and their influenceon clock accuracy have been experimentally tested.Itis proved that a digital square-wave frequency modu-lated microwave source using a microprocessor con-trolled direct-digital frequency synthesizer (DDFS)for our miniature optically pumped cesium beamclock works well,the frequency short term stability2 × 10 11/x r and the long term stability 3.5 x 10-13 forone day sample time have been obtained.

  11. Ra{sup +} ion trapping - atomic parity violation measurement and an optical clock

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Amita; Dijck, Elwin A.; Nunez Portela, Mayerlin; Valappol, Nivedya; Boell, Oliver; Jungmann, Klaus; Onderwater, Cornelis G. G.; Schlesser, Sophie; Timmermans, Rob G.E.; Willmann, Lorenz; Wilschut, Hans W. [University of Groningen, FWN, Groningen (Netherlands)

    2014-07-01

    A single trapped Ra{sup +} ion has an excellent potential for a precision measurement of the Weinberg mixing angle at low momentum transfer and testing thereby the electroweak running. The absolute frequencies of the transition 7s {sup 2}S{sub 1/2}-7d{sup 2}D{sub 3/2} at wavelength 828 nm have been determined in {sup 212*214}Ra{sup +} to better than 19 MHz with laser spectroscopy on small samples of ions trapped in a linear Paul trap at the online facility TRIμP of KVI. The measurement of the Weinberg angle requires the localization of the ion within a fraction of an optical wavelength. The current experiments are focused on trapping and laser spectroscopy on a single Ba{sup +} as a precursor for Ra{sup +}. Work towards single ion trapping of Ra{sup +}, including the preparation of an offline {sup 223}Ra source is in progress. Most elements of the setup for single Ra+ ion parity measurement are also well suited for realizing a most stable optical clock.

  12. Test of Special Relativity Using a Fiber Network of Optical Clocks.

    Science.gov (United States)

    Delva, P; Lodewyck, J; Bilicki, S; Bookjans, E; Vallet, G; Le Targat, R; Pottie, P-E; Guerlin, C; Meynadier, F; Le Poncin-Lafitte, C; Lopez, O; Amy-Klein, A; Lee, W-K; Quintin, N; Lisdat, C; Al-Masoudi, A; Dörscher, S; Grebing, C; Grosche, G; Kuhl, A; Raupach, S; Sterr, U; Hill, I R; Hobson, R; Bowden, W; Kronjäger, J; Marra, G; Rolland, A; Baynes, F N; Margolis, H S; Gill, P

    2017-06-02

    Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson-Mansouri-Sexl parameter |α|≲1.1×10^{-8}, quantifying a violation of time dilation, thus improving by a factor of around 2 the best known constraint obtained with Ives-Stilwell type experiments, and by 2 orders of magnitude the best constraint obtained by comparing atomic clocks. This work is the first of a new generation of tests of fundamental physics using optical clocks and fiber links. As clocks improve, and as fiber links are routinely operated, we expect that the tests initiated in this Letter will improve by orders of magnitude in the near future.

  13. Transportable Optical Lattice Clock with 7 ×10-17 Uncertainty

    Science.gov (United States)

    Koller, S. B.; Grotti, J.; Vogt, St.; Al-Masoudi, A.; Dörscher, S.; Häfner, S.; Sterr, U.; Lisdat, Ch.

    2017-02-01

    We present a transportable optical clock (TOC) with Sr 87 . Its complete characterization against a stationary lattice clock resulted in a systematic uncertainty of 7.4 ×10-17, which is currently limited by the statistics of the determination of the residual lattice light shift, and an instability of 1.3 ×10-15/√{τ } with an averaging time τ in seconds. Measurements confirm that the systematic uncertainty can be reduced to below the design goal of 1 ×10-17. To our knowledge, these are the best uncertainties and instabilities reported for any transportable clock to date. For autonomous operation, the TOC has been installed in an air-conditioned car trailer. It is suitable for chronometric leveling with submeter resolution as well as for intercontinental cross-linking of optical clocks, which is essential for a redefinition of the International System of Units (SI) second. In addition, the TOC will be used for high precision experiments for fundamental science that are commonly tied to precise frequency measurements and its development is an important step to space-borne optical clocks.

  14. Transportable Optical Lattice Clock with 7×10^{-17} Uncertainty.

    Science.gov (United States)

    Koller, S B; Grotti, J; Vogt, St; Al-Masoudi, A; Dörscher, S; Häfner, S; Sterr, U; Lisdat, Ch

    2017-02-17

    We present a transportable optical clock (TOC) with ^{87}Sr. Its complete characterization against a stationary lattice clock resulted in a systematic uncertainty of 7.4×10^{-17}, which is currently limited by the statistics of the determination of the residual lattice light shift, and an instability of 1.3×10^{-15}/sqrt[τ] with an averaging time τ in seconds. Measurements confirm that the systematic uncertainty can be reduced to below the design goal of 1×10^{-17}. To our knowledge, these are the best uncertainties and instabilities reported for any transportable clock to date. For autonomous operation, the TOC has been installed in an air-conditioned car trailer. It is suitable for chronometric leveling with submeter resolution as well as for intercontinental cross-linking of optical clocks, which is essential for a redefinition of the International System of Units (SI) second. In addition, the TOC will be used for high precision experiments for fundamental science that are commonly tied to precise frequency measurements and its development is an important step to space-borne optical clocks.

  15. The magneto-optical effect of cold atoms in an integrating sphere for atomic clock and optical magnetometer

    CERN Document Server

    Wan, Jinyin; Meng, Yanling; Xiao, Ling; Liu, Peng; Wang, Xiumei; Wang, Yaning; Liu, Liang

    2014-01-01

    We investigate the magneto-optical effect of cold atoms in an integrating sphere both experimentally and theoretically. The dependence of magneto-optical rotation angle on the biased magnetic field, the probe light intensity, and the probe light detuning are investigated. The probe light background is blocked and the shot noise is strongly suppressed. This detection scheme may provide a new approach for high contrast cold atom clock and cold atom optical magnetometer.

  16. All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-05-01

    Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.

  17. Accuracy budget of the 88Sr optical atomic clocks at KL FAMO

    Science.gov (United States)

    Radzewicz, Czesław; Bober, Marcin; Morzyński, Piotr; Cygan, Agata; Lisak, Daniel; Bartoszek-Bober, Dobrosława; Masłowski, Piotr; Ablewski, Piotr; Zachorowski, Jerzy; Gawlik, Wojciech; Ciuryło, Roman; Zawada, Michał

    2016-08-01

    This paper presents a detailed accuracy budget of two independent strontium optical lattice clocks at the National Laboratory FAMO (KL FAMO) probed with a single shared ultra-narrow laser. The combined instability of the two frequency standards was 7× {10}-17 after 105s of averaging.

  18. Solutions for ultra-high speed optical wavelength conversion and clock recovery

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    This paper reports on our recent advances in ultra-fast optical communications relying on ultra-short pulses densely stacked in ultra-high bit rate serial data signals at a single wavelength. The paper describes details in solutions for the network functionalities of wavelength conversion and clock...... recovery at bit rates up to 320 Gb/s...

  19. Quantitative monitoring of relative clock wander between signal and sampling sources in asynchronous optical under-sampling system

    Institute of Scientific and Technical Information of China (English)

    Huixing Zhang; Wei Zhao

    2012-01-01

    Optical performance monitoring using asynchronous optical or electrical sampling has gained considerable attention. Relative clock wander between data signal and sampling source is a typical occurrence in such systems. A method for the quantitative monitoring of the relative clock wander in asynchronous optical under-sampling system is presented. With a series of simulations, the clock wanders recovered using this method are in good agreement with the preset clock wanders of different amounts and frequencies for both RZ and NRZ signals. Hence, the reliability and robustness of the method are proven.%Optical performance monitoring using asynchronous optical or electrical sampling has gained considerable attention.Relative clock wander between data signal and sampling source is a typical occurrence in such systems.A method for the quantitative monitoring of the relative clock wander in asynchronous optical under-sampling system is presented.With a series of simulations,the clock wanders recovered using this method are in good agreement with the preset clock wanders of different amounts and frequencies for both RZ and NRZ signals.Hence,the reliability and robustness of the method are proven.

  20. Probing Many-Body Interactions in an Optical Lattice Clock (Preprint)

    Science.gov (United States)

    2013-10-23

    9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine energy levels of a caesium atom. Since then, the accuracy...as meter, volt and ampere. Thanks to the development of laser trapping and cooling techniques [1, 2], the best caesium standards have reached an...accuracy of one part in 1016. However, caesium clocks are limited by the fact that they are based on atomic transitions in the microwave domain. Because

  1. Quantum lock-in force sensing using optical clock Doppler velocimetry

    Science.gov (United States)

    Shaniv, Ravid; Ozeri, Roee

    2017-01-01

    Force sensors are at the heart of different technologies such as atomic force microscopy or inertial sensing. These sensors often rely on the measurement of the displacement amplitude of mechanical oscillators under applied force. The best sensitivity is typically achieved when the force is alternating at the mechanical resonance frequency of the oscillator, thus increasing its response by the mechanical quality factor. The measurement of low-frequency forces, that are below resonance, is a more difficult task as the resulting oscillation amplitudes are significantly lower. Here we use a single-trapped 88Sr+ ion as a force sensor. The ion is electrically driven at a frequency much lower than the trap resonance frequency. We measure small amplitude of motion by measuring the periodic Doppler shift of an atomic optical clock transition, enhanced using the quantum lock-in technique. We report frequency force detection sensitivity as low as 2.8 × 10−20 NHz−1/2. PMID:28186103

  2. Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock

    Science.gov (United States)

    Xu, Yi-Lin; Xu, Xin-Ye

    2016-10-01

    We accurately evaluate the blackbody-radiation shift in a 171Yb optical lattice clock by utilizing temperature measurement and numerical simulation. In this work. three main radiation sources are considered for the blackbody-radiation shift, including the heated atomic oven, the warm vacuum chamber, and the room-temperature vacuum windows. The temperatures on the outer surface of the vacuum chamber are measured during the clock operation period by utilizing seven calibrated temperature sensors. Then we infer the temperature distribution inside the vacuum chamber by numerical simulation according to the measured temperatures. Furthermore, we simulate the temperature variation around the cold atoms while the environmental temperature is fluctuating. Finally, we obtain that the total blackbody-radiation shift is -1.289(7) Hz with an uncertainty of 1.25 × 10-17 for our 171Yb optical lattice clock. The presented method is quite suitable for accurately evaluating the blackbody-radiation shift of the optical lattice clock in the case of lacking the sensors inside the vacuum chamber. Project supported by the National Key Basic Research and Development Program of China (Grant No. 2012CB821302), the National Natural Science Foundation of China (Grant No. 11134003), the National High Technology Research and Development Program of China (Grant No. 2014AA123401), and the Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400).

  3. Phase-coherent frequency comparison of optical clocks using a telecommunication fiber link.

    Science.gov (United States)

    Schnatz, Harald; Terra, Osama; Predehl, Katharina; Feldmann, Thorsten; Legero, Thomas; Lipphardt, Burghard; Sterr, Uwe; Grosche, Gesine; Holzwarth, Ronald; Hänsch, Theodor W; Udem, Thomas; Lu, Zehuang H; Wang, Li J; Ertmer, Wolfgang; Friebe, Jan; Pape, Andrè; Rasel, Ernst-M; Riedmann, Mathias; Wübbena, Temmo

    2010-01-01

    We have explored the performance of 2 "dark fibers" of a commercial telecommunication fiber link for a remote comparison of optical clocks. These fibers establish a network in Germany that will eventually link optical frequency standards at PTB with those at the Institute of Quantum Optics (IQ) at the Leibniz University of Hanover, and the Max Planck Institutes in Erlangen (MPL) and Garching (MPQ). We demonstrate for the first time that within several minutes a phase coherent comparison of clock lasers at the few 10(-15) level can also be accomplished when the lasers are more than 100 km apart. Based on the performance of the fiber link to the IQ, we estimate the expected stability for the link from PTB to MPQ via MPL that bridges a distance of approximately 900 km.

  4. A transportable optical lattice clock with $7\\times10^{-17}$ uncertainty

    CERN Document Server

    Koller, S B; Vogt, St; Al-Masoudi, A; Dörscher, S; Häfner, S; Sterr, U; Lisdat, Ch

    2016-01-01

    We present a transportable optical clock (TOC) with $^{87}$Sr. Its complete characterization against a stationary lattice clock resulted in a systematic uncertainty of ${7.4 \\times 10^{-17}}$ which is currently limited by the statistics of the determination of the residual lattice light shift. The measurements confirm that the systematic uncertainty is reduceable to below the design goal of $1 \\times 10^{-17}$. The instability of our TOC is $1.3 \\times 10^{-15}/\\sqrt{(\\tau/s)}$. Both, the systematic uncertainty and the instability are to our best knowledge currently the best achieved with any type of transportable clock. For autonomous operation the TOC is installed in an air-conditioned car-trailer. It is suitable for chronometric leveling with sub-meter resolution as well as intercontinental cross-linking of optical clocks, which is essential for a redefiniton of the SI second. In addition, the TOC will be used for high precision experiments for fundamental science that are commonly tied to precise frequenc...

  5. Atomic clock with a nuclear transition: solid state approach at TU Wien

    CERN Document Server

    Kazakov, G A; Winkler, G; Sterba, J H; Steinhauser, G; Schumm, T

    2011-01-01

    The nucleus of 229Thorium presents a unique isomer state of very low energy and long lifetime, current estimates are around 7.8 eV and seconds to hours respectively. This nuclear transitions therefore is a promising candidate for a novel type of frequency standard and several groups worldwide have set out to investigate this system. Our aim is to construct a "solid state nuclear clock", i.e. a frequency standard where Thorium ions are implanted into Calciumfluoride crystals transparent in vacuum ultraviolet range. As a first step towards an accurate determination of the exact energy and lifetime of this isomer state we perform low-resolution fluorescent spectroscopic measurements.

  6. Optical matrix for clock distribution and synchronous operation in two-dimensional array devices

    Science.gov (United States)

    Lee, K. S.; Shu, C.

    1996-06-01

    A scheme to generate an optical matrix from a mode-locked Nd:YAG laser has been theoretically explored and experimentally demonstrated. The matrix consists of highly synchronized and sequentially delayed optical pulses suitable for use with two-dimensional array optoelectronic devices and clock distribution system. The output pulses have the same state of polarization and no timing jitter is produced among the elements. Encoded outputs have been generated from the matrix using a set of photomasks. This technique can be applied to high-speed optical parallel processing.

  7. All-optical clock recovery from 10-Gb/s NRZ data and NRZ to RZ format conversion

    Institute of Scientific and Technical Information of China (English)

    Lina Yin; Yumei Yan; Yunfeng Zhou; Jian Wu; Jintong Lin

    2006-01-01

    A non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) converter consisting of a semiconductor optical amplifier (SOA) and an arrayed waveguide grating (AWG) is proposed, by which the enhancement of clock frequency component and clock-to-data suppression ratio of the NRZ data are evidently achieved. Alloptical clock recovery from NRZ data at 10 Gb/s is successfully demonstrated with the proposed NRZ-to-PRZ converter and a mode-locked SOA fiber laser. Furthermore, NRZ-to-RZ format conversion of 10 Gb/s is realized by using the recovered clock as the control light of terahertz optical asymmetric demultiplexer(TOAD), which further proves that the proposed clock recovery scheme is applicable.

  8. Polarization Maintaining Fibre Loop Mirror for NRZ-to-PRZ Conversion in All-Optical Clock Recovery

    Institute of Scientific and Technical Information of China (English)

    XU Fan; ZHANG Xin-Liang; LIU Hai-Rong; LIU De-Ming; HUANG De-Xiu

    2006-01-01

    @@ We propose a novel configuration for clock extraction by converting the NRZ data into the PRZ data and by employing a polarization-maintaining fibre loop mirror (PMFLM) which is usually used as an optical comb filter.

  9. A quantum many-body spin system in an optical lattice clock

    CERN Document Server

    Martin, M J; Swallows, M D; Zhang, X; Benko, C; von-Stecher, J; Gorshkov, A V; Rey, A M; Ye, Jun

    2013-01-01

    Strongly interacting quantum many-body systems are fundamentally compelling and ubiquitous in science. However, their complexity generally prevents exact solutions of their dynamics. Precisely engineered ultracold atomic gases are emerging as a powerful tool to unravel these challenging physical problems. Here we present a new laboratory for the study of many-body effects: strongly interacting two-level systems formed by the clock states in ${}^{87}$Sr, which are used to realize a neutral atom optical clock that performs at the highest level of optical-atomic coherence and with precision near the limit set by quantum fluctuations. Our measurements of the collective spin evolution reveal signatures of many-body dynamics, including beyond-mean-field effects. We derive a many-body Hamiltonian that describes the experimental observation of severely distorted lineshapes, atomic spin coherence decay, density-dependent frequency shifts, and correlated quantum spin noise. These investigations open the door to explori...

  10. Quantum noise limited interferometric measurement of atomic noise: towards spin squeezing on the Cs clock transition

    CERN Document Server

    Oblak, D; Tittel, W; Vershovski, A K; Sørensen, J L; Petrov, P G; Alzar, C L G; Polzik, E S; Oblak, Daniel; Mikkelsen, Jens K.; Tittel, Wolfgang; Vershovski, Anton K.; Sorensen, Jens L.; Petrov, Plamen G.; Alzar, Carlos L. Garrido; Polzik, Eugene S.

    2003-01-01

    We investigate theoretically and experimentally a nondestructive interferometric measurement of the state population of an ensemble of laser cooled and trapped atoms. This study is a step towards generation of (quasi-) spin squeezing of cold atoms targeted at the improvement of the Caesium clock performance beyond the limit set by the quantum projection noise of atoms. We propose a protocol for the sequence of operations required to generate and utilize spin squeezing for the improved microwave clock performance via a quantum nondemolition measurement (qnd) on the probe light. We calculate the phase shift and the quantum noise of a near resonant optical probe pulse propagating through a cloud of cold 133Cs atoms. We analyze the figure of merit for a qnd measurement of the collective quasi-spin and show that it can be expressed simply as a product of the ensemble optical depth and the probability of the spontaneous emission caused by the off-resonant probe light. In the experimental part we report on the preli...

  11. Control of Optical Transitions with Magnetic Fields in Weakly Bound Molecules

    CERN Document Server

    McGuyer, B H; Iwata, G Z; Skomorowski, W; Moszynski, R; Zelevinsky, T

    2015-01-01

    Forbidden optical transitions in weakly bound $^{88}$Sr$_2$ molecules become strongly enabled with moderate applied magnetic fields. We report the control of transition strengths by five orders of magnitude and measurements of highly nonlinear Zeeman shifts, which we explain with an accurate {\\it ab initio} model. Mixed quantization in an optical lattice enables the experimental procedure. Our observation of formerly inaccessible $f$-parity excited states offers a new avenue for improving theoretical models for divalent atom dimers. Furthermore, magnetically enabled transitions may lead to an extremely precise subradiant molecular lattice clock.

  12. A compact, sub-Hertz linewidth 729 nm laser for a miniaturized 40Ca+ optical clock

    Science.gov (United States)

    Shang, Junjuan; Cao, Jian; Cui, Kaifeng; Wang, Shaomao; Zhang, Ping; Yuan, Jinbo; Chao, Sijia; Shu, Hualin; Huang, Xueren

    2017-01-01

    We present a compact, sub-Hertz 729 nm laser for a miniaturized 40Ca+ single-ion optical clock. An external cavity diode laser is frequency-stabilized to a horizontally mounted, vibration-insensitive and high-fineness ultra-low-expansion (ULE) cavity with Pound-Drever-Hall (PDH) method. The laser linewidth is measured to be about 0.9 Hz from a heterodyne beat note with the other 729 nm laser. After removing the linear drift of about 0.1 Hz/s, the fractional frequency instability is less than 2 × 10 - 15 (1 100 s). This compact, ultra-stable laser system with a volume about 0.1 m3 excluding the electronics has been employed into a miniaturized 40Ca+ single-ion optical clock. The clock frequency instability has been measured to be 3.4×10-14/τ1/2 (1 10,000 s) with a 729 nm laser probe pulse time of 20 ms.

  13. Half baudrate electrical clock based demultiplexing scheme for OTDM-DQPSK signal using SOA and optical filter

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Deming Kong; Yan Li; Junyi Zhang; Jian Wu; Jintong Lin

    2012-01-01

    A demultiplexing scheme based on semiconductor optical amplifier (SOA) and optical filter for optical time division multiplexing differential quadrature phase shift keying (OTDM-DQPSK) system is proposed and investigated experimentally.With only a common half baudrate electrical clock modulated 33% duty cycle return-to-zero (RZ-33) optical clock signal as pump,this scheme is cost-effective,energy-efficient,and integration-potential.A proof-of-concept experiment is carried out for the demultiplexing of a 2×40GBd OTDM-DQPSK signal.Error-free performance is demonstrated,and the average power penalty for both channels is about 3 dB.

  14. Could Atomic clocks be affected by neutrinos?

    CERN Document Server

    Hanafi, Hanaa

    2016-01-01

    An atomic clock is a clock device that uses an electronic transition frequency of the electromagnetic spectrum of atoms as a frequency standard in order to derive a time standard since time is the reciprocal of frequency. If the electronic transition frequencies are in an "optical region", we are talking in this case about optical atomic clocks. If they are in an "microwave region" these atomic clocks are made of the metallic element cesium so they are called Cesium atomic clocks. Atomic clocks are the most accurate time and frequency standards known despite the different perturbations that can affect them, a lot of researches were made in this domain to show how the transitions can be different for different type of perturbations..Since atomic clocks are very sensitive devices, based on coherent states (A coherent state tends to loose coherence after interacting). One question can arise (from a lot of questions) which is why cosmic neutrinos are not affecting these clocks? The answer to this question requir...

  15. Resolved Atomic Interaction Sidebands in an Optical Clock Transition

    Science.gov (United States)

    2011-06-24

    interrogated by a linearly polarized laser with bare Rabi frequency B and detuning from the atomic resonance . The Pauli exclusion principle forces...are populated. The population of transverse modes is accounted for as a renormalization of the interaction parameter. The interaction part of the

  16. Laser locking to the 199Hg clock transition with 5.4x10^(-15)/sqrt(tau) fractional frequency instability

    CERN Document Server

    McFerran, J J; Mandache, C; Millo, J; Zhang, W; Coq, Y Le; Santarelli, G; Bize, S

    2012-01-01

    With Hg atoms confined in an optical lattice trap in the Lamb-Dicke regime, we obtain a spectral line at 265.6 nm in which the full-width at half-maximum is <15Hz. Here we lock an ultrastable laser to this ultranarrow clock transition and achieve a fractional frequency stability of 5.4x10^(-15)/sqrt(tau) for tau<=400s. The highly stable laser light used for the atom probing is derived from a 1062.6 nm fiber laser locked to an ultrastable optical cavity that exhibits a mean drift rate of +6.0x10^(-17) s^(-1) (or +16.9 mHz.s^(-1) at 282 THz) over a five month period. A comparison between two such lasers locked to independent optical cavities shows a flicker noise limited fractional frequency instability of 4x10^(-16) per cavity.

  17. Clock-distribution with instantaneous synchronization for 160 Gbit/s optical time-domain multiplexed systems packet transmission.

    Science.gov (United States)

    Gomez-Agis, Fausto; Calabretta, Nicola; Albores-Mejia, Aaron; Dorren, Harm J S

    2010-10-01

    We demonstrate for the first time, to our knowledge, a clock-distribution method for ultra-high-speed optical time-domain multiplexed systems data packets that provides instantaneous synchronization, fast locking/unlocking times, and a highly stable bursty clock, enabling error-free operation of 160 to 10 Gbit/s time demultiplexing with a power penalty of 1.5 dB after 51 km transmission in standard single-mode fiber (ITU G.652).

  18. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  19. Amplified feedback DFB laser for 40 Gb/s all-optical clock recovery

    Science.gov (United States)

    Chen, Cheng; Sun, Yu; Zhao, Lingjuan; Pan, Jiaoqing; Qiu, Jifang; Liang, Song; Wang, Wei; Lou, Caiyun

    2011-12-01

    A monolithic integrated amplified feedback semiconductor laser (AFL) was fabricated based on quantum well intermixing (QWI) technique. The AFL works as a self-pulsation laser. It consists of a gain-coupled multiple quantum well distribute feedback (DFB) laser diode (LD) section, a passive phase section and an amplified feedback section. The free-running repetition frequency of the AFL can be tuned from 32 GHz to 51 GHz via controlling the feedback strength. All-optical 40 Gb/s clock recovery was experimentally demonstrated using the AFL with a low timing jitter.

  20. Optical Clock and Drag-Free Requirements for a Shapiro Time-Delay Mission

    CERN Document Server

    Ashby, Neil

    2011-01-01

    In the next decade or two, extremely accurate tests of general relativity under extreme conditions are expected from gravitational wave observations of binary black hole mergers with a wide range of mass ratios. In addition, major improvements are planned in both strong and weak equivalence principle tests; clock measurements based on the ACES program on the ISS; more accurate light-bending measurements; and other new types of tests. However, whether these tests are all consistent with general relativity or not, it still appears desirable to proceed with a much improved measurement of the Shapiro time delay. A suggested approach is based on using a high-quality optical clock in a drag-free spacecraft near the sun-earth L1 point and a smaller drag-free transponder spacecraft in a two-year period solar orbit. Laser phase travel-time measurements would be made between the two spacecraft over a period of 10 or 20 days around the time when the line of sight passes through the Sun. The requirements on the optical c...

  1. Towards a Mg lattice clock: Observation of the $^1S_{0}-$$^3P_{0}$ transition and determination of the magic wavelength

    CERN Document Server

    Kulosa, A P; Zipfel, K H; Rühmann, S; Sauer, S; Jha, N; Gibble, K; Ertmer, W; Rasel, E M; Safronova, M S; Safronova, U I; Porsev, S G

    2015-01-01

    We optically excite the electronic state $3s3p~^3P_{0}$ in $^{24}$Mg atoms, laser-cooled and trapped in a magic-wavelength lattice. An applied magnetic field enhances the coupling of the light to the otherwise strictly forbidden transition. We determine the magic wavelength, the quadratic magnetic Zeeman shift and the transition frequency to be 468.463(207)$\\,$nm, -206.6(2.0)$\\,$MHz/T$^2$ and 655 058 646 691(101)$\\,$kHz, respectively. These are compared with theoretical predictions and results from complementary experiments. We also developed a high-precision relativistic structure model for magnesium, give an improved theoretical value for the blackbody radiation shift and discuss a clock based on bosonic magnesium.

  2. Comparison of Two Independent Sr Optical Clocks with 1*10^-17 Stability at 10^3 s

    CERN Document Server

    Nicholson, T L; Williams, J R; Bloom, B J; Bishof, M; Swallows, M D; Campbell, S L; Ye, J

    2012-01-01

    Many-particle optical lattice clocks have the potential for unprecedented measurement precision and stability due to their low quantum projection noise (QPN). However, this potential has so far never been realized because clock stability has been limited by frequency noise of optical local oscillators. By synchronously probing two 87Sr lattice systems using a laser with a thermal noise floor of 1*10^-15, we remove classically correlated laser noise from the inter-comparison, but this approach does not improve the stability of an independent clock. With an improved optical oscillator that has a 1*10^-16 thermal noise floor, we demonstrate an order of magnitude improvement over the best reported independent clock stability, achieving a record fractional instability of 1*10^-17 in 1000 s of averaging time for synchronous or asynchronous comparisons. This result is within a factor of 2 of the combined QPN limit for a 160 ms probe time with ~10^3 atoms in each clock. We further demonstrate that even at this high p...

  3. Hg-201 (+) CO-Magnetometer for HG-199(+) Trapped Ion Space Atomic Clocks

    Science.gov (United States)

    Burt, Eric A. (Inventor); Taghavi, Shervin (Inventor); Tjoelker, Robert L. (Inventor)

    2011-01-01

    Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes. The second isotope's Zeeman transition provides the measure of magnetic field strength, and the measurement is used to compensate the first isotope's clock transition or to adjust the applied C-field to reduce the effects of ambient magnetic field perturbations.

  4. Highly charged W+13, Ir+16, and Pt+17 ions as promising optical clock candidates for probing variations of the fine-structure constant

    Science.gov (United States)

    Nandy, D. K.; Sahoo, B. K.

    2016-09-01

    Transitions among the first three low-lying states in the highly charged W+13, Ir+16, and Pt+17 ions are found to be strongly forbidden with wavelengths in the optical regime. By determining their energy levels, lifetimes, and other spectroscopic properties that are decisive quantities for estimating dominant systematics due to stray electromagnetic interactions in an experiment, we demonstrate that it can be possible to measure frequencies of the lowest forbidden transitions below a 10-19 precision level in the above ions, and hence, they seem to be suitable for frequency standards. We employ a sophisticated relativistic coupled cluster method to carry out calculations of these properties of the above states involving 4 f - and 5 s -core orbitals. We also found, by estimating their relativistic sensitivity coefficients, that these clock transitions can be highly sensitive to the tiny drift in the fine-structure constant αe. Consequently, a clock based on one of these ions, particularly Pt+17, could be used for corroborating the hypothesis of temporal and spatial variation in αe.

  5. Time Transfer Through Optical Fibers (TTTOF): First Results of Calibrated Clock Comparisons

    CERN Document Server

    Piester, D; Rost, M; Bauch, A

    2010-01-01

    We have developed a means for accurate time transfer using optical fibers and aim at the synchronization of clocks located at different places on an institute campus with an overall uncertainty of 100 ps or better. Such an installation shall be used as a part of the infrastructure connecting the ground station setups during forthcoming T2L2 and ACES experiments and the local installations at the PTB time laboratory. Our target transmission length is less than 1 km. To transfer time, a code-domain-multiple-access (CDMA) signal is used for modulation of a laser. Optical signals are exchanged in the two-way mode to cancel long-term fiber length variation. This is similar to the well known two-way satellite time and frequency transfer (TWSTFT) scheme. We discuss procedures for a proper calibration of such time transfer through optical fibers links and show first promising results of an experiment using a test loop on the PTB campus with a length of 2 km.

  6. Turbulent Transitions in Optical Wave Propagation.

    Science.gov (United States)

    Pierangeli, D; Di Mei, F; Di Domenico, G; Agranat, A J; Conti, C; DelRe, E

    2016-10-28

    We report the direct observation of the onset of turbulence in propagating one-dimensional optical waves. The transition occurs as the disordered hosting material passes from being linear to one with extreme nonlinearity. As the response grows, increased wave interaction causes a modulational unstable quasihomogeneous flow to be superseded by a chaotic and spatially incoherent one. Statistical analysis of high-resolution wave behavior in the turbulent regime unveils the emergence of concomitant rogue waves. The transition, observed in a photorefractive ferroelectric crystal, introduces a new and rich experimental setting for the study of optical wave turbulence and information transport in conditions dominated by large fluctuations and extreme nonlinearity.

  7. Microstructure for ferroelastic transitions from strain pseudo-spin clock models in two and three dimensions: a mean field analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lookman, Turab [Los Alamos National Laboratory; Vasseur, Romain [ECOLE NORMALE SUPERIEURE

    2009-01-01

    We obtain the microstructure of ferroelastic transitions in two and three dimensions from the solution of their corresponding discrete pseudo-spin models. In two dimensions we consider two transitions each from the high symmetry square and triangle symmetries: square-to-rectangle (SR), square-to-oblique (SO), triangle-to-centered rectangle (TR) and triangle-to-oblique (TO). In three dimensions we study the corresponding spin model for the cubic to tetragonal transition. The Landau free energies for these transitions result in N+ I states clock models (Z{sub N}) with long range interactions and we derive mean-field self-consistency equations for the clock model Hamiltonians. The microstructures from the mean-field solutions of the models are very similar to those obtained from the original continuum models or Monte Carlo simulations on the spin models (in the SR case), illustrating that these discrete models capture the salient physics. The models, in the presence of disorder, provide the basis for the study of the strain glass phase observed in martensitic alloys.

  8. Fast-synchronization and low-timing-jitter self-clocking concept for 160 Gbit/s optical time-division multiplexing transmissions.

    Science.gov (United States)

    Zhang, Shangjian; Gomez-Agis, Fausto; Liu, Yong; Calabretta, Nicola; Tangdiongga, Eduward; Dorren, Harm J S

    2010-01-01

    We propose a self-clocking method based on in-band clock pilot insertion at the transmission data signal. The method can achieve clock recovery without the need for an ultrafast phase comparator and a phase-locked loop in the receiver. We demonstrate fast synchronization, low timing jitter, and a highly stable recovered clock from a 160 Gbit/s optical time-division multiplexing data signal after a 51 km fiber transmission. The recovered clock shows no patterning effect with a clock dynamic range of 10 dB for error-free operation of 160 to 40 Gbit/s demultiplexing with a power penalty of 1.1 dB.

  9. Experimental and theoretical comparison of different optical excitation schemes for a compact coherent population trapping Rb vapor clock

    Science.gov (United States)

    Warren, Z.; Shahriar, M. S.; Tripathi, R.; Pati, G. S.

    2017-08-01

    We have investigated, theoretically as well as experimentally, the relative merits and demerits of using three different optical configurations for a compact coherent population trapping (CPT) vapor clock using 87Rb. These correspond to the following choices of polarizations for the two Raman beams: \\text{lin} \\parallel \\text{lin} , (σ,~σ ), and push-pull optical pumping (PPOP), applied on the D1 manifold. We have used a multi-level atomic model to study the dependence of the CPT spectrum on axial as well as transverse magnetic fields for these three schemes. Corresponding experimental studies have been performed using a laboratory scale CPT clock employing a two cm long, isotopically pure rubidium cell, loaded with a buffer gas. We observed a CPT contrast close to 20% with a sub-kilohertz linewidth by adopting the PPOP scheme. We discuss the strengths and weaknesses of each of the three optical excitation schemes, and present frequency-stability measurement data for the prototype clock.

  10. Interband optical transitions in ellipsoidal shaped nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kereselidze, Tamaz, E-mail: tamaz.kereselidze@tsu.ge [Faculty of Exact and Natural Sciences, Tbilisi State University, 0179 Tbilisi, Georgia (United States); Tchelidze, Tamar [Faculty of Exact and Natural Sciences, Tbilisi State University, 0179 Tbilisi, Georgia (United States); Devdariani, Alexander [St. - Petersburg State University, St. Petersburg 198904 (Russian Federation)

    2017-04-15

    The optical properties of crystalline semiconductor nanoparticles with ellipsoidal shape are investigated and discussed as a function of the shape-anisotropy parameter. The optical transition-matrix elements are calculated in the dipole approximation using perturbation theory and with a direct diagonalization of the appropriate Hamiltonian. The matrix elements involving the ground and first excited states are monotonic functions of the shape-anisotropy parameter, whereas matrix elements involving the highly excited states have zeros and extrema that are reflected in the behaviour of the corresponding transition probabilities. Moreover, some matrix elements involving the excited states have discontinuity. We demonstrate that, nanoparticles with ellipsoidal shape can be grown with the infrared as well as ultraviolet features.

  11. Preprocessing-Free All-Optical Clock Recovery from NRZ and NRZ-DPSK Signals Using an FP-SOA Based Active Filter

    Science.gov (United States)

    Wang, Fei; Zhang, Xin-Liang; Yu, Yu; Xu, En-Ming

    2011-06-01

    We demonstrate a simple scheme to perform all-optical clock recovery from the input nonreturn-to-zero (NRZ) and nonreturn-to-zero differential phase shifted keying (NRZ-DPSK) data, which are avoided using any preprocessing measures. A multi-quantum-well Fabry-Pérot semiconductor optical amplifier plays the dual role of the data format converter and the clock recovery device. Using this scheme, a stable and low jitter 35.80-GHz optical clock pulse sequence is directly extracted out from the input NRZ or NRZ-DPSK data. This scheme has some distinct advantages such as simple device fabrication, transparence to data format, multiwavelength operation, free preprocessing and convenient tuning. Potential powerful adaptability of this scheme is very important for next-generation optical networks, in which there exist various modulation formats and the used devices are required to be transparent to data formats.

  12. All-optical clock recovery based on simultaneous external injection-locking and self-seeding of a Fabry-Perot laser diode

    Science.gov (United States)

    Fang, Xiaohui; Wai, Ping Kong A.; Lu, Chao; Tam, Hwa Yaw; Qureshi, Khurram K.

    2011-02-01

    We proposed and demonstrated a novel, simple, and low cost method for all-optical clock recovery based on the switching between two injection-locked longitudinal modes in a dc-biased multi-quantum-well Fabry-Perot laser diode (FP-LD). The dc biased FP-LD is simultaneously injection-locked by a return-to-zero data signal at one of the longitudinal modes of the FP-LD and self-seeded at another longitudinal mode by using a uniform fiber Bragg grating as a feedback component. The powers and detunes of the data signal and self-seeding signal are chosen such that self-seeding is realized in the FP-LD only when data signal power is low. Clock signals of data streams at different data rates can be obtained by tuning the optical delay line in the external self-seeding loop. We have demonstrated all-optical clock recovery at 10 GHz. The pulse width, time-bandwidth product, side mode suppression ration, root mean square timing jitter, and average power of the recovered clock signals are 50 ps, 0.5, 50 dB, 248 fs, and 3.6 dBm, respectively. Clock recovery is possible at wavelength within the gain band of the FP-LD. We also find and explore in the experiment the influence of detune between the external data signal and the nearest FP-LD longitudinal mode to the recovered clock.

  13. Nanorod optical antennas for dipolar transitions

    CERN Document Server

    Taminiau, Tim H; van Hulst, Niek F

    2009-01-01

    Optical antennas link objects to light. Here, we analyze metal nanorod antennas as cavities with variable reflection coefficients to derive the interaction of dipolar transitions with radiation through the antenna modes. The presented analytical model accurately describes the complete emission process, and is summarized in a phase-matching equation. We show how antenna modes evolve as they become increasingly more bound, i.e. plasmonic. The results illustrate why efficient antennas should not be too plasmonic, and how subradiant even modes can evolve into weakly-interacting dark modes. Our description is valid for the interaction of nanorods with light in general, and is thus widely applicable.

  14. Sympathetic Ground State Cooling and Time-Dilation Shifts in an ^{27}Al^{+} Optical Clock.

    Science.gov (United States)

    Chen, J-S; Brewer, S M; Chou, C W; Wineland, D J; Leibrandt, D R; Hume, D B

    2017-02-03

    We report on Raman sideband cooling of ^{25}Mg^{+} to sympathetically cool the secular modes of motion in a ^{25}Mg^{+}-^{27}Al^{+} two-ion pair to near the three-dimensional (3D) ground state. The evolution of the Fock-state distribution during the cooling process is studied using a rate-equation simulation, and various heating sources that limit the efficiency of 3D sideband cooling in our system are discussed. We characterize the residual energy and heating rates of all of the secular modes of motion and estimate a secular motion time-dilation shift of -(1.9±0.1)×10^{-18} for an ^{27}Al^{+} clock at a typical clock probe duration of 150 ms. This is a 50-fold reduction in the secular motion time-dilation shift uncertainty in comparison with previous ^{27}Al^{+} clocks.

  15. Sympathetic Ground State Cooling and Time-Dilation Shifts in an 27Al+ Optical Clock

    Science.gov (United States)

    Chen, J.-S.; Brewer, S. M.; Chou, C. W.; Wineland, D. J.; Leibrandt, D. R.; Hume, D. B.

    2017-02-01

    We report on Raman sideband cooling of 25Mg+ to sympathetically cool the secular modes of motion in a 25Mg+-27Al+ two-ion pair to near the three-dimensional (3D) ground state. The evolution of the Fock-state distribution during the cooling process is studied using a rate-equation simulation, and various heating sources that limit the efficiency of 3D sideband cooling in our system are discussed. We characterize the residual energy and heating rates of all of the secular modes of motion and estimate a secular motion time-dilation shift of -(1.9 ±0.1 )×10-18 for an 27Al+ clock at a typical clock probe duration of 150 ms. This is a 50-fold reduction in the secular motion time-dilation shift uncertainty in comparison with previous 27Al+ clocks.

  16. Preprocessing-Free All-Optical Clock Recovery from NRZ and NRZ-DPSK Signals Using an FP-SOA Based Active Filter

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; ZHANG Xin-Liang; YU Yu; XU En-Ming

    2011-01-01

    @@ We demonstrate a simple scheme to perform all-optical clock recovery from the input nonreturn-to-zero (NRZ) and nonreturn-to-zero differential phase shifted keying (NRZ-DPSK) data, which are avoided using any pre- processing measures.A multi-quantum-well Fabry-Perot semiconductor optical amplifier plays the dual role of the data format converter and the clock recovery device.Using this scheme, a stable and low jitter 35.80-GHz optical clock pulse sequence is directly extracted out from the input NRZ or NRZ-DPSK data.This scheme has some distinct advantages such as simple device fabrication, transparence to data format, multiwavelength opera- tion, free preprocessing and convenient tuning.Potential powerful adaptability of this scheme is very important for next-generation optical networks, in which there exist various modulation formats and the used devices are required to be transparent to data formats.%We demonstrate a simple scheme to perform all-optical clock recovery from the input nonreturn-to-zero (NRZ) and nonreturn-to-zero differential phase shifted keying (NRZ-DPSK) data, which are avoided using any preprocessing measures. A multi-quantum-well Fabry-Perot semiconductor optical amplifier plays the dual role of the data format converter and the clock recovery device. Using this scheme, a stable and low jitter 35.80-GHz optical clock pulse sequence is directly extracted out from the input NRZ or NRZ-DPSK data. This scheme has some distinct advantages such as simple device fabrication, transparence to data format, multiwavelength operation, free preprocessing and convenient tuning. Potential powerful adaptability of this scheme is very important for next-generation optical networks, in which there exist various modulation formats and the used devices are required to be transparent to data formats.

  17. Time-variable gravity potential components for optical clock comparisons and the definition of international time scales

    Science.gov (United States)

    Voigt, C.; Denker, H.; Timmen, L.

    2016-12-01

    The latest generation of optical atomic clocks is approaching the level of one part in 1018 in terms of frequency stability and uncertainty. For clock comparisons and the definition of international time scales, a relativistic redshift effect of the clock frequencies has to be taken into account at a corresponding uncertainty level of about 0.1 m2 s-2 and 0.01 m in terms of gravity potential and height, respectively. Besides the predominant static part of the gravity potential, temporal variations must be considered in order to avoid systematic frequency shifts. Time-variable gravity potential components induced by tides and non-tidal mass redistributions are investigated with regard to the level of one part in 1018. The magnitudes and dominant time periods of the individual gravity potential contributions are investigated globally and for specific laboratory sites together with the related uncertainty estimates. The basics of the computation methods are presented along with the applied models, data sets and software. Solid Earth tides contribute by far the most dominant signal with a global maximum amplitude of 4.2 m2 s-2 for the potential and a range (maximum-to-minimum) of up to 1.3 and 10.0 m2 s-2 in terms of potential differences between specific laboratories over continental and intercontinental scales, respectively. Amplitudes of the ocean tidal loading potential can amount up to 1.25 m2 s-2, while the range of the potential between specific laboratories is 0.3 and 1.1 m2 s-2 over continental and intercontinental scales, respectively. These are the only two contributors being relevant at a 10-17 level. However, several other time-variable potential effects can particularly affect clock comparisons at the 10-18 level. Besides solid Earth pole tides, these are non-tidal mass redistributions in the atmosphere, the oceans and the continental water storage.

  18. Colorless detection of NRZ-DPSK signals using electro-optic clock re-modulation

    DEFF Research Database (Denmark)

    Zsigri, Beata; Tokle, Torger; Peucheret, Christophe

    2010-01-01

    Wavelength-independent detection of NRZ-DPSK signals is proposed and demonstrated at 43 Gbit/s. The scheme relies on re-modulation of the incoming NRZ-DPSK signal with a recovered electrical clock. Good performance is obtained after dispersion managed transmission.......Wavelength-independent detection of NRZ-DPSK signals is proposed and demonstrated at 43 Gbit/s. The scheme relies on re-modulation of the incoming NRZ-DPSK signal with a recovered electrical clock. Good performance is obtained after dispersion managed transmission....

  19. A New Rb Lamp Exciter Circuit for Rb atomic clocks and Studies on Transition from Ring to Red mode

    CERN Document Server

    Singh, Savita; Saxena, G M

    2010-01-01

    In this paper we describe the development of novel RF exciter circuit for electrode less Rb lamp. The lamp exciter circuit is a RF oscillator with a a new configuration operating at 60 to 65 MHz frequency with 3 to 4 watt power. The Rb lamp is used in exciting the ground state hyperfine transitions in Rb atom in a glass cell placed inside a tuned microwave cavity, As the frequency of these hyperfine transitions is very stable it is used in the development of Rb atomic clock by phase locking the oven controlled crystal oscillator (OCXO) to this atomic transition frequency. The details of the Rb lamp exciter are presented in the paper.The Lamp is ideally operated in ring mode as in this mode the linewidth is narrow and there is no self reversal. However, high temperature and RF excitation power may drive the Rb lamp to red mode which gives rise to line broadening and self reversal. It is the experience that mode change from ring to red deteriorates the atomic signal strength and S/N. In this paper the reasons o...

  20. Lattice Induced Frequency Shifts in Sr Optical Lattice Clocks at the $10^{-17}$ Level

    CERN Document Server

    Westergaard, Philip G; Lorini, Luca; Lecallier, Arnaud; Burt, Eric; Zawada, Michal; Millo, Jacques; Lemonde, Pierre

    2011-01-01

    We present a comprehensive study of the frequency shifts associated with the lattice potential for a Sr lattice clock. By comparing two such clocks with a frequency stability reaching $5\\times 10^{-17}$ after a one hour integration time, and varying the lattice depth up to $U_0=900 \\, E_r$ with $E_r$ being the recoil energy, we evaluate lattice related shifts with an unprecedented accuracy. We put the first experimental upper bound on the recently predicted frequency shift due to the magnetic dipole (M1) and electric quadrupole (E2) interactions. This upper bound is significantly smaller than the theoretical upper limit. We also give a new upper limit on the effect of hyperpolarizability with an improvement by more than one order of magnitude. Finally, we report the first observation of the vector and tensor shifts in a lattice clock. Combining these measurements, we show that all known lattice related perturbation will not affect the clock accuracy down to the $10^{-17}$ level, even for very deep lattices, u...

  1. A compact microchip atomic clock based on all-optical interrogation of ultra-cold trapped Rb atoms

    Science.gov (United States)

    Farkas, D. M.; Zozulya, A.; Anderson, D. Z.

    2010-12-01

    We propose a compact atomic clock that uses all-optical interrogation of ultra-cold Rb atoms that are magnetically trapped near the surface of an atom microchip. The interrogation scheme, which combines electromagnetically induced transparency with Ramsey's method of separated oscillatory fields, can achieve an atomic shot-noise-level performance better than 10^{-13}/sqrt{tau} for 106 atoms. A two-color Mach-Zehnder interferometer can detect a 100-pW probe beam at the optical shot-noise level using conventional photodetectors. This measurement scheme is nondestructive and therefore can be used to increase the operational duty cycle by reusing the trapped atoms for multiple clock cycles. Numerical calculations of the density matrix equations are used to identify realistic operating parameters at which AC Stark shifts are eliminated. By considering fluctuations in these parameters, we estimate that AC Stark shifts can be canceled to a level better than 2×10-14. An overview of the apparatus is presented with estimates of cycle time and power consumption.

  2. First observation of the strongly forbidden transition {sup 1}S{sub 0} - {sup 3}P{sub 0} in Strontium, for an atomic clock with trapped atoms; Premiere observation de la transition fortement interdite {sup 1}S{sub 0} - {sup 3}P{sub 0} du strontium, pour une horloge optique a atomes pieges

    Energy Technology Data Exchange (ETDEWEB)

    Courtillot, I

    2003-11-01

    This thesis reports the first results towards the realization of an optical clock using trapped strontium atoms. This set up would combine advantages of the different approaches commonly used to develop an atomic frequency standard. The first part describes the cold atoms source which is implemented. A magneto-optical trap operating on the {sup 1}S{sub 0}-{sup 1}P{sub 1} transition at 461 nm is loaded from an atomic beam decelerated by a Zeeman slower. The 461 nm laser is obtained by sum-frequency mixing in a potassium titanyl phosphate (KTP) crystal. The second part is devoted to the different stages developed to achieve the direct excitation of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition in {sup 87}Sr. This line has a theoretical natural width of 10{sup -3} Hz. Before this detection, we obtained an estimate of the resonance frequency by measuring absolute frequencies of several allowed optical transitions. (author)

  3. Mode-locked laser realized by selective area growth for short pulse generation and optical clock recovery in TDM systems

    Science.gov (United States)

    Lach, Eugen; Baums, Dieter; Bouayad-Amine, Jamal; Hache, Claudia; Haisch, Hansjorg; Kuhn, Edgar; Satzke, Klaus; Schilling, Michael; Weber, Juergen; Zielinski, Erich

    1996-04-01

    We report on monolithically integrated active/passive coupled cavity mode locked lasers for 1.55 micrometer realized by selective area growth technology of InGaAs(P) quantum wells. Mode locked FP or DBR lasers are fabricated with an integrated cavity comprising up to three different band gaps. The devices emit short light pulses at around 10 GHz repetition rate with pulse width down to 8.7 ps. A time-bandwidth product of 0.5 is achieved for mode locked DBR lasers. Active/passive integrated mode locked laser is used for generation of optical 10 GHz clock signal from optical 10 Gb/s PRBS RZ data stream injected into the laser cavity.

  4. Formulation of geopotential difference determination using optical-atomic clocks onboard satellites and on ground based on Doppler cancellation system

    Science.gov (United States)

    Shen, Ziyu; Shen, Wen-Bin; Zhang, Shuangxi

    2016-08-01

    In this study, we propose an approach for determining the geopotential difference using high-frequency-stability microwave links between satellite and ground station based on Doppler cancellation system. Suppose a satellite and a ground station are equipped with precise optical-atomic clocks (OACs) and oscillators. The ground oscillator emits a signal with frequency fa towards the satellite and the satellite receiver (connected with the satellite oscillator) receives this signal with frequency fb which contains the gravitational frequency shift effect and other signals and noises. After receiving this signal, the satellite oscillator transmits and emits, respectively, two signals with frequencies fb and fc towards the ground station. Via Doppler cancellation technique, the geopotential difference between the satellite and the ground station can be determined based on gravitational frequency shift equation by a combination of these three frequencies. For arbitrary two stations on ground, based on similar procedures as described above, we may determine the geopotential difference between these two stations via a satellite. Our analysis shows that the accuracy can reach 1 m2 s- 2 based on the clocks' inaccuracy of about 10-17 (s s-1) level. Since OACs with instability around 10-18 in several hours and inaccuracy around 10-18 level have been generated in laboratory, the proposed approach may have prospective applications in geoscience, and especially, based on this approach a unified world height system could be realized with one-centimetre level accuracy in the near future.

  5. Strontium Optical Lattice Clock: In Quest of the Ultimate Performance; Horloge a reseau optique au strontium: en quete de la performance ultime

    Energy Technology Data Exchange (ETDEWEB)

    Westergaard, Ph.G.

    2010-10-15

    This thesis presents the latest achievements regarding the Sr optical lattice clock experiment at LNESYRTE, Observatoire de Paris. After having described the general principles for optical lattice clocks and the operation of the clock in question, the emphasis is put on the features that have been added to the experiment since 2007. The most important new elements are an ultra-stable reference cavity for the clock laser, the development of a non-destructive detection technique, and the construction of a second Sr lattice clock. The ultra-stable cavity is constructed from a ULE spacer and fused silica mirrors and has shown a thermal noise floor at 6.5 * 10{sup -16}, placing it among the best in the world. The non-destructive detection is effectuated by a phase measurement of a weak probe beam that traverses the atoms placed in one arm of a Mach-Zender interferometer. The non-destructive aspect enables a recycling of the atoms from cycle to cycle which consequently increases the duty cycle, allowing for an increase of the stability of the clock. With these new tools the frequency stability is expected to be 2.2 * 10{sup -16}/{radical}{tau} for an optimized sequence. The most recent comparisons between the two Sr clocks reach an accuracy level of 10{sup -16} after about 1000 s, and this way we have been able to characterize lattice related frequency shifts with an unprecedented accuracy. The measurements ensure a control of lattice related effects at the 10{sup -18} level even for trap depths as large as 50E{sub r}. (authors)

  6. Clock and carrier recovery in high-speed coherent optical communication systems

    Science.gov (United States)

    Amado, Sofia B.; Ferreira, Ricardo; Costa, Pedro S.; Guiomar, Fernando P.; Ziaie, Somayeh; Teixeira, António L.; Muga, Nelson J.; Pinto, Armando N.

    2014-08-01

    In this paper, the implementations of clock and carrier recovery in digital domain are analyzed. Hardware implementation details, resources estimation and real-time results are presented. Analog-to-Digital Converters (ADC), operating at 1.25Gsa/s, and a Virtex-6 Field-Programmable Gate Array (FPGA), have been used, allowing the implementation of a real-time Quadrature Phase Shift Keying (QPSK) system operating at 1.25Gb/s. The real-time mode operation is successfully demonstrated over 80 km of Standard Single Mode Fiber (SSMF).

  7. 10  GHz clock time-multiplexed degenerate optical parametric oscillators for a photonic Ising spin network.

    Science.gov (United States)

    Takesue, Hiroki; Inagaki, Takahiro

    2016-09-15

    A coherent Ising machine based on degenerate optical parametric oscillators (DOPOs) is drawing attention as a way to find a solution to the ground-state search problem of the Ising model. Here we report the generation of time-multiplexed DOPOs at a 10 GHz clock frequency. We successfully generated >50,000 DOPOs using dual-pump four-wave mixing in a highly nonlinear fiber that formed a 1 km cavity, and observed phase bifurcation of the DOPOs, which suggests that the DOPOs can be used as stable artificial spins. In addition, we demonstrated the generation of more than 1 million DOPOs by extending the cavity length to 21 km. We also confirmed that the binary numbers obtained from the DOPO phase-difference measurement passed the NIST random number test, which suggests that we can obtain unbiased artificial spins.

  8. An Ultra-Stable Referenced Interrogation System in the Deep Ultraviolet for a Mercury Optical Lattice Clock

    CERN Document Server

    Dawkins, S T; Petersen, M; Millo, J; Magalhães, D V; Mandache, C; Coq, Y Le; Bize, S

    2010-01-01

    We have developed an ultra-stable source in the deep ultraviolet, suitable to fulfill the interrogation requirements of a future fully-operational lattice clock based on neutral mercury. At the core of the system is a Fabry-P\\'erot cavity which is highly impervious to temperature and vibrational perturbations. The mirror substrate is made of fused silica in order to exploit the comparatively low thermal noise limits associated with this material. By stabilizing the frequency of a 1062.6 nm Yb-doped fiber laser to the cavity, and including an additional link to LNE-SYRTE's fountain primary frequency standards via an optical frequency comb, we produce a signal which is both stable at the 1E-15 level in fractional terms and referenced to primary frequency standards. The signal is subsequently amplified and frequency-doubled twice to produce several milliwatts of interrogation signal at 265.6 nm in the deep ultraviolet.

  9. A monolithically integrated dual-mode laser for photonic microwave generation and all-optical clock recovery

    Science.gov (United States)

    Yu, Liqiang; Zhou, Daibing; Zhao, Lingjuan

    2014-09-01

    We demonstrate a monolithically integrated dual-mode laser (DML) with narrow-beat-linewidth and wide-beat-tunability. Using a monolithic DFB laser subjected to amplified feedback, photonic microwave generation of up to 45 GHz is obtained with higher than 15 GHz beat frequency tunability. Thanks to the high phase correlation of the two modes and the narrow mode linewidth, a RF linewidth of lower than 50 kHz is measured. Simulations are also carried out to illustrate the dual-mode beat characteristic. Furthermore, using the DML, an all-optical clock recovery for 40  Gbaud NRZ-QPSK signals is demonstrated. Timing jitter of lower than 363 fs (integrated within a frequency range from 100 Hz to 1 GHz) is obtained.

  10. How ticks an atomic clock? Realization of the second from 1955 until today; Wie tickt eine Atomuhr? Realisierung der Sekunde von 1955 bis heute

    Energy Technology Data Exchange (ETDEWEB)

    Bauch, Andreas [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Zeituebertragung' ; Weyers, Stefan [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Zeitnormale' ; Peik, Ekkehard [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Fachbereich ' Zeit und Frequenz'

    2016-06-15

    In this paper the principle of the atomic clock on the base of the hyperfine-structure transition in {sup 133}Cs is described. Additional further developments in the definition of the second on the base of optical clocks are considered. (HSI)

  11. Forbidden transitions in a magneto-optical trap.

    Science.gov (United States)

    Bhattacharya, M; Haimberger, C; Bigelow, N P

    2003-11-21

    We report the first observation of a nondipole transition in an ultracold atomic vapor. We excite the 3P-4P electric quadrupole (E2) transition in 23Na confined in a magneto-optical trap, and we demonstrate its application to high-resolution spectroscopy by making the first measurement of the hyperfine structure of the 4P(1/2) level and extracting the magnetic dipole constant A=30.6+/-0.1 MHz. We use cw optical-optical double resonance accompanied by photoionization to probe the transition.

  12. Multisectional linear ion trap and novel loading method for optical spectroscopy of electron and nuclear transitions.

    Science.gov (United States)

    Sysoev, Alexey A; Troyan, Victor I; Borisyuk, Peter V; Krasavin, Andrey V; Vasiliev, Oleg S; Palchikov, Vitaly G; Avdeev, Ivan A; Chernyshev, Denis M; Poteshin, Sergey S

    2015-01-01

    There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development.

  13. A strontium lattice clock with $3 \\times 10^{-17}$ inaccuracy and its frequency

    CERN Document Server

    Falke, Stephan; Grebing, Christian; Lipphardt, Burghard; Weyers, Stefan; Gerginov, Vladislav; Huntemann, Nils; Hagemann, Christian; Al-Masoudi, Ali; Häfner, Sebastian; Vogt, Stefan; Sterr, Uwe; Lisdat, Christian

    2013-01-01

    We have measured the absolute frequency of the optical lattice clock based on $^{87}$Sr at PTB with an uncertainty of $3.9\\times 10^{-16}$ using two caesium fountain clocks. This is close to the accuracy of today's best realizations of the SI second. The absolute frequency of the 5s$^2$ $^1$S$_0$-5s5p $^3$P$_0$ transition in $^{87}$Sr is 429,228,004,229,873.13(17) Hz. Our result is in excellent agreement with recent measurements performed in different laboratories worldwide. We improved the total systematic uncertainty of our Sr frequency standard by a factor of five and reach $3\\times 10^{-17}$, opening new prospects for frequency ratio measurements between optical clocks for fundamental research, geodesy, or optical clock evaluation.

  14. Coherent optical transitions in implanted nitrogen vacancy centers.

    Science.gov (United States)

    Chu, Y; de Leon, N P; Shields, B J; Hausmann, B; Evans, R; Togan, E; Burek, M J; Markham, M; Stacey, A; Zibrov, A S; Yacoby, A; Twitchen, D J; Loncar, M; Park, H; Maletinsky, P; Lukin, M D

    2014-01-01

    We report the observation of stable optical transitions in nitrogen-vacancy (NV) centers created by ion implantation. Using a combination of high temperature annealing and subsequent surface treatment, we reproducibly create NV centers with zero-phonon lines (ZPL) exhibiting spectral diffusion that is close to the lifetime-limited optical line width. The residual spectral diffusion is further reduced by using resonant optical pumping to maintain the NV(-) charge state. This approach allows for placement of NV centers with excellent optical coherence in a well-defined device layer, which is a crucial step in the development of diamond-based devices for quantum optics, nanophotonics, and quantum information science.

  15. Performance of a 229 Thorium solid-state nuclear clock

    CERN Document Server

    Kazakov, G A; Romanenko, V I; Yatsenko, L P; Romanenko, A V; Schreitl, M; Winkler, G; Schumm, T

    2012-01-01

    The 7.8 eV nuclear isomer transition in 229 Thorium has been suggested as an etalon transition in a new type of optical frequency standard. Here we discuss the construction of a "solid-state nuclear clock" from Thorium nuclei implanted into single crystals transparent in the vacuum ultraviolet range. We investigate crystal-induced line shifts and broadening effects for the specific system of Calcium fluoride. At liquid Nitrogen temperatures, the clock performance will be limited by decoherence due to magnetic coupling of the Thorium nucleus to neighboring nuclear moments, ruling out the commonly used Rabi or Ramsey interrogation schemes. We propose a clock stabilization based on counting of flourescence photons and present optimized operation parameters. Taking advantage of the high number of quantum oscillators under continuous interrogation, a fractional instability level of 10^{-19} might be reached within the solid-state approach.

  16. Cascaded optical fiber link using the Internet network for remote clocks comparison

    CERN Document Server

    Chiodo, Nicola; Stefani, Fabio; Wiotte, Fabrice; Camisard, Emilie; Chardonnet, Christian; Santarelli, Giorgio; Amy-Klein, Anne; Pottie, Paul-Eric; Lopez, Olivier

    2015-01-01

    We report a cascaded optical link of 1100 km for ultra-stable frequency distribution over an Internet fiber network. The link is composed of four spans for which the propagation noise is actively compensated. The robustness and the performance of the link are ensured by five fully automated optoelectronic stations, two of them at the link ends, and three deployed on the field and connecting the spans. This device coherently regenerates the optical signal with the heterodyne optical phase locking of a low-noise laser diode. Optical detection of the beat-note signals for the laser lock and the link noise compensation are obtained with stable and low-noise fibered optical interferometer. We show 3.5 days of continuous operation of the noise-compensated 4-span cascaded link leading to fractional frequency instability of 4x10-16 at 1-s measurement time and 1x10-19 at 2000 s. This cascaded link was extended to 1480-km with the same performance. This work is a significant step towards a sustainable wide area ultra-s...

  17. Widely tunable monolithic dual-mode laser for W-band photonic millimeter-wave generation and all-optical clock recovery.

    Science.gov (United States)

    Pan, Biwei; Guo, Lu; Zhang, Limeng; Lu, Dna; Huo, Li; Lou, Caiyun; Zhao, Lingjuan

    2016-04-10

    We demonstrate a monolithic dual-mode amplified feedback laser for photonic millimeter-wave generation and all-optical clock recovery. Dual-mode lasing with beating frequency around 100 GHz was realized by using a single-mode distributed feedback (DFB) laser with a short feedback cavity that was integrated by simple quantum-well intermixing technology. By tuning the bias currents of the laser sections, the beating-frequency can be continuously tuned from 75 to 109 GHz, almost covering the entire W-band (75-110 GHz). Furthermore, by using this device, an all-optical clock recovery for 100 Gbit/s return-to-zero on-off-keying signal was achieved with a timing jitter of 301 fs.

  18. Analysis and Simulation of Adiabatic Bend Transitions in Optical Fibers

    Institute of Scientific and Technical Information of China (English)

    YAO Lei; LOU Shu-Qin; JIAN Shui-Sheng

    2009-01-01

    A low-loss criterion for bend transitions in optical fibers is proposed. An optical fiber can be tightly bent with low loss to be adiabatic for the fundamental mode, provided that an approximate upper bound on the rate of change of bend curvature for a given bend curvature is satisfied. Two typical adiabatic bend transition paths, the optimum profile and linear profile, are analyzed and studied numerically. A realizable adiabatic transition with an Archimedean spiral profile is introduced for low bend loss in tightly bent optical fibers. Design of the transitions is based on modeling of the propagation and coupling characteristics of the core and cladding modes,which clearly illustrate the physical processes involved.

  19. Physics: Optical transition seen in antihydrogen

    Science.gov (United States)

    Ulmer, Stefan

    2017-01-01

    Precise measurements of antimatter systems might cast light on why the Universe is dominated by matter. The observation of a transition in an antihydrogen atom heralds the next wave of high-precision antimatter studies. See Letter p.506

  20. Prescaled phase-locked loop using phase modulation and spectral filtering and its application to clock extraction from 160-Gbit/s optical-time-division multiplexed signal.

    Science.gov (United States)

    Igarashi, Koji; Katoh, Kazuhiro; Kikuchi, Kazuro

    2006-05-01

    We propose a prescaled phase-locked loop (PLL) using a simple optoelectronic phase comparator based on phase modulation and spectral filtering. Our phase comparator has a high dynamic range of over 9 dB and a high sensitivity comparable to that using an electrical mixer. A PLL composed of our phase comparator enables to extract a low-noise 10-GHz clock from a 160-Gbit/s optical-time-division multiplexed (OTDM) signal.

  1. Surface Acoustic Wave (SAW) Technology For Clock Recovery In The Fiber Distributed Data Interface (FDDI)

    Science.gov (United States)

    Slawson, Michael R.

    1987-01-01

    This paper describes the use of Surface Acoustic Wave (SAW) technology for clock recovery, and the performance of this technology in the Fiber Distributed Data Interface (FDDI) draft standard. FDDI, because it operates at 125 MBd over the fiber optic media, requires tight control of the jitter accumulated in each point-to-point fiber link. The clock recovery function must be able to recover the clock and correctly sample the bit stream, given a relatively narrow "eye opening" at its input. Furthermore, the clock must be maintained during the FDDI "line states," which can have a very low transition density. This paper will first describe the particular implementation of SAW technology used for clock recovery, the SAW filter, and will define it purpose within the clock recovery function. Then, the jitter characteristics of the FDDI signal at the input to clock recovery, as well as the performance of the SAW-based clock recovery function under these input conditions, will be discussed. Experimental results obtained using a typical, Commercially available, SAW filter-based module will be presented. The various "detuning" sources of the SAW filter, which detract from the capability of the SAW-based module to perform accurate sampling, will be discussed. The performance of the module under FDDI line state conditions, particularly Master Line State (MLS) and Quit Line State (QLS), will be analyzed. The QLS, which indicated a disabled upstream transmitter or a cable break, contains no transitions and therefore no information for clock recovery. A circuit will be presented which uses the station's local oscillator and the "signal detect" function of the fiber optic receiver to derive the recovered clock in the event of QLS.

  2. History of early atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, N.F. [Harvard Univ., Cambridge, MA (United States). Lyman Lab. of Physics

    2005-06-01

    This review of the history of early atomic clocks includes early atomic beam magnetic resonance, methods of separated and successive oscillatory fields, microwave absorption, optical pumping and atomic masers. (author)

  3. Design and performance of clock-recovery GaAs ICs for high-speed optical communication systems

    Science.gov (United States)

    Imai, Yuhki; Sano, Eiichi; Nakamura, Makoto; Ishihara, Noboru; Kikuchi, Hiroyuki; Ono, Takashi

    1993-05-01

    Design and performance of clock-recovery GaAs ICs are presented. Four kinds of ICs were developed: a limiting amplifier, a tuning amplifier, a rectifier, and a differentiator. The cascaded limiting amplifier together with a tuning amplifier achieved a 58-dB gain and a 10-degree phase deviation with 20-dB input dynamic range at 10 GHz. A clock-recovery circuit successfully extracts a low-jitter 10-GHz clock signal of 1-dBm constant power from 10-Gb/s NRZ pseudorandom bit streams using a pulse pattern generator.

  4. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    , such as body-centered cubic and face-centered cubic, can be suppressed by a proper choice of the potential depth and periodicity. Furthermore, by varying the harmonic trap parameters and/or the optical potential in time, controlled transitions between crystal structures can be obtained with close to unit......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  5. Optics of Chromites and Charge-Transfer Transitions

    Directory of Open Access Journals (Sweden)

    Andrei V. Zenkov

    2008-01-01

    Full Text Available Specific features of the charge-transfer (CT states and O2p→Cr3d transitions in the octahedral (CrO69− complex are considered in the cluster approach. The reduced matrix elements of the electric-dipole transition operator are calculated on many-electron wave functions of the complex corresponding to the initial and final states of a CT transition. Modeling the optic spectrum of chromites has yielded a complicated CT band. The model spectrum is in satisfactory agreement with experimental data which demonstrates the limited validity of the generally accepted concept of a simple structure of CT spectra.

  6. Quantum phase transitions in low-dimensional optical lattices

    NARCIS (Netherlands)

    Di Liberto, M.F.

    2015-01-01

    In this thesis, we discuss quantum phase transitions in low-dimensional optical lattices, namely one- and two-dimensional lattices. The dimensional confinement is realized in experiments by suppressing the hopping in the extra dimensions through a deep potential barrier that prevents the atoms to tu

  7. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    , such as body-centered cubic and face-centered cubic, can be suppressed by a proper choice of the potential depth and periodicity. Furthermore, by varying the harmonic trap parameters and/or the optical potential in time, controlled transitions between crystal structures can be obtained with close to unit...

  8. Optical & Infrared Spectroscopy of Transiting Exoplanets

    Science.gov (United States)

    Griffith, C. A.; Tinetti, G.

    2010-10-01

    Two types of spectra can be measured from transiting extrasolar planets. The primary eclipse provides a transmission spectra of the exoplanet's limb as the planet passes in front of the star. These data probe the gas and particle composition of the atmosphere, as well as the atmospheric scale height. The secondary eclipse measures the emission of mainly the planet's dayside atmosphere from the planet plus star's emission minus the emission of star alone, when it eclipses the planet. These data probe the temperature and composition structure of the exoplanet. Only in the past 3 years, have infrared transmission and emission spectroscopy revealed the presence of the primary carbon and oxygen species (CH4, CO2, CO, and H2O). Efforts to constrain the abundances of these molecules are hindered by degenerate effects of the temperature and composition in the emission spectra. Transmission spectra, while less sensitive to the atmospheric temperatures, are difficult to interpret because the composition derived depends delicately on the assumed radius at a specified pressure level. This talk will discuss the correlations in the degenerate solutions that result from the radiative transfer analyses of both emission and transmission spectroscopy. The physical implications of these correlations are assessed in order to determine the temperature and composition structure of extrasolar planets, and their significance with respect to the exoplanet's chemistry and dynamics.

  9. Transitions between the $4f$-core-excited states in Ir$^{16+}$, Ir$^{17+}$, and Ir$^{18+}$ ions for clock applications

    CERN Document Server

    Safronova, U I; Safronova, M S

    2015-01-01

    Iridium ions near $4f$-$5s$ level crossings are the leading candidates for a new type of atomic clocks with a high projected accuracy and a very high sensitivity to the temporal variation of the fine structure constant $\\alpha$. To identify spectra of these ions in experiment accurate calculations of the spectra and electromagnetic transition probabilities should be performed. Properties of the $4f$-core-excited states in Ir$^{16+}$, Ir$^{17+}$, and Ir$^{18+}$ ions are evaluated using relativistic many-body perturbation theory and Hartree-Fock-Relativistic method (COWAN code). We evaluate excitation energies, wavelengths, oscillator strengths, and transition rates. Our large-scale calculations includes the following set of configurations: $4f^{14-k}5s^{m}5p^{n}$ with $(k+m+n)$ equal to 3, 2, and 1 for the Ir$^{16+}$, Ir$^{17+}$, and Ir$^{18+}$ ions, respectively. The $5s-5p$ transitions are illustrated by the synthetic spectra in the 180 - 200 \\AA range. Large contributions of magnetic-dipole transitions to l...

  10. Optical limiting of layered transition metal dichalcogenide semiconductors

    CERN Document Server

    Dong, Ningning; Feng, Yanyan; Zhang, Saifeng; Zhang, Xiaoyan; Chang, Chunxia; Fan, Jintai; Zhang, Long; Wang, Jun

    2015-01-01

    Nonlinear optical property of transition metal dichalcogenide (TMDC) nanosheet dispersions, including MoS2, MoSe2, WS2, and WSe2, was performed by using Z-scan technique with ns pulsed laser at 1064 nm and 532 nm. The results demonstrate that the TMDC dispersions exhibit significant optical limiting response at 1064 nm due to nonlinear scattering, in contrast to the combined effect of both saturable absorption and nonlinear scattering at 532 nm. Selenium compounds show better optical limiting performance than that of the sulfides in the near infrared. A liquid dispersion system based theoretical modelling is proposed to estimate the number density of the nanosheet dispersions, the relationship between incident laser fluence and the size of the laser generated micro-bubbles, and hence the Mie scattering-induced broadband optical limiting behavior in the TMDC dispersions.

  11. Application of Electron-Shelving Detection via 423 nm Transition in Calcium-Beam Optical Frequency Standard

    Institute of Scientific and Technical Information of China (English)

    HUANG Kai-Kai; ZHANG Jian-Wei; YU De-Shui; CHEN Zhen-Hui; ZHUAN Wei; CHEN Jing-Biao

    2006-01-01

    A new scheme of small compact optical frequency standard based on thermal calcium beam with application of 423 nm shelving detection and sharp-angle velocity selection detection is proposed. Combining these presented techniques, we conclude that a small compact optical frequency standard based on thermal calcium beam will outperform the commercial caesium-beam microwave clock, like the 5071 Cs clock (from HP to Agilent, now Symmetricom company), both in accuracy and stability.

  12. Exciton optical transitions in a hexagonal boron nitride single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Museur, L. [Laboratoire de Physique des Lasers - LPL, CNRS UMR 7538, Institut Galilee, Universite Paris 13, 93430 Villetaneuse (France); Brasse, G.; Maine, S.; Ducastelle, F.; Loiseau, A. [ONERA - Laboratoire d' Etude des Microstructures - LEM, ONERA-CNRS, UMR 104, BP 72, 92322 Chatillon Cedex (France); Pierret, A. [ONERA - Laboratoire d' Etude des Microstructures - LEM, ONERA-CNRS, UMR 104, BP 72, 92322 Chatillon Cedex (France); CEA-CNRS, Institut Neel/CNRS, Universite J. Fourier, CEA/INAC/SP2M, 17 rue des Martyrs, 38 054 Grenoble Cedex 9 (France); Attal-Tretout, B. [ONERA - Departement Mesures Physiques - DMPh, 27 Chemin de la Huniere, 91761 Palaiseau Cedex (France); Barjon, J. [GEMaC, Universite de Versailles St Quentin, CNRS Bellevue, 1 Place Aristide Briand, 92195 Meudon Cedex (France); Watanabe, K.; Taniguchi, T. [National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan); Kanaev, A. [Laboratoire des Sciences des Procedes et des Materiaux - LSPM, CNRS UPR 3407, Universite Paris 13, 93430 Villetaneuse (France)

    2011-06-15

    Near band gap photoluminescence (PL) of a hexagonal boron nitride single crystal has been studied at cryogenic temperatures with synchrotron radiation excitation. The PL signal is dominated by trapped-exciton optical transitions, while the photoluminescence excitation (PLE) spectra show features assigned to free excitons. Complementary photoconductivity and PLE measurements set the band gap transition energy to 6.4 eV and the Frenkel exciton binding energy larger than 380 meV. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Spectroscopy of intraband optical transitions in anisotropic semiconductor nanocrystals

    Science.gov (United States)

    Turkov, Vadim K.; Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We propose a new type of optical spectroscopy of anisotropic semiconductor nanocrystals, which is based on the welldeveloped stationary pump-probe technique, where the pump and probe fields are absorbed upon, respectively, interband and intraband transitions of the nanocrystals' electronic subsystem. We develop a general theory of intraband absorption based on the density matrix formalism. This theory can be applied to study degenerate eigenstates of electrons in semiconductor nanocrystals of different shapes and dimentions. We demonstrate that the angular dependence of intraband absorption by nonspherical nanocrystals enables investigating their shape and orientation, as well as the symmetry of quantum states excited by the probe field and selection rules of electronic transitions.

  14. 2e-18 total uncertainty in an atomic clock

    CERN Document Server

    Nicholson, T L; Hutson, R B; Marti, G E; Bloom, B J; McNally, R L; Zhang, W; Barrett, M D; Safronova, M S; Strouse, G F; Tew, W L; Ye, J

    2014-01-01

    The pursuit of better atomic clocks has advanced many research areas, providing better quantum state control, new insights in quantum science, tighter limits on fundamental constant variation, and improved tests of relativity. The record for the best stability and accuracy is currently held by optical lattice clocks. This work takes an important step towards realizing the full potential of a many-particle clock with a state-of-the-art stable laser. Here, we achieve fractional stability of 2.2e-16 at 1 s by using seconds-long coherent interrogations of our clock transition in a low-density system not limited by atomic interactions. With this better stability, we perform a new accuracy evaluation of our clock, improving many systematic uncertainties that limited our previous measurements, such as the lattice ac Stark and blackbody radiation (BBR) shifts. For the lattice ac Stark systematic, we identify the lattice laser frequency where the scalar and tensor components of the shift cancel, allowing for state ind...

  15. Older Persons’ Transitions in Care (OPTIC: a study protocol

    Directory of Open Access Journals (Sweden)

    Cummings Greta G

    2012-12-01

    Full Text Available Abstract Background Changes in health status, triggered by events such as infections, falls, and geriatric syndromes, are common among nursing home (NH residents and necessitate transitions between NHs and Emergency Departments (EDs. During transitions, residents frequently experience care that is delayed, unnecessary, not evidence-based, potentially unsafe, and fragmented. Furthermore, a high proportion of residents and their family caregivers report substantial unmet needs during transitions. This study is part of a program of research whose overall aim is to improve quality of care for frail older adults who reside in NHs. The purpose of this study is to identify successful transitions from multiple perspectives and to identify organizational and individual factors related to transition success, in order to inform improvements in care for frail elderly NH residents during transitions to and from acute care. Specific objectives are to: 1. define successful and unsuccessful elements of transitions from multiple perspectives; 2. develop and test a practical tool to assess transition success; 3. assess transition processes in a discrete set of transfers in two study sites over a one year period; 4. assess the influence of organizational factors in key practice locations, e.g., NHs, emergency medical services (EMS, and EDs, on transition success; and 5. identify opportunities for evidence-informed management and quality improvement decisions related to the management of NH – ED transitions. Methods/Design This is a mixed-methods observational study incorporating an integrated knowledge translation (IKT approach. It uses data from multiple levels (facility, care unit, individual and sources (healthcare providers, residents, health records, and administrative databases. Discussion Key to study success is operationalizing the IKT approach by using a partnership model in which the OPTIC governance structure provides for team decision-makers and

  16. Optical characterization of phase transitions in pure polymers and blends

    Energy Technology Data Exchange (ETDEWEB)

    Mannella, Gianluca A.; Brucato, Valerio; La Carrubba, Vincenzo, E-mail: vincenzo.lacarrubba@unipa.it [Department of Civil, Environmental, Aerospace and Materials Engineering (DICAM), University of Palermo, Viale delle Scienze, Ed. 8, 90128 Palermo (Italy)

    2015-12-17

    To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers and blends. The thermal history imposed to the sample consisted in a rapid heating from ambient temperature to a certain temperature below the melting point, a stabilization period, and then a heating at constant rate. After a second stabilization period, the sample was cooled. The data obtained were compared with DSC measurements performed with the same thermal history. In correspondence with transitions detected via DSC (e.g. melting, crystallization and cold crystallization), the optical signal showed a steep variation. In particular, crystallization resulted in a rapid decrease of transmitted light, whereas melting gave up an increase of light transmitted by the sample. Further variations in transmitted light were recorded for blends, after melting: those results may be related to other phase transitions, e.g. liquid-liquid phase separation. All things considered, the apparatus can be used to get reliable data on phase transitions in polymeric systems.

  17. Decamp Clock Board Firmware

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Castilla, J.; Martinez, G.

    2007-09-27

    Decamp (Dark Energy Survey Camera) is a new instrument designed to explore the universe aiming to reveal the nature of Dark Energy. The camera consists of 72 CCDs and 520 Mpixels. The readout electronics of DECam is based on the Monsoon system. Monsoon is a new image acquisition system developed by the NOAO (National Optical Astronomical Observatory) for the new generation of astronomical cameras. The Monsoon system uses three types of boards inserted in a Eurocard format based crate: master control board, acquisition board and clock board. The direct use of the Monsoon system for DECam readout electronics requires nine crates mainly due to the high number of clock boards needed. Unfortunately, the available space for DECam electronics is constrained to four crates at maximum. The major drawback to achieve such desired compaction degree resides in the clock board signal density. This document describes the changes performed at CIEMAT on the programmable logic of the Monsoon clock board aiming to meet such restricted space constraints. (Author) 5 refs.

  18. Optical Sensor for Characterizing the Phase Transition in Salted Solutions

    Science.gov (United States)

    Claverie, Rémy; Fontana, Marc D.; Duričković, Ivana; Bourson, Patrice; Marchetti, Mario; Chassot, Jean-Marie

    2010-01-01

    We propose a new optical sensor to characterize the solid-liquid phase transition in salted solutions. The probe mainly consists of a Raman spectrometer that extracts the vibrational properties from the light scattered by the salty medium. The spectrum of the O – H stretching band was shown to be strongly affected by the introduction of NaCl and the temperature change as well. A parameter SD defined as the ratio of the integrated intensities of two parts of this band allows to study the temperature and concentration dependences of the phase transition. Then, an easy and efficient signal processing and the exploitation of a modified Boltzmann equation give information on the phase transition. Validations were done on solutions with varying concentration of NaCl. PMID:22319327

  19. Advanced simulations of optical transition and diffraction radiation

    Directory of Open Access Journals (Sweden)

    T. Aumeyr

    2015-04-01

    Full Text Available Charged particle beam diagnostics is a key task in modern and future accelerator installations. The diagnostic tools are practically the “eyes” of the operators. The precision and resolution of the diagnostic equipment are crucial to define the performance of the accelerator. Transition and diffraction radiation (TR and DR are widely used for electron beam parameter monitoring. However, the precision and resolution of those devices are determined by how well the production, transport and detection of these radiation types are understood. This paper reports on simulations of TR and DR spatial-spectral characteristics using the physical optics propagation (POP mode of the Zemax advanced optics simulation software. A good consistency with theory is demonstrated. Also, realistic optical system alignment issues are discussed.

  20. Sympathetic ground state cooling and time-dilation shifts in an $^{27}\\text{Al}^+$ optical clock

    CERN Document Server

    Chen, J -S; Hume, D B; Chou, C W; Wineland, D J; Leibrandt, D R

    2016-01-01

    We report Raman sideband cooling of $^{25}Mg^+$ to sympathetically cool the secular modes of motion in a $^{25}\\text{Mg}^+ \\text{-} ^{27}\\text{Al}^+$ two-ion pair to near the three-dimensional (3D) ground state. The evolution of the Fock state distribution during the cooling process is studied using a rate-equation simulation, and various heating sources that limit the efficiency of 3D sideband cooling in our system are discussed. We characterize the residual energy and heating rates of all the secular modes of motion and estimate a secular motion time-dilation shift of $-(1.92 \\pm 0.11)\\times 10^{-18}$ for an $^{27}\\text{Al}^+$ clock at a typical clock probe duration of 150 ms.

  1. Collisionally induced atomic clock shifts and correlations

    Energy Technology Data Exchange (ETDEWEB)

    Band, Y. B.; Osherov, I. [Departments of Chemistry and Electro-Optics and the Ilse Katz Center for Nano-Science, Ben-Gurion University, Beer-Sheva 84105 (Israel)

    2011-07-15

    We develop a formalism to incorporate exchange symmetry considerations into the calculation of collisional frequency shifts for atomic clocks using a density-matrix formalism. The formalism is developed for both fermionic and bosonic atomic clocks. Numerical results for a finite-temperature {sup 87}Sr {sup 1}S{sub 0} (F=9/2) atomic clock in a magic wavelength optical lattice are presented.

  2. Body Clock

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2000-01-01

    “Body clocks” are biological methods of controling body activities.Every living thing has one. In humans, a body clock controls normal periods of sleeping and waking. It controls the time swhen you are most likely to feel pain.Eating, sleeping and exercising at about the same time each day will help keep body activities normal. But changes in your life, a new job, for example, destroy the balance and thus cause health problems.

  3. A quantum network of clocks

    Science.gov (United States)

    Kómár, P.; Kessler, E. M.; Bishof, M.; Jiang, L.; Sørensen, A. S.; Ye, J.; Lukin, M. D.

    2014-08-01

    The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy.

  4. Rapid and effective synthesis of $\\text{}^{40}\\text{Ca}-\\text{}^{27}\\text{Al}$ ion pair towards quantum logic optical clock

    CERN Document Server

    Shang, Junjuan; Cao, Jian; Wang, Shaomao; Shu, Hualin; Huang, Xueren

    2016-01-01

    High precision atomic clocks have been applied not only to very important technological problems such as synchronization and global navigation systems, but to the fundament precision measurement physics. Single $\\text{}^{27}\\text{Al}^+$ is one of the most attractions of selection system due to its very low blackbody radiation effect which dominates frequency shifts in other optical clock systems. Up to now, the $\\text{}^{27}\\text{Al}^+$ still could not be laser-cooled directly by reason that the absence of 167nm laser. Sympathetic cooling is a viable method to solve this problem. In this work, we used a single laser cooled $\\text{}^{40}\\text{Ca}^+$ to sympathetically cool one $\\text{}^{27}\\text{Al}^+$ in linear Paul trap. Comparing to laser ablation method we got a much lower velocity atoms sprayed from a home-made atom oven, which would make loading aluminum ion more efficient and the sympathetic cooling much easier. By the method of precisely measuring the secular frequency of the ion pair, finally we prove...

  5. Atomic clocks with suppressed blackbody radiation shift

    CERN Document Server

    Yudin, V I; Okhapkin, M V; Bagayev, S N; Tamm, Chr; Peik, E; Huntemann, N; Mehlstaubler, T E; Riehle, F

    2011-01-01

    We develop a nonstandard concept of atomic clocks where the blackbody radiation shift (BBRS) and its temperature fluctuations can be dramatically suppressed (by one to three orders of magnitude) independent of the environmental temperature. The suppression is based on the fact that in a system with two accessible clock transitions (with frequencies $\

  6. Optical fingerprint of non-covalently functionalized transition metal dichalcogenides

    Science.gov (United States)

    Feierabend, Maja; Malic, Ermin; Knorr, Andreas; Berghäuser, Gunnar

    2017-09-01

    Atomically thin transition metal dichalcogenides (TMDs) hold promising potential for applications in optoelectronics. Due to their direct band gap and the extraordinarily strong Coulomb interaction, TMDs exhibit efficient light-matter coupling and tightly bound excitons. Moreover, large spin orbit coupling in combination with circular dichroism allows for spin and valley selective optical excitation. As atomically thin materials, they are very sensitive to changes in the surrounding environment. This motivates a functionalization approach, where external molecules are adsorbed to the materials surface to tailor its optical properties. Here, we apply the density matrix theory to investigate the potential of non-covalently functionalized monolayer TMDs. Considering exemplary molecules with a strong dipole moment, we predict spectral redshifts and the appearance of an additional side peak in the absorption spectrum of functionalized TMDs. We show that the molecular characteristics, e.g. coverage, orientation and dipole moment, crucially influence the optical properties of TMDs, leaving a unique optical fingerprint in the absorption spectrum. Furthermore, we find that the molecular dipole moments open a channel for coherent intervalley coupling between the high-symmetry K and K\\prime points which may create new possibilities for spin-valleytronics application.

  7. Progress of the ~(87)Rb Fountain Clock

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zi-Chao; WEI Rong; SHI Chun-Yan; LV De-Sheng; LI Tang; WANG Yu-Zhu

    2009-01-01

    A fountain atomic clock based on cold ~(87)Rb atoms has been in operation in our laboratory for several months.We therefore report the design of the rubidium fountain clock including its physical package,optical system and daily operation.Ramsey fringes have been attained with the signal to noise ratio of about 100.

  8. Evaluation of trap-induced systematic frequency shifts for a multi-ion optical clock at the $10^{-19}$ level

    CERN Document Server

    Keller, J; Kalincev, D; Kiethe, J; Mehlstäubler, T E

    2015-01-01

    In order to improve the short-term stability of trapped-ion optical clocks, we are developing a frequency standard based on ${}^{115}$In${}^+$ / ${}^{172}$Yb${}^+$ Coulomb crystals. For this purpose, we have developed scalable segmented Paul traps which allow a high level of control for multiple ion ensembles. In this article, we detail on our recent results regarding the reduction of the leading sources of frequency uncertainty introduced by the ion trap: 2nd-order Doppler shifts due to micromotion and the heating of secular motion, as well as the black-body radiation shift due to warming of the trap. We show that the fractional frequency uncertainty due to each of these effects can be reduced to well below $10^{-19}$.

  9. Optical Observations of the Transiting Exoplanet GJ 1214b

    CERN Document Server

    Teske, Johanna K; Mueller, Matthias; Griffith, Caitlin A

    2013-01-01

    We observed nine primary transits of the super-Earth exoplanet GJ 1214b in several optical photometric bands from March to August 2012, with the goal of constraining the short-wavelength slope of the spectrum of GJ 1214b. Our observations were conducted on the Kuiper 1.55 m telescope in Arizona and the STELLA-I robotic 1.2 m telescope in Tenerife, Spain. From the derived light curves we extracted transit depths in R (0.65 {\\mu}m), V (0.55 {\\mu}m), and g' (0.475 {\\mu}m) bands. Most previous observations of this exoplanet suggest a flat spectrum varying little with wavelength from the near-infrared to the optical, corresponding to a low-scale-height, high-molecular-weight atmosphere. However, a handful of observations around Ks band (~2.15 {\\mu}m) and g-band (~0.46 {\\mu}m) are inconsistent with this scenario and suggest a variation on a hydrogen- or water-dominated atmosphere that also contains a haze layer of small particles. In particular, the g-band observations of de Mooij et al. (2012), consistent with Ray...

  10. A clock network for geodesy and fundamental science

    CERN Document Server

    Lisdat, C; Quintin, N; Shi, C; Raupach, S M F; Grebing, C; Nicolodi, D; Stefani, F; Al-Masoudi, A; Dörscher, S; Häfner, S; Robyr, J -L; Chiodo, N; Bilicki, S; Bookjans, E; Koczwara, A; Koke, S; Kuhl, A; Wiotte, F; Meynadier, F; Camisard, E; Abgrall, M; Lours, M; Legero, T; Schnatz, H; Sterr, U; Denker, H; Chardonnet, C; Coq, Y Le; Santarelli, G; Amy-Klein, A; Targat, R Le; Lodewyck, J; Lopez, O; Pottie, P -E

    2015-01-01

    Leveraging the unrivaled performance of optical clocks in applications in fundamental physics beyond the standard model, in geo-sciences, and in astronomy requires comparing the frequency of distant optical clocks truthfully. Meeting this requirement, we report on the first comparison and agreement of fully independent optical clocks separated by 700 km being only limited by the uncertainties of the clocks themselves. This is achieved by a phase-coherent optical frequency transfer via a 1415 km long telecom fiber link that enables substantially better precision than classical means of frequency transfer. The fractional precision in comparing the optical clocks of three parts in $10^{17}$ was reached after only 1000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than with any other existing frequency transfer method. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optic...

  11. Ultra-narrow linewidth optical filter based on Faraday effect at isotope 87Rb 420 nm transitions

    Science.gov (United States)

    Bi, Gang; Kang, Jia; Fu, Jun; Ling, Li; Chen, Jingbiao

    2016-12-01

    An ultra-narrow linewidth optical filter with isotope 87Rb vapor at 420 nm, within the best waveband 400-500 nm for deep sea communication is achieved for the first time. The Faraday effect, circular dichroism, and nonlinear saturation techniques are utilized to narrow the bandwidth from previous 2.5 GHz to about 15 MHz level on the energy transition 5S1/2 → 6P3/2. By changing the temperature and magnetic field, the maximum transmission is obtained when the temperature and the magnetic field of the 87Rb cell are at 100 °C and 12 G. We discuss the varying influences of temperature, magnetic field, and pump power on the transmission of the atomic filter. The maximum single peak transmission at 5S1/2, F = 2 → 6P3/2, F‧ = 3 transition is 2.1% with a bandwidth of 17.8 MHz, and 1.9% at the 5S1/2, F = 2 → 6P3/2, F‧ = 2 , 3 (cross-over) transition with that of 14.2 MHz. The calculated equivalent noise bandwidth of this system is 32.5 MHz. Compared with the conventional Faraday anomalous dispersion optical filter, the bandwidth of our system is narrowed at least two orders of magnitude and is closer to the natural linewidth. This ultra-narrow linewidth filter has the potential to be applied to submarine communication or the pump laser in a four-level Rb-based active optical clock.

  12. Subwavelength optics with hyperbolic metamaterials: Waveguides, scattering, and optical topological transitions

    DEFF Research Database (Denmark)

    Ishii, Satoshi; Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.

    2016-01-01

    Hyperbolic metamaterials possess unique optical properties owing to their hyperbolic dispersion. As hyperbolic metamaterials can be constructed just from periodic multilayers of metals and dielectrics, they have attracted considerable attention in the nanophotonics community. Here, we review some...... of our recent works and demonstrate the benefits of using hyperbolic metamaterials in plasmonic waveguides and light scattering. We also discuss nonlocal topological transitions in the hyperbolic metamaterials that effectively induce a zero refractive index....

  13. The NIST 27 Al+ quantum-logic clock

    Science.gov (United States)

    Leibrandt, David; Brewer, Samuel; Chen, Jwo-Sy; Hume, David; Hankin, Aaron; Huang, Yao; Chou, Chin-Wen; Rosenband, Till; Wineland, David

    2016-05-01

    Optical atomic clocks based on quantum-logic spectroscopy of the 1 S0 3 P0 transition in 27 Al+ have reached a systematic fractional frequency uncertainty of 8 . 0 ×10-18 , enabling table-top tests of fundamental physics as well as measurements of gravitational potential differences. Currently, the largest limitations to the accuracy are second order time dilation shifts due to the driven motion (i.e., micromotion) and thermal motion of the trapped ions. In order to suppress these shifts, we have designed and built new ion traps based on gold-plated, laser-machined diamond wafers with differential RF drive, and we have operated one of our clocks with the ions laser cooled to near the six mode motional ground state. We present a characterization of the time dilation shifts in the new traps with uncertainties near 1 ×10-18 . Furthermore, we describe a new protocol for clock comparison measurements based on synchronous probing of the two clocks using phase-locked local oscillators, which allows for probe times longer than the laser coherence time and avoids the Dick effect. This work is supported by ARO, DARPA, and ONR.

  14. First-Order-Like Transition for Dispersive Optical Bistability

    Institute of Scientific and Technical Information of China (English)

    HE Ying; ZHU Shi-Qun

    2003-01-01

    The first-order-like phase transition (FOLT) in the dispersive optical bistability is investigated when the fluctuation in the incident light field is considered as colored noise. A unified colored-noise approximation is applied to obtain the steady state distribution (SSD) when either the intensity or phase fluctuations of the incident field are included in the system. For intensity fluctuations only, the curve of SSD is changed from single extreme to two extremes, and then to three extremes. The colored nature of the noise can reduce the fluctuation in the system. However, for phase fluctuations only, the FOLT is mainly induced by the colored nature of the noise. The curve of SSD is changed from single extreme to three extremes directly. There is no FOLT existing for white noise.

  15. DFB-ridge laser diodes at 894 nm for Cesium atomic clocks

    Science.gov (United States)

    von Bandel, N.; Garcia, M.; Lecomte, M.; Larrue, A.; Robert, Y.; Vinet, E.; Driss, O.; Parrilaud, O.; Krakowski, M.; Gruet, F.; Matthey, R.; Mileti, G.

    2016-02-01

    Time and frequency applications are in need of high accuracy and high stability clocks. Optically pumped compact industrial Cesium atomic clocks are a promising approach that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of the laser diodes that are used. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for ground applications. This work will provide key experience for further space technology qualification. III-V Lab is in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894 nm (D1 line of Cesium) and 852 nm (D2 line). LTF-Unine is in charge of their spectral characterisation. The use of D1 line for pumping will provide simplified clock architecture compared to the D2 line pumping thanks to simpler atomic transitions and a larger spectral separation between lines in the 894 nm case. Also, D1 line pumping overcomes the issue of unpumped "idle states" that occur with D2 line. The modules should provide narrow linewidth (= 10 Hz and 109 Hz2/Hz @ f >= 10 Hz.

  16. Ultra-stable clock laser system development towards space applications

    Science.gov (United States)

    Świerad, Dariusz; Häfner, Sebastian; Vogt, Stefan; Venon, Bertrand; Holleville, David; Bize, Sébastien; Kulosa, André; Bode, Sebastian; Singh, Yeshpal; Bongs, Kai; Rasel, Ernst Maria; Lodewyck, Jérôme; Le Targat, Rodolphe; Lisdat, Christian; Sterr, Uwe

    2016-09-01

    The increasing performance of optical lattice clocks has made them attractive for scientific applications in space and thus has pushed the development of their components including the interrogation lasers of the clock transitions towards being suitable for space, which amongst others requires making them more power efficient, radiation hardened, smaller, lighter as well as more mechanically stable. Here we present the development towards a space-compatible interrogation laser system for a strontium lattice clock constructed within the Space Optical Clock (SOC2) project where we have concentrated on mechanical rigidity and size. The laser reaches a fractional frequency instability of 7.9 × 10-16 at 300 ms averaging time. The laser system uses a single extended cavity diode laser that gives enough power for interrogating the atoms, frequency comparison by a frequency comb and diagnostics. It includes fibre link stabilisation to the atomic package and to the comb. The optics module containing the laser has dimensions 60 × 45 × 8 cm3 and the ultra-stable reference cavity used for frequency stabilisation with its vacuum system takes 30 × 30 × 30 cm3. The acceleration sensitivities in three orthogonal directions of the cavity are 3.6 × 10-10/g, 5.8 × 10-10/g and 3.1 × 10-10/g, where g ≈ 9.8 m/s2 is the standard gravitational acceleration.

  17. Inhomogeneous broadening of optical transitions of 87Rb atoms in an optical nanofiber trap

    CERN Document Server

    Lee, J; Hoffman, J E; Orozco, L A; Rolston, S L

    2014-01-01

    We experimentally demonstrate optical trapping of 87Rb atoms using a two-color evanescent field around an optical nanofiber. In our trapping geometry, a blue-detuned traveling wave whose polarization is nearly parallel to the polarization of a red-detuned standing wave produce significant vector light shifts that lead to broadening of the absorption profile of a near-resonant beam at the trapping site. A model that includes scalar, vector, and tensor light shifts of the probe transition $5S_{1/2}$-$5P_{3/2}$ from the trapping beams; weighted by the temperature-dependent position of the atoms in the trap qualitatively describe the observed asymmetric profile, and explained differences with previous experiments that used Cs atoms. The model provides a consistent way to extract the number of atoms in the trap.

  18. Lego clocks: building a clock from parts.

    Science.gov (United States)

    Brunner, Michael; Simons, Mirre J P; Merrow, Martha

    2008-06-01

    A new finding opens up speculation that the molecular mechanism of circadian clocks in Synechococcus elongatus is composed of multiple oscillator systems (Kitayama and colleagues, this issue, pp. 1513-1521), as has been described in many eukaryotic clock model systems. However, an alternative intepretation is that the pacemaker mechanism-as previously suggested-lies primarily in the rate of ATP hydrolysis by the clock protein KaiC.

  19. A transportable 40Ca+ single-ion clock with $7.7\\times 10^{-17}$ systematic uncertainty

    CERN Document Server

    Cao, Jian; Shang, Junjuan; Cui, Kaifeng; Yuan, Jinbo; Chao, Sijia; Wang, Shaomao; Shu, Hualin; Huang, Xueren

    2016-01-01

    A transportable optical clock refer to the $4s^2S_{1/2}-3d^2D_{5/2}$ electric quadrupole transition at 729 nm of single $^{40}Ca^+$ trapped in mini Paul trap has been developed. The physical system of $^{40}Ca^+$ optical clock is re-engineered from a bulky and complex setup to an integration of two subsystems: a compact single ion unit including ion trapping and detection modules, and a compact laser unit including laser sources, beam distributor and frequency reference modules. Apart from the electronics, the whole equipment has been constructed within a volume of 0.54 $m^3$. The systematic fractional uncertainty has been evaluated to be $7.7\\times 10^{-17}$, and the Allan deviation fits to be $2.3\\times {10}^{-14}/\\sqrt{\\tau}$ by clock self-comparison with a probe pulse time 20 ms.

  20. Hatching controlled by the circatidal clock, and the role of the medulla terminalis in the optic peduncle of the eyestalk, in an estuarine crab Sesarma haematocheir.

    Science.gov (United States)

    Saigusa, Masayuki

    2002-11-01

    Embryos attached to the female crab Sesarma haematocheir hatch synchronously within 1 h. Hatching is also synchronized near the time of the expected nocturnal high tide. These events are governed by a single circatidal clock (or pacemaker) in the female crab. The present study examined the role of the optic peduncle of the eyestalk on hatching and hatching synchrony. Surgery was performed either from the tip of the eyestalk [to remove the region of the optic peduncle from the compound eye-retina complex to the medulla interna (MI)] or from a small triangle 'window' opened on the eyestalk exoskeleton [to create lesions on the medulla terminalis (MT) of the optic peduncle]. Neither hatching nor hatching synchrony was affected by removal of the region of the optic peduncle from the compound eye-retina complex to the MI: the circatidal rhythm also remained. Removal of the MI probably caused damage to the sinus gland and the bundle of axons running from the sinus gland to the X organ. Nevertheless, maintenance of highly synchronized hatching indicates that the X organ-sinus gland system is not related to hatching. Hatching and hatching synchrony were not affected by dorsal-half cuts of the MT: the timing of hatching was not affected either. By contrast, transverse and ventral-half cuts of the MT caused severe damage to most females; hatching of many females was suppressed, while hatching of some females was either periodic, at intervals of approximately 24 h, or arrhythmic for a few days. The bundle of neuronal axons is tangled in the MT, and the axons inducing hatching pass through the ventral half of the MT. Complete incision of these axon bundles may have suppressed hatching. Incomplete incision of the axon bundle or partial damage to the neurons may have caused periodic or arrhythmic patterns of hatching. There are two possible roles for MT in hatching. One possibility is that neurons in the MT only induce hatching under the control of the circatidal pacemaker

  1. Evaluation of blackbody radiation shift with temperature associated fractional uncertainty at 10E-18 level for 40Ca+ ion optical clock

    CERN Document Server

    Zhang, Ping; Shu, Hua-lin; Yuan, Jin-bo; Shang, Juan-juan; Cui, Kai-feng; Chao, Si-jia; Wang, Shao-mao; Liu, Dao-xin; Huang, Xue-ren

    2016-01-01

    In this paper, blackbody radiation (BBR) temperature rise seen by the $^{40}$Ca$^+$ ion confined in a miniature Paul trap and its uncertainty have been evaluated via finite-element method (FEM) modelling. The FEM model was validated by comparing with thermal camera measurements, which were calibrated by PT1000 resistance thermometer, at several points on a dummy trap. The input modelling parameters were analyzed carefully in detail, and their contributions to the uncertainty of environment temperature were evaluated on the validated FEM model. The result shows that the temperature rise seen by $^{40}$Ca$^+$ ion is 1.72 K with an uncertainty of 0.46 K. It results in a contribution of 2.2 mHz to the systematic uncertainty of $^{40}$Ca$^+$ ion optical clock, corresponding to a fractional uncertainty 5.4$\\times$10$^{-18}$. This is much smaller than the uncertainty caused by the BBR shift coefficient, which is evaluated to be 4.8 mHz and at 10$^{-17}$ level in fractional frequency units.

  2. Evaluation of blackbody radiation shift with temperature-associated fractional uncertainty at 10-18 level for 40Ca+ ion optical clock

    Science.gov (United States)

    Zhang, Ping; Cao, Jian; Shu, Hua-lin; Yuan, Jin-bo; Shang, Jun-juan; Cui, Kai-feng; Chao, Si-jia; Wang, Shao-mao; Liu, Dao-xin; Huang, Xue-ren

    2017-01-01

    In this paper, the blackbody radiation (BBR) temperature rise experienced by a 40Ca+ ion confined in a miniature Paul trap and its uncertainty have been evaluated via finite-element method (FEM) modelling. The FEM model was validated through comparisons with thermal camera measurements at several points on a dummy trap. Before the validation, the thermal camera was calibrated by using a PT1000 resistance thermometer. The input modelling parameters were analyzed carefully, and their contributions to the uncertainty of the trap environment temperature were evaluated using the validated FEM model. The result shows that the temperature rise experienced by the 40Ca+ ion is 1.72 K with an uncertainty of 0.46 K. It results in a contribution of 2.2 mHz to the systematic uncertainty of a 40Ca+ ion optical clock, corresponding to a fractional uncertainty 5.4 × 10-18. This is much smaller than the uncertainty caused by the BBR shift coefficient, which is evaluated to be 4.8 mHz and at the 10-17 level in fractional frequency units.

  3. Dynamic polarizabilities and related properties of clock states of ytterbium atom

    CERN Document Server

    Dzuba, V A

    2009-01-01

    We carry out relativistic many-body calculations of the static and dynamic dipole polarizabilities of the ground $6s^2 ^1S_0$ and the first excited $6s6p ^3P^o_0$ states of Yb. With these polarizabilities, we compute several properties of Yb relevant to optical lattice clocks operating on the $6s^2 ^1S_0 - 6s6p ^3P^o_0$ transition. We determine (i) the first four {\\em magic} wavelengths of the laser field for which the frequency of the clock transition is insensitive to the laser intensity. While the first magic wavelength is known, we predict the second, the third and the forth magic wavelengths to be 551 nm, 465 nm, and 413 nm. (ii) We reevaluate the effect of black-body radiation on the frequency of the clock transition, the resulting clock shift at $T=300 \\mathrm{K}$ being $-1.41(17)$ Hz. (iii) We compute long-range interatomic van der Waals coefficients (in a.u.) $C_6(6s^2 ^1S_0 +6s^2 ^1S_0) = 1909(160)$, $C_6(6s^2 ^1S_0 + 6s6p ^3P_0) =2709(338) $, and $C_6(6s6p ^3P_0 + 6s6p ^3P_0) =3886(360) $. Finally,...

  4. H2+ and HD+: candidates for a molecular clock

    CERN Document Server

    Karr, Jean-Philippe

    2014-01-01

    We investigate the leading systematic effects in ro-vibrational spectroscopy of the molecular hydrogen ions H2+ and HD+, in order to assess their potential for the realization of optical clocks that would be sensitive to possible variations of the proton-to-electron mass ratio. Both two-photon (2E1) and quadrupole (E2) transitions are considered. In view of the weakness of these transitions, most attention is devoted to the light shift induced by the probe laser, which we express as a function of the transition amplitude, differential dynamic polarizability and clock interrogation times. Transition amplitudes and dynamic polarizabilites including the effect of hyperfine structure are then calculated in a full three-body approach to get a precise evaluation of the light shift. Together with the quadrupole and Zeeman shifts that are obtained from previous works, these results provide a realistic estimate of the achievable accuracy. We show that the lightshift is the main limiting factor in the case of two-photo...

  5. Cesium Atomic Fountain Clocks at NMIJ

    Science.gov (United States)

    2010-11-01

    Wynands and S. Weyers, 2005, “Atomic fountain clocks,” Metrologia , 42, S64-S79. [2] M. Takamoto, F. L. Hong, R. Higashi, et al., 2005, “An optical...beam of laser-cooled cesium atoms,” Physical Review, A 60, R4241-R4244. [13] V. Gerginov, N. Nemitz, S. Weyers, et al., 2010, “Uncertainty evaluation of the caesium fountain clock PTB-CSF2,” Metrologia , 47, 65-79.

  6. High-speed optical phase-shifting apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Zortman, William A.

    2016-11-08

    An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.

  7. Entangling the lattice clock: Towards Heisenberg-limited timekeeping

    CERN Document Server

    Weinstein, Jonathan D; Derevianko, Andrei

    2009-01-01

    We present a scheme for entangling the atoms of an optical lattice to reduce the quantum projection noise of a clock measurement. The divalent clock atoms are held in a lattice at a ``magic'' wavelength that does not perturb the clock frequency -- to maintain clock accuracy -- while an open-shell J=1/2 ``head'' atom is coherently transported between lattice sites via the lattice polarization. This polarization-dependent ``Archimedes' screw'' transport at magic wavelength takes advantage of the vanishing vector polarizability of the scalar, J=0, clock states of bosonic isotopes of divalent atoms. The on-site interactions between the clock atoms and the head atom are used to engineer entanglement and for clock readout.

  8. Optimizing passive quantum clocks

    Science.gov (United States)

    Mullan, Michael; Knill, Emanuel

    2014-10-01

    We describe protocols for passive atomic clocks based on quantum interrogation of the atoms. Unlike previous techniques, our protocols are adaptive and take advantage of prior information about the clock's state. To reduce deviations from an ideal clock, each interrogation is optimized by means of a semidefinite program for atomic state preparation and measurement whose objective function depends on the prior information. Our knowledge of the clock's state is maintained according to a Bayesian model that accounts for noise and measurement results. We implement a full simulation of a running clock with power-law noise models and find significant improvements by applying our techniques.

  9. Synchronization of Active Atomic Clocks via Quantum and Classical Channels

    CERN Document Server

    Roth, Alexander

    2016-01-01

    Superradiant lasers based on atomic ensembles exhibiting ultra-narrow optical transitions can emit light of unprecedented spectral purity and may serve as active atomic clocks. We consider two frequency-detuned active atomic clocks, which are coupled in a cascaded setup, i.e. as master & slave lasers, and study the synchronization of the slave to the master clock. In a setup where both atomic ensembles are coupled to a common cavity mode such synchronization phenomena have been predicted by Xu et al. [Phys. Rev. Lett. 113, 154101 (2014)] and experimentally observed by Weiner et al. [arXiv:1503.06464 (2015)]. Here we demonstrate that synchronization still occurs in cascaded setups but exhibits distinctly different phase diagrams. We study the characteristics of synchronization in comparison to the case of coupling through a common cavity. We also consider synchronization through a classical channel where light of the master laser is measured phase sensitively and the slave laser is injection locked by feed...

  10. Synchronization of active atomic clocks via quantum and classical channels

    Science.gov (United States)

    Roth, Alexander; Hammerer, Klemens

    2016-10-01

    Superradiant lasers based on atomic ensembles exhibiting ultranarrow optical transitions can emit light of unprecedented spectral purity and may serve as active atomic clocks. We consider two frequency-detuned active atomic clocks, which are coupled in a cascaded setup, i.e., as master and slave lasers, and study the synchronization of the slave to the master clock. In a setup where both atomic ensembles are coupled to a common cavity mode, such synchronization phenomena have been predicted by Xu et al. [M. Xu, D. A. Tieri, E. C. Fine, J. K. Thompson, and M. J. Holland, Phys. Rev. Lett. 113, 154101 (2014)., 10.1103/PhysRevLett.113.154101] and experimentally observed by Weiner et al. (J. M. Weiner et al., arXiv:1503.06464). Here we demonstrate that synchronization still occurs in cascaded setups but exhibits distinctly different phase diagrams. We study the characteristics of synchronization in comparison to the case of coupling through a common cavity. We also consider synchronization through a classical channel where light of the master laser is measured phase sensitively and the slave laser is injection locked by feedback and compare to the results achievable by coupling through quantum channels.

  11. Coherent control of a strongly driven silicon vacancy optical transition in diamond

    CERN Document Server

    Zhou, Yu; Li, Ke; Xiong, Qihua; Aharonovich, Igor; Gao, Wei-bo

    2016-01-01

    The ability to prepare, optically read out and coherently control single quantum states is a key requirement for quantum information processing. Optically active solid state emitters have emerged as promising candidates with their prospects for on chip integration as quantum nodes and sources of coherent photons for connecting these nodes. Under strongly driving resonant laser field, such quantum emitter can exhibit quantum behavior such as Autler-Townes splitting and Mollow triplet spectrum. Here we demonstrate coherent control of a strongly driven optical transition in silicon vacancy (SiV) center in diamond. Rapid optical detection of photons enabled the observation of time resolved coherent Rabi oscillations and the Mollow triplet from an optical transition of a single SiV defect. Detection with a probing transition further confirmed Autler-Townes splitting generated by a strong laser field. Coherence time of the emitted photons is shown to be comparable to its lifetime and robust under very strong drivin...

  12. Half Swing Clocking Scheme at 45nm

    Directory of Open Access Journals (Sweden)

    Sakshi Verma,

    2014-01-01

    Full Text Available Achievement of high processor speed with low power consumption is an elemental factor in processor technology, especially for hand-held devices. The need for low power has caused a major paradigm shift where power dissipation has become a important consideration as performance and area. In CMOS circuits, dynamic power consumption is proportional to the transition frequency, capacitance, and square of supply voltage. Consequentially, lowering supply voltage delivers significant power savings compromising the speed of processor. Large portion of the total power is consumed in the clocking circuitry in embedded processor technology. So clock power can be reduced using half swing of clock scheme which will cut down the power dissipation and minimum speed degradation. In Digital circuits by using double-edge triggered flip flops (DETFFs, the clock frequency can be significantly reduced ideally, in half while preserving the rate of data processing. Using lower clock frequency may translate into considerable power savings for the clocked portions of a circuit, including the clock distribution network and flip-flops. The designing is based on 45nm process technology.

  13. Theory of optical transitions in conjugated polymers. I. Ideal systems

    Energy Technology Data Exchange (ETDEWEB)

    Barford, William, E-mail: william.barford@chem.ox.ac.uk [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ (United Kingdom); Marcus, Max [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ (United Kingdom); Magdalen College, University of Oxford, Oxford OX1 4AU (United Kingdom)

    2014-10-28

    We describe a theory of linear optical transitions in conjugated polymers. The theory is based on three assumptions. The first is that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is ℏω ≪ J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. Using these assumptions we derive an expression for an effective Huang-Rhys parameter for a chain (or chromophore) of N monomers, given by S(N) = S(1)/IPR, where S(1) is the Huang-Rhys parameter for an isolated monomer. IPR is the inverse participation ratio, defined by IPR = (∑{sub n}|Ψ{sub n}|{sup 4}){sup −1}, where Ψ{sub n} is the exciton center-of-mass wavefunction. Since the IPR is proportional to the spread of the exciton center-of-mass wavefunction, this is a key result, as it shows that S(N) decreases with chain length. As in molecules, in a polymer S(N) has two interpretations. First, ℏωS(N) is the relaxation energy of an excited state caused by its coupling to the normal modes. Second, S(N) appears in the definition of an effective Franck-Condon factor, F{sub 0v}(N) = S(N){sup v}exp ( − S(N))/v! for the vth vibronic manifold. We show that the 0 − 0 and 0 − 1 optical intensities are proportional to F{sub 00}(N) and F{sub 01}(N), respectively, and thus the ratio of the 0 − 1 to 0 − 0 absorption and emission intensities are proportional to S(N). These analytical results are checked by extensive DMRG calculations and found to be generally valid, particularly for emission. However, for large chain lengths higher-lying quasimomentum exciton states become degenerate with the lowest vibrational excitation of the

  14. Uncovering forbidden optical transitions in PbSe nanocrystals.

    Science.gov (United States)

    Peterson, Jeffrey J; Huang, Libai; Delerue, Christophe; Allan, Guy; Krauss, Todd D

    2007-12-01

    The 1S(h,e)-1P(e,h) exciton transition energy of PbSe nanocrystals was determined via two-photon photoluminescence excitation spectroscopy and was found to be in good agreement with predictions from a tight-binding calculation. The two-photon excitation peak occurs at energies very close to a strong feature in the one-photon absorption spectrum and suggests that it should be assigned as a formally forbidden S-P transition. Leading explanations for the unusual strength of the forbidden transition are discussed.

  15. Electrodynamical enhancement of optical transitions in semiconductor and metal-semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rupasov, Valery I. [ALTAIR Center LLC, Shrewsbury, MA 01545 (United States) and Landau Institute for Theoretical Physics, Moscow (Russian Federation)]. E-mail: rupasov@townisp.com

    2007-03-19

    Semiconductor and metal-semiconductor nanostructures are shown to exhibit electrodynamical resonances analogous to the Froehlich resonance for metal nanoparticles in a dielectric host. If the transition frequency of an optical transition in the nanostructure core coincides with one of the resonance frequencies of the nanostructure, the strength of the optical transition is dramatically enhanced by up to 4-6 orders of magnitude. The resonance frequencies are determined by dielectric permittivities of materials of host and nanostructure, and by sizes of the nanostructure. That enables to tune the resonance frequencies to desired values in an extremely wide spectral range-from ultraviolet to terahertz, engineering thus optical properties of high-efficiency nanostructured optical materials for numerous applications.

  16. Al-free active region laser diodes at 894 nm for compact Cesium atomic clocks

    Science.gov (United States)

    Von Bandel, N.; Bébé Manga Lobé, J.; Garcia, M.; Larrue, A.; Robert, Y.; Vinet, E.; Lecomte, M.; Drisse, O.; Parillaud, O.; Krakowski, M.

    2015-03-01

    Time-frequency applications are in need of high accuracy and high stability clocks. Compact industrial Cesium atomic clocks optically pumped is a promising area that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of laser diodes that are used for atomic pumping. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for earth applications. This work will provide key experience for further space technology qualification. We are in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894nm (D1 line of Cesium) and 852nm (D2 line). The use of D1 line for pumping will provide simplified clock architecture compared to D2 line pumping thanks to simpler atomic transitions and larger spectral separation between lines in the 894nm case. Also, D1 line pumping overcomes the issue of unpumped "dark states" that occur with D2 line. The modules should provide narrow linewidth (<1MHz), very good reliability in time and, crucially, be insensitive to optical feedback. The development of the 894nm wavelength is grounded on our previous results for 852nm DFB. Thus, we show our first results from Al-free active region with InGaAsP quantum well broad-area lasers (100μm width, with lengths ranging from 2mm to 4mm), for further DFB operation at 894nm. We obtained low internal losses below 2cm-1, the external differential efficiency is 0.49W/A with uncoated facets and a low threshold current density of 190A/cm², for 2mm lasers at 20°C.

  17. GPS Composite Clock Analysis

    OpenAIRE

    Wright, James R.

    2008-01-01

    The GPS composite clock defines GPS time, the timescale used today in GPS operations. GPS time is illuminated by examination of its role in the complete estimation and control problem relative to UTC/TAI. The phase of each GPS clock is unobservable from GPS pseudorange measurements, and the mean phase of the GPS clock ensemble (GPS time) is unobservable. A new and useful observability definition is presented, together with new observability theorems, to demonstrate explicitly that GPS time is...

  18. The transition radiation. 2. experimental study of the optical transition radiation; Le rayonnement de transition: 2. etude experimentale du rayonnement de transition optique

    Energy Technology Data Exchange (ETDEWEB)

    Couillaud, Ch.; Haouat, G.; Seguin, S.; Striby, S

    1999-07-01

    Optical-transition-radiation-based diagnostics have been widely used for many years on electron accelerators in order to measure beam energy and transverse and longitudinal emittances. These diagnostics are very attractive for high brightness electron beams used as drivers for radiation sources. Such diagnostics have been performed on the ELSA facility (18 MeV electron energy, 100 A peak current) using both a single interface and an OTR-Wartski interferometer. We present the accelerator, the experimental set-up and the method for analyzing the OTR angular distribution. Then, the experimental results are described and compared with those from the three gradient method. In addition, we present a beam energy measurement using OTR interferogram analysis. (author)

  19. Precision Clock Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Tests and evaluates high-precision atomic clocks for spacecraft, ground, and mobile applications. Supports performance evaluation, environmental testing,...

  20. The molecular clock regulates circadian transcription of tissue factor gene.

    Science.gov (United States)

    Oishi, Katsutaka; Koyanagi, Satoru; Ohkura, Naoki

    2013-02-01

    Tissue factor (TF) is involved in endotoxin-induced inflammation and mortality. We found that the circadian expression of TF mRNA, which peaked at the day to night transition (activity onset), was damped in the liver of Clock mutant mice. Luciferase reporter and chromatin immunoprecipitation analyses using embryonic fibroblasts derived from wild-type or Clock mutant mice showed that CLOCK is involved in transcription of the TF gene. Furthermore, the results of real-time luciferase reporter experiments revealed that the circadian expression of TF mRNA is regulated by clock molecules through a cell-autonomous mechanism via an E-box element located in the promoter region.

  1. Nuclear physics: Elusive transition spotted in thorium

    Science.gov (United States)

    Safronova, Marianna

    2016-05-01

    The highly precise atomic clocks used in science and technology are based on electronic transitions in atoms. The discovery of a nuclear transition in thorium-229 raises hopes of making nuclear clocks a reality. See Article p.47

  2. A Simple Loop for Simultaneous OTDM Demultiplexing and Clock Recovery

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming; LU Dan; GONG Tao-Rong; LV Bo; WANG Mu-Guang; LI Tang-Jun; JIAN Shui-Sheng

    2009-01-01

    A simple and stable loop consisting of a pair of concatenated electroabsorption modulators (EAMs) and 10 GHz clock recovery module is presented and demonstrated experimentally for simultaneous demultiplexing and clock recovery for OTDM networks. The 1OGb/s demultiplexed signai and IOGHz recovered clock are successfully implemented from 80 Gbit/s and 160 Gbit/s OTDM signals utilizing the loop. The loop based on EAM-PLL can provide excellent tolerance range (> 5 dB) of the OSCR of the source laser, and the recovered clock signa J exhibits low rms jitter over a dynamic input optical power range of 15 dB.

  3. Homogeneous Broadening of Optical Transitions in Organic Mixed Crystals

    NARCIS (Netherlands)

    Vries, Harmen de; Wiersma, Douwe A.

    1976-01-01

    We have used the phenomenon of laser-induced molecular photodissociation to determine the homogeneous linewidth at 2 K of the origin (zero-phonon line) and a vibronic transition in the mixed-crystal absorption spectrum of dimethyl s-tetrazine in durene. From the measured 55-MHz (upper limit) homogen

  4. Measurement of "optical" transition probabilities in the silver atom

    NARCIS (Netherlands)

    Terpstra, J.; Smit, J.A.

    1958-01-01

    For 22 spectral lines of the silver atom the probability of spontaneous transition has been derived from measurements of the emission intensity of the line and the population of the corresponding upper level. The medium of excitation was the column of a vertical arc discharge in air of atmospheric

  5. Clocked combustor can array

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  6. Clocked combustor can array

    Science.gov (United States)

    Kim, Won-Wook; McMahan, Kevin Weston; Srinivasan, Shiva Kumar

    2017-01-17

    The present application provides a clocked combustor can array for coherence reduction in a gas turbine engine. The clocked combustor can array may include a number of combustor cans positioned in a circumferential array. A first set of the combustor cans may have a first orientation and a second set of the combustor cans may have a second orientation.

  7. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy John [Northern Illinois U.

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  8. Optical Waveguiding Organic Nanorods Coated with Reversibly Switchable Fe(II Spin Transition Nanoparticles

    Directory of Open Access Journals (Sweden)

    Supratim Basak

    2013-01-01

    Full Text Available A dual functional nanohybrid object combining photonic and magnetic properties was successfully prepared through a “bottom-up” self-assembly approach. In this method, spin transition Fe(II coordination nanoparticles and optical wave guiding organic nanorods were generated in situ and successfully integrated together in a single pot through self-assembly. The Fe(II nanoparticles coated on organic nanorods (nanohybrids display temperature dependent reversible spin transition (Paramagnetic; diamagnetic; behavior. The nano-hybrids show efficient optical wave guiding behavior, which demonstrates the future possibility to perform light induced excited spin state trapping (LIESST experiments on a single spin transition nanoparticle level. These photonic and magnetic “nanohybrids” offer promising option to externally manipulate spin state of the spin transition nanoparticles using temperature as well as remote laser light.

  9. Optically induced phase transition of excitons in coupled quantum dots

    Institute of Scientific and Technical Information of China (English)

    Chen Zi-Dong

    2008-01-01

    The weak classical light excitations in many semiconductor quantum dots have been chosen as important solidstate quantum systems for processing quantum information and implementing quantum computing. For strong classical light we predict theoretically a novel phase transition as a function of magnitude of this classical light from the deformed to the normal phases in resonance case, and the essential features of criticality such as the scaling behaviour, critical exponent and universality are also present in this paper.

  10. Saturation of atomic transitions using sub-wavelength diameter tapered optical fibers in rubidium vapor

    CERN Document Server

    Jones, D E; Pittman, T B

    2014-01-01

    We experimentally investigate ultralow-power saturation of the rubidium D2 transitions using a tapered optical fiber (TOF) suspended in a warm Rb vapor. A direct comparison of nonlinear absorption measurements for the TOF system with those obtained in a standard free-space vapor cell system highlights the differences in saturation behavior for the two systems. The effects of hyperfine pumping in the TOF system are found to be minimized due to the short atomic transit times through the highly confined evanescent optical mode guided by the TOF. The TOF system data is well-fit by a relatively simple empirical absorption model that indicates nanoWatt-level saturation powers.

  11. New trends in the optical and electronic applications of polymers containing transition-metal complexes.

    Science.gov (United States)

    Liu, Shu-Juan; Chen, Yang; Xu, Wen-Juan; Zhao, Qiang; Huang, Wei

    2012-04-13

    Polymers containing transition-metal complexes exhibit excellent optical and electronic properties, which are different from those of polymers with a pure organic skeleton and combine the advantages of both polymers and metal complexes. Hence, research about this class of polymers has attracted more and more interest in recent years. Up to now, a number of novel polymers containing transition-metal complexes have been exploited, and significant advances in their optical and electronic applications have been achieved. In this article, we summarize some new research trends in the applications of this important class of optoelectronic polymers, such as chemo/biosensors, electronic memory devices and photovoltaic devices.

  12. Pumping of nuclear spins by optical excitation of spin-forbidden transitions in a quantum dot.

    Science.gov (United States)

    Chekhovich, E A; Makhonin, M N; Kavokin, K V; Krysa, A B; Skolnick, M S; Tartakovskii, A I

    2010-02-12

    We demonstrate that efficient optical pumping of nuclear spins in semiconductor quantum dots (QDs) can be achieved by resonant pumping of optically forbidden transitions. This process corresponds to one-to-one conversion of a photon absorbed by the dot into a polarized nuclear spin, and also has potential for initialization of hole spin in QDs. We find that by employing this spin-forbidden process, nuclear polarization of 65% can be achieved, markedly higher than from pumping the allowed transition, which saturates due to the low probability of electron-nuclear spin flip-flop.

  13. Study of structural and optical properties of lead borate glasses containing transition metal ion

    Science.gov (United States)

    Sanjay, Kaushik, A.; Kishore, N.; Agarwal, A.; Pal, I.; Dhar, R.

    2012-06-01

    Glasses with compositions xFe2O3.(40-x)PbO.60B2O3: V2O5 (2 mol%) have been prepared by the standard melt-quenching technique. Various properties such as glass transition temperature, density, IR spectra and optical band gap energy have been studied. The structural changes in these glasses have been monitored by IR spectroscopy. The values of optical band gap for indirect allowed and indirect forbidden transitions have been determined using available theories. The Urbach's energy is used to characterize the degree of disorder in amorphous solids.

  14. The quantum beat principles and applications of atomic clocks

    CERN Document Server

    Major, F

    2007-01-01

    This work attempts to convey a broad understanding of the physical principles underlying the workings of these quantum-based atomic clocks, with introductory chapters placing them in context with the early development of mechanical clocks and the introduction of electronic time-keeping as embodied in the quartz-controlled clocks. While the book makes no pretense at being a history of atomic clocks, it nevertheless takes a historical perspective in its treatment of the subject. Intended for nonspecialists with some knowledge of physics or engineering, The Quantum Beat covers a wide range of salient topics relevant to atomic clocks, treated in a broad intuitive manner with a minimum of mathematical formalism. Detailed descriptions are given of the design principles of the rubidium, cesium, hydrogen maser, and mercury ion standards; the revolutionary changes that the advent of the laser has made possible, such as laser cooling, optical pumping, the formation of "optical molasses," and the cesium "fountain" stand...

  15. The Rubidium Atomic Clock and Basic Research

    Science.gov (United States)

    2007-12-10

    photodetector . (Chip-scale clock image from ref. 14.) 38 November 2007 Physics Today www.physicstoday.org an all-optical fashion:13 The laser field is...spectroscopy, laser chemistry, atmospheric propagation and beam control, LIDAR /LADAR remote sensing; solar cell and array testing and evaluation, battery

  16. Optical Transition Radiation Measurement of Electron Beam for Beijing Free Electron Laser

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qiang; XIE Jia-Lin; LI Yong-Gui; ZHUANG Jie-Jia

    2001-01-01

    We used transition radiation techniques instead of the original phosphor targets to improve the electronic beam diagnostic system at Beijing Free Electron Laser. The beam profile, size (3.3 × 2.4 mm), position and divergence angle (σrms = 2.5 mrad) in transverse have been obtained from optical transition radiation. We also present the experimental set-up and some preliminary results.

  17. Frequency Measurement of the Electric Quadrupole Transition in a Single Laser-Cooled 40Ca+

    Institute of Scientific and Technical Information of China (English)

    LIU Qu; HUANG Yao; CAO Jian; OU Bao-Quan; GUO Bin; GUAN Hua; HUANG Xue-Ren; GAO Ke-Lin

    2011-01-01

    The optical frequency of the 4s2S1/2-3d2D5/2 transition in a single trapped and laser-cooled 40Ca+ ion is measured with an optical frequency comb system referenced to a hydrogen maser. A 729-nm laser can be locked to the clock transition about ten hours and the Allan deviation is better than 2 × 10-14/1000s.

  18. Active Faraday optical frequency standard.

    Science.gov (United States)

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  19. Light-shift elimination in Generalized Hyper-Ramsey quantum clocks

    CERN Document Server

    Zanon-Willette, Thomas; Arimondo, Ennio

    2015-01-01

    We present a new generation of quantum clocks absolutely free from ac Stark-shift based on generalized hyper-Ramsey resonances with separated oscillating fields. Sequences of composite laser pulses with specific selection of phases, frequency detunings and durations are combined to generate a very efficient and robust frequency locking signal with a perfect elimination of the light-shift from off resonant states. Laser phase-step modulations during interactions with electromagnetic fields are applied in order to decouple the unperturbed frequency measurement from the laser's intensity. The frequency lock point is protected against laser pulse area fluctuations and errors in potentially applied frequency shift compensations. Quantum clocks based on weakly allowed or completely forbidden optical transitions in atoms, ions, molecules and nuclei will benefit from these hyper-stable laser frequency stabilization schemes to reach relative accuracies well below the 10$^{-18}$ level.

  20. Probe light-shift elimination in generalized hyper-Ramsey quantum clocks

    Science.gov (United States)

    Zanon-Willette, T.; de Clercq, E.; Arimondo, E.

    2016-04-01

    We present an interrogation scheme for the next generation of quantum clocks to suppress frequency shifts induced by laser probing fields that are themselves based on generalized hyper-Ramsey resonances. Sequences of composite laser pulses with a specific selection of phases, frequency detunings, and durations are combined to generate a very efficient and robust frequency locking signal with an almost perfect elimination of the light shift from off-resonant states and to decouple the unperturbed frequency measurement from the laser's intensity. The frequency lock point generated from synthesized error signals using either π /4 or 3 π /4 laser phase steps during the intermediate pulse is tightly protected against large laser-pulse area variations and errors in potentially applied frequency shift compensations. Quantum clocks based on weakly allowed or completely forbidden optical transitions in atoms, ions, molecules, and nuclei will benefit from these hyperstable laser frequency stabilization schemes to reach relative accuracies below the 10-18 level.

  1. Very high resolution optical transition radiation imaging system: Comparison between simulation and experiment

    CERN Document Server

    Bolzon, B; Aumeyr, Thomas; Boogert, Stewart Takashi; Karataev, Pavel; Kruchinin, Konstantin; Lefevre, Thibaut; Mazzoni, Stefano; Nevay, Laurence James; Shevelev, M; Terunuma, N; Urakawa, J; Welsch, Carsten

    2015-01-01

    Optical transition radiation (OTR) has become a commonly used method for 2D beam imaging measurements. In the Accelerator Test Facility 2 (ATF2) at KEK, beam sizes smaller than the OTR point spread function have been measured. Simulations of the OTR imaging system have been performed using the ZEMAX software to study the effects of optical errors such as aberrations, diffraction, and misalignments of optical components. This paper presents a comparison of simulations of the OTR point spread function with experimental data obtained at ATF2. It shows how the quantification and control of optical errors impacts on optimizing the resolution of the system. We also show that the OTR point spread function needs to be predicted accurately to optimize any optical system and to predict the error made on measurement.

  2. Very high resolution optical transition radiation imaging system: Comparison between simulation and experiment

    Directory of Open Access Journals (Sweden)

    B. Bolzon

    2015-08-01

    Full Text Available Optical transition radiation (OTR has become a commonly used method for 2D beam imaging measurements. In the Accelerator Test Facility 2 (ATF2 at KEK, beam sizes smaller than the OTR point spread function have been measured. Simulations of the OTR imaging system have been performed using the ZEMAX software to study the effects of optical errors such as aberrations, diffraction, and misalignments of optical components. This paper presents a comparison of simulations of the OTR point spread function with experimental data obtained at ATF2. It shows how the quantification and control of optical errors impacts on optimizing the resolution of the system. We also show that the OTR point spread function needs to be predicted accurately to optimize any optical system and to predict the error made on measurement.

  3. Stable clocks and general relativity

    CERN Document Server

    Will, C M

    1995-01-01

    We survey the role of stable clocks in general relativity. Clock comparisons have provided important tests of the Einstein Equivalence Principle, which underlies metric gravity. These include tests of the isotropy of clock comparisons (verification of local Lorentz invariance) and tests of the homogeneity of clock comparisons (verification of local position invariance). Comparisons of atomic clocks with gravitational clocks test the Strong Equivalence Principle by bounding cosmological variations in Newton's constant. Stable clocks also play a role in the search for gravitational radiation: comparision of atomic clocks with the binary pulsar's orbital clock has verified gravitational-wave damping, and phase-sensitive detection of waves from inspiralling compact binaries using laser interferometric gravitational observatories will facilitate extraction of useful source information from the data. Stable clocks together with general relativity have found important practical applications in navigational systems s...

  4. Optical properties of bcc transition metals in the range 0-40 eV

    NARCIS (Netherlands)

    Romaniello, P; de Boeij, PL; Carbone, F; van der Marel, D

    2006-01-01

    We present a systematic analysis of the optical properties of bcc transition metals in the groups VB: V, Nb, and Ta, and VIB: paramagnetic Cr, Mo, and W. For this we use our formulation of time-dependent current-density-functional theory for the linear response of metals. The calculated dielectric a

  5. Optical properties of bcc transition metals in the range 0–40 eV

    NARCIS (Netherlands)

    Romaniello, P.; Boeij, P.L. de; Carbone, F.; Marel, D. van der

    2006-01-01

    We present a systematic analysis of the optical properties of bcc transition metals in the groups VB: V, Nb, and Ta, and VIB: paramagnetic Cr, Mo, and W. For this we use our formulation of time-dependent current-density-functional theory for the linear response of metals. The calculated dielectric a

  6. Optical properties of bcc transition metals in the range 0-40 eV

    NARCIS (Netherlands)

    Romaniello, P.; de Boeij, PL; Carbone, F; van der Marel, D

    We present a systematic analysis of the optical properties of bcc transition metals in the groups VB: V, Nb, and Ta, and VIB: paramagnetic Cr, Mo, and W. For this we use our formulation of time-dependent current-density-functional theory for the linear response of metals. The calculated dielectric

  7. Optical, thermal and phase transition studies in Sn1–GeTe

    Indian Academy of Sciences (India)

    M Sivabharathy; N Sankar; R Saravanan; K Ramachandran

    2005-12-01

    The optical and thermal properties of the mixed semiconducting alloy, Sn1–GeTe, is studied by photo acoustics, for various Ge concentrations and phase transition for a particular concentration is also studied by the same method. The results are compared with the available literature values and discussed.

  8. First-principles characterization of native-defect-related optical transitions in ZnO

    Science.gov (United States)

    Lyons, J. L.; Varley, J. B.; Steiauf, D.; Janotti, A.; Van de Walle, C. G.

    2017-07-01

    We investigate the electrical and optical properties of oxygen vacancies (VO), zinc vacancies (VZn), hydrogenated VZn, and isolated dangling bonds in ZnO using hybrid functional calculations. While the formation energy of VO is high in n-type ZnO, indicating that this center is unlikely to form, our results for optical absorption signals associated with VO are consistent with those observed in irradiated samples, and give rise to emission with a peak at less than 1 eV. Under realistic growth conditions, we find that VZn is the lowest-energy native defect in n-type ZnO, acting as an acceptor that is likely to compensate donor doping. Turning to optical transitions, we first examine NO as a case study, since N-related transitions have been identified in experiments on ZnO. We also examine how hydrogen, often unintentionally present in ZnO, forms stable complexes with VZn and modifies its optical properties. Compared with isolated VZn, VZn-H complexes have charge-state transition levels lower in the band gap as well as have lower formation energies. These complexes also lead to characteristic vibrational frequencies which compare favorably with experiment. Oxygen dangling bonds show behavior mostly consistent with VZn, while zinc dangling bonds give rise to transition levels near the ZnO conduction-band minimum and emission peaking near 2.4 eV. We discuss our results in view of the available experimental literature.

  9. Resetting Biological Clocks

    Science.gov (United States)

    Winfree, Arthur T.

    1975-01-01

    Reports on experiments conducted on two biological clocks, in organisms in the plant and animal kingdoms, which indicate that biological oscillation can be arrested by a single stimulus of a definite strength delivered at the proper time. (GS)

  10. Resetting Biological Clocks

    Science.gov (United States)

    Winfree, Arthur T.

    1975-01-01

    Reports on experiments conducted on two biological clocks, in organisms in the plant and animal kingdoms, which indicate that biological oscillation can be arrested by a single stimulus of a definite strength delivered at the proper time. (GS)

  11. Phase Transition and Optical Properties of Solid Oxygen under High Pressure: A Density Functional Theory Study

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-Hui; TIAN Fu-Bo; MA Yan-Ming; HE Zhi; CUI Tian; LIU Bing-Bing; ZOU Guang-Tian

    2008-01-01

    Crystal structures and optical properties of the δ-O,2 phase and the ε-O,8 phase have been investigated by using the ab initio pseudopotential plane-wave method. It is found that the phase transition is of the first order with a discontinuous volumetric change from the antiferromagnetic δ-O,2 phase to the nonmagnetic ε-O8 phase, consistent with the experimental findings. The energy band calculations show that the direct band gap changes into an indirect band gap after the phase transition. The apparent change in the optical properties can be used for identifying the phase transition from δ-O2 to ε-O,8.

  12. Computer modelling of the optical properties of transition-metal ions in solids

    Energy Technology Data Exchange (ETDEWEB)

    Bartram, R.H. [Univ. of Connecticut, Storrs, CT (United States)

    1994-12-31

    Computational methods for modeling the optical properties of substitutional transition-metal impurities in insulating solids, potentially applicable to some scintillator and phosphor materials, are reviewed. Methods considered include crystal-field and semiempirical ligand-field models; SCF-X{alpha}-SW, SCF-RHF-LCAO, SCF-UHF-LCAO and CI ab initio methods; and ICECAP and HADESR embedded-cluster methods with lattice relaxation. A detailed example of the application of the HADESR method to crystal-field spectra of Cr{sup 3+} in halide elpasolites is described. In this method, ab initio molecular-orbital calculations with effective core potentials are performed for selected ionic configurations. Simultaneous relaxation of the cluster and surrounding lattice, with mutual pair-potential interactions, is accomplished by a modified lattice statics program. properties include pressure-dependent optical transition energies, vibration frequencies and radiationless transition rates.

  13. Single-shot electro-optic sampling of coherent transition radiation at the A0 Photoinjector

    CERN Document Server

    Maxwell, T J; Piot, P; Thurman-Keup, R

    2012-01-01

    Future collider applications and present high-gradient laser plasma wakefield accelerators operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. Potential applications in shot-to-shot, non-interceptive diagnostics continue to be pursued for live beam monitoring of collider and pump-probe experiments. Related to our developing work with electro-optic imaging, we present results on single-shot electro-optic sampling of the coherent transition radiation from bunches generated at the A0 photoinjector.

  14. Virtual single-photon transition interrupted: time-gated optical gain and loss

    CERN Document Server

    Herrmann, Jens; Locher, Reto; Sabbar, Mazyar; Rivière, Paula; Saalmann, Ulf; Rost, Jan-Michael; Gallmann, Lukas; Keller, Ursula

    2012-01-01

    The optical response of a virtual dipole transition triggered by an ultra-short light pulse intrinsically consists of both absorption and emission in time and frequency. So far, this fundamental feature has been hidden by the time-integrated detection. However, as we will demonstrate, the time-dependence during a virtual single-photon transition can be mapped out and controlled by a second electromagnetic field. The resulting time-gated optical signal shows previously unexpected radiation gain and loss at different delays of the control pulse. The model presented here can be applied to any system that assumes a two-level character through near-resonant optical dipole excitation, whether they are of atomic, molecular or even solid-state nature. We validate the theoretical model by an attosecond transient absorption spectroscopy experiment in helium. Our model and the experimental data display excellent qualitative agreement.

  15. A CPT-based Cs vapor cell atomic clock with a short-term fractional frequency stability of 3 x 10-13 τ-1/2

    Science.gov (United States)

    Abdel Hafiz, Moustafa; Liu, Xiaochi; Guérandel, Stéphane; De Clercq, Emeric; Boudot, Rodolphe

    2016-06-01

    This article reports on the development and short-term fractional frequency stability of a continuous-regime (CW) Cs vapor cell atomic clock based on coherent population trapping (CPT). The push-pull optical pumping technique is used to increase the number of atoms that participate to the clock transition, yielding a typical CPT resonance contrast of 25% for a CPT linewidth of about 450 Hz. The clock short-term fractional frequency stability is measured to be 3 x 10-13 τ-1/2 up to 100 seconds averaging time, in correct agreement with the signal-to-noise ratio limit. The mid-term frequency stability results are currently mainly limited by laser power effects. The detection of high-contrast narrow Raman-Ramsey fringes is demonstrated with this setup by making the atoms interact with a light pulse sequence.

  16. A clock network for geodesy and fundamental science

    Science.gov (United States)

    Lisdat, C.; Grosche, G.; Quintin, N.; Shi, C.; Raupach, S. M. F.; Grebing, C.; Nicolodi, D.; Stefani, F.; Al-Masoudi, A.; Dörscher, S.; Häfner, S.; Robyr, J.-L.; Chiodo, N.; Bilicki, S.; Bookjans, E.; Koczwara, A.; Koke, S.; Kuhl, A.; Wiotte, F.; Meynadier, F.; Camisard, E.; Abgrall, M.; Lours, M.; Legero, T.; Schnatz, H.; Sterr, U.; Denker, H.; Chardonnet, C.; Le Coq, Y.; Santarelli, G.; Amy-Klein, A.; Le Targat, R.; Lodewyck, J.; Lopez, O.; Pottie, P.-E.

    2016-08-01

    Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10-17 via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10-17 is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.

  17. Metal-insulator transition in epitaxial NdNiO3 thin film: A structural, electrical and optical study

    Science.gov (United States)

    Shao, Tao; Qi, Zeming; Wang, Yuyin; Li, Yuanyuan; Yang, Mei; Hu, Chuansheng

    2017-03-01

    NdNiO3 thin film has been prepared by pulsed laser deposition on LaAlO3 (001) single crystalline substrate. Temperature-dependent resistivity measurement shows a sharp metal-insulator transition in such thin film. The phase transition temperature can be tuned from 90 K to 121 K by changing the thickness of thin film. The structure evolution during phase transition is studied by Raman spectroscopy. Optical conductivity reveals that the variation carrier density in the process of phase transition. The results of structural, electrical and optical studies provide useful insights to understand the mechanism of metal-insulator transition of NdNiO3 thin film.

  18. Third-Order Nonlinear Optic and Optical Limiting Properties of a Mn(iii) Transition Metal Complex

    Science.gov (United States)

    Karakas, Asli; Elmali, Ayhan; Yahsi, Yasemin; Kara, Hulya

    N,N‧-bis(5-bromosalicylidene)propane-1,2-diamine-O,O‧,N,N‧)-manganese(III) chloride transition metal complex has been synthesized and characterized by elemental analysis and UV-vis spectroscopy. Its crystal structure has been determined using X-ray diffraction analysis. To provide an insight into the optical limiting (OL) behavior of the title compound, the third-order nonlinear optical (NLO) properties, one-photon absorption (OPA) and two-photon absorption (TPA) characterizations have been theoretically investigated by means of the time-dependent Hartree-Fock (TDHF), AM1 and configuration interaction (CI) methods, respectively. According to ab initio calculation results, the examined molecule exhibits second hyperpolarizabilities (γ) with non-zero values at the positions of TPA peaks, implying microscopic third-order optical nonlinearity. The maximum OPA wavelengths recorded by linear optical experiment and quantum mechanical computations are estimated in the UV region to be shorter than 400 nm, showing good optical transparency to the visible light. The TPA cross-sections (δ(ω)) at λ max(2) values indicate that the synthesized compound might possess OL phenomena, which are in accord with the experimental observations on the manganese complexes in the literature.

  19. Band structure and optical transitions in LaFeO3: theory and experiment.

    Science.gov (United States)

    Scafetta, Mark D; Cordi, Adam M; Rondinelli, James M; May, Steven J

    2014-12-17

    The optical absorption properties of LaFeO(3) (LFO) have been calculated using density functional theory and experimentally measured from several high quality epitaxial films using variable angle spectroscopic ellipsometry. We have analyzed the calculated absorption spectrum using different Tauc models and find the model based on a direct-forbidden transition gives the best agreement with the ab initio band gap energies and band dispersions. We have applied this model to the experimental data and determine the band gap of epitaxial LFO to be ∼2.34 eV, with a slight dependence on strain state. This approach has also been used to analyze the higher indirect transition at ∼3.4 eV. Temperature dependent ellipsometry measurements further confirm our theoretical analysis of the nature of the transitions. This works helps to provide a general approach for accurate determination of band gaps and transition energies in complex oxide materials.

  20. Quantitative identification of dynamical transitions in a semiconductor laser with optical feedback

    Science.gov (United States)

    Quintero-Quiroz, C.; Tiana-Alsina, J.; Romà, J.; Torrent, M. C.; Masoller, C.

    2016-01-01

    Identifying transitions to complex dynamical regimes is a fundamental open problem with many practical applications. Semi- conductor lasers with optical feedback are excellent testbeds for studying such transitions, as they can generate a rich variety of output signals. Here we apply three analysis tools to quantify various aspects of the dynamical transitions that occur as the laser pump current increases. These tools allow to quantitatively detect the onset of two different regimes, low-frequency fluctuations and coherence collapse, and can be used for identifying the operating conditions that result in specific dynamical properties of the laser output. These tools can also be valuable for analyzing regime transitions in other complex systems. PMID:27857229

  1. Dielectric function spectra and inter-band optical transitions in TlGaS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Toshiyuki [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531 (Japan); Shim, YongGu, E-mail: shim@pe.osakafu-u.ac.jp [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531 (Japan); Wakita, Kazuki [Department of Electrical, Electronics and Computer Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016 (Japan); Mamedov, Nazim [Department of Ellipsometry, Institute of Physics, Azerbaijan National Academy of Sciences, H. Javid Ave. 33, Baku AZ-1143 (Azerbaijan)

    2014-11-28

    TlGaS{sub 2} with a quasi-two-dimensional structure has been accessed by spectroscopic ellipsometry over the 1.5–6.0 eV spectral range. A uniaxial approach applicable to monoclinic TlGaS{sub 2} at room temperature has been employed for ellipsometric data treatment. Principal components of the dielectric function tensor have then been retrieved. Inter-band optical transitions associated with the obtained dielectric function have been determined by using standard critical point analysis. The transitions have been assigned within the electronic band structure obtained for TlGaS{sub 2} from calculations based on density functional theory. - Highlights: • We investigate the dielectric function spectra of TlGaS{sub 2}. • Inter-band optical transition energies are extracted by critical point analysis. • The electronic band structure and the dielectric functions of TlGaS{sub 2} are calculated. • The electronic band states related to the optical transitions are assigned.

  2. Quantum confinement effects on optical transitions in nanodiamonds containing nitrogen vacancies

    Science.gov (United States)

    Petrone, Alessio; Goings, Joshua J.; Li, Xiaosong

    2016-10-01

    Colored nitrogen-vacancy (NV) centers in nanosize diamonds (d ˜5 nm) are promising probe materials because their optical transitions are sensitive to mechanical, vibrational, and spin changes in the surroundings. Here, a linear response time-dependent density functional theory approach is used to describe the optical transitions in several NV-doped diamond quantum dots (QDs) in order to investigate size effects on the absorption spectra. By computing the full optical spectrum up to band-to-band transitions, we analyze both the localized "pinned" midgap and the charge-transfer excitations for an isolated reduced NV center. Subband charge-transfer excitations are shown to be size dependent, involving the excitation of the dopant s p3 electrons to the diamond conduction band. Additionally, the NV-doped systems exhibit characteristic s p3-s p3 excitations whose experimental energies are reproduced well and do not depend on QD size. However, the NV position and global cluster symmetry can affect the amount of the energy splitting of the vertical excitation energies of the midgap transitions.

  3. Giant Zeeman shifts in the optical transitions of yttrium iron garnet thin films

    Science.gov (United States)

    Vidyasagar, R.; Alves Santos, O.; Holanda, J.; Cunha, R. O.; Machado, F. L. A.; Ribeiro, P. R. T.; Rodrigues, A. R.; Mendes, J. B. S.; Azevedo, A.; Rezende, S. M.

    2016-09-01

    We report the observation of giant Zeeman shifts in the optical transitions of high-quality very thin films of yttrium iron garnet (YIG) grown by rf sputtering on gadolinium gallium garnet substrates. The optical absorption profile measured with magneto-optical absorption spectroscopy shows dual optical transition in the UV-visible frequency region attributed to transitions from the O-2p valence band to the Fe-3d conduction band and from the O-2p valence band to Fe-2p53d6 excitonic states at the Γ-symmetry point of the YIG band structure. The application of a static magnetic field of only 0.6 kOe produces giant Zeeman shifts of ˜100 meV in the YIG band structure and ˜60 meV in the excitonic states corresponding to effective g-factors on the order of 104. The giant Zeeman effects are attributed to changes in energy levels by the large exchange fields of the Fe-3d orbitals during the magnetization process.

  4. Simultaneous infrared and optical observations of the transiting debris cloud around WD 1145+017

    CERN Document Server

    Zhou, G; Bailey, J; Marshall, J P; Bayliss, D D R; Stockade, C; Nelson, P; Tan, T G; Rodriguez, J E; Tinney, C G; Dragomir, D; Colon, K; Shporer, A; Bento, J; Sefako, R; Horne, K; Cochran, W

    2016-01-01

    We present multi-wavelength photometric monitoring of WD 1145+017, a white dwarf exhibiting periodic dimming events interpreted to be the transits of orbiting, disintegrating planetesimals. Our observations include the first set of near-infrared light curves for the object, obtained on multiple nights over the span of one month, and recorded multiple transit events with depths ranging from ~20% to 50%. Simultaneous near-infrared and optical observations of the deepest and longest duration transit event were obtained at two epochs with the Anglo-Australian Telescope and three optical facilities, over the wavelength range of 0.5-1.2 microns. These observations revealed no measurable difference in transit depths for multiple photometric pass bands, allowing us to place a 2 sigma lower limit of 0.8 microns on the grain size in the putative transiting debris cloud. The lack of small grains is consistent with the infrared excess about the white dwarf, and may point towards a collision-dominated debris disc.

  5. A precise clock distribution network for MRPC-based experiments

    Science.gov (United States)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-06-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  6. First-Principles Investigations of the Phase Transition and Optical Properties of Solid Oxygen

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-Hui; DUAN De-Fang; WANG Lian-Cheng; ZHU Chun-Ye; CUI Tian

    2010-01-01

    @@ Using density-functional-theory calculations,a monoclinic metallic post-ζ phase(space group C2/c)is predicted at 215 GPa.The calculated phonon dispersion curves suggest that this structure is stable at least up to 310 GPa.Oxygen rema/ns a molecular crystal and there is no dissociation in the related pressure range.Moreover,it is found that the phase transition from ζ to post-ζ phase is attributed to phonon softening.The significant change in the optical properties can be used to identify the phase transition.

  7. Phase Transition and Superfluid of Photons and Photon Pairs in a Two-Dimensional Optical Microcavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Jun; YUAN Jian-Hui; ZHANG Jun-Pei; CHENG Ze

    2012-01-01

    We analyze the ground-state properties and the excitation spectrum of Bose Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground- state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.

  8. A superradiant laser based on two-photon Raman transition of caesium atoms

    CERN Document Server

    Liu, Pengfei

    2013-01-01

    We propose a superradiant laser based on two-photon Raman transition of caesium-133 atoms which collectively emit photons on an ultra narrow transition into the mode of a low Q resonator known as optical bad-cavity regime. The spin-spin correlation which characterizes the collective effect is demonstrated. We theoretically predict that the optical radiation has an extremely narrow linewidth in the 98 (1) *10-2 mHz range, smaller than the transition itself due to collective effects, and a power level of 7 (1)*10-10 W is possible, which can provide a possible new way to realize an optical clock with a millihertz linewidth.

  9. Strong Coupling on a Forbidden Transition in Strontium and Nondestructive Atom Counting

    CERN Document Server

    Norcia, Matthew A

    2015-01-01

    We observe strong collective coupling between an optical cavity and the forbidden spin singlet to triplet optical transition $^1$S$_0$ to $^3$P$_1$ in an ensemble of $^{88}$Sr. Despite the transition being 1000 times weaker than a typical dipole transition, we observe a well resolved vacuum Rabi splitting. We use the observed vacuum Rabi splitting to make non-destructive measurements of atomic population with the equivalent of projection-noise limited sensitivity and minimal heating ($<0.01$ photon recoils/atom). This technique may be used to enhance the performance of optical lattice clocks by generating entangled states and reducing dead time.

  10. On clocks and clouds

    Directory of Open Access Journals (Sweden)

    M. K. Witte

    2013-09-01

    Full Text Available Cumulus clouds exhibit a life cycle that consists of: (a the growth phase (increasing size, most notably in the vertical direction; (b the mature phase (growth ceases; any precipitation that develops is strongest during this period; and (c the dissipation phase (cloud dissipates because of precipitation and/or entrainment; no more dynamical support. Although radar can track clouds over time and give some sense of the age of a cloud, most aircraft in situ measurements lack temporal context. We use large eddy simulations of trade wind cumulus cloud fields from cases during the Barbados Oceanographic and Meteorological Experiment (BOMEX and Rain In Cumulus over the Ocean (RICO campaigns to demonstrate a potential cumulus cloud "clock". We find that the volume-averaged total water mixing ratio rt is a useful cloud clock for the 12 clouds studied. A cloud's initial rt is set by the subcloud mixed-layer mean rt and decreases monotonically from the initial value due primarily to entrainment. The clock is insensitive to aerosol loading, environmental sounding and extrinsic cloud properties such as lifetime and volume. In some cases (more commonly for larger clouds, multiple pulses of buoyancy occur, which complicate the cumulus clock by replenishing rt. The clock is most effectively used to classify clouds by life phase.

  11. A novel method for sub-micrometer transverse electron beam size measurements using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Aryshev, A; Boogert, S T; Karataev, P [John Adams Institute at Royal Holloway, Egham, Surrey, TW20 0EX (United Kingdom); Howell, D [John Adams Institute at Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Terunuma, N; Urakawa, J, E-mail: alar@post.kek.j [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-06-01

    Optical Transition Radiation (OTR) appearing when a charged particle crosses a boundary between two media with different dielectric properties has widely been used as a tool for transverse profile measurements of charged particle beams in various facilities worldwide. The resolution of the monitor is defined by so-called Point Spread Function (PSF), source distribution generated by a single electron and projected by an optical system onto a screen. In this paper we represent the development of a novel sub-micrometre electron beam profile monitor based on the measurements of the PSF structure. The first experimental results are presented and future plans on the optimization of the monitor are discussed

  12. Theory of optically forbidden d-d transitions in strongly correlated crystals.

    Science.gov (United States)

    Katsnelson, M I; Lichtenstein, A I

    2010-09-29

    A general multiband formulation of the linear and nonlinear optical response functions for realistic models of correlated crystals is presented. Dipole-forbidden d-d optical transitions originate from vertex functions, which we consider assuming the locality of an irreducible four-leg vertex. The unified formulation for second- and third-order response functions in terms of the three-leg vertex is suitable for practical calculations in solids. We illustrate the general approach by consideration of intra-atomic spin-flip contributions, with an energy of 2J, where J is a Hund exchange, in the simplest two-orbital model.

  13. Length optimization of an S-shaped transition between offset optical waveguides.

    Science.gov (United States)

    Marcuse, D

    1978-03-01

    We derive expressions for the radiation loss of an S-shaped waveguide transition used to connect two straight integrated optics waveguides that are offset with respect to each other. It is assumed that the diffused integrated optics waveguides are produced with the help of an electron beam machine that allows beam positioning in the y direction only in discrete steps. We thus must consider staircase approximations to the desired smooth S-shaped curves. A waveguide whose axis consists of a staircase suffers radiation losses due to the quasi-periodic deformation of its axis. A second loss contribution comes from the S-shape of the waveguide axis. The sum of these loss contributions assumes a minimum that defines the optimum length of the transition waveguide.

  14. Theory of edge-state optical absorption in two-dimensional transition metal dichalcogenide flakes

    Science.gov (United States)

    Trushin, Maxim; Kelleher, Edmund J. R.; Hasan, Tawfique

    2016-10-01

    We develop an analytical model to describe sub-band-gap optical absorption in two-dimensional semiconducting transition metal dichalcogenide (s-TMD) nanoflakes. The material system represents an array of few-layer molybdenum disulfide crystals, randomly orientated in a polymer matrix. We propose that optical absorption involves direct transitions between electronic edge states and bulk bands, depends strongly on the carrier population, and is saturable with sufficient fluence. For excitation energies above half the band gap, the excess energy is absorbed by the edge-state electrons, elevating their effective temperature. Our analytical expressions for the linear and nonlinear absorption could prove useful tools in the design of practical photonic devices based on s-TMDs.

  15. Effective optical Faraday rotations of semiconductor EuS nanocrystals with paramagnetic transition-metal ions.

    Science.gov (United States)

    Hasegawa, Yasuchika; Maeda, Masashi; Nakanishi, Takayuki; Doi, Yoshihiro; Hinatsu, Yukio; Fujita, Koji; Tanaka, Katsuhisa; Koizumi, Hitoshi; Fushimi, Koji

    2013-02-20

    Novel EuS nanocrystals containing paramagnetic Mn(II), Co(II), or Fe(II) ions have been reported as advanced semiconductor materials with effective optical rotation under a magnetic field, Faraday rotation. EuS nanocrystals with transition-metal ions, EuS:M nanocrystals, were prepared by the reduction of the Eu(III) dithiocarbamate complex tetraphenylphosphonium tetrakis(diethyldithiocarbamate)europium(III) with transition-metal complexes at 300 °C. The EuS:M nanocrystals thus prepared were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroanalysis (ICP-AES), and a superconducting quantum interference device (SQUID) magnetometer. Enhanced Faraday rotations of the EuS:M nanocrystals were observed around 550 nm, and their enhanced spin polarization was estimated using electron paramagnetic resonance (EPR) measurements. In this report, the magneto-optical relationship between the Faraday rotation efficiency and spin polarization is discussed.

  16. Relativistic quantum clocks

    CERN Document Server

    Lock, Maximilian P E

    2016-01-01

    The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.

  17. Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase transition point

    CERN Document Server

    Nixon, Sean; Yang, Jianke

    2012-01-01

    Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase-transition point are analytically studied. A nonlinear Klein-Gordon equation is derived for the envelope of these wave packets. A variety of novel phenomena known to exist in this envelope equation are shown to also exist in the full equation including wave blowup, periodic bound states and solitary wave solutions.

  18. Sample-Clock Phase-Control Feedback

    Science.gov (United States)

    Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.

  19. Differential clock comparisons with phase-locked local oscillators

    CERN Document Server

    Hume, David B

    2015-01-01

    We develop protocols that circumvent the laser noise limit in the stability of optical clock comparisons by synchronous probing of two clocks using phase-locked local oscillators. This allows for probe times longer than the laser coherence time, avoids the Dick effect, and supports Heisenberg-limited scaling of measurement precision. We present a model for such frequency comparisons and develop numerical simulations of the protocol with realistic noise sources. This provides a route to reduce frequency ratio measurement durations by more than an order of magnitude as clock inaccuracies reach 1x10^-18.

  20. The circadian clock goes genomic.

    Science.gov (United States)

    Staiger, Dorothee; Shin, Jieun; Johansson, Mikael; Davis, Seth J

    2013-06-24

    Large-scale biology among plant species, as well as comparative genomics of circadian clock architecture and clock-regulated output processes, have greatly advanced our understanding of the endogenous timing system in plants.

  1. SRC: Smart Reminder Clock

    Science.gov (United States)

    Kasim, Shahreen; Hafit, Hanayanti; Leong, Tan Hua; Hashim, Rathiah; Ruslai, Husni; Jahidin, Kamaruzzaman; Syafwan Arshad, Mohammad

    2016-11-01

    Nowadays, some people facing the problem to wake up in the morning. This was result to absence of the classes, meetings, and even exams. The aim of this project is to develop an android application that can force the user to wake up. The method used in this application are pedometer and Short Message Service (SMS) function. This application need the user to take their smartphone and walk about 10 steps to disable it, when the alarm clock is activated. After that, when the alarm clock was rang, this alarm application has automatically send a message to the users’ friends or parents phone to wake them up.

  2. Gravitomagnetism, clocks and geometry

    CERN Document Server

    Tartaglia, A

    2001-01-01

    New techniques to evaluate the clock effect using light are described. These are based on the flatness of the cylindrical surface containing the world lines of the rays constrained to move on circular trajectories about a spinning mass. The effect of the angular momentum of the source is manifested in the fact that inertial observers must be replaced by local non rotating observers. Starting from this an exact formula for circular trajectories is found. Numerical estimates for the Earth environment show that light would be a better probe than actual clocks to evidence the angular momentum influence. The advantages of light in connection with some principle experiments are shortly reviewed.

  3. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials

    CERN Document Server

    Kaipurath, R M; Caspani, L; Roger, T; Clerici, M; Rizza, C; Ciattoni, A; Di Falco, A; Faccio, D

    2016-01-01

    Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Equal-to-Zero (EEZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and i...

  4. Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials

    Science.gov (United States)

    Sangiorgi, Nicola; Aversa, Lucrezia; Tatti, Roberta; Verucchi, Roberto; Sanson, Alessandra

    2017-02-01

    The optical band gap energy and the electronic processes involved are important parameters of a semiconductor material and it is therefore important to determine their correct values. Among the possible methods, the spectrophotometric is one of the most common. Several methods can be applied to determine the optical band gap energy and still now a defined consensus on the most suitable one has not been established. A highly diffused and accurate optical method is based on Tauc relationship, however to apply this equation is necessary to know the nature of the electronic transitions involved commonly related to the coefficient n. For this purpose, a spectrophotometric technique was used and we developed a graphical method for electronic transitions and band gap energy determination for samples in powder form. In particular, the n coefficient of Tauc equation was determined thorough mathematical elaboration of experimental results on TiO2 (anatase), ZnO, and SnO2. The results were used to calculate the band gap energy values and then compared with the information obtained by Ultraviolet Photoelectron Spectroscopy (UPS). This approach provides a quick and accurate method for band gap determination through n coefficient calculation. Moreover, this simple but reliable method can be used to evaluate the nature of electronic transition that occurs in a semiconductor material in powder form.

  5. Theoretical Investigation of Nonlinear Optical Properties of Organic and Transition Metal Hybrid Azobenzene Dendrimers

    Institute of Scientific and Technical Information of China (English)

    LIU Cai-Ping; LIU Ping; WU Ke-Chen

    2008-01-01

    In this work, we report a theoretical exploration of the responses of organic azo-benzene dendrimers. The polarizabilities, the first and second hyperpolarizabilities of the azobenzene monomers (GO), and the first, second and third generation (G1, G2 and G3, respectively) are investigated by semi-empirical methods. The calculated results show that the nonlinear optical (NLO)properties of these organic dendrimers are mainly determined by the azobenzene chromospheres.Additionally, the values of β and γ increase almost in proportion to the number of chromophores. On the other hand, two types of transition metal hybrid azobenzene dendrimers (core-hybrid and branch-end hybrid according to the sites combined with transition metals) are simulated and discussed in detail in the framework of time-dependent density functional theory (TDDFT). The calculated results reveal that the NLO responses of these metal dendrimers distinctly varied as a result of altering the charge transfer transition scale and the excitation energies.

  6. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    Directory of Open Access Journals (Sweden)

    E. U. Donev

    2008-01-01

    Full Text Available We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model. The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.

  7. Phase transitions in ensembles of solitons induced by an optical pumping or a strong electric field

    Science.gov (United States)

    Karpov, P.; Brazovskii, S.

    2016-09-01

    The latest trend in studies of modern electronically and/or optically active materials is to provoke phase transformations induced by high electric fields or by short (femtosecond) powerful optical pulses. The systems of choice are cooperative electronic states whose broken symmetries give rise to topological defects. For typical quasi-one-dimensional architectures, those are the microscopic solitons taking from electrons the major roles as carriers of charge or spin. Because of the long-range ordering, the solitons experience unusual super-long-range forces leading to a sequence of phase transitions in their ensembles: the higher-temperature transition of the confinement and the lower one of aggregation into macroscopic walls. Here we present results of an extensive numerical modeling for ensembles of both neutral and charged solitons in both two- and three-dimensional systems. We suggest a specific Monte Carlo algorithm preserving the number of solitons, which substantially facilitates the calculations, allows to extend them to the three-dimensional case and to include the important long-range Coulomb interactions. The results confirm the first confinement transition, except for a very strong Coulomb repulsion, and demonstrate a pattern formation at the second transition of aggregation.

  8. Different ways to active optical frequency standards

    Science.gov (United States)

    Pan, Duo; Xue, Xiaobo; Zhang, Xiaogang; Chen, Jingbiao

    2016-06-01

    Active optical frequency standard, or active optical clock, is a new concept of optical frequency standard, where a weak feedback with phase coherence information in optical bad-cavity limitation is formed, and the continuous self-sustained coherent stimulated emission between two atomic transition levels with population inversion is realized. Through ten years of both theoretical and experimental exploration, the narrow linewidth and suppression of cavity pulling effect of active optical frequency standard have been initially proved. In this paper, after a simple review, we will mainly present the most recent experimental progresses of active optical frequency standards in Peking University, including 4-level cesium active optical frequency standards and active Faraday optical frequency standards. The future development of active optical frequency standards is also discussed.

  9. Cyclotomic quantum clock

    CERN Document Server

    Rosu, H C

    2003-01-01

    In the wake of our recent work on cyclotomic effects in quantum phase locking [M. Planat and H. C. Rosu, Phys. Lett. A 315, 1 (2003)], we briefly discuss here a cyclotomic extension of the Salecker and Wigner quantum clock. We also hint on a possible cyclotomic structure of time at the Planck scales

  10. The GTC exoplanet transit spectroscopy survey . VII. An optical transmission spectrum of WASP-48b

    Science.gov (United States)

    Murgas, F.; Pallé, E.; Parviainen, H.; Chen, G.; Nortmann, L.; Nowak, G.; Cabrera-Lavers, A.; Iro, N.

    2017-09-01

    Context. Transiting planets offer an excellent opportunity for characterizing the atmospheres of extrasolar planets under very different conditions from those found in our solar system. Aims: We are currently carrying out a ground-based survey to obtain the transmission spectra of several extrasolar planets using the 10 m Gran Telescopio Canarias. In this paper we investigate the extrasolar planet WASP-48b, a hot Jupiter orbiting around an F-type star with a period of 2.14 days. Methods: We obtained long-slit optical spectroscopy of one transit of WASP-48b with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) spectrograph. We integrated the spectrum of WASP-48 and one reference star in several channels with different wavelength ranges, creating numerous color light curves of the transit. We fit analytic transit curves to the data taking into account the systematic effects present in the time series in an effort to measure the change of the planet-to-star radius ratio (Rp/Rs) across wavelength. The change in transit depth can be compared with atmosphere models to infer the presence of particular atomic or molecular compounds in the atmosphere of WASP-48b. Results: After removing the transit model and systematic trends to the curves we reached precisions between 261 ppm and 455-755 ppm for the white and spectroscopic light curves, respectively. We obtained Rp/Rs uncertainty values between 0.8 × 10-3 and 1.5 × 10-3 for all the curves analyzed in this work. The measured transit depth for the curves made by integrating the wavelength range between 530 nm and 905 nm is in agreement with previous studies. We report a relatively flat transmission spectrum for WASP-48b with no statistical significant detection of atmospheric species, although the theoretical models that fit the data more closely include TiO and VO. The transit light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http

  11. Revealing hidden optical transitions with tuneable optical-pump THz-probe spectroscopy

    CERN Document Server

    Novelli, Fabio

    2016-01-01

    While a vast amount of theoretical and experimental approaches can be used to study the band structure of simple solids, the investigation of the electronic properties of high-temperature superconductors and other strongly correlated systems is far less simple. Limitations to both theory and experiments arise from e.g. the many-body nature of the mathematical problem and from the non-trivial surface reconstructions, respectively. Here we propose a novel approach able to reveal energy gaps between band extrema that cannot be identified from the equilibrium optical properties. By combining finely-tunable visible pump pulses with terahertz probe fields, we identify changes to the transient conductivity as the pump wavelength is changed and the density of carriers in different parts of the band structure varies. This approach is demonstrated on a typical semiconductor, undoped silicon, where we identify the band minimum at the $L$ point of the conduction band, corresponding to the second lowest energy indirect ga...

  12. Near-uv and optical observations of the transiting hot Jupiter WASP-1b

    Science.gov (United States)

    Pearson, K. A.; Zellem, R.; Biddle, L. I.; Amaya, H.; Watson, Z.; Griffith, C.; Small, L.; Hume, J.

    2014-03-01

    We present simultaneous near-UV (U-band) and optical (B-band) photometric observations of the primary transit of the highly irradiated, hot-Jupiter WASP-1b on the Kuiper 61" telescope. We use our results to search for timing transit variations, which would indicate additional planets, and provide new constraints on WASP-1b's physical parameters. Assuming the opacity at these two photometric bands is dominated by Rayleigh scattering by molecular hydrogen, we can place strong upper limits on its radius. Such constraints can limit the degeneracy between an exoplanet's physical radius and atmospheric composition in radiative transfer retrievals. Additionally its host star is chromospherically active and WASP-1b orbits within in the co-rotation radius of the star making it likely that WASP-1b has a bowshock. Therefore, we will search for a planetary magnetic field as indicated by an early ingress in the near-UV light curve compared to the optical due to the bowshock itself. Such measurements would confirm the observational methodology of detecting magnetic fields around transiting exoplanets, place an upper limit on WASP-1b's magnetic field strength, and confirm previous theoretical estimations of hot Jupiter magnetic fields.

  13. Probing formally forbidden optical transitions in PbSe nanocrystals by time- and energy-resolved transient absorption spectroscopy

    NARCIS (Netherlands)

    Schins, J.M.; Trinh, M.T.; Houtepen, A.J.; Siebbeles, L.D.A.

    2009-01-01

    The first two peaks of the optical extinction spectrum of PbSe nanocrystals in solution have been assigned in the literature to the 1Sh1Se and 1Ph1Pe transitions. In the present work we assign the transitions causing extinction in the energy region between these two lowest-energy peaks. Our femtosec

  14. Optical properties of beta-iron silicide, ruthenium silicide and osmium silicide: Semiconducting transition metal silicides

    Science.gov (United States)

    Birdwell, Anthony Glen

    2001-09-01

    Various optical techniques were used to study the semiconducting transition metal silicides of β- FeSi2, Ru2Si3, and OsSi2. The Raman spectra of ion beam synthesized (IBS) β-FeSi 2 were shown to provide evidence of a net tensile stress in these IBS materials. Possible origins of the observed stress were suggested and a simple model was proposed in order to calculate a value of the observed stress. A correlation between the tensile stress, the nature of the band gap, and the resulting light emitting properties of IBS β-FeSi2 was suggested. The photoreflectance (PR) spectra of IBS β- FeSi2 reveals a direct gap at 0.815 eV and were shown to agree with the band gap value obtained by photoluminescence (PL) once the adjustments for the temperature difference and trap related recombination effects were made. This provides very convincing evidence for intrinsic light emission from IBS β- FeSi2. Furthermore, a model was developed that helps to clarify the variety of inconsistent results obtained by optical absorption measurements. When the results of PL and PR were inserted into this model, a good agreement was obtained with our measured optical absorption results. We also obtained PR spectra of β-FeSi 2 thin films grown by molecular beam epitaxy. These spectra reveal the multiple direct transitions near the fundamental absorption edge of β-FeSi 2 that were predicted by theory. We suggest an order of these critical point transitions following the trends reported in the theoretical investigations. Doping these β-FeSi2 thin films with small amounts of chromium was shown to have a measurable effect on the interband optical spectra. We also report on the effects of alloying β- FeSi2 with cobalt. A decrease in the critical point transitions nearest the fundamental absorption edge was observed as the cobalt concentration increased. Finally, Raman spectroscopy was used to study the vibrational properties of β-FeSi2. The measured Raman spectra agreed very well with the

  15. Novel approach to reduce the pattern effect in 10-Gb/s clock recovery

    Institute of Scientific and Technical Information of China (English)

    Tong Wang(王桐); Caiyun Lou(娄采云); Li Huo(霍力); Yizhi Gao(高以智)

    2004-01-01

    @@ A Fabry-Perot(F-P)etalon and a semiconductor optical amplifier(SOA)were combined to preprocess thedata signals before clock recovery.With this technology in the 10-Gb/s clock recovery utilizing injectionmode-locked laser(IMLL)based on SOA,the amplitude fluctuation and timing jitters caused by thepattern effect in recovered clock pulses were greatly reduced,experimentally.It also demonstrated thatclock could be recovered from the very degraded signals.

  16. Optical transitions in strained InAsSb/GaInSb interband QC lasers

    Institute of Scientific and Technical Information of China (English)

    Ligong Yang(杨立功); Peifu Gu(顾培夫); Xiaoyun Qin(秦小芸)

    2004-01-01

    @@ In this paper a detailed simulation and theoretical analysis based on model-solid theory and the(→κ)·(→ρ)methodare presented to investigate the dependence of the band structure on the strain deformation in a noveltype-Ⅱ quantum well(QW)heterostructure InAs1_ySby/GaxIn1-xSb under the uniaxial approximation,and subsequently the optical transition and the gain in the interband cascade lasers containing it havebeen evaluated with unchanged injection current densities.The simulation results show that the straineffect on the transition in this heterostructure will not behave as a simple monotonic trend with the latticemismatch of InAs1_ySby/GaxIn1_xSb interface,but as a function of the complex strain chain includingthe whole active region.It is important to the subsequent device design and optimization.

  17. Effect of transition metal dopants on the optical and magnetic properties of semiconductor nanocrystals

    Indian Academy of Sciences (India)

    Ranjani Viswanatha

    2015-06-01

    This review discusses the recent developments in doped semiconductor nanocrystals with a special emphasis on the effect of dopant on the electronic structure of the host nanocrystals. The review focusses on 3 transition metal dopants with unique electronic structure making them receptive for dramatic changes in magnetism, absorption and photoluminescence properties by the successful introduction of a small percentage of dopants into the nanocrystals. Many of these properties are shown to be qualitatively different from that of the bulk properties, leading to challenges in understanding the nature and effects of the confinement of the host. The optical and magnetic changes induced by Mn doping is first reviewed, followed by the use of Cu as a probe to understand the bulk and surface electronic structure of the host. The review concludes with a short section on photomagnetism induced by Cu on the host nanocrystal and a summary of the work with other transition metal ions.

  18. Rheological, optical, and thermal characterization of temperature-induced transitions in liquid crystal ferrosuspensions

    Science.gov (United States)

    Diestra-Cruz, Heberth; Rinaldi, Carlos; Acevedo, Aldo

    2012-04-01

    Liquid crystal ferrosuspensions (LCFs) were obtained by inclusion of magnetic microparticles in a nematic liquid crystal (NLC) at mass fractions of up to 20%. The phase transition of the NLC promotes the formation of a space filling particle network and an enhancement of the mechanical properties. Polarized optical microscopy (POM) and differential scanning calorimetry were used to study microparticle network formation. POM images show that an anisotropic particle structure formed when an external magnetic field was applied, whereas a quasihomogeneous cellular network is obtained in the absence of the field. A jump in the viscoelastic moduli at the isotropic-nematic transition temperature of the NLC was observed for all particle concentrations and applied magnetic fields. Experimental results also showed that the rheological response of the LCFs increased with magnetic field and tend to saturate at high fields. A linear relation between the particle mass fraction and the saturation value of the storage modulus was found.

  19. Atomic Clocks and Variations of the FIne Structure Constant

    Science.gov (United States)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    1995-01-01

    We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.

  20. Clock measurements to improve the geopotential determination

    Science.gov (United States)

    Lion, Guillaume; Panet, Isabelle; Delva, Pacôme; Wolf, Peter; Bize, Sébastien; Guerlin, Christine

    2017-04-01

    Comparisons between optical clocks with an accuracy and stability approaching the 10-18 in term of relative frequency shift are opening new perspectives for the direct determination of geopotential at a centimeter-level accuracy in geoid height. However, so far detailed quantitative estimates of the possible improvement in geoid determination when adding such clock measurements to existing data are lacking. In this context, the present work aims at evaluating the contribution of this new kind of direct measurements in determining the geopotential at high spatial resolution (10 km). We consider the Massif Central area, marked by smooth, moderate altitude mountains and volcanic plateaus leading to variations of the gravitational field over a range of spatial scales. In such type of region, the scarcity of gravity data is an important limitation in deriving accurate high resolution geopotential models. We summarize our methodology to assess the contribution of clock data in the geopotential recovery, in combination with ground gravity measurements. We sample synthetic gravity and disturbing potential data from a spherical harmonics geopotential model, and a topography model, up to 10 km resolution; we also build a potential control grid. From the synthetic data, we estimate the disturbing potential by least-squares collocation. Finally, we assess the quality of the reconstructed potential by comparing it to that of the control grid. We show that adding only a few clock data reduces the reconstruction bias significantly and improves the standard deviation by a factor 3. We discuss the role of different parameters, such as the effect of the data coverage and data quality on these results, the trade-off between the measurement noise level and the number of data, and the optimization of the clock data network.

  1. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes).

    Science.gov (United States)

    Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela

    2014-05-01

    One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.

  2. The quantum beat the physical principles of atomic clocks

    CERN Document Server

    Major, F G

    1998-01-01

    One of the indicators of the level of technological development of a society has been, throughout history, the precision of clocks it was able to build. This book examines the physical principles underlying the workings of clocks--from the earliest mechanical clocks to the present-day sophisticated clocks based on the properties of individual atoms. Intended for non-specialists with some knowledge of physics or engineering,the book treats the material in a broad intuitive manner, with a minimum of mathematical formalism. The presentation covers a broad range of salient topics relevant to the measurement of frequency and time intervals. The main focus is on electronic time-keeping: clocks based on quartz crystal oscillators and, at greater length, atomic clocks based on quantum resonance in rubidium, cesium, and hydrogen atoms, and, more recently, mercury ions. The book treats the revolutionary changes that the optical laser has wrought on atomic standards through laser cooling and optical pumping, and it disc...

  3. Electronic properties of [core+exo]-type gold clusters: factors affecting the unique optical transitions.

    Science.gov (United States)

    Shichibu, Yukatsu; Konishi, Katsuaki

    2013-06-03

    Unusual visible absorption properties of [core+exo]-type Au6 (1), Au8 (2), and Au11 (3) clusters were studied from experimental and theoretical aspects, based on previously determined crystal structures. Unlike conventional core-only clusters having no exo gold atoms, these nonspherical clusters all showed an isolated visible absorption band in solution. Density functional theory (DFT) studies on corresponding nonphenyl models (1'-3') revealed that they had similar electronic structures with discrete highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) bands. The theoretical spectra generated by time-dependent DFT (TD-DFT) calculations agreed well with the experimentally measured properties of 1-3, allowing assignment of the characteristic visible bands to HOMO-LUMO transitions. The calculated HOMO-LUMO transition energies increased in the order Au11 exo gold atom, with the HOMO → LUMO transition occurring in the core → exo direction. The HOMO/LUMO distribution patterns of 1' and 3' were similar to each other but were markedly different from that of 2', which has longer core-to-exo distances. These findings showed that not only nuclearity (size) but also geometric structures have profound effects on electronic properties and optical transitions of the [core+exo]-type clusters.

  4. Role of Symmetry Breaking on the Optical Transitions in Lead-Salt Quantum Dots

    KAUST Repository

    Nootz, Gero

    2010-09-08

    The influence of quantum confinement on the one- and two-photon absorption spectra (1PA and 2PA) of PbS and PbSe semiconductor quantum dots (QDs) is investigated. The results show 2PA peaks at energies where only 1PA transitions are predicted and 1PA peaks where only 2PA transitions are predicted by the often used isotropic k•p four-band envelope function formalism. The first experimentally identified two-photon absorption peak coincides with the energy of the first one photon allowed transition. This first two-photon peak cannot be explained by band anisotropy, verifying that the inversion symmetry of the wave functions is broken and relaxation of the parity selection rules has to be taken into account to explain optical transitions in lead-salt QDs. Thus, while the band anisotropy of the bulk semiconductor plays a role in the absorption spectra, especially for the more anisotropic PbSe QDs, a complete model of the absorption spectra, for both 1PA and 2PA, must also include symmetry breaking of the quantum confined wave functions. These studies clarify the controversy of the origin of spectral features in lead-salt QDs. © 2010 American Chemical Society.

  5. Optical transition radiation measurements for the Los Alamos and Boeing Free-Electron Laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Feldman, D.W.; Apgar, S.A.; Calsten, B.E.; Fiorito, R.B.; Rule, D.W.

    1988-01-01

    Optical transition radiation (OTR) measurements of the electron-beam emittance have been performed at a location just before the wiggler in the Los Alamos Free-Electron Laser (FEL) experiment. Beam profiles and beam divergence patterns from a single macropulse were recorded simultaneously using two intensified charge-injection device (CID) television cameras and an optical beamsplitter. Both single-foil OTR and two-foil OTR interference experiments were performed. Preliminary results are compared to a reference variable quadrupole, single screen technique. New aspects of using OTR properties for pointing the e-beam on the FEL oscillator axis, as well as measuring e-beam emittance are addressed. 7 refs., 9 figs.

  6. Bandwidth smearing in optical interferometry: Analytic model of the transition to the double fringe packet

    CERN Document Server

    Lachaume, Régis

    2012-01-01

    Bandwidth smearing is a chromatic aberration due to the finite frequency bandwidth. In long-baseline optical interferometry terms, it is when the angular extension of the source is greater than the coherence length of the interferogram. As a consequence, separated parts of the source will contribute to fringe packets that are not fully overlapping; it is a transition from the classical interferometric regime to a double or multiple fringe packet. While studied in radio interferometry, there has been little work on the matter in the optical, where observables are measured and derived in a different manner, and are more strongly impacted by the turbulent atmosphere. We provide here the formalism and a set of usable equations to model and correct for the impact of smearing on the fringe contrast and phase, with the case of multiple stellar systems in mind. The atmosphere is briefly modeled and discussed.

  7. Optically and thermally controlled terahertz metamaterial via transition between direct and indirect electromagnetically induced transparency

    Directory of Open Access Journals (Sweden)

    Jiawei Sui

    2014-12-01

    Full Text Available This passage presents a design of tunable terahertz metamaterials via transition between indirect and direct electromagnetically induced transparency (EIT effects by changing semiconductor InSb’s properties to terahertz wave under optical and thermal stimuli. Mechanical model and its electrical circuit model are utilized in analytically calculating maximum transmission of transparency window. Simulated results show consistency with the analytical expressions. The results show that the metamaterials hold 98.4% modulation depth at 189 GHz between 300 K, σInSb =256000 S/m, and 80 K, σInSb =0.0162 S/m conditions , 1360 ps recovery time of the excited electrons in InSb under optical stimulus at 300 K mainly considering the direct EIT effect, and minimum bandwidth 1 GHz.

  8. Optical transition radiation measurements for the Los Alamos and Boeing Free-Electron Laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Feldman, D.W.; Apgar, S.A.; Calsten, B.E.; Fiorito, R.B.; Rule, D.W.

    1988-01-01

    Optical transition radiation (OTR) measurements of the electron-beam emittance have been performed at a location just before the wiggler in the Los Alamos Free-Electron Laser (FEL) experiment. Beam profiles and beam divergence patterns from a single macropulse were recorded simultaneously using two intensified charge-injection device (CID) television cameras and an optical beamsplitter. Both single-foil OTR and two-foil OTR interference experiments were performed. Preliminary results are compared to a reference variable quadrupole, single screen technique. New aspects of using OTR properties for pointing the e-beam on the FEL oscillator axis, as well as measuring e-beam emittance are addressed. 7 refs., 9 figs.

  9. Progress on the Flash X-Ray Optical Transition Radiation Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Tang, V; Houck, T; Brown, C

    2008-03-30

    This document summarizes the Flash X-Ray accelerator (FXR) optical transition radiation (OTR) spot-size diagnostics efforts in FY07. During this year, new analysis, simulation, and experimental approaches were utilized to interpret OTR spot data from both dielectric foils such as Kapton (VN type) and metal coated foils. Significant new findings of the intricacies involved in the diagnostic and of FXR operational issues were achieved. Geometry and temperature based effects were found to affect the beam image profiles from the OTR foils. These effects must be taken into account in order to deduce accurately the beam current density profile.

  10. Strain-induced fundamental optical transition in (In,Ga)As/GaP quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Robert, C., E-mail: cedric.robert@insa-rennes.fr, E-mail: cedric.robert@tyndall.ie; Pedesseau, L.; Cornet, C.; Jancu, J.-M.; Even, J.; Durand, O. [Université Européenne de Bretagne, INSA Rennes, France and CNRS, UMR 6082 Foton, 20 Avenue des Buttes de Coësmes, 35708 Rennes (France); Nestoklon, M. O. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Pereira da Silva, K. [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain); Departamento de Física, Universidade Federal do Ceará, P.O. Box 6030, Fortaleza–CE, 60455-970 (Brazil); Alonso, M. I. [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain); Goñi, A. R. [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain); ICREA, Passeig Lluís Companys 23, 08010 Barcelona (Spain); Turban, P. [Equipe de Physique des Surfaces et Interfaces, Institut de Physique de Rennes UMR UR1-CNRS 6251, Université de Rennes 1, F-35042 Rennes Cedex (France)

    2014-01-06

    The nature of the ground optical transition in an (In,Ga)As/GaP quantum dot is thoroughly investigated through a million atoms supercell tight-binding simulation. Precise quantum dot morphology is deduced from previously reported scanning-tunneling-microscopy images. The strain field is calculated with the valence force field method and has a strong influence on the confinement potentials, principally, for the conduction band states. Indeed, the wavefunction of the ground electron state is spatially confined in the GaP matrix, close to the dot apex, in a large tensile strain region, having mainly Xz character. Photoluminescence experiments under hydrostatic pressure strongly support the theoretical conclusions.

  11. Electron Beam Spectrum Diagnostics with Optical Transition Radiation on the Beijing Free-Electron Laser

    Institute of Scientific and Technical Information of China (English)

    李泉凤; 吴频; 高建江; 吴刚

    2004-01-01

    A measurement system was developed to measure the electron beam spectrum of the Beijing free-electron laser based on the optical transition radiation (OTR). This paper describes the system, which consists of a 32-channel high resolution of 0.02% OTR detector, especially the spectrometer. The OTR angular-distribution pattern at the focal plane has two apexes, but the two apexes are smoothed out due to the electron beam energy distribution. The energy spectrum can be measured if the magnet energy resolution is higher than 0.7% to distinguish the electron beam energy distribution.

  12. Transverse beam shape measurements of intense proton beams using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  13. Synthesis and Characterization of Layered Double Hydroxides Containing Optically Active Transition Metal Ion

    Science.gov (United States)

    Tyagi, S. B.; Kharkwal, Aneeta; Nitu; Kharkwal, Mamta; Sharma, Raghunandan

    2017-01-01

    The acetate intercalated layered double hydroxides of Zn and Mn, have been synthesized by chimie douce method. The materials were characterized by XRD, TGA, CHN, IR, XPS, SEM-EDX and UV-visible spectroscopy. The photoluminescence properties was also studied. The optical properties of layered hydroxides are active transition metal ion dependent, particularly d1-10 system plays an important role. Simultaneously the role of host - guest orientation has been considered the basis of photoluminescence. Acetate ion can be exchanged with iodide and sulphate ions. The decomposed product resulted the pure phase Mn doped zinc oxide are also reported.

  14. Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides.

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Daniel Beom Soo

    2017-09-01

    We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS 2 ), particularly for those linear and nonlinear tran- sition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matri- ces that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibil- ities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

  15. Structural, optical and glass transition studies on Nd{sup 3+}-doped lead bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, B.; Mohan, S

    2003-07-01

    Nd{sup 3+}-doped lead bismuth borate (PbO-Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3}) glasses were prepared with different concentrations of Nd{sup 3+}. The structural studies were done through FTIR spectral analysis. The glass transition studies were done through differential scanning calorimetry. The optical analysis was done by using Judd-Ofelt theory. The structural study reveals that the glass has [BiO{sub 3}], BO{sub 4}, BO{sub 3} and PbO{sub 4} units as the local structures.

  16. Round the clock librarianship

    OpenAIRE

    1995-01-01

    The concept of Round the Clock Librarianship (ROCLOLIB) is one such opportunity of terminal and critical importance to librarians, which helps people (clients) in general and reassures them about the professional commitment and devotedness of librarians. Although the concept is old, it is an exercise here to analyse its importance for the overall image and status of the practice/occupation. The chapter discusses the proposal of opening Libraries for 24 Hours. It also points out the reasons fo...

  17. Optical fingerprint of dark 2p-states in transition metal dichalcogenides

    Science.gov (United States)

    Berghäuser, Gunnar; Knorr, Andreas; Malic, Ermin

    2017-03-01

    Atomically thin transition metal dichalcogenides exhibit a remarkably strong Coulomb interaction. This results in a fascinating many-particle physics including a variety of bright and dark excitonic states that determine optical and electronic properties of these materials. So far, the impact of dark states has remained literally in the dark to a large extent, since a measurement of these optically forbidden states is very challenging. Here we demonstrate a strategy to measure a direct fingerprint of dark states even in standard linear absorption spectroscopy. We present a microscopic study on bright and dark higher excitonic states in the presence of disorder for the exemplary material of tungsten disulfide (WS2). We show that the geometric phase cancels the degeneration of 2s and 2p states and that a significant disorder-induced coupling of these bright and dark states offers a strategy to circumvent optical selection rules. As a proof, we show a clear fingerprint of dark 2p states in the absorption spectrum of WS2. The predicted softening of optical selection rules through exciton-disorder coupling is of general nature and therefore applicable to related two-dimensional semiconductors.

  18. Transverse phase space mapping of relativistic electron beams using optical transition radiation

    Directory of Open Access Journals (Sweden)

    G. P. Le Sage

    1999-12-01

    Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.

  19. Circadian clocks and breast cancer

    OpenAIRE

    Blakeman, Victoria; Jack L. Williams; Meng, Qing-Jun; Streuli, Charles H

    2016-01-01

    Circadian clocks respond to environmental time cues to coordinate 24-hour oscillations in almost every tissue of the body. In the breast, circadian clocks regulate the rhythmic expression of numerous genes. Disrupted expression of circadian genes can alter breast biology and may promote cancer. Here we overview circadian mechanisms, and the connection between the molecular clock and breast biology. We describe how disruption of circadian genes contributes to cancer via multiple mechanisms, an...

  20. Optical gain for the interband optical transition in InAsP/InP quantum well wire in the influence of laser field intensity

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, S. [Dept.of Physics, GTN Arts College, Dindigul-624 005. India (India); Peter, A. John, E-mail: a.john.peter@gmail.com [P.G & Research Dept.of Physics, Government Arts College, Melur-625 106. Madurai. India (India)

    2016-05-23

    Intense high frequency laser field induced electronic and optical properties of heavy hole exciton in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire is studied taking into account the geometrical confinement effect. Laser field related exciton binding energies and the optical band gap in the InAs{sub 0.8}P{sub 0.2}/InP quantum well wire are investigated. The optical gain, for the interband optical transition, as a function of photon energy, in the InAs{sub 0.8}P{sub 0.2}/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The obtained optical gain in group III-V narrow quantum wire can be applied for achieving the preferred telecommunication wavelength.

  1. Energy band gap and optical transition of metal ion modified double crossover DNA lattices.

    Science.gov (United States)

    Dugasani, Sreekantha Reddy; Ha, Taewoo; Gnapareddy, Bramaramba; Choi, Kyujin; Lee, Junwye; Kim, Byeonghoon; Kim, Jae Hoon; Park, Sung Ha

    2014-10-22

    We report on the energy band gap and optical transition of a series of divalent metal ion (Cu(2+), Ni(2+), Zn(2+), and Co(2+)) modified DNA (M-DNA) double crossover (DX) lattices fabricated on fused silica by the substrate-assisted growth (SAG) method. We demonstrate how the degree of coverage of the DX lattices is influenced by the DX monomer concentration and also analyze the band gaps of the M-DNA lattices. The energy band gap of the M-DNA, between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), ranges from 4.67 to 4.98 eV as judged by optical transitions. Relative to the band gap of a pristine DNA molecule (4.69 eV), the band gap of the M-DNA lattices increases with metal ion doping up to a critical concentration and then decreases with further doping. Interestingly, except for the case of Ni(2+), the onset of the second absorption band shifts to a lower energy until a critical concentration and then shifts to a higher energy with further increasing the metal ion concentration, which is consistent with the evolution of electrical transport characteristics. Our results show that controllable metal ion doping is an effective method to tune the band gap energy of DNA-based nanostructures.

  2. Stochastic dynamic study of optical transition properties of single GFP-like molecules.

    Science.gov (United States)

    Lin, Hanbing; Yuan, Jian-Min

    2016-03-01

    Due to high fluctuations and quantum uncertainty, the processes of single-molecules should be treated by stochastic methods. To study fluorescence time series and their statistical properties, we have applied two stochastic methods, one of which is an analytic method to study the off-time distributions of certain fluorescence transitions and the other is Gillespie's method of stochastic simulations. These methods have been applied to study the optical transition properties of two single-molecule systems, GFPmut2 and a Dronpa-like molecule, to yield results in approximate agreement with experimental observations on these systems. Rigorous oscillatory time series of GFPmut2 before it unfolds in the presence of denaturants have not been obtained based on the stochastic method used, but, on the other hand, the stochastic treatment puts constraints on the conditions under which such oscillatory behavior is possible. Furthermore, a sensitivity analysis is carried out on GFPmut2 to assess the effects of transition rates on the observables, such as fluorescence intensities.

  3. Wavelength dependent measurements of optical fiber transit time, material dispersion, and attenuation

    Energy Technology Data Exchange (ETDEWEB)

    COCHRANE,KYLE ROBERT; BAILEY,JAMES E.; LAKE,PATRICK WAYNE; CARLSON,ALAN L.

    2000-04-18

    A new method for measuring the wavelength dependence of the transit time, material dispersion, and attenuation of an optical fiber is described. The authors inject light from a 4-ns risetime pulsed broad-band flashlamp into various length fibers and record the transmitted signals with a time-resolved spectrograph. Segments of data spanning an approximately 3,000 {angstrom} range are recorded from a single flashlamp pulse. Comparison of data acquired with short and long fibers enables the determination of the transit time and the material dispersion as functions of wavelength dependence for the entire recorded spectrum simultaneously. The wavelength dependent attenuation is also determined from the signal intensities. The method is demonstrated with experiments using a step index 200-{micro}m-diameter SiO{sub 2} fiber. The results agree with the transit time determined from the bulk glass refractive index to within {+-} 0.035% for the visible (4,000--7,200 {angstrom}) spectrum and 0.12% for the ultraviolet (2,650--4,000 {angstrom}) spectrum, and with the attenuation specified by the fiber manufacturer to within {+-} 10%.

  4. Characterization of optical transitions of Eu3+ in lanthanum oxychloride nanophosphor

    Institute of Scientific and Technical Information of China (English)

    A. Choubey; S. Som; M. Biswas; S.K. Sharma

    2011-01-01

    This paper presented the studies on the optical properties and calculation of spectral parameters of europium doped lanthanum oxychloride nanophosphor for their possible applications in optoelectronic devices. The compound was doped with 0.1 mol% Eu3+ ions. The X-ray diffraction study of prepared sample suggested the tetragonal structure with particle size in the range of 18-21 nm. The photoluminescence (PL) emission spectra showed the bright emission in orange-red region from 580 to 630 nm. The most intense emission peak at 621 nmwas due to transition 5D0→7F2 in energy levels of Eu3+ ions. The spectral parameters were calculated from the absorption and emission spectra using Judd-Ofelt intensity parameters. The calculated values of the oscillator strength corresponding to the three transitions 7F1→2D1, 7F1→SD2 and 7F0→5D2 observed at 535, 472 and 465 nm in absorption spectra were 0.30×10-6, 1.36×106 and 0.63×10-6, respectively. The value of transi tion probability (A), stimulated emission cross-sect1on (σEP) and radiative lifetime (τrad) corresponding to 621 nm emission peak (transition 5D0→7F2) were 308 s-1, 1.22× 10-21 cm2 and 3.24×10-3 s, respectively.

  5. Ultrafast all-optical order-to-chaos transition in silicon photonic crystal chips

    KAUST Repository

    Bruck, Roman

    2016-06-08

    The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all-optical laser-driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump-probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators. (Figure presented.) . © 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  6. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets.

    Science.gov (United States)

    Zhou, Kai-Ge; Zhao, Min; Chang, Meng-Jie; Wang, Qiang; Wu, Xin-Zhi; Song, Yinglin; Zhang, Hao-Li

    2015-02-11

    Size-dependent nonlinear optical properties of modification-free transition metal dichalcogenide (TMD) nanosheets are reported, including MoS2 , WS2 , and NbSe2 . Firstly, a gradient centrifugation method is demonstrated to separate the TMD nanosheets into different sizes. The successful size separation allows the study of size-dependent nonlinear optical properties of nanoscale TMD materials for the first time. Z-scan measurements indicate that the dispersion of MoS2 and WS2 nanosheets that are 50-60 nm thick leads to reverse saturable absorption (RSA), which is in contrast to the saturable absorption (SA) seen in the thicker samples. Moreover, the NbSe2 nanosheets show no size-dependent effects because of their metallic nature. The mechanism behind the size-dependent nonlinear optical properties of the semiconductive TMD nanosheets is revealed by transient transmission spectra measurements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Light Clock Satisfying the Clock Hypothesis of Special Relativity

    Science.gov (United States)

    West, Joseph

    2007-01-01

    The design of the FMEL, a floor-mirrored Einstein-Langevin "light clock", is introduced. The clock provides a physically intuitive manner to calculate and visualize the time dilation effects for a spatially extended set of observers (an accelerated "frame") undergoing unidirectional acceleration or observers on a rotating cylinder of constant…

  8. Clocks and cardiovascular function

    Science.gov (United States)

    McLoughlin, Sarah C.; Haines, Philip; FitzGerald, Garret A.

    2016-01-01

    Circadian clocks in central and peripheral tissues enable the temporal synchronization and organization of molecular and physiological processes of rhythmic animals, allowing optimum functioning of cells and organisms at the most appropriate time of day. Disruption of circadian rhythms, from external or internal forces, leads to widespread biological disruption and is postulated to underlie many human conditions, such as the incidence and timing of cardiovascular disease. Here, we describe in vivo and in vitro methodology relevant to studying the role of circadian rhythms in cardiovascular function and dysfunction PMID:25707279

  9. A mixed relaxed clock model

    Science.gov (United States)

    2016-01-01

    Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed model with approximately equal contributions for its uncorrelated and autocorrelated components. The tip-dating analysis is particularly sensitive to the choice of the relaxed clock model. In this context, the classical pure Brownian relaxed clock appears to be overly rigid, leading to biases in divergence time estimation. By contrast, the use of a mixed clock leads to more recent and more reasonable estimates for the crown ages of placental orders and superorders. Altogether, the mixed clock introduced here represents a first step towards empirically more adequate models of the patterns of rate variation across phylogenetic trees. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325829

  10. Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow

    Science.gov (United States)

    Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.

    2013-01-01

    photogrammetry (for model attitude and deformation measurement) are excluded to limit the scope of this report. Other physical probes such as heat flux gauges, total temperature probes are also excluded. We further exclude measurement techniques that require particle seeding though particle based methods may still be useful in many high speed flow applications. This manuscript details some of the more widely used molecular-based measurement techniques for studying transition and turbulence: laser-induced fluorescence (LIF), Rayleigh and Raman Scattering and coherent anti-Stokes Raman scattering (CARS). These techniques are emphasized, in part, because of the prior experience of the authors. Additional molecular based techniques are described, albeit in less detail. Where possible, an effort is made to compare the relative advantages and disadvantages of the various measurement techniques, although these comparisons can be subjective views of the authors. Finally, the manuscript concludes by evaluating the different measurement techniques in view of the precision requirements described in this chapter. Additional requirements and considerations are discussed to assist with choosing an optical measurement technique for a given application.

  11. Electronics for the pulsed rubidium clock: design and characterization.

    Science.gov (United States)

    Calosso, Claudio E; Micalizio, Salvatore; Godone, Aldo; Bertacco, Elio K; Levi, Filippo

    2007-09-01

    Pulsing the different operation phases of a vapor-cell clock (optical pumping, interrogation, and detection) has been recognized as one of the most effective techniques to reduce light shift and then to improve the stability perspectives of vapor cell clocks. However, in order to take full advantage of the pulsed scheme, a fast-gated electronics is required, the times involved being of the order of milliseconds. In this paper we describe the design and the implementation of the electronics that synchronizes the different phases of the clock operation, as well as of the electronics that is mainly devoted to the thermal stabilization of the clock physics package. We also report some characterization measurements, including a measurement of the clock frequency stability. In particular, in terms of Allan deviation, we measured a frequency stability of 1.2 x 10(-12) tao(-1/2) for averaging times up to tao = 10(5) s, a very interesting result by itself and also for a possible space application of such a clock.

  12. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant.

    Science.gov (United States)

    Berengut, J C; Dzuba, V A; Flambaum, V V; Ong, A

    2012-08-17

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf(16+) is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf(16+) has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  13. Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition

    CERN Document Server

    Malakyan, Y P; Budker, D; Kimball, D F; Yashchuk, V V; Malakyan, Yu. P.

    2003-01-01

    A low-light-power theory of nonlinear magneto-optical rotation of frequency-modulated light resonant with a J=1->J'=0 transition is presented. The theory is developed for a Doppler-free transition, and then modified to account for Doppler broadening and velocity mixing due to collisions. The results of the theory are shown to be in qualitative agreement with experimental data obtained for the rubidium D1 line.

  14. Evidence for anomalous optical transition radiation linear polarization effects in beam-profile monitors

    Directory of Open Access Journals (Sweden)

    A. H. Lumpkin

    2013-10-01

    Full Text Available Investigations of the effects of optical transition radiation (OTR polarization components on beam profiles are presented. The transverse profiles are examined using the OTR perpendicular and parallel polarization components with respect to the dimension of interest. We observed ∼15% projected profile size reductions with the perpendicularly polarized components on a 65-μm beam image size case at 14 MeV, a 150-μm beam image size at 4.5 GeV, and a 1100-μm beam image size at 7 GeV. These effects are all several times larger than expected (and anomalous in this sense when compared to the standard OTR point-spread function calculations. We propose the time-averaged induced-current distribution which generates the OTR represents the actual beam size more faithfully with the perpendicular polarization component and recommend its routine use and subsequent deconvolution.

  15. Topological phase transition and charge pumping in a one-dimensional periodically driven optical lattice

    Science.gov (United States)

    Xu, Zhihao; Zhang, Yunbo; Chen, Shu

    2017-07-01

    Experimental realizations of topological quantum systems and detections of topological invariants in ultracold atomic systems have been a greatly attractive topic. In this work, we propose a scheme to realize topologically different phases in a bichromatic optical lattice subjected to a periodically driven tilt harmonic oscillation, which can be effectively described by a superlattice model with tunable long-range hopping processes. By tuning the ratio of nearest-neighbor (NN) and next-nearest-neighbor (NNN) hopping amplitudes, the system undergoes a topological phase transition accompanied by the change of topological numbers of the lowest band from -1 to 2. Using a slowly time-periodic modulation, the system emerges distinct quantized topological pumped charges (TPCs) of atoms in the filled band for different topological phases. Our scheme is realizable in current cold atomic technique.

  16. Magnetic phase transitions of spin-1 ultracold bosons in a cubic optical lattice

    Science.gov (United States)

    Li, Yongqiang; He, Liang; Hofstetter, Walter

    2016-03-01

    We investigate strongly correlated spin-1 ultracold bosons with antiferromagnetic interactions in a cubic optical lattice, based on bosonic dynamical mean-field theory. Rich phase diagrams of the system are mapped out at both zero and finite temperature, and in particular the existence of a spin-singlet condensate is established. Interestingly, at finite temperature, we find that the superfluid can be heated into a Mott insulator with even (odd) filling via a first- (second-) order phase transition, analogous to the Pomeranchuk effect in 3He. Moreover, for typical experimental setups, we estimate the critical temperature (entropy) for different ordered phases and our results suggest that direct experimental observation of these phases is promising.

  17. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States)); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  18. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States); Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-09-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  19. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 [mu]s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  20. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.; Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-12-31

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  1. Optically excited structural transition in atomic wires on surfaces at the quantum limit

    Science.gov (United States)

    Frigge, T.; Hafke, B.; Witte, T.; Krenzer, B.; Streubühr, C.; Samad Syed, A.; Mikšić Trontl, V.; Avigo, I.; Zhou, P.; Ligges, M.; von der Linde, D.; Bovensiepen, U.; Horn-von Hoegen, M.; Wippermann, S.; Lücke, A.; Sanna, S.; Gerstmann, U.; Schmidt, W. G.

    2017-03-01

    Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds. In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer. This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low- to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In-In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors.

  2. Optically excited structural transition in atomic wires on surfaces at the quantum limit.

    Science.gov (United States)

    Frigge, T; Hafke, B; Witte, T; Krenzer, B; Streubühr, C; Samad Syed, A; Mikšić Trontl, V; Avigo, I; Zhou, P; Ligges, M; von der Linde, D; Bovensiepen, U; Horn-von Hoegen, M; Wippermann, S; Lücke, A; Sanna, S; Gerstmann, U; Schmidt, W G

    2017-03-29

    Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds. In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer. This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low- to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In-In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors.

  3. A VLBI experiment using a remote atomic clock via a coherent fibre link

    Science.gov (United States)

    Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide

    2017-02-01

    We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks.

  4. A VLBI experiment using a remote atomic clock via a coherent fibre link

    Science.gov (United States)

    Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide

    2017-01-01

    We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks. PMID:28145451

  5. Band gap energy and optical transitions in polyenes formed by thermal decomposition of polyvinyl alcohol

    Science.gov (United States)

    Kulak, A. I.; Bondarava, G. V.; Shchurevich, O. A.

    2013-07-01

    The band gap of the ensemble of oligoene clusters formed by thermocatalytic decomposition of polyvinyl alcohol is parametrized using optical absorption spectra. A band gap energy of E gm =1.53 ± 0.02 eV at the end of an infinite polyene chain is found by extrapolating the energies of π → π* transitions in clusters with a number of double bonds varying from 4 to 12. This value is close to the band gap of trans-polyacetylene and the lower bound for the Tauc energy E gT =1.50 eV, which characterizes the minimum interband transition energy. E gT is essentially independent of the concentration of oligoene clusters, which is determined by the concentration of the AlCl3 thermal decomposition catalyst. The Urbach energy determined from the long wavelength edge of the spectrum falls from 2.21 to 0.66 eV as the AlCl3 concentration is raised from 11.1 to 41.7 mmol per mol of polyvinyl alcohol structural units.

  6. Dephasing mechanisms of optical transitions in rare-earth-doped transparent ceramics

    Science.gov (United States)

    Kunkel, Nathalie; Bartholomew, John; Welinski, Sacha; Ferrier, Alban; Ikesue, Akio; Goldner, Philippe

    2016-11-01

    We identify and analyze dephasing mechanisms that broaden the optical transitions of rare-earth ions in randomly oriented transparent ceramics. The study examines the narrow F70↔D50 transition of Eu3 + dopants in a series of Y2O3 ceramic samples prepared under varying conditions. We characterize the temperature and magnetic field dependence of the homogeneous linewidth, as well as long-term spectral diffusion on time scales up to 1 s. The results highlight significant differences between samples with differing thermal treatments and Zr4 + additive concentrations. In particular, several distinct magnetic interactions from defect centers are observed, which are clearly distinguished from the broadening due to interactions with two-level systems and phonons. By minimizing the broadening due to the different defect centers, linewidths of the order of 4 kHz are achieved for all samples. The linewidths are limited by temperature-dependent interactions and by an interaction that is yet to be identified. Although the homogeneous linewidth can be narrowed further in these ceramic samples, the broadening is now comparable to the linewidths achieved in rare-earth-ion-doped single crystals. Thus, this work emphasizes the usefulness of studying ceramics to gain insights into dephasing mechanisms relevant to single crystals and suggests that ceramics may be an interesting alternative for applications in classical and quantum information processing.

  7. Symmetry of electron states and optical transitions in GaN/AlN hexagonal quantum dots

    Science.gov (United States)

    Tronc, P.; Smirnov, V. P.; Zhuravlev, K. S.

    2004-11-01

    The exact symmetry of hexagonal quantum dots (QDs) made of materials with the wurtzite structure such as GaN/AlN QDs for example, is described by the C3v point group and does not depend on the existence of a wetting layer. We have determined the possible exact symmetries of electron states and vibration modes in the dots and derived the optical selection rules. The vibration modes involved in the Frölich interaction are totally symmetric with respect to the C3v group and can induce transitions only between states with the same symmetry. The not totally symmetric modes provide other channels for lowering the energy of excited carriers and excitons by connecting states with symmetries different one from another. The rapid decay of created polarons, due to the short lifetime of vibration modes, releases the carriers and excitons into ground levels. In the envelope function approximation (EFA), the symmetry of the dots is represented by the C6v point group. Interband transitions are allowed only between states whose envelope functions have the same symmetry. EFA artificially increases the number of dark exciton symmetries.

  8. Near-UV and optical observations of the transiting exoplanet TrES-3b

    CERN Document Server

    Turner, Jake D; Hardegree-Ullman, Kevin K; Carleton, Timothy M; Walker-LaFollette, Amanda M; Crawford, Benjamin E; Smith, Carter-Thaxton W; McGraw, Allison M; Small, Lindsay C; Rocchetto, Marco; Cunningham, Kathryn I; Towner, Allison P M; Zellem, Robert; Robertson, Amy N; Guvenen, Blythe C; Schwarz, Kamber R; Hardegree-Ullman, Emily E; Collura, Daniel; Henz, Triana N; Lejoly, Cassandra; Richardson, Logan L; Weinand, Michael A; Taylor, Joanna M; Daugherty, Michael J; Wilson, Ashley A; Austin, Carmen L

    2012-01-01

    We observed nine primary transits of the hot Jupiter TrES-3b in several optical and near-UV photometric bands from 2009 June to 2012 April in an attempt to detect its magnetic field. Vidotto, Jardine and Helling suggest that the magnetic field of TrES-3b can be constrained if its near-UV light curve shows an early ingress compared to its optical light curve, while its egress remains unaffected. Predicted magnetic field strengths of Jupiter-like planets should range between 8 G and 30 G. Using these magnetic field values and an assumed B_star of 100 G, the Vidotto et al. method predicts a timing difference of 5-11 min. We did not detect an early ingress in our three nights of near-UV observations, despite an average cadence of 68 s and an average photometric precision of 3.7 mmag. However, we determined an upper limit of TrES-3b's magnetic field strength to range between 0.013 and 1.3 G (for a 1-100 G magnetic field strength range for the host star, TrES-3) using a timing difference of 138 s derived from the N...

  9. Hydrostatic pressure effects on the state density and optical transitions in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Galindez-Ramirez, G; Perez-Merchancano, S T [Departamento de Fisica, Universidad del Cauca, calle 5 4-70, Popayan (Colombia); Paredes Gutierrez, H [Escuela de Fisica, Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia); Gonzalez, J D, E-mail: jdavid0831@gmail.co [Grupo de Investigacion en teorIa de la Materia Condensada, Universidad del Magdalena, A.A. 731, Santa Marta (Colombia)

    2010-09-01

    Using the effective mass approximation and variational method we have computed the effects of hydrostatic pressure on the absorption and photoluminescence spectra in spherical quantum dot GaAs-(Ga, Al) As, considering a finite confinement potential of this particular work we show the optical transitions in quantum of various sizes in the presence of hydrogenic impurities and hydrostatic pressure effects. Our first result describes the spectrum of optical absorption of 500 A QD for different values of hydrostatic pressure P = 0, 20 and 40 Kbar. The absorption peaks are sensitive to the displacement of the impurity center to the edge of the quantum dot and even more when the hydrostatic pressure changes in both cases showing that to the extent that these two effects are stronger quantum dots respond more efficiently. Also this result can be seen in the study of the photoluminescence spectrum as in the case of acceptor impurities consider them more efficiently capture carriers or electrons that pass from the conduction band to the valence band. Density states with randomly distributed impurity show that the additional peaks in the curves of the density of impurity states appear due to the presence of the additional hydrostatic pressure effects.

  10. Investigation of Two-Dimensional Transition Metal Dichalcogenides by Optical and Scanning Tunneling Spectroscopy

    Science.gov (United States)

    Rigosi, Albert F.

    The goal of this dissertation is not only to present works completed and projects initiated and accomplished, but to also attempt to teach some of the material to readers who have limited exposure to condensed matter. I will offer an introduction to two-dimensional transition metal dichalcogenide materials (2D TMDCs) and the mathematics required to understand the research conducted. Some effort will be given on explaining the experimental setups and preparations. Projects that required elaborate sample fabrication and the yielded results will be summarized. These results have heavy implications for the science behind bound electron-hole pairs, the effects of magnetic fields on such pairs, and extracting the useful optical properties from the material systems in which these pairs reside. Specialized fabrication techniques of samples for longer term projects that I led will also be presented, namely those of constructing heterostructures by stacking various 2D TMDCs for exploring the modulated properties of these novel arrangements. The latter portion of this dissertation will cover the nanoscopic dynamics of TMDC heterostructures. The Kramers-Kronig relations will be derived and discussed in detail. Data and results regarding the electronic structure of these materials, their heterostructures, and their custom alloys measured via scanning tunneling microscopy will be presented. Coupled with the measured optical properties, significant numerical quantities that characterize these materials are extracted. There will be several appendices that offer some supplementary information and basic summaries about all the projects that were initiated.

  11. Tolerancing, alignment and test of the Transiting Exoplanet Survey Satellite (TESS) optical assembly

    Science.gov (United States)

    Primeau, Brian; Balonek, Gregory; MacDonald, Robert; Chrisp, Michael; Chesbrough, Christian; Andre, James; Clark, Kristin

    2016-09-01

    The Transiting Exoplanet Survey Satellite (TESS) will carry four visible waveband seven-element refractive f/1.4 lenses, each with a 34 degree diagonal field of view. This paper describes the tolerancing, assembly and alignment methods developed during the build of the TESS Risk Reduction Unit optical system. Lens assembly tolerances were derived from a sensitivity analysis using an image quality metric customized for mission performance. The optomechanical design consists of a two-stage lens housing that provides access for active alignment of each lens using a Trioptics OptiCentric measurement system. Thermal stresses and alignment shifts are mitigated by mounting the optics with cast RTV silicone spacers into individually aligned bezels, and custom fixtures were developed to aid in RTV bonding with reduced alignment error. The lens assembly was tested interferometrically over the field of view at room temperature and results were used to successfully predict lens performance and compensator adjustments and detector shim thickness for the -75C operational temperature and pressure.

  12. Robotic Transit Follow-up: Adaptive Optics Imaging of Thousands of Stars

    Science.gov (United States)

    Law, Nicholas M.; Morton, T.; Baranec, C.; Riddle, R. L.; Tendulkar, S. P.; Johnson, J. A.; Bui, K.; Burse, M.; Chordia, P.; Das, H.; Dekany, R.; Kulkarni, S. R.; Punnadi, S.; Ramaprakash, A. N.; Robo-AO Collaboration

    2013-01-01

    Stars that host transiting exoplanet candidates may have close companions. If undetected, these companions can produce false-positive planets or affect the measured exoplanet characteristics. High-angular-resolution imaging is required to resolve these systems. Up to now, it has been impossible to obtain adaptive optics images of all the thousands of candidates generated by large surveys like Kepler because of the faintness of the targets and the excessive observing time required. The Robo-AO robotic laser adaptive optics system, newly-commissioned on the Palomar 60-inch telescope, is the first system capable of rapidly observing thousands of targets at high resolution. Robo-AO routinely images 200+ targets per night and produces 0.1" FWHM images in visible wavelengths similar to the Kepler passband. We are using Robo-AO to perform a stellar companion search of unprecedented size, including every Kepler planet candidate and 3,000 nearby planet-search stars. In our first observing season we have imaged over 1,000 Kepler objects of interest and 75% of the Northern stars within 25pc. We will describe the system and discuss its use for future exoplanet surveys such as TESS. We will also present the first results from the survey: a comprehensive assessment of stellar multiplicity among Kepler exoplanet hosts and the discovery of new close stellar companions around Kepler objects of interest.

  13. Clocks around Sgr A*

    CERN Document Server

    Angélil, Raymond

    2014-01-01

    The S stars near the Galactic centre and any pulsars that may be on similar orbits, can be modelled in a unified way as clocks orbiting a black hole, and hence are potential probes of relativistic effects, including block-hole spin. The high eccentricities of many S stars mean that relativistic effects peak strongly around pericentre; for example, orbit precession is not a smooth effect but almost a kick at pericentre. We argue that concentration around pericentre will be an advantage when analysing redshift or pulse-arrival data to measure relativistic effects, because cumulative precession will be drowned out by Newtonian perturbations from other mass in the Galactic-centre region. Wavelet decomposition may be a way to disentangle relativistic effects from Newton perturbations. Assuming a plausible model for Newtonian perturbations on S2, relativity appears to be strongest in a two-year interval around pericentre, in wavelet modes of timescale approximately 6 months.

  14. Clock Genes in Glia Cells

    Science.gov (United States)

    Chi-Castañeda, Donají

    2016-01-01

    Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the environment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as “clock-controlled genes.” Several brain regions other than the SCN express circadian rhythms of clock genes, including the amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in rhythmicity. However, only certain types of glia cells may be called “glial clocks,” since they express PER-based circadian oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about clock genes in glia cells, their plausible role as oscillators and their medical implications. PMID:27666286

  15. Dependence of energy levels and optical transitions on layer thicknesses in InSe/GaSe superlattices

    Science.gov (United States)

    Erkoç, Şakir; Katırcıoğlu, Şenay

    1998-01-01

    We have investigated the dependence of energy levels and optical transition matrix elements in InSe/GaSe superlattices on well and/or barrier widths. Self-consistent-field calculations have been performed within the effective-mass theory approximation.

  16. Research activity on NaxCoO2 single crystals: A brief review on optical conductivity and metamagnetic transition phenomenon

    Directory of Open Access Journals (Sweden)

    N.L. Wang and J.L. Luo

    2005-01-01

    Full Text Available NaxCoO2 material is of great interest because of its rich electronic phase diagram, as well as for displaying superconductivity when intercalated with water. This paper briefly reviews our research activity on its optical properties and a metamagnetic transition phenomenon.

  17. Photoreflectance studies of optical transitions in type II (GaAs) sub m (AlAs) sub n superlattices

    CERN Document Server

    Wang, G; Kitaev, Y E; Planel, R

    2003-01-01

    Photoreflectance (PR) spectra of two type II [001](GaAs) sub m (AlAs) sub n superlattices (SLs) have been measured at 77 K. In the conventional picture of the envelope-function approximation, the lowest conduction state originates, in the first sample, from the X sub z point of the AlAs Brillouin zone (z being the growth direction) whereas it originates from the X sub x sub , sub y point in the second sample. Our spectra exhibit Franz-Keldysh oscillation (FKO) features and interband transition lines. The origin of the built-in electric field within the samples is discussed and its strength calculated from FKOs. For interpreting our spectra of interband optical transitions, a least-squares fit of the data to the Aspnes third-derivative functional form has been performed as well as computation of the optical transition energies. From the energy and amplitude of the interband transition lines in PR spectra, we showed that the two SLs are pseudo-direct, i.e. the ground optical transition in any of them is direct ...

  18. Optical and structural study of the pressure-induced phase transition of CdWO4

    Science.gov (United States)

    Ruiz-Fuertes, J.; Friedrich, A.; Errandonea, D.; Segura, A.; Morgenroth, W.; Rodríguez-Hernández, P.; Muñoz, A.; Meng, Y.

    2017-05-01

    The optical absorption of CdWO4 is reported at high pressures up to 23 GPa. The onset of a phase transition was detected at 19.5 GPa, in good agreement with a previous Raman spectroscopy study. The crystal structure of the high-pressure phase of CdWO4 was solved at 22 GPa, employing single-crystal synchrotron x-ray diffraction. The symmetry changes from space group P 2 /c in the low-pressure wolframite phase to P 21/c in the high-pressure postwolframite phase accompanied by a doubling of the unit-cell volume. The octahedral oxygen coordination of the tungsten and cadmium ions is increased to [7]-fold and [6+1]-fold, respectively, at the phase transition. The compressibility of the low-pressure phase of CdWO4 has been reevaluated with powder x-ray diffraction up to 15 GPa, finding a bulk modulus of B0=123 GPa. The direct band gap of the low-pressure phase increases with compression up to 16.9 GPa at 12 meV/GPa. At this point an indirect band gap crosses the direct band gap and decreases at -2 meV/GPa up to 19.5 GPa where the phase transition starts. At the phase transition the band gap collapses by 0.7 eV and another direct band gap decreases at -50 meV/GPa up to the maximum measured pressure. The structural stability of the postwolframite structure is confirmed by ab initio calculations, finding the postwolframite-type phase to be more stable than the wolframite at 18 GPa. Lattice dynamic calculations based on space group P 21/c explain well the Raman-active modes previously measured in the high-pressure postwolframite phase. The pressure-induced band gap crossing in the wolframite phase as well as the pressure dependence of the direct band gap in the high-pressure phase are further discussed with respect to the calculations.

  19. Simulating Future GPS Clock Scenarios with Two Composite Clock Algorithms

    Science.gov (United States)

    2010-11-01

    Alexandria, Virginia), pp. 223-242. [8] C. A. Greenhall, 2007, “A Kalman filter clock ensemble algorithm that admits measurement noise,” Metrologia ...43, S311-S321. [9] J. A. Davis, C. A. Greenhall, and P. W. Stacey, 2005, “A Kalman filter clock algorithm for use in the presence of flicker frequency modulation noise,” Metrologia , 42, 1-10.

  20. Circadian clock components in the rat neocortex

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Fahrenkrug, Jan

    2013-01-01

    The circadian master clock of the mammalian brain resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. At the molecular level, the clock of the SCN is driven by a transcriptional/posttranslational autoregulatory network with clock gene products as core elements. Recent investigations...... have shown the presence of peripheral clocks in extra-hypothalamic areas of the central nervous system. However, knowledge on the clock gene network in the cerebral cortex is limited. We here show that the mammalian clock genes Per1, Per2, Per3, Cry1, Cry2, Bmal1, Clock, Nr1d1 and Dbp are expressed...

  1. Frequency measurement of the 2S(1/2)-2D(3/2) electric quadrupole transition in a single 171Yb+ ion.

    Science.gov (United States)

    Webster, Stephen; Godun, Rachel; King, Steven; Huang, Guilong; Walton, Barney; Tsatourian, Veronika; Margolis, Helen; Lea, Stephen; Gill, Patrick

    2010-03-01

    We report on precision laser spectroscopy of the 2S(1/2)(F = 0)-2D(3/2) (F = 2, m(F) = 0) clock transition in a single ion of 171Yb+. The absolute value of the transition frequency, determined using an optical frequency comb referenced to a hydrogen maser, is 688358979309310 +/- 9 Hz. This corresponds to a fractional frequency uncertainty of 1.3 x 10(-14).

  2. Study of the 5p3/2 -> 6p3/2 electric dipole forbidden transition in atomic rubidium using optical-optical double resonance spectroscopy

    CERN Document Server

    Ponciano-Ojeda, Francisco; López-Hernández, Oscar; Mojica-Casique, Cristian; Colín-Rodríguez, Ricardo; Ramírez-Martínez, Fernando; Flores-Mijangos, Jesús; Sahagún, Daniel; Jáuregui, Rocío; Jiménez-Mier, José

    2015-01-01

    Direct evidence of excitation of the 5p3/2 -> 6p3/2 electric dipole forbidden transition in atomic rubidium is presented. The experiments were performed in a room temperature rubidium cell with continuous wave extended cavity diode lasers. Optical-optical double resonance spectroscopy with counterpropagating beams allows the detection of the non-dipole transition free of Doppler broadening. The 5p3/2 state is prepared by excitation with a laser locked to the maximum F cyclic transition of the D2 line, and the forbidden transition is produced by excitation with a 911 nm laser. Production of the forbidden transition is monitored by detection of the 420 nm fluorescence that results from decay of the 6p3/2 state. Spectra with three narrow lines (~ 13 MHz FWHM) with the characteristic F - 1, F and F + 1 splitting of the 6p3/2 hyperfine structure in both rubidium isotopes were obtained. The results are in very good agreement with a direct calculation that takes into account the 5s -> 5p3/2 preparation dynamics, the...

  3. Abnormal Dielectric Response in an Optical Range Based on Electronic Transition in Rare-Earth-Ion-Doped Crystals

    Institute of Scientific and Technical Information of China (English)

    FU Xiao-Jian; XU Yuan-Da; ZHOU Ji

    2012-01-01

    A new scheme to realize an abnormal dielectric response at optical wavelength is developed on the basis of twolevel electronic transition of rare-earth ion doped crystals.Based on the semi-classical theory and the Judd-Ofelt theory,the electric dipole transition under a weak field is analyzed,and a general expression for the frequencydependent dielectric constant is obtained.As an example,the permittivity of (Erx Y1-x)3Al5O12 is calculated numerically in consideration of the transition between 4I15/2and 4F9/2.An optimized dielectric property with a negative real part and low absorption is achieved.This proposes a new mechanism for building extraordinary electromagnetic media at optical frequencies by using a quantum process.%A new scheme to realize an abnormal dielectric response at optical wavelength is developed on the basis of two-level electronic transition of rare-earth ion doped crystals. Based on the semi-classical theory and the Judd-Ofelt theory, the electric dipole transition under a weak Reid is analyzed, and a general expression for the frequency-dependent dielectric constant is obtained. As an example, the permittivity of (ErxY1-x)3A15O12 is calculated numerically in consideration of the transition between 4I15/2 and 4F9/2. An optimized dielectric property with a negative real part and low absorption is achieved. This proposes a new mechanism for building extraordinary electromagnetic media at optical frequencies by using a quantum process.

  4. 75 FR 10799 - Transitions Optical, Inc.; Analysis to Aid Public Comment

    Science.gov (United States)

    2010-03-09

    ... lenses to Transitions, and Transitions uses proprietary methods to apply patented photochromic dyes or... Transitions' own products - this is a part of the natural competitive process. This type of consumer...

  5. Magneto-Optical Trapping of Ytterbium Atoms with a 398.9 nm Laser

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng-Yi; XIONG Zhuan-Xian; LIANG Jie; HE Ling-Xiang; LU Bao-Long

    2008-01-01

    We report the realization of ytterbium magneto-optical trap (MOT) operating on the dipole-allowed 1S0 - 1P1 transition at 398.9nm. The MOT is loaded by a slowed atomic beam produced by a Zeeman slower. All seven stable isotopes of Yb atoms could be trapped separately at different laser detuning values. Over 107 174Yb atoms are collected in the MOT, whereas the atom number of fermionic isotope 171Yb is roughly 2.3 × 106 due to a lower abundance. Without the Zeeman slower, the trapped atom numbers are one order of magnitude lower.Both the even and odd isotopes are recognized as excellent candidates of optical clock transition, so the cooling and trapping of ytterbium atoms by the blue MOT is an important step for building an optical clock.

  6. Einstein's Clocks and Langevin's Twins

    CERN Document Server

    Weinstein, Galina

    2012-01-01

    In 1905 Einstein presented the Clock Paradox and in 1911 Paul Langevin expanded Einstein's result to human observers, the "Twin Paradox." I will explain the crucial difference between Einstein and Langevin. Einstein did not present the so-called "Twin Paradox." Later Einstein continued to speak about the clock paradox. Einstein might not have been interested in the question: what happens to the observers themselves. The reason for this could be the following; Einstein dealt with measurement procedures, clocks and measuring rods. Einstein's observers were measuring time with these clocks and measuring rods. Einstein might not have been interested in so-called biology of the observers, whether these observers were getting older, younger, or whether they have gone any other changes; these changes appeared to be out of the scope of his "Principle of relativity" or kinematics. The processes and changes occurring within observers seemed to be good for philosophical discussions. Later writers criticized Einstein's c...

  7. Clock Synchronization and Navigation in the Vicinity of the Earth

    CERN Document Server

    Bahder, T B

    2004-01-01

    Clock synchronization is the backbone of applications such as high-accuracy satellite navigation, geolocation, space-based interferometry, and cryptographic communication systems. The high accuracy of synchronization needed over satellite-to-ground and satellite-to-satellite distances requires the use of general relativistic concepts. The role of geometrical optics and antenna phase center approximations are discussed in high accuracy work. The clock synchronization problem is explored from a general relativistic point of view, with emphasis on the local measurement process and the use of the tetrad formalism as the correct model of relativistic measurements. The treatment makes use of J. L. Synge's world function of space-time as a basic coordinate independent geometric concept. A metric is used for space-time in the vicinity of the Earth, where coordinate time is proper time on the geoid. The problem of satellite clock syntonization is analyzed by numerically integrating the geodesic equations of motion for...

  8. Composite pulses in Hyper-Ramsey spectroscopy for the next generation of atomic clocks

    Science.gov (United States)

    Zanon-Willette, T.; Minissale, M.; Yudin, V. I.; Taichenachev, A. V.

    2016-06-01

    The next generation of atomic frequency standards based on an ensemble of neutral atoms or a single-ion will provide very stringent tests in metrology, applied and fundamental physics requiring a new step in very precise control of external systematic corrections. In the proceedings of the 8th Symposium on Frequency Standards and Metrology, we present a generalization of the recent Hyper-Ramsey spectroscopy with separated oscillating fields using composites pulses in order to suppress field frequency shifts induced by the interrogation laser itself. Sequences of laser pulses including specific selection of phases, frequency detunings and durations are elaborated to generate spectroscopic signals with a strong reduction of the light-shift perturbation by off resonant states. New optical clocks based on weakly allowed or completely forbidden transitions in atoms, ions, molecules and nuclei will benefit from these generalized Ramsey schemes to reach relative accuracies well below the 10-18 level.

  9. Precision Excited State Lifetime Measurements for Atomic Parity Violation and Atomic Clocks

    Science.gov (United States)

    Sell, Jerry; Patterson, Brian; Gearba, Alina; Snell, Jeremy; Knize, Randy

    2016-05-01

    Measurements of excited state atomic lifetimes provide a valuable test of atomic theory, allowing comparisons between experimental and theoretical transition dipole matrix elements. Such tests are important in Rb and Cs, where atomic parity violating experiments have been performed or proposed, and where atomic structure calculations are required to properly interpret the parity violating effect. In optical lattice clocks, precision lifetime measurements can aid in reducing the uncertainty of frequency shifts due to the surrounding blackbody radiation field. We will present our technique for precisely measuring excited state lifetimes which employs mode-locked ultrafast lasers interacting with two counter-propagating atomic beams. This method allows the timing in the experiment to be based on the inherent timing stability of mode-locked lasers, while counter-propagating atomic beams provides cancellation of systematic errors due to atomic motion to first order. Our current progress measuring Rb excited state lifetimes will be presented along with future planned measurements in Yb.

  10. Composite pulses in Hyper-Ramsey spectroscopy for the next generation of atomic clocks

    CERN Document Server

    Zanon-Willette, T; Yudin, V I; Taichenachev, A V

    2016-01-01

    The next generation of atomic frequency standards based on an ensemble of neutral atoms or a single-ion will provide very stringent tests in metrology, applied and fundamental physics requiring a new step in very precise control of external systematic corrections. In the proceedings of the 8th Symposium on Frequency Standards and Metrology, we present a generalization of the recent Hyper-Ramsey spectroscopy with separated oscillating fields using composites pulses in order to suppress field frequency shifts induced by the interrogation laser itself. Sequences of laser pulses including specific selection of phases, frequency detunings and durations are elaborated to generate spectroscopic signals with a strong reduction of the light-shift perturbation by off resonant states. New optical clocks based on weakly allowed or completely forbidden transitions in atoms, ions, molecules and nuclei will benefit from these generalized Ramsey schemes to reach relative accuracies well below the 10$^{-18}$ level.

  11. Stochastic models for atomic clocks

    Science.gov (United States)

    Barnes, J. A.; Jones, R. H.; Tryon, P. V.; Allan, D. W.

    1983-01-01

    For the atomic clocks used in the National Bureau of Standards Time Scales, an adequate model is the superposition of white FM, random walk FM, and linear frequency drift for times longer than about one minute. The model was tested on several clocks using maximum likelihood techniques for parameter estimation and the residuals were acceptably random. Conventional diagnostics indicate that additional model elements contribute no significant improvement to the model even at the expense of the added model complexity.

  12. Wave onset in central gray matter - its intrinsic optical signal and phase transitions in extracellular polymers

    Directory of Open Access Journals (Sweden)

    VERA M. FERNANDES-DE-LIMA

    2001-09-01

    Full Text Available The brain is an excitable media in which excitation waves propagate at several scales of time and space. ''One-dimensional'' action potentials (millisecond scale along the axon membrane, and spreading depression waves (seconds to minutes at the three dimensions of the gray matter neuropil (complex of interacting membranes are examples of excitation waves. In the retina, excitation waves have a prominent intrinsic optical signal (IOS. This optical signal is created by light scatter and has different components at the red and blue end of the spectrum. We could observe the wave onset in the retina, and measure the optical changes at the critical transition from quiescence to propagating wave. The results demonstrated the presence of fluctuations preceding propagation and suggested a phase transition. We have interpreted these results based on an extrapolation from Tasaki's experiments with action potentials and volume phase transitions of polymers. Thus, the scatter of red light appeared to be a volume phase transition in the extracellular matrix that was caused by the interactions between the cellular membrane cell coat and the extracellular sugar and protein complexes. If this hypothesis were correct, then forcing extracellular current flow should create a similar signal in another tissue, provided that this tissue was also transparent to light and with a similarly narrow extracellular space. This control tissue exists and it is the crystalline lens. We performed the experiments and confirmed the optical changes. Phase transitions in the extracellular polymers could be an important part of the long-range correlations found during wave propagation in central nervous tissue.O encéfalo é um meio excitável no qual ondas de excitação se propagam em várias escalas de tempo e espaço. Potenciais de axônios ''unidimensionais'' (escala de milisegundos ao longo da membrana axonal e ondas de depressão alastrante (segundos a minutos nas três dimens

  13. Buffer Gas Experiments in Mercury (Hg+) Ion Clock

    Science.gov (United States)

    Chung, Sang K.; Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2004-01-01

    We describe the results of the frequency shifts measured from various buffer gases that might be used as a buffer gas to increase the loading efficiency and cooling of ions trapped in a small mercury ion clock. The small mass, volume and power requirement of space clock precludes the use of turbo pumps. Hence, a hermetically sealed vacuum system, incorporating a suitable getter material with a fixed amount of inert buffer gas may be a practical alternative to the groundbased system. The collision shifts of 40,507,347.996xx Hz clock transition for helium, neon and argon buffer gases were measured in the ambient earth magnetic field. In addition to the above non-getterable inert gases we also measured the frequency shifts due to getterable, molecular hydrogen and nitrogen gases which may be used as buffer gases when incorporated with a miniature ion pump. We also examined the frequency shift due to the low methane gas partial pressure in a fixed higher pressure neon buffer gas environment. Methane gas interacted with mercury ions in a peculiar way as to preserve the ion number but to relax the population difference in the two hyperfine clock states and thereby reducing the clock resonance signal. The same population relaxation was also observed for other molecular buffer gases (N H,) but at much reduced rate.

  14. Buffer Gas Experiments in Mercury (Hg+) Ion Clock

    Science.gov (United States)

    Chung, Sang K.; Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2004-01-01

    We describe the results of the frequency shifts measured from various buffer gases that might be used as a buffer gas to increase the loading efficiency and cooling of ions trapped in a small mercury ion clock. The small mass, volume and power requirement of space clock precludes the use of turbo pumps. Hence, a hermetically sealed vacuum system, incorporating a suitable getter material with a fixed amount of inert buffer gas may be a practical alternative to the groundbased system. The collision shifts of 40,507,347.996xx Hz clock transition for helium, neon and argon buffer gases were measured in the ambient earth magnetic field. In addition to the above non-getterable inert gases we also measured the frequency shifts due to getterable, molecular hydrogen and nitrogen gases which may be used as buffer gases when incorporated with a miniature ion pump. We also examined the frequency shift due to the low methane gas partial pressure in a fixed higher pressure neon buffer gas environment. Methane gas interacted with mercury ions in a peculiar way as to preserve the ion number but to relax the population difference in the two hyperfine clock states and thereby reducing the clock resonance signal. The same population relaxation was also observed for other molecular buffer gases (N H,) but at much reduced rate.

  15. Optical transitions in semiconductor nanospherical core/shell/shell heterostructure in the presence of radial electrostatic field

    Energy Technology Data Exchange (ETDEWEB)

    Baghdasaryan, D.A. [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia); Hayrapetyan, D.B., E-mail: dhayrap82@gmail.com [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia); Yerevan State University, A. Manoogian 1, 0025 Yerevan (Armenia); Harutyunyan, V.A. [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia)

    2017-04-01

    The electronic states and optical properties of spherical nanolayer in the presence of the electrostatic radial field in the strong size quantization regime have been considered. Both analytical and numerical methods have been applied to the problem of one-electron states in the system. According to the intensity of the external electrostatic field, three regimes have been distinguished: week, intermediate and strong. Perturbative approach have been applied to the case of week, WKB to the case of intermediate and variation approach to the case of strong field intensities. The analytical dependencies of the one electron energy and wave function on the electric field value and geometrical parameters of the nanolayer have been achieved. The comparison of the results obtained by the analytical method with the results of the numerical method have been made. The interband and intraband optical transitions caused by incident optical light polarized in z direction have been considered in this system. The selection rules for this transitions have been obtained. The dependence of the absorption coefficient on the energy of incident light for both cases of interband and intraband transitions for every regime of the electrostatic field value have been received. - Highlights: • The electron energy analytical dependencies on the electric field value have been achieved. • The selection rules for transitions between levels with different quantum numbers are revealed. • The interband and intraband absorption coefficients have been studied.

  16. Dynamic contrast optical coherence tomography: quantitative measurement of microvascular transit-time distributions in vivo (Conference Presentation)

    Science.gov (United States)

    Merkle, Conrad W.; Srinivasan, Vivek J.

    2016-03-01

    Transit time is a fundamental microcirculatory parameter that is critical in determining oxygen delivery from capillaries to surrounding tissue. Recently, it was demonstrated theoretically that capillary transit-time heterogeneity potentially leads to non-uniform oxygen extraction in micro-domains. However, in spite of its importance, capillary transit-time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of the kinetics of an intravascular tracer during its passage through the field-of-view. DyC-OCT is used to quantitatively measure the transit-time distribution in microvascular networks in cross-section at the single-capillary level. Transit-time metrics are derived from analysis of the temporal characteristics of the dynamic scattering signal, related to tracer concentration, using indicator-dilution theory. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against the dilution curves measured using a fluorescent plasma label in the surface pial vessels of a mouse brain, imaged through a thinned-skull, glass coverslip-reinforced cranial window, the laminar transit-time distribution was investigated in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with the earliest transit times in the middle cortical layers, and the lowest heterogeneity in cortical layer 4. The new DyC-OCT technique affords a novel perspective of microvascular networks, with the unique capability of performing simultaneous measurements of transit-time distributions across cortical laminae.

  17. Metal-insulator transition in Si(111)-(4 x 1)/(8 x 2)-In studied by optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Speiser, E.; Hinrichs, K.; Cobet, C.; Esser, N. [Leibniz-Institut fuer Analytische Wissenschaften - ISAS - e.V., Albert-Einstein-Str. 9, 12489 Berlin (Germany); Chandola, S. [Leibniz-Institut fuer Analytische Wissenschaften - ISAS - e.V., Albert-Einstein-Str. 9, 12489 Berlin (Germany); School of Physics, Trinity College Dublin 2 (Ireland); Gensch, M. [Helmholtz Zentrum Berlin (Germany); Wippermann, S.; Schmidt, W.G. [Theoretische Physik, Universitaet Paderborn (Germany); Bechstedt, F. [Institut fuer Festkoerpertheorie und -Optik, Friedrich-Schiller-Universitaet, Jena (Germany); Richter, W. [Dipartimento di Fisica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Fleischer, K.; McGilp, J.F. [School of Physics, Trinity College Dublin 2 (Ireland)

    2010-08-15

    Measurements of the surface vibrational modes and optical response of Si(111)-(4 x 1)/(8 x 2)-In are compiled and a comparison to ab initio calculations performed within DFT-LDA formalism is given. Surface resonant Raman spectroscopy allows identifying a number of surface phonons with high spectral precision. The phase transition of the (4 x 1)-(8 x 2) surface structure is found to be accompanied by characteristic changes of the surface phonons, which are discussed with respect to various structural models suggested. The optical anisotropy of the (8 x 2) phase shows that the anisotropic Drude tail of the (4 x 1) phase is replaced by two peaks at 0.50 and 0.72 eV. The spectroscopic signatures of the (4 x 1) and (8 x 2) phases agree with a metal-insulator transition. The mid-IR-anisotropic optical response of the insulating (8 x 2) phase is interpreted in terms of electronic single particle excitations between surface electronic bands related to the In-nanowire surface. Comparison of the measured optical transitions with DFT ab initio calculations for the hexagon model and the trimer model of the (8 x 2) structure shows evidence for the existence of the hexagon structure. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Effect of MWCNTs on the electro-optic properties of 5CB LC cells during the Freedericksz Transition

    Science.gov (United States)

    Eakle, Matthew; Georgiev, Georgi; Atherton, Timothy; Cebe, Peggy

    2014-03-01

    Multi-walled carbon nanotubes (MWCNTs) affect the electro-optic properties of liquid crystals, but the mechanisms of interaction between the two remain not well understood. To address this, we are investigating the effect of alternating electric fields on the optical properties and Freedericksz Transition of 5CB liquid crystal with different concentrations of MWCNTs. 5CB cells with ITO electrodes were made using spin-coated PVA for sample alignment and MylarTM spacer films to control the thickness, which ranged from 12 to 23 microns. Transmission optical ellipsometry was used to measure the optical retardance (phase delay) and uniaxial director angle of 5CB liquid crystals as the peak voltage of a high-frequency (1 kHz - 1 MHz) AC electric field was varied from 0 to 10 V. For constant frequency, the Freedericksz Transition was noted by a sharp decrease in retardance from an initial plateau, which gradually decreased toward zero as the voltage increased. With increasing frequency, the decay broadened and the Freedericksz Transition occurred at higher voltage. Numerical simulations of CNT-facilitated switching are also presented. Research was funded by the National Science Foundation, Polymers Program of the Division of Materials Research, through DMR-12061010.

  19. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    Science.gov (United States)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  20. Laser driven intraband optical transitions in two-dimensional quantum dots and quantum rings

    Science.gov (United States)

    Barseghyan, M. G.; Kirakosyan, A. A.; Laroze, D.

    2017-01-01

    The intraband optical absorption have been investigated in the presence of hydrogenic donor impurity in GaAs/GaAlAs quantum dot and quantum ring in the intense laser field. The single electron energy spectrum and wave functions have been found using the effective mass approximation and exact diagonalization technique. Different selection rules are obtained for intraband transitions depending on the direction of incident light polarization. Due to the accidental degeneracy of the laser dressed impurity states the crossings of the curves of the threshold energies and the dipole matrix elements on laser field parameter have been observed. The intraband absorption coefficient is calculated for different locations of hydrogenic donor impurity and different values of intense laser field parameter. The obtained results show that the absorption spectrum can exhibit either a blue- or redshift depending on the impurity location, values of the laser field parameter and direction of incident light polarization. The obtained theoretical results indicate a novel opportunity to tune the performance of new devices, based on the quantum dots and quantum rings and to control their specific properties by means of intense laser and hydrogenic donor impurity.

  1. Effect of transition metal elements on the structural and optical properties of ZnO nanoparticles

    Indian Academy of Sciences (India)

    I KAZEMINEZHAD; S SAADATMAND; RAMIN YOUSEFI

    2016-06-01

    Undoped and transition metal (TM)-doped ZnO nanoparticles (Zn$_{0.98}$X$_{0.02}$O-NPs, X= Mn, Cr, Co and Fe) were synthesized from a metal nitrate precursor and gelatin by a sol–gel method. The compounds were synthesized at calcination temperatures of 550$^{\\circ}$C for 6 h. The synthesized undoped/doped ZnO-NPs were characterized by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). XRD results indicated that the sample products were crystalline with a hexagonal wurtzite phase. SEM images showed the ZnO-NPs nearly spherical shapes and a non-uniform shape for doped ZnO-NPs. The crystalline development in the ZnO-NPs was investigated by X-ray peak broadening. The size–strain plot (SSP) method was used to study the individual contributions of crystallite sizes and lattice strain of the undoped and doped ZnO-NPs. The obtained results showed that strain ofthe NPs plays an important role in peak broadening; moreover, the mean crystalline size of the undoped and doped ZnO-NPs estimated from the SEM and the SSP method was highly inter-correlated. Finally, optical properties ofthe samples were studied by a UV–Vis spectrometer.

  2. Cycles in spatial and temporal chromosomal organization driven by the circadian clock.

    Science.gov (United States)

    Aguilar-Arnal, Lorena; Hakim, Ofir; Patel, Vishal R; Baldi, Pierre; Hager, Gordon L; Sassone-Corsi, Paolo

    2013-10-01

    Dynamic transitions in the epigenome have been associated with regulated patterns of nuclear organization. The accumulating evidence that chromatin remodeling is implicated in circadian function prompted us to explore whether the clock may control nuclear architecture. We applied the chromosome conformation capture on chip technology in mouse embryonic fibroblasts (MEFs) to demonstrate the presence of circadian long-range interactions using the clock-controlled Dbp gene as bait. The circadian genomic interactions with Dbp were highly specific and were absent in MEFs whose clock was disrupted by ablation of the Bmal1 gene (also called Arntl). We establish that the Dbp circadian interactome contains a wide variety of genes and clock-related DNA elements. These findings reveal a previously unappreciated circadian and clock-dependent shaping of the nuclear landscape.

  3. Ionic and Optical Properties of Methylammonium Lead Iodide Perovskite across the Tetragonal-Cubic Structural Phase Transition

    Energy Technology Data Exchange (ETDEWEB)

    Hoque, Md Nadim Ferdous [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock Texas 79409 USA; Islam, Nazifah [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock Texas 79409 USA; Li, Zhen [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden Colorado 80401 USA; Ren, Guofeng [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock Texas 79409 USA; Zhu, Kai [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden Colorado 80401 USA; Fan, Zhaoyang [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock Texas 79409 USA

    2016-09-01

    Practical hybrid perovskite solar cells (PSCs) must endure temperatures above the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). However, the ionic and optical properties of MAPbI3 in such a temperature range, and particularly, dramatic changes in these properties resulting from a structural phase transition, are not well studied. Herein, we report a striking contrast at approximately 45 degrees C in the ionic/electrical properties of MAPbl3 owing to a change of the ion activation energy from 0.7 to 0.5 eV, whereas the optical properties exhibit no particular transition except for the steady increase of the bandgap with temperature. These observations can be explained by the 'continuous' nature of perovskite phase transition. We speculate that the critical temperature at which the ionic/electrical properties change, although related to crystal symmetry variation, is not necessarily the same temperature as when tetragonal-cubic structural phase transition occurs.

  4. First-Order-Like Phase Transition Induced by Two Different Kinds of Noise in Dispersive Optical Bistability

    Institute of Scientific and Technical Information of China (English)

    HEYing; ZHUShi-Qun

    2003-01-01

    With unified colored noise approximation, the steady state distribution function in dispersive optical bistability including both intensity and phase fluctuations is obtained. The parameter plane of the first-order-like phase transition is a/so derived with numerical method. It is found that the number of extremes at non-zero values of the output field in the steady state distribution function is changed from zero, two to four. It is shown that the strengths of the intensity fluctuation and the phase fluctuation have great effect on the first-order-fike phase transition.

  5. Simulation of the clock framework of Gaia

    CERN Document Server

    Castaneda, J; Portell, J; García-Berro, E; Luri, X; Castaneda, Javier; Gordo, Jose P.; Portell, Jordi; Garcia-Berro, Enrique; Luri, Xavier

    2005-01-01

    Gaia will perform astrometric measurements with an unprecedented resolution. Consequently, the electronics of the Astro instrument must time tag every measurement with a precision of a few nanoseconds. Hence, it requires a high stability clock signal, for which a Rb-type spacecraft master clock has been baselined. The distribution of its signal and the generation of clock subproducts must maintain these high accuracy requirements. We have developed a software application to simulate generic clock frameworks. The most critical clock structures for Gaia have also been identified, and its master clock has been parameterised.

  6. Molecular mechanisms underlying the Arabidopsis circadian clock.

    Science.gov (United States)

    Nakamichi, Norihito

    2011-10-01

    A wide range of biological processes exhibit circadian rhythm, enabling plants to adapt to the environmental day-night cycle. This rhythm is generated by the so-called 'circadian clock'. Although a number of genetic approaches have identified >25 clock-associated genes involved in the Arabidopsis clock mechanism, the molecular functions of a large part of these genes are not known. Recent comprehensive studies have revealed the molecular functions of several key clock-associated proteins. This progress has provided mechanistic insights into how key clock-associated proteins are integrated, and may help in understanding the essence of the clock's molecular mechanisms.

  7. Band Structure and Terahertz Optical Conductivity of Transition Metal Oxides: Theory and Application to CaRuO(3).

    Science.gov (United States)

    Dang, Hung T; Mravlje, Jernej; Georges, Antoine; Millis, Andrew J

    2015-09-04

    Density functional plus dynamical mean field calculations are used to show that in transition metal oxides, rotational and tilting (GdFeO(3)-type) distortions of the ideal cubic perovskite structure produce a multiplicity of low-energy optical transitions which affect the conductivity down to frequencies of the order of 1 or 2 mV (terahertz regime), mimicking non-Fermi-liquid effects even in systems with a strictly Fermi-liquid self-energy. For CaRuO(3), a material whose measured electromagnetic response in the terahertz frequency regime has been interpreted as evidence for non-Fermi-liquid physics, the combination of these band structure effects and a renormalized Fermi-liquid self-energy accounts for the low frequency optical response which had previously been regarded as a signature of exotic physics. Signatures of deviations from Fermi-liquid behavior at higher frequencies (∼100  meV) are discussed.

  8. Analysis of optical transitions in Zn{sub 1-x} Cd{sub x} Se quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz A, P.; Melo P, Osvaldo de [Facultad de Fisica, Universidad de La Habana, Cuba (Cuba); Hernandez C, I. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados, Instituto Politecnico Nacional, Mexico D.F. (Mexico); Martin A, J. [Filial Pedagogica Asamblea de Guaimaro, Ciego de Avila (Cuba)

    1998-12-31

    In this work we will address our attention to three different but actual aspects concerning the physics of Zn{sub 1-x} Cd{sub x} Se/ Zn Se quantum wells (Q Ws). After a brief introduction where the main interest of these structures in the fabrication of blue-green laser and light emitting diodes will be discussed, we will touch first the problem of the band-offsets in Zn{sub 1-x} Cd{sub x} Se/Zn Se heterostructure. Then we will illustrate how the shape of a Zn{sub 1-x} Cd{sub x} Se/Zn Se Q W can be found from two measured transition energies in optical experiment. Finally, the main features of the optical transitions in these Q Ws are demonstrated. (Author)

  9. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  10. Circadian clock proteins and immunity.

    Science.gov (United States)

    Curtis, Anne M; Bellet, Marina M; Sassone-Corsi, Paolo; O'Neill, Luke A J

    2014-02-20

    Immune parameters change with time of day and disruption of circadian rhythms has been linked to inflammatory pathologies. A circadian-clock-controlled immune system might allow an organism to anticipate daily changes in activity and feeding and the associated risk of infection or tissue damage to the host. Responses to bacteria have been shown to vary depending on time of infection, with mice being more at risk of sepsis when challenged ahead of their activity phase. Studies highlight the extent to which the molecular clock, most notably the core clock proteins BMAL1, CLOCK, and REV-ERBα, control fundamental aspects of the immune response. Examples include the BMAL1:CLOCK heterodimer regulating toll-like receptor 9 (TLR9) expression and repressing expression of the inflammatory monocyte chemokine ligand (CCL2) as well as REV-ERBα suppressing the induction of interleukin-6. Understanding the daily rhythm of the immune system could have implications for vaccinations and how we manage infectious and inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Interaction of optical phonons with magnons in orthorhombic crystals. Effect of a magnetic field on structural phase transitions

    Science.gov (United States)

    Men'shenin, V. V.

    2007-05-01

    Interaction of polar optical phonons with magnons in manganates RMn2O5 (where R is a rare-earth ion) has been studied in the approximation of collinear antiferromagnetic ordering of manganese sublattices. It is shown that such interaction takes place only in multisublattice antiferromagnets in which exchange magnetic structures exist that are both even and odd with respect to space inversion. Effect of a magnetic field on the structural phase transitions in these oxides is analyzed.

  12. On the size-dependent magnetism and all-optical magnetization switching of transition-metal silicide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Glushkov, G. I.; Tuchin, A. V.; Popov, S. V.; Bityutskaya, L. A., E-mail: me144@phys.vsu.ru [Voronezh State University (Russian Federation)

    2015-12-15

    Theoretical investigations of the electronic structure, synthesis, and all-optical magnetization switching of transition-metal silicide nanostructures are reported. The magnetic moment of the nanostructures is studied as a function of the silicide cluster size and configuration. The experimentally demonstrated magnetization switching of nanostructured nickel silicide by circularly polarized light makes it possible to create high-speed storage devices with high density data recording.

  13. Intermolecular THz Vibrations Relevant to Optically and Thermally Induced Magnetic Phase Transitions in the Strongly Correlated Organic Radical TTTA

    OpenAIRE

    Kawano, Taro; Katayama, Ikufumi; Ohara, Jun; Ashida, Masaaki; Takeda, Jun

    2014-01-01

    Intermolecular vibrations relevant to optically and thermally induced magnetic phase transitions between low temperature (LT) diamagnetic and high temperature (HT) paramagnetic phases in a strongly correlated organic radical 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA) crystal have been investigated using broadband terahertz (THz) time-domain spectroscopy. Two absorption bands with different polarizations were clearly observed at 1.3 and 4.0 THz in the LT phase, whilst absent in the HT phase. ...

  14. The Dicke model phase transition in the quantum motion of a Bose-Einstein condensate in an optical cavity

    CERN Document Server

    Nagy, D; Szirmai, G; Domokos, P

    2009-01-01

    We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity realizes the spin-boson Dicke-model. The quantum phase transition of the Dicke-model from the normal to the superradiant phase corresponds to the self-organization of atoms from the homogeneous into a periodically patterned distribution above a critical driving strength. The fragility of the ground state due to photon measurement induced back action is calculated.

  15. Phase Noise Analysis of Clock Recovery Based on an Optoelectronic Phase-Locked Loop

    Science.gov (United States)

    Zibar, Darko; Mørk, Jesper; Katsuo Oxenløwe, Leif; Clausen, Anders T.

    2007-03-01

    A detailed theoretical analysis of a clock-recovery (CR) scheme based on an optoelectronic phase-locked loop is presented. The analysis emphasizes the phase noise performance, taking into account the noise of the input data signal, the local voltage-controlled oscillator (VCO), and the laser employed in the loop. The effects of loop time delay and the laser transfer function are included in the stochastic differential equations describing the system, and a detailed timing jitter analysis of this type of optoelectronic CR for high-speed optical-time-division-multiplexing systems is performed. It is shown that a large loop length results in a higher timing jitter of the recovered clock signal. The impact of the loop length on the clock signal jitter can be reduced by using a low-noise VCO and a low loop filter bandwidth. Using the model, the timing jitter of the recovered optical and electrical clock signal can be evaluated. We numerically investigate the timing jitter requirements for combined electrical/optical local oscillators, in order for the recovered clock signal to have less jitter than that of the input signal. The timing jitter requirements for the free-running laser and the VCO are more relaxed for the extracted optical clock (lasers's output) signal.

  16. Optical transitions in semiconductor nanospherical core/shell/shell heterostructure in the presence of radial electrostatic field

    Science.gov (United States)

    Baghdasaryan, D. A.; Hayrapetyan, D. B.; Harutyunyan, V. A.

    2017-04-01

    The electronic states and optical properties of spherical nanolayer in the presence of the electrostatic radial field in the strong size quantization regime have been considered. Both analytical and numerical methods have been applied to the problem of one-electron states in the system. According to the intensity of the external electrostatic field, three regimes have been distinguished: week, intermediate and strong. Perturbative approach have been applied to the case of week, WKB to the case of intermediate and variation approach to the case of strong field intensities. The analytical dependencies of the one electron energy and wave function on the electric field value and geometrical parameters of the nanolayer have been achieved. The comparison of the results obtained by the analytical method with the results of the numerical method have been made. The interband and intraband optical transitions caused by incident optical light polarized in z direction have been considered in this system. The selection rules for this transitions have been obtained. The dependence of the absorption coefficient on the energy of incident light for both cases of interband and intraband transitions for every regime of the electrostatic field value have been received.

  17. Molecular terms, magnetic moments, and optical transitions of molecular ions C60mplus-or-minus

    Science.gov (United States)

    Nikolaev, A. V.; Michel, K. H.

    2002-09-01

    Starting from a multipole expansion of intramolecular Coulomb interactions, we present configuration interaction calculations of the molecular energy terms of the hole configurations (hu)+m, m=2-5, of C60m+ cations, of the electron configurations t1un, n=2-4, of the C60n- anions, and of the exciton configurations (hu+t1u)-, (hu+t1g)- of the neutral C60 molecule. The ground state of C602- is either 3T1g or 1Ag, depending on the energy separation between t1g and t1u levels. There are three close (approx0.03 eV) low lying spin triplets 3T1g, 3Gg, 3T2g for C602+, and three spin quartets 4T1u, 4Gu, 4T2u for C603+, which can be subjected to the Jahn-Teller effect. The number of low lying nearly degenerate states is largest for m=3 holes. We have calculated the magnetic moments of the hole and electron configurations and found that they are independent of molecular orientation with respect to an external magnetic field. The coupling of spin and orbital momenta differs from the atomic case. We analyze the electronic dipolar transitions (t1u)2[right arrow] t1ut1g and (t1u)3 [right arrow](t1u)2t1g for C602- and C603-. Three optical absorption lines (3T1g[right arrow] 3Hu, 3T1u, 3Au) are found for the ground level of C602- and only one line (4Au[right arrow]4T1g) for the ground state of C603-. We compare our results with the experimental data for C60n- in solutions and with earlier theoretical studies.

  18. Fast Asynchronous Data Communication Via Fiber Optics

    Science.gov (United States)

    Bergman, Larry A.; Tell, Robert G.

    1989-01-01

    Transmitter and receiver devised for asynchronous digital communication via optical fiber at rates above 100 Mb/s. Transmitter converts parallel data to serial for high-speed transmission; receiver recovers clock signal and converts data back to parallel. No phase-lock loops used. New receiver design avoids over-sampling altogether. Local sampling oscillator operating nominally at clock frequency generates N clock signals of equally spaced phase, used to clock incoming data into N separate shift registers.

  19. Optical properties of VO{sub 2} films at the phase transition: Influence of substrate and electronic correlations

    Energy Technology Data Exchange (ETDEWEB)

    Peterseim, Tobias; Dressel, Martin [1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart (Germany); Dietrich, Marc; Polity, Angelika [I. Physikalisches Institut, Justus-Liebig Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen (Germany)

    2016-08-21

    Thin films of VO{sub 2} on different substrates, Al{sub 2}O{sub 3} and SiO{sub 2}/Si, have been prepared and characterized from room temperature up to 360 K. From the band structure in the rutile metallic phase and in the monoclinic insulating phase, the optical properties are calculated and compared with reflection measurements performed as a function of temperatures. Various interband transitions can be assigned and compared with previous speculations. We extract the parameters of the metallic charge carriers that evolve upon crossing the insulator-to-metal phase transition and find effects by the substrate. The influence of electronic correlations becomes obvious at the phase transition.

  20. Metabolic regulation of circadian clocks.

    Science.gov (United States)

    Haydon, Michael J; Hearn, Timothy J; Bell, Laura J; Hannah, Matthew A; Webb, Alex A R

    2013-05-01

    Circadian clocks are 24-h timekeeping mechanisms, which have evolved in plants, animals, fungi and bacteria to anticipate changes in light and temperature associated with the rotation of the Earth. The current paradigm to explain how biological clocks provide timing information is based on multiple interlocking transcription-translation negative feedback loops (TTFL), which drive rhythmic gene expression and circadian behaviour of growth and physiology. Metabolism is an important circadian output, which in plants includes photosynthesis, starch metabolism, nutrient assimilation and redox homeostasis. There is increasing evidence in a range of organisms that these metabolic outputs can also contribute to circadian timing and might also comprise independent circadian oscillators. In this review, we summarise the mechanisms of circadian regulation of metabolism by TTFL and consider increasing evidence that rhythmic metabolism contributes to the circadian network. We highlight how this might be relevant to plant circadian clock function.

  1. Types for X10 Clocks

    Directory of Open Access Journals (Sweden)

    Francisco Martins

    2011-10-01

    Full Text Available X10 is a modern language built from the ground up to handle future parallel systems, from multicore machines to cluster configurations. We take a closer look at a pair of synchronisation mechanisms: finish and clocks. The former waits for the termination of parallel computations, the latter allow multiple concurrent activities to wait for each other at certain points in time. In order to better understand these concepts we study a type system for a stripped down version of X10. The main result assures that well typed programs do not run into the errors identified in the X10 language reference, namely the ClockUseException. The study will open, we hope, doors to a more flexible utilisation of clocks in the X10 language.

  2. Synchronous clock stopper for microprocessor

    Science.gov (United States)

    Kitchin, David A. (Inventor)

    1985-01-01

    A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.

  3. Polaritonic-to-Plasmonic Transition in Optically Resonant Bismuth Nanospheres for High-Contrast Switchable Ultraviolet Meta-Filters

    CERN Document Server

    Cuadrado, Alexander; Serna, Rosalia

    2015-01-01

    In the quest aimed at unveiling alternative plasmonic elements overcoming noble metals for selected applications in photonics, we investigate by numerical simulations the near ultraviolet-to-near infrared optical response of solid and liquid Bi nanospheres embedded in a dielectric matrix. We also determine the resulting transmission contrast upon reversible solid-liquid phase transition to evaluate their potential for switchable optical filtering. The optical response of the solid (liquid) Bi nanospheres is ruled by localized polaritonic (plasmonic) resonances tunable by controlling the diameter. For a selected diameter between 20 nm and 50 nm, both solid and liquid nanospheres present a dipolar resonance inducing a strong peak extinction in the near ultraviolet, however at different photon energies. This enables a high transmission contrast at selected near ultraviolet photon energies. It is estimated that a two-dimensional assembly of 20 nm solid Bi nanospheres with a surface coverage of 28% will totally ex...

  4. Performance of horn-coupled transition edge sensors for L- and S-band optical detection on the SAFARI instrument

    Science.gov (United States)

    Goldie, D. J.; Glowacka, D. M.; Withington, S.; Chen, Jiajun; Ade, P. A. R.; Morozov, D.; Sudiwala, R.; Trappe, N. A.; Quaranta, O.

    2016-07-01

    We describe the geometry, architecture, dark- and optical performance of ultra-low-noise transition edge sensors as THz detectors for the SAFARI instrument. The TESs are fabricated from superconducting Mo/Au bilayers coupled to impedance-matched superconducting β-phase Ta thin-film absorbers. The detectors have phonon-limited dark noise equivalent powers of order 0.5 - 1.0 aW/ √ Hz and saturation powers of order 20 - 40 fW. The low temperature test configuration incorporating micro-machined backshorts is also described, and construction and typical performance characteristics for the optical load are shown. We report preliminary measurements of the optical performance of these TESs for two SAFARI bands; L-band at 110 - 210 μm and S-band 34 - 60 μm .

  5. Phase noise analysis of clock recovery based on an optoelectronic phase-locked loop

    DEFF Research Database (Denmark)

    Zibar, Darko; Mørk, Jesper; Oxenløwe, Leif Katsuo

    2007-01-01

    A detailed theoretical analysis of a clock-recovery (CR) scheme based on an optoelectronic phase-locked loop is presented. The analysis emphasizes the phase noise performance, taking into account the noise of the input data signal, the local voltage-controlled oscillator (VCO), and the laser....... It is shown that a large loop length results in a higher timing jitter of the recovered clock signal. The impact of the loop length on the clock signal jitter can be reduced by using a low-noise VCO and a low loop filter bandwidth. Using the model, the timing jitter of the recovered optical and electrical...

  6. A circadian clock in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Eelderink-Chen, Zheng; Mazzotta, Gabriella; Sturre, Marcel; Bosman, Jasper; Roenneberg, Till; Merrow, Martha

    2010-01-01

    Circadian timing is a fundamental biological process, underlying cellular physiology in animals, plants, fungi, and cyanobacteria. Circadian clocks organize gene expression, metabolism, and behavior such that they occur at specific times of day. The biological clocks that orchestrate these daily

  7. Modes Of The Spiral Clock Gong

    Science.gov (United States)

    Perrin, R.; Charnley, T.; Swallowe, G. M.; Banu, H.

    1993-03-01

    The modal frequencies of a spiral clock gong have been measured. The mode numbers and forms of vibrations have been identified by finite element modelling and photographic techniques; very good agreement between modelling and experiment was achieved. All modes were found to be either purely in-plane or out-of-plane. In both cases plots of log (2 n - 1) vs. log ƒ yielded curves with two distinct regions, the transition occurring where the wavelength corresponded to one turn of the spiral. Both sets of lower modes were very complex but the modal frequencies above n = 11 were found to fit a modified form of Chladni's law. It is suggested that the modified Chladni law may form the basis of many musical sounds.

  8. Single-transistor-clocked flip-flop

    Science.gov (United States)

    Zhao, Peiyi; Darwish, Tarek; Bayoumi, Magdy

    2005-08-30

    The invention provides a low power, high performance flip-flop. The flip-flop uses only one clocked transistor. The single clocked transistor is shared by the first and second branches of the device. A pulse generator produces a clock pulse to trigger the flip-flop. In one preferred embodiment the device can be made as a static explicit pulsed flip-flop which employs only two clocked transistors.

  9. Determination of a high spatial resolution geopotential model using atomic clock comparisons

    OpenAIRE

    Lion, Guillaume; Panet, Isabelle; Wolf, Peter; Guerlin, Christine; Bize, Sébastien; Delva, Pacôme

    2016-01-01

    Recent technological advances in optical atomic clocks are opening new perspectives for the direct determination of geopotential differences between any two points at a centimeter-level accuracy in geoid height. However, so far detailed quantitative estimates of the possible improvement in geoid determination when adding such clock measurements to existing data are lacking. We present a first step in that direction with the aim and hope of triggering further work and efforts in this emerging ...

  10. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    R Daniel Rudic

    2004-11-01

    Full Text Available Circadian timing is generated through a unique series of autoregulatory interactions termed the molecular clock. Behavioral rhythms subject to the molecular clock are well characterized. We demonstrate a role for Bmal1 and Clock in the regulation of glucose homeostasis. Inactivation of the known clock components Bmal1 (Mop3 and Clock suppress the diurnal variation in glucose and triglycerides. Gluconeogenesis is abolished by deletion of Bmal1 and is depressed in Clock mutants, but the counterregulatory response of corticosterone and glucagon to insulin-induced hypoglycaemia is retained. Furthermore, a high-fat diet modulates carbohydrate metabolism by amplifying circadian variation in glucose tolerance and insulin sensitivity, and mutation of Clock restores the chow-fed phenotype. Bmal1 and Clock, genes that function in the core molecular clock, exert profound control over recovery from insulin-induced hypoglycaemia. Furthermore, asynchronous dietary cues may modify glucose homeostasis via their interactions with peripheral molecular clocks.

  11. Light and the human circadian clock

    NARCIS (Netherlands)

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the

  12. Light and the human circadian clock

    NARCIS (Netherlands)

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the f

  13. Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty.

    Science.gov (United States)

    Huntemann, N; Sanner, C; Lipphardt, B; Tamm, Chr; Peik, E

    2016-02-12

    We experimentally investigate an optical frequency standard based on the (2)S1/2(F=0)→(2)F7/2(F=3) electric octupole (E3) transition of a single trapped (171)Yb+ ion. For the spectroscopy of this strongly forbidden transition, we utilize a Ramsey-type excitation scheme that provides immunity to probe-induced frequency shifts. The cancellation of these shifts is controlled by interleaved single-pulse Rabi spectroscopy, which reduces the related relative frequency uncertainty to 1.1×10(-18). To determine the frequency shift due to thermal radiation emitted by the ion's environment, we measure the static scalar differential polarizability of the E3 transition as 0.888(16)×10(-40)  J m(2)/V(2) and a dynamic correction η(300  K)=-0.0015(7). This reduces the uncertainty due to thermal radiation to 1.8×10(-18). The residual motion of the ion yields the largest contribution (2.1×10(-18)) to the total systematic relative uncertainty of the clock of 3.2×10(-18).

  14. Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition

    Science.gov (United States)

    Yan-Chao, She; Ting-Ting, Luo; Wei-Xi, Zhang; Mao-Wu, Ran; Deng-Long, Wang

    2016-01-01

    The linear optical properties and Kerr nonlinear optical response in a four-level loop configuration GaAs/AlGaAs semiconductor quantum dot are analytically studied with the phonon-assisted transition (PAT). It is shown that the changes among a single electromagnetically induced transparency (EIT) window, a double EIT window and the amplification of the probe field in the absorption curves can be controlled by varying the strength of PAT κ. Meanwhile, double switching from the anomalous dispersion regime to the normal dispersion regime can likely be achieved by increasing the Rabi energy of the external optical control field. Furthermore, we demonstrate that the group velocity of the probe field can be practically regulated by varying the PAT and the intensity of the optical control field. In the nonlinear case, it is shown that the large SPM and XPM can be achieved as linear absorption vanishes simultaneously, and the PAT can suppress both third-order self-Kerr and the cross-Kerr nonlinear effect of the QD. Our study is much more practical than its atomic counterpart due to its flexible design and the controllable interference strength, and may provide some new possibilities for technological applications. Project supported by the National Natural Science Foundation of China (Grant No. 61367003), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 12A140), and the Scientific Research Fund of Guizhou Provincial Education Department, China (Grant Nos. KY[2015]384 and KY[2015]446).

  15. Biological clocks: riding the tides.

    Science.gov (United States)

    de la Iglesia, Horacio O; Johnson, Carl Hirschie

    2013-10-21

    Animals with habitats in the intertidal zone often display biological rhythms that coordinate with both the tidal and the daily environmental cycles. Two recent studies show that the molecular components of the biological clocks mediating tidal rhythms are likely different from the phylogenetically conserved components that mediate circadian (daily) rhythms.

  16. A generalized gravitomagnetic clock effect

    CERN Document Server

    Hackmann, Eva

    2014-01-01

    In General Relativity the rotation of a gravitating body like the Earth influences the motion of orbiting test particles or satellites in a non-Newtonian way. This causes e.g. a precession of the orbital plane, known as the Lense-Thirring effect, and a precession of the spin of a gyroscope, known as the Schiff effect. Here we discuss a third effect, first introduced by Cohen and Mashhoon, called the gravitomagnetic clock effect. It describes the difference in proper time of counter revolving clocks after a revolution of $2\\pi$. For two clocks on counter rotating equatorial circular orbits around the Earth the effect is about $10^{-7}$ seconds per revolution, which is quite large. We introduce a general relativistic definition of the gravitomagnetic clock effect which is valid for arbitrary pairs of orbits. This includes rotations in the same direction and different initial conditions, which is crucial if the effect can be detected with existing satellites or with payloads on non-dedicated missions. We also de...

  17. Signaling to the circadian clock: plasticity by chromatin remodeling.

    Science.gov (United States)

    Nakahata, Yasukazu; Grimaldi, Benedetto; Sahar, Saurabh; Hirayama, Jun; Sassone-Corsi, Paolo

    2007-04-01

    Circadian rhythms govern several fundamental physiological functions in almost all organisms, from prokaryotes to humans. The circadian clocks are intrinsic time-tracking systems with which organisms can anticipate environmental changes and adapt to the appropriate time of day. In mammals, circadian rhythms are generated in pacemaker neurons within the suprachiasmatic nuclei (SCN), a small area of the hypothalamus, and are entrained by environmental cues, principally light. Disruption of these rhythms can profoundly influence human health, being linked to depression, insomnia, jet lag, coronary heart disease and a variety of neurodegenerative disorders. It is now well established that circadian clocks operate via transcriptional feedback autoregulatory loops that involve the products of circadian clock genes. Furthermore, peripheral tissues also contain independent clocks, whose oscillatory function is orchestrated by the SCN. The complex program of gene expression that characterizes circadian physiology involves dynamic changes in chromatin transitions. These remodeling events are therefore of great importance to ensure the proper timing and extent of circadian regulation. How signaling influences chromatin remodeling through histone modifications is therefore highly relevant in the context of circadian oscillation. Recent advances in the field have revealed unexpected links between circadian regulators, chromatin remodeling and cellular metabolism.

  18. Ultrafast Phase Comparator for Phase-Locked Loop-Based Optoelectronic Clock Recovery Systems

    DEFF Research Database (Denmark)

    Gomez-Agis, F.; Oxenløwe, Leif Katsuo; Kurimura, S.

    2009-01-01

    The authors report on a novel application of a chi((2)) nonlinear optical device as an ultrafast phase comparator, an essential element that allows an optoelectronic phase-locked loop to perform clock recovery of ultrahigh-speed optical time-division multiplexed (OTDM) signals. Particular interest...

  19. Effects of carbon nanotubes on liquid crystal order parameter and Freedericksz transition in electro-optic cells

    Science.gov (United States)

    Georgiev, Georgi; Gombos, Erin; McIntyre, Michael; Mattera, Michael; Gati, Peter; Cabrera, Yaniel; Cebe, Peggy

    2010-03-01

    We studied the effects of multiwalled carbon nanotubes (MWCTs) at low concentrations (0.01 wt %) on the Freedericksz transition of a 4-Cyano-4'-pentylbipenyl (5CB) liquid crystal using transmission ellipsometry. In addition, we calibrated the altitudinal angle of CNTs as a function of the electric field and directed the azimuthal angle which gave us complete control of the 3D orientation of the CNTs. Our results show that in the presence of CNTs the voltage and width for the Freedericksz transition are reduced by a factor of 1.8 as compared to the control electro-optic cell without CNTs. The shift in transition voltage correlates with increase in order parameter of the electro-optic cell as measured by our polarized UV/Vis absorption spectroscopy results. Research supported by: Assumption College Faculty Development Grant, funding for students' stipends, instrumentation and supplies, the NSF Polymers Program of the DME, grant (DMR-0602473) and NASA grant (NAG8-1167).

  20. Genomic design of strong direct-gap optical transition in Si/Ge core/multishell nanowires

    Science.gov (United States)

    Zhang, Lijun; D'Avezac, Mayeul; Luo, Jun-Wei; Zunger, Alex

    2012-02-01

    Converting the electronically superior but optically impractical indirect-gap Si and Ge semiconductors into a strongly light-absorbing system has been a long-standing challenge, given that the phonon-assisted optical transition of the indirect gap has weak intensity, requiring thick absorbers. One of main strategies has been the use of two-dimensional (2D) layer-by-layer growth of Si/Ge superlattices (SLs). However, the maximum thickness of SLs that can be grown coherently on a substrate is limited by the lattice-mismatch-induced strain. This limitation can be greatly relaxed by changing from 2D SLs to one-dimensional quantum nanowire (NW), where much higher strain can be accommodated. With developed Vapor-Liquid-Solid based technique, experimental growth of Si/Ge core-multishell NWs has recently demonstrated a significant level of synthetic control. However, the number of possible core/multishell sequences and thicknesses might easily reach an astronomic value. We will present here a genomic search for targeted core/multishell NW geometries that give both a direct gap and a significantly enhanced dipole-allowed optical transition in the Si/Ge system, by using a combination of genetic algorithm with atomistic pseudopotential electronic-structure calculations.

  1. Optical cavity resonator in an expanding universe

    Science.gov (United States)

    Kopeikin, Sergei M.

    2015-02-01

    We study the cosmological evolution of frequency of a standing electromagnetic wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. Because of the Einstein principle of equivalence (EEP), one can find a local coordinate system (a local freely falling frame), in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate, . Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to unambiguously decide whether atomic clocks based on quantum transitions of atoms, ticks at the same rate as the clocks based on electromagnetic modes of a cavity. To resolve this ambiguity we have to analyse the cavity rigidity and the oscillation of its electromagnetic modes in an expanding universe by employing the full machinery of the Maxwell equations irrespectively of the underlying theory of gravity. We proceed in this way and found out that the size of the cavity and the electromagnetic frequency experience an adiabatic drift in conformal (unphysical) coordinates as the universe expands in accordance with the Hubble law. We set up the oscillation equation for the resonant electromagnetic modes, solve it by the WKB approximation, and reduce the coordinate-dependent quantities to their counterparts measured by a local observer who counts time with atomic clock. The solution shows that there is a perfect mutual cancellation of the adiabatic drift of cavity's frequency by space transformation to local coordinates and the time counted by the clocks based on electromagnetic modes of cavity has the same rate as that of atomic clocks. We conclude that if general relativity is correct and the local expansion of space is isotropic there should be no cosmological drift of frequency of a

  2. Unraveling the circadian clock in Arabidopsis.

    Science.gov (United States)

    Wang, Xiaoxue; Ma, Ligeng

    2013-02-01

    The circadian clock is an endogenous timing system responsible for coordinating an organism's biological processes with its environment. Interlocked transcriptional feedback loops constitute the fundamental architecture of the circadian clock. In Arabidopsis, three feedback loops, the core loop, morning loop and evening loop, comprise a network that is the basis of the circadian clock. The components of these three loops are regulated in distinct ways, including transcriptional, post-transcriptional and posttranslational mechanisms. The discovery of the DNA-binding and repressive activities of TOC1 has overturned our initial concept of its function in the circadian clock. The alternative splicing of circadian clock-related genes plays an essential role in normal functioning of the clock and enables organisms to sense environmental changes. In this review, we describe the regulatory mechanisms of the circadian clock that have been identified in Arabidopsis.

  3. Circadian clock, cell cycle and cancer

    Directory of Open Access Journals (Sweden)

    Cansu Özbayer

    2011-12-01

    Full Text Available There are a few rhythms of our daily lives that we are under the influence. One of them is characterized by predictable changes over a 24-hour timescale called circadian clock. This cellular clock is coordinated by the suprachiasmatic nucleus in the anterior hypothalamus. The clock consist of an autoregulatory transcription-translation feedback loop compose of four genes/proteins; BMAL1, Clock, Cyrptochrome, and Period. BMAL 1 and Clock are transcriptional factors and Period and Cyrptochrome are their targets. Period and Cyrptochrome dimerize in the cytoplasm to enter the nucleus where they inhibit Clock/BMAL activity.It has been demonstrate that circadian clock plays an important role cellular proliferation, DNA damage and repair mechanisms, checkpoints, apoptosis and cancer.

  4. Lasers, lenses and light curves : adaptive optics microscopy and peculiar transiting exoplanets

    NARCIS (Netherlands)

    Werkhoven, Theodorus Isaak Mattheus van

    2014-01-01

    In the first part of this thesis, we present an adaptive optics implementation for multi-photon microscopy correcting sample-induced wavefront aberrations using either direct wavefront sensing to run a close-loop adaptive optics system (Chapter 3), or use a model-based sensorless approach to iterati

  5. Measurement of phase synchrony of coupled segmentation clocks.

    Science.gov (United States)

    Alam, Md Jahoor; Bhayana, Latika; Devi, Gurumayum Reenaroy; Singh, Heisnam Dinachandra; Singh, R K Brojen; Sharma, B Indrajit

    2011-10-01

    The temporal behavior of segmentation clock oscillations shows phase synchrony via mean field like coupling of delta protein restricting to nearest neighbors only, in a configuration of cells arranged in a regular three dimensional array. We found the increase of amplitudes of oscillating dynamical variables of the cells as the activation rate of delta-notch signaling is increased, however, the frequencies of oscillations are decreased correspondingly. Our results show the phase transition from desynchronized to synchronized behavior by identifying three regimes, namely, desynchronized, transition and synchronized regimes supported by various qualitative and quantitative measurements.

  6. Molecular Dynamics at Electrical- and Optical-Driven Phase Transitions: Time-Resolved Infrared Studies Using Fourier-Transform Spectrometers

    Science.gov (United States)

    Peterseim, Tobias; Dressel, Martin

    2017-01-01

    The time-dependent optical properties of molecular systems are investigated by step-scan Fourier-transform spectroscopy in order to explore the dynamics at phase transitions and molecular orientation in the milli- and microsecond range. The electrical switching of liquid crystals traced by vibrational spectroscopy reveals a rotation of the molecules with a relaxation time of 2 ms. The photo-induced neutral-ionic transition in TTF-CA takes place by a suppression of the dimerization in the ionic phase and creation of neutral domains. The time-dependent infrared spectra, employed to investigate the domain-wall dynamics, depend on temperature and laser pulse intensity; the relaxation of the spectra follows a stretched-exponential decay with relaxation times in the microsecond range strongly dependent on temperature and laser intensity. We present all details of the experimental setups and thoroughly discuss the technical challenges.

  7. Superfluid-Mott-Insulator Phase Transition and Collective Fluctuations in both Phases of Bosons in an Optical Lattice

    Institute of Scientific and Technical Information of China (English)

    ZHU Rui

    2007-01-01

    The Bose Hubbard model describing interacting bosons in an optical lattice is reduced to a simple spin-1 XY model with single-ion anisotropy in the vicinity of the Mott phase. In the strong coupling Mott insulating regime,we propose a mean field theory based on a constraint SU(3) pseudo-boson representation on the effective model and discuss the excitation spectra and the phase transition to the superfluid state. Further to the superfluid phase, we use the coherent-state approach to derive the collective excitation modes. It is found that the Mott phase has two degenerate gapped quadratic excitation spectra which graduate into two degenerate gapless linear ones at the transition point, and one gapless linear mode with one gapped quadratic mode in the superfluid phase.

  8. Molecular Dynamics at Electrical- and Optical-Driven Phase Transitions: Time-Resolved Infrared Studies Using Fourier-Transform Spectrometers

    Science.gov (United States)

    Peterseim, Tobias; Dressel, Martin

    2016-06-01

    The time-dependent optical properties of molecular systems are investigated by step-scan Fourier-transform spectroscopy in order to explore the dynamics at phase transitions and molecular orientation in the milli- and microsecond range. The electrical switching of liquid crystals traced by vibrational spectroscopy reveals a rotation of the molecules with a relaxation time of 2 ms. The photo-induced neutral-ionic transition in TTF-CA takes place by a suppression of the dimerization in the ionic phase and creation of neutral domains. The time-dependent infrared spectra, employed to investigate the domain-wall dynamics, depend on temperature and laser pulse intensity; the relaxation of the spectra follows a stretched-exponential decay with relaxation times in the microsecond range strongly dependent on temperature and laser intensity. We present all details of the experimental setups and thoroughly discuss the technical challenges.

  9. Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system

    CERN Document Server

    Dimer, F; Estienne, B; Parkins, A S

    2006-01-01

    The Dicke model consisting of an ensemble of two-state atoms interacting with a single quantized mode of the electromagnetic field exhibits a zero-temperature phase transition at a critical value of the dipole coupling strength. We propose a scheme based on multilevel atoms and cavity-mediated Raman transitions to realise an effective Dicke system operating in the phase transition regime. Output light from the cavity carries signatures of the critical behavior which is analyzed for the thermodynamic limit where the number of atoms is very large.

  10. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure.

    Science.gov (United States)

    Rybin, Mikhail V; Samusev, Kirill B; Lukashenko, Stanislav Yu; Kivshar, Yuri S; Limonov, Mikhail F

    2016-08-05

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters.

  11. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure

    Science.gov (United States)

    Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2016-08-01

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters.

  12. Ultra-thin and flexible endoscopy probe for optical coherence tomography based on stepwise transitional core fiber.

    Science.gov (United States)

    Lee, Jangbeom; Chae, Yugyeong; Ahn, Yeh-Chan; Moon, Sucbei

    2015-05-01

    We present an ultra-thin fiber-body endoscopy probe for optical coherence tomography (OCT) which is based on a stepwise transitional core (STC) fiber. In a minimalistic design, our probe was made of spliced specialty fibers that could be directly used for beam probing optics without using a lens. In our probe, the OCT light delivered through a single-mode fiber was efficiently expanded to a large mode field of 24 μm diameter for a low beam divergence. The size of our probe was 85 μm in the probe's diameter while operated in a 160-μm thick protective tubing. Through theoretical and experimental analyses, our probe was found to exhibit various attractive features in terms of compactness, flexibility and reliability along with its excellent fabrication simplicity.

  13. Simultaneous subsecond hyperpolarization of the nuclear and electron spins of phosphorus in silicon by optical pumping of exciton transitions.

    Science.gov (United States)

    Yang, A; Steger, M; Sekiguchi, T; Thewalt, M L W; Ladd, T D; Itoh, K M; Riemann, H; Abrosimov, N V; Becker, P; Pohl, H-J

    2009-06-26

    We demonstrate a method which can hyperpolarize both the electron and nuclear spins of 31P donors in Si at low field, where both would be essentially unpolarized in equilibrium. It is based on the selective ionization of donors in a specific hyperfine state by optically pumping donor bound exciton hyperfine transitions, which can be spectrally resolved in 28Si. Electron and nuclear polarizations of 90% and 76%, respectively, are obtained in less than a second, providing an initialization mechanism for qubits based on these spins, and enabling further ESR and NMR studies on dilute 31P in 28Si.

  14. Multimode mean-field model for the quantum phase transition of a Bose-Einstein condensate in an optical resonator

    Science.gov (United States)

    Kónya, G.; Szirmai, G.; Domokos, P.

    2011-11-01

    We develop a mean-field model describing the Hamiltonian interaction of ultracold atoms and the optical field in a cavity. The Bose-Einstein condensate is properly defined by means of a grand-canonical approach. The model is efficient because only the relevant excitation modes are taken into account. However, the model goes beyond the two-mode subspace necessary to describe the self-organization quantum phase transition observed recently. We calculate all the second-order correlations of the coupled atom field and radiation field hybrid bosonic system, including the entanglement between the two types of fields.

  15. Multimode mean-field model for the quantum phase transition of a Bose-Einstein condensate in an optical resonator

    CERN Document Server

    Konya, G; Domokos, P

    2011-01-01

    We develop a mean-field model describing the Hamiltonian interaction of ultracold atoms and the optical field in a cavity. The Bose-Einstein condensate is properly defined by means of a grand-canonical approach. The model is efficient because only the relevant excitation modes are taken into account. However, the model goes beyond the two-mode subspace necessary to describe the self-organization quantum phase transition observed recently. We calculate all the second-order correlations of the coupled atom field and radiation field hybrid bosonic system, including the entanglement between the two types of fields.

  16. Beam Transfer to LHC with the Low Gamma-transition SPS Optics

    CERN Document Server

    Vanbavinckhove, G; Bartosik, H; Bracco, C; Drosdal, L; Gianfelice, E; Goddard, B; Kain, V; Meddahi, M; Mertens, V; Papaphilippou, Y; Uythoven, J; Wenninger, J

    2013-01-01

    A new optics was introduced in the SPS for improv- ing beam stability at high intensity. For transferring the beam to the LHC, the extraction bumps, extraction kick- ers and transfer lines needed to be adapted to the new op- tics. In particular, the transfer lines were re-matched and re-commissioned with the new optics. The first operational results are discussed for the SPS extraction, the transfer lines and the LHC injection. A detailed comparison is pre- sented between the old and the new optics of the trajecto- ries, dispersion, losses and other performance aspects.

  17. Alternative Splicing Mediates Responses of the Arabidopsis Circadian Clock to Temperature Changes[W

    Science.gov (United States)

    James, Allan B.; Syed, Naeem Hasan; Bordage, Simon; Marshall, Jacqueline; Nimmo, Gillian A.; Jenkins, Gareth I.; Herzyk, Pawel; Brown, John W.S.; Nimmo, Hugh G.

    2012-01-01

    Alternative splicing plays crucial roles by influencing the diversity of the transcriptome and proteome and regulating protein structure/function and gene expression. It is widespread in plants, and alteration of the levels of splicing factors leads to a wide variety of growth and developmental phenotypes. The circadian clock is a complex piece of cellular machinery that can regulate physiology and behavior to anticipate predictable environmental changes on a revolving planet. We have performed a system-wide analysis of alternative splicing in clock components in Arabidopsis thaliana plants acclimated to different steady state temperatures or undergoing temperature transitions. This revealed extensive alternative splicing in clock genes and dynamic changes in alternatively spliced transcripts. Several of these changes, notably those affecting the circadian clock genes LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO RESPONSE REGULATOR7, are temperature-dependent and contribute markedly to functionally important changes in clock gene expression in temperature transitions by producing nonfunctional transcripts and/or inducing nonsense-mediated decay. Temperature effects on alternative splicing contribute to a decline in LHY transcript abundance on cooling, but LHY promoter strength is not affected. We propose that temperature-associated alternative splicing is an additional mechanism involved in the operation and regulation of the plant circadian clock. PMID:22408072

  18. Critical behavior of the random-bond clock model

    Science.gov (United States)

    Wu, Raymond P. H.; Lo, Veng-cheong; Huang, Haitao

    2012-09-01

    The critical behavior of the clock model in two-dimensional square lattice is studied numerically using Monte Carlo method with Wolff algorithm. The Kosterlitz-Thouless (KT) transition is observed in the 8-state clock model, where an intermediate phase exists between the low-temperature ordered phase and the high-temperature disordered phase. The bond randomness is introduced to the system by assuming a Gaussian distribution for the coupling coefficients with the mean μ = 1 and different values of variance: from σ2 = 0.1 to σ2 = 3.0. An abrupt jump in the helicity modulus at the transition, which is the key characteristic of the KT transition, is verified with a stability argument. Our results show that, a small amount of disorder (small σ) reduces the critical temperature of the system, without altering the nature of transition. However, a larger amount of disorder changes the transition from the KT-type into that of non-KT-type.

  19. Double-resonance spectroscopy in Rubidium vapour-cells for high performance and miniature atomic clocks

    Science.gov (United States)

    Gharavipour, M.; Affolderbach, C.; Kang, S.; Mileti, G.

    2017-01-01

    We report our studies on using microwave-optical double-resonance (DR) spectroscopy for a high-performance Rb vapour-cell atomic clock in view of future industrial applications. The clock physics package is very compact with a total volume of only 0.8 dm3. It contains a recently in-house developed magnetron-type cavity and a Rb vapour cell. A homed-made frequency-stabilized laser system with an integrated acousto-optical-modulator (AOM) - for switching and controlling the light output power- is used as an optical source in a laser head (LH). The LH has the overall volume of 2.5 dm3 including the laser diode, optical elements, AOM and electronics. In our Rb atomic clock two schemes of continuous-wave DR and Ramsey-DR schemes are used, where the latter one strongly reduces the light-shift effect by separation of the interaction of light and microwave. Applications of the DR clock approach to more radically miniaturized atomic clocks are discussed.

  20. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy.

    Science.gov (United States)

    Derevianko, Andrei; Dzuba, V A; Flambaum, V V

    2012-11-02

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f(12) ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks.

  1. A clock generator for a high-speed high-resolution pipelined A/D converter

    Science.gov (United States)

    Lei, Zhao; Yintang, Yang; Zhangming, Zhu; Lianxi, Liu

    2013-02-01

    A clock generator circuit for a high-speed high-resolution pipelined A/D converter is presented. The circuit is realized by a delay locked loop (DLL), and a new differential structure is used to improve the precision of the charge pump. Meanwhile, a dynamic logic phase detector and a three transistor NAND logic circuit are proposed to reduce the output jitter by improving the steepness of the clock transition. The proposed circuit, designed by SMIC 0.18 μm 3.3 V CMOS technology, is used as a clock generator for a 14 bit 100 MS/s pipelined ADC. The simulation results have shown that the duty cycle ranged from 10% to 90% and can be adjusted. The average duty cycle error is less than 1%. The lock-time is only 13 clock cycles. The active area is 0.05 mm2 and power consumption is less than 15 mW.

  2. Entanglement of quantum clocks through gravity.

    Science.gov (United States)

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-21

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  3. Physical Layer Ethernet Clock Synchronization

    Science.gov (United States)

    2010-11-01

    42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel , Georg...5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...Austrian Academy of Sciences Viktor Kaplan StraÃe 2, A-2700 Wiener Neustadt, Austria 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  4. Inertial Frames and Clock Rates

    CERN Document Server

    Kak, Subhash

    2012-01-01

    This article revisits the historiography of the problem of inertial frames. Specifically, the case of the twins in the clock paradox is considered to see that some resolutions implicitly assume inertiality for the non-accelerating twin. If inertial frames are explicitly identified by motion with respect to the large scale structure of the universe, it makes it possible to consider the relative inertiality of different frames.

  5. Researchers Discover Plants Biological Clock

    Institute of Scientific and Technical Information of China (English)

    王全良

    1996-01-01

    Scientists who created glow-in-the-dark plants by shooting up seedlingswith firefly DNA have identified the first biological clock gene in plants. Discovery of the timepiece gene, which controls such biological rhythmsas daily leaf movements and proe openings, flower-blooming schedules andphotosynthesis cycles, could lead to a host of applications in ornamental horti-culture, agriculture and even human health. Many researchers believe that

  6. Cellular circadian clocks in mood disorders.

    Science.gov (United States)

    McCarthy, Michael J; Welsh, David K

    2012-10-01

    Bipolar disorder (BD) and major depressive disorder (MDD) are heritable neuropsychiatric disorders associated with disrupted circadian rhythms. The hypothesis that circadian clock dysfunction plays a causal role in these disorders has endured for decades but has been difficult to test and remains controversial. In the meantime, the discovery of clock genes and cellular clocks has revolutionized our understanding of circadian timing. Cellular circadian clocks are located in the suprachiasmatic nucleus (SCN), the brain's primary circadian pacemaker, but also throughout the brain and peripheral tissues. In BD and MDD patients, defects have been found in SCN-dependent rhythms of body temperature and melatonin release. However, these are imperfect and indirect indicators of SCN function. Moreover, the SCN may not be particularly relevant to mood regulation, whereas the lateral habenula, ventral tegmentum, and hippocampus, which also contain cellular clocks, have established roles in this regard. Dysfunction in these non-SCN clocks could contribute directly to the pathophysiology of BD/MDD. We hypothesize that circadian clock dysfunction in non-SCN clocks is a trait marker of mood disorders, encoded by pathological genetic variants. Because network features of the SCN render it uniquely resistant to perturbation, previous studies of SCN outputs in mood disorders patients may have failed to detect genetic defects affecting non-SCN clocks, which include not only mood-regulating neurons in the brain but also peripheral cells accessible in human subjects. Therefore, reporters of rhythmic clock gene expression in cells from patients or mouse models could provide a direct assay of the molecular gears of the clock, in cellular clocks that are likely to be more representative than the SCN of mood-regulating neurons in patients. This approach, informed by the new insights and tools of modern chronobiology, will allow a more definitive test of the role of cellular circadian clocks

  7. Timing of Photoperiodic Flowering:Light Perception and Circadian Clock

    Institute of Scientific and Technical Information of China (English)

    Yun Zhou; Xiao-Dong Sun; Min Ni

    2007-01-01

    Flowering symbolizes the transition of a plant from vegetative phase to reproductive phase and is controlled by fairly complex and highly coordinated regulatory pathways. Over the last decade, genetic studies in Arabidopsis have aided the discovery of many signaling components involved in these pathways. In this review, we discuss how the timing of flowering is regulated by photoperiod and the involvement of light perception and the circadian clock in this process. The specific regulatory mechanisms on CONSTANS expression and CONSTANS stability by the circadian clock and photoreceptors are described in detail. In addition, the roles of CONSTANS, FLOWERING LOCUS T, and several other light signaling and circadiandependent components in photoperiodic flowering are also highlighted.

  8. Optical conductivity measurements of GaTa4Se8 under high pressure: evidence of a bandwidth-controlled insulator-to-metal Mott transition.

    Science.gov (United States)

    Ta Phuoc, V; Vaju, C; Corraze, B; Sopracase, R; Perucchi, A; Marini, C; Postorino, P; Chligui, M; Lupi, S; Janod, E; Cario, L

    2013-01-18

    The optical properties of a GaTa(4)Se(8) single crystal are investigated under high pressure. At ambient pressure, the optical conductivity exhibits a charge gap of ≈0.12 eV and a broad midinfrared band at ≈0.55 eV. As pressure is increased, the low energy spectral weight is strongly enhanced and the optical gap is rapidly filled, pointing to an insulator to metal transition around 6 GPa. The overall evolution of the optical conductivity demonstrates that GaTa(4)Se(8) is a Mott insulator which undergoes a bandwidth-controlled Mott metal-insulator transition under pressure, in remarkably good agreement with theory. With the use of our optical data and ab initio band structure calculations, our results were successfully compared to the (U/D, T/D) phase diagram predicted by dynamical mean field theory for strongly correlated systems.

  9. Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms.

    Science.gov (United States)

    Gérard, Claude; Goldbeter, Albert

    2012-05-01

    The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values.

  10. Quantum and thermal phase transitions in a bosonic atom-molecule mixture in a two-dimensional optical lattice

    Science.gov (United States)

    de Forges de Parny, L.; Rousseau, V. G.

    2017-01-01

    We study the ground state and the thermal phase diagram of a two-species Bose-Hubbard model, with U(1 ) ×Z2 symmetry, describing atoms and molecules on a two-dimensional optical lattice interacting via a Feshbach resonance. Using quantum Monte Carlo simulations and mean-field theory, we show that the conversion between the two species, coherently coupling the atomic and molecular states, has a crucial impact on the Mott-superfluid transition and stabilizes an insulating phase with a gap controlled by the conversion term—the Feshbach insulator—instead of a standard Mott-insulating phase. Depending on the detuning between atoms and molecules, this model exhibits three phases: the Feshbach insulator, a molecular condensate coexisting with noncondensed atoms, and a mixed atomic-molecular condensate. Employing finite-size scaling analysis, we observe three-dimensional (3D) X Y (3D Ising) transition when U(1 ) (Z2) symmetry is broken, whereas the transition is first order when both U(1 ) and Z2 symmetries are spontaneously broken. The finite-temperature phase diagram is also discussed. The thermal disappearance of the molecular superfluid leads to a Berezinskii-Kosterlitz-Thouless transition with unusual universal jump in the superfluid density. The loss of the quasi-long-range coherence of the mixed atomic and molecular superfluid is more subtle since only atoms exhibit conventional Berezinskii-Kosterlitz-Thouless criticality. We also observe a signal compatible with a classical first-order transition between the mixed superfluid and the normal Bose liquid at low temperature.

  11. Absolute frequency measurement of the 7s$^2$ $^1$S$_0$ $-$ 7s7p $^{1}$P$_1$ transition in $^{225}$Ra

    CERN Document Server

    Santra, B; Groot, A; Jungmann, K; Willmann, L

    2014-01-01

    Transition frequencies were determined for transitions in Ra in an atomic beam and for reference lines in Te$_2$ molecules in a vapor cell. The absolute frequencies were calibrated against a GPS stabilized Rb-clock by means of an optical frequency comb. The 7s$^2\\,^1$S$_0$(F = 1/2)-7s7p$\\,^1$P$_1$(F = 3/2) transition in $^{225}$Ra was determined to be $621\\,042\\,124(2)\\,$MHz. The measurements provide input for designing efficient and robust laser cooling of Ra atoms in preparation of a search for a permanent electric dipole moment in Ra isotopes.

  12. The Potential of Continuous, Local Atomic Clock Measurements for Earthquake Prediction and Volcanology

    CERN Document Server

    Bondarescu, Mihai; Jetzer, Philippe; Lundgren, Andrew

    2015-01-01

    Modern optical atomic clocks along with the optical fiber technology currently being developed can measure the geoid, which is the equipotential surface that extends the mean sea level on continents, to a precision that competes with existing technology. In this proceeding, we point out that atomic clocks have the potential to not only map the sea level surface on continents, but also look at variations of the geoid as a function of time with unprecedented timing resolution. The local time series of the geoid has a plethora of applications. These include potential improvement in the predictions of earthquakes and volcanoes, and closer monitoring of ground uplift in areas where hydraulic fracturing is performed.

  13. The Implementation of E1 Clock Recovery

    Directory of Open Access Journals (Sweden)

    Wang Ziyu

    2016-01-01

    Full Text Available Clock transform and recovery is of significant importance in microwave TDM service, and it is always extracted from the E1 line data stream in most cases. However, intrinsically uncertain delay and jitter caused by packet transmission of E1 data information, may lead to the indexes of the data recovery clock exceed the clock performance template. Through analysis of the E1 clock indexes and measuring methods, this paper proposes a new clock recovery method. The method employs two buffers, the first RAM is used as a buffer to deduct excess information, and the second FIFO is used as a buffer to recovery the clock and data. The first buffer has a feedback from the second one, and is able to actively respond to changes in the data link and requests from the second one. The test results validate the effectiveness of the method, and the corresponding scheme is also valuable for the other communication systems.

  14. The circadian clock coordinates ribosome biogenesis.

    Directory of Open Access Journals (Sweden)

    Céline Jouffe

    Full Text Available Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis.

  15. Giant magneto-optical Raman effect in a layered transition metal compound.

    Science.gov (United States)

    Ji, Jianting; Zhang, Anmin; Fan, Jiahe; Li, Yuesheng; Wang, Xiaoqun; Zhang, Jiandi; Plummer, E W; Zhang, Qingming

    2016-03-01

    We report a dramatic change in the intensity of a Raman mode with applied magnetic field, displaying a gigantic magneto-optical effect. Using the nonmagnetic layered material MoS2 as a prototype system, we demonstrate that the application of a magnetic field perpendicular to the layers produces a dramatic change in intensity for the out-of-plane vibrations of S atoms, but no change for the in-plane breathing mode. The distinct intensity variation between these two modes results from the effect of field-induced broken symmetry on Raman scattering cross-section. A quantitative analysis on the field-dependent integrated Raman intensity provides a unique method to precisely determine optical mobility. Our analysis is symmetry-based and material-independent, and thus the observations should be general and inspire a new branch of inelastic light scattering and magneto-optical applications.

  16. A composite fibre optic catheter for monitoring peristaltic transit of an intra-luminal bead.

    Science.gov (United States)

    Arkwright, John W; Underhill, Ian D; Dodds, Kelsi N; Brookes, Simon J H; Costa, Marcello; Spencer, Nick J; Dinning, Phil G

    2016-03-01

    A fibre optic motion sensor has been developed for monitoring the proximity and direction of motion of a ferrous bead travelling axial to the sensor. By integrating an array of these sensors into our previously developed fibre optic manometry catheters we demonstrate simultaneous detection of peristaltic muscular activity and the associated motion of ferrous beads through a colonic lumen. This allows the motion of solid content to be temporally and spatially related to pressure variations generated by peristaltic contractions without resorting to videoflouroscopy to track the motion of a radio opaque bolus. The composite catheter has been tested in an in-vitro animal preparation consisting of excised sections of rabbit colon. Cut-away image of the fibre optic motion sensor showing the location of the fibre Bragg gratings and the rare earth magnet.

  17. ZnO:Mo:In nanofilms on SiO2 substrate under investigation framework of the second optical transition

    Science.gov (United States)

    Souissi, A.; Amlouk, M.; Guermazi, S.

    2017-02-01

    ZnO and ZnO:Mo:In nanofilms were deposited on SiO2 substrate at 460 °C by the spray pyrolysis method with the molar ratio (Mo/Zn) set at 1% and (In/Zn) dosed at 1%, 2%, 3% and 10%. The optical, dielectric and photonic characteristics of these samples were analyzed from the optical spectra of transmission and reflection, which revealed the presence of two absorption edges. The first one was related to the ZnO:Mo:In typical transition and the second edge originated from the ZnO:Mo:In/SiO2 interface transition by the probable formation of an ultrafine layer identified as SiOx and/or ZnO(1-x)SiO2(x). The optical gap and Urbach energies of ZnO:Mo:In nanofilms varied almost uniformly and in a complementary manner depending on the co-doping of ∼3.28-3.24 eV and ∼82-136 meV. These energies associated with the interface varied randomly from 3.93 to 4.18 eV and ∼263 to 408 meV, and showed strong dependencies with the structural, crystalline and vibrational properties previously studied. They also displayed possible correlations with electron scattering time and the dc photoconductivity which reaches high value for film prepared using In = 2%. AFM study showed variable morphologies of the surfaces that are responsive to codoping elements, therefore at the interface, wherein the film growth began. All these factors influenced the results described above. The study also showed good agreement between rms roughness and TC texture coefficient of the studied films, of high transparency ∼89-92%. The films prepared with In = 2% revealed a high photoconductivity and could be used in photocatalytic and photonic applications.

  18. Variability and dust filtration in the transition disk J160421.7-213028 observed in optical scattered light

    CERN Document Server

    Pinilla, P; Benisty, M; Juhász, A; Ovelar, M de Juan; Dominik, C; Avenhaus, H; Birnstiel, T; Girard, J H; Huelamo, N; Isella, A; Milli, J

    2015-01-01

    Context. Some of transition disks show asymmetric structures in thermal sub-millimetre emission and optical scattered light. These structures can be the result of planet(s) or companions embedded in the disk. Aims. We aim to detect and analyse the scattered light of the transition disk J160421.7-213028, identify disk structures, and compare the results with previous observations of this disk at other wavelengths. Methods. We obtained and analysed new polarised intensity observations of the transition disk J160421.7-213028 with VLT/SPHERE using the visible light instrument ZIMPOL at $R'$-band (0.626$\\mu$m). We probe the disk gap down to a radius of confidence of 0.1'' (${\\sim}15$ AU at 145 pc). We interpret the results in the context of dust evolution when planets interact with the parental disk. Results. We observe a gap from 0.1 to 0.3'' (${\\sim}15$ to 40 AU) and a bright annulus as previously detected by HiCIAO $H$-band observations at $1.65\\mu$m. The radial width of the annulus is around $40$ AU, and its p...

  19. Molecular Mechanisms Underlying the Arabidopsis Circadian Clock

    OpenAIRE

    Nakamichi, Norihito

    2011-01-01

    A wide range of biological processes exhibit circadian rhythm, enabling plants to adapt to the environmental day–night cycle. This rhythm is generated by the so-called ‘circadian clock’. Although a number of genetic approaches have identified >25 clock-associated genes involved in the Arabidopsis clock mechanism, the molecular functions of a large part of these genes are not known. Recent comprehensive studies have revealed the molecular functions of several key clock-associated proteins. Thi...

  20. The Square Light Clock and Special Relativity

    Science.gov (United States)

    Galli, J. Ronald; Amiri, Farhang

    2012-01-01

    A thought experiment that includes a square light clock is similar to the traditional vertical light beam and mirror clock, except it is made up of four mirrors placed at a 45[degree] angle at each corner of a square of length L[subscript 0], shown in Fig. 1. Here we have shown the events as measured in the rest frame of the square light clock. By…