WorldWideScience

Sample records for optical backscattering characteristics

  1. Optical Backscattering Measured by Airborne Lidar and Underwater Glider

    Directory of Open Access Journals (Sweden)

    James H. Churnside

    2017-04-01

    Full Text Available The optical backscattering from particles in the ocean is an important quantity that has been measured by remote sensing techniques and in situ instruments. In this paper, we compare estimates of this quantity from airborne lidar with those from an in situ instrument on an underwater glider. Both of these technologies allow much denser sampling of backscatter profiles than traditional ship surveys. We found a moderate correlation (R = 0.28, p < 10−5, with differences that are partially explained by spatial and temporal sampling mismatches, variability in particle composition, and lidar retrieval errors. The data suggest that there are two different regimes with different scattering properties. For backscattering coefficients below about 0.001 m−1, the lidar values were generally greater than the glider values. For larger values, the lidar was generally lower than the glider. Overall, the results are promising and suggest that airborne lidar and gliders provide comparable and complementary information on optical particulate backscattering.

  2. Development of a backscattering type ultraviolet apertureless near-field scanning optical microscope.

    Science.gov (United States)

    Kwon, Sangjin; Jeong, Hyun; Jeong, Mun Seok; Jeong, Sungho

    2011-08-01

    A backscattering type ultraviolet apertureless near-field scanning optical microscope (ANSOM) for the correlated measurement of topographical and optical characteristics of photonic materials with high optical resolution was developed. The near-field Rayleigh scattering image of GaN covered with periodic submicron Cr dots showed that optical resolution around 40 nm was achievable. By measuring the tip scattered photoluminescence of InGaN/GaN multi quantum wells, the applicability of the developed microscope for high resolution fluorescence measurement was also demonstrated.

  3. Measurement of Sediment Deposition Rates using an Optical Backscatter Sensor

    Science.gov (United States)

    Ridd, P.; Day, G.; Thomas, S.; Harradence, J.; Fox, D.; Bunt, J.; Renagi, O.; Jago, C.

    2001-02-01

    An optical method for measuring siltation of sediment has been developed using an optical fibre backscatter (OBS) nephelometer. Sediment settling upon the optical fibre sensor causes an increase in the backscatter reading which can be related to the settled sediment surface density (SSSD) as measured in units of mg cm -2. Calibration and laboratory tests indicate that the resolution of measurements of SSSD is 0·01 mg cm -2and an accuracy of 5% in still water. In moving water it is more difficult to determine the accuracy of the method because other methods with suitable resolution are unavailable. However, indirect methods using measurements of changing suspended sediment concentration in a ring flume, indicate that the OBS method under-predicts deposition. The series of siltation from three field sites are presented. This sensor offers considerable advances over other methods of measuring settling because time series of settling may be taken and thus settling events may be related to other hydrodynamic parameters such as wave climate and currents.

  4. Mitigating the effect of optical back-scatter in multispectral underwater imaging

    International Nuclear Information System (INIS)

    Mortazavi, Halleh; Oakley, John P; Barkat, Braham

    2013-01-01

    Multispectral imaging is a very useful technique for extracting information from the underwater world. However, optical back-scatter changes the intensity value in each spectral band and this distorts the estimated spectrum. In this work, a filter is used to detect the level of optical back-scatter in each spectral band from a set of multispectral images. Extraction of underwater object spectra can be done by subtracting the estimated level of optical back-scatter and scaling the remainder in each spectral band from the captured image in the corresponding band. An experiment has been designed to show the performance of the proposed filter for correcting the set of multispectral underwater images and recovering the pixel spectra. The multispectral images are captured by a B/W CCD digital camera with a fast tunable liquid-crystal filter in 33 narrow spectral bands in clear and different levels of turbid water. Reference estimates for the optical back-scatter spectra are found by comparing a clear and a degraded set of multispectral images. The accuracy and consistency of the proposed method, the extended Oakley–Bu cost function, is examined by comparing the estimated values with the reference level of an optical back-scatter spectrum. The same comparison is made for the simple estimation approach. The results show that the simple method is not reliable and fail to estimate the level of optical back-scatter spectrum accurately. The results from processing experimental images in turbid water show that the effect of optical back-scatter can be mitigated in the image of each spectral band and, as a result, the spectra of the object can be recovered. However, for a very high level of turbid water the recovery is limited because of the effect of extinction. (paper)

  5. Diffuse optical microscopy for quantification of depth-dependent epithelial backscattering in the cervix

    Science.gov (United States)

    Bodenschatz, Nico; Lam, Sylvia; Carraro, Anita; Korbelik, Jagoda; Miller, Dianne M.; McAlpine, Jessica N.; Lee, Marette; Kienle, Alwin; MacAulay, Calum

    2016-06-01

    A fiber optic imaging approach is presented using structured illumination for quantification of almost pure epithelial backscattering. We employ multiple spatially modulated projection patterns and camera-based reflectance capture to image depth-dependent epithelial scattering. The potential diagnostic value of our approach is investigated on cervical ex vivo tissue specimens. Our study indicates a strong backscattering increase in the upper part of the cervical epithelium caused by dysplastic microstructural changes. Quantization of relative depth-dependent backscattering is confirmed as a potentially useful diagnostic feature for detection of precancerous lesions in cervical squamous epithelium.

  6. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals

    International Nuclear Information System (INIS)

    Borovoi, A.; Konoshonkin, A.; Kustova, N.

    2014-01-01

    The physical-optics approximation in the problem of light scattering by large particles is so defined that it includes the classical physical optics concerning the problem of light penetration through a large aperture in an opaque screen. In the second part of the paper, the problem of light backscattering by quasi-horizontally oriented atmospheric ice crystals is considered where conformity between the physical-optics and geometric-optics approximations is discussed. The differential scattering cross section as well as the polarization elements of the Mueller matrix for quasi-horizontally oriented hexagonal ice plates has been calculated in the physical-optics approximation for the case of vertically pointing lidars. - Highlights: • The physical-optics Mueller matrix is a smoothed geometric-optics counterpart. • Backscatter by partially oriented hexagonal ice plates has been calculated. • Depolarization ratio for partially oriented hexagonal ice plates is negligible

  7. Low-frequency acousto-optic backscattering of Bessel light beams

    Science.gov (United States)

    Khilo, Nikolai A.; Belyi, Vladimir N.; Khilo, Petr A.; Kazak, Nikolai S.

    2018-05-01

    The use of Bessel light beams, as well as Bessel acoustic beams, substantially enhances the capabilities of acousto-optic methods for control of optical field. We present a theoretical study of the process of optical Bessel beams conversion by means of backward acousto-optic scattering on a Bessel acoustic field in a transversely isotropic crystal. It is shown that, with an appropriate choice of Bessel beams parameters, the backscattering in visible spectral range can be realized at relatively low acoustic frequencies less than one gigahertz. Under conditions of phase matching and transverse spatial synchronism, the efficiency of backscattering is sufficiently high, which is interesting, for example, for construction of acousto-optic spectral analyzers.

  8. Correlation characteristics of optical coherence tomography images of turbid media with statistically inhomogeneous optical parameters

    International Nuclear Information System (INIS)

    Dolin, Lev S.; Sergeeva, Ekaterina A.; Turchin, Ilya V.

    2012-01-01

    Noisy structure of optical coherence tomography (OCT) images of turbid medium contains information about spatial variations of its optical parameters. We propose analytical model of statistical characteristics of OCT signal fluctuations from turbid medium with spatially inhomogeneous coefficients of absorption and backscattering. Analytically predicted correlation characteristics of OCT signal from spatially inhomogeneous medium are in good agreement with the results of correlation analysis of OCT images of different biological tissues. The proposed model can be efficiently applied for quantitative evaluation of statistical properties of absorption and backscattering fluctuations basing on correlation characteristics of OCT images.

  9. The Correlation Characteristics of Polarization Backscattering Matrix of Dense Chaff Clouds

    Directory of Open Access Journals (Sweden)

    B. Tang

    2018-04-01

    Full Text Available This paper studied the correlation characteristics of the polarization backscattering matrix of the dense chaff cloud with uniform orientation and location distributions in circular symmetry region. Based on the theoretical analysis and numerical experiments, the correlation coefficients of the four elements in the polarization backscattering matrix are obtained, and the results indicate that the cross to co-polar correlation coefficient is still zero; and that the sum of the co-polar cross-correlation coefficient and the two times of linear depolarization ratio equals one. The results are beneficial for better understanding of the backscattering characteristics of dense chaff clouds, and are useful in the application of jamming recognition in radar electronic warfare. Numerical experiments are performed by using the method of moments.

  10. A unified approach for radiative losses and backscattering in optical waveguides

    International Nuclear Information System (INIS)

    Melati, D; Morichetti, F; Melloni, A

    2014-01-01

    Sidewall roughness in optical waveguides represents a severe impairment for the proper functionality of photonic integrated circuits. The interaction between the propagating mode and the roughness is responsible for both radiative losses and distributed backscattering. In this paper, a unified vision on these extrinsic loss phenomena is discussed, highlighting the fundamental role played by the sensitivity of the effective index n eff of the optical mode to waveguide width variations. The n w model presented applies to both 2D slab waveguides and 3D laterally confined waveguides and is in very good agreement with existing models that individually describe radiative loss or backscattering only. Experimental results are presented, demonstrating the validity of the n w model for arbitrary waveguide geometries and technologies. This approach enables an accurate description of realistic optical waveguides and provides simple design rules for optimization of the waveguide geometry in order to reduce the propagation losses generated by sidewall roughness. (paper)

  11. Optical diagnostics of CO2 laser-fusion targets using backscattered light

    International Nuclear Information System (INIS)

    Casperson, D.E.

    1981-01-01

    With the f/2.4 focusing optics on one of the eight Helios CO 2 laser beam lines, direct backscattered light from a variety of glass microballoon targets has been observed. The quantities that have been measured include: (1) the total backscattered energy; (2) relative amplitudes of the backscattered fundamental and low harmonics (n = 1, 2, 3) of the 10.6 μm incident light; (3) the 3/2 harmonic emission from a double pulse backscatter experiment; (4) the temporally resolved 10.6 μm light using a fast pyroelectric detector and a Los Alamos 5-GHz oscilloscope; and (5) the time-integrated spectrally resolved fundamental using a 3/4 meter spectrometer and a high resolution pyroelectric detector array (resolution approx. 40 A at 10.6 μm). The suitability of these diagnostics for evaluating the CO 2 laser plasma in terms of stimulated scattering processes, plasma density gradients, velocity of the critical surface, etc., is discussed

  12. Probing insect backscatter cross section and melanization using kHz optical remote detection system

    Science.gov (United States)

    Gebru, Alem; Brydegaard, Mikkel; Rohwer, Erich; Neethling, Pieter

    2017-01-01

    A kHz optical remote sensing system is implemented to determine insect melanization features. This is done by measuring the backscatter signal in the visible and near-infrared (VIS-NIR) and short-wave infrared (SWIR) in situ. It is shown that backscatter cross section in the SWIR is insensitive to melanization and absolute melanization can be derived from the ratio of backscatter cross section of different bands (SWIR/VIS-NIR). We have shown that reflectance from insect is stronger in the SWIR as compared to NIR and VIS. This reveals that melanization plays a big role to determine backscatter cross section. One can use this feature as a tool to improve insect species and age classification. To support the findings, we illustrated melanization feature using three different insects [dead, dried specimens of snow white moth (Spilosoma genus), fox moth (Macrothylacia), and leather beetle (Odontotaenius genus)]. It is shown that reflectance from the leather beetle in the VIS and NIR is more affected by melanization as compared with snow white moth.

  13. Retrieving Marine Inherent Optical Properties from Satellites Using Temperature and Salinity-dependent Backscattering by Seawater

    Science.gov (United States)

    Werdell, Paul J.; Franz, Bryan Alden; Lefler, Jason Travis; Robinson, Wayne D.; Boss, Emmanuel

    2013-01-01

    Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.g., phytoplankton, non-algal particles, and colored dissolved organic matter), and retrieve the magnitudes of each remaining constituent required to match the spectral distribution of measured radiances. Here, we explore the use of temperature- and salinity-dependent values for seawater backscattering in lieu of the constant spectrum currently employed by most SAAs. Our results suggest that use of temperature- and salinity-dependent seawater spectra elevate the SAA-derived particle backscattering, reduce the non-algal particles plus colored dissolved organic matter absorption, and leave the derived absorption by phytoplankton unchanged.

  14. Distributed Temperature and Strain Discrimination with Stimulated Brillouin Scattering and Rayleigh Backscatter in an Optical Fiber

    Directory of Open Access Journals (Sweden)

    Xiaoyi Bao

    2013-01-01

    Full Text Available A distributed optical fiber sensor with the capability of simultaneously measuring temperature and strain is proposed using a large effective area non-zero dispersion shifted fiber (LEAF with sub-meter spatial resolution. The Brillouin frequency shift is measured using Brillouin optical time-domain analysis (BOTDA with differential pulse-width pair technique, while the spectrum shift of the Rayleigh backscatter is measured using optical frequency-domain reflectometry (OFDR. These shifts are the functions of both temperature and strain, and can be used as two independent parameters for the discrimination of temperature and strain. A 92 m measurable range with the spatial resolution of 50 cm is demonstrated experimentally, and accuracies of ±1.2 °C in temperature and ±15 με in strain could be achieved.

  15. Storing, Retrieving, and Processing Optical Information by Raman Backscattering in Plasmas

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2002-01-01

    By employing stimulated Raman backscattering in a plasma, information carried by a laser pulse can be captured in the form of a very slowly propagating plasma wave that persists for a time large compared with the pulse duration. If the plasma is then probed with a short laser pulse, the information stored in the plasma wave can be retrieved in a second scattered electromagnetic wave. The recording and retrieving processes can conserve robustly the pulse shape, thus enabling the recording and retrieving with fidelity of information stored in optical signals

  16. Statistical properties of intensity of partially polarised semiconductor laser light backscattered by a single-mode optical fibre

    International Nuclear Information System (INIS)

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    2015-01-01

    We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)

  17. Main types of optical beams giving predominant contributions to the light backscatter for the irregular hexagonal columns

    Science.gov (United States)

    Shishko, Victor A.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Borovoi, Anatoli G.

    2017-11-01

    This work presents the estimation of contribution of the main types of optical beams to the light backscatter for randomly oriented hexagonal ice column, the right dihedral angle of which was distorted within the range of 0° (regular particle) to 10°. Calculations were obtained within the physical optics approximation. The wavelength was 532 nm and the refractive index was 1.3116. The results showed that the total contribution of the main types of optical beams to the total backscattering cross section reach the value of 85% at small distortion angle of the hexagonal column and at substantial distortion angle the total contribution of the main types of optical beams decrease up to 55% of the total backscattering cross section. The obtained conclusions can significantly reduce the calculation time in the case when there is no need for high accuracy of the calculation.

  18. A model for backscattering characteristics of tall prairie grass canopies at microwave frequencies

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Zoughi, R.

    1991-01-01

    We have developed a discrete microwave scattering model, describing the radar backscattering coefficient from two treatments (burned and unburned) of tall prairie grass canopies at VV (electric field vector of the transmitted and received signals are vertically oriented) and HH (electric field vector of the transmitted and received signals and horizontally oriented) polarizations, based on the physical, biophysical, and geometrical characteristics of such canopies. Grass blades are modeled as thin and finite dielectric ellipsoids with arbitrary orientations. Scattering by an individual grass blade is formulated using a generalization of the Rayleigh—Gans approximation with a quasistatic solution for the expansion of the interior field. By associating, with each grass blade, various appropriate distribution functions, the relative orientation, location, height, cross section, and permittivity of each grass blade is taken into account. This makes for a more realistic overall description of the canopy. Kirchhoff's surface scattering is used to model the backscatter from the soil surface. An incoherent summation of the effect of grass blades and soil surface is adopted to obtain the total canopy backscattering coefficient, taking into account the attenuation experienced by the signal as it travels through the canopy. The results of this model are given for 1.5, 5, and 10 GHz (L-, C-, and X-band). Although for the shorter wavelengths (X-band) the Rayleigh—Gans criteria is not totally satisfied, nevertheless, the limited available measured X-band data compare relatively well with the results of this model both quantitatively and qualitatively. (author)

  19. Backscattering Properties of Nonspherical Ice Particles Calculated by Geometrical-Optics-Integral-Equation Method

    Directory of Open Access Journals (Sweden)

    Masuda Kazuhiko

    2016-01-01

    Full Text Available Backscattering properties of ice crystal models (Voronoi aggregates (VA, hexagonal columns (COL, and six-branched bullet rosettes (BR6 are calculated by using geometrical-opticsintegral-equation (GOIE method. Characteristics of depolarization ratio (δ and lidar ratio (L of the crystal models are examined. δ (L values are 0.2~0.3 (4~50, 0.3~0.4 (10~25, and 0.5~0.6 (50~100 for COL, BR6, and VA, respectively, at wavelength λ=0.532 μm. It is found that small deformation of COL model could produce significant changes in δ and L.

  20. Light backscatter fiber optic sensor: a new tool for predicting the stability of pork emulsions containing antioxidative potato protein hydrolysate.

    Science.gov (United States)

    Nieto, Gema; Xiong, Youling L; Payne, Fred; Castillo, Manuel

    2015-02-01

    The objective of this study was to determine whether light backscatter response from fresh pork meat emulsions is correlated to final product stability indices. A specially designed fiber optic measurement system was used in combination with a miniature fiber optic spectrometer to determine the intensity of light backscatter within the wavelength range 300-1100 nm (UV/VIS/NIR) at different radial distances (2, 2.5 and 3mm) with respect to the light source in pork meat emulsions with two fat levels (15%, 30%) and two levels (0, 2.5%) of the natural antioxidant hydrolyzed potato protein (HPP). Textural parameters (hardness, deformability, cohesiveness and breaking force), cooking loss, TBARS (1, 2, 3, and 7 days of storage at 4 °C) and CIELAB color coordinates of cooked emulsions were measured. The light backscatter was directly correlated with cooking losses, color, breaking force and TBARS. The optical configuration proposed would compensate for the emulsion heterogeneity, maximizing the existing correlation between the optical signal and the emulsion quality metrics.

  1. Investigating the spectral characteristics of backscattering from heterogeneous spheroidal nuclei using broadband finite-difference time-domain simulations

    Science.gov (United States)

    Chao, Guo-Shan; Sung, Kung-Bin

    2010-02-01

    Backscattered light spectra have been used to extract size distribution of cell nuclei in epithelial tissues for noninvasive detection of precancerous lesions. In existing experimental studies, size estimation is achieved by assuming nuclei as homogeneous spheres or spheroids and fitting the measured data with models based on Mie theory. However, the validity of simplifying nuclei as homogeneous spheres has not been thoroughly examined. In this study, we investigate the spectral characteristics of backscattering from models of spheroidal nuclei under plane wave illumination using three-dimensional finite-difference time-domain (FDTD) simulation. A modulated Gaussian pulse is used to obtain wavelength dependent scattering intensity with a single FDTD run. The simulated model of nuclei consists of a nucleolus and randomly distributed chromatin condensation in homogeneous cytoplasm and nucleoplasm. The results show that backscattering spectra from spheroidal nuclei have similar oscillating patterns to those from homogeneous spheres with the diameter equal to the projective length of the spheroidal nucleus along the propagation direction. The strength of backscattering is enhanced in heterogeneous spheroids as compared to homogeneous spheroids. The degree of which backscattering spectra of heterogeneous nuclei deviate from Mie theory is highly dependent on the distribution of chromatin/nucleolus but not sensitive to nucleolar size, refractive index fluctuation or chromatin density.

  2. Distributed optical fibre temperature measurements in a low dose rate radiation environment based on Rayleigh backscattering

    Science.gov (United States)

    Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A. A.; Liokumovich, L. B.; Kotov, O. I.; Zolotovskiy, I. O.; Tomashuk, A. L.; Deschoutheete, T.; Mégret, P.

    2012-04-01

    On-line monitoring of environmental conditions in nuclear facilities is becoming a more and more important problem. Standard electronic sensors are not the ideal solution due to radiation sensitivity and difficulties in installation of multiple sensors. In contrast, radiation-hard optical fibres can sustain very high radiation doses and also naturally offer multi-point or distributed monitoring of external perturbations. Multiple local electro-mechanical sensors can be replaced by just one measuring fibre. At present, there are over four hundred operational nuclear power plants (NPPs) in the world 1. Operating experience has shown that ineffective control of the ageing degradation of major NPP components can threaten plant safety and also plant life. Among those elements, cables are vital components of I&C systems in NPPs. To ensure their safe operation and predict remaining life, environmental monitoring is necessary. In particular, temperature and radiation dose are considered to be the two most important parameters. The aim of this paper is to assess experimentally the feasibility of optical fibre temperature measurements in a low doserate radiation environment, using a commercially available reflectometer based on Rayleigh backscattering. Four different fibres were installed in the Sub-Pile Room of the BR2 Material testing nuclear reactor in Mol, Belgium. This place is man-accessible during the reactor shut-down, allowing easy fibre installation. When the reactor operates, the dose-rates in the room are in a range 0.005-5 Gy/h with temperatures of 40-60 °C, depending on the location. Such a surrounding is not much different to some "hot" environments in NPPs, where I&C cables are located.

  3. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    International Nuclear Information System (INIS)

    Mosher, D.; Cooperstein, G.; Rose, D.V.; Swanekamp, S.B.

    1996-01-01

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs

  4. Modification of diode characteristics by electron back-scatter from high-atomic-number anodes

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, D; Cooperstein, G [Naval Research Laboratory, Washington, DC (United States); Rose, D V; Swanekamp, S B [JAYCOR, Vienna, VA (United States)

    1997-12-31

    In high-power vacuum diodes with high-atomic-number anodes, back-scattered electrons alter the vacuum space charge and resulting electron and ion currents. Electron multiple back-scattering was studied through equilibrium solutions of the Poisson equation for 1-dimensional, bipolar diodes in order to predict their early-time behavior. Before ion turn-on, back-scattered electrons from high-Z anodes suppress the diode current by about 10%. After ion turn-on in the same diodes, electron back-scatter leads to substantial enhancements of both the electron and ion currents above the Child-Langmuir values. Current enhancements with ion flow from low-Z anodes are small. (author). 5 figs., 7 refs.

  5. Optical Modeling of Spectral Backscattering and Remote Sensing Reflectance From Emiliania huxleyi Blooms

    Directory of Open Access Journals (Sweden)

    Griet Neukermans

    2018-05-01

    Full Text Available In this study we develop an analytical model for spectral backscattering and ocean color remote sensing of blooms of the calcifying phytoplankton species Emiliania huxleyi. Blooms of this coccolithophore species are ubiquitous and particularly intense in temperate and subpolar ocean waters. We first present significant improvements to our previous analytical light backscattering model for E. huxleyi coccoliths and coccospheres by accounting for the elliptical shape of coccoliths and the multi-layered coccosphere architecture observed on detailed imagery of E. huxleyi liths and coccospheres. Our new model also includes a size distribution function that closely matches measured E. huxleyi size distributions. The model for spectral backscattering is then implemented in an analytical radiative transfer model to evaluate the variability of spectral remote sensing reflectance with respect to changes in the size distribution of the coccoliths and during a hypothetical E. huxleyi bloom decay event in which coccospheres shed their liths. Our modeled remote sensing reflectance spectra reproduced well the bright milky turquoise coloring of the open ocean typically associated with the final stages of E. huxleyi blooms, with peak reflectance at a wavelength of 0.49 μm. Our results also show that the magnitude of backscattering from coccoliths when attached to or freed from the coccosphere does not differ much, contrary to what is commonly assumed, and that the spectral shape of backscattering is mainly controlled by the size and morphology of the coccoliths, suggesting that they may be estimated from spectral backscattering.

  6. Contribution of corner reflections from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling

    Science.gov (United States)

    Borovoi, Anatoli G.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Veselovskii, Igor A.

    2018-06-01

    Backscattering Mueller matrix and the depolarization and color ratios for quasi-horizontally oriented hexagonal ice plates have been calculated within the framework of the physical optics approximation. In the case of a tilted lidar, the dependence of the color and depolarization ratios on polarization of the incident light has been analyzed. It is shown that the corner reflection effect inherent to the pristine hexagonal ice crystals results in sharp peaks of both the backscattering cross section and depolarization ratio at the lidar tilts of about 30° off zenith. The experimental results obtained recently by Veselovskii et al. [13] at the lidar tilt of 43° have been interpreted as a partial manifestation of the corner reflection effect. The retrieval of the vertical profile of the ice crystal fraction consisting of quasi-horizontally oriented hexagonal plates has been demonstrated.

  7. On determining the noon polar cap boundary from SuperDARN HF radar backscatter characteristics

    Directory of Open Access Journals (Sweden)

    M. Pinnock

    Full Text Available Previous work has shown that ionospheric HF radar backscatter in the noon sector can be used to locate the footprint of the magnetospheric cusp particle precipitation. This has enabled the radar data to be used as a proxy for the location of the polar cap boundary, and hence measure the flow of plasma across it to derive the reconnection electric field in the ionosphere. This work used only single radar data sets with a field of view limited to ~2 h of local time. In this case study using four of the SuperDARN radars, we examine the boundary determined over 6 h of magnetic local time around the noon sector and its relationship to the convection pattern. The variation with longitude of the latitude of the radar scatter with cusp characteristics shows a bay-like feature. It is shown that this feature is shaped by the variation with longitude of the poleward flow component of the ionospheric plasma and may be understood in terms of cusp ion time-of-flight effects. Using this interpretation, we derive the time-of-flight of the cusp ions and find that it is consistent with approximately 1 keV ions injected from a subsolar reconnection site. A method for deriving a more accurate estimate of the location of the open-closed field line boundary from HF radar data is described.

    Key words: Ionosphere (ionosphere–magnetosphere interactions; plasma convection · Magnetospheric physics (magnetopause · cusp · and boundary layers

  8. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography

    International Nuclear Information System (INIS)

    Boer, J.F. de; Milner, T.E.; Nelson, J.S.

    1999-01-01

    Polarization-sensitive optical coherence tomography (PS-OCT) was used to characterize completely the polarization state of light backscattered from turbid media. Using a low-coherence light source, one can determine the Stokes parameters of backscattered light as a function of optical path in turbid media. To demonstrate the application of this technique we determined the birefringence and the optical axis in fibrous tissue (rodent muscle) and in vivo rodent skin. PS-OCT has potentially useful applications in biomedical optics by imaging simultaneously the structural properties of turbid biological materials and their effects on the polarization state of backscattered light. This method may also find applications in material science for investigation of polarization properties (e.g., birefringence) in opaque media such as ceramics and crystals. copyright 1999 Optical Society of America

  9. Dynamic coherent backscattering mirror

    Energy Technology Data Exchange (ETDEWEB)

    Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu [Physics Department, Fairfield University, Fairfield, CT 06824 (United States)

    2016-02-15

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  10. Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells

    Science.gov (United States)

    Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim

    2017-02-01

    Oxygen saturation (sO2) of red blood cells (RBCs) in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e., measuring hemoglobin sO2) is feasible from dispersed RBCs at the single capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. We present a numerical study of backscattering spectra from single RBCs based on the first-order Born approximation, considering practical factors: RBC orientations, size variation, and deformations. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different mean cellular hemoglobin content and different deformations of RBCs. This study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single capillary level using backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single capillary level.

  11. Active Stand-off Detection of Gas Leaks Using a Short Range Hard-target Backscatter Differential Optical Absorption System Based on a Quantum Cascade Laser Transmitter

    Science.gov (United States)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-06-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.

  12. Quench detection for high temperature superconductor magnets: a novel technique based on Rayleigh-backscattering interrogated optical fibers

    International Nuclear Information System (INIS)

    Scurti, F; Ishmael, S; Schwartz, J; Flanagan, G

    2016-01-01

    High temperature superconducting materials are the only option for the generation of magnetic fields exceeding 25 T and for magnets operating over a broad range of temperature and magnetic field for power applications. One remaining obstacle for the implementation of high temperature superconductors magnets into systems, however, is the inability to rapidly detect a quench. In this letter we present a novel quench detection technique that has been investigated experimentally. Optical fibers are co-wound into two small Bi 2 Sr 2 Ca 2 Cu 3 O 10+x superconducting coils and interrogated by Rayleigh-backscattering. Two different configurations are used, one with the fiber atop the conductor and the other with the fiber located as turn-to-turn insulation. Each coil is also instrumented with voltage taps (VTs) and thermocouples for comparison during heater-induced quenches. The results show that Rayleigh-backscattering interrogated optical fibers (RIOF) have significant advantages over traditional techniques, including very high spatial resolution and the ability to detect a hot-spot well before the peak local temperature exceeds the current sharing temperature. Thus, RIOF quench detection is intrinsically faster than VTs, and this intrinsic advantage is greater as the coil size and/or current margin increases. (letter)

  13. Near-field reflection backscattering apertureless optical microscopy: Application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques

    International Nuclear Information System (INIS)

    Diziain, S.; Bijeon, J.-L.; Adam, P.-M.; Lamy de la Chapelle, M.; Thomas, B.; Deturche, R.; Royer, P.

    2007-01-01

    An apertureless scanning near-field optical microscope (ASNOM) in reflection backscattering configuration is designed to conduct spectroscopic experiments on opaque samples constituted of latex beads. The ASNOM proposed takes advantage of the depth-discrimination properties of confocal microscopes to efficiently extract the near-field optical signal. Given their importance in a spectroscopic experiment, we systematically compare the lock-in and synchronous photon counting detection methods. Some results of Rayleigh's scattering in the near field of the test samples are used to illustrate the possibilities of this technique for reflection backscattering spectroscopy

  14. Near-field reflection backscattering apertureless optical microscopy: Application to spectroscopy experiments on opaque samples, comparison between lock-in and digital photon counting detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Diziain, S. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Bijeon, J.-L. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France)]. E-mail: bijeon@utt.fr; Adam, P.-M. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Lamy de la Chapelle, M. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Thomas, B. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Deturche, R. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Royer, P. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France)

    2007-01-15

    An apertureless scanning near-field optical microscope (ASNOM) in reflection backscattering configuration is designed to conduct spectroscopic experiments on opaque samples constituted of latex beads. The ASNOM proposed takes advantage of the depth-discrimination properties of confocal microscopes to efficiently extract the near-field optical signal. Given their importance in a spectroscopic experiment, we systematically compare the lock-in and synchronous photon counting detection methods. Some results of Rayleigh's scattering in the near field of the test samples are used to illustrate the possibilities of this technique for reflection backscattering spectroscopy.

  15. Single Particle Differentiation through 2D Optical Fiber Trapping and Back-Scattered Signal Statistical Analysis: An Exploratory Approach.

    Science.gov (United States)

    Paiva, Joana S; Ribeiro, Rita S R; Cunha, João P S; Rosa, Carla C; Jorge, Pedro A S

    2018-02-27

    Recent trends on microbiology point out the urge to develop optical micro-tools with multifunctionalities such as simultaneous manipulation and sensing. Considering that miniaturization has been recognized as one of the most important paradigms of emerging sensing biotechnologies, optical fiber tools, including Optical Fiber Tweezers (OFTs), are suitable candidates for developing multifunctional small sensors for Medicine and Biology. OFTs are flexible and versatile optotools based on fibers with one extremity patterned to form a micro-lens. These are able to focus laser beams and exert forces onto microparticles strong enough (piconewtons) to trap and manipulate them. In this paper, through an exploratory analysis of a 45 features set, including time and frequency-domain parameters of the back-scattered signal of particles trapped by a polymeric lens, we created a novel single feature able to differentiate synthetic particles (PMMA and Polystyrene) from living yeasts cells. This single statistical feature can be useful for the development of label-free hybrid optical fiber sensors with applications in infectious diseases detection or cells sorting. It can also contribute, by revealing the most significant information that can be extracted from the scattered signal, to the development of a simpler method for particles characterization (in terms of composition, heterogeneity degree) than existent technologies.

  16. Influence of a variable Rayleigh scattering-loss coefficient on the light backscattering in multimode optical fibers.

    Science.gov (United States)

    Bisyarin, M A; Kotov, O I; Hartog, A H; Liokumovich, L B; Ushakov, N A

    2017-06-01

    The recently developed diffraction technique of analytical investigation of the Rayleigh backscattering produced by an incident fundamental mode in a multimode optical fiber with an arbitrary refractive index profile is supplemented by taking into account the Rayleigh scattering-loss coefficient, which could be variable within the fiber cross section. The relative changes in various radial and azimuthal modes' excitation levels, due to some typical radial dependences of this coefficient, are computed for the quadratic- and step-index fibers. It is stated that the excitation efficiency could either rise or decay for different modes. The effect of the variable Rayleigh scattering-loss coefficient is shown to be more noticeable in the fibers with a quadratic refractive index profile, whereas it is negligible in actual multimode step-index fibers.

  17. The microwave propagation and backscattering characteristics of vegetation. [wheat, sorghum, soybeans and corn fields in Kansas

    Science.gov (United States)

    Ulaby, F. T. (Principal Investigator); Wilson, E. A.

    1984-01-01

    A semi-empirical model for microwave backscatter from vegetation was developed and a complete set of canope attenuation measurements as a function of frequency, incidence angle and polarization was acquired. The semi-empirical model was tested on corn and sorghum data over the 8 to 35 GHz range. The model generally provided an excellent fit to the data as measured by the correlation and rms error between observed and predicted data. The model also predicted reasonable values of canopy attenuation. The attenuation data was acquired over the 1.6 to 10.2 GHz range for the linear polarizations at approximately 20 deg and 50 deg incidence angles for wheat and soybeans. An attenuation model is proposed which provides reasonable agreement with the measured data.

  18. Experimentally determined characteristics of the degree of polarization of backscattered light from polystyrene sphere suspensions

    International Nuclear Information System (INIS)

    Sun, Ping; Ma, Yongchao; Xu, Chengwei; Sun, Xiaochun; Liu, Wei

    2013-01-01

    The degree of polarization (DOP) can be used to characterize the polarization-maintaining ability of a beam of polarized light propagating through a turbid medium. Experiments on polystyrene (PST) sphere suspensions show that, the linearly polarized light propagating through the PST sphere suspension of Rayleigh scatterers has better polarization-maintaining ability, whereas the circularly polarized light propagating through the PST sphere suspension of Mie scatterers has better polarization-maintaining ability. Moreover, helicity flipping occurs to the circularly polarized light propagating in the extremely weak PST sphere suspensions or on the surface of suspensions. In addition, the DOP is dependent on the wavelength of incident light. The results can be helpful to image in turbid media by use of diffuse backscattered light. (paper)

  19. Nanometric resolution in glow discharge optical emission spectroscopy and Rutherford backscattering spectrometry depth profiling of metal (Cr, Al) nitride multilayers

    International Nuclear Information System (INIS)

    Escobar Galindo, R.; Gago, R.; Fornies, E.; Munoz-Martin, A.; Climent Font, A.; Albella, J.M.

    2006-01-01

    In this work, we address the capability of glow discharge optical emission spectroscopy (GDOES) for fast and accurate depth profiling of multilayer nitride coatings down to the nanometer range. This is shown by resolving the particular case of CrN/AlN structures with individual thickness ranging from hundreds to few nanometers. In order to discriminate and identify artefacts in the GDOES depth profile due to the sputtering process, the layered structures were verified by Rutherford backscattering spectrometry (RBS) and scanning electron microscopy (SEM). The interfaces in the GDOES profiles for CrN/AlN structures are sharper than the ones measured for similar metal multilayers due to the lower sputtering rate of the nitrides. However, as a consequence of the crater shape, there is a linear degradation of the depth resolution with depth (approximately 40 nm/μm), saturating at a value of approximately half the thickness of the thinner layer. This limit is imposed by the simultaneous sputtering of consecutive layers. The ultimate GDOES depth resolution at the near surface region was estimated to be of 4-6 nm

  20. Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Y. Huot

    2008-04-01

    Full Text Available The particulate scattering, bp, and backscattering, bbp, coefficients are determined by the concentration and physical properties of suspended particles in the ocean. They provide a simple description of the influence of these particles on the scattering of light within the water column. For the remote observation of ocean color, bbp along with the total absorption coefficient govern the amount and spectral qualities of light leaving the sea surface. However, for the construction and validation of ocean color models measurements of bbp are still lacking, especially at low chlorophyll a concentrations ([Chl]. Here, we examine the relationships between spectral bbp and bp vs. [Chl] along an 8000 km transect crossing the Case 1 waters of the eastern South Pacific Gyre. In these waters, over the entire range of [Chl] encountered (~0.02–2 mg m3, both bbp and bp can be related to [Chl] by power functions (i.e. bp or bbp=α[Chl]β. Regression analyses are carried out to provide the parameters α and β for several wavelengths throughout the visible for both bbp and bp. When applied to the data, these functions retrieve the same fraction of variability in bbp and bp (coefficients of determination between 0.82 and 0.88. The bbp coefficient fall within the bounds of previous measurements at intermediate and high [Chl] recently published. Its dependence on [Chl] below ~0.1 mg m−3 is described for the first time with in situ data. The backscattering ratio (i.e. bbp/bp with values near 0.01 for all stations appears to be spectrally neutral and not significantly dependent on [Chl]. These results should foster the

  1. Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations.

    Science.gov (United States)

    Yan, Aidong; Huang, Sheng; Li, Shuo; Chen, Rongzhang; Ohodnicki, Paul; Buric, Michael; Lee, Shiwoo; Li, Ming-Jun; Chen, Kevin P

    2017-08-24

    This paper reports a technique to enhance the magnitude and high-temperature stability of Rayleigh back-scattering signals in silica fibers for distributed sensing applications. With femtosecond laser radiation, more than 40-dB enhancement of Rayleigh backscattering signal was generated in silica fibers using 300-nJ laser pulses at 250 kHz repetition rate. The laser-induced Rayleigh scattering defects were found to be stable from the room temperature to 800 °C in hydrogen gas. The Rayleigh scatter at high temperatures was correlated to the formation and modification of nanogratings in the fiber core. Using optical fibers with enhanced Rayleigh backscattering profiles as distributed temperature sensors, we demonstrated real-time monitoring of solid oxide fuel cell (SOFC) operations with 5-mm spatial resolution at 800 °C. Information gathered by these fiber sensor tools can be used to verify simulation results or operated in a process-control system to improve the operational efficiency and longevity of SOFC-based energy generation systems.

  2. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying.

    Science.gov (United States)

    Onwude, Daniel I; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan

    2018-03-01

    Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    Science.gov (United States)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  4. Size dependent optical characteristics of chemically deposited

    Indian Academy of Sciences (India)

    Keywords. Thin film; ZnS; CBD method; optical properties. Abstract. ZnS thin films of different thicknesses were prepared by chemical bath deposition using thiourea and zinc acetate as S2- and Zn2+ source. The effect of film thickness on the optical and structural properties was studied. The optical absorption studies in the ...

  5. Decadal Variation in Surface Characteristics over Xinjiang, Western China, from T/P Altimetry Backscatter Coefficients: Evidence of Climate Change

    Directory of Open Access Journals (Sweden)

    Jinyun Guo

    2013-01-01

    Full Text Available The backscatter coefficient, known as sigma0, is an important measurement of satellite radar altimetry and a key parameter for land altimetry because of its close relationship with the physical properties and geometric features of land coverage under global/regional climate change effects. Using the TOPEX/Poseidon GDR-M dataset from January 1993 to December 2004, we study the spatial and temporal distribution of sigma0 at bands Ku and C over Xinjiang, western China. The results show that the sigma0 is influenced by the water distribution over land and the time evolution of sigma0 has clear seasonal changes. River basins or deserts are classified over the spatial distribution based on different sigma0 values. For example, high sigma0 values are found in the Tarim River Basin and low values are found in the Taklimakan Desert. The periodic components of sigma0 time series are determined using the fast Fourier transformation method. The annual variation is the dominating cycle and the semi-annual variation is the secondary signal. The amplitudes of sigma0 time series at bands Ku and C are also given and most areas have quite low amplitudes except for the Tarim River Basin. Several areas including the Tarim River Basin, Tianshan Mountain and Taklimakan Desert are selected for sigma0 time series spacial analysis to discuss the reasons for variations in sigma0. The main factors are precipitation and vegetation growth, which are affected by the global/regional climate change. The correlation between the brightness temperature, which is related to the water-vapor content in the atmosphere measured by TMR at the 21 GHz channel and sigma0 at two bands, is analyzed.

  6. Optical characteristics of desert dust over the East Mediterranean during summer: a case study

    Directory of Open Access Journals (Sweden)

    D. Balis

    2006-05-01

    Full Text Available High aerosol optical depth (AOD values, larger than 0.6, are systematically observed in the Ultraviolet (UV region both by sunphotometers and lidar systems over Greece during summertime. To study in more detail the characteristics and the origin of these high AOD values, a campaign took place in Greece in the frame of the PHOENICS (Particles of Human Origin Extinguishing Natural solar radiation In Climate Systems and EARLINET (European Aerosol Lidar Network projects during August–September of 2003, which included simultaneous sunphotometric and lidar measurements at three sites covering the north-south axis of Greece: Thessaloniki, Athens and Finokalia, Crete. Several events with high AOD values have been observed over the measuring sites during the campaign period, many of them corresponding to Saharan dust. In this paper we focused on the event of 30 and 31 August 2003, when a dust layer in the height range of 2000-5000 m, progressively affected all three stations. This layer showed a complex behavior concerning its spatial evolution and allowed us to study the changes in the optical properties of the desert dust particles along their transport due to aging and mixing with other types of aerosol. The extinction-to-backscatter ratio determined on the 30 August 2003 at Thessaloniki was approximately 50 sr, characteristic for rather spherical mineral particles, and the measured color index of 0.4 was within the typical range of values for desert dust. Mixing of the desert dust with other sources of aerosols resulted the next day in overall smaller and less absorbing population of particles with a lidar ratio of 20 sr. Mixing of polluted air-masses originating from Northern Greece and Crete and Saharan dust result in very high aerosol backscatter values reaching 7 Mm-1 sr-1 over Finokalia. The Saharan dust observed over Athens followed a different spatial evolution and was not mixed with the boundary layer aerosols mainly originating from

  7. Algorithms to retrieve optical properties of three component aerosols from two-wavelength backscatter and one-wavelength polarization lidar measurements considering nonsphericity of dust

    International Nuclear Information System (INIS)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Okamoto, Hajime

    2011-01-01

    We developed backward and forward types of algorithms for estimating the vertical profiles of extinction coefficients at 532 nm for three component aerosols (water-soluble, dust, and sea salt) using three-channel Mie-scattering lidar data of the backscatter (β) at 532 and 1064 nm and the depolarization ratio (δ) at 532 nm. While the water-soluble and sea-salt particles were reasonably assumed to be spherical, the dust particles were treated as randomly oriented spheroids to account for their nonsphericity. The introduction of spheroid models enabled us to more effectively use the three-channel data (i.e., 2β+1δ data) and to reduce the uncertainties caused by the assumption of spherical dust particles in our previously developed algorithms. We also performed an extensive sensitivity study to estimate retrieval errors, which showed that the errors in the extinction coefficient for each aerosol component were smaller than 30% (60%) for the backward (forward) algorithm when the measurement errors were ±5%. We demonstrated the ability of the algorithms to partition aerosol layers consisting of three aerosol components by applying them to shipborne lidar data. Comparisons with sky radiometer measurements revealed that the retrieved optical thickness and angstrom exponent of aerosols using the algorithms developed in this paper agreed well with the sky radiometer measurements (within 6%).

  8. Optical characteristics of jewellery gold alloys

    International Nuclear Information System (INIS)

    Wan Mahmood bin Mat Yunus; Zainal Abidin bin Talib; Maarof bin Moksin; Abdul Fatah bin Awang Mat

    1994-01-01

    Measurements of the reflection of various sample of gold alloys were made over the wavelength range 400-800 nm. Samples were measured using a single beam spectrophotometer at 45 deg. angle of incidence. In this measurement no attempt was made to obtain the optical constants of the samples. The results showed that there were significant differences between bulk and thick samples, with sufficient spectra difference between different composition of the alloys

  9. An algorithm to determine backscattering ratio and single scattering albedo

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.A.M.Q.; Nayak, S.R.; Naik, P.

    Algorithms to determine the inherent optical properties of water, backscattering probability and single scattering albedo at 490 and 676 nm from the apparent optical property, remote sensing reflectance are presented here. The measured scattering...

  10. Radiation resistant characteristics of optical fibers

    International Nuclear Information System (INIS)

    Nakasuji, Masaaki; Tanaka, Gotaro; Watanabe, Minoru; Kyodo, Tomohisa; Mukunashi, Hiroaki

    1983-01-01

    It is required to develop the optical fibers with good radiation resistivity because the fibers cause the increase of transmission loss due to glass colouring when they are used under the presence of radiation such as γ-ray. Generally, it is known that SI (step index) fibers are more resistive to radiation than GI (graded index) fibers. However, since a wide band can not be obtained with SI fibers, the development of radiation resistive GI optical fibers is desirable. In this report, the production for trial of the GI fibers of fluorine-doped silica core, the examination of radiation effect on their optical transmission loss by exposing them to γ-ray, thermal and fast neutron beams and also of mechanical strength are described. The GI fibers of fluorine-doped silica core show better radiation resistivity than Ge-doped ones. The B- and F-doped GI fibers show small increase of loss due to γ-ray, but large increase of loss due to thermal neutron beam. This is supposed to be caused by the far greater neutron absorption cross-section of boron than that of other elements. Significant increase of loss was not recognized when 14 MeV fast neutrons (8.6 x 10 4 n/cm 2 .s) were applied by 1.8 x 10 9 n/cm 2 . It was found that ETFE-covered fiber cores generated fluorine-containing gas due to γ irradiation, and the strength was remarkably lowered, but the lowering of strength can be prevented by adding titanium-white to the covering material. (Wakatsuki, Y.)

  11. Optical characteristics of crystalline antimony sulphide (Sb 2 S 3 ...

    African Journals Online (AJOL)

    This paper presents the important optical characteristics of crystalline Sb2S3 film deposited on glass substrate using solution growth technique at 300k. These characteristics were analyzed using PYEUNICAM SP8-100 spectrophotometer in the range of UV-VIS-NIR while the morphology and the structural composition were ...

  12. Use of sediment rating curves and optical backscatter data to characterize sediment transport in the Upper Yuba River watershed, California, 2001-03

    Science.gov (United States)

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.

    2006-01-01

    Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and

  13. Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles

    Science.gov (United States)

    Vladimir A Kovalev; Wei Min Hao; Cyle Wold

    2007-01-01

    A new method is considered that can be used for inverting data obtained from a combined elastic-inelastic lidar or a high spectral resolution lidar operating in a one-directional mode, or an elastic lidar operating in a multiangle mode. The particulate extinction coefficient is retrieved from the simultaneously measured profiles of the particulate backscatter...

  14. Sensing characteristics of birefringent microstructured polymer optical fiber

    DEFF Research Database (Denmark)

    Szczurowski, Marcin K.; Frazao, Orlando; Baptista, J. M.

    2011-01-01

    We experimentally studied several sensing characteristics of a birefringent microstructured polymer optical fiber. The fiber exhibits a birefringence of the order 2×10-5 at 1.3 μm because of two small holes adjacent to the core. In this fiber, we measured spectral dependence of phase and group mo...

  15. Geometric characteristics of aberrations of plane-symmetric optical systems

    International Nuclear Information System (INIS)

    Lu Lijun; Deng Zhiyong

    2009-01-01

    The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.

  16. Optical and Biometric Characteristics of Anisomyopia in Human Adults

    Science.gov (United States)

    Tian, Yibin; Tarrant, Janice; Wildsoet, Christine F.

    2011-01-01

    Purpose To investigate the role of higher order optical aberrations and thus retinal image degradation in the development of myopia, through the characterization of anisomyopia in human adults in terms of their optical and biometric characteristics. Methods The following data were collected from both eyes of fifteen young adult anisometropic myopes and sixteen isometropic myopes: subjective and objective refractive errors, corneal power and shape, monochromatic optical aberrations, anterior chamber depth, lens thickness, vitreous chamber depth, and best corrected visual acuity. Monochromatic aberrations were analyzed in terms of their higher order components, and further analyzed in terms of 31 optical quality metrics. Interocular differences for the two groups (anisomyopes vs. isomyopes) were compared and the relationship between measured ocular parameters and refractive errors also analyzed across all eyes. Results As expected, anisomyopes and isomyopes differed significantly in terms of interocular differences in vitreous chamber depth, axial length and refractive error. However, interocular differences in other optical properties showed no significant intergroup differences. Overall, higher myopia was associated with deeper anterior and vitreous chambers, higher astigmatism, more prolate corneas, and more positive spherical aberration. Other measured optical and biometric parameters were not significantly correlated with spherical refractive error, although some optical quality metrics and corneal astigmatism were significantly correlated with refractive astigmatism. Conclusions An optical cause for anisomyopia related to increased higher order aberrations is not supported by our data. Corneal shape changes and increased astigmatism in more myopic eyes may be a by-product of the increased anterior chamber growth in these eyes; likewise, the increased positive spherical aberration in more myopic eyes may be a product of myopic eye growth. PMID:21797915

  17. Optical Characteristics of a Multichannel Hybrid Integrated Light Source for Ultra-High-Bandwidth Optical Interconnections

    Directory of Open Access Journals (Sweden)

    Takanori Shimizu

    2015-11-01

    Full Text Available The optical characteristics of a multi-channel hybrid integrated light source were described for an optical interconnection with a bandwidth of over 10 Tbit/s. The power uniformity of the relative intensity of a 1000-channel light source was shown, and the minimum standard deviation s of the optical power of the 200 output ports at each 25-channel laser diode (LD array was estimated to be 0.49 dB. This hybrid integrated light source is expected to be easily adaptable to a photonics-electronics convergence system for ultra-high-bandwidth interchip interconnections.

  18. Optical characteristics of novel bulk and nanoengineered laser host materials

    Science.gov (United States)

    Prasad, Narasimha S.; Sova, Stacey; Kelly, Lisa; Bevan, Talon; Arnold, Bradley; Cooper, Christopher; Choa, Fow-Sen; Singh, N. B.

    2018-02-01

    The hexagonal apatite single crystals have been investigated for their applications as laser host materials. Czochralksi and flux growth methods have been utilized to obtain single crystals. For low temperature processing (useful properties as laser hosts and bone materials. Calcium lanthanum silicate (Nd-doped) and lanthanum aluminate material systems were studied in detail. Nanoengineered calcium and lanthanum based silicates were synthesized by a solution method and their optical and morphological characteristics were compared with Czochralski grown bulk hydroxyapatite single crystals. Materials were evaluated by absorbance, fluorescence and Raman characteristics. Neodymium, iron and chromium doped crystals grown by a solution method showed weak but similar optical properties to that of Czochralski grown single crystals.

  19. Radiation resistance characteristics of optical communication system for single mode

    International Nuclear Information System (INIS)

    Ohe, Masamoto; Chigusa, Yoshiki; Kyodo, Tomohisa; Tanaka, Gohtaro; Watanabe, Hajime; Okamoto, Shin-ichi; Yamamoto, Takao.

    1988-01-01

    Optical communication has been utilized also for nuclear power stations and fuel reporocessing plants. As the sufficient safety countermeasures are required there, the amount of information becomes enormous, therefore, optical communication, by which the required space is expected to be reduced, becomes more important. Also in the application to submarine cables, attention must be paid to the radiation resistance as there are the effects of potassium contained in large amount in seawater and uranium deposits in sea bottom. Therefore, the reliability of the components of optical communication systems against radiation becomes a problem. In this study, single mode optical fibers and transmission and receipt modules were selected, and high dose rate irradiation supposing the case of using in a cell and low dose rate, long time irradiation supposing the case of submarine cables were carried out to evaluate the radiation resistance characteristics. The fibers tested were SiO 2 core/F-SiO 2 clad type and GeO 2 -SiO 2 core/SiO 2 clad type. The characteristics of increasing loss in irradiation and restoration after irradiation of the former type were superior to those of the latter type. The output of a receipt module was normal during irradiation, and the output power of a transmission module decreases, but other problems did not arise. (K.I.)

  20. Characteristics of VCSELs and VCSEL arrays for optical data links

    Science.gov (United States)

    Gaw, Craig A.; Jiang, Wenbin; Lebby, Michael S.; Kiely, Philip A.; Claisse, Paul R.

    1997-05-01

    High performance, low cost, and highly reliable vertical cavity surface emitting lasers (VCSELs) have been developed and are currently being used in both parallel and serial optical interconnect applications. For example, Motorola's OPTOBUSTM parallel optical interconnect relies heavily on the unique characteristics of arrays of GaAs based VCSELs emitting at 850 nm to achieve its stringent performance goals at low cost. Representative parametric results of discrete VCSELs and VCSEL arrays will be compared, including `optical power output-current' and `current-voltage' curves, optical wall plug efficiencies, and modulation characteristics. The use of statistical parameter analysis across a wafer and subsequent parametric wafer maps has proven to be a valuable tool for maintaining control of the fabrication process. The consistency of VCSEL parameters across individual VCSEL arrays will be discussed. VCSELs are very robust devices. Life times at room ambient in excess of 3E6 hours have been reported by several groups. Degradation behavior of selected device parameters will be discussed. Failure analysis demonstrating the effect of proton implant depth on reliability will be presented. ESD damage at forward bias is shown to be process related, while ESD damage at reverse bias is shown to be material related. These VCSELs are ESD Class 1 devices.

  1. Spatially coded backscatter radiography

    International Nuclear Information System (INIS)

    Thangavelu, S.; Hussein, E.M.A.

    2007-01-01

    Conventional radiography requires access to two opposite sides of an object, which makes it unsuitable for the inspection of extended and/or thick structures (airframes, bridges, floors etc.). Backscatter imaging can overcome this problem, but the indications obtained are difficult to interpret. This paper applies the coded aperture technique to gamma-ray backscatter-radiography in order to enhance the detectability of flaws. This spatial coding method involves the positioning of a mask with closed and open holes to selectively permit or block the passage of radiation. The obtained coded-aperture indications are then mathematically decoded to detect the presence of anomalies. Indications obtained from Monte Carlo calculations were utilized in this work to simulate radiation scattering measurements. These simulated measurements were used to investigate the applicability of this technique to the detection of flaws by backscatter radiography

  2. Characterizing Indian Ocean manganese nodule-bearing seafloor using multi-beam angular backscatter

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Kodagali, V.N.

    backscattering in delineating seafloor parameters characteristic of nodule-rich sediments. In this paper, processed Hydrosweep multi-beam backscatter data from 45 spot locations in the CIOB (where nodule samples are available) were analysed to estimate seafloor...

  3. Extracting electron backscattering coefficients from backscattered electron micrographs

    International Nuclear Information System (INIS)

    Zupanic, F.

    2010-01-01

    Electron backscattering micrographs possess the so-called Z-contrast, carrying information about the chemical compositions of phases present in microstructures. The intensity at a particular point in the backscattered electron micrograph is proportional to the signal detected at a corresponding point in the scan raster, which is, in turn, proportional to the electron backscattering coefficient of a phase at that point. This article introduces a simple method for extracting the electron backscattering coefficients of phases present in the microstructure, from the backscattered electron micrographs. This method is able to convert the micrograph's greyscale to the backscattering-coefficient-scale. The prerequisite involves the known backscattering coefficients for two phases in the micrograph. In this way, backscattering coefficients of other phases can be determined. The method is unable to determine the chemical compositions of phases or the presence of an element only from analysing the backscattered electron micrograph. Nevertheless, this method was found to be very powerful when combined with energy dispersive spectroscopy, and the calculations of backscattering coefficients. - Research Highlights: →A simple method for extracting the electron backscattering coefficients →The prerequisite is known backscattering coefficients for two phases →The information is complementary to the EDS-results. →This method is especially useful when a phase contains a light element (H, Li, Be, and B)

  4. Nonlinear optical characteristics of monolayer MoSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)

    2016-08-15

    In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Optical pulse characteristics of sonoluminescence at low acoustic drive levels

    Science.gov (United States)

    Arakeri, Vijay H.; Giri, Asis

    2001-06-01

    From a nonaqueous alkali-metal salt solution, it is possible to observe sonoluminescence (SL) at low acoustic drive levels with the ratio of the acoustic pressure amplitude to the ambient pressure being about 1. In this case, the emission has a narrowband spectral content and consists of a few flashes of light from a levitated gas bubble going through an unstable motion. A systematic statistical study of the optical pulse characteristics of this form of SL is reported here. The results support our earlier findings [Phys. Rev. E 58, R2713 (1998)], but in addition we have clearly established a variation in the optical pulse duration with certain physical parameters such as the gas thermal conductivity. Quantitatively, the SL optical pulse width is observed to vary from 10 ns to 165 ns with the most probable value being 82 ns, for experiments with krypton-saturated sodium salt ethylene glycol solution. With argon, the variation is similar to that of krypton but the most probable value is reduced to 62 ns. The range is significantly smaller with helium, being from 22 ns to 65 ns with the most probable value also being reduced to 42 ns. The observed large variation, for example with krypton, under otherwise fixed controllable experimental parameters indicates that it is an inherent property of the observed SL process, which is transient in nature. It is this feature that necessitated our statistical study. Numerical simulations of the SL process using the bubble dynamics approach of Kamath, Prosperetti, and Egolfopoulos [J. Acoust. Soc. Am. 94, 248 (1993)] suggest that a key uncontrolled parameter, namely the initial bubble radius, may be responsible for the observations. In spite of the fact that certain parameters in the numerical computations have to be fixed from a best fit to one set of experimental data, the observed overall experimental trends of optical pulse characteristics are predicted reasonably well.

  6. Optical pulse characteristics of sonoluminescence at low acoustic drive levels

    International Nuclear Information System (INIS)

    Arakeri, Vijay H.; Giri, Asis

    2001-01-01

    From a nonaqueous alkali-metal salt solution, it is possible to observe sonoluminescence (SL) at low acoustic drive levels with the ratio of the acoustic pressure amplitude to the ambient pressure being about 1. In this case, the emission has a narrowband spectral content and consists of a few flashes of light from a levitated gas bubble going through an unstable motion. A systematic statistical study of the optical pulse characteristics of this form of SL is reported here. The results support our earlier findings [Phys. Rev. E >58, R2713 (1998)], but in addition we have clearly established a variation in the optical pulse duration with certain physical parameters such as the gas thermal conductivity. Quantitatively, the SL optical pulse width is observed to vary from 10 ns to 165 ns with the most probable value being 82 ns, for experiments with krypton-saturated sodium salt ethylene glycol solution. With argon, the variation is similar to that of krypton but the most probable value is reduced to 62 ns. The range is significantly smaller with helium, being from 22 ns to 65 ns with the most probable value also being reduced to 42 ns. The observed large variation, for example with krypton, under otherwise fixed controllable experimental parameters indicates that it is an inherent property of the observed SL process, which is transient in nature. It is this feature that necessitated our statistical study. Numerical simulations of the SL process using the bubble dynamics approach of Kamath, Prosperetti, and Egolfopoulos [J. Acoust. Soc. Am. >94, 248 (1993)] suggest that a key uncontrolled parameter, namely the initial bubble radius, may be responsible for the observations. In spite of the fact that certain parameters in the numerical computations have to be fixed from a best fit to one set of experimental data, the observed overall experimental trends of optical pulse characteristics are predicted reasonably well

  7. Card controlled beta backscatter thickness measuring instrument

    International Nuclear Information System (INIS)

    Schlesinger, J.

    1978-01-01

    An improved beta backscatter instrument for the nondestructive measurement of the thickness of thin coatings on a substrate is described. Included therein is the utilization of a bank of memory stored data representative of isotope, substrate, coating material and thickness range characteristics in association with a control card having predetermined indicia thereon selectively representative of a particular isotope, substrate material, coating material and thickness range for conditioning electronic circuit means by memory stored data selected in accord with the predetermined indicia on a control card for converting backscattered beta particle counts into indicia of coating thickness

  8. Dome diagnostics system of optical parameters and characteristics of LEDs

    Science.gov (United States)

    Peretyagin, Vladimir S.; Pavlenko, Nikita A.

    2017-09-01

    Scientific and technological progress of recent years in the production of the light emitting diodes (LEDs) has led to the expansion of areas of their application from the simplest systems to high precision lighting devices used in various fields of human activity. However, development and production (especially mass production) of LED lighting devices are impossible without a thorough analysis of its parameters and characteristics. There are many ways and devices for analysis the spatial, energy and colorimetric parameters of LEDs. The most methods are intended for definition only one parameter (for example, luminous flux) or one characteristic (for example, the angular distribution of energy or the spectral characteristics). Besides, devices used these methods are intended for measuring parameters in only one point or plane. This problem can be solved by using a dome diagnostics system of optical parameters and characteristics of LEDs, developed by specialists of the department OEDS chair of ITMO University in Russia. The paper presents the theoretical aspects of the analysis of LED's spatial (angular), energy and color parameters by using mentioned of diagnostics system. The article also presents the results of spatial), energy and color parameters measurements of some LEDs brands.

  9. Acoustic Doppler velocimeter backscatter for quantification of suspended sediment concentration in South San Francisco Bay, USA

    Science.gov (United States)

    Öztürk, Mehmet; Work, Paul A.

    2016-01-01

    A data set was acquired on a shallow mudflat in south San Francisco Bay that featured simultaneous, co-located optical and acoustic sensors for subsequent estimation of suspended sediment concentrations (SSC). The optical turbidity sensor output was converted to SSC via an empirical relation derived at a nearby site using bottle sample estimates of SSC. The acoustic data was obtained using an acoustic Doppler velocimeter. Backscatter and noise were combined to develop another empirical relation between the optical estimates of SSC and the relative backscatter from the acoustic velocimeter. The optical and acoustic approaches both reproduced similar general trends in the data and have merit. Some seasonal variation in the dataset was evident, with the two methods differing by greater or lesser amounts depending on which portion of the record was examined. It is hypothesized that this is the result of flocculation, affecting the two signals by different degrees, and that the significance or mechanism of the flocculation has some seasonal variability. In the earlier portion of the record (March), there is a clear difference that appears in the acoustic approach between ebb and flood periods, and this is not evident later in the record (May). The acoustic method has promise but it appears that characteristics of flocs that form and break apart may need to be accounted for to improve the power of the method. This may also be true of the optical method: both methods involve assuming that the sediment characteristics (size, size distribution, and shape) are constant.

  10. Multiple scattering wavelength dependent backscattering of kaolin dust in the IR: Measurements and theory

    Science.gov (United States)

    Ben-David, Avishai

    1992-01-01

    Knowing the optical properties of aerosol dust is important for designing electro-optical systems and for modeling the effect on propagation of light in the atmosphere. As CO2 lidar technology becomes more advanced and is used for multiwavelength measurements, information on the wavelength dependent backscattering of aerosol dust particles is required. The volume backscattering coefficient of aerosols in the IR is relatively small. Thus, only a few field measurements of backscattering, usually at only a few wavelengths, are reported in the literature. We present spectral field measurements of backscattering of kaolin dust in the 9-11 micron wavelength range. As the quantity of dust increases, multiple scattering contributes more to the measured backscattered signal. The measurements show the effect of the dust quantity of the spectral backscatter measurements. A simple analytical two stream radiative transfer model is applied to confirm the measurements and to give insight to the multiple scattering spectra of backscattering.

  11. Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio

    Science.gov (United States)

    Omar, Ali H.; Winker, David M.; Vaughan, Mark A.

    2006-01-01

    The extinction-to-backscatter ratio (S(sub a)) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. S(sub a) for the CALIPSO lidar will either be selected from a look-up table or calculated using the lidar measurements depending on the characteristics of aerosol layer. Whenever suitable lofted layers are encountered, S(sub a) is computed directly from the integrated backscatter and transmittance. In all other cases, the CALIPSO observables: the depolarization ratio, delta, the layer integrated attenuated backscatter, beta, and the mean layer total attenuated color ratio, gamma, together with the surface type, are used to aid in aerosol typing. Once the type is identified, a look-up-table developed primarily from worldwide observations, is used to determine the S(sub a) value. The CALIPSO aerosol models include desert dust, biomass burning, background, polluted continental, polluted dust, and marine aerosols.

  12. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    Science.gov (United States)

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  13. Observation and analysis of water inherent optical properties

    Science.gov (United States)

    Sun, Deyong; Li, Yunmei; Le, Chengfeng; Huang, Changchun

    2008-03-01

    Inherent optical property is an important part of water optical properties, and is the foundation of water color analytical model establishment. Through quantity filter technology (QFT) and backscattering meter BB9 (WETlabs Inc), absorption coefficients of CDOM, total suspended minerals and backscattering coefficients of total suspended minerals had been observed in Meiliang Bay of Taihu lake at summer and winter respectively. After analyzing the spectral characteristics of absorption and backscattering coefficients, the differences between two seasons had been illustrated adequately, and the reasons for the phenomena, which are related to the changes of water quality coefficient, had also been explained. So water environment states can be reflected by inherent optical properties. In addition, the relationship models between backscattering coefficients and suspended particle concentrations had been established, which can support coefficients for analytical models.

  14. Optical and impedance characteristics of passive films on pure aluminium

    International Nuclear Information System (INIS)

    Krishnakumar, R.; Szklarska-Smialowska, Z.

    1992-01-01

    Optical and Impedance behavior of pure bulk aluminum and pure sputtered aluminum film were studied in order to gain a better understanding of their fundamental passivation and pitting characteristics. Constant potential experiments at the passivation and pitting potentials, and potentiostatic anodic polarization were conducted while simultaneously monitoring the current, impedance and optical behavior, in-situ. Noise characteristics in the current data during the pit incubation period indicate that Cl - ions migrate with little impediment to the metal surface through defects in the passive film. Impedance experiments indicate that the polarization resistance fluctuates continuously with time during the pit incubation period, suggesting that impedance spectroscopy is sensitive to localized processes. The interfacial capacitance increases continuously during this time. The smallest pits observed on the sample surface (less than 10μ) are clearly crystallographic, indicating activation controlled dissolution at pits. The film capacitance increases with exposure time at the passivation potential, while the polarization resistance decreases continuously. The decrease in the film resistance is thought to be due to chloride incorporation at defects in the passive film. The increase in film capacitance at the passivation and pitting potential is due to an increase in the film dielectric constant caused by either a compositional change or anion incorporation. Ellipsometry results indicate growth of a dual layered film on the pure aluminum surface, with the outer layer probably containing varying amounts of incorporated chloride depending on the applied potential. Preliminary experiments indicate that in the case of sputtered aluminum film, the passive film resistance is at least an order of magnitude higher than that of bulk aluminum. This is due to the fine grain structure of sputtered Al and hence a more defect free passive film than that formed on bulk aluminum. There is

  15. Three-beam aerosol backscatter correlation lidar for wind profiling

    Science.gov (United States)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  16. Tapered optical fibers as tools for probing magneto-optical trap characteristics

    International Nuclear Information System (INIS)

    Morrissey, Michael J.; Deasy, Kieran; Wu Yuqiang; Nic Chormaic, Sile; Chakrabarti, Shrabana

    2009-01-01

    We present a novel technique for measuring the characteristics of a magneto-optical trap (MOT) for cold atoms by monitoring the spontaneous emission from trapped atoms coupled into the guided mode of a tapered optical nanofiber. We show that the nanofiber is highly sensitive to very small numbers of atoms close to its surface. The size and shape of the MOT, determined by translating the cold atom cloud across the tapered fiber, is in excellent agreement with measurements obtained using the conventional method of fluorescence imaging using a charge coupled device camera. The coupling of atomic fluorescence into the tapered fiber also allows us to monitor the loading and lifetime of the trap. The results are compared to those achieved by focusing the MOT fluorescence onto a photodiode and it was seen that the tapered fiber gives slightly longer loading and lifetime measurements due to the sensitivity of the fiber, even when very few atoms are present.

  17. Experimental studies with a stimulated Raman backscatter probe beam in laser-irradiated plasmas

    International Nuclear Information System (INIS)

    Jiang, Z.M.; Meng, S.X.; Xu, Z.Z.

    1986-01-01

    This paper reports on the optical diagnostic experiments accomplished with a stimulated Raman backscatter probe beam set up recently in the sixbeam Nd:glass laser facility for laser fusion research at the Shanghai Insitute of Optics and Fine Mechanics

  18. Standards for backscattering analysis

    International Nuclear Information System (INIS)

    Mitchell, I.V.; Eschbach, H.L.

    1978-01-01

    The need for backscattering standards appears to be twofold and depends on the uses and requirements of the users. The first is as a calibrated reference by which samples of a similar nature to the standard may be absolutely compared. The second is as a means of intercomparing the relative results obtained by different laboratories using, as near as possible, identical samples. This type of comparison is of a relative nature and the absolute values are not necessarily required. In the present work the authors try to satisfy both needs by providing identical samples which have been absolutely calibrated to a high accuracy. Very thin copper and vanadium layers were evaporated onto bismuth implanted silicon crystals and on glass plates under carefully controlled conditions. The mass of the deposits was determined in situ using a sensitive UHV microbalance. In addition, two quartz oscillator monitors were used. The samples have been analysed by Rutherford backscattering and the absolute quantity of bismuth determined by a comparison with the known amounts of deposited material. (Auth.)

  19. Optically reconfigurable patterning for control of the propagation characteristics of a planar waveguide

    Science.gov (United States)

    Wang, Y.; Klittnick, A.; Clark, N. A.; Keller, P.

    2008-10-01

    We demonstrate an easily fabricated all-optical and freely reconfigurable method of controlling the propagating characteristics of the optic path within a planar waveguide with low insertion losses by employing the optical patterning of the refractive index of an erasable and rewriteable photosensitive liquid crystal polymer cladding layer.

  20. Interlinking backscatter, grain size and benthic community structure

    Science.gov (United States)

    McGonigle, Chris; Collier, Jenny S.

    2014-06-01

    The relationship between acoustic backscatter, sediment grain size and benthic community structure is examined using three different quantitative methods, covering image- and angular response-based approaches. Multibeam time-series backscatter (300 kHz) data acquired in 2008 off the coast of East Anglia (UK) are compared with grain size properties, macrofaunal abundance and biomass from 130 Hamon and 16 Clamshell grab samples. Three predictive methods are used: 1) image-based (mean backscatter intensity); 2) angular response-based (predicted mean grain size), and 3) image-based (1st principal component and classification) from Quester Tangent Corporation Multiview software. Relationships between grain size and backscatter are explored using linear regression. Differences in grain size and benthic community structure between acoustically defined groups are examined using ANOVA and PERMANOVA+. Results for the Hamon grab stations indicate significant correlations between measured mean grain size and mean backscatter intensity, angular response predicted mean grain size, and 1st principal component of QTC analysis (all p PERMANOVA for the Hamon abundance shows benthic community structure was significantly different between acoustic groups for all methods (p ≤ 0.001). Overall these results show considerable promise in that more than 60% of the variance in the mean grain size of the Clamshell grab samples can be explained by mean backscatter or acoustically-predicted grain size. These results show that there is significant predictive capacity for sediment characteristics from multibeam backscatter and that these acoustic classifications can have ecological validity.

  1. Quantitative characterization of abyssal seafloor with transit multibeam backscatter data

    Science.gov (United States)

    Pockalny, R. A.; Ferrini, V. L.

    2014-12-01

    The expanding volume of deep-water multibeam echosounder data provides emerging opportunities for the improved characterization of the abyssal seafloor. Nearly 500 cruises criss-cross the oceans with modern wide-swath multibeam systems, and these cruise tracks have imaged a variety of morphologic, tectonic and magmatic environments. The qualitative analysis of the seafloor backscatter data strongly suggests a local and regional variability that correlates with sediment thickness, sediment type and/or depositional environment. We present our initial attempts to develop a method that quantifies this observed seafloor backscatter variability and to explore the causes and potential implications of this variability. Our approach is rooted in the Angular Range Analysis methodology, which utilizes changes in backscatter amplitude observed as a function of grazing angle, to characterize the seafloor. The primary difference in our approach is that we do not invert for geo-acoustical parameters, but rather explores empirical relationships between geological observations and stacked slope and y-intercept values. In addition, we also include the mean and the variance of detrended backscatter measurements. Our initial results indicate intriguing relationships between backscatter parameters and the CaCO3 content of surface sediments. Seafloor regions reported to have high manganese nodule concentrations also tend to have characteristic trends in backscatter parameters. We will present these regional correlations as well as some preliminary statistical analyses of the backscatter parameters and key environmental factors.

  2. Thermo-optic characteristics of hybrid polymer/silica microstructured optical fiber: An analytical approach

    Science.gov (United States)

    Sharma, Dinesh Kumar; Sharma, Anurag; Tripathi, Saurabh Mani

    2018-04-01

    Microstructured optical fibers (MOFs) allow a variety of advanced materials to be infiltrated in their air-voids for obtaining the increased fiber functionality, and offering a new versatile platform for developing the compact sensors devices. We aim to investigate the thermal characteristics of high-index core triangular hybrid polymer/silica MOFs with circular air-voids infused with polymer by using the analytical field model [1]. We demonstrate that infiltration of air-voids with polymer, e.g., polydimethylsiloxane (PDMS) can facilitate to tune the fundamental modal properties of MOF such as effective index of the mode, near and the far-field profiles, effective mode area and the numerical aperture over the temperature ranging from 0 °C to 100 °C, for different values of relative air-void ratios. The evolution of the mode shape for a given temperature has been investigated in transition from near-field to far-field regime. We have studied the thermal dependence of splice losses between hybrid MOF and the standard step-index single-mode optical fiber in combination with Fresnel losses. For enhancing the evanescent field interactions, we have evaluated fraction of power associated with fundamental mode of hybrid MOF. We have compared the accuracy of our results with those based on full-vector finite-difference (FD) method, as available in the literature.

  3. TCR backscattering characterization for microwave remote sensing

    Science.gov (United States)

    Riccio, Giovanni; Gennarelli, Claudio

    2014-05-01

    A Trihedral Corner Reflector (TCR) is formed by three mutually orthogonal metal plates of various shapes and is a very important scattering structure since it exhibits a high monostatic Radar Cross Section (RCS) over a wide angular range. Moreover it is a handy passive device with low manufacturing costs and robust geometric construction, the maintenance of its efficiency is not difficult and expensive, and it can be used in all weather conditions (i.e., fog, rain, smoke, and dusty environment). These characteristics make it suitable as reference target and radar enhancement device for satellite- and ground-based microwave remote sensing techniques. For instance, TCRs have been recently employed to improve the signal-to-noise ratio of the backscattered signal in the case of urban ground deformation monitoring [1] and dynamic survey of civil infrastructures without natural corners as the Musmeci bridge in Basilicata, Italy [2]. The region of interest for the calculation of TCR's monostatic RCS is here confined to the first quadrant containing the boresight direction. The backscattering term is presented in closed form by evaluating the far-field scattering integral involving the contributions related to the direct illumination and the internal bouncing mechanisms. The Geometrical Optics (GO) laws allow one to determine the field incident on each TCR plate and the patch (integration domain) illuminated by it, thus enabling the use of a Physical Optics (PO) approximation for the corresponding surface current densities to consider for integration on each patch. Accordingly, five contributions are associated to each TCR plate: one contribution is due to the direct illumination of the whole internal surface; two contributions originate by the impinging rays that are simply reflected by the other two internal surfaces; and two contributions are related to the impinging rays that undergo two internal reflections. It is useful to note that the six contributions due to the

  4. Backscattering position detection for photonic force microscopy

    International Nuclear Information System (INIS)

    Volpe, Giovanni; Kozyreff, Gregory; Petrov, Dmitri

    2007-01-01

    An optically trapped particle is an extremely sensitive probe for the measurement of pico- and femto-Newton forces between the particle and its environment in microscopic systems (photonic force microscopy). A typical setup comprises an optical trap, which holds the probe, and a position sensing system, which uses the scattering of a beam illuminating the probe. Usually the position is accurately determined by measuring the deflection of the forward-scattered light transmitted through the probe. However, geometrical constraints may prevent access to this side of the trap, forcing one to make use of the backscattered light instead. A theory is presented together with numerical results that describes the use of the backscattered light for position detection. With a Mie-Debye approach, we compute the total (incident plus scattered) field and follow its evolution as it is collected by the condenser lenses and projected onto the position detectors and the responses of position sensitive detectors and quadrant photodetectors to the displacement of the probe in the optical trap, both in forward and backward configurations. We find out that in the case of backward detection, for both types of detectors the displacement sensitivity can change sign as a function of the probe size and is null for some critical sizes. In addition, we study the influence of the numerical aperture of the detection system, polarization, and the cross talk between position measurements in orthogonal directions. We finally discuss how these features should be taken into account in experimental designs

  5. Study on magnetic fluid optical fiber devices for optical logic operations by characteristics of superparamagnetic nanoparticles and magnetic fluids

    International Nuclear Information System (INIS)

    Chieh, J. J.; Hong, C. Y.; Yang, S. Y.; Horng, H. E.; Yang, H. C.

    2010-01-01

    We propose two optical fiber-based schemes using two magnetic fluid optical fiber modulators in series or in parallel for optical logic signal processing and operation. Here, each magnetic fluid optical fiber modulator consists of a bare multimode fiber surrounded by magnetic fluid in which the refractive index is adjustable by applying external magnetic fields amplifying the input electrical signal to vary the transmission intensity of the optical fiber-based scheme. The physical mechanisms for the performances of the magnetic fluid optical fiber devices, such as the transmission loss related to Boolean number of the logic operation as well as the dynamic response, are studied by the characteristics of superparamagnetic nanoparticles and magnetic fluids. For example, in the dynamic response composed of the retarding and response sub-procedures except the response times of the actuation coil, the theoretical evaluation of the retarding time variation with cladding magnetic fluids length has good agreement with the experimental results.

  6. Evaluation of insertion characteristics of less invasive Si optoneural probe with embedded optical fiber

    Science.gov (United States)

    Morikawa, Takumi; Harashima, Takuya; Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu

    2017-04-01

    A less invasive Si optoneural probe with an embedded optical fiber was proposed and successfully fabricated. The diameter of the optical fiber was completely controlled by hydrogen fluoride etching, and the thinned optical fiber can propagate light without any leakage. This optical fiber was embedded in a trench formed inside a probe shank, which causes less damage to tissues. In addition, it was confirmed that the optical fiber embedded in the probe shank successfully irradiated light to optically stimulate gene transfected neurons. The electrochemical impedance of the probe did not change despite the light irradiation. Furthermore, probe insertion characteristics were evaluated in detail and less invasive insertion was clearly indicated for the Si optoneural probe with the embedded optical fiber compared with conventional optical neural probes. This neural probe with the embedded optical fiber can be used as a simple and easy tool for optogenetics and brain science.

  7. Optical scattering characteristic of annealed niobium oxide films

    International Nuclear Information System (INIS)

    Lai Fachun; Li Ming; Wang Haiqian; Hu Hailong; Wang Xiaoping; Hou, J.G.; Song Yizhou; Jiang Yousong

    2005-01-01

    Niobium oxide (Nb 2 O 5 ) films with thicknesses ranging from 200 to 1600 nm were deposited on fused silica at room temperature by low frequency reactive magnetron sputtering system. In order to study the optical losses resulting from the microstructures, the films with 500 nm thickness were annealed at temperatures between 600 and 1100 deg. C, and films with thicknesses from 200 to 1600 nm were annealed at 800 deg. C. Scanning electron microscopy and atomic force microscopy images show that the root mean square of surface roughness, the grain size, voids, microcracks, and grain boundaries increase with increasing both the annealing temperature and the thickness. Correspondingly, the optical transmittance and reflectance decrease, and the optical loss increases. The mechanisms of the optical losses are discussed. The results suggest that defects in the volume and the surface roughness should be the major source for the optical losses of the annealed films by causing pronounced scattering. For samples with a determined thickness, there is a critical annealing temperature, above which the surface scattering contributes to the major optical losses. In the experimental scope, for the films annealed at temperatures below 900 deg. C, the major optical losses resulted from volume scattering. However, surface roughness was the major source for the optical losses when the 500-nm films were annealed at temperatures above 900 deg. C

  8. Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor.

    Science.gov (United States)

    Hong, Seongjin; Jung, Woohyun; Nazari, Tavakol; Song, Sanggwon; Kim, Taeoh; Quan, Chai; Oh, Kyunghwan

    2017-05-15

    We report unique thermo-optical characteristics of DNA-Cetyl tri-methyl ammonium (DNA-CTMA) thin solid film with a large negative thermo-optical coefficient of -3.4×10-4/°C in the temperature range from 20°C to 70°C without any observable thermal hysteresis. By combining this thermo-optic DNA film and fiber optic multimode interference (MMI) device, we experimentally demonstrated a highly sensitive compact temperature sensor with a large spectral shift of 0.15 nm/°C. The fiber optic MMI device was a concatenated structure with single-mode fiber (SMF)-coreless silica fiber (CSF)-single mode fiber (SMF) and the DNA-CTMA film was deposited on the CSF. The spectral shifts of the device in experiments were compared with the beam propagation method, which showed a good agreement.

  9. On the collocation between dayside auroral activity and coherent HF radar backscatter

    Directory of Open Access Journals (Sweden)

    J. Moen

    Full Text Available The 2D morphology of coherent HF radar and optical cusp aurora has been studied for conditions of predominantly southward IMF conditions, which favours low-latitude boundary layer reconnection. Despite the variability in shape of radar cusp Doppler spectra, the spectral width criterion of > 220 m s–1 proves to be a robust cusp discriminator. For extended periods of well-developed radar backscatter echoes, the equatorward boundary of the > 220 m s–1 spectral width enhancement lines up remarkably well with the equatorward boundary of the optical cusp aurora. The spectral width boundary is however poorly determined during development and fading of radar cusp backscatter. Closer inspection of radar Doppler profile characteristics suggests that a combination of spectral width and shape may advance boundary layer identification by HF radar. For the two December days studied the onset of radar cusp backscatter occurred within pre-existing 630.0 nm cusp auroral activity and appear to be initiated by sunrise, i.e. favourable radio wave propagation conditions had to develop. Better methods are put forward for analysing optical data, and for physical interpretation of HF radar data, and for combining these data, as applied to detection, tracking, and better understanding of dayside aurora. The broader motivation of this work is to develop wider use by the scientific community, of results of these techniques, to accelerate understanding of dynamic high-latitude boundary-processes. The contributions in this work are: (1 improved techniques of analysis of observational data, yielding meaningfully enhanced accuracy for deduced cusp locations; (2 a correspondingly more pronounced validation of correlation of boundary locations derived from the observational data set; and (3 a firmer physical rationale as to why the good correlation observed should theoretically be expected.

    Key words: Ionosphere (ionospheric

  10. Optical nonlinear absorption characteristics of Sb2Se3 nanoparticles

    Science.gov (United States)

    Muralikrishna, Molli; Kiran, Aditha Sai; Ravikanth, B.; Sowmendran, P.; Muthukumar, V. Sai; Venkataramaniah, Kamisetti

    2014-04-01

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb2Se3) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10 - 40 nm. Elemental analysis was performed using EDAX. By employing open aperture z-scan technique, we have evaluated the effective two-photon absorption coefficient of Sb2Se3 nanoparticles to be 5e-10 m/W at 532 nm. These nanoparticles exhibit strong intensity dependent nonlinear optical absorption and hence could be considered to have optical power limiting applications in the visible range.

  11. [Morphological, optical, and structural characteristics of glass sponge spicules and the photoreceptor hypothesis of their survival].

    Science.gov (United States)

    Voznesenskiĭ, S S; Kul'chin, Iu N; Galkina, A N; Sergeev, A A

    2010-01-01

    The morphology, structure, and optical characteristics of spicules of some sea glass sponges have been studied. The results obtained are interpreted from the point of view of their possible role in the survival of the organism of sponges.

  12. Multibeam sonar backscatter data processing

    Science.gov (United States)

    Schimel, Alexandre C. G.; Beaudoin, Jonathan; Parnum, Iain M.; Le Bas, Tim; Schmidt, Val; Keith, Gordon; Ierodiaconou, Daniel

    2018-06-01

    Multibeam sonar systems now routinely record seafloor backscatter data, which are processed into backscatter mosaics and angular responses, both of which can assist in identifying seafloor types and morphology. Those data products are obtained from the multibeam sonar raw data files through a sequence of data processing stages that follows a basic plan, but the implementation of which varies greatly between sonar systems and software. In this article, we provide a comprehensive review of this backscatter data processing chain, with a focus on the variability in the possible implementation of each processing stage. Our objective for undertaking this task is twofold: (1) to provide an overview of backscatter data processing for the consideration of the general user and (2) to provide suggestions to multibeam sonar manufacturers, software providers and the operators of these systems and software for eventually reducing the lack of control, uncertainty and variability associated with current data processing implementations and the resulting backscatter data products. One such suggestion is the adoption of a nomenclature for increasingly refined levels of processing, akin to the nomenclature adopted for satellite remote-sensing data deliverables.

  13. Equipment for evaluation of the characteristics of electronic-optic converters

    International Nuclear Information System (INIS)

    Getsov, Petar; Mardirossian, Garo; Nedkov, Rumen; Stoyanov, Stiliyan; Bo, Wang; Prokopenko, Olga; Boyanov, Petar

    2018-01-01

    In this paper we consider the concept, structure, operation and application of original equipment for evaluation of the characteristics of electronic-optic converters (EOC) created in the Space Research and Technologies Institute at the Bulgarian Academy of Sciences. The equipment is recognized as an invention and it is subject to patent protection. Key words: electronic-optic converter, infrared radiation, night surveillance devices

  14. Optical characteristics of thin CIGS cells on TCO back contact

    NARCIS (Netherlands)

    Deelen, J. van; Kniknie, B.; Vroon, Z.A.E.P.; Wuerz, R.; Kessler, F.

    2014-01-01

    Reduction of CIGS layer thickness could translate in significant cost reduction. CIGS was made on transparent conductive oxide (TCO) to allow for optical characterization. This data was compared with external quantum efficiency (EQE) data. The results suggest that changes in surface morphology are

  15. Gain characteristics of a saturated fiber optic parametric amplifier

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Lorenzen, Michael Rodas; Noordegraaf, Danny

    2008-01-01

    In this work we discuss saturation performance of a fiber optic parametric amplifier. A simple numerical model is described and applied to specific cases. A system experiment using a saturated amplifier illustrates a 4 dB improvement in required signal to noise ratio for a fixed bit error ratio....

  16. Optical characteristics of transparent samarium oxide thin films ...

    Indian Academy of Sciences (India)

    2016-10-07

    Oct 7, 2016 ... The estimated direct optical band gap energy (Ed g) values were found to ... rpm substrate rotation and power of 150 W. The rate of deposition was 2 .... tion by annealing is due to the generation of oxygen vacancies due to ...

  17. Modeling the characteristic of the optical wavelength discriminator with fiber Bragg grating

    Science.gov (United States)

    Sikora, Aleksandra

    2017-08-01

    Using the transfer matrix method, the influence of fiber Bragg gratings' (FBG) characteristics on the optical wavelength discriminator characteristics was analyzed. The wavelength discriminator forms FBG and cooperates with the identical FBG sensor. The calculation was made for uniform and chirped FBGs. The comparison of the discriminators processing range measurement was analyzed. Presented results are crucial while choosing parameters of FBG used in constructing optical wavelength discriminators for strain and pressure sensor.

  18. 3D Backscatter Imaging System

    Science.gov (United States)

    Whitaker, Ross (Inventor); Turner, D. Clark (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  19. Mismatch characteristics of optical parametric chirped pulse amplification

    Czech Academy of Sciences Publication Activity Database

    Novák, Ondřej; Turčičová, Hana; Divoký, Martin; Huynh, Jaroslav; Straka, Petr

    2014-01-01

    Roč. 11, č. 2 (2014), 1-7 ISSN 1612-2011 R&D Projects: GA ČR GA202/06/0814; GA MŠk(CZ) LC528 Institutional support: RVO:68378271 Keywords : phase matching * phase mismatch * beam mismatch * broadband amplification * parametric amplifiers * OPCPA * iodine laser Subject RIV: BH - Optics , Masers, Lasers Impact factor: 2.458, year: 2014

  20. On line ultrasonic integrated backscatter

    International Nuclear Information System (INIS)

    Landini, L.; Picano, E.; Mazzarisi, A.; Santarelli, F.; Benassi, A.; De Pieri, G.

    1988-01-01

    A new equipment for on-line evaluation of index based on two-dimensional integrated backscatter from ultrasonic images is described. The new equipment is fully integrated into a B-mode ultrasonic apparatus which provides a simultaneous display of conventional information together with parameters of tissue characterization. The system has been tested with a backscattering model of microbubbles in polysaccharide solution, characterized by a physiological exponential time decay. An exponential fitting to the experimental data was performed which yielded r=0.95

  1. Peripapillary retinal nerve fiber layer and optic nerve head characteristics in eyes with situs inversus of the optic disc.

    Science.gov (United States)

    Kang, Sunah; Jin, Sunyoung; Roh, Kyu Hwa; Hwang, Young Hoon

    2015-01-01

    This study was performed to investigate the peripapillary retinal nerve fiber layer (RNFL) and optic nerve head (ONH) characteristics, as determined using a spectral-domain optical coherence tomography (OCT), in eyes with situs inversus of the optic disc. The peripapillary RNFL and the ONH were assessed in 12 eyes belonging to 6 subjects with situs inversus of the optic disc (situs inversus group) and 24 eyes in 12 age-matched, sex-matched, and refractive error-matched healthy subjects (control group) by using OCT. The average, quadrant, and clock-hour RNFL thicknesses (clock-hour 9 on the scan represented the temporal side of the optic disc in both eyes), the superior/inferior RNFL peak locations, and ONH characteristics such as disc area, rim area, cup-to-disc ratio, vertical cup-to-disc ratio, and cup volume were obtained. The differences in RNFL and ONH characteristics between the 2 groups were analyzed. The situs inversus group had a thicker RNFL in the clock-hour sectors 3 and 4, a thinner RNFL in the clock-hour sectors 7, 8, and 11, and more nasally located superior and inferior RNFL peak locations than the control group (P≤0.001). The situs inversus group had a smaller cup-to-disc area ratio, smaller vertical cup-to-disc ratio, and a lesser cup volume than the control group (Poptic disc showed different peripapillary RNFL and ONH characteristics from those without this abnormality. These findings should be considered when assessing eyes with situs inversus of the optic disc.

  2. Optical characteristics of particles produced using electroerosion dispersion of titanium in hydrogen peroxide

    Science.gov (United States)

    Pyachin, S. A.; Burkov, A. A.; Makarevich, K. S.; Zaitsev, A. V.; Karpovich, N. F.; Ermakov, M. A.

    2016-07-01

    Titanium oxide particles are produced using electric-discharge dispersion of titanium in aqueous solution of hydrogen peroxide. Electron vacuum microscopy, X-ray diffraction, and diffuse reflection spectroscopy are used to study the morphology, composition, and optical characteristics of the erosion particles. It has been demonstrated that the particles consist of titanium and titanium oxides with different valences. The edge of the optical absorption is located in the UV spectral range. The band gap is 3.35 eV for indirect transitions and 3.87 eV for direct allowed transitions. The band gap decreases due to the relatively long heating in air at a temperature of 480-550°C, so that powder oxide compositions can be obtained, the optical characteristics of which are similar to optical characteristics of anatase. The erosion products are completely oxidized to rutile after annealing in air at a temperature of 1000°C.

  3. Compton backscattered collmated X-ray source

    Science.gov (United States)

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  4. Compton backscattered collimated x-ray source

    Science.gov (United States)

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  5. Cylindrical optical resonators: fundamental properties and bio-sensing characteristics

    Science.gov (United States)

    Khozeymeh, Foroogh; Razaghi, Mohammad

    2018-04-01

    In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).

  6. The optical transmission characteristics in metallic photonic crystals

    International Nuclear Information System (INIS)

    Aly, Arafa H.; Elsayed, Hussein A.; Hamdy, Hany S.

    2010-01-01

    We theoretically studied electromagnetic wave propagation in a one-dimensional metal/dielectric photonic crystal (1D MDPC) consisting of alternating metallic and dielectric materials by using the transfer matrix method in visible and infrared regions. We have investigated the photonic band gap by using four kinds of metals: silver, lithium, gold and copper. We discuss the details of the calculated results in terms of the thickness of the metallic layer and different kinds of metals, and the plasma frequency. Our results have a potential for applications in optical devices because it is easy and cheap to manufacture.

  7. Spectral domain optical coherence tomography characteristics in diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Laxmi Gella

    2014-01-01

    Full Text Available Purpose: To report the appearance of diabetic retinopathy lesions using spectral domain optical coherence tomography (SD-OCT. Materials and Methods: A total of 287 eyes of 199 subjects were included. All the subjects underwent complete ophthalmic examination including SD-OCT. Results: The appearance of various lesions of diabetic retinopathy and the retinal layers involved were reported. In subjects with macular edema the prevalence of incomplete PVD was 55.6%. Conclusion: SD-OCT brings new insights into the morphological changes of the retina in diabetic retinopathy.

  8. Spectral-optical characteristics of anthocyanin-containing natural dye staff

    International Nuclear Information System (INIS)

    Astanov, S.; Sharipov, M.Z.; Dalmuradova, N.N.

    2007-01-01

    Spectral-optical characteristics of anthocyanin-containing natural dye staff received from fruit ficus carica are determined. The chromatographic separating of dyeing pigment obtained is performed. The data obtained can be used as passport characteristics of the new food dye staff. (authors)

  9. Analytical purpose electron backscattering system

    International Nuclear Information System (INIS)

    Desdin, L.; Padron, I.; Laria, J.

    1996-01-01

    In this work an analytical purposes electron backscattering system improved at the Center of Applied Studies for Nuclear Development is described. This system can be applied for fast, exact and nondestructive testing of binary and AL/Cu, AL/Ni in alloys and for other applications

  10. Nodule bottom backscattering study using multibeam echosounder

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Raju, Y.S.N.; Nair, R.R.

    A study is carried out to observe the angular dependence of backscattering strength at nodule area where grab sample and photographic data is available. Theoretical study along with the experimentally observed data shows that the backscattering...

  11. Lidar using the backscatter amplification effect

    Science.gov (United States)

    Razenkov, Igor A.; Banakh, Victor A.

    2018-04-01

    Experimental data proving the possibility of lidar measurement of the refractive turbulence strength based on the effect of backscatter amplification (BSA) are reported. It is shown that the values of the amplification factor correlate with the variance of random jitter of optical image of an incoherent light source depending on the value of the structure constant of the air refractive index turbulent fluctuations averaged over the probing path. This paper presents the results of measurements of the BSA factor in comparison with the simultaneous measurements of the BSA peak, which is very narrow and only occurs on the laser beam axis. It is constructed the range-time images of the derivative of the amplification factor gives a comprehensive picture of the location of turbulent zones and their temporal dynamics.

  12. Coherent Backscattering in the Cross-Polarized Channel

    Science.gov (United States)

    Mischenko, Michael I.; Mackowski, Daniel W.

    2011-01-01

    We analyze the asymptotic behavior of the cross-polarized enhancement factor in the framework of the standard low-packing-density theory of coherent backscattering by discrete random media composed of spherically symmetric particles. It is shown that if the particles are strongly absorbing or if the smallest optical dimension of the particulate medium (i.e., the optical thickness of a plane-parallel slab or the optical diameter of a spherically symmetric volume) approaches zero, then the cross-polarized enhancement factor tends to its upper-limit value 2. This theoretical prediction is illustrated using direct computer solutions of the Maxwell equations for spherical volumes of discrete random medium.

  13. Theoretical Analysis of the Optical Propagation Characteristics in a Fiber-Optic Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Xiaolin Zheng

    2013-06-01

    Full Text Available Surface plasmon resonance (SPR sensor is widely used for its high precision and real-time analysis. Fiber-optic SPR sensor is easy for miniaturization, so it is commonly used in the development of portable detection equipment. It can also be used for remote, real-time, and online detection. In this study, a wavelength modulation fiber-optic SPR sensor is designed, and theoretical analysis of optical propagation in the optical fiber is also done. Compared with existing methods, both the transmission of a skew ray and the influence of the chromatic dispersion are discussed. The resonance wavelength is calculated at two different cases, in which the chromatic dispersion in the fiber core is considered. According to the simulation results, a novel multi-channel fiber-optic SPR sensor is likewise designed to avoid defaults aroused by the complicated computation of the skew ray as well as the chromatic dispersion. Avoiding the impact of skew ray can do much to improve the precision of this kind of sensor.

  14. Exploiting the optical and luminescence characteristic of quantum dots for optical device fabrication

    Science.gov (United States)

    Suriyaprakash, Jagadeesh; Qiao, Ting Ting

    2018-02-01

    One can design a robust optical device by engineering the optical band gap of the quantum dots (QDs) owing to their size-tunable quantum confinement effect. To do this, understanding the optical effects of QDs and composite materials is crucial. In this context, various sizes (2.8-4.2 nm) of CdSe QDs-PMMA nanocomposite are fabricated in a two-step process and their absorbance, luminescence and optical constants studied systematically. The ellipsometry spectroscopic analysis exhibits the heterogeneous medium feature of Ψ value and also the measured refractive index (1.51-1.59) values are increased with decreased band gap (2.24-2.10 eV). The observed red shift in the UV-Vis and photoluminescence spectra is indicative of early stage CdSe QD followed by a nucleation process of bigger size QD. In addition, the growth kinetics of the reaction and the band gap of the QDs are evaluated with respect to the time to testify the colloidal QDs formation. The thickness and QD composition of the nanocomposite thin films calculated by effective medium approximation are 100 nm and 8-12%, respectively. Morphology and structural feature transmission electron microscopy study of the fabricated nanocomposite demonstrated that spherical CdSe QDs are well dispersed in PMMA.

  15. Backscatter measurements for NIF ignition targets (invited).

    Science.gov (United States)

    Moody, J D; Datte, P; Krauter, K; Bond, E; Michel, P A; Glenzer, S H; Divol, L; Niemann, C; Suter, L; Meezan, N; MacGowan, B J; Hibbard, R; London, R; Kilkenny, J; Wallace, R; Kline, J L; Knittel, K; Frieders, G; Golick, B; Ross, G; Widmann, K; Jackson, J; Vernon, S; Clancy, T

    2010-10-01

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  16. Backscatter measurements for NIF ignition targets (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J. D.; Datte, P.; Krauter, K.; Bond, E.; Michel, P. A.; Glenzer, S. H.; Divol, L.; Suter, L.; Meezan, N.; MacGowan, B. J.; Hibbard, R.; London, R.; Kilkenny, J.; Wallace, R.; Knittel, K.; Frieders, G.; Golick, B.; Ross, G.; Widmann, K.; Jackson, J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2010-10-15

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of {approx}15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  17. Backscatter measurements for NIF ignition targets (invited)

    International Nuclear Information System (INIS)

    Moody, J. D.; Datte, P.; Krauter, K.; Bond, E.; Michel, P. A.; Glenzer, S. H.; Divol, L.; Suter, L.; Meezan, N.; MacGowan, B. J.; Hibbard, R.; London, R.; Kilkenny, J.; Wallace, R.; Knittel, K.; Frieders, G.; Golick, B.; Ross, G.; Widmann, K.; Jackson, J.

    2010-01-01

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  18. To calculation of electron-optical characteristics of crossed lenses

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Gritsyuk, N.P.; Lachashvili, R.A.; Yavor, S.Ya.

    1979-01-01

    Two approaches are used for theoretical study of crossed lenses (CL), which are formed by plates with slits turned by 90 deg: 1) aberration determination according to axial determination of potential and 2) trajectory analysis of CL. While studying CL of definite configuration it is necessary to take into account aberrations of the highest order. The following conclusions are drawn: the classical method is applied for fast determination of the main characteristics, of CL by means of average power computers (the ''M-220'' or the ''Minsk-32'' computers); the trajectory analysis should be performed by means of power computer (the BESM-6) when it is necessary to obtain more detailed information of the CL, including the trajectory deflection along the system axis, the dimensions of the point source image taking into account the aberrations of the highest order

  19. Improvements in backscatter measurement devices

    International Nuclear Information System (INIS)

    Saunders, J.; Hay, W.D.

    1978-01-01

    Improvements in measuring the thickness of a coating on a substrate by the technique of backscattered particles are described. These improvements enable the measurements to be carried out continuously as an integral part of the coating production line and also permit measurements where the coated elements are separated from one another by a predetermined distance. The former is achieved by situating the backscatter probe and detector on the rim of the measurement wheel and rotating this wheel at a speed such that the coated element and probe are stationary relative to one another. The latter improvement is achieved by an indexing apparatus which automatically positions the probe beside a coated element. (U.K.)

  20. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    International Nuclear Information System (INIS)

    Dorogush, E S; Afonenko, A A

    2015-01-01

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  1. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dorogush, E S; Afonenko, A A [Belarusian State University, Minsk (Belarus)

    2015-12-31

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  2. Optical Coherence Tomography Angiography Characteristics of Iris Melanocytic Tumors

    Science.gov (United States)

    Skalet, Alison H.; Li, Yan; Lu, Chen D.; Jia, Yali; Lee, ByungKun; Husvogt, Lennart; Maier, Andreas; Fujimoto, James G.; Thomas, Charles R.; Huang, David

    2016-01-01

    Objective To evaluate tumor vasculature with optical coherence tomography (OCT) angiography (OCTA) in malignant iris melanomas and benign iris lesions. Design Cross-sectional observational clinical study. Participants Patients with iris lesions and healthy volunteers. Methods Eyes were imaged using OCTA systems operating at 1050 and 840 nm wavelengths. Three-dimensional OCTA scans were acquired. Iris melanomas patients treated with radiation therapy were imaged again after I-125 plaque brachytherapy at 6 and 18 months. Main Outcome Measures OCT and OCTA images, qualitative evaluation of iris and tumor vasculature and quantitative vessel density. Results One eye each of eight normal volunteers and nine patients with iris melanomas or benign iris lesions including freckles, nevi, and an iris pigment epithelial (IPE) cyst were imaged. The normal iris has radially-oriented vessels within the stroma on OCTA. Penetration of flow signal in normal iris depended on iris color, with best penetration seen in light to moderately pigmented irides. Iris melanomas demonstrated tortuous and disorganized intratumoral vasculature. In two eyes with nevi there was no increased vascularity; in another, fine vascular loops were noted near an area of ectropion uveae. Iris freckles and the IPE cyst did not have intrinsic vascularity. The vessel density was significantly higher within iris melanomas (34.5%±9.8%, piris nevi (8.0%±1.4%) or normal irides (8.0%±1.2%). Tumor regression after radiation therapy for melanomas was associated with decreased vessel density. OCTA at 1050 nm provided better visualization of tumor vasculature and penetration through thicker tumors than at 840 nm. But in very thick tumors and highly pigmented lesions even 1050 nm OCTA could not visualize their full thickness. Interpretable OCTA images were obtained in 82% participants in whom imaging was attempted. Conclusions This is the first demonstration of OCTA in iris tumors. OCTA may provide a dye-free, no

  3. A three-dimensional, two-way, parabolic equation model for acoustic backscattering in a cylindrical coordinate system

    DEFF Research Database (Denmark)

    Zhu, Dong; Jensen, Leif Bjørnø

    2000-01-01

    . The major drawback of using the cylindrical coordinate system, when the backscattering solution is valid within a limited area, is analyzed using a geometrical-optical interpretation. The model may be useful for studying three-dimensional backscattering phenomena comprising azimuthal diffraction effects...

  4. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Wang Hanchao; Huang Lirong; Shi Zhongwei

    2011-01-01

    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influencedby the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled. (semiconductor devices)

  5. Optical coherence tomography detection of characteristic retinal nerve fiber layer thinning in nasal hypoplasia of the optic disc.

    Science.gov (United States)

    Haruta, M; Kodama, R; Yamakawa, R

    2017-12-01

    PurposeTo determine the clinical usefulness of optical coherence tomography (OCT) for detecting thinning of the retinal nerve fiber layer (RNFL) in eyes with nasal hypoplasia of the optic discs (NHOD).Patients and methodsThe medical records of five patients (eight eyes) with NHOD were reviewed. The ratio of the disc-macula distance to the disc diameter (DM/DD) and the disc ovality ratio of the minimal to maximal DD were assessed using fundus photographs. The RNFL thicknesses of the temporal, superior, nasal, and inferior quadrants were evaluated using OCT quadrant maps.ResultsAll eight eyes had temporal visual field defects that respected the vertical meridians that needed to be differentiated from those related to chiasmal compression. The mean DM/DD ratio was 3.1 and the mean disc ovality ratio was 0.81. The mean RNFL thicknesses of the temporal, superior, nasal, and inferior quadrants were 90.3, 103.1, 34.8, and 112.8 microns, respectively.ConclusionSmall optic discs and tilted discs might be associated with NHOD. Measurement of the RNFL thickness around the optic disc using OCT scans clearly visualized the characteristic RNFL thinning of the nasal quadrants corresponding to the temporal sector visual field defects in eyes with NHOD. OCT confirmed the presence of NHOD and might differentiate eyes with NHOD from those with chiasmal compression.

  6. Electro-optical characteristics of a liquid crystal cell with graphene electrodes

    Directory of Open Access Journals (Sweden)

    Nune H. Hakobyan

    2017-12-01

    Full Text Available In liquid crystal devices (LCDs the indium tin oxide (ITO films are traditionally used as transparent and conductive electrodes. However, today, due to the development of multichannel optical communication, the need for flexible LCDs and multilayer structures has grown. For this application ITO films cannot be used in principle. For this problem, graphene (an ultrathin material with unique properties, e.g., high optical transparency, chemical inertness, excellent conductivity is an excellent candidate. In this work, the electro-optical and dynamic characteristics of a liquid crystal (LC cell with graphene and ITO transparent conducting layers are investigated. To insure uniform thickness of the LC layer, as well as the same orientation boundary conditions, a hybrid LC cell containing graphene and ITO conductive layers has been prepared. The characteristics of LC cells with both types of conducting layers were found to be similar, indicating that graphene can be successfully used as a transparent conductive layer in LC devices.

  7. Characteristic features of optical absorption for Gd2O3 and NiO nanoparticles

    Science.gov (United States)

    Zatsepin, A. F.; Kuznetsova, Yu. A.; Rychkov, V. N.; Sokolov, V. I.

    2017-03-01

    The technical approach to determination of the structural and optical parameters of oxides with reduced dimensionality based on optical absorption measurements is described by example of gadolinium and nickel oxides. It was established that the temperature behavior of fundamental absorption edge for oxide nanoparticles is similar with the bulk materials with crystal structure. At the same time, the energy characteristics (band gap and effective phonon energies) for low-dimensional oxides are found to be significantly different from their bulk counterparts. The presented methodological method to obtain of qualitative and quantitative correlations of structural and optical characteristics provides novel reliable knowledge of nanoscaled 3d and 4f-metal oxide materials that is useful for development of their practical applications.

  8. Characteristic features of optical absorption for Gd2O3 and NiO nanoparticles

    International Nuclear Information System (INIS)

    Zatsepin, A. F.; Kuznetsova, Yu. A.; Rychkov, V. N.; Sokolov, V. I.

    2017-01-01

    The technical approach to determination of the structural and optical parameters of oxides with reduced dimensionality based on optical absorption measurements is described by example of gadolinium and nickel oxides. It was established that the temperature behavior of fundamental absorption edge for oxide nanoparticles is similar with the bulk materials with crystal structure. At the same time, the energy characteristics (band gap and effective phonon energies) for low-dimensional oxides are found to be significantly different from their bulk counterparts. The presented methodological method to obtain of qualitative and quantitative correlations of structural and optical characteristics provides novel reliable knowledge of nanoscaled 3d and 4f–metal oxide materials that is useful for development of their practical applications.

  9. Classification of natural formations based on their optical characteristics using small volumes of samples

    Science.gov (United States)

    Abramovich, N. S.; Kovalev, A. A.; Plyuta, V. Y.

    1986-02-01

    A computer algorithm has been developed to classify the spectral bands of natural scenes on Earth according to their optical characteristics. The algorithm is written in FORTRAN-IV and can be used in spectral data processing programs requiring small data loads. The spectral classifications of some different types of green vegetable canopies are given in order to illustrate the effectiveness of the algorithm.

  10. Sensing characteristics of nanocrystalline bismuth oxide clad-modified fiber optic gas sensor

    Science.gov (United States)

    Manjula, M.; Karthikeyan, B.; Sastikumar, D.

    2017-08-01

    Gas sensing properties of nanocrystalline bismuth oxide clad - modified fiber optic sensor is reported for ammonia, ethanol, methanol and acetone gasses at room temperature. The output of sensor increases or decreases for certain gasses when the concentration of the gas is increased. The sensor exhibits high response and good selectivity to methanol gas. Time response characteristics of the sensor are also reported.

  11. Study of optical characteristics of tin oxide thin film prepared by sol

    Indian Academy of Sciences (India)

    –gel process. The film was synthesized on a glass (Corning 7059) plate by dip coating method. Here, we used tin (II) chloride as precursor and methanol as solvent. Optical characteristics and physical properties like refractive index, absorption ...

  12. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.

    Science.gov (United States)

    Bardhan, Rizia; Grady, Nathaniel K; Ali, Tamer; Halas, Naomi J

    2010-10-26

    It is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12). Increasing the core dielectric constant increases nanoparticle absorption efficiency, reduces plasmon line width, and modifies plasmon energies. Modifying the core medium provides an additional means of tailoring both the near- and far-field optical properties in this unique nanoparticle system.

  13. Characteristic Analysis Light Intensity Sensor Based On Plastic Optical Fiber At Various Configuration

    Science.gov (United States)

    Arifin, A.; Lusiana; Yunus, Muhammad; Dewang, Syamsir

    2018-03-01

    This research discusses the light intensity sensor based on plastic optical fiber. This light intensity sensor is made of plastic optical fiber consisting of two types, namely which is cladding and without cladding. Plastic optical fiber used multi-mode step-index type made of polymethyl metacrylate (PMMA). The infrared LED emits light into the optical fiber of the plastic and is subsequently received by the phototransistor to be converted to an electric voltage. The sensor configuration is made with three models: straight configuration, U configuration and gamma configuration with cladding and without cladding. The measured light source uses a 30 Watt high power LED with a light intensity of 0 to 10 Klux. The measured light intensity will affect the propagation of light inside the optical fiber sensor. The greater the intensity of the measured light, the greater the output voltage that is read on the computer. The results showed that the best optical fiber sensor characteristics were obtained in U configuration. Sensors with U-configuration without cladding had the best sensitivity and resolution values of 0.0307 volts/Klux and 0.0326 Klux. The advantages of this measuring light intensity based on the plastic optical fiber instrument are simple, easy-to-make operational systems, low cost, high sensitivity and resolution.

  14. Full aperture backscatter signal analysis of laser with hohlraum on Shenguang II laser facility

    International Nuclear Information System (INIS)

    Jiao Chunye; Wang Feng; Liu Shenye; Jiang Xiaohua; Li Sanwei; Liu Yonggang; Yang Jiamin; Gu Yuqiu; Wang Chuanke

    2010-01-01

    Full aperture backscatter system and experimental measurement of hohlraum with 351 nm wavelength laser on Shenguang II laser facility is reported. FABS optical path has been analyzed and the backscattering light completely entered FABS collecting optical path. FABS existed the background light when the eight beams symmetrically acted on hohlraum. The background light is composed of 526.5 nm and 1053 nm wavelength remains while the 1053 nm wavelength changes into 351 nm wavelength, according to records of laser sensitive paper and optical filter. The background light accounts for 15% of FABS energy from experimental measurement result. (authors)

  15. The effect of quintic nonlinearity on the propagation characteristics of dispersion managed optical solitons

    International Nuclear Information System (INIS)

    Konar, S.; Mishra, Manoj; Jana, S.

    2006-01-01

    The role of quintic nonlinearity on the propagation characteristics of optical solitons in dispersion managed optical communication systems has been presented in this paper. It has been shown that quintic nonlinearity has only marginal influence on single pulse propagation. However, numerical simulation has been undertaken to reveal that quintic nonlinearity reduces collision distance between neighbouring pulses of the same channel. It is found that for lower map strength the collapse distance between intra channel pulses is very much sensitive to the dispersion map strength

  16. Structural, optical and electrical characteristics of ITO thin films deposited by sputtering on different polyester substrates

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.

    2008-01-01

    Indium tin oxide (ITO) thin films were deposited by sputtering at room temperature on glass and different polyester substrates; namely polyarylate (PA), polycarbonate (PC) and polyethylene terephtalate (PET). The influence of the substrate on the structural, optical and electrical characteristics of the ITO layers was investigated. The sputtered films exhibited crystallization in the (2 2 2) orientation, with higher mean crystallite size and lower structural distortion onto PET than onto PA, PC or glass substrates. ITO films deposited onto PET showed also higher band gap energy, higher carrier concentration and lower resistivity than the ITO layers onto the other tested substrates. These optical and electrical characteristics have been related to the structural distortion that was found dependent on the specific polyester substrate

  17. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.

    Science.gov (United States)

    Xie, Tuqiang; Guo, Shuguang; Zhang, Jun; Chen, Zhongping; Peavy, George M

    2006-10-01

    Previous studies have demonstrated that optical coherence tomography (OCT) could be used to delineate alterations in the microstructure of cartilage, and have suggested that changes in the polarization state of light as detected by OCT could provide information on the birefringence properties of articular cartilage as influenced by disease. In this study we have used both OCT and polarization sensitive optical coherence tomography (PS-OCT) technologies to evaluate normal and abnormal bovine articular cartilage according to established structural, organizational, and birefringent characteristics of degenerative joint disease (DJD) in order to determine if this technology can be used to differentiate various stages of DJD as a minimally invasive imaging tool. Fresh bovine femoral-tibial joints were obtained from an abattoir, and 45 cartilage specimens were harvested from 8 tibial plateaus. Whole ex vivo specimens of normal and degenerative articular cartilage were imaged by both OCT and PS-OCT, then fixed and processed for histological evaluation. OCT/PS-OCT images and corresponding histology sections of each specimen were scored according to a modified Mankin structural grading scale and compared. OCT and PS-OCT imaging allowed structural evaluation of intact articular cartilage along a 6 mm surface length to a depth of 2 mm with a transverse resolution of 12 microm and an axial resolution of 10 microm. The OCT and PS-OCT images demonstrated characteristic alterations in the structure of articular cartilage with a high correlation to histological evaluation (kappa = 0.776). The OCT images were able to demonstrate early to advanced structural changes of articular cartilage while the optical phase retardation images obtained by PS-OCT imaging were able to discriminate areas where disorganization of the cartilage matrix was present, however, these characteristics are much different than those reported where OCT images alone were used to characterize tissue

  18. Backscatter, anisotropy, and polarization of solar hard X-rays

    International Nuclear Information System (INIS)

    Bai, T.; Ramaty, R.

    1978-01-01

    Hard X-rays incident upon the photosphere with energies > or approx. =15 keV have high probabilities of backscatter due to Compton collisions with electrons. This effect has a strong influence on the spectrum, intensity, and polarization of solar hard X-rays - especially for anisotropic models in which the primary X-rays are emitted predominantly toward the photosphere. We have carried out a detailed study of X-ray backscatter, and we have investigated the interrelated problems of anisotropy, polarization, center-to-limb variation of the X-ray spectrum, and Compton backscatter in a coherent fashion. The results of this study are compared with observational data. Because of the large contribution from backscatter, for an anisotropic primary X-ray source which is due to bremsstrahlung of accelerated electrons moving predominantly down toward the photosphere, the observed X-ray flux around 30 keV does not depend significantly on the position of flare on the Sun. For such an anisotropic source, the X-ray spectrum observed in the 15-50 keV range becomes steeper with the increasing heliocentric angle of the flare. These results are compatible with the data. The degree of polarization of the sum of the primary and reflected X-rays with energies between about 15 and 30 keV can be very large for anisotropic primary X-ray sources, but it is less than about 4% for isotropic sources. We also discuss the characteristics of the brightness distribution of the X-ray albedo patch created by the Compton backscatter. The height and anisotropy of the primary hard X-ray source might be inferred from the study of the albedo patch

  19. Numerical simulation and experimental study of factors influencing the optical characteristics of a spatial target

    International Nuclear Information System (INIS)

    Zhu Dingqiang; Shen Wentao; Cai Guobiao; Ke Weina

    2013-01-01

    The optical properties of a spatial target are important characteristics for its detection, identification, tracking and interception. A homeostatic model of the temperature and infrared characteristics of the target has been developed considering the radiation of the environmental background. The heat conduction inside the wall and the effect of an internal heat source are included in the model. The reflection characteristics of the target are calculated with bi-directional reflection distribution function (BRDF) models. The temperature and infrared radiation have been measured in the simulating space environment in the ground tests. The comparisons between the theoretical results and experimental data demonstrate a good agreement. Applying the developed model, the influences of several parameters (such as spin frequency, absorptivity/emissivity and thermal conductivity) of the target have been investigated. Highlights: ► A mathematical model was developed to predict the optical characteristics of a spatial target. ► The temperature and infrared radiation are measured in ground tests. ► The simulation results and the test results are consistent. ► The effects of several target parameters were analysed.

  20. Full aperture backscatter diagnostic for the NIF laser facility (abstract)

    International Nuclear Information System (INIS)

    Sewall, Noel; Lewis, Izzy; Kirkwood, Robert; Moody, John; Celeste, John

    2001-01-01

    The current schemes for achieving ignition on the National Ignition Facility require efficient coupling of energy from 192 laser beams to the deuterium--tritium fuel capsule. Each laser beam must propagate through a long scalelength plasma region before being converted to x rays (indirect drive) or being absorbed on the capsule (direct drive). Laser-plasma instabilities such as stimulated Brillouin and stimulated Raman scattering (SBS and SRS) will scatter a fraction of the incident laser energy out of the target leading to an overall reduction in the coupling efficiency. It is important to measure the character of this scattered light in order to understand it and to develop methods for reducing it to acceptable levels. We are designing a system called the full aperature backscatter diagnostic with the capability to measure the time-dependent amplitude and spectral content of the light which is backscattered through the incident beam focusing optic. The backscattered light will be collected over about 85% of the full beam aperture and separated into the SBS wavelength band (348--354 nm) and the SRS wavelength band (400--700 nm). Spectrometers coupled to streak cameras will provide time-resolved spectra for both scattered light components. The scattered light amplitude will be measured with fast and slow diodes. The entire system will be routinely calibrated. Analysis of the data will provide important information for reducing scattered power, achieving power balance, and finally achieving ignition

  1. Optical and electrical characteristics of zirconium oxide thin films deposited on silicon substrates by spray pyrolysis

    International Nuclear Information System (INIS)

    Aguilar-Frutis, M.; Araiza, J.J.; Falcony, C.; Garcia, M.

    2002-01-01

    The optical and electrical characteristics of zirconium oxide thin films deposited by spray pyrolysis on silicon substrates are reported. The films were deposited from a spraying solution of zirconium acetylacetonate in N,N-dimethylformamide using an ultrasonic mist generator on (100) Si substrates. The substrate temperature during deposition was in the range of 400 to 600 grad C. Deposition rates up to 16 A/sec were obtained depending on the spraying solution concentration and on the substrate temperature. A refraction index of the order of 2.0 was measured on these films by ellipsometry. The electrical characteristics of the films were determined from the capacitance and current versus voltage measurements. The addition of water mist during the spraying deposition process was also studied in the characteristics of the films. (Authors)

  2. Diffraction analysis of sidelobe characteristics of optical elements with ripple error

    Science.gov (United States)

    Zhao, Lei; Luo, Yupeng; Bai, Jian; Zhou, Xiangdong; Du, Juan; Liu, Qun; Luo, Yujie

    2018-03-01

    The ripple errors of the lens lead to optical damage in high energy laser system. The analysis of sidelobe on the focal plane, caused by ripple error, provides a reference to evaluate the error and the imaging quality. In this paper, we analyze the diffraction characteristics of sidelobe of optical elements with ripple errors. First, we analyze the characteristics of ripple error and build relationship between ripple error and sidelobe. The sidelobe results from the diffraction of ripple errors. The ripple error tends to be periodic due to fabrication method on the optical surface. The simulated experiments are carried out based on angular spectrum method by characterizing ripple error as rotationally symmetric periodic structures. The influence of two major parameter of ripple including spatial frequency and peak-to-valley value to sidelobe is discussed. The results indicate that spatial frequency and peak-to-valley value both impact sidelobe at the image plane. The peak-tovalley value is the major factor to affect the energy proportion of the sidelobe. The spatial frequency is the major factor to affect the distribution of the sidelobe at the image plane.

  3. Investigation of thermo-optical characteristics of the interaction processes of laser radiation with silver nanoparticles

    International Nuclear Information System (INIS)

    Pustovalov, V K; Astafyeva, L G

    2013-01-01

    Metallic nanoparticles have been actively investigated in recent years by different optical and laser methods with the purpose of their applications in optoelectronics and photonics, chemistry, laser nanobiomedicine, optical diagnostics, and other fields. A major role among metallic nanoparticles is played by nanoparticles from the noble metals (silver, gold, etc). These particles have unique plasmonic properties (resonances in the range of wavelength 400–540 nm), which can be used for the absorption, scattering and transformation of laser energy. Analysis of the thermo-optical characteristics of the interaction processes of laser radiation with silver nanoparticles is carried out, taking into account absorption, scattering and extinction of laser radiation by nanoparticles, as well as the thermo-optical and other properties of nanoparticles. Estimations are made of the influence of these nanoparticle properties on the possible results of laser radiation interaction with silver nanoparticles, including heating, heat exchange, possible melting and evaporation, and processes in the ambient media. These results can be used in laser processing of silver nanoparticles and their applications in laser nanomedicine. (paper)

  4. External quantum efficiency enhancement by photon recycling with backscatter evasion.

    Science.gov (United States)

    Nagano, Koji; Perreca, Antonio; Arai, Koji; Adhikari, Rana X

    2018-05-01

    The nonunity quantum efficiency (QE) in photodiodes (PD) causes deterioration of signal quality in quantum optical experiments due to photocurrent loss as well as the introduction of vacuum fluctuations into the measurement. In this paper, we report that the external QE enhancement of a PD was demonstrated by recycling the reflected photons. The external QE for an InGaAs PD was increased by 0.01-0.06 from 0.86-0.92 over a wide range of incident angles. Moreover, we confirmed that this technique does not increase backscattered light when the recycled beam is properly misaligned.

  5. Oscillations in the spectrum of nonlinear Thomson-backscattered radiation

    Directory of Open Access Journals (Sweden)

    C. A. Brau

    2004-02-01

    Full Text Available When an electron beam collides with a high-intensity laser beam, the spectrum of the nonlinear Thomson scattering in the backward direction shows strong oscillations like those in the spectrum of an optical klystron. Laser gain on the backward Thomson scattering is estimated using the Madey theorem, and the results suggest that Thomson-backscatter free-electron lasers are possible at wavelengths extending to the far uv using a terawatt laser beam from a chirped-pulse amplifier and a high-brightness electron beam from a needle cathode.

  6. Radial-pulse propagation and impedance characteristics of optically shuttered channel intensifier tubes

    International Nuclear Information System (INIS)

    Detch, J.L. Jr.; Noel, B.W.

    1981-01-01

    Electrically gated proximity-focused channel intensifier tubes are often used as optical shutters. Optimum nanosecond shuttering requires both understanding the electrical pulse propagation across the device structure and proper impedance matching. A distributed-transmission-line model is developed that describes analytically the voltage- and current-wave propagation characteristics as functions of time for any point on the surface. The optical gain's spatial uniformity and shutter-open times are shown to depend on the electrical pulse width and amplitude, and on the applied bias. The driving-point impedance is derived from the model and is expressed as a function of an infinite sum of terms in the complex frequency. The synthesis in terms of lumped-constant network elements is realized in first- and second-Foster equivalent circuits. Experimental impedance data are compared with the model's predictions and deviations from the ideal model are discussed

  7. Optical characteristics of silicon nanowires grown from tin catalyst layers on silicon coated glass

    KAUST Repository

    Ball, Jeremy

    2012-08-20

    The optical characteristics of silicon nanowires grown on Si layers on glass have been modeled using the FDTD (Finite Difference Time Domain) technique and compared with experimental results. The wires were grown by the VLS (vapour-liquid-solid) method using Sn catalyst layers and exhibit a conical shape. The resulting measured and modeled absorption, reflectance and transmittance spectra have been investigated as a function of the thickness of the underlying Si layer and the initial catalyst layer, the latter having a strong influence on wire density. High levels of absorption (>90% in the visible wavelength range) and good agreement between the modeling and experiment have been observed when the nanowires have a relatively high density of ∼4 wires/μ m2. The experimental and modeled results diverge for samples with a lower density of wire growth. The results are discussed along with some implications for solar cell fabrication. © 2012 Optical Society of America.

  8. Optical characteristics of silicon nanowires grown from tin catalyst layers on silicon coated glass

    KAUST Repository

    Ball, Jeremy; Centeno, Anthony; Mendis, Budhika G.; Reehal, H. S.; Alford, Neil

    2012-01-01

    The optical characteristics of silicon nanowires grown on Si layers on glass have been modeled using the FDTD (Finite Difference Time Domain) technique and compared with experimental results. The wires were grown by the VLS (vapour-liquid-solid) method using Sn catalyst layers and exhibit a conical shape. The resulting measured and modeled absorption, reflectance and transmittance spectra have been investigated as a function of the thickness of the underlying Si layer and the initial catalyst layer, the latter having a strong influence on wire density. High levels of absorption (>90% in the visible wavelength range) and good agreement between the modeling and experiment have been observed when the nanowires have a relatively high density of ∼4 wires/μ m2. The experimental and modeled results diverge for samples with a lower density of wire growth. The results are discussed along with some implications for solar cell fabrication. © 2012 Optical Society of America.

  9. Physical and dispersive optical characteristics of ZrON/Si thin-film system

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Yew Hoong [University of Malaya, Centre of Advanced Materials, Department of Mechanical Engineering, Faculty of Engineering, Kuala Lumpur (Malaysia); University of Malaya, Centre of Advanced Manufacturing and Material Processing, Kuala Lumpur (Malaysia); Atuchin, V.V. [Institute of Semiconductor Physics, SB RAS, Laboratory of Optical Materials and Structures, Novosibirsk (Russian Federation); Kruchinin, V.N. [Institute of Semiconductor Physics, SB RAS, Laboratory for Ellipsometry of Semiconductor Materials and Structures, Novosibirsk (Russian Federation); Cheong, Kuan Yew [Universiti Sains Malaysia, Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Seberang Perai Selatan, Penang (Malaysia)

    2014-06-15

    To date, the complex evaluation of physical and dispersive optical characteristics of the ZrON/Si film system has yet been reported. Hence, ZrON thin films have been formed on Si(100) substrates through oxidation/nitridation of sputtered metallic Zr in N{sub 2}O environment at 500, 700, and 900 C. Physical properties of the deposited films have been characterized by X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, reflection high-energy electron diffraction (RHEED), and spectroscopic ellipsometry (SE). It has been shown that ZrON/Si thin films without optical absorption can be prepared by oxidation/nitridation reaction in N{sub 2}O environment at 700-900 C. (orig.)

  10. Multi-temporal RADARSAT-1 and ERS backscattering signatures of coastal wetlands in southeastern Louisiana

    Science.gov (United States)

    Kwoun, Oh-Ig; Lu, Z.

    2009-01-01

    Using multi-temporal European Remote-sensing Satellites (ERS-1/-2) and Canadian Radar Satellite (RADARSAT-1) synthetic aperture radar (SAR) data over the Louisiana coastal zone, we characterize seasonal variations of radar backscat-tering according to vegetation type. Our main findings are as follows. First, ERS-1/-2 and RADARSAT-1 require careful radiometric calibration to perform multi-temporal backscattering analysis for wetland mapping. We use SAR backscattering signals from cities for the relative calibration. Second, using seasonally averaged backscattering coefficients from ERS-1/-2 and RADARSAT-1, we can differentiate most forests (bottomland and swamp forests) and marshes (freshwater, intermediate, brackish, and saline marshes) in coastal wetlands. The student t-test results support the usefulness of season-averaged backscatter data for classification. Third, combining SAR backscattering coefficients and an optical-sensor-based normalized difference vegetation index can provide further insight into vegetation type and enhance the separation between forests and marshes. Our study demonstrates that SAR can provide necessary information to characterize coastal wetlands and monitor their changes.

  11. Neurofibromatosis: an update of ophthalmic characteristics and applications of optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Abdolrahimzadeh B

    2016-05-01

    Full Text Available Barmak Abdolrahimzadeh,1 Domenica Carmen Piraino,2 Giorgio Albanese,2 Filippo Cruciani,2 Siavash Rahimi3 1Polimed Beltramelli Medical Center, Rome, Italy; 2Section of Ophthalmology, Department of Sense Organs, University of Rome “Sapienza”, Rome, Italy; 3Pathology Centre, Queen Alexandra Hospital, Portsmouth, UK Abstract: Neurofibromatosis (NF is a multisystem disorder and tumor predisposition syndrome caused by genetic mutation on chromosome 17-17q11.2 in NF type 1 (NF1, and on chromosome 22-22q12.2 in NF type 2. The disorder is characterized by considerable heterogeneity of clinical expression. NF1 is the form with the most characteristic ocular manifestations. Lisch nodules of the iris are among the well-known diagnostic criteria for the disease. Glaucoma and associated globe enlargement have been described in a significant proportion of patients with NF1 and orbital–facial involvement. Optic nerve glioma may cause strabismus and proptosis, and palpebral neurofibroma may reach considerable size and occasionally show malignant transformation. Near infrared reflectance has greatly contributed to enhancing our knowledge on choroidal alterations in NF1. Indeed, some authors have proposed to include these among the diagnostic criteria. Optical coherence tomography has given new insight on retinal alterations and is a noninvasive tool in the management of optic nerve gliomas in children. Ocular manifestations in NF type 2 can range from early-onset cataracts in up to 80% of cases to optic nerve hamartomas and combined pigment epithelial and retinal hamartomas. Keywords: neurofibromatosis, ophthalmic, optical coherence tomography, infrared reflectance, choroideal nodules, Lisch nodules

  12. HF coherent backscatter in the ionosphere: In situ measurements of SuperDARN backscatter with e-POP RRI

    Science.gov (United States)

    Perry, G. W.; James, H. G.; Hussey, G. C.; Howarth, A. D.; Yau, A. W.

    2017-12-01

    We report in situ polarimetry measurements of HF scattering obtained by the Enhanced Polar Outflow Probe (e-POP) Radio Receiver Instrument (RRI) during a coherent backscatter scattering event detected by the Saskatoon Super Dual Auroral Radar Network (SuperDARN). On April 1, 2015, e-POP conducted a 4 minute coordinated experiment with SuperDARN Saskatoon, starting at 3:38:44 UT (21:38:44 LT). Throughout the experiment, SuperDARN was transmitting at 17.5 MHz and e-POP's ground track moved in a northeastward direction, along SuperDARN's field-of-view, increasing in altitude from 331 to 352 km. RRI was tuned to 17.505 MHz, and recorded nearly 12,000 SuperDARN radar pulses during the experiment. In the first half of the experiment, radar pulses recorded by RRI were "well behaved": they retained their transmitted amplitude envelope, and their pulse-to-pulse polarization characteristics were coherent - Faraday rotation was easily measured. During the second half of the experiment the pulses showed clear signs of scattering: their amplitude envelopes became degraded and dispersed, and their pulse-to-pulse polarization characteristics became incoherent - Faraday rotation was difficult to quantify. While these pulses were being received by RRI, SuperDARN Saskatoon detected a latitudinal band of coherent backscatter at e-POP's location, indicating that the scattered pulses measured by RRI may be a signature of HF backscatter. In this presentation, we will outline the polarimetric details of the scattered pulses, and provide an analytic interpretation of RRI's measurements to give new insight into the nature of HF coherent backscatter mechanism taking place in the terrestrial ionosphere.

  13. Stimulated Raman backscattering at high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Skoric, M M [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Tajima, Toshiki; Sasaki, Akira; Maluckov, A; Jovanovic, M

    1998-03-01

    Signatures of Stimulated Raman backscattering of a short-pulse high-intensity laser interacting with an underdense plasma are discussed. We introduce a nonlinear three-wave interaction model that accounts for laser pump depletion and relativistic detuning. A mechanism is revealed based on a generic route to chaos, that predicts a progressive increase of the backscatter complexity with a growing laser intensity. Importance of kinetic effects is outlined and demonstrated in fluid-hybrid and particle simulations. As an application, we show that spectral anomalies of the backscatter, predicted by the above model, are consistent with recent sub-picosecond, high-intensity laser gas-target measurements at Livermore and elsewhere. Finally, a recently proposed scheme for generation of ultra-short, low-prepulse laser pulses by Raman backscattering in a thin foil target, is shown. (author)

  14. Electrical and optical characteristics of dielectric-barrier discharge driven by high voltage nanosecond generator

    International Nuclear Information System (INIS)

    Ahmadeev, V.V.; Kost'yuchenko, S.V.; Kudryavtsev, N.N.; Kurkin, G.A.; Vasilyak, L.M.

    1998-01-01

    Electrical and optical characteristics of the dielectric-barrier discharge in the pressure range of 10-400 Torr were investigated experimentally, particular attention being paid to the discharge homogeneity and to the energy dissipation in the discharge volume. The discharge was driven by a high-voltage pulse generator producing nanosecond high-voltage pulses with an amplitude of 20-30 kV. Air, nitrogen, and helium were used as working gases. The discharge was found to be homogeneous within a wide range of gas pressure. A power density of up to 250 mW/cm 3 has been achieved. (J.U.)

  15. Electron optical characteristics of a concave electrostatic electron mirror for a scanning electron microscope

    International Nuclear Information System (INIS)

    Hamarat, R.T.; Witzani, J.; Hoerl, E.M.

    1984-08-01

    Numerical computer calculations are used to explore the design characteristics of a concave electrostatic electron mirror for a mirror attachment for a conventional scanning electron microscope or an instrument designed totally as a scanning electron mirror microscope. The electron paths of a number of set-ups are calculated and drawn graphically in order to find the optimum shape and dimensions of the mirror geometry. This optimum configuration turns out to be the transition configuration between two cases of electron path deflection, towards the optical axis of the system and away from it. (Author)

  16. Characteristics of Electro-Optic Device Using Conducting Polymers, Polythiophene and Polypyrrole Films

    Science.gov (United States)

    Kaneto, Keiichi; Yoshino, Katsumi; Inuishi, Yoshio

    1983-07-01

    Detailed characteristics of electro-optic elements (color switching and memory) utilizing the spectral change of conducting polymers by electrochemical doping and undoping are studied. The response time of color switching, for example, red≤ftrightarrowblue in polythiophene film in the electrolyte of LiBF4/acetonitrile is 30˜100 msec under the applied voltages of -2.0{≤ftrightarrow}+4.0 V vs. Li plate. More than 103 cycles of color switch are observed quite reproducibly. Three color states of yellow green, dark brown and blue are demonstrated for polypyrrole film.

  17. Optical characteristics of the nanoparticle coupled to a quantum molecular aggregate

    Science.gov (United States)

    Ropakova, I. Yu.; Zvyagin, A. A.

    2017-11-01

    Optical characteristics of a single nanoparticle, coupled to the one-dimensional quantum molecular aggregate is studied. Depending on the values of the coupling of the particle and its own frequency, with respect to the own frequency of the aggregated molecules, and the strength of the aggregation, the dynamical relative permittivity of the nanoparticle manifests the contribution from the exciton band, or/and the ones from the local level(s) caused by the particle. The refractive index and the extinction coefficient of the nanoparticle is also calculated.

  18. Analysis of the optical scattering characteristics of different types of space targets

    International Nuclear Information System (INIS)

    Han, Yi; Sun, Huayan; Feng, Jianguang; Li, Liang

    2014-01-01

    This paper mainly focused on the measurement, evaluation and potential identification methods of the unresolved space target's photometric characteristics. The bidirectional reflectance distribution function (BRDF) measurement system was introduced first, and then the measurement error of BRDF and its influence on target's optical cross section (OCS) and magnitude were analyzed. Then, different space targets’ OCS and magnitude changing with different factors, such as surface materials and shapes, flying conditions and working states, were analyzed respectively, and some general inclusions of variation laws were deduced. This research can provide references for future studies on space target classification and identification based on the photometric measurement data. (paper)

  19. Two-dimensional characteristic polynomials in the direct calculation of optical phase sum and difference

    International Nuclear Information System (INIS)

    Miranda, M; Dorrio, B V; Blanco, J; Diz-Bugarin, J; Ribas, F

    2011-01-01

    Two-stage phase shifting algorithms make possible to directly recover the sum or the difference of the encoded optical phase of two different fringe patterns. These algorithms can be constructed, for example, by combining known phase shifting algorithms in a non-linear way. In this work two-stage phase shifting algorithms are linked to a two-dimensional characteristic polynomial to qualitatively analyse their behaviour against the main systematic error sources in an analysis protocol like that used for phase shifting algorithms. This tool enables us to understand the propagation of properties from precursor phase shifting algorithms to new evaluation algorithms that can be built from them.

  20. MEASURING THE PARTICULATE BACKSCATTERING OF INLAND WATERS: A COMPARISON OF TECHNIQUES

    Directory of Open Access Journals (Sweden)

    G. Campbell

    2012-07-01

    Full Text Available The objective of this work was to examine whether the standard particulate backscattering IOP (Inherent Optical Properties measurement method could be simplified. IOP measurements are essential for parameterising several forms of algorithms used to estimate water quality parameters from airborne and satellite images. Field measurements of the backscattering IOPs are more difficult to make than absorption measurements as correction of the raw Hydroscat-6 backscattering sensor observations is required to allow for the systematic errors associated with the water and water quality parameter absorption. The standard approach involves making simultaneous measurement of the absorption and attenuation of the water with an absorption and attenuation meter (ac-9 or making assumptions about the particulate backscattering probability. Recently, a number of papers have been published that use an alternative method to retrieve the particulate backscattering spectrum by using laboratory measured absorption values and in situ spectroradiometric observations. The alternative method inverts a model of reflectance iteratively using non-linear least squares fitting to solve for the particulate backscattering at 532 nm (bbp0(532 and the particulate backscattering spectral slope (γ. In this paper, eleven observations made at Burdekin Falls Dam, Australia are used to compare the alternative reflectance method to the conventional corrected Hydroscat-6 observations. Assessment of the alternative reflectance method showed that the result of the inversions were highly dependent on the starting conditions. To overcome this limitation, Particle Swarm Optimisation, a stochastic search technique which includes a random element in the search approach, was used. It was found that when compared to the conventionally corrected Hydroscat-6 observations, the alternative reflectance method underestimated bbp0(532 by approximately 50% and overestimated γ by approximately 40

  1. The use of combined three-dimensional electron backscatter diffraction and energy dispersive X-ray analysis to assess the characteristics of the gamma/gamma-prime microstructure in alloy 720Li™

    International Nuclear Information System (INIS)

    Child, D.J.; West, G.D.; Thomson, R.C.

    2012-01-01

    Multiple three-dimensional reconstructions of a γ/γ′ phase structure in Alloy 720Li have been carried out by employing a serial milling technique with simultaneous electron backscatter diffraction (EBSD) and energy dispersive x-ray (EDX) analysis data collection. Combining EBSD data with EDX is critical in obtaining maps to distinguish between the chemically differing, but crystallographically similar γ and γ′ phases present in the alloy studied. EDX is shown to allow the differentiation of γ and γ′ phases, with EBSD providing increased grain shape accuracy. The combination of data sources also allowed identification of coherent γ/γ′ phase interfaces that would not be identified using solely EBSD or EDX. The study identifies a region of grain banding within the alloy, which provides the basis for a three-dimensional comparison and discussion of γ′ phase size between coarse and fine grain regions, whilst also identifying coherent γ′ phase interfaces, possible only using both EDX and EBSD systems simultaneously. The majority of the γ′ phase lies in the range of 1–10 μm in non-banded regions, with a detectable particle size limit of 500 nm being established. The validity of the reconstruction has been demonstrated using an electron interaction volumes model, and an assessment of the validity of EBSD and EDX data sources is discussed showing γ′ phase connectivity in all dimensions. -- Highlights: ► Use of combined EBSD/EDX for the 3D analysis of gamma prime in a Ni-based alloy. ► Assessment of 3D reconstruction accuracy using CASINO. ► Observation and validation of gamma prime phase connectivity throughout the alloy. ► Identification and characterisation of grain banding in gamma prime. ► Distinction of phase coherency between gamma and gamma prime.

  2. The use of combined three-dimensional electron backscatter diffraction and energy dispersive X-ray analysis to assess the characteristics of the gamma/gamma-prime microstructure in alloy 720Li Trade-Mark-Sign

    Energy Technology Data Exchange (ETDEWEB)

    Child, D.J., E-mail: d.child@lboro.ac.uk [Department of Materials, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); West, G.D., E-mail: g.west@lboro.ac.uk [Department of Materials, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Thomson, R.C., E-mail: r.c.thomson@lboro.ac.uk [Department of Materials, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2012-03-15

    Multiple three-dimensional reconstructions of a {gamma}/{gamma} Prime phase structure in Alloy 720Li have been carried out by employing a serial milling technique with simultaneous electron backscatter diffraction (EBSD) and energy dispersive x-ray (EDX) analysis data collection. Combining EBSD data with EDX is critical in obtaining maps to distinguish between the chemically differing, but crystallographically similar {gamma} and {gamma} Prime phases present in the alloy studied. EDX is shown to allow the differentiation of {gamma} and {gamma} Prime phases, with EBSD providing increased grain shape accuracy. The combination of data sources also allowed identification of coherent {gamma}/{gamma} Prime phase interfaces that would not be identified using solely EBSD or EDX. The study identifies a region of grain banding within the alloy, which provides the basis for a three-dimensional comparison and discussion of {gamma} Prime phase size between coarse and fine grain regions, whilst also identifying coherent {gamma} Prime phase interfaces, possible only using both EDX and EBSD systems simultaneously. The majority of the {gamma} Prime phase lies in the range of 1-10 {mu}m in non-banded regions, with a detectable particle size limit of 500 nm being established. The validity of the reconstruction has been demonstrated using an electron interaction volumes model, and an assessment of the validity of EBSD and EDX data sources is discussed showing {gamma} Prime phase connectivity in all dimensions. -- Highlights: Black-Right-Pointing-Pointer Use of combined EBSD/EDX for the 3D analysis of gamma prime in a Ni-based alloy. Black-Right-Pointing-Pointer Assessment of 3D reconstruction accuracy using CASINO. Black-Right-Pointing-Pointer Observation and validation of gamma prime phase connectivity throughout the alloy. Black-Right-Pointing-Pointer Identification and characterisation of grain banding in gamma prime. Black-Right-Pointing-Pointer Distinction of phase coherency

  3. Transfer characteristics of optical profilers with respect to rectangular edge and step height measurement

    Science.gov (United States)

    Xie, Weichang; Hagemeier, Sebastian; Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard; Lehmann, Peter

    2017-06-01

    Optical profilers are mature instruments used in research and industry to study surface topography features. Although the corresponding standards are based on simple step height measurements, in practical applications these instruments are often used to study the fidelity of surface topography. In this context it is well-known that in certain situations a surface profile obtained by an optical profiler will differ from the real profile. With respect to practical applications such deviations often occur in the vicinity of steep walls and in cases of high aspect ratio. In this contribution we compare the transfer characteristics of different 3D optical profiler principles, namely white-light interferometry, focus sensing, and confocal microscopy. Experimental results demonstrate that the transfer characteristics do not only depend on the parameters of the optical measurement system (e. g. wavelength and coherence of light, numerical aperture, evaluated signal feature, polarization) but also on the properties of the measuring object such as step height, aspect ratio, material properties and homogeneity, rounding and steepness of the edges, surface roughness. As a result, typical artefacts such as batwings occur for certain parameter combinations, particularly at certain height-to-wavelength ratio (HWR) values. Understanding of the mechanisms behind these phenomena enables to reduce them by an appropriate parameter adaption. However, it is not only the edge artefacts, but also the position of an edge that may be changed due to the properties of the measuring object. In order to investigate the relevant effects theoretically, several models are introduced. These are based on either an extension of Richards-Wolf modeling or rigorous coupled wave analysis (RCWA). Although these models explain the experimental effects quite well they suffer from different limitations, so that a quantitative correspondence of theoretical modeling and experimental results is hard to achieve

  4. A Study on the Response Characteristics of a Fiber-Optic Radiation Sensor Model Based on Cerenkov Principle

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hwa Jeong; Kim, Beom Kyu; Park, Byung Gi [Soonchunhyang Univ., Asan (Korea, Republic of)

    2016-10-15

    In recent year, various fiber-optic radiation sensors using Cerenkov principle have been developed without employing any scintillators for measuring high-energy photon, electron, etc. The main advantages of the optical fibers are the remote transmission of the light signal and immunity to pressure and electromagnetic waves. Therefore, the sensors utilizing the optical fibers can be used in hazardous radiation environments, such as the high-level radiation areas of a nuclear facility. The study to be simulated a fiber-optic radiation sensor based on Cerenkov principle and to be analyzed the response characteristics of the sensor. For the aforementioned study, the GEANT simulation toolkit was used. It is able to take into all the optical properties of fibers and is found to be appropriate to realistically describe the response of fiber-optic radiation sensor. In the recently, the fiber-optic radiation sensor have been developed in nuclear industry. Because sensor can detect gamma ray in harsh nuclear environments. In this study, we analyzed response characteristics of the fiber-optic radiation sensor. We have simulated the Monte Carlo model, for detecting the Cerenkov radiation using the fiber-optic radiation sensor. And the y-axis distribution of Cerenkov photons was obtained using output file. Simulation is performed with reference to the method of the previous research, and then the simulation results exhibited a good agreement with the previous research.

  5. A Study on the Response Characteristics of a Fiber-Optic Radiation Sensor Model Based on Cerenkov Principle

    International Nuclear Information System (INIS)

    Han, Hwa Jeong; Kim, Beom Kyu; Park, Byung Gi

    2016-01-01

    In recent year, various fiber-optic radiation sensors using Cerenkov principle have been developed without employing any scintillators for measuring high-energy photon, electron, etc. The main advantages of the optical fibers are the remote transmission of the light signal and immunity to pressure and electromagnetic waves. Therefore, the sensors utilizing the optical fibers can be used in hazardous radiation environments, such as the high-level radiation areas of a nuclear facility. The study to be simulated a fiber-optic radiation sensor based on Cerenkov principle and to be analyzed the response characteristics of the sensor. For the aforementioned study, the GEANT simulation toolkit was used. It is able to take into all the optical properties of fibers and is found to be appropriate to realistically describe the response of fiber-optic radiation sensor. In the recently, the fiber-optic radiation sensor have been developed in nuclear industry. Because sensor can detect gamma ray in harsh nuclear environments. In this study, we analyzed response characteristics of the fiber-optic radiation sensor. We have simulated the Monte Carlo model, for detecting the Cerenkov radiation using the fiber-optic radiation sensor. And the y-axis distribution of Cerenkov photons was obtained using output file. Simulation is performed with reference to the method of the previous research, and then the simulation results exhibited a good agreement with the previous research

  6. A dynamic phase microscopic study of optical characteristics of individual chloroplasts.

    Science.gov (United States)

    Tychinsky, V P; Kretushev, A V; Vyshenskaya, T V; Tikhonov, A N

    2004-10-11

    Dynamic phase microscopy (DPM) allows the monitoring of optical path difference (or phase height), h(x,y,t) approximately integraln(x,y,z,t)dz, an integral refractive index projection of the medium, n(x,y,z,t), in optically transparent biological specimens at high spatial and temporal resolutions. In this study, DPM was used for the analysis of fluctuations in the optical characteristics of individual bean chloroplasts in various metabolic states. A "phase image" of an individual chloroplast, which represents a three-dimensional plot of the "phase height", was obtained for the first time, and the frequency spectra of the fluctuations of h(x,y,t) were investigated. The fluctuation patterns, i.e., the intensity and the frequency spectra of phase height fluctuations in bean chloroplasts (Class B) were found to depend on their metabolic state. Under conditions of noncyclic (or pseudocyclic) electron transport, the fluctuations displayed characteristic frequencies in the range of 0.25-0.6 Hz and were space-time-correlated in the chloroplast domains with the cross sizes of approximately 2 microm. The fluctuation intensity decreased in the presence of uncouplers (nigericin and valinomycin, 20 microM). A stronger (in comparison with 20 microM valinomycin) effect of 20 microM nigericin suggests that the light-induced generation of the transmembrane pH difference (DeltapH) makes the main contribution to the increment of space-correlated fluctuations of h(x,y,t). Studies of chloroplasts incubated in media of various osmolarity (50-500 mM sucrose) have shown that structural changes in thylakoids are among other factors responsible for phase height fluctuations.

  7. CHARACTERISTICS OF EPIRETINAL MEMBRANE REMNANT EDGE BY OPTICAL COHERENCE TOMOGRAPHY AFTER PARS PLANA VITRECTOMY.

    Science.gov (United States)

    Gaber, Raouf; You, Qi Sheng; Muftuoglu, Ilkay Kilic; Alam, Mostafa; Tsai, Frank F; Mendoza, Nadia; Freeman, William R

    2017-11-01

    To evaluate the incidence, characteristics, and the progression of epiretinal membrane (ERM) remnant edge seen by optical coherence tomography after ERM peeling. A retrospective chart review was conducted for 86 eyes of 85 consecutive patients who were diagnosed with ERM and underwent pars plana vitrectomy for epiretinal membrane peeling between 2013 and 2014. Data collected and analyzed included age, gender, preoperative and postoperative visual acuity, use of indocyanine green dye to stain internal limiting membrane, tamponade used after vitrectomy, ERM edge boundaries, presence of cystoid macular edema, and central foveal thickness. An ERM remnant edge was detected in 33/86 study eyes (38.4%) at the first postoperative optical coherence tomography scan. Compared with those without an ERM remnant, patients with an ERM remnant after surgery were significantly older at baseline and had a higher incidence of ERM recurrence at their last visit. They were not significantly different in terms of gender, preoperative and postoperative visual acuity, reduction of central foveal thickness from baseline, proportion of eyes with preoperative ERM elevation on optical coherence tomography, presence of macular edema before surgery, intraoperative use of indocyanine green staining for ILM peeling, or tamponade used. Based on the edge morphology, we classified the ERM remnant into three types: Type 1 was flat and blended with the retina (14/33 eyes, 42.4%), Type 2 was flat but stepped (17/33 eyes, 51.5%), and Type 3 was elevated (2/33 eyes, 6.0%). A significantly higher risk of ERM recurrence was seen in Type 2 and Type 3 ERM remnants (75% and 100%, respectively) than Type 1 ERM remnants (10%). An ERM remnant edge was detected by optical coherence tomography after ERM peeling in 38.4% of eyes. The presence of a postoperative ERM edge was associated with a higher risk of ERM recurrence, particularly in Type 2 and Type 3 ERM remnants.

  8. Optic disc and peripapillary retinal nerve fiber layer characteristics associated with glaucomatous optic disc in young myopia.

    Science.gov (United States)

    Lee, Jong Eun; Sung, Kyung Rim; Park, Ji Min; Yoon, Joo Young; Kang, Sung Yong; Park, Sung Bae; Koo, Hyung Jin

    2017-03-01

    To explore optic disc and peripapillary retinal nerve fiber layer (RNFL) features associated with glaucomatous optic disc (GOD) in young myopia. Presence of GOD, optic disc tilt, and disc torsion were determined using fundus photographs. If the measured disc tilt ratio was >1.3, the optic disc was classified as tilted. Optic disc torsion was defined as a >15° deviation in the long axis of the optic disc from the vertical meridian. The average and four quadrants RNFL thicknesses were assessed using spectral domain optical coherence tomography (SD-OCT). Logistic regression analyses were performed to identify factors associated with the presence of GOD. Nine hundred and sixty myopic subjects were recruited from four refractive surgery clinic databases. The mean age was 26.6 ± 5.7 years and spherical equivalent (SE) was -5.5 ± 2.5 diopters. Among 960 eyes, 26 (2.7%) received GOD group classification. Among 934 normal eyes, 290 (31.0%) had titled optic discs. Eighteen eyes (69.2%) in the GOD group had tilted optic discs. When compared to normal eyes, the GOD group had significantly higher tilt ratios (1.4 ± 0.2 vs. 1.2 ± 0.1, p Optic disc tilt was found in approximately one-third of young myopic eyes and was independently associated with the presence of GOD.

  9. Backscatter absorption gas imaging systems and light sources therefore

    Science.gov (United States)

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  10. Enhanced Backscattering from Rough Surfaces

    Science.gov (United States)

    1991-10-18

    experimental results M. Nieto-Vesperinas and J. A. Sinchez-Gfi Insuituto de Optica. Consejo Superior de Investigaciones Cientificas, c/Serrono 1221. Madrid...2A7, UK I Division de Fisica Aplicada, CICESE, Apdo. Postal 2732 Ensenada, Baja California, Mexico Instituto de Optics, CSIC, Serrano 121, Madrid 2806...extracted as a de - is less than two for the copolarized case because of the scriptive parameter of the curves, and the variation of contribution of single

  11. The laser-backscattering equations and their application to the study of the atmospheric structure

    CERN Document Server

    Castrejon, R; Castrejon, J; Morales, A

    2002-01-01

    In this work a method for interpreting backscattering signals acquired by a lidar is described. The method is based on the elastic scattering of laser radiation due to gases and particles suspended in the atmosphere (bulk effects). We propose a space-time diagram which helps to evaluate the arguments of the equation that serves to calculate the lidar signal in terms of the backscattering coefficient. We describe how the system detects gradients on this coefficient, along the laser optical path. To illustrate the method, we present some typical lidar results obtained in the neighborhood of Mexico City. (Author)

  12. Compositional Signatures in Acoustic Backscatter Over Vegetated and Unvegetated Mixed Sand-Gravel Riverbeds

    Science.gov (United States)

    Buscombe, D.; Grams, P. E.; Kaplinski, M. A.

    2017-10-01

    Multibeam acoustic backscatter has considerable utility for remote characterization of spatially heterogeneous bed sediment composition over vegetated and unvegetated riverbeds of mixed sand and gravel. However, the use of high-frequency, decimeter-resolution acoustic backscatter for sediment classification in shallow water is hampered by significant topographic contamination of the signal. In mixed sand-gravel riverbeds, changes in the abiotic composition of sediment (such as homogeneous sand to homogeneous gravel) tend to occur over larger spatial scales than is characteristic of small-scale bedform topography (ripples, dunes, and bars) or biota (such as vascular plants and periphyton). A two-stage method is proposed to filter out the morphological contributions to acoustic backscatter. First, the residual supragrain-scale topographic effects in acoustic backscatter with small instantaneous insonified areas, caused by ambiguity in the local (beam-to-beam) bed-sonar geometry, are removed. Then, coherent scales between high-resolution topography and backscatter are identified using cospectra, which are used to design a frequency domain filter that decomposes backscatter into the (unwanted) high-pass component associated with bedform topography (ripples, dunes, and sand waves) and vegetation, and the (desired) low-frequency component associated with the composition of sediment patches superimposed on the topography. This process strengthens relationships between backscatter and sediment composition. A probabilistic framework is presented for classifying vegetated and unvegetated substrates based on acoustic backscatter at decimeter resolution. This capability is demonstrated using data collected from diverse settings within a 386 km reach of a canyon river whose bed varies among sand, gravel, cobbles, boulders, and submerged vegetation.

  13. Compositional signatures in acoustic backscatter over vegetated and unvegetated mixed sand-gravel riverbeds

    Science.gov (United States)

    Buscombe, Daniel; Grams, Paul E.; Kaplinski, Matt A.

    2017-01-01

    Multibeam acoustic backscatter has considerable utility for remote characterization of spatially heterogeneous bed sediment composition over vegetated and unvegetated riverbeds of mixed sand and gravel. However, the use of high-frequency, decimeter-resolution acoustic backscatter for sediment classification in shallow water is hampered by significant topographic contamination of the signal. In mixed sand-gravel riverbeds, changes in the abiotic composition of sediment (such as homogeneous sand to homogeneous gravel) tend to occur over larger spatial scales than is characteristic of small-scale bedform topography (ripples, dunes, and bars) or biota (such as vascular plants and periphyton). A two-stage method is proposed to filter out the morphological contributions to acoustic backscatter. First, the residual supragrain-scale topographic effects in acoustic backscatter with small instantaneous insonified areas, caused by ambiguity in the local (beam-to-beam) bed-sonar geometry, are removed. Then, coherent scales between high-resolution topography and backscatter are identified using cospectra, which are used to design a frequency domain filter that decomposes backscatter into the (unwanted) high-pass component associated with bedform topography (ripples, dunes, and sand waves) and vegetation, and the (desired) low-frequency component associated with the composition of sediment patches superimposed on the topography. This process strengthens relationships between backscatter and sediment composition. A probabilistic framework is presented for classifying vegetated and unvegetated substrates based on acoustic backscatter at decimeter resolution. This capability is demonstrated using data collected from diverse settings within a 386 km reach of a canyon river whose bed varies among sand, gravel, cobbles, boulders, and submerged vegetation.

  14. Quasimonochromatic x-rays generated from nonlinear Thomson backscattering

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Wang Xinlin

    2007-01-01

    The nonlinear Thomson backscattering in a circularly polarized Gaussian laser pulse is investigated and spectral characteristics of the emission are discussed. It is indicated that the frequency of the emitted light is up-shifted by the nonlinear doppler effect. By using a properly focused laser beam or putting the electron before the focus, the variety of the nonlinear Doppler shift during the interaction can be minimized and quasimonochromatic x-rays are generated. Taking into account the emission power, the optimum situations for generating quasimonochromatic x-rays are explored

  15. In vivo determination of optical properties and fluorophore characteristics of non-melanoma skin cancer

    Science.gov (United States)

    Rajaram, Narasimhan; Kovacic, Dianne; Migden, Michael F.; Reichenberg, Jason S.; Nguyen, Tri H.; Tunnell, James W.

    2009-02-01

    Diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques have widely been used as noninvasive tools for early cancer detection in several organs including the cervix, oral cavity and gastrointestinal tract. Using a combined DOS/LIF approach, one can simultaneously measure the morphology and biochemical composition of tissue and use these features to diagnose malignancy. We report for the first time to our knowledge both the optical properties and native fluorophore characteristics of non-melanoma skin cancer in the UV-visible range. We collected in vivo diffuse reflectance and intrinsic fluorescence measurements from 44 skin lesions on 37 patients. The skin sites were further categorized into three groups of non-melanoma skin cancer according to histopathology: 1) pre-cancerous actinic keratosis 2) malignant squamous cell carcinoma (SCC) and 3) basal cell carcinoma (BCC). We used a custom-built probe-based clinical system that collects both white light reflectance and laser-induced fluorescence in the wavelength range of 350-700 nm. We extracted the blood volume fraction, oxygen saturation, blood vessel size, tissue microarchitecture and melanin content from diffuse reflectance measurements. In addition, we determined the native fluorophore contributions of NADH, collagen and FAD from laser-induced fluorescence for all groups. The scattering from tissue decreased with progression from clinically normal to precancerous actinic keratosis to malignant SCC. A similar trend was observed for clinically normal skin and malignant BCC. Statistically significant differences were observed in the collagen contributions, which were lower in malignant SCC and BCC as compared to normal skin. Our data demonstrates that the mean optical properties and fluorophore contributions of normal, benign and malignant nonmelanoma cancers are significantly different from each other and can potentially be used as biomarkers for the early detection of skin cancer.

  16. The growth and decay of equatorial backscatter plumes

    Science.gov (United States)

    Tsunoda, R. T.

    1980-02-01

    During the past three years, a series of rocket experiments from the Kwajalein Atoll, Marshall Islands, were conducted to investigate the character of intense, scintillation-producing irregularities that occur in the nighttime equatorial ionosphere. Because the source mechanism of equatorial irregularities, believed to be the Rayleigh-Taylor instability, is analogous to that which generates plasma-density striations in a nuclear-induced environment, there is considerable interest in the underlying physics that controls the characteristics of these irregularities. A primary objective of ALTAIR investigations of equatorial irregularities is to seek an understanding of the underlying physics by establishing the relationship between meter-scale irregularities (detected by ALTAIR), and the large-scale plasma-density depletions (or 'bubbles') that contain the kilometer-scale, scintillation-producing irregularities. We describe the time evolution of backscatter 'plumes' produced by one meter equatorial field-aligned irregularities. Using ALTAIR, a fully steerable backscatter radar, to repeatedly map selected plumes, we characterize the dynamic behavior of plumes in terms of growth and a decay phase. Most of the observed characteristics are found to be consistent with equatorial-irregularity generation predicted by current theories of Rayleigh-Taylor and gradient-drift instabilities. However, other characteristics have been found that suggest key roles played by the eastward neutral wind and by altitude-modulation of the bottomside F layer in establishing the initial conditions for plume growth.

  17. Optical and electrical characteristics of GaAs/InGaAs quantum-well device

    International Nuclear Information System (INIS)

    Hsu, K.C.; Ho, C.H.; Lin, Y.S.; Wu, Y.H.; Hsu, R.T.; Huang, K.W.

    2009-01-01

    A GaAs/InGaAs quantum-well structure was grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The quantum well was graded from 25% to 15% indium (from the bottom to the top of the channel). Hall measurements were made to characterize the concentration and mobility of the two-dimensional electron gas (2DEG). The temperature-dependent photoluminescence (PL) and photoreflectance (PR) spectra of the structure of interest were obtained. Various intersuband features were observed in the PR spectra. Furthermore, a 1.5 μm gate-length high-electron mobility transistor (HEMT), fabricated on these layers, had an extrinsic transconductance of 127 mS/mm. The optical and electrical characteristics were determined simultaneously

  18. The formation mechanisms and optical characteristics of GaSb quantum rings

    International Nuclear Information System (INIS)

    Lin, Wei-Hsun; Pao, Chun-Wei; Wang, Kai-Wei; Liao, Yu-An; Lin, Shih-Yen

    2013-01-01

    The growth mechanisms and optical characteristics of GaSb quantum rings (QRs) are investigated. Although As-for-Sb exchange is the mechanism responsible for the dot-to-ring transition, significant height difference between GaSb quantum dots (QDs) and QRs in a dot/ring mixture sample suggests that the dot-to-ring transition is not a spontaneous procedure. Instead, it is a rapid transition procedure as long as it initiates. A model is established to explain this phenomenon. Larger ring inner diameters and heights of the sample with longer post Sb soaking time suggest that As-for-Sb exchange takes places in both vertical and lateral directions. The decreasing ring densities, enlarged ring inner/outer diameters and eventually flat GaSb surfaces observed with increasing growth temperatures are resulted from enhanced adatom migration and As-for-Sb exchange with increasing growth temperatures

  19. Structural and optical characteristics of SnS thin film prepared by SILAR

    Directory of Open Access Journals (Sweden)

    Mukherjee A.

    2015-12-01

    Full Text Available SnS thin films were grown on glass substrates by a simple route named successive ion layer adsorption and reaction (SILAR method. The films were prepared using tin chloride as tin (Sn source and ammonium sulfide as sulphur (S source. The structural, optical and morphological study was done using XRD, FESEM, FT-IR and UV-Vis spectrophotometer. XRD measurement confirmed the presence of orthorhombic phase. Particle size estimated from XRD was about 45 nm which fitted well with the FESEM measurement. The value of band gap was about 1.63 eV indicating that SnS can be used as an important material for thin film solar cells. The surface morphology showed a smooth, homogenous film over the substrate. Characteristic stretching vibration mode of SnS was observed in the absorption band of FT-IR spectrum. The electrical activation energy was about 0.306 eV.

  20. Radiation-hardened optically reconfigurable gate array exploiting holographic memory characteristics

    Science.gov (United States)

    Seto, Daisaku; Watanabe, Minoru

    2015-09-01

    In this paper, we present a proposal for a radiation-hardened optically reconfigurable gate array (ORGA). The ORGA is a type of field programmable gate array (FPGA). The ORGA configuration can be executed by the exploitation of holographic memory characteristics even if 20% of the configuration data are damaged. Moreover, the optoelectronic technology enables the high-speed reconfiguration of the programmable gate array. Such a high-speed reconfiguration can increase the radiation tolerance of its programmable gate array to 9.3 × 104 times higher than that of current FPGAs. Through experimentation, this study clarified the configuration dependability using the impulse-noise emulation and high-speed configuration capabilities of the ORGA with corrupt configuration contexts. Moreover, the radiation tolerance of the programmable gate array was confirmed theoretically through probabilistic calculation.

  1. Optical characteristics of modified fiber tips in single fiber, laser Doppler flowmetry

    Science.gov (United States)

    Oberg, P. Ake; Cai, Hongming; Rohman, Hakan; Larsson, Sven-Erik

    1994-02-01

    Percutaneous laser Doppler flowmetry (LDF) and bipolar surface electromyography (EMG) were used simultaneously for measurement of skeletal muscle (trapezius) perfusion in relation to static load and fatigue. On-line computer (386 SX) processing of the LDF- and EMG- signals made possible interpretation of the relationship between the perfusion and the activity of the muscle. The single fiber laser Doppler technique was used in order to minimize the trauma. A ray-tracing program was developed in the C language by which the optical properties of the fiber and fiber ends could be simulated. Isoirradiance graphs were calculated for three fiber end types and the radiance characteristics were measured for each fiber end. The three types of fiber-tips were evaluated and compared in flow model measurements.

  2. The structural and electro-optical characteristics of AZO/Cr:Cu/AZO transparent conductive film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tien-Chai [Department of Electrical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China); Huang, Wen-Chang, E-mail: wchuang@mail.ksu.edu.tw [Department of Electro-Optical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China); Tsai, Fu-Chun [Department of Electro-Optical Engineering, Kun Shan University, No. 195, Kun-Da Road, Yung-Kang Dist., Tainan 71003, Taiwan, ROC (China)

    2015-08-31

    A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO (ACCA), was presented in the paper. The structural and electro-optical properties of the ACCA film were discussed. The thickness of the middle metal layer was constant and those of the AZO layers were varied. The ACCA film shows an obvious ZnO (002) c-axis preferential growth. No diffraction peaks related to Cr and Cu were observed through x-ray diffraction analysis. The middle Cr:Cu layer showed a thickness of 8.16 nm with a continuous and amorphous structure by the observation of a high-resolution transmission electron microscopy (HR-TEM). For the electro-optical characteristic, a best figure of merit (FOM) value of 3.54 × 10{sup −3} Ω{sup −1} with a corresponding transmittance of 85% was obtained at the thickness of 116 nm of ACCA film. The high FOM value of the film is due to the improvement of conductivity and small sacrifices of transparency. - Highlights: • A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO is developed. • Chromium is added to copper to reduce the oxidation–reduction reaction. • The film has a FOM of 3.54 × 10{sup −3} Ω{sup −1} with a corresponding transmittance of 85%. • The Cr:Cu layer shows a continuous and amorphous structure.

  3. The structural and electro-optical characteristics of AZO/Cr:Cu/AZO transparent conductive film

    International Nuclear Information System (INIS)

    Lin, Tien-Chai; Huang, Wen-Chang; Tsai, Fu-Chun

    2015-01-01

    A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO (ACCA), was presented in the paper. The structural and electro-optical properties of the ACCA film were discussed. The thickness of the middle metal layer was constant and those of the AZO layers were varied. The ACCA film shows an obvious ZnO (002) c-axis preferential growth. No diffraction peaks related to Cr and Cu were observed through x-ray diffraction analysis. The middle Cr:Cu layer showed a thickness of 8.16 nm with a continuous and amorphous structure by the observation of a high-resolution transmission electron microscopy (HR-TEM). For the electro-optical characteristic, a best figure of merit (FOM) value of 3.54 × 10 −3 Ω −1 with a corresponding transmittance of 85% was obtained at the thickness of 116 nm of ACCA film. The high FOM value of the film is due to the improvement of conductivity and small sacrifices of transparency. - Highlights: • A novel triple-layered transparent conductive film, AZO/Cr:Cu/AZO is developed. • Chromium is added to copper to reduce the oxidation–reduction reaction. • The film has a FOM of 3.54 × 10 −3 Ω −1 with a corresponding transmittance of 85%. • The Cr:Cu layer shows a continuous and amorphous structure

  4. Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon.

    Science.gov (United States)

    Li, Kun; Sun, Hao; Ren, Fan; Ng, Kar Wei; Tran, Thai-Truong D; Chen, Roger; Chang-Hasnain, Connie J

    2014-01-08

    Nanoscale self-assembly offers a pathway to realize heterogeneous integration of III-V materials on silicon. However, for III-V nanowires directly grown on silicon, dislocation-free single-crystal quality could only be attained below certain critical dimensions. We recently reported a new approach that overcomes this size constraint, demonstrating the growth of single-crystal InGaAs/GaAs and InP nanoneedles with the base diameters exceeding 1 μm. Here, we report distinct optical characteristics of InP nanoneedles which are varied from mostly zincblende, zincblende/wurtzite-mixed, to pure wurtzite crystalline phase. We achieved, for the first time, pure single-crystal wurtzite-phase InP nanoneedles grown on silicon with bandgaps of 80 meV larger than that of zincblende-phase InP. Being able to attain excellent material quality while scaling up in size promises outstanding device performance of these nanoneedles. At room temperature, a high internal quantum efficiency of 25% and optically pumped lasing are demonstrated for single nanoneedle as-grown on silicon substrate. Recombination dynamics proves the excellent surface quality of the InP nanoneedles, which paves the way toward achieving multijunction photovoltaic cells, long-wavelength heterostructure lasers, and advanced photonic integrated circuits.

  5. Polarization-insensitive optical gain characteristics of highly stacked InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Kita, Takashi; Suwa, Masaya; Kaizu, Toshiyuki; Harada, Yukihiro

    2014-01-01

    The polarized optical gain characteristics of highly stacked InAs/GaAs quantum dots (QDs) with a thin spacer layer fabricated on an n + -GaAs (001) substrate were studied in the sub-threshold gain region. Using a 4.0-nm-thick spacer layer, we realized an electronically coupled QD superlattice structure along the stacking direction, which enabled the enhancement of the optical gain of the [001] transverse-magnetic (TM) polarization component. We systematically studied the polarized electroluminescence properties of laser devices containing 30 and 40 stacked InAs/GaAs QDs. The net modal gain was analyzed using the Hakki-Paoli method. Owing to the in-plane shape anisotropy of QDs, the polarization sensitivity of the gain depends on the waveguide direction. The gain showing polarization isotropy between the TM and transverse-electric polarization components is high for the [110] waveguide structure, which occurs for higher amounts of stacked QDs. Conversely, the isotropy of the [−110] waveguide is easily achieved even if the stacking is relatively low, although the gain is small.

  6. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    International Nuclear Information System (INIS)

    Savaloni, Hadi; Haydari-Nasab, Fatemh; Malmir, Mariam

    2011-01-01

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30 o and 70 o incidence angles and at different azimuthal angles (φ). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the φ angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths ( o incidence angle.

  7. Retinal pigment epithelium findings in patients with albinism using wide-field polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Schütze, Christopher; Ritter, Markus; Blum, Robert; Zotter, Stefan; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2014-11-01

    To investigate pigmentation characteristics of the retinal pigment epithelium (RPE) in patients with albinism using wide-field polarization-sensitive optical coherence tomography compared with intensity-based spectral domain optical coherence tomography and fundus autofluorescence imaging. Five patients (10 eyes) with previously genetically diagnosed albinism and 5 healthy control subjects (10 eyes) were imaged by a wide-field polarization-sensitive optical coherence tomography system (scan angle: 40 × 40° on the retina), sensitive to melanin contained in the RPE, based on the polarization state of backscattered light. Conventional intensity-based spectral domain optical coherence tomography and fundus autofluorescence examinations were performed. Retinal pigment epithelium-pigmentation was analyzed qualitatively and quantitatively based on depolarization assessed by polarization-sensitive optical coherence tomography. This study revealed strong evidence of polarization-sensitive optical coherence tomography to specifically image melanin in the RPE. Depolarization of light backscattered by the RPE in patients with albinism was reduced compared with normal subjects. Heterogeneous RPE-specific depolarization characteristics were observed in patients with albinism. Reduction of depolarization observed in the light backscattered by the RPE in patients with albinism corresponds to expected decrease of RPE pigmentation. The degree of depigmentation of the RPE is possibly associated with visual acuity. Findings suggest that different albinism genotypes result in heterogeneous levels of RPE pigmentation. Polarization-sensitive optical coherence tomography showed a heterogeneous appearance of RPE pigmentation in patients with albinism depending on different genotypes.

  8. The Full Aperture Backscatter Station Measurement System on the National Ignition Facility

    International Nuclear Information System (INIS)

    Bower, D; McCarville, T; Alvarez, S; Ault, L; Brown, M; Chrisp, M; Damian, C; DeHope, W; Froula, D; Glenzer, S; Grace, S; Gu, K; Holdener, F; Huffer, C; Kamperschroer, J; Kelleher, T; Kimbrough, J

    2004-01-01

    A Full Aperture Backscatter Station (FABS) target diagnostic has been activated on the first four beams of the National Ignition Facility (NIF). Backscattered light from the target propagates back down the beam path into the FABS diagnostic system. FABS measures both stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) with a suite of measurement instruments. Digital cameras and spectrometers record spectrally resolved energy for both P and S polarized light. Streaked spectrometers measure the spectral and temporal behavior of the backscattered light. Calorimeters and fast photodetectors measure the integrated energy and temporal behavior of the light, respectively. This paper provides an overview of the FABS measurements system and detailed descriptions of the diagnostic instruments and the optical path

  9. Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers

    Science.gov (United States)

    Kotthaus, Simone; O'Connor, Ewan; Münkel, Christoph; Charlton-Perez, Cristina; Haeffelin, Martial; Gabey, Andrew M.; Grimmond, C. Sue B.

    2016-08-01

    Ceilometer lidars are used for cloud base height detection, to probe aerosol layers in the atmosphere (e.g. detection of elevated layers of Saharan dust or volcanic ash), and to examine boundary layer dynamics. Sensor optics and acquisition algorithms can strongly influence the observed attenuated backscatter profiles; therefore, physical interpretation of the profiles requires careful application of corrections. This study addresses the widely deployed Vaisala CL31 ceilometer. Attenuated backscatter profiles are studied to evaluate the impact of both the hardware generation and firmware version. In response to this work and discussion within the CL31/TOPROF user community (TOPROF, European COST Action aiming to harmonise ground-based remote sensing networks across Europe), Vaisala released new firmware (versions 1.72 and 2.03) for the CL31 sensors. These firmware versions are tested against previous versions, showing that several artificial features introduced by the data processing have been removed. Hence, it is recommended to use this recent firmware for analysing attenuated backscatter profiles. To allow for consistent processing of historic data, correction procedures have been developed that account for artefacts detected in data collected with older firmware. Furthermore, a procedure is proposed to determine and account for the instrument-related background signal from electronic and optical components. This is necessary for using attenuated backscatter observations from any CL31 ceilometer. Recommendations are made for the processing of attenuated backscatter observed with Vaisala CL31 sensors, including the estimation of noise which is not provided in the standard CL31 output. After taking these aspects into account, attenuated backscatter profiles from Vaisala CL31 ceilometers are considered capable of providing valuable information for a range of applications including atmospheric boundary layer studies, detection of elevated aerosol layers, and model

  10. The Wigner distribution function and Hamilton's characteristics of a geometric-optical system

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1979-01-01

    Four system functions have been defined for an optical system; each of these functions describes the system completely in terms of Fourier optics. From the system functions the Wigner distribution function of an optical system has been defined; although derived from Fourier optics, this Wigner

  11. Laser-based air data system for aircraft control using Raman and elastic backscatter for the measurement of temperature, density, pressure, moisture, and particle backscatter coefficient.

    Science.gov (United States)

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2012-01-10

    Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio-and thus the density of the moist air-a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for

  12. Random fiber laser based on artificially controlled backscattering fibers.

    Science.gov (United States)

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong

    2018-01-10

    The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.

  13. Incidence angle normalization of radar backscatter data

    Science.gov (United States)

    NASA’s Soil Moisture Passive Active (SMAP) satellite (~2014) will include a radar system that will provide L-band multi-polarization backscatter at a constant incidence angle of 40º. During the pre-launch phase of the project there is a need for observations that will support the radar-based soil mo...

  14. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Haydari-Nasab, Fatemh; Malmir, Mariam [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of)

    2011-08-15

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30{sup o} and 70{sup o} incidence angles and at different azimuthal angles ({phi}). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the {phi} angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths (<450 nm) is observed in the s-polarization spectra, while in addition to this peak a broad peak at longer wavelengths (i.e., LM) observed in the p-polarization spectra, which is more dominant for 70{sup o} incidence angle.

  15. Preliminary backscatter results from the hydrosweep multibeam system

    Digital Repository Service at National Institute of Oceanography (India)

    Hagen, R.A.; Chakraborty, B.; Schenke, H.W.

    of Oceanography to convert the measured electrical energy into acoustic backscatter energy. This conversion includes corrections for the position, slope, and area of the scattering surface. In this paper we present backscatter data from several areas surveyed...

  16. Study of multibeam techniques for bathymetry and seabottom backscatter applications

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Chakraborty, B.

    Indian ocean is presented using Hydrosweep-multibeam installed onboard ORV Sagarkanya. A seabottom classification model is proposed which can be applied for multibeam backscatter data. Certain aspects of the multibeam backscatter signal data processing...

  17. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    Science.gov (United States)

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  18. Bending Characteristics Change of Long-Period fiber Grating due to Co-doping of Boron for Optical fiber Sensors

    International Nuclear Information System (INIS)

    Moon, Dae Seung; Chung, Young Joo

    2005-01-01

    In long-period fiber grating (LPFG) to be made up optical fiber sensors, resonance coupling occurs between the forward-propagating core mode and cladding modes at the wavelength that satisfy the Phase matching condition. The resonance wavelength and the coupling strength depends strongly on the external environment like temperature, strain, and ambient index. These characteristics can be utilized for various applications as optical fiber sensors. Fabrication of optical fiber gratings is typically based on the photosensitivity effect, i.e. the permanent change of the refractive index upon irradiation of the UV beam, and therefore, fabrication of the optical fiber with high phososensitivity is an important part of the research on optical fiber gratings. In this work, we measured the effort of to-doping of boron on the index difference between the core and cladding of the optical fiber and the sensitivity of the LPFC to the temperature and bending changes. We observed that the index difference between the core and the cladding decreased by (1.69x10 -4 /SCCM) and the temperature sensitivity of the resonance wavelength shirt decreased by (0.01145nm/ .deg. C/SCCM). The dependence or the bending-induced changes or the transmission characteristics of LPFG on the tore-cladding index difference was investigated experimentally. The measurement results indicate that the bending sensitivity increases as the index difference decreases

  19. Optics

    CERN Document Server

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  20. Influence of radiation on photo-electric characteristics of silicon photo cells with optical coverings

    International Nuclear Information System (INIS)

    Madatov, R.S.; Safarov, N.A.; Gasymova, V.G.; Abdurragimov, A.A.; Allahverdiev, A.M.

    2003-01-01

    In the given work results of measurements volt-ampere and spectral characteristics of silicon photo cells with optical coverings ZnS+Nd 2 O 3 irradiated accelerated electrons with energy 4.5 MeV are carried out. Elements have been made by diffusion of phosphorus in p-silicon with specific resistance 2 Ω·cm. Under condition of illumination from source AMI the photocurrent of short circuit made 40 mA/cm 2 , and a photo voltage of idling 0.52 V, efficiency made 15 %. To receive low reflection in wide area of spectral sensitivity and by that as much as possible to increase efficiency of elements with the help of two-layer coverings. The irradiation of samples was made on linear accelerator EL4-6 at room temperature. It is received, that with increase in a dose of an irradiation the Photocurrent and photo voltage decreases, and speed reduction of a photo-current is stronger, than photo voltage. The critical integrated stream for these elements makes 4·10 12 el/cm 2 . In all researched samples radiating reduction of a voltage of idling in an interval of 10 10 -10 14 el/cm 2 makes 8-10 %. The analysis of spectral characteristics of the irradiated samples show, that reduction of a photocurrent in long-wave areas of a spectrum is connected by creation of radiating defects in a base part of an element. The increase in a critical stream in silicon solar elements with optical a covering in comparison with elements without a covering is connected with low concentration of defects in the base, created with electron. Thus, on the basis of complex research of influence on radiating stability silicon solar elements us it is established, that two-layer coverings not only increases efficiency of photo cells, but also considerably raise value of an integrated stream electrons, that is equivalent to increase in service life of the elements working in conditions of radiation

  1. Characteristic features of optical absorption for Gd{sub 2}O{sub 3} and NiO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zatsepin, A. F.; Kuznetsova, Yu. A., E-mail: iu.a.kuznetsova@urfu.ru; Rychkov, V. N. [Ural Federal University (Russian Federation); Sokolov, V. I. [Ural Branch of Russian Academy of Science, Institute of Metal Physics (Russian Federation)

    2017-03-15

    The technical approach to determination of the structural and optical parameters of oxides with reduced dimensionality based on optical absorption measurements is described by example of gadolinium and nickel oxides. It was established that the temperature behavior of fundamental absorption edge for oxide nanoparticles is similar with the bulk materials with crystal structure. At the same time, the energy characteristics (band gap and effective phonon energies) for low-dimensional oxides are found to be significantly different from their bulk counterparts. The presented methodological method to obtain of qualitative and quantitative correlations of structural and optical characteristics provides novel reliable knowledge of nanoscaled 3d and 4f–metal oxide materials that is useful for development of their practical applications.

  2. Characterization of Rayleigh backscattering arising in various two-mode fibers

    NARCIS (Netherlands)

    Yu, Dawei; Fu, Songnian; Cao, Zizheng; Tang, Ming; Deng, Lei; Liu, Deming; Giles, I.; Koonen, T.; Okonkwo, C.

    2016-01-01

    We experimentally characterize the mode dependent characteristics of Rayleigh backscattering (RB) arising in various two-mode fibers (TMFs). With the help of an all-fiber photonic lantern, we are able to measure the RB power at individual modes. Consequently, mode dependent power distribution of RB

  3. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    International Nuclear Information System (INIS)

    Xie Tao; Zhao Shang-Zhuo; Fang He; Yu Wen-Jin; He Yi-Jun; Perrie, William

    2016-01-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. (paper)

  4. Enhancement of oscillation characteristics of a gyrotron by a built-in quasi-optical mode converter

    International Nuclear Information System (INIS)

    Hayashi, Kenichi; Mitsunaka, Yoshika; Komuro, Mitsuo

    1994-01-01

    Oscillation characteristics are analyzed experimentally and numerically by using two gyrotrons with a power level of 500 kW, a conventional tube and a tube with a built-in quasi-optical mode converter. Both tubes have a 120 GHz, TE 12,2 cavity of the same geometry and a single disk alumina window. The quasi-optical mode converter consists of an α-cut launcher and five mirrors. In the conventional tube, reflection of the competing mode at the output window prevents the main mode from oscillating stably in the operation region predicted by the design. Mode selectivity of the quasi-optical mode converter removes the influence of the reflection on the oscillation. Consequently, the experimental results in the tube with the quasi-optical mode converter are in good agreement with the design values. (author)

  5. Jet-Tagged Back-Scattering Photons for Quark Gluon Plasma Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J. [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77845 (United States); De, Somnath; Srivastava, Dinesh K. [Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata – 700064 (India)

    2013-05-02

    Direct photons are important probes for quark gluon plasma created in high energy nuclear collisions. Various sources of direct photons in nuclear collisions are known, each of them endowed with characteristic information about the production process. However, it has been challenging to separate direct photon sources through measurements of single inclusive photon spectra and photon azimuthal asymmetry. Here we explore a method to identify photons created from the back-scattering of high momentum quarks off quark gluon plasma. We show that the correlation of back-scattering photons with a trigger jet leads to a signal that should be measurable at RHIC and LHC.

  6. Growth, spectral, linear and nonlinear optical characteristics of an efficient semiorganic acentric crystal: L-valinium L-valine chloride

    Energy Technology Data Exchange (ETDEWEB)

    Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India); Vinitha, G. [Department of Physics, School of Advanced Sciences, VIT Chennai, 600127 Tamil Nadu (India); Caroline, M. Lydia, E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India)

    2017-04-15

    An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P2{sub 1}. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm{sup 2}. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics. - Graphical abstract: Good quality transparent single crystals of L-valinium L-valine chloride single crystal was grown by slow evaporation technique. The grown crystals were analyzed using different instrumentation methods to check its usefulness for the device fabrication. The determination of nonlinear refractive index (n{sub 2}), absorption coefficient (β) and third order nonlinear susceptibility was determined by Z scan technique, highlighted that LVVCl can serve as a promising candidate for opto electronic and nonlinear optical applications.

  7. Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, Edward; Porter, Jason; Davis, John; Gary, Allen; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This paper will describe the scientific objectives of the MSFC SUMI project and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed, This paper will describe the optical measurements that have been made on the SUMI telescope mirrors and polarization optics.

  8. Characteristics of time-domain optical coherence tomography profiles generated from blood-saline mixtures

    International Nuclear Information System (INIS)

    Popescu, Dan P; Sowa, Michael G

    2009-01-01

    Time-domain optical coherence tomography (OCT) employing a 1300 nm broadband source is used to study flowing blood-saline mixtures with blood concentration ranging from 20% to 100%. The study emphasizes the characteristics of the recorded OCT signal and its connection with the properties of the corresponding fluids. There are three regions with distinct properties along the compounded OCT profiles showing the signal dependence on depth. The recorded OCT signal increases for the first 80 μm into the fluid. The flow characteristics of the solution and the average spatial orientation of the blood cells can be extracted from this region of the OCT profile. In the second region, the OCT signal decreases with depth into the sample. An admixture of quasi-ballistic light detected after a single reflection and light recorded after undergoing multiple-scattering interactions with blood cells contributes to the signal recorded in this region. As a consequence, the attenuation of OCT signal with depth into the sample shows a weak dependence on the concentration of blood over this region. The third region starts at a depth of approximately 0.6 mm within all the studied blood-saline mixtures. OCT signal recorded from this region is dominated by light detected after multiple-scattering interactions with blood cells. This region of the OCT profile is characterized by a reduced rate of attenuation with depth compared to the rate recorded along the second region of the compounded profile. A geometrical method is used to estimate the contribution from multiple-scattered light to the OCT signal. The multiple-scattered component shows a parabolic dependence on blood concentration with a maximum contribution at a blood concentration of 55%.

  9. Radiation characteristics and effective optical properties of dumbbell-shaped cyanobacterium Synechocystis sp

    International Nuclear Information System (INIS)

    Heng, Ri-Liang; Pilon, Laurent

    2016-01-01

    This study presents experimental measurements of the radiation characteristics of unicellular freshwater cyanobacterium Synechocystis sp. during their exponential growth in F medium. Their scattering phase function at 633 nm average spectral absorption and scattering cross-sections between 400 and 750 nm were measured. In addition, an inverse method was used for retrieving the spectral effective complex index of refraction of overlapping or touching bispheres and quadspheres from their absorption and scattering cross-sections. The inverse method combines a genetic algorithm and a forward model based on Lorenz–Mie theory, treating bispheres and quadspheres as projected area and volume-equivalent coated spheres. The inverse method was successfully validated with numerically predicted average absorption and scattering cross-sections of suspensions consisting of bispheres and quadspheres, with realistic size distributions, using the T-matrix method. It was able to retrieve the monomers' complex index of refraction with size parameter up to 11, relative refraction index less than 1.3, and absorption index less than 0.1. Then, the inverse method was applied to retrieve the effective spectral complex index of refraction of Synechocystis sp. approximated as randomly oriented aggregates consisting of two overlapping homogeneous spheres. Both the measured absorption cross-section and the retrieved absorption index featured peaks at 435 and 676 nm corresponding to chlorophyll a, a peak at 625 nm corresponding to phycocyanin, and a shoulder around 485 nm corresponding to carotenoids. These results can be used to optimize and control light transfer in photobioreactors. The inverse method and the equivalent coated sphere model could be applied to other optically soft particles of similar morphologies. - Highlights: • Radiation characteristics of Synechocystis sp. were measured during exponential growth. • This unicellular freshwater cyanobacterium features an interesting

  10. Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation

    International Nuclear Information System (INIS)

    Wang Wei-Long; Song Hui-Min; Li Jun; Jia Min; Wu Yun; Jin Di

    2016-01-01

    Electrical characteristics and optical emission spectrum of the radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are investigated experimentally in this paper. Influences of operating pressure, duty cycle and load power on the discharge are analyzed. When the operating pressure reaches 30 kPa, the discharge energy calculated from the Charge–Voltage (Q–V) Lissajous figure increases significantly, while the effective capacitance decreases remarkably. As the duty cycle of the applied voltage increases, the voltage–current waveforms, the area of Q–V loop and the capacity show no distinct changes. Below 40 W, effective capacitance increases with the increase of load power, but it almost remains unchanged when load power is between 40 W and 95 W. The relative intensity changes little as the operating pressure varies from 4 kPa to 100 kPa, while it rises evidently with the pressure below 4 kPa, which indicates that the RF discharge mode shifts from filamentary discharge to glow discharge at around 4 kPa. With the increase of load power, the relative intensity rises evidently. Additionally, the relative intensity is insensitive to the pressure, the duty cycle, and the load power. (paper)

  11. Effects of neodymium concentration on optical characteristics of polycrystalline Nd:YAG laser materials

    International Nuclear Information System (INIS)

    Ikesue, A.; Kamata, K.; Yoshida, K.

    1996-01-01

    A neodymium-doped yttrium-aluminum garnet (Y 3 Al 5 O 12 , YAG) (Nd:YAG) ceramic that contained 0.3--4.8 at.% neodymium additives and exhibited nearly the same optical properties as those of a single crystal was fabricated by a solid-state reaction method using high-purity powders. Although the integrated absorption intensity of the 2 H 9/2 + 4 F 5/2 bands simply increased as the neodymium concentration in the YAG ceramics decreased, the fluorescence intensity of the 2.4 at.% Nd:YAG ceramic was the strongest among Nd:YAG ceramics with various neodymium concentrations and a 0.9 at.% Nd:YAG single crystal. An oscillation experiment was performed on a continuous-wave (cw) laser with a diode-laser exciting system using those ceramics and the single crystal. The oscillation threshold and slope efficiency in that analysis were 309 mW and 28%, respectively, for the 1.1 at.% Nd:YAG ceramics and 356 mW and 40%, respectively, for the 2.4 at.% Nd:YAG ceramics. The lasing characteristics of the ceramics in the present work were superior to those of a 0.9 at.% Nd:YAG single crystal that was fabricated by the Czochralski (Cz) method

  12. Measurement of characteristics of solid flow in the cyclone separators with fiber optical probe

    International Nuclear Information System (INIS)

    Li Shaohua; Li Yan; Li Jinjing; Yang Shi; Yang Hairui; Zhang Hai; Lu Junfu; Yue Guangxi

    2009-01-01

    In some applications, e.g. circulating fluidized beds (CFB), cyclones are usually operated at high solid loadings. Under high inlet solid concentration, most of the particles are collected at the wall and form a dense particle spiral band because of high separation efficiency. As a result, gas-solid reactions should occur mostly in the near-wall region. To understand the gas-solid reaction mechanism in the cyclone, an experimental study was conducted in a plexiglass CFB cold apparatus, with a riser of 0.2m I.D. and 5m high, and a standard Lapple cyclone. Fiber optical probe was used to measure the characteristics of solid flow in the cyclone, including particle velocity and volumetric solid concentration, especially in the near-wall region of the cyclone. Based on the experiment results, the combustion of carbon particles in the cyclone of a CFB boiler was estimated with group combustion theory. The calculated results show that combustion effectiveness factor ηeff of near-wall particle cloud is smaller than 1/25, which means the combustion rate of a carbon particle in the near-wall region is greatly restricted by other particles in the cloud.

  13. Fundamental characteristics of a synthesized light source for optical coherence tomography.

    Science.gov (United States)

    Sato, Manabu; Wakaki, Ichiro; Watanabe, Yuuki; Tanno, Naohiro

    2005-05-01

    We describe the fundamental characteristics of a synthesized light source (SLS) consisting of two low-coherence light sources to enhance the spatial resolution for optical coherence tomography (OCT). The axial resolution of OCT is given by half the coherence length of the light source. We fabricated a SLS with a coherence length of 2.3 microm and a side-lobe intensity of 45% with an intensity ratio of LED1:LED2 = 1:0.5 by combining two light sources, LED1, with a central wavelength of 691 nm and a spectral bandwidth of 99 nm, and LED2, with a central wavelength of 882 nm and a spectral bandwidth of 76 nm. The coherence length of 2.3 microm was 56% of the shorter coherence length in the two LEDs, which indicates that the axial resolution is 1.2 microm. The lateral resolution was measured at less than 4.4 microm by use of the phase-shift method and with a test pattern as a sample. The measured rough surfaces of a coin are illustrated and discussed.

  14. Measurement and analysis on optical characteristics of Aspergillus oryzae spores in infrared band

    Science.gov (United States)

    Li, Le; Hu, Yihua; Gu, Youlin; Chen, Wei; Xu, Shilong; Zhao, Xinying

    2015-10-01

    Spore is an important part of bioaerosols. The optical characteristics of spore is a crucial parameter for study on bioaerosols. The reflection within the waveband of 2.5 to15μm were measured by squash method. Based on the measured data, Complex refractive index of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14 μm were calculated by using Krames-Kronig (K-K) relationship. Then,the mass extinction coefficient of Aspergillus oryzae spores within the waveband of 3 to 5μm and 8 to 14μm were obtained by utilizing Mie scattering theory, and the results were analyzed and discussed. The average mass extinction coefficient of Aspergillus oryzae spores is 0.51 m2/g in the range of 3 to 5μm and 0.48m2/g in the range of 8 to 14μm. Compared with common inorganic compounds, Aspergillus oryzae spores possesses a good extinction performance in infrared band.

  15. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  16. Acoustic backscatter models of fish: Gradual or punctuated evolution

    Science.gov (United States)

    Horne, John K.

    2004-05-01

    Sound-scattering characteristics of aquatic organisms are routinely investigated using theoretical and numerical models. Development of the inverse approach by van Holliday and colleagues in the 1970s catalyzed the development and validation of backscatter models for fish and zooplankton. As the understanding of biological scattering properties increased, so did the number and computational sophistication of backscatter models. The complexity of data used to represent modeled organisms has also evolved in parallel to model development. Simple geometric shapes representing body components or the whole organism have been replaced by anatomically accurate representations derived from imaging sensors such as computer-aided tomography (CAT) scans. In contrast, Medwin and Clay (1998) recommend that fish and zooplankton should be described by simple theories and models, without acoustically superfluous extensions. Since van Holliday's early work, how has data and computational complexity influenced accuracy and precision of model predictions? How has the understanding of aquatic organism scattering properties increased? Significant steps in the history of model development will be identified and changes in model results will be characterized and compared. [Work supported by ONR and the Alaska Fisheries Science Center.

  17. Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter

    Science.gov (United States)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne laser-induced, depth-resolved water Raman backscatter is useful in the detection and mapping of water optical transmission variations. This test, together with other field experiments, has identified the need for additional field experiments to resolve the degree of the contribution to the depth-resolved, Raman-backscattered signal waveform that is due to (1) sea surface height or elevation probability density; (2) off-nadir laser beam angle relative to the mean sea surface; and (3) the Gelbstoff fluorescence background, and the analytical techniques required to remove it. When converted to along-track profiles, the waveforms obtained reveal cells of a decreased Raman backscatter superimposed on an overall trend of monotonically decreasing water column optical transmission.

  18. Backscattering and negative polarization of agglomerate particles.

    Science.gov (United States)

    Zubko, Evgenij; Shkuratov, Yuriy; Hart, Matthew; Eversole, Jay; Videen, Gorden

    2003-09-01

    We used the discrete dipole approximation to study the backscattering of agglomerate particles consisting of oblong monomers. We varied the aspect ratio of the monomers from approximately 1 (sphere) to 4, while we kept the total particle volume equivalent to that of an x = 10 sphere for m = 1.59 + i0 and 1.50 + i0 and considered two values of agglomerate packing density: rho = 0.25 and rho = 0.1. We found that these particles do not display a prominent brightness opposition effect but do produce significant negative polarization over a range of near-backscattering angles. Increasing the monomers' aspect ratio can make the negative polarization much more prominent. We have noted also that decreasing m and p can reduce the amplitude of the negative polarization for these particles.

  19. Progress in optics

    CERN Document Server

    Wolf, Emil

    2009-01-01

    In the fourty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. The volumes in this series which have appeared up to now contain more than 300 review articles by distinguished research workers, which have become permanent records for many important developments.- Backscattering and Anderson localization of light- Advances in oliton manipulation in optical lattices- Fundamental quantum noise in optical amplification- Invisibility cloaks

  20. [Optical characteristics of colored dissolved organic material (CDOM) in Yangtze Estuary].

    Science.gov (United States)

    Zhu, Wei-Jian; Shen, Fang; Hong, Guan-Lin

    2010-10-01

    Absorption property of colored dissolved organic material (CDOM) is one of the most important contents to remote sensing of ocean color in estuarine and coastal areas. In this study, the optical properties and mixing behavior of CDOM in surface water of Yangtze Estuary were discussed according to the two surveys in August of 2008 and May of 2009. Based on the research, the absorption coefficient and spectral slope were discussed. It was found that in summer of 2008 CDOM absorption coefficients at 440 nm [a(g) (440)], ranged from 0.20 m(-1) to 0.73 m(-1), while the coefficients in 2009 varied between 0.20 m(-1) and 0.77 m(-1). Statistics showed that the power function model fitted the best in the regression analysis of CDOM absorption spectral. The spectral slopes (S(g2)) of CDOM calculated by the power function model ranged from 5.10 to 7.90 in Summer of 2008 and from 2.95 to 6.11 in Spring of 2009. The highest absorption coefficients of two cruises appeared both in the south passage of the Yangtze Estuary. The absorption coefficient in surfer water was observed varied tremendously in the estuary and the offshore area. And the main reason is affected by the turbidity maximum zone. It is observed that the absorption coefficients of CDOM tended to a homogeneous distribution whilst the layers of water mixed tempestuously, but otherwise it always showed a conservative mixing behavior. Because of the frequent mixture, there is not assured correlativity between S(g2) and a(g) (440). In the offshore area of Yangtze Estuary, the effecting of local production cannot be negligent, which differed from the estuary area. Yet when the hydrological environment was relatively stable, the negative relationship between them was very clear. In conclusion, the optical properties and mixing behavior of CDOM had showed tremendous different characteristics from inside the estuary to outside the estuary because of the influence of complex physical, chemical and hydrology conditions.

  1. Synthesis, surface properties and optical characteristics of CuV_2O_6 nanofibers

    International Nuclear Information System (INIS)

    Wang, Fengyun; Zhang, Hongchao; Liu, Lei; Shin, Byoungchul; Shan, Fukai

    2016-01-01

    In"3"+-doped CuV_2O_6 nanofibers were prepared via the hydrothermal synthesis method, which produced fibers with a typical diameter of 100 nm, and a length of 1–5 μm. The nanofibers grew in a preferred [020] direction. The crystal phase together with the structure was studied via X-ray polycrystalline diffraction (XRD) and the Rietveld refinement. The surface characteristics of this nanostructure were measured with a scanning electron microscope (SEM), energy dispersive spectra (EDS), transmission electron microscopy (TEM), and N_2–adsorption–desorption isotherms. Photo-activities were evaluated by optical absorption, luminescence, and decay behaviors. The band-gap structures and positions were investigated. The vanadate has an efficient optical absorption from the UV to the visible wavelength region with an indirect allowed transition characterized by the narrow gap energy of 1.96 eV. The photocatalysis was investigated by the photo-degradation of RhB solutions irradiated by visible light. Correspondingly, CuV_2O_6:In"3"+ nanofibers possess quenched luminescence and have a more efficient photocatalytic activity on the RhB degradation. Photocatalytic mechanisms were proposed based on the experimental results, the band-energy positions, and the trapping experiments. The coexistence of V"4"+/V"5"+ ions and induced-color centers was discussed on the proposed photocatalytic mechanism. The results demonstrated the promising potency of such In"3"+-doped CuV_2O_6 nanofibers for technological applications due to their high photo-activity and good cycling performance with the fiber morphology. - Highlights: • Recyclable α-CuV_2O_6 nanofibers were successfully prepared via hydrothermal synthesis. • In-doped α-CuV_2O_6 as a visible-light-driven photocatalyst was firstly developed. • The nanofibers display typical indirect allowed transitions with narrow band of 1.96 eV. • It presents high activity on RhB degradation under visible light irradiation. • The

  2. Analytical expressions for the electron backscattering coefficient

    International Nuclear Information System (INIS)

    August, H.J.; Wernisch, J.

    1989-01-01

    Several analytical expressions for the electron backscattering coefficient for massive homogeneous samples are compared with experimental data, directing special attention to the dependence of this quantity on the electron acceleration energy. It is shown that this dependence generally cannot be neglected. The expression proposed by Hunger and Kuechler turns out to be better than that of Love and Scott, although even the better formula can be slightly improved by a small modification. (author)

  3. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Fercher, A.F.; Andersen, Peter E.

    2017-01-01

    Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... detected by partial coherence interferometry (PCI) is used to synthesize the tomographic image coded in false colors. A prerequisite of this technique is a low time-coherent but high space-coherent light source, for example, a superluminescent diode or a supercontinuum source. Alternatively, the imaging...... technique can be realized by using ultrafast wavelength scanning light sources. For tissue imaging, the light source wavelengths are restricted to the red and near-infrared (NIR) region from about 600 to 1300 nm, the so-called therapeutic window, where absorption (μa ≈ 0.01 mm−1) is small enough. Transverse...

  4. Backscatter Correction Algorithm for TBI Treatment Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Nieto, B.; Sanchez-Doblado, F.; Arrans, R.; Terron, J.A. [Dpto. Fisiología Médica y Biofísica, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4. E-41009, Sevilla (Spain); Errazquin, L. [Servicio Oncología Radioterápica, Hospital Univ.V. Macarena. Dr. Fedriani, s/n. E-41009, Sevilla (Spain)

    2015-01-15

    The accuracy requirements in target dose delivery is, according to ICRU, ±5%. This is so not only in standard radiotherapy but also in total body irradiation (TBI). Physical dosimetry plays an important role in achieving this recommended level. The semi-infinite phantoms, customarily used for dosimetry purposes, give scatter conditions different to those of the finite thickness of the patient. So dose calculated in patient’s points close to beam exit surface may be overestimated. It is then necessary to quantify the backscatter factor in order to decrease the uncertainty in this dose calculation. The backward scatter has been well studied at standard distances. The present work intends to evaluate the backscatter phenomenon under our particular TBI treatment conditions. As a consequence of this study, a semi-empirical expression has been derived to calculate (within 0.3% uncertainty) the backscatter factor. This factor depends lineally on the depth and exponentially on the underlying tissue. Differences found in the qualitative behavior with respect to standard distances are due to scatter in the bunker wall close to the measurement point.

  5. Taking apart the enhanced backscattering cone: Interference fringes from reciprocal paths in multiple light scattering

    International Nuclear Information System (INIS)

    Bret, Boris P. J.; Ferreira, Flavio P.; Nunes-Pereira, Eduardo J.; Belsley, Michael

    2010-01-01

    We report the decomposition of the enhanced backscattering cone into its constitutive interference fringes. These fringes are due to the constructive interference between reciprocal paths of any multiply scattered wave after ensemble averaging. An optical setup combining a two-point continuous-wave illumination and matching detection allows the observation of the fringes and, therefore, the quantitative characterization of the Green's function for light propagation between the two points in a multiple-scattering media.

  6. Coupling characteristics of the spun optical fiber with triple stress elements

    Science.gov (United States)

    Ji, Minning; Shang, Fengtao; Chen, Dandan

    2018-06-01

    An empirical formula related to the stress field distribution in the optical fiber with triple stress elements is proposed and proved. The possible intercoupling between the fundamental modes and the higher order modes is demonstrated. The transmission property of the spun optical fiber with triple stress elements is analyzed. The experimental data from a sample of the spun optical fiber with triple stress elements confirm the theoretical results very well.

  7. Improvement in spatial frequency characteristics of magneto-optical Kerr microscopy

    Science.gov (United States)

    Ogasawara, Takeshi

    2017-10-01

    The spatial resolution of a conventional magneto-optical Kerr microscope, compared with those of conventional optical microscopes, inevitably deteriorates owing to oblique illumination. An approach to obtaining the maximum spatial resolution using multiple images with different illumination directions is demonstrated here. The method was implemented by rotating the illumination path around the optical axis using a motorized stage. The Fourier transform image of the observed magnetic domain indicates that the spatial frequency component that is lost in the conventional method is restored.

  8. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  9. Backscatter and attenuation characterization of ventricular myocardium

    Science.gov (United States)

    Gibson, Allyson Ann

    2009-12-01

    This Dissertation presents quantitative ultrasonic measurements of the myocardium in fetal hearts and adult human hearts with the goal of studying the physics of sound waves incident upon anisotropic and inhomogeneous materials. Ultrasound has been used as a clinical tool to assess heart structure and function for several decades. The clinical usefulness of this noninvasive approach has grown with our understanding of the physical mechanisms underlying the interaction of ultrasonic waves with the myocardium. In this Dissertation, integrated backscatter and attenuation analyses were performed on midgestational fetal hearts to assess potential differences in the left and right ventricular myocardium. The hearts were interrogated using a 50 MHz transducer that enabled finer spatial resolution than could be achieved at more typical clinical frequencies. Ultrasonic data analyses demonstrated different patterns and relative levels of backscatter and attenuation from the myocardium of the left ventricle and the right ventricle. Ultrasonic data of adult human hearts were acquired with a clinical imaging system and quantified by their magnitude and time delay of cyclic variation of myocardial backscatter. The results were analyzing using Bayes Classification and ROC analysis to quantify potential advantages of using a combination of two features of cyclic variation of myocardial backscatter over using only one or the other feature to distinguish between groups of subjects. When the subjects were classified based on hemoglobin A1c, the homeostasis model assessment of insulin resistance, and the ratio of triglyceride to high-density lipoprotein-cholesterol, differences in the magnitude and normalized time delay of cyclic variation of myocardial backscatter were observed. The cyclic variation results also suggested a trend toward a larger area under the ROC curve when information from magnitude and time delay of cyclic variation is combined using Bayes classification than when

  10. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang; Niu, Sijie [School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yuan, Songtao; Fan, Wen, E-mail: fanwen1029@163.com; Liu, Qinghuai [Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029 (China)

    2016-04-15

    Purpose: In clinical research, it is important to measure choroidal thickness when eyes are affected by various diseases. The main purpose is to automatically segment choroid for enhanced depth imaging optical coherence tomography (EDI-OCT) images with five B-scans averaging. Methods: The authors present an automated choroid segmentation method based on choroidal vasculature characteristics for EDI-OCT images with five B-scans averaging. By considering the large vascular of the Haller’s layer neighbor with the choroid-sclera junction (CSJ), the authors measured the intensity ascending distance and a maximum intensity image in the axial direction from a smoothed and normalized EDI-OCT image. Then, based on generated choroidal vessel image, the authors constructed the CSJ cost and constrain the CSJ search neighborhood. Finally, graph search with smooth constraints was utilized to obtain the CSJ boundary. Results: Experimental results with 49 images from 10 eyes in 8 normal persons and 270 images from 57 eyes in 44 patients with several stages of diabetic retinopathy and age-related macular degeneration demonstrate that the proposed method can accurately segment the choroid of EDI-OCT images with five B-scans averaging. The mean choroid thickness difference and overlap ratio between the authors’ proposed method and manual segmentation drawn by experts were −11.43 μm and 86.29%, respectively. Conclusions: Good performance was achieved for normal and pathologic eyes, which proves that the authors’ method is effective for the automated choroid segmentation of the EDI-OCT images with five B-scans averaging.

  11. Choroidal vasculature characteristics based choroid segmentation for enhanced depth imaging optical coherence tomography images

    International Nuclear Information System (INIS)

    Chen, Qiang; Niu, Sijie; Yuan, Songtao; Fan, Wen; Liu, Qinghuai

    2016-01-01

    Purpose: In clinical research, it is important to measure choroidal thickness when eyes are affected by various diseases. The main purpose is to automatically segment choroid for enhanced depth imaging optical coherence tomography (EDI-OCT) images with five B-scans averaging. Methods: The authors present an automated choroid segmentation method based on choroidal vasculature characteristics for EDI-OCT images with five B-scans averaging. By considering the large vascular of the Haller’s layer neighbor with the choroid-sclera junction (CSJ), the authors measured the intensity ascending distance and a maximum intensity image in the axial direction from a smoothed and normalized EDI-OCT image. Then, based on generated choroidal vessel image, the authors constructed the CSJ cost and constrain the CSJ search neighborhood. Finally, graph search with smooth constraints was utilized to obtain the CSJ boundary. Results: Experimental results with 49 images from 10 eyes in 8 normal persons and 270 images from 57 eyes in 44 patients with several stages of diabetic retinopathy and age-related macular degeneration demonstrate that the proposed method can accurately segment the choroid of EDI-OCT images with five B-scans averaging. The mean choroid thickness difference and overlap ratio between the authors’ proposed method and manual segmentation drawn by experts were −11.43 μm and 86.29%, respectively. Conclusions: Good performance was achieved for normal and pathologic eyes, which proves that the authors’ method is effective for the automated choroid segmentation of the EDI-OCT images with five B-scans averaging.

  12. X-ray backscatter radiography. Intrusive instead of penetrating, X-ray shadow phenomenon

    International Nuclear Information System (INIS)

    Wrobel, Norma; Kolkoori, Sanjeevareddy; Osterloh, Kurt; European Federation for Non-Destructive Testing

    2013-01-01

    Generally, the primary practical advantage of X-ray backscattering radiography is that there is no need to place a detector on the side of the specimen opposite to the source. Such a situation usually is encountered whenever the specimen is not only standing right in front of a wall or even inside a wall but also if the specimen is such big that radiography is not possible because of the layer thickness to be penetrated. The method used here differs fundamentally from the conventional method to interrogate the object with a scanning beam ('pencil beam') and to collect the whole backscattered radiation from the area. The object is fully illuminated by a (uncollimated) cone beam. Here, the image is recorded with a camera of absorbent material (tungsten, lead), which contains a matrix detector as the image receiver. The optical effect is generated by a special twisted slit collimator which operates according to an extended pinhole camera. The independent positioning of source and camera allows a variable irradiation geometry which causes different images as a result. As a consequence, a complex object in front of a backscattering wall appears completely different than standing alone. So X-ray backscatter images have to be interpreted according to their illumination with X-rays and their surroundings. (orig.)

  13. The Backscattering Phase Function for a Sphere with a Two-Scale Relief of Rough Surface

    Science.gov (United States)

    Klass, E. V.

    2017-12-01

    The backscattering of light from spherical surfaces characterized by one and two-scale roughness reliefs has been investigated. The analysis is performed using the three-dimensional Monte-Carlo program POKS-RG (geometrical-optics approximation), which makes it possible to take into account the roughness of objects under study by introducing local geometries of different levels. The geometric module of the program is aimed at describing objects by equations of second-order surfaces. One-scale roughness is set as an ensemble of geometric figures (convex or concave halves of ellipsoids or cones). The two-scale roughness is modeled by convex halves of ellipsoids, with surface containing ellipsoidal pores. It is shown that a spherical surface with one-scale convex inhomogeneities has a flatter backscattering phase function than a surface with concave inhomogeneities (pores). For a sphere with two-scale roughness, the dependence of the backscattering intensity is found to be determined mostly by the lower-level inhomogeneities. The influence of roughness on the dependence of the backscattering from different spatial regions of spherical surface is analyzed.

  14. Backscatter in a cloudy atmosphere as a lightning-threat indicator

    International Nuclear Information System (INIS)

    Kocifaj, Miroslav; Videen, Gorden; Klačka, Jozef

    2015-01-01

    We present a remote-sensing method for identifying electrically charged droplets in clouds. Our methodology utilizes the electromagnetic (EM) radiation backscattered by the cloud at multiple wavelengths. In general, the backscatter from collections of charged and neutral particles differs in Rayleigh regime. While a uniformly charged sphere can resonate with an incident EM radiation depending on electrostatic potential at the particle surface, the scatter by a neutral particle is governed by the Lorenz–Mie theory, thus resulting in different surface excitations. The effects of electric charges and other microphysical parameters on the electromagnetic interactions with particles are not easily separable. Because the spectral profile of the dielectric function for liquid water (or alternatively icy grains) is known, retrieval of net charges are possible based on the optical behavior of the backscattered EM signals. Such information can be used to determine charge build-up in the atmosphere, which is a condition for lightning. A basic configuration of a measuring system for lightning threats is discussed and described schematically. - Highlights: • Electrically charged and neutral particles scatter in a different way. • Net surface charge on spherical particles is a modulator of backscatter signal. • Radar echoes are source of information on electrically charged droplets. • Remote-sensing method can be used to identify increased chance of lightning

  15. Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media.

    Science.gov (United States)

    Cui, Liping; Knox, Wayne H

    2010-01-01

    Two-color nonlinear absorption imaging has been previously demonstrated with endogenous contrast of hemoglobin and melanin in turbid media using transmission-mode detection and a dual-laser technology approach. For clinical applications, it would be generally preferable to use backscattering mode detection and a simpler single-laser technology. We demonstrate that imaging in backscattering mode in turbid media using nonlinear absorption can be obtained with as little as 1-mW average power per beam with a single laser source. Images have been achieved with a detector receiving backscattered light at a 45-deg angle relative to the incoming beams' direction. We obtain images of capillary tube phantoms with resolution as high as 20 microm and penetration depth up to 0.9 mm for a 300-microm tube at SNR approximately 1 in calibrated scattering solutions. Simulation results of the backscattering and detection process using nonimaging optics are demonstrated. A Monte Carlo-based method shows that the nonlinear signal drops exponentially as the depth increases, which agrees well with our experimental results. Simulation also shows that with our current detection method, only 2% of the signal is typically collected with a 5-mm-radius detector.

  16. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Energy Technology Data Exchange (ETDEWEB)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp; Tanaka, Moe [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531 (Japan)

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  17. Random fiber lasers based on artificially controlled backscattering fibers

    Science.gov (United States)

    Chen, Daru; Wang, Xiaoliang; She, Lijuan; Qiang, Zexuan; Yu, Zhangwei

    2017-10-01

    The random fiber laser (RFL) which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previous RFLs are based on distributed feedback of Rayleigh scattering amplified through stimulated Raman/Brillouin scattering effect in single mode fibers, which required long-distance (tens of kilometers) single mode fibers and high threshold up to watt-level due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open cavity RFL based on a segment of a artificially controlled backscattering SMF(ACB-SMF) with a length of 210m, 310m or 390m. A fiber Bragg grating with the central wavelength of 1530nm and a segment of ACB-SMF forms the half-open cavity. The proposed RFL achieves the threshold of 25mW, 30mW and 30mW, respectively. Random lasing at the wavelength of 1530nm and the extinction ratio of 50dB is achieved when a segment of 5m EDF is pumped by a 980nm LD in the RFL. Another half-open cavity RFL based on a segment of a artificially controlled backscattering EDF(ACBS-EDF) is also demonstrated without an ACB-SMF. The 3m ACB-EDF is fabricated by using the femtosecond laser with pulse energy of 0.34mJ which introduces about 50 reflectors in the EDF. Random lasing at the wavelength of 1530nm is achieved with the output power of 7.5mW and the efficiency of 1.88%. Two novel RFLs with much short cavities have been achieved with low threshold and high efficiency.

  18. An Ultrasonic Backscatter Instrument for Cancellous Bone Evaluation in Neonates

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    2015-09-01

    Full Text Available Ultrasonic backscatter technique has shown promise as a noninvasive cancellous bone assessment tool. A novel ultrasonic backscatter bone diagnostic (UBBD instrument and an in vivo application for neonatal bone evaluation are introduced in this study. The UBBD provides several advantages, including noninvasiveness, non-ionizing radiation, portability, and simplicity. In this study, the backscatter signal could be measured within 5 s using the UBBD. Ultrasonic backscatter measurements were performed on 467 neonates (268 males and 199 females at the left calcaneus. The backscatter signal was measured at a central frequency of 3.5 MHz. The delay (T1 and duration (T2 of the backscatter signal of interest (SOI were varied, and the apparent integrated backscatter (AIB, frequency slope of apparent backscatter (FSAB, zero frequency intercept of apparent backscatter (FIAB, and spectral centroid shift (SCS were calculated. The results showed that the SOI selection had a direct influence on cancellous bone evaluation. The AIB and FIAB were positively correlated with the gestational age (|R| up to 0.45, P10 µs. Moderate positive correlations (|R| up to 0.45, P10 µs. The T2 mainly introduced fluctuations in the observed correlation coefficients. The moderate correlations observed with UBBD demonstrate the feasibility of using the backscatter signal to evaluate neonatal bone status. This study also proposes an explicit standard for in vivo SOI selection and neonatal cancellous bone assessment.

  19. REACHING ULTRA HIGH PEAK CHARACTERISTICS IN RELATIVISTIC THOMSON BACKSCATTERING

    International Nuclear Information System (INIS)

    POGORELSKY, I.V.; BEN ZVI, I.; HIROSE, T.; KASHIWAGI, S.; YAKIMENKO, V.; KUSCHE, K.; SIDDONS, P.; ET AL

    2001-01-01

    The concept of x-ray laser synchrotron sources (LSS) based on Thomson scattering between laser photons and relativistic electrons leads to future femtosecond light-source facilities fit to multidisciplinary research in ultra-fast structural dynamics. Enticed by these prospects, the Brookhaven Accelerator Test Facility (ATF) embarked into development of the LSS based on a combination of a photocathode RF linac and a picosecond CO 2 laser. We observed the record 1.7 x 10 8 x-ray photons/pulse yield generated via relativistic Thomson scattering between the 14 GW CO 2 laser and 60 MeV electron beam

  20. Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph

    Science.gov (United States)

    West, E. A.; Porter, J. G.; Davis, J. M.; Gary, G. A.; Adams, M.; Smith, S.; Hraba, J. F.

    2001-01-01

    This paper will describe the scientific objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550 Angstroms) and MgII (2800 Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirror and polarimeter.

  1. Anodisation of sputter deposited aluminium–titanium coatings: Effect of microstructure on optical characteristics

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Junker-Holst, Andreas; Vestergaard Nielsen, Daniel

    2014-01-01

    Magnetron sputtered coatings of aluminium containing up to 18 wt.% titanium were deposited on aluminium substrates to study the effect of microstructure on the optical appearance of the anodised layer. The microstructure and morphology were studied using transmission electron microscopy (TEM), X......-ray diffraction (XRD), and glow discharge optical emission spectroscopy (GDOES), while the optical appearance was investigated using photospectrometry. The microstructure of the coatings was varied by heat treatment, resulting in the precipitation of Al3Ti phases. The reflectance of the anodised surfaces...

  2. Corneal backscatter in insulin-dependent and non-insulin-dependent diabetes mellitus patients: a pilot study

    Directory of Open Access Journals (Sweden)

    Ana M Calvo-Maroto

    Full Text Available ABSTRACT Purpose: To compare central corneal backscatter obtained from Scheimpflug images between patients with insulin-dependent and non-insulin-dependent diabetes mellitus (IDDM and NIDDM, respectively and healthy controls. Methods: Seven patients with IDDM (7 eyes, eleven patients with NIDDM (11 eyes, and sixteen healthy subjects (16 eyes were included in this pilot study. Scheimpflug imaging system (Pentacam, Oculus Inc., Germany was used to obtain optical sections of the cornea. Seven meridians were analyzed for each eye, oriented from 70° to 110°. Optical density values for the central 3-mm and 5-mm zones of the cornea were obtained by image analysis using external software. Results: Corneal backscatter was significantly higher in the diabetic patients than in the controls for the central 3-mm (p=0.016 and 5-mm (p=0.014 zones. No significant differences in corneal backscatter were found between the IDDM and NIDDM groups for either zone (both p>0.05. In the NIDDM group, significant correlations were observed for both central zones between corneal backscatter and age (3 mm: r=0.604, p=0.025; 5 mm: r=0.614, p=0.022 and central corneal thickness (3 mm: r=0.641, p=0.017; 5 mm: r=0.671, p=0.012; this was not found in the IDDM group (p>0.05. The presence of diabetes showed a significant effect on central corneal backscatter (Kruskal-Wallis test, p<0.001. Conclusions: Diabetic patients showed higher values of corneal light backscatter than healthy subjects. Corneal optical density analysis may be a useful tool for monitoring and assessing the ocular changes caused by diabetes.

  3. Destructive Interference in Coherent Backscattering of Light by an Ensemble of Cold Atoms

    International Nuclear Information System (INIS)

    Kupriyanov, D.V.; Larionov, N.V.; Sokolov, I.M.; Havey, M.D.

    2005-01-01

    The coherent backscattering of light by an ensemble of cold atoms located in a magneto-optical trap is investigated theoretically. The dependence of the gain coefficient on the probe frequency is analyzed in a wide spectral range covering the entire hyperfine structure of the excited state. The calculation is performed for 85 Rb atoms. It is found that destructive interference can be observed at certain frequencies, which results in gain coefficients smaller than unity. The angular distribution of scattered light is investigated for corresponding frequencies and the dependence of the shape of the cone of destructive interference on the size of the atomic cloud and its optical thickness is analyzed

  4. Electromagnetic and optical characteristics of Nb5+-doped double-crossover and salmon DNA thin films

    Science.gov (United States)

    Babu Mitta, Sekhar; Reddy Dugasani, Sreekantha; Jung, Soon-Gil; Vellampatti, Srivithya; Park, Tuson; Park, Sung Ha

    2017-10-01

    We report the fabrication and physical characteristics of niobium ion (Nb5+)-doped double-crossover DNA (DX-DNA) and salmon DNA (SDNA) thin films. Different concentrations of Nb5+ ([Nb5+]) are coordinated into the DNA molecules, and the thin films are fabricated via substrate-assisted growth (DX-DNA) and drop-casting (SDNA) on oxygen plasma treated substrates. We conducted atomic force microscopy to estimate the optimum concentration of Nb5+ ([Nb5+]O = 0.08 mM) in Nb5+-doped DX-DNA thin films, up to which the DX-DNA lattices maintain their structures without deformation. X-ray photoelectron spectroscopy (XPS) was performed to probe the chemical nature of the intercalated Nb5+ in the SDNA thin films. The change in peak intensities and the shift in binding energy were witnessed in XPS spectra to explicate the binding and charge transfer mechanisms between Nb5+ and SDNA molecules. UV-visible, Raman, and photoluminescence (PL) spectra were measured to determine the optical properties and thus investigate the binding modes, Nb5+ coordination sites in Nb5+-doped SDNA thin films, and energy transfer mechanisms, respectively. As [Nb5+] increases, the absorbance peak intensities monotonically increase until ˜[Nb5+]O and then decrease. However, from the Raman measurements, the peak intensities gradually decrease with an increase in [Nb5+] to reveal the binding mechanism and binding sites of metal ions in the SDNA molecules. From the PL, we observe the emission intensities to reduce them at up to ˜[Nb5+]O and then increase after that, expecting the energy transfer between the Nb5+ and SDNA molecules. The current-voltage measurement shows a significant increase in the current observed as [Nb5+] increases in the SDNA thin films when compared to that of pristine SDNA thin films. Finally, we investigate the temperature dependent magnetization in which the Nb5+-doped SDNA thin films reveal weak ferromagnetism due to the existence of tiny magnetic dipoles in the Nb5+-doped SDNA

  5. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films

    Science.gov (United States)

    Zhao, Yong-chuang; Nie, Zhong-quan; Zhai, Ai-ping; Tian, Yan-ting; Liu, Chao; Shi, Chang-kun; Jia, Bao-hua

    2018-01-01

    In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption (NSA) of graphene oxide (GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser (wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution (˜λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.

  6. Backscattering Moessbauer spectroscopy of Martian dust

    International Nuclear Information System (INIS)

    Bertelsen, P.; Madsen, M. B.; Binau, C. S.; Goetz, W.; Gunnlaugsson, H. P.; Hviid, S. F.; Kinch, K. M.; Klingelhoefer, G.; Leer, K.; Madsen, D. E.; Merrison, J.; Olsen, M.; Squyres, S. W.

    2005-01-01

    We report on the determination of the mineralogy of the atmospherically suspended Martian dust particles using backscattering 57 Fe Moessbauer spectroscopy on dust accumulated onto the magnets onboard the Mars Exploration Rovers. The spectra can be interpreted in terms of minerals of igneous origin, and shows only limited, if any, amounts of secondary minerals that may have formed in the presence of liquid water. These findings suggest that the dust has formed in a dry environment over long time in the history of the planet.

  7. Thermoluminescence characteristics of Ge-doped optical fibers with different dimensions for radiation dosimetry

    International Nuclear Information System (INIS)

    Begum, Mahfuza; Rahman, A.K.M. Mizanur; Abdul-Rashid, H.A.; Yusoff, Z.; Begum, Mahbuba; Mat-Sharif, K.A.; Amin, Y.M.; Bradley, D.A.

    2015-01-01

    Important thermoluminescence (TL) properties of five (5) different core sizes Ge-doped optical fibers have been studied to develop new TL material with better response. These are drawn from same preform applying different speed and tension during drawing phase to produce Ge-doped optical fibers with five (5) different core sizes. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge-doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (SEM) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in Secondary Standard Dosimetry Lab (SSDL) was used for irradiation covering dose range from 1 Gy to 10 Gy. The essential dosimetric parameters that have been studied are TL linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5 cm length are annealed at temperature of 400 °C for 1 h period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1 h at 400 °C and subsequently 2 h at 100 °C to yield the highest sensitivity. TL responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100 μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20 μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Z eff ) is found in the range (13.25–13.69) which is higher than soft tissue (7.5) however within the range of human-bone (11.6–13.8). All the fibers can also be re-used several times as a detector after annealing. TL properties of the Ge-doped optical fibers indicate promising applications in

  8. Clinical characteristics of optic neuritis in Hong Kong population: 10-year review.

    Science.gov (United States)

    Choy, Bonnie Nga Kwan; Ng, Alex Lap Ki; Lai, Jimmy Shiu Ming

    2018-04-01

    To review the clinical course of adult patients with acute optic neuritis over 10 years in Hong Kong, and the results were compared with other studies among Asian and Caucasian patients. This study retrospectively analysed the clinical features of 38 adult patients (51 eyes) presented with optic neuritis in a Hong Kong hospital over 10 years (2001-2010). Optic neuritis had a female predominance (68%). The mean age of presentation was 40 years old. Disc swelling (39%) was more common compared to the optic neuritis treatment trial (ONTT). The recovery time ranged from no recovery to 5 years, with a mean of 6.0 months. However, vision continued to deteriorate despite initial improvement in 45% of patients. Only 11.8% of the eyes attained final visual acuity (VA) of 1.0 or better, while 31.4% had VA 0.1 or worse. Multiple sclerosis or neuromyelitis optica only occurred in 10.4% of patients. Three of our patients who did not receive any treatment showed faster recovery than the average. Optic neuritis in Hong Kong is mostly a clinically isolated syndrome. Our patients presented at a later age and showed a worse visual outcome. Corticosteroid according to ONTT protocol remained our mainstay of treatment although it did not benefit our patients as much as ONTT study. More work on the long-term prognosis and treatment strategies is worthwhile among Chinese optic neuritis patients.

  9. Influence of multiple reflection and optical interference on the magneto-optical properties of Co-Pt alloy films investigated by using the characteristic matrix method

    International Nuclear Information System (INIS)

    Zou, Z. Q.; Lee, Y. P.; Kim, K. W.

    2000-01-01

    The magneto-optical Kerr effect (MOKE) of a multilayered system was described by using the characteristic matrix method based on the electromagnetic wave theory. In addition to the multiple reflection and the optical interference, a contribution from the plasma resonance absorption of a metallic layer can be included in the formulation. As an example, we carried out a simulation of the MOKE for Co 0.25 Pt 0.75 alloy films with and without a Pt buffer layer. It was found that the Kerr rotation and the read-out figure of merit of a film directly deposited on a glass substrate were enhanced at a thickness below 40 nm owing to the multiple reflection and the optical interference. This enhancement was more remakable at long wavelengths when light was incident on the substrate side. However, the introduction of a Pt buffer layer was not beneficial in improving the Kerr rotation and the figure of merit, although it promoted the perpendicular magnetic anisotropy of the film, as reported. The simulated results for an alloy thickness beyond the penetration depth of light agreed well with the experimental data for a prepared 'thick' alloy film

  10. Understanding the radar backscattering from flooded and nonflooded Amazonian forests: results from canopy backscatter modeling

    International Nuclear Information System (INIS)

    Wang, Y.; Hess, L.L.; Filoso, S.; Melack, J.M.

    1995-01-01

    To understand the potential of using multiwavelength imaging radars to detect flooding in Amazonian floodplain forests, we simulated the radar backscatter from a floodplain forest with a flooded or nonflooded ground condition at C-, L-, and P-bands. Field measurements of forest structure in the Anavilhanas archipelago of the Negro River, Brazil, were used as inputs to the model. Given the same wavelength or incidence angle, the ratio of backscatter from the flooded forest to that from the nonflooded forest was higher at HH polarization than at VV polarization. Given the same wavelength or polarization, the ratio was larger at small incidence angles than at large incidence angles. Given the same polarization or incidence angle, the ratio was larger at a long wavelength than at a short wavelength. As the surface soil moisture underneath the nonflooded forest increased from 10% to 50% of volumetric moisture, the flooded/nonflooded backscatter ratio decreased; the decreases were small at C- and L-band but large at P-band. When the leaf size was comparable to or larger than the wavelength of C-band, the leaf area index (LAI) had a large effect on the simulated C-band (not L-band or P-band) backscatter from the flooded and nonflooded forests. (author)

  11. Uniqueness for the inverse backscattering problem for angularly controlled potentials

    International Nuclear Information System (INIS)

    Rakesh; Uhlmann, Gunther

    2014-01-01

    We consider the problem of recovering a smooth, compactly supported potential on R 3 from its backscattering data. We show that if two such potentials have the same backscattering data and the difference of the two potentials has controlled angular derivatives, then the two potentials are identical. In particular, if two potentials differ by a finite linear combination of spherical harmonics with radial coefficients and have the same backscattering data then the two potentials are identical. (paper)

  12. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Themstrup, Lotte; Banzhaf, Christina

    2014-01-01

    Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the o......Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described...

  13. An analytical model for backscattered luminance in fog: comparisons with Monte Carlo computations and experimental results

    International Nuclear Information System (INIS)

    Taillade, Frédéric; Dumont, Eric; Belin, Etienne

    2008-01-01

    We propose an analytical model for backscattered luminance in fog and derive an expression for the visibility signal-to-noise ratio as a function of meteorological visibility distance. The model uses single scattering processes. It is based on the Mie theory and the geometry of the optical device (emitter and receiver). In particular, we present an overlap function and take the phase function of fog into account. The results of the backscattered luminance obtained with our analytical model are compared to simulations made using the Monte Carlo method based on multiple scattering processes. An excellent agreement is found in that the discrepancy between the results is smaller than the Monte Carlo standard uncertainties. If we take no account of the geometry of the optical device, the results of the model-estimated backscattered luminance differ from the simulations by a factor 20. We also conclude that the signal-to-noise ratio computed with the Monte Carlo method and our analytical model is in good agreement with experimental results since the mean difference between the calculations and experimental measurements is smaller than the experimental uncertainty

  14. Optical spectroscopic characteristics of lactate and mitochondrion as new biomarkers in cancer diagnosis: understanding Warburg effect

    Science.gov (United States)

    Liu, C.-H.; Ni, X. H.; Pu, Yang; Yang, Y. L.; Zhou, F.; Zuzolo, R.; Wang, W. B.; Masilamani, V.; Rizwan, A.; Alfano, R. R.

    2012-01-01

    Cancer cells display high rates of glycolysis even under normoxia and mostly under hypoxia. Warburg proposed this effect of altered metabolism in cells more than 80 years ago. It is considered as a hallmark of cancer. Optical spectroscopy can be used to explore this effect. Pathophysiological studies indicate that mitochondria of cancer cells are enlarged and increased in number. Warburg observed that cancer cells tend to convert most glucose to lactate regardless of the presence of oxygen. Previous observations show increased lactate in breast cancer lines. The focus of this study is to investigate the relative content changes of lactate and mitochondria in human cancerous and normal breast tissue samples using optical spectroscopic techniques. The optical spectra were obtained from 30 cancerous and 25 normal breast tissue samples and five model components (Tryptophan, fat, collagen, lactate and mitochondrion) using fluorescence, Stokes shift and Raman spectroscopy. The basic biochemical component analysis model (BBCA) and a set of algorithm were used to analyze the spectra. Our analyses of fluorescence spectra showed a 14 percent increase in lactate content and 2.5 times increase in mitochondria number in cancerous breast tissue as compared with normal tissue. Our findings indicate that optical spectroscopic techniques may be used to understand Warburg effect. Lactate and mitochondrion content changes in tumors examined using optical spectroscopy may be used as a prognostic molecular marker in clinic applications.

  15. Evanescent Field Enhancement in Liquid Crystal Optical Fibers: A Field Characteristics Based Analysis

    Directory of Open Access Journals (Sweden)

    P. K. Choudhury

    2013-01-01

    Full Text Available The paper presents the analysis of the electromagnetic wave propagation through liquid crystal optical fibers (LCOFs of two different types—conventional guides loaded with liquid crystals (addressed as LCOFs and those with additional twists due to conducting helical windings (addressed as HCLCOFs. More precisely, the three-layer optical waveguide structures are considered along with its outermost region being loaded with radially anisotropic liquid crystal material and the inner regions being made of usual silica, as used in conventional optical fibers. In addition to that, LCOF with twists introduced in the form of conducting helical windings at the interface of the silica core and the liquid crystal clad is also taken into account. Emphasis has been put on the power confinements by the lower-order TE modes sustained in the different sections of the LCOF structure. The results demonstrate useful applications of these guides in integrated optics as the power sustained in the liquid crystal section by the excited TE modes remains very high. In the case of twisted clad liquid crystal guides, descriptions are limited to the nature of dispersion relation only under the TE mode excitation, and corresponding to the cases of helix orientations being parallel and perpendicular to the optical axis.

  16. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    Science.gov (United States)

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  17. Study on characteristics of the aperture-averaging factor of atmospheric scintillation in terrestrial optical wireless communication

    Science.gov (United States)

    Shen, Hong; Liu, Wen-xing; Zhou, Xue-yun; Zhou, Li-ling; Yu, Long-Kun

    2018-02-01

    In order to thoroughly understand the characteristics of the aperture-averaging effect of atmospheric scintillation in terrestrial optical wireless communication and provide references for engineering design and performance evaluation of the optics system employed in the atmosphere, we have theoretically deduced the generally analytic expression of the aperture-averaging factor of atmospheric scintillation, and numerically investigated characteristics of the apertureaveraging factor under different propagation conditions. The limitations of the current commonly used approximate calculation formula of aperture-averaging factor have been discussed, and the results showed that the current calculation formula is not applicable for the small receiving aperture under non-uniform turbulence link. Numerical calculation has showed that aperture-averaging factor of atmospheric scintillation presented an exponential decline model for the small receiving aperture under non-uniform turbulent link, and the general expression of the model was given. This model has certain guiding significance for evaluating the aperture-averaging effect in the terrestrial optical wireless communication.

  18. An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Sreedhar, Sreeja, E-mail: sreejasreedhar83@gmail.com; Muneera, C. I., E-mail: drcimuneera@hotmail.com [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala (India); Illyaskutty, Navas [Institute for Sensorics and Information Systems (ISIS), Karlsruhe University of Applied Sciences, Moltkestr. 30, D-76133 Karlsruhe (Germany); Sreedhanya, S. [School of Chemical Sciences, M. G. University, Kottayam, Kerala 686560 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, Bangalore 560080 (India)

    2016-05-21

    Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of the polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.

  19. Optical, electrical, structural and microstructural characteristics of rf sputtered ITO films developed for art protection coatings

    International Nuclear Information System (INIS)

    Krasilnikova Sytchkova, A.; Grilli, M.L.; Piegari, A.; Boycheva, S.

    2007-01-01

    Transparent and conductive tin-doped indium oxide (ITO) films have been prepared by rf sputtering in an Ar and Ar+O 2 gas mixture, both with and without additional substrate heating. The influence of both deposition conditions and post-annealing treatment on optical, electrical, structural and microstructural properties of the ITO films has been investigated. The optical constants have been calculated in the range 320-2500 nm using a combination of several theoretical models. A schematic diagram for the film properties change versus composition has been proposed in terms of a generalized parameter characterising the energy efficiency of the film formation. The deposition conditions and the optical and electrical properties of the films have been optimized with respect to the requirements for their application in art protection coatings. (orig.)

  20. Measurement of gas phase characteristics using new monofiber optical probes and real time signal processing

    International Nuclear Information System (INIS)

    Cartellier, A.

    1998-01-01

    Single optical or impedance phase detection probes are able to measure gas velocities provided that their sensitive length L is accurately known. In this paper, it is shown that L can be controlled during the manufacture of optical probes. Beside, for a probe geometry in the form of a cone + a cylinder + a cone, the corresponding rise time / velocity correlation becomes weakly sensitive to uncontrollable parameter such as the angle of impact on the interface. A real time signal processing performing phase detection as well as velocity measurements is described. Since its sensitivity to the operator inputs is less than the reproducibility of measurements, it is a fairly objective tool. Qualifications achieved in air/water flows with various optical probes demonstrate that the void fraction is detected with a relative error less than 10 %. For bubbly flows, the gas flux is accurate within ±10%, but this uncertainty increases when large bubbles are present in the flow. (author)

  1. Characteristics of single-atom trapping in a magneto-optical trap with a high magnetic-field gradient

    International Nuclear Information System (INIS)

    Yoon, Seokchan; Choi, Youngwoon; Park, Sangbum; Ji, Wangxi; Lee, Jai-Hyung; An, Kyungwon

    2007-01-01

    A quantitative study on characteristics of a magneto-optical trap with a single or a few atoms is presented. A very small number of 85 Rb atoms were trapped in a micron-size magneto-optical trap with a high magnetic-field gradient. In order to find the optimum condition for a single-atom trap, we have investigated how the number of atoms and the size of atomic cloud change as various experimental parameters, such as a magnetic-field gradient and the trapping laser intensity and detuning. The averaged number of atoms was measured very accurately with a calibration procedure based on the single-atom saturation curve of resonance fluorescence. In addition, the number of atoms in a trap could be controlled by suppressing stochastic loading events by means of a real-time active feedback on the magnetic-field gradient

  2. Modeling focusing characteristics of low Fnumber diffractive optical elements with continuous relief fabricated by laser direct writing.

    Science.gov (United States)

    Shan, Mingguang; Tan, Jiubin

    2007-12-10

    A theoretical model is established using Rayleigh-Sommerfeld diffraction theory to describe the diffraction focusing characteristics of low F-number diffractive optical elements with continuous relief fabricated by laser direct writing, and continuous-relief diffractive optical elements with a design wavelength of 441.6nm and a F-number of F/4 are fabricated and measured to verify the validity of the diffraction focusing model. The measurements made indicate that the spot size is 1.75mum and the diffraction efficiency is 70.7% at the design wavelength, which coincide well with the theoretical results: a spot size of 1.66mum and a diffraction efficiency of 71.2%.

  3. The temperature and tension characteristics of the FBGs embedded in the polythene sheath of an optical cable

    Science.gov (United States)

    Chen, Guanghui; Zhao, Ming; Sha, Jianbo; Zhang, Jun; Wu, Bingyan; Lin, Chen; Zhang, Mingliang; Gao, Kan

    2015-10-01

    The five of FBG were embedded in the PE sheath of a tether optical cable, which has about 18mm diameter and 7000mm length. The temperature and tension characteristics of the FBGs embedded in the polythene (PE) sheath had been demonstrated quantitatively. The Bragg wavelength of the embedded FBG shift linearly with the change of pulling force loaded on the tether optical cable and its tension sensitivity is about 3.75 pm/kg. The results of temperature experiment suggest the embedded FBG have been sensitized by PE material, so that its temperature sensitivity increase from 9.37pm/°C to about 12.51pm/°C.

  4. Research progress of cholesteric liquid crystals with broadband reflection characteristics in application of intelligent optical modulation materials

    International Nuclear Information System (INIS)

    Zhang Lan-Ying; Gao Yan-Zi; Song Ping; Yuan Xiao; He Bao-Feng; Yang Huai; Wu Xiao-Juan; Chen Xing-Wu; Hu Wang; Guo Ren-Wei; Ding Hang-Jun; Xiao Jiu-Mei

    2016-01-01

    Cholesteric liquid crystals (CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship. Nowadays, by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution, extensive work has already been performed to obtain CLC films with a broad reflection band. Based on authors’ many years’ research experience, this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics, methods to obtain broadband reflection of CLCs, as well as the application in the field of intelligent optical modulation materials. Combined with the research status and the advantages in the field, the important basic and applied scientific problems in the research direction are also introduced. (topical review)

  5. Optical characteristics of a RF DBD plasma jet in various A r / O 2 ...

    Indian Academy of Sciences (India)

    Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H β . It is mostly seen that, the radiation intensity of Ar ...

  6. Spectral characteristics of DFB lasers in presence of a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Camel, J.; Maciejko, R.

    2002-01-01

    The problem of the linewidth degradation in systems using distributed-feedback lasers together with strained-layer multi-quantum-well semiconductor optical amplifiers (SOAs) is examined. A numerical model combining finite element calculations in the transverse x - y plane and a longitudinal model...

  7. Image combination enhancement method for X-ray compton back-scattering security inspection body scanner

    International Nuclear Information System (INIS)

    Wang Huaiying; Zhang Yujin; Yang Lirui; Li Dong

    2011-01-01

    As for X-ray Compton Back-Scattering (CBS) body scanner, image clearness is very important for the performance of detecting the contraband hidden on the body. A new image combination enhancement method is provided based on characteristics of CBS body images and points of human vision. After processed by this method, the CBS image will be obviously improved with clear levels, distinct outline and uniform background. (authors)

  8. A study of the radar backscattering from the breaking of wind waves on the sea

    International Nuclear Information System (INIS)

    Ivanov, V.A.; Yurovskij, Yu.Yu.; Malinovskij, V.V.

    2011-01-01

    The results of a field study of the relationship between radar backscattering parameters and geometrical characteristics of the wind wave breaking are presented. The radar cross-section of a whitecap is found to be proportional to the breaking crest length. It is shown that the accounting for a change of the non-Bragg scattering in the presence of an oil slick on the sea surface allows one to interpret experimental data correctly.

  9. Amplitude-phase characteristics of electromagnetic fields diffracted by a hole in a thin film with realistic optical properties

    Science.gov (United States)

    Dorofeyev, Illarion

    2009-03-01

    Characteristics of a quasi-spherical wave front of an electromagnetic field diffracted by a subwavelength hole in a thin film with real optical properties are studied. Related diffraction problem is solved in general by use of the scalar and vector Green's theorems and related Green's function of a boundary-value problem. Local phase deviations of a diffracted wave front from an ideal spherical front are calculated. Diffracted patterns are calculated for the coherent incident fields in case of holes array in a screen of perfect conductivity.

  10. High energy backscattering analysis using RUMP

    International Nuclear Information System (INIS)

    Doolittle, L.R.

    1990-01-01

    A backscattering analysis program such as RUMP fundamentally requires two reference sets of data in order to accomplish anything useful: stopping powers and scattering cross sections. Users of original versions of RUMP had to be satisfied with polynomial stopping powers geared for 1 to 3 MeV, and purely Rutherford scattering cross sections. As people increasingly turn to high beam energies to solve difficult materials analysis problems, RUMP has evolved greater flexibility for its reference data. It now allows data files to be loaded describing different stopping powers and arbitrary scattering cross sections. Auxiliary programs have been written to generate the reference data files, either from a theory or from measured reference data. Descriptions are given of both the underlying physics and the operational details of the software

  11. Simulation of ultrasound backscatter images from fish

    DEFF Research Database (Denmark)

    Pham, An Hoai

    2011-01-01

    The objective of this work is to investigate ultrasound (US) backscatter in the MHz range from fis to develop a realistic and reliable simulation model. The long term objective of the work is to develop the needed signal processing for fis species differentiation using US. In in-vitro experiments...... is 10 MHz and the Full Width at Half Maximum (FWHM) at the focus point is 0.54 mm in the lateral direction. The transducer model in Field II was calibrated using a wire phantom to validate the simulated point spread function. The inputs to the simulation were the CT image data of the fis converted......, a cod (Gadus morhua) was scanned with both a BK Medical ProFocus 2202 ultrasound scanner and a Toshiba Aquilion ONE computed tomography (CT) scanner. The US images of the fis were compared with US images created using the ultrasound simulation program Field II. The center frequency of the transducer...

  12. The Harwell back-scattering spectrometer

    International Nuclear Information System (INIS)

    Windsor, C.G.; Bunce, L.J.; Borcherds, P.H.; Cole, I.; Fitzmaurice, M.; Johnson, D.A.G.; Sinclair, R.N.

    1976-01-01

    Neutron diffraction spectra in which both high resolution (Δ Q/Q approximately equal to 0.003) and high intensity are maintained up to scattering vectors as high as 30A -1 (sin theta/lambda = 2.5) have been obtained with the back-scattering spectrometer (BSS) recently installed on the Harwell electron linac. The theory behind the spectrometer design is described, and it is shown how the above resolution requirement leads to its basic features of a 12m incident flight path, a 2m scattering flight path and a scattering angle (2theta) acceptance from 165 0 to 175 0 . Examples of the resolution, intensity and background are given. It is shown that the problem of frame overlap may be overcome by using an absorbing filter. (author)

  13. Computer simulation of backscattered alpha particles

    International Nuclear Information System (INIS)

    Sanchez, A. Martin; Bland, C.J.; Timon, A. Fernandez

    2000-01-01

    Alpha-particle spectrometry forms an important aspect of radionuclide metrology. Accurate measurements require corrections to be made for factors such as self-absorption within the source and backscattering from the backing material. The theory of the latter phenomenon has only received limited attention. Furthermore the experimental verification of these theoretical results requires adequate counting statistics for a variety of sources with different activities. These problems could be resolved by computer simulations of the various interactions which occur as alpha-particles move through different materials. The pioneering work of Ziegler and his coworkers over several years, has provided the sophisticated software (SRIM) which has enabled us to obtain the results presented here. These results are compared with theoretical and experimental values obtained previously

  14. Beta ray backscattering studies for thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M; Sharma, K K [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1979-01-01

    Back-scattering of beta rays from /sup 204/Tl (Esub(..beta..)max = 740 keV) and /sup 90/Sr-/sup 90/Y (Esub(..beta..)max =550 and 2250 keV) has been studied in an improved reflection geometry, using annular sources, from a number of elemental targets with Z values ranging from 13 to 82. Source to target and target to detector geometry factors are 0.0225 and 0.0282 respectively. Values of saturation back scattering thickness obtained in the two cases are 72 +- 10 and 190 +- 40 mg/cm/sup 2/ respectively. It is observed that the intensity of back scattered radiation varies linearly with thickness upto a value of 12 +- 2 mg/cm/sup 2/ in /sup 204/Tl and 17 +- 3 mg/cm/sup 2/ in /sup 90/Sr-/sup 90/Y.

  15. Relating P-band AIRSAR backscatter to forest stand parameters

    Science.gov (United States)

    Wang, Yong; Melack, John M.; Davis, Frank W.; Kasischke, Eric S.; Christensen, Norman L., Jr.

    1993-01-01

    As part of research on forest ecosystems, the Jet Propulsion Laboratory (JPL) and collaborating research teams have conducted multi-season airborne synthetic aperture radar (AIRSAR) experiments in three forest ecosystems including temperate pine forest (Duke, Forest, North Carolina), boreal forest (Bonanza Creek Experimental Forest, Alaska), and northern mixed hardwood-conifer forest (Michigan Biological Station, Michigan). The major research goals were to improve understanding of the relationships between radar backscatter and phenological variables (e.g. stand density, tree size, etc.), to improve radar backscatter models of tree canopy properties, and to develop a radar-based scheme for monitoring forest phenological changes. In September 1989, AIRSAR backscatter data were acquired over the Duke Forest. As the aboveground biomass of the loblolly pine forest stands at Duke Forest increased, the SAR backscatter at C-, L-, and P-bands increased and saturated at different biomass levels for the C-band, L-band, and P-band data. We only use the P-band backscatter data and ground measurements here to study the relationships between the backscatter and stand density, the backscatter and mean trunk dbh (diameter at breast height) of trees in the stands, and the backscatter and stand basal area.

  16. Strong Localization in Disordered Media: Analysis of the Backscattering Cone

    KAUST Repository

    Delgado, Edgar

    2012-06-01

    A very interesting effect in light propagation through a disordered system is Anderson localization of light, this phenomenon emerges as the result of multiple scattering of waves by electric inhomogeneities like spatial variations of index of refraction; as the amount of scattering is increased, light propagation is converted from quasi-diffusive to exponentially localized, with photons confined in a limited spatial region characterized by a fundamental quantity known as localization length. Light localization is strongly related to another interference phenomenon emerged from the multiple scattering effect: the coherent backscattering effect. In multiple scattering of waves, in fact, coherence is preserved in the backscattering direction and produces a reinforcement of the field flux originating an observable peak in the backscattered intensity, known as backscattering cone. The study of this peak provide quantitative information about the transport properties of light in the material. In this thesis we report a complete FDTD ab-initio study of light localization and coherent backscattering. In particular, we consider a supercontinuum pulse impinging on a sample composed of randomly positioned scatterers. We study coherent backscattering by averaging over several realizations of the sample properties. We study then the coherent backscattering cone properties as the relative permittivity of the sample is changed, relating the latter with the light localization inside the sample. We demonstrate important relationships between the width of the backscattering cone and the localization length, which shows a linear proportionality in the strong localization regime.

  17. Thermoluminescence characteristics of different dimensions of Ge-doped optical fibers in radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Begum, M.; Mizanur R, A. K. M.; Abdul R, H. A.; Yusoff, Z. [Multimedia University, Faculty of Engineering, 63100 Cyberjaya, Selangor Darul Ehsan (Malaysia); Begum, M. [Bangladesh Atomic Energy Commission, E-12/A, Agargaon, Sher-e-Blanga Nagar Dhaka-1207 (Bangladesh); Mat-Sharif, K. A. [Lingkaran Teknokrat Timur, Telekom Research and Development, 63000 Cyberjaya, Selangor Darul Ehsan (Malaysia); Amin, Y. M. [University of Malaya, Faculty of Science, Depatment of Physics, 50603 Kuala Lumpur (Malaysia); Bradley, D. A., E-mail: go2munmun@yahoo.com [University of Surrey, Department of Physics, Guildford GU2 7XH (United Kingdom)

    2014-08-15

    Important thermoluminescence (Tl) properties of five (5) different core sizes Ge doped optical fibers have been studied to develop new Tl material with better response. These are drawn from same preform applying different speed and tension during drawing phase. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (Sem) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in SSDL (Secondary Standard Dosimetry Lab) was used for irradiation covering dose range from 1 Gy to 10 Gy. The essential dosimetric parameters that have been studied are Tl linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5 cm length are annealed at temperature of 400 grades C for 1 hour period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1 hour at 400 grades C and subsequently 2 hours at 100 grades C to yield the highest sensitivity. Tl responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100 μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20 μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Z{sub eff}) is found in the range (13.25 to 13.69) that is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. Tl properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation dosimetry. (author)

  18. Thermoluminescence characteristics of different dimensions of Ge-doped optical fibers in radiation dosimetry

    International Nuclear Information System (INIS)

    Begum, M.; Mizanur R, A. K. M.; Abdul R, H. A.; Yusoff, Z.; Begum, M.; Mat-Sharif, K. A.; Amin, Y. M.; Bradley, D. A.

    2014-08-01

    Important thermoluminescence (Tl) properties of five (5) different core sizes Ge doped optical fibers have been studied to develop new Tl material with better response. These are drawn from same preform applying different speed and tension during drawing phase. The results of the investigations are also compared with most commonly used standard TLD-100 chips (LiF:Mg,Ti) and commercial multimode Ge doped optical fiber (Yangtze Optical Fiber, China). Scanning Electron Microscope (Sem) and EDX analysis of the fibers are also performed to map Ge distribution across the deposited region. Standard Gamma radiation source in SSDL (Secondary Standard Dosimetry Lab) was used for irradiation covering dose range from 1 Gy to 10 Gy. The essential dosimetric parameters that have been studied are Tl linearity, reproducibility and fading. Prior to irradiation all samples ∼0.5 cm length are annealed at temperature of 400 grades C for 1 hour period to standardize their sensitivities and background. Standard TLD-100 chips are also annealed for 1 hour at 400 grades C and subsequently 2 hours at 100 grades C to yield the highest sensitivity. Tl responses of these fibers show linearity over a wide gamma radiation dose that is an important property for radiation dosimetry. Among all fibers used in this study, 100 μm core diameter fiber provides highest response that is 2.6 times than that of smallest core (20 μm core) optical fiber. These fiber-samples demonstrate better response than commercial multi-mode optical fiber and also provide low degree of fading about 20% over a period of fifteen days for gamma radiation. Effective atomic number (Z eff ) is found in the range (13.25 to 13.69) that is higher than soft tissue (7.5) however within the range of human-bone (11.6-13.8). All the fibers can also be re-used several times as a detector after annealing. Tl properties of the Ge-doped optical fibers indicate promising applications in ionizing radiation dosimetry. (author)

  19. Effects of Snow/ Soil Interface on Microwave Backscatter of Terrestrial Snowpack at X- and Ku- Band

    Science.gov (United States)

    Kang, D. H.; Tan, S.; Zhu, J.; Gu, W.; Tsang, L.; Kim, E. J.

    2017-12-01

    Recent advances in monitoring and modeling capabilities to support remote sensing of terrestrial snow is encouraging to develop satellite mission concept in monitoring cold-region hydrological processes on global scales. However, it is still challenging to link back the active microwave backscattering signals to physical snowpack parameters. One of the limitations resides in the ignorance of the vegetation and soil conditions beneath the snowpack in the microwave scattering/ emission modeling and the snow water equivalent (SWE) retrieval algorithm. During the SnowEx 2017 winter campaign in Grand Mesa, CO, a particular effort has been made on comprehensive measurements of the underlying vegetation and soil characteristics from the snowpit measurements. Besides conducting standard snow core sampling, we have made additional protocols to record the background information beneath the snowpack. Recent works on active SWE retrieval algorithm using backscatters at X- (9.6 GHz) and Ku- (17.2 GHz) band suggest the significant signals from the background scattering characterization. The background scattering arising from the rough snow/ soil interface and the buried vegetation inside and beneath the snowpack modifies the sensitivity of the total backscatter to SWE. In this paper, we summarize the snow/ soil interface conditions as observed in the SnowEx campaign. We also develop standards for future in-situ snowpit measurements to include regular snow/ soil interface observations to accommodate the interpretation of microwave backscatter both for modeling and observation of microwave signatures. These observations first provide inputs to the microwave scattering models to predict the backscattering contribution from background, which is one of the key factors to be included to improve the SWE retrieval performance.

  20. Backscattering at a pulsed neutron source, the MUSICAL instrument

    International Nuclear Information System (INIS)

    Alefeld, B.

    1995-01-01

    In the first part the principles of the neutron backscattering method are described and some simple considerations about the energy resolution and the intensity are presented. A prototype of a backscattering instrument, the first Juelich instrument, is explained in some detail and a representative measurement is shown which was performed on the backscattering instrument IN10 at the ILL in Grenoble. In the second part a backscattering instrument designed for a pulsed neutron source is proposed. It is shown that a rather simple modification, which consists in the replacement of the Doppler drive of the conventional backscattering instrument by a multi silicon monochromator crystal (MUSICAL) leads to a very effective instrument, benefitting from the peak flux of the pulsed source. ((orig.))

  1. Ocean subsurface particulate backscatter estimation from CALIPSO spaceborne lidar measurements

    Science.gov (United States)

    Chen, Peng; Pan, Delu; Wang, Tianyu; Mao, Zhihua

    2017-10-01

    A method for ocean subsurface particulate backscatter estimation from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was demonstrated. The effects of the CALIOP receiver's transient response on the attenuated backscatter profile were first removed. The two-way transmittance of the overlying atmosphere was then estimated as the ratio of the measured ocean surface attenuated backscatter to the theoretical value computed from wind driven wave slope variance. Finally, particulate backscatter was estimated from the depolarization ratio as the ratio of the column-integrated cross-polarized and co-polarized channels. Statistical results show that the derived particulate backscatter by the method based on CALIOP data agree reasonably well with chlorophyll-a concentration using MODIS data. It indicates a potential use of space-borne lidar to estimate global primary productivity and particulate carbon stock.

  2. Modeling of Semiconductor Optical Amplifier Gain Characteristics for Amplification and Switching

    Science.gov (United States)

    Mahad, Farah Diana; Sahmah, Abu; Supa'at, M.; Idrus, Sevia Mahdaliza; Forsyth, David

    2011-05-01

    The Semiconductor Optical Amplifier (SOA) is presently commonly used as a booster or pre-amplifier in some communication networks. However, SOAs are also a strong candidate for utilization as multi-functional elements in future all-optical switching, regeneration and also wavelength conversion schemes. With this in mind, the purpose of this paper is to simulate the performance of the SOA for improved amplification and switching functions. The SOA is modeled and simulated using OptSim software. In order to verify the simulated results, a MATLAB mathematical model is also used to aid the design of the SOA. Using the model, the gain difference between simulated and mathematical results in the unsaturated region is <1dB. The mathematical analysis is in good agreement with the simulation result, with only a small offset due to inherent software limitations in matching the gain dynamics of the SOA.

  3. System Construction for the Measurement of Bragg Grating Characteristics in Optical Fibers

    Science.gov (United States)

    West, Douglas P.

    1995-01-01

    Bragg gratings are used to measure strain in optical fibers. To measure strain they are sometimes used as a smart structure. They must be characterized after they are written to determine their spectral response. This paper deals with the test setup to characterize Bragg grating spectral responses.Bragg gratings are a photo-induced phenomena in optical fibers. The gratings can be used to measure strain by measuring the shift in wavelength. They placed the fibers into a smart structure to measure the stress and strain produced on support columns placed in bridges. As the cable is subjected to strain the grating causes a shift to a longer wavelength if the fiber is stretched and a shift to a shorter wavelength shift if the fiber is compacted. Our applications involve using the fibers to measure stress and strain on airborne systems. There are many ways to write Bragg gratings into optical fibers. Our focus is on side writing the grating. Our capabilities are limited in the production rate of the gratings. The Bragg grating is written into a fiber and becomes a permanent fixture. We are writing the grating to be centered at 1300 nm because that is the standard phase mask wavelength.

  4. Linear and nonlinear optical characteristics of Te nanoparticles-doped germanate glasses

    Science.gov (United States)

    Xu, Zhousu; Guo, Qiangbing; Liu, Chang; Ma, Zhijun; Liu, Xiaofeng; Qiu, Jianrong

    2016-10-01

    Te nanoparticles (NPs)-doped GeO2-MgO-B2O3-Al2O3-TeO2 glasses were prepared by the conventional melt-quenching method. Based on X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscope observation, the coloration of the glass at high TeO2 concentration is ascribed to the precipitation of elemental Te NPs with a size of 5-10 nm in the germanate glass. Optical absorption spectra and nonlinear optical (NLO) properties of the glass samples were analyzed by UV-3600 spectrophotometry and Z-scan technique, respectively. The nonlinear absorption coefficient ( β) and the imaginary part of the third-order NLO susceptibility (Im χ (3)) were estimated to be 1.74 cm/GW and 1.142 × 10-12 esu for laser power of 95 μW, respectively. Due to the excellent NLO properties, the Te NPs-doped germanate glasses may have potential applications for ultrafast optical switch and photonics.

  5. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    International Nuclear Information System (INIS)

    Malinina, A. A.; Malinin, A. N.

    2013-01-01

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10 −14 m 3 /s for a reduced electric field of E/N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λ max = 502 nm) was observed in this experiment

  6. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    Science.gov (United States)

    Malinina, A. A.; Malinin, A. N.

    2013-12-01

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10-14 m3/s for a reduced electric field of E/ N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λmax = 502 nm) was observed in this experiment.

  7. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    Energy Technology Data Exchange (ETDEWEB)

    Malinina, A. A., E-mail: alexandr_malinin@rambler.ru; Malinin, A. N. [Uzhhorod National University (Ukraine)

    2013-12-15

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10{sup −14} m{sup 3}/s for a reduced electric field of E/N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λ{sub max} = 502 nm) was observed in this experiment.

  8. Multi-beam backscatter image data processing techniques employed to EM 1002 system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, W.A.; Chakraborty, B.

    to compensate outer-beam backscatter strength data in such a way that the effect of angular backscatter strength is removed. In this work we have developed backscatter data processing techniques for EM1002 multi-beam system...

  9. Optical characteristics of a RF DBD plasma jet in various {Ar}/ {O}_{2}Ar/O2 mixtures

    Science.gov (United States)

    Falahat, A.; Ganjovi, A.; Taraz, M.; Ravari, M. N. Rostami; Shahedi, A.

    2018-02-01

    In this paper, using the optical emission spectroscopy (OES) technique, the optical characteristics of a radiofrequency (RF) plasma jet are examined. The Ar/O2 mixture is taken as the operational gas and, the Ar percentage in the Ar/O2 mixture is varied from 70% to 95%. Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H_{β }. It is mostly seen that, the radiation intensity of Ar 4p→ 4s transitions at higher argon contributions in Ar/O2 mixture is higher. It is found that, at higher Ar percentages, the emission intensities from atomic oxygen (O) are higher and, the line intensities from the argon atoms and ions including O atoms linearly increase. It is observed that the quenching of Ar^{*} with O2 results in higher O species with respect to O2 molecules. In addition, at higher percentages of Ar in the Ar/O2 mixture, while the excitation temperature is decreased, the electron density is increased.

  10. Changes of the optical characteristics of radiochromic films in the transition from EBT3 to EBT-XD films

    Science.gov (United States)

    Schoenfeld, Andreas A.; Wieker, Soeren; Harder, Dietrich; Poppe, Bjoern

    2016-07-01

    A new type of radiochromic film, the EBT-XD film, has been introduced with the aim to reduce the orientation effect and the lateral response artifact occurring in the use of radiochromic films together with flatbed scanners. The task of the present study is to quantify the changes of optical characteristics involved with the transition from the well-known EBT3 films to the new EBT-XD films, using the optical bench arrangement already applied by Schoenfeld et al (2014 Phys. Med. Biol. 59 3575-97). Largely reduced polarization effects and the almost complete loss of the anisotropy of the scattered light produced in a radiation-exposed film have been observed. The Rayleigh-Debye-Gans theory is used to understand these optical changes as arising from the reduced length-to-width ratio of the LiPCDA polymer crystals in the active layer of the EBT-XD film. The effect of these changes on the flatbed scanning artifacts will be shortly addressed, but treated in more detail in a further paper.

  11. Fabrication of microlens array with controllable high NA and tailored optical characteristics using confined ink-jetting

    Science.gov (United States)

    Wang, Li; Luo, Yu; Liu, ZengZeng; Feng, Xueming; Lu, Bingheng

    2018-06-01

    This work presents an economic and controllable fabricating method of high numerical aperture (NA) polymer microlens array (MLA) based on ink-jetting technology. The MLAs are ink-jetted to align on micro platforms patterned flexible PDMS substrate. The shape of a sole lens is constructed by the ink-jetted pre-cured polymer volume confined on a micro platform. In this way, MLAs with targeted geometries-as well as tailored optical characteristics-can be printed, leading to freely designed optical properties. High NA from 0.446 to 0.885 and focal lengths between 99.26 μm and 39.45 μm are demonstrated, confirming theoretical predictions. Particularly, both the simulations and experimental measurements in optical properties are carried out, demonstrating that microlenses with shapes beyond a hemisphere (CA > 90°) exhibits higher light utilization efficiency and wider viewing angle. Meanwhile, the MLAs are fabricated on flexible PDMS substrates and can be attached to other curved surfaces for wider field of view imaging and higher sensitivity.

  12. The use of ion beam analysis in the synthesis of materials. A review of the determination of light elements by high-energy resonant backscattering

    International Nuclear Information System (INIS)

    Nastasi, M.

    1999-01-01

    For the ion synthesis of materials plasma inversion ion processing (PIIP) technology, has been applied in the framework of materials science research. The characteristics of this technique are discussed. PIIP has been complemented and compared with alpha-particle Rutherford Backscattering Spectrometry (RBS) High-energy Backscattering Spectrometry (HEBS) is the third material testing method for comparison. Examples for each technology are presented and discussed. (R.P.)

  13. Tunable Electrical and Optical Characteristics in Monolayer Graphene and Few-Layer MoS2 Heterostructure Devices.

    Science.gov (United States)

    Rathi, Servin; Lee, Inyeal; Lim, Dongsuk; Wang, Jianwei; Ochiai, Yuichi; Aoki, Nobuyuki; Watanabe, Kenji; Taniguchi, Takashi; Lee, Gwan-Hyoung; Yu, Young-Jun; Kim, Philip; Kim, Gil-Ho

    2015-08-12

    Lateral and vertical two-dimensional heterostructure devices, in particular graphene-MoS2, have attracted profound interest as they offer additional functionalities over normal two-dimensional devices. Here, we have carried out electrical and optical characterization of graphene-MoS2 heterostructure. The few-layer MoS2 devices with metal electrode at one end and monolayer graphene electrode at the other end show nonlinearity in drain current with drain voltage sweep due to asymmetrical Schottky barrier height at the contacts and can be modulated with an external gate field. The doping effect of MoS2 on graphene was observed as double Dirac points in the transfer characteristics of the graphene field-effect transistor (FET) with a few-layer MoS2 overlapping the middle part of the channel, whereas the underlapping of graphene have negligible effect on MoS2 FET characteristics, which showed typical n-type behavior. The heterostructure also exhibits a strongest optical response for 520 nm wavelength, which decreases with higher wavelengths. Another distinct feature observed in the heterostructure is the peak in the photocurrent around zero gate voltage. This peak is distinguished from conventional MoS2 FETs, which show a continuous increase in photocurrent with back-gate voltage. These results offer significant insight and further enhance the understanding of the graphene-MoS2 heterostructure.

  14. An optical color image watermarking scheme by using compressive sensing with human visual characteristics in gyrator domain

    Science.gov (United States)

    Liansheng, Sui; Bei, Zhou; Zhanmin, Wang; Ailing, Tian

    2017-05-01

    A novel optical color image watermarking scheme considering human visual characteristics is presented in gyrator transform domain. Initially, an appropriate reference image is constructed of significant blocks chosen from the grayscale host image by evaluating visual characteristics such as visual entropy and edge entropy. Three components of the color watermark image are compressed based on compressive sensing, and the corresponding results are combined to form the grayscale watermark. Then, the frequency coefficients of the watermark image are fused into the frequency data of the gyrator-transformed reference image. The fused result is inversely transformed and partitioned, and eventually the watermarked image is obtained by mapping the resultant blocks into their original positions. The scheme can reconstruct the watermark with high perceptual quality and has the enhanced security due to high sensitivity of the secret keys. Importantly, the scheme can be implemented easily under the framework of double random phase encoding with the 4f optical system. To the best of our knowledge, it is the first report on embedding the color watermark into the grayscale host image which will be out of attacker's expectation. Simulation results are given to verify the feasibility and its superior performance in terms of noise and occlusion robustness.

  15. Analysis of dual-mode lasing characteristics in a 1310-nm optically injected quantum dot distributed feedback laser

    Science.gov (United States)

    Raghunathan, R.; Olinger, J.; Hurtado, A.; Grillot, F.; Kovanis, V.; Lester, L. F.

    2015-03-01

    Recent work has shown the Quantum Dot (QD) material system to be well-suited to support dual-mode lasing. In particular, optical injection from a master laser (ML) into the residual Fabry-Perot (FP) modes of a 1310 nm Quantum Dot Distributed Feedback (QD-DFB) laser has been recently demonstrated to offer a highly reliable platform for stable dual-mode lasing operation. External controls on the ML, such as operating temperature and bias current, can be used to precisely adjust the spacing between the two lasing modes. This tunability of modeseparation is very promising for a range of applications requiring the generation of microwave, millimeter wave and terahertz signals. Considering the versatility and utility of such a scheme, it is imperative to acquire a deeper understanding of the factors that influence the dual-mode lasing process, in order to optimize performance. Toward this end, this paper seeks to further our understanding of the optically-injected dual-mode lasing mechanism. For fixed values of optical power injected into each FP residual mode and wavelength detuning, the dual-mode lasing characteristics are analyzed with regard to important system parameters such as the position and the intensity of the injected residual mode (relative to the Bragg and the other residual FP modes of the device) for two similarly-fabricated QD-DFBs. Results indicate that for dual mode lasing spaced less than 5 nm apart, the relative intensity of the injected FP mode and intracavity noise levels are critical factors in determining dual mode lasing behavior. Insight into the dual-mode lasing characteristics could provide an important design guideline for the master and QD-DFB slave laser cavities.

  16. Multifractal characteristics of optical turbulence measured through a single beam holographic process.

    Science.gov (United States)

    Pérez, Darío G; Barillé, Regis; Morille, Yohann; Zielińska, Sonia; Ortyl, Ewelina

    2014-08-11

    We have previously shown that azopolymer thin films exposed to coherent light that has travelled through a turbulent medium produces a surface relief grating containing information about the intensity of the turbulence; for instance, a relation between the refractive index structure constant C(n)2 as a function of the surface parameters was obtained. In this work, we show that these films capture much more information about the turbulence dynamics. Multifractal detrended fluctuation and fractal dimension analysis from images of the surface roughness produced by the light on the azopolymer reveals scaling properties related to those of the optical turbulence.

  17. Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate.

    Science.gov (United States)

    Weiss, C; Torosyan, G; Meyn, J P; Wallenstein, R; Beigang, R; Avetisyan, Y

    2001-04-23

    The tuning properties of pulsed narrowband THz radiation generated via optical rectification in periodically poled lithium niobate have been investigated. Using a disk-shaped periodically poled crystal tuning was easily accomplished by rotating the crystal around its axis and observing the generated THz radiation in forward direction. In this way no beam deflection during tuning was observed. The total tuning range extended from 180 GHz up to 830 GHz and was limited by the poling period of 127 microm which determines the maximum THz frequency in forward direction.

  18. Optical characteristic and gap states distribution of amorphous SnO2:(Zn, In) film

    International Nuclear Information System (INIS)

    Zhang Zhi-Guo

    2010-01-01

    In this paper the fabrication technique of amorphous SnO 2 :(Zn, In) film is presented. The transmittance and gap-states distribution of the film are given. The experimental results of gap-states distribution are compared with the calculated results by using the facts of short range order and lattice vacancy defect of the gap states theory. The distribution of gap state has been proved to be discontinuous due to the short-range order of amorphous structure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Characteristics of the electrical response of YBCO films with different morphologies to optical irradiation

    International Nuclear Information System (INIS)

    Frack, E.K.; Madhavrao, L.; Patl, R.; Drake, R.E.; Radparvar, M.

    1991-01-01

    The authors have fabricated YBCO films of varying thicknesses (300 Angstrom - 3000 Angstrom) and morphologies, and measured their electrical response to optical radiation. This paper reports on these measurements, emphasizing the dependence on temperature, light chopping frequency, and cryogenic environment. The temperature dependence of the film resistance is determined in part by the film morphology. This morphology may be represented by a simple model consisting of a two-dimensional array of coupled grains. The magnitude of the bolometric response correlates as expected with the sharpness of the superconducting transition. The increased response observed at lower temperatures (non-equilibrium) correlates with the temperature dependence of the resistance above the transition

  20. Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose

    International Nuclear Information System (INIS)

    Jursinic, Paul A.

    2010-01-01

    Purpose: A new type of in vivo dosimeter, an optically stimulated luminescent dosimeter (OSLD), has now become commercially available for clinical use. The OSLD is a plastic disk infused with aluminum oxide doped with carbon (Al 2 O 3 :C). Crystals of Al 2 O 3 :C, when exposed to ionizing radiation, store energy that is released as luminescence (420 nm) when the OSLD is illuminated with stimulation light (540 nm). The intensity of the luminescence depends on the dose absorbed by the OSLD and the intensity of the stimulation light. The effects of accumulated dose on OSLD response were investigated. Methods: The OSLDs used in this work were nanodot dosimeters, which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x rays and gamma rays from Co-60 and Ir-192. The signal on the OSLDs after irradiation is removed by optical annealing with a 150 W tungsten-halogen lamp or a 14 W compact fluorescent lamp was investigated. Results: It was found that OSLD response to dose was supralinear and this response was altered with the amount of accumulated dose to the OSLD. The OSLD response can be modeled by a quadratic and an exponential equation. For accumulated doses up to 60 Gy, the OSLD sensitivity (counts/dose) decreases and the extent of supralinear increases. Above 60 Gy of accumulated dose the sensitivity increases and the extent of supralinearity decreases or reaches a plateau, depending on how the OSLDs were optically annealed. With preirradiation of OSLDs with greater than 1 kGy, it is found that the sensitivity reaches a plateau 2.5 folds greater than that of an OSLD with no accumulated dose and the supralinearity disappears. A regeneration of the luminescence signal in the dark after full optical annealing occurs with a half time of about two days. The extent of this regeneration signal depends on the amount of accumulated dose. Conclusions: For in vivo dosimetric measurements, a precision of ±0.5% can be

  1. Electro-optical characteristics of a liquid crystal lens with polymer network

    International Nuclear Information System (INIS)

    Bielyikh, S.P.; Subota, S.L.; Reshetnyak, V.Y.; Galstian, T.

    2010-01-01

    We study a tunable-focus lens in which the key element is a gradient-polymer-stabilized liquid crystal (G-PSLC) structure. In this paper, we further develop the theoretical model, that describes the dependence of the G-PSLC lens' focal length on the applied voltage and presents a theoretical study of lens aberrations. According to Fermat's principle, we minimize the optical path of a test light beam and calculate the angles of a ray exiting from the cell. Using these results, the lateral and longitudinal aberrations are estimated. The obtained results can be used to optimize the G-PSLC lenses.

  2. Characteristics of III-nitride based laser diode employed for short range underwater wireless optical communications

    Science.gov (United States)

    Xue, Bin; Liu, Zhe; Yang, Jie; Feng, Liangsen; Zhang, Ning; Wang, Junxi; Li, Jinmin

    2018-03-01

    An off-the-shelf green laser diode (LD) was measured to investigate its temperature dependent characteristics. Performance of the device was severely restricted by rising temperature in terms of increasing threshold current and decreasing modulation bandwidth. The observation reveals that dynamic characteristics of the LD is sensitive to temperature. Influence of light attenuation on the modulation bandwidth of the green LD was also studied. The impact of light attenuation on the modulation bandwidth of the LD in short and low turbid water channel was not obvious while slight difference in modulation bandwidth under same injection level was observed between water channel and free space even at short range.

  3. Bulk media assay using backscattered neutron spectrometry

    International Nuclear Information System (INIS)

    Csikai, J.

    2000-01-01

    This paper summarized a systematic study of bulk media assay using backscattered neutron spectrometry. The source-sample-detector geometry used for the measurements of leakage and elastically backscattered (EBS) spectra of neutrons is shown. Neutrons up to about 14 MeV were produced via 2 H (d,n) and 9 Be (d,n) reactions using different deuteron beam energies between 5 and 10 MeV at the MGC-20E cyclotron of ATOMKI (Debrecen). Neutron yields of the Pu-Be and 252 Cf sources were 5.25 x 10 6 n/s and 1.8 x 10 6 n/s, respectively. Flux density distributions of thermal and primary 14 MeV neutrons were measured for graphite, water and coal samples in various moderator (M)-sample (S)-reflector (R) geometries. Relative fractions and integrated yields of 252 Cf, Pu-Be and 14 MeV neutrons above the (n,n'γ) reaction thresholds for 12 C, 16 O and 28 Si isotopes vs sample thickness have also been determined. It was found that the integrated reaction rate vs sample thickness decreasing exponentially with different attenuation coefficients depending on the neutron spectrum and the composition of the sample. The spectra of neutrons from sources passing through slabs of water, graphite, sand, Al, Fe and Pb up to 20 cm in thickness have been measured by a PHRS system in the 1.2 to 1.5 MeV range. The leakage neutron spectra from a Pu-Be source placed in the center of 30 cm diameter sphere filled with water, paraffin oil, SiO 2 , zeolite and river sand were also measured. The measured spectra have been compared with the calculated results obtained by the three dimensional Monte-Carlo code MCNP-4A and point-wise cross sections from the ENDF/B-4, ENDF/B-6, ENDF/E-1, BROND-2 and JENDL-3.1 data files. New results were obtained for validation of different data libraries from a comparison on the measured and the calculated spectra. Some typical results for water, Al, sand and Fe are shown. A combination of the backscattered neutron spectrometry with the surface gauge used both for the

  4. Study of Structure and Electro-Optical Characteristics of Indium Tin Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    N. M. Khusayfan

    2013-01-01

    Full Text Available ITO thin films were prepared by electron beam evaporation of ceramic ITO target. The films were subsequently annealed in air atmosphere at the temperatures 300°C and 600°C in order to improve their optical and electrical properties. The crystal structure and morphology of the films are investigated by X-ray diffraction and scanning electron microscope techniques, respectively. The films exhibited cubic structure with predominant orientation of growth along (222 direction, and the crystallite size increases by rising annealing temperature. Transparency of the films, over the visible light region, is increased by annealing temperature. The resulting increase in the carrier concentration and in the carrier mobility decreases the resistivity of the films due to annealing. The absorption coefficient of the films is calculated and analyzed. The direct allowed optical band gap for as-deposited films is determined as 3.81 eV; this value is increased to 3.88 and 4.0 eV as a result of annealing at 300°C and 600°C, respectively. The electrical sheet resistance is significantly decreased by increasing annealing temperature, whereas figure of merit is increased.

  5. Spectral Characteristic Based on Fabry—Pérot Laser Diode with Two-Stage Optical Feedback

    International Nuclear Information System (INIS)

    Wu Jian-Wei; Nakarmi Bikash

    2013-01-01

    An optical device, consisting of a multi-mode Fabry—Pérot laser diode (MMFP-LD) with two-stage optical feedback, is proposed and experimentally demonstrated. The results show that the single-mode output with side-mode suppression ratio (SMSR) of ∼21.7 dB is attained by using the first-stage feedback. By using the second-stage feedback, the SMSR of single-mode operation could be increased to ∼28.5 dB while injection feedback power of −29 dBm is introduced into the laser diode. In the case of up to −29 dBm feedback power, the outcome SMSR is rapidly decayed to a very low level so that an obvious multi-mode operation in the output spectrum could be achieved at the feedback power level of −15.5 dBm. Thus, a transition between single- and multi-mode operations could be flexibly controlled by adjusting the injected power in the second-stage feedback system. Additionally, in the case of injection locking, the outcome SMSR and output power at the locked wavelength are as high as ∼50 dB and ∼5.8 dBm, respectively

  6. Structural, optical and electrical characteristics of nickel oxide thin films synthesised through chemical processing method

    Science.gov (United States)

    Akinkuade, Shadrach; Mwankemwa, Benanrd; Nel, Jacqueline; Meyer, Walter

    2018-04-01

    A simple and cheap chemical deposition method was used to produce a nickel oxide (NiO) thin film on glass substrates from a solution that contained Ni2+ and monoethanolamine. Thermal treatment of the film at temperatures above 350 °C for 1 h caused decomposition of the nickel hydroxide into nickel oxide. Structural, optical and electrical properties of the film were studied using X-ray diffraction (XRD), spectrophotometry, current-voltage measurements and scanning electron microscopy (SEM). The film was found to be polycrystalline with interplanar spacing of 0.241 nm, 0.208 nm and 0.148 nm for (111), (200) and (220) planes respectively, the lattice constant a was found to be 0.417 nm. The film had a porous surface morphology, formed from a network of nanowalls of average thickness of 66.67 nm and 52.00 nm for as-deposited and annealed films respectively. Transmittance of visible light by the as-deposited film was higher and the absorption edge of the film blue-shifted after annealing. The optical band gap of the annealed film was 3.8 eV. Electrical resistivity of the film was 378 Ωm.

  7. Analysis of the emission characteristics of ion sources for high-value optical counting processes

    International Nuclear Information System (INIS)

    Beermann, Nils

    2009-01-01

    The production of complex high-quality thin film systems requires a detailed understanding of all partial processes. One of the most relevant partial processes is the condensation of the coating material on the substrate surface. The optical and mechanical material properties can be adjusted by the well-defined impingement of energetic ions during deposition. Thus, in the past, a variety of different ion sources were developed. With respect to the present and future challenges in the production of precisely fabricated high performance optical coatings, the ion emission of the sources has commonly not been characterized sufficiently so far. This question is addressed in the frame of this work which itself is thematically integrated in the field of process-development and -control of ion assisted deposition processes. In a first step, a Faraday cup measurement system was developed which allows the spatially resolved determination of the ion energy distribution as well as the ion current distribution. Subsequently, the ion emission profiles of six ion sources were determined depending on the relevant operating parameters. Consequently, a data pool for process planning and supplementary process analysis is made available. On the basis of the acquired results, the basic correlations between the operating parameters and the ion emission are demonstrated. The specific properties of the individual sources as well as the respective control strategies are pointed out with regard to the thin film properties and production yield. Finally, a synthesis of the results and perspectives for future activities are given. (orig.)

  8. Radiation impact on the characteristics of optical glasses test results on a selected set of materials

    Science.gov (United States)

    Fruit, Michel; Gussarov, Andrei; Berghmans, Francis; Doyle, Dominic; Ulbrich, Gerd

    2017-11-01

    It is well known within the Space optics community that radiation may significantly affect transmittance of glasses. To overcome this drawback, glass manufacturers have developed Cerium doped counterparts of classical glasses. This doped glasses display much less transmittance sensitivity to radiation. Still, the impact of radiation on refractive index is less known and may affect indifferently classical or Cerium doped glasses. ESTEC has initialised an R&D program with the aim of establishing a comprehensive data base gathering radiation sensitivity data, called Dose coefficients, for all the glass optical parameters (transmittance / refractive index / compaction……). The first part of this study, to define the methodology for such a data base, is run by ASTRIUM SAS in co-operation with SCK CEN. This covers theoretical studies associated to testing of a selected set of classical and "radiation hardened" glasses. It is proposed here to present first the theoretical backgrounds of this study and then to give results which have been obtained so far.

  9. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    Science.gov (United States)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  10. Laser-light backscattering response to water content and proteolysis in dry-cured ham

    DEFF Research Database (Denmark)

    Fulladosa, E.; Rubio-Celorio, M.; Skytte, Jacob Lercke

    2017-01-01

    on the acquisition conditions used. Laser backscattering was influenced by both dryness and proteolysis intensity showing an average light intensity decrease of 0.2 when decreasing water content (1% weight loss) and increasing proteolysis (equivalent to one-hour enzyme action). However, a decrease of scattering area...... was only detected when the water content was decreased (618 mm(2) per 1% weight loss). Changes on scattering of light profiles were only observed when the water content changed. Although there is a good correlation between water content and LBI parameters when analysing commercial samples, proteolysis...... of laser incidence) and to analyse the laser-light backscattering changes caused by additional hot air drying and proteolysis of dry-cured ham slices. The feasibility of the technology to determine water content and proteolysis (which is related to textural characteristics) of commercial sliced dry...

  11. Application of the Ultraviolet Scanning Elastic Backscatter LiDAR for the Investigation of Aerosol Variability

    Directory of Open Access Journals (Sweden)

    Fei Gao

    2015-05-01

    Full Text Available In order to investigate the aerosol variability over the southwest region of Slovenia, an ultraviolet scanning elastic backscatter LiDAR was utilized to make the vertical scan for atmospheric probing. With the assumption of horizontal atmospheric homogeneity, aerosol optical variables were retrieved from the horizontal pixel data points of two-dimensional range-height-indicator (RHI diagrams by using a multiangle retrieval method, in which optical depth is defined as the slope of the resulting linear function when height is kept constant. To make the data retrieval feasible and precise, a series of key procedures complemented the data processing, including construction of the RHI diagram, correction of Rayleigh scattering, assessment of horizontal atmospheric homogeneity and retrieval of aerosol optical variables. The measurement example demonstrated the feasibility of the ultraviolet scanning elastic backscatter LiDAR in the applications of the retrieval of aerosol extinction and determination of the atmospheric boundary layer height. Three months’ data combined with the modeling of air flow trajectories using Hybrid Single Particle Lagrangian Integrated Trajectory Model were analyzed to investigate aerosol variability. The average value of aerosol extinction with the presence of land-based air masses from the European continent was found to be two-times larger than that influenced by marine aerosols from the Mediterranean or Adriatic Sea.

  12. Specific absorption and backscatter coefficient signatures in southeastern Atlantic coastal waters

    Science.gov (United States)

    Bostater, Charles R., Jr.

    1998-12-01

    Measurements of natural water samples in the field and laboratory of hyperspectral signatures of total absorption and reflectance were obtained using long pathlength absorption systems (50 cm pathlength). Water was sampled in Indian River Lagoon, Banana River and Port Canaveral, Florida. Stations were also occupied in near coastal waters out to the edge of the Gulf Stream in the vicinity of Kennedy Space Center, Florida and estuarine waters along Port Royal Sound and along the Beaufort River tidal area in South Carolina. The measurements were utilized to calculate natural water specific absorption, total backscatter and specific backscatter optical signatures. The resulting optical cross section signatures suggest different models are needed for the different water types and that the common linear model may only appropriate for coastal and oceanic water types. Mean particle size estimates based on the optical cross section, suggest as expected, that particle size of oceanic particles are smaller than more turbid water types. The data discussed and presented are necessary for remote sensing applications of sensors as well as for development and inversion of remote sensing algorithms.

  13. Free-solution, label-free molecular interactions studied by back-scattering interferometry

    DEFF Research Database (Denmark)

    Bornhop, D.J.; Latham, J.C.; Kussrow, A.

    2007-01-01

    Free-solution, label-free molecular interactions were investigated with back-scattering interferometry in a simple optical train composed of a helium-neon laser, a microfluidic channel, and a position sensor. Molecular binding interactions between proteins, ions and protein, and small molecules...... and protein, were determined with high dynamic range dissociation constants (K-d spanning six decades) and unmatched sensitivity (picomolar K-d's and detection limits of 10,000s of molecules). With this technique, equilibrium dissociation constants were quantified for protein A and immunoglobulin G...

  14. Evidence of a tropospheric aerosol backscatter background mode

    Science.gov (United States)

    Rothermel, Jeffry; Bowdle, David A.; Vaughan, J. Michael; Post, Madison J.

    1989-01-01

    Vertical profiles of atmospheric aerosol backscatter coefficients at 10.6 microns obtained with airborne and ground-based lidar are compared. Both sets of profiles show a high frequency of occurrence of low backscatter over a limited range of values in the middle and upper troposphere. It is suggested that this narrow range indicates a ubiquitous background mode for atmospheric backscatter around the globe. Implications of such a mode for global scale aerosol models and for the design of satellite-borne lidar-based sensors are discussed.

  15. Emission characteristics of electrically- and optically-pumped single ZnO micro-spherical crystal

    Science.gov (United States)

    Nakamura, D.; Shimogaki, T.; Tetsuyama, N.; Fusazaki, K.; Mizokami, Y.; Higashihata, M.; Ikenoue, H.; Okada, T.

    2014-03-01

    Zinc oxide (ZnO) nano/microstructures have been attractive as the building blocks for the efficient opto-electronic devices in the ultraviolet (UV) region. We have succeeded in growing the ZnO micro/nanosphere by a simple laser ablation in the air, and therefore we have obtained UV lasing from the sphere under optical pumping. Recently, large size of several 10 micrometer ZnO microspheres were grown using Nd:YAG laser without Q-switching, and ZnO microsphere/p-GaN heterojunction were fabricated to obtain the electroluminescence (EL) from the microsphere by electrical pumping. Room-temperature EL in near-UV region with peak wavelength of 400 nm is observed under forward bias.

  16. Which histological characteristics of basal cell carcinomas influence the quality of optical coherence tomography imaging?

    DEFF Research Database (Denmark)

    Mogensen, M.; Thrane, Lars; Jørgensen, Thomas Martini

    2009-01-01

    We explore how histopathology parameters influence OCT imaging of basal cell carcinomas (BCC) and address whether such parameters correlate with the quality of the recorded OCT images. Our results indicate that inflammation impairs OCT imaging and that sun-damaged skin can sometimes provide more ...... clear-cut images of skin cancer lesions using OCT imaging when compared to skin cancer surrounded by skin without sun-damage. ©2009 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.......We explore how histopathology parameters influence OCT imaging of basal cell carcinomas (BCC) and address whether such parameters correlate with the quality of the recorded OCT images. Our results indicate that inflammation impairs OCT imaging and that sun-damaged skin can sometimes provide more...

  17. Optically stimulated luminescence characteristics of natural and doped quartz and alkali feldspars

    Energy Technology Data Exchange (ETDEWEB)

    Huett, G.; Jaek, I.; Brodski, L. [Institute of Geology at Tallinn Technical University, Tallinn (Estonia); Vasilchenko, V. [Institute of Experimental Physics and Technology of Tartu University, Tartu (Estonia)

    1999-05-01

    Natural alkali feldspars and quartz were doped by Tl and Cu by thermodiffusion and electrodiffusion technology. As a result of doping, intensive UV emission bands were created. The OSL stimulation spectra of irradiated natural and doped quartz and alkali feldspars were measured in the span of 400-1300 nm using UV emission of Tl at 280 nm and of Cu at 380 nm. One-trap centre conception was confirmed for high-temperature palaeodosimetrical TL peaks and OSL stimulation spectrum bands: for alkali feldspars at 880 and 420 nm and visible region of the spectrum for quartz. A thermooptical mechanism of the optical depopulation of the corresponding trap is confirmed in alkali feldspars, but there is no evidence for processes of this kind in quartz. An analogy between the physical background of OSL properties of both minerals is discussed.

  18. Optically stimulated luminescence characteristics of natural and doped quartz and alkali feldspars

    International Nuclear Information System (INIS)

    Huett, G.; Jaek, I.; Brodski, L.; Vasilchenko, V.

    1999-01-01

    Natural alkali feldspars and quartz were doped by Tl and Cu by thermodiffusion and electrodiffusion technology. As a result of doping, intensive UV emission bands were created. The OSL stimulation spectra of irradiated natural and doped quartz and alkali feldspars were measured in the span of 400-1300 nm using UV emission of Tl at 280 nm and of Cu at 380 nm. One-trap centre conception was confirmed for high-temperature palaeodosimetrical TL peaks and OSL stimulation spectrum bands: for alkali feldspars at 880 and 420 nm and visible region of the spectrum for quartz. A thermooptical mechanism of the optical depopulation of the corresponding trap is confirmed in alkali feldspars, but there is no evidence for processes of this kind in quartz. An analogy between the physical background of OSL properties of both minerals is discussed

  19. Simultaneous observations at different altitudes of ionospheric backscatter in the eastward electrojet

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    1998-01-01

    Full Text Available A common feature of evening near-range ionospheric backscatter in the CUTLASS Iceland radar field of view is two parallel, approximately L-shell-aligned regions of westward flow which are attributed to irregularities in the auroral eastward electrojet region of the ionosphere. These backscatter channels are separated by approximately 100–200 km in range. The orientation of the CUTLASS Iceland radar beams and the zonally aligned nature of the flow allows an approximate determination of flow angle to be made without the necessity of bistatic measurements. The two flow channels have different azimuthal variations in flow velocity and spectral width. The nearer of the two regions has two distinct spectral signatures. The eastern beams detect spectra with velocities which saturate at or near the ion-acoustic speed, and have low spectral widths (less than 100 m s–1, while the western beams detect lower velocities and higher spectral widths (above 200 m s–1. The more distant of the two channels has only one spectral signature with velocities above the ion-acoustic speed and high spectral widths. The spectral characteristics of the backscatter are consistent with E-region scatter in the nearer channel and upper-E-region or F-region scatter in the further channel. Temporal variations in the characteristics of both channels support current theories of E-region turbulent heating and previous observations of velocity-dependent backscatter cross-section. In future, observations of this nature will provide a powerful tool for the investigation of simultaneous E- and F-region irregularity generation under similar (nearly co-located or magnetically conjugate electric field conditions.Key words. Auroral ionosphere · Ionospheric irregularities · Plasma convection

  20. Simultaneous observations at different altitudes of ionospheric backscatter in the eastward electrojet

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available A common feature of evening near-range ionospheric backscatter in the CUTLASS Iceland radar field of view is two parallel, approximately L-shell-aligned regions of westward flow which are attributed to irregularities in the auroral eastward electrojet region of the ionosphere. These backscatter channels are separated by approximately 100–200 km in range. The orientation of the CUTLASS Iceland radar beams and the zonally aligned nature of the flow allows an approximate determination of flow angle to be made without the necessity of bistatic measurements. The two flow channels have different azimuthal variations in flow velocity and spectral width. The nearer of the two regions has two distinct spectral signatures. The eastern beams detect spectra with velocities which saturate at or near the ion-acoustic speed, and have low spectral widths (less than 100 m s–1, while the western beams detect lower velocities and higher spectral widths (above 200 m s–1. The more distant of the two channels has only one spectral signature with velocities above the ion-acoustic speed and high spectral widths. The spectral characteristics of the backscatter are consistent with E-region scatter in the nearer channel and upper-E-region or F-region scatter in the further channel. Temporal variations in the characteristics of both channels support current theories of E-region turbulent heating and previous observations of velocity-dependent backscatter cross-section. In future, observations of this nature will provide a powerful tool for the investigation of simultaneous E- and F-region irregularity generation under similar (nearly co-located or magnetically conjugate electric field conditions.

    Key words. Auroral ionosphere · Ionospheric irregularities · Plasma convection

  1. Optical signature of nerve tissue-Exploratory ex vivo study comparing optical, histological, and molecular characteristics of different adipose and nerve tissues.

    Science.gov (United States)

    Balthasar, Andrea J R; Bydlon, Torre M; Ippel, Hans; van der Voort, Marjolein; Hendriks, Benno H W; Lucassen, Gerald W; van Geffen, Geert-Jan; van Kleef, Maarten; van Dijk, Paul; Lataster, Arno

    2018-05-14

    During several anesthesiological procedures, needles are inserted through the skin of a patient to target nerves. In most cases, the needle traverses several tissues-skin, subcutaneous adipose tissue, muscles, nerves, and blood vessels-to reach the target nerve. A clear identification of the target nerve can improve the success of the nerve block and reduce the rate of complications. This may be accomplished with diffuse reflectance spectroscopy (DRS) which can provide a quantitative measure of the tissue composition. The goal of the current study was to further explore the morphological, biological, chemical, and optical characteristics of the tissues encountered during needle insertion to improve future DRS classification algorithms. To compare characteristics of nerve tissue (sciatic nerve) and adipose tissues, the following techniques were used: histology, DRS, absorption spectrophotometry, high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, and solution 2D 13 C- 1 H heteronuclear single-quantum coherence spectroscopy. Tissues from five human freshly frozen cadavers were examined. Histology clearly highlights a higher density of cellular nuclei, collagen, and cytoplasm in fascicular nerve tissue (IFAS). IFAS showed lower absorption of light around 1200 nm and 1750 nm, higher absorption around 1500 nm and 2000 nm, and a shift in the peak observed around 1000 nm. DRS measurements showed a higher water percentage and collagen concentration in IFAS and a lower fat percentage compared to all other tissues. The scattering parameter (b) was highest in IFAS. The HR-MAS NMR data showed three extra chemical peak shifts in IFAS tissue. Collagen, water, and cellular nuclei concentration are clearly different between nerve fascicular tissue and other adipose tissue and explain some of the differences observed in the optical absorption, DRS, and HR-NMR spectra of these tissues. Some differences observed between fascicular

  2. Temperature dependence of erythrocyte aggregation in vitro by backscattering nephelometry

    Science.gov (United States)

    Sirko, Igor V.; Firsov, Nikolai N.; Ryaboshapka, Olga M.; Priezzhev, Alexander V.

    1997-05-01

    We apply backscattering nephelometry technique to register the alterations of the scattering signal from a whole blood sample due to appearance or disappearance of different types of erythrocyte aggregates in stasis and under controlled shear stress. The measured parameters are: the characteristic times of linear and 3D aggregates formation, and the strength of aggregates of different types. These parameters depend on the sample temperature in the range of 2 divided by 50 degrees C. Temporal parameters of the aggregation process strongly increase at temperature 45 degrees C. For samples of normal blood the aggregates strength parameters do not significantly depend on the sample temperature, whereas for blood samples from patients suffering Sjogren syndrome we observe high increase of the strength of 3D and linear aggregates and decrease of time of linear aggregates formation at low temperature of the sample. This combination of parameters is opposite to that observed in the samples of pathological blood at room temperature. Possible reasons of this behavior of aggregation state of blood and explanation of the observed effects will be discussed.

  3. Optical, physical and chemical characteristics of Australian continental aerosols: results from a field experiment

    Directory of Open Access Journals (Sweden)

    M. Radhi

    2010-07-01

    Full Text Available Mineral dust is one of the major components of the world's aerosol mix, having a number of impacts within the Earth system. However, the climate forcing impact of mineral dust is currently poorly constrained, with even its sign uncertain. As Australian deserts are more reddish than those in the Northern Hemisphere, it is important to better understand the physical, chemical and optical properties of this important aerosol. We have investigated the properties of Australian desert dust at a site in SW Queensland, which is strongly influenced by both dust and biomass burning aerosol.

    Three years of ground-based monitoring of spectral optical thickness has provided a statistical picture of gross aerosol properties. The aerosol optical depth data showed a clear though moderate seasonal cycle with an annual mean of 0.06 ± 0.03. The Angstrom coefficient showed a stronger cycle, indicating the influence of the winter-spring burning season in Australia's north. AERONET size distributions showed a generally bimodal character, with the coarse mode assumed to be mineral dust, and the fine mode a mixture of fine dust, biomass burning and marine biogenic material.

    In November 2006 we undertook a field campaign which collected 4 sets of size-resolved aerosol samples for laboratory analysis – ion beam analysis and ion chromatography. Ion beam analysis was used to determine the elemental composition of all filter samples, although elemental ratios were considered the most reliable output. Scatter plots showed that Fe, Al and Ti were well correlated with Si, and Co reasonably well correlated with Si, with the Fe/Al ratio somewhat higher than values reported from Northern Hemisphere sites (as expected. Scatter plots for Ca, Mn and K against Si showed clear evidence of a second population, which in some cases could be identified with a particular sample day or size fraction. These data may be used to attempt to build a signature of soil in this

  4. Impact of Gastric Acid Induced Surface Changes on Mechanical Behavior and Optical Characteristics of Dental Ceramics.

    Science.gov (United States)

    Kulkarni, Aditi; Rothrock, James; Thompson, Jeffery

    2018-01-14

    To test the impact of exposure to artificial gastric acid combined with toothbrush abrasion on the properties of dental ceramics. Earlier research has indicated that immersion in artificial gastric acid has caused increased surface roughness of dental ceramics; however, the combined effects of acid immersion and toothbrush abrasion and the impact of increased surface roughness on mechanical strength and optical properties have not been studied. Three commercially available ceramics were chosen for this study: feldspathic porcelain, lithium disilicate glass-ceramic, and monolithic zirconium oxide. The specimens (10 × 1 mm discs) were cut, thermally treated as required, and polished. Each material was divided into four groups (n = 8 per group): control (no exposure), acid only, brush only, acid + brush. The specimens were immersed in artificial gastric acid (50 ml of 0.2% [w/v] sodium chloride in 0.7% [v/v] hydrochloric acid mixed with 0.16 g of pepsin powder, pH = 2) for 2 minutes and rinsed with deionized water for 2 minutes. The procedure was repeated 6 times/day × 9 days, and specimens were stored in deionized water at 37°C. Toothbrush abrasion was performed using an ISO/ADA design brushing machine for 100 cycles/day × 9 days. The acid + brush group received both treatments. Specimens were examined under SEM and an optical microscope for morphological changes. Color and translucency were measured using spectrophotometer CIELAB coordinates (L*, a*, b*). Surface gloss was measured using a gloss meter. Surface roughness was measured using a stylus profilometer. Biaxial flexural strength was measured using a mechanical testing machine. The data were analyzed by one-way ANOVA followed by Tukey's HSD post hoc test (p gloss, and surface roughness for porcelain and e.max specimens. No statistically significant changes were found for any properties of zirconia specimens. The acid treatment affected the surface roughness, color, and gloss of porcelain and e

  5. Moessbauer backscatter spectrometer with full data processing capability

    International Nuclear Information System (INIS)

    1976-01-01

    The design and operation of a Moessbauer backscatter spectrometer with full data processing capability is described, and the investigation of the applicability of this technique to a variety of practical metallurgical problems is discussed

  6. Optimal Time Allocation in Backscatter Assisted Wireless Powered Communication Networks

    Science.gov (United States)

    Lyu, Bin; Yang, Zhen; Gui, Guan; Sari, Hikmet

    2017-01-01

    This paper proposes a wireless powered communication network (WPCN) assisted by backscatter communication (BackCom). This model consists of a power station, an information receiver and multiple users that can work in either BackCom mode or harvest-then-transmit (HTT) mode. The time block is mainly divided into two parts corresponding to the data backscattering and transmission periods, respectively. The users first backscatter data to the information receiver in time division multiple access (TDMA) during the data backscattering period. When one user works in the BackCom mode, the other users harvest energy from the power station. During the data transmission period, two schemes, i.e., non-orthogonal multiple access (NOMA) and TDMA, are considered. To maximize the system throughput, the optimal time allocation policies are obtained. Simulation results demonstrate the superiority of the proposed model. PMID:28587171

  7. Reson 8101 Backscatter imagery of Penguin Bank, Molokai, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Backscatter imagery extracted from gridded bathymetry of Penguin Bank, Molokai, Hawaii, USA. These data provide almost complete coverage between 0 and 100 meters....

  8. Energy and Emission Characteristics of a Short-Arc Xenon Flash Lamp Under "Saturated" Optical Brightness Conditions

    Science.gov (United States)

    Kamrukov, A. S.; Kireev, S. G.; Kozlov, N. P.; Shashkovskii, S. G.

    2017-09-01

    We present the results of a study of the electrical, energy, and spectral brightness characteristics of an experimental three-electrode high-pressure xenon flash lamp under conditions ensuring close to maximum possible spectral brightness for the xenon emission. We show that under saturated optical brightness conditions (brightness temperature in the visible region of the spectrum 30,000 K), emission of a pulsed discharge in xenon is quite different from the emission from an ideal blackbody: the maximum brightness temperatures are 24,000 K in the short-wavelength UV region and 19,000 K in the near IR range. The relative fraction of UV radiation in the emission spectrum of the lamp is >50%, which lets us consider such lamps as promising broadband sources of radiation with high spectral brightness for many important practical applications.

  9. A generalized ray-tracing procedure for an atmospheric Cherenkov imaging telescope and optical characteristics of the TACTIC light collector

    International Nuclear Information System (INIS)

    Tickoo, A.K.; Suthar, R.L.; Koul, R.; Sapru, M.L.; Kumar, N.; Kaul, C.L.; Yadav, K.K.; Thoudam, S.; Kaul, S.K.; Venugopal, K.; Kothari, M.; Goyal, H.C.; Chandra, P.; Dhar, V.K.; Rannot, R.C.; Koul, M.K.; Kaul, S.R.

    2005-01-01

    A generalized ray-tracing procedure has been developed, which facilitates the design of a multimirror-based light collector used in atmospheric Cherenkov telescopes. This procedure has been employed to study the optical characteristics of the 3.5 m diameter light collector of the TACTIC Imaging telescope. Comparison of the measured point-spread function of the light collector with the simulated performance of ideal Davies-Cotton and paraboloid designs has been made to determine an optimum arrangement of the 34 spherical mirror facets used in the telescope to obtain the best possible point-spread function. A description of the ray-tracing subroutine used for processing CORSIKA-generated Cherenkov data, required for carrying out Monte-Carlo simulation studies, is also discussed in the paper

  10. Performance of the Multi-Spectral Solar Telescope Array. III - Optical characteristics of the Ritchey-Chretien and Cassegrain telescopes

    Science.gov (United States)

    Hoover, Richard B.; Baker, Phillip C.; Hadaway, James B.; Johnson, R. B.; Peterson, Cynthia; Gabardi, David R.; Walker, Arthur B., Jr.; Lindblom, J. F.; Deforest, Craig; O'Neal, R. H.

    1991-12-01

    The Multi-Spectral Solar Telescope Array (MSSTA), which is a sounding-rocket-borne observatory for investigating the sun in the soft X-ray/EUV and FUV regimes of the electromagnetic spectrum, utilizes single reflection multilayer coated Herschelian telescopes for wavelengths below 100 A, and five doubly reflecting multilayer coated Ritchey-Chretien and two Cassegrain telescopes for selected wavelengths in the EUV region between 100 and 1000 A. The paper discusses the interferometric alignment, testing, focusing, visible light testing, and optical performance characteristics of the Ritchey-Chretien and Cassegrain telescopes of MSSTA. A schematic diagram of the MSSTA Ritchey-Chretien telescope is presented together with diagrams of the system autocollimation testing.

  11. Optical progression characteristics of an interesting natural downward bipolar lightning flash

    Science.gov (United States)

    Chen, Luwen; Lu, Weitao; Zhang, Yijun; Wang, Daohong

    2015-01-01

    high-speed cameras, Lightning Attachment Process Observation Systems, and fast and slow electrical antennas, we documented a downward bipolar lightning flash that contained one first positive stroke with a peak current of 142 kA and five subsequent negative strokes hitting on a 90 m tall structure on 29 July 2010 in Guangzhou City, China. All the six strokes propagated along the same viewed channel established by the first positive return stroke. The leader which preceded the positive return stroke propagated downward without any branches at a two-dimensional (2-D) speed of 2.5 × 106 m/s. An upward connecting leader with a length of about 80 m was observed in response to the downward positive leader. The 10-90% risetimes of the return strokes' optical pulses ranged from 2.2 µs to 3.2 µs, while the widths from the 10% wavefront to the 50% wave tail ranged from 56.5 µs to 83.1 µs, and the half peak widths ranged from 53.4 µs to 81.6 µs. All the return strokes exhibited similar speeds, ranging from 1.0 × 108 m/s to 1.3 × 108 m/s. Each of the return strokes was followed by a continuing current stage (CC). The first positive stroke CC lasted more than 150 ms, much larger than all the subsequent negative stroke CC, ranging from 13 ms to 70 ms.

  12. Effect of birefringence of lens material on polarization status and optical imaging characteristics

    Science.gov (United States)

    Kim, Wan-Chin; Park, No-Cheol

    2018-04-01

    In most cases of molding with glass or optical polymers, it is expected that there will be birefringence caused by the internal mechanical stresses remaining in the molding material. The distribution of the residual stress can be annealed by slow cooling, but this approach is disadvantageous with respect to the shape accuracy and manufacturing time. In this study, we propose an analytical model to calculate the diffracted field near the focal plane by considering two primary parameters, the orientation angle of the fast axis and the path difference. In order to verify the reliability of the analytical model, we compared the measured beam spot of the F-theta lens of the laser scanning unit (LSU) with the analytical result. In addition, we analyzed the calculated result from the perspective of the polarization status in the exit pupil. The proposed analysis method can be applied to enhance the image quality for cases in which birefringence occurs in a lens material by suitably modeling the amplitude and phase of the incident light flux.

  13. Correlation between the structure and optical transition characteristic energies of annealed tin oxide films

    International Nuclear Information System (INIS)

    Majid, W.H.A.; Muhamad, M.R.

    1990-01-01

    Thin films of tin oxide were prepared by room temperature thermal evaporation of blue-black stannous-oxide, SnO powder synthesized from metal tin. X-ray diffractograms reveal that as prepared amorphous samples form polycrystal of SnO by annealing at 300 0 C in air ambient for 30 minutes and they will be oxidized to polycrystal of SnO 2 with further annealing at 500 0 C or above. Optical measurements indicate that the dispersion energy E d and the single oscillator strength E 0 are highest for SnO polycrystal with a magnitude for about 14.0 eV and 4.0 eV respectively compared to 10.4 eV and 3.4 eV for SnO 2 . Further, the plasma energy E p was determined to be in the range of 3.4 eV to 8 eV; increases with increasing composition of SnO 2 . The density of valence electron N(E) can be estimated from the plasma energy E p

  14. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    Energy Technology Data Exchange (ETDEWEB)

    Qazi, H. I. A.; Li, He-Ping, E-mail: liheping@tsinghua.edu.cn; Zhang, Xiao-Fei; Bao, Cheng-Yu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Nie, Qiu-Yue [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001 (China)

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  15. Principles of electron backscattering by solids and thin films

    International Nuclear Information System (INIS)

    Niedrig, H.

    1977-01-01

    The parameters concerning the electron backscattering from thin films and solids (atomic scattering cross-section, atomic number, single/multiple scattering, film thickness of self-supporting films and of surface films on bulk substrates, scattering angular distribution, angle of incidence, diffraction effects) are described. Their influence on some important contrast mechanisms in scanning electron microscopy (thickness contrast, Z/material contrast, tilting/topography contrast, orientation contrast) is discussed. The main backscattering electron detection systems are briefly described. (orig.) [de

  16. THE LICK AGN MONITORING PROJECT: PHOTOMETRIC LIGHT CURVES AND OPTICAL VARIABILITY CHARACTERISTICS

    International Nuclear Information System (INIS)

    Walsh, Jonelle L.; Bentz, Misty C.; Barth, Aaron J.; Minezaki, Takeo; Sakata, Yu; Yoshii, Yuzuru; Baliber, Nairn; Bennert, Vardha Nicola; Street, Rachel A.; Treu, Tommaso; Li Weidong; Filippenko, Alexei V.; Stern, Daniel; Brown, Timothy M.; Canalizo, Gabriela; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Woo, Jong-Hak

    2009-01-01

    The Lick AGN Monitoring Project targeted 13 nearby Seyfert 1 galaxies with the intent of measuring the masses of their central black holes using reverberation mapping. The sample includes 12 galaxies selected to have black holes with masses roughly in the range 10 6 -10 7 M sun , as well as the well-studied active galactic nucleus (AGN) NGC 5548. In conjunction with a spectroscopic monitoring campaign, we obtained broadband B and V images on most nights from 2008 February through 2008 May. The imaging observations were carried out by four telescopes: the 0.76 m Katzman Automatic Imaging Telescope, the 2 m Multicolor Active Galactic Nuclei Monitoring telescope, the Palomar 60 inch (1.5 m) telescope, and the 0.80 m Tenagra II telescope. Having well-sampled light curves over the course of a few months is useful for obtaining the broad-line reverberation lag and black hole mass, and also allows us to examine the characteristics of the continuum variability. In this paper, we discuss the observational methods and the photometric measurements, and present the AGN continuum light curves. We measure various variability characteristics of each of the light curves. We do not detect any evidence for a time lag between the B- and V-band variations, and we do not find significant color variations for the AGNs in our sample.

  17. Frobenius–Perron eigenstates in deformed microdisk cavities: non-Hermitian physics and asymmetric backscattering in ray dynamics

    International Nuclear Information System (INIS)

    Kullig, Julius; Wiersig, Jan

    2016-01-01

    In optical microdisk cavities with boundary deformations the backscattering between clockwise and counter-clockwise propagating waves is in general asymmetric. The striking consequence of this asymmetry is that these apparently weakly open systems show pronounced non-Hermitian phenomena. The optical modes appear in non-orthogonal pairs, where both modes copropagate in a preferred sense of rotation, i.e. the modes exhibit a finite chirality. Full asymmetry in the backscattering results in a non-Hermitian degeneracy (exceptional point) where the deviation from closed system evolution is strongest. We study the effects of asymmetric backscattering in ray dynamics. For this purpose, we construct a finite approximation of the Frobenius–Perron operator for deformed microdisk cavities, which describes the dynamics of intensities in phase space. Eigenstates of the Frobenius–Perron operator show nice analogies to optical modes: they come in non-orthogonal copropagating pairs and have a finite chirality. We introduce a new cavity system with a smooth asymmetric boundary deformation where we demonstrate our results and we illustrate the main aspects with the help of a simple analytically solvable 1D model. (paper)

  18. Performance characteristics of optical coherence tomography in assessment of Barrett's esophagus and esophageal cancer: systematic review.

    Science.gov (United States)

    Kohli, D R; Schubert, M L; Zfass, A M; Shah, T U

    2017-11-01

    Optical coherence tomography (OCT) can generate high-resolution images of the esophagus that allows cross-sectional visualization of esophageal wall layers. We conducted a systematic review to assess the utility of OCT for diagnosing of esophageal intestinal metaplasia (IM; Barrett's esophagus BE)), dysplasia, cancer and staging of early esophageal cancer. English language human observational studies and clinical trials published in PubMed and Embase were included if they assessed any of the following: (i) in-vivo features and accuracy of OCT at diagnosing esophageal IM, sub-squamous intestinal metaplasia (SSIM), dysplasia, or cancer, and (ii) accuracy of OCT in staging esophageal cancer. Twenty-one of the 2,068 retrieved citations met inclusion criteria. In the two prospective studies that assessed accuracy of OCT at identifying IM, sensitivity was 81%-97%, and specificity was 57%-92%. In the two prospective studies that assessed accuracy of OCT at identifying dysplasia and early cancer, sensitivity was 68%-83%, and specificity was 75%-82%. Observational studies described significant variability in the ability of OCT to accurately identify SSIM. Two prospective studies that compared the accuracy of OCT at staging early squamous cell carcinoma to histologic resection specimens reported accuracy of >90%. Risk of bias and applicability concerns was rated as low among the prospective studies using the QUADAS-2 questionnaire. OCT may identify intestinal metaplasia and dysplasia, but its accuracy may not meet recommended thresholds to replace 4-quadrant biopsies in clinical practice. OCT may be more accurate than EUS at staging early esophageal cancer, but randomized trials and cost-effective analyses are lacking. © The Authors 2017. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. A Study of Fog Characteristics using Free-Space Optical Wireless Links

    Directory of Open Access Journals (Sweden)

    M. S. Awan

    2010-06-01

    Full Text Available A technique for modeling the fog droplet size distributions using modified gamma distribution has been demonstrated by considering two separate radiation fog events recorded in Graz (Austria and Prague (Czech Republic. The measurement of liquid water content (LWC and the optical attenuations at visible wavelength are used to form equations to obtain the three parameters of the modified gamma distribution i.e., the slope (Λ, the intercept (N0 and the shape parameter (m. Calculated attenuation or LWC from the retrieved parameters are in excellent agreement with attenuation or LWC obtained from the measurement. Hence this method is useful in the study of fog microphysics and in modeling the fog attenuations for terrestrial FSO links in situations when our measurement data contains values of attenuations only, or liquid water content only or both at a particular location. For the two case studies, Graz and Prague, we obtained the DSD parameters Λ=3.547 ± 1.935, N0 =3.834 ± 2.239, m=6.135 ± 2.692 and Λ=5.882 ± 2.889, N0 =13.41 ± 3.875, m=5.288 ± 3.113, respectively. It is evident that the observed behavior of computed modified gamma distribution parameters for Graz and Prague is closely the same and is consistent with the previous literature for the radiation (continental fog. Moreover, we observed the variation of the computed DSD parameters at the different stages of fog (formation, maturity and dissipation phases indicating different microphysical processes at each stage.

  20. Optical absorption and emission characteristics of Pr{sup 3+}-doped RTP glasses

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, D.V.R. [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Jamalaiah, B.C. [Department of Physics, Sree Vidyanikethan Engineering College, Tirupati (India); Sasikala, T. [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Rama Moorthy, L., E-mail: lrmphysics@yahoo.co.i [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Jayasimhadri, M.; Jang, Kiwan; Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon (Korea, Republic of); Yi, Soung Soo [Department of Photonics, Silla University, Pusan 617-736 (Korea, Republic of); Jeong, Jung Hyun [Department of Physics, Pukyong National University, Pusan 608-737 (Korea, Republic of)

    2010-02-15

    Judd-Ofelt (J-O) parameters are calculated for Pr{sup 3+}ions doped alkaline earth potassium titanium phosphate (RTP, where R=Mg, Ca, Sr) glasses. The best fit for the oscillator strengths has been obtained by omitting the {sup 3}H{sub 4}->{sup 3}P{sub 2} hypersensitive transition. In all the three glasses, the J-O parameters follow the same trend as OMEGA{sub 2}OMEGA{sub 6}. These J-O intensity parameters are then used to compute the radiative properties such as the radiative transition probabilities (A{sub R}), branching ratios (beta{sub R}) and radiative lifetimes (tau{sub R}) for the observed fluorescence bands. The fluorescence spectra obtained upon 445 nm excitation exhibited an intense emission band centered at 484 nm ({sup 3}P{sub 0}->{sup 3}H{sub 4}), four medium intense bands at 525 nm ({sup 3}P{sub 1}->{sup 3}H{sub 5}), 598 nm ({sup 1}D{sub 2}->{sup 3}H{sub 4}), 608 nm ({sup 3}P{sub 0}->{sup 3}H{sub 6}) and 641 nm ({sup 3}P{sub 0}->{sup 3}F{sub 2}) and one weak band at 669 nm ({sup 3}P{sub 1}->{sup 3}F{sub 3}). The experimental branching ratios (beta{sub exp}) obtained from steady state fluorescence are compared with the calculated values. The decay curves measured from the {sup 3}P{sub 0} excited metastable state are found to be single exponential in all the glasses. The gain bandwidths (sigma{sub e}xDELTAlambda{sub P}) and optical gain (sigma{sub e}xtau{sub m}) parameters suggest that the RTP glasses could be used for laser active materials to emit intense blue emission at 484 nm.

  1. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  2. Surface deformation and friction characteristic of nano scratch at ductile-removal regime for optical glass BK7.

    Science.gov (United States)

    Li, Chen; Zhang, Feihu; Ding, Ye; Liu, Lifei

    2016-08-20

    Nano scratch for optical glass BK7 based on the ductile-removal regime was carried out, and the influence rule of scratch parameters on surface deformation and friction characteristic was analyzed. Experimental results showed that, with increase of normal force, the deformation of burrs in the edge of the scratch was more obvious, and with increase of the scratch velocity, the deformation of micro-fracture and burrs in the edge of the scratch was more obvious similarly. The residual depth of the scratch was measured by atomic force microscope. The experimental results also showed that, with increase of normal force, the residual depth of the scratch increased linearly while the elastic recovery rate decreased. Furthermore, with increase of scratch velocity, the residual depth of the scratch decreased while the elastic recovery rate increased. The scratch process of the Berkovich indenter was divided into the cutting process of many large negative rake faces based on the improved cutting model, and the friction characteristic of the Berkovich indenter and the workpiece was analyzed. The analysis showed that the coefficient of friction increased and then tended to be stable with the increase of normal force. Meanwhile, the coefficient of friction decreased with the increase of scratch velocity, and the coefficients, k ln(v) and μ0, were introduced to improve the original formula of friction coefficient.

  3. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    Science.gov (United States)

    Malinina, A. A.; Malinin, A. N.

    2015-03-01

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λmax = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/ N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10-15 m3/s.

  4. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    Energy Technology Data Exchange (ETDEWEB)

    Malinina, A. A., E-mail: alexandr-malinin@rambler.ru; Malinin, A. N. [Uzhhorod National University (Ukraine)

    2015-03-15

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ{sub max} = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10{sup −15} m{sup 3}/s.

  5. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    International Nuclear Information System (INIS)

    Malinina, A. A.; Malinin, A. N.

    2015-01-01

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ max = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10 −15 m 3 /s

  6. Electromagnetic backscattering from freak waves in (1 + 1)-dimensional deep-water

    International Nuclear Information System (INIS)

    Tao, Xie; Tao, Shen; Wei, Chen; Hai-Lan, Kuang; Perrie, William

    2010-01-01

    To study the electromagnetic (EM) backscatter characteristics of freak waves at moderate incidence angles, we establish an EM backscattering model for freak waves in (1 + 1)-dimensional deep water. The nonlinear interaction between freak waves and Bragg short waves is considered to be the basic hydrodynamic spectra modulation mechanism in the model. Numerical results suggest that the EM backscattering intensities of freak waves are less than those from the background sea surface at moderate incidence angles. The normalised radar cross sections (NRCSs) from freak waves are highly polarisation dependent, even at low incidence angles, which is different from the situation for normal sea waves; moreover, the NRCS of freak waves is more polarisation dependent than the background sea surface. NRCS discrepancies between freak waves and the background sea surface with using horizontal transmitting horizomtal (HH) polarisation are larger than those using vertical transmitting vertical (VV) polarisation, at moderate incident angles. NRCS discrepancies between freak waves and background sea surface decreases with the increase of incidence angle, in both HH and VV polarisation radars. As an application, in the synthetic-aperture radar (SAR) imaging of freak waves, we suggest that freak waves should have extremely low backscatter NRCSs for the freak wave facet with the strongest slope. Compared with the background sea surface, the freak waves should be darker in HH polarisation echo images than in VV echo images, in SAR images. Freak waves can be more easily detected from the background sea surface in HH polarisation images than in VV polarisation images. The possibility of detection of freak waves at low incidence angles is much higher than at high incidence angles. (classical areas of phenomenology)

  7. Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya

    Science.gov (United States)

    Racoviteanu, Adina E.; Williams, Mark W.; Barry, Roger G.

    2008-01-01

    The increased availability of remote sensing platforms with appropriate spatial and temporal resolution, global coverage and low financial costs allows for fast, semi-automated, and cost-effective estimates of changes in glacier parameters over large areas. Remote sensing approaches allow for regular monitoring of the properties of alpine glaciers such as ice extent, terminus position, volume and surface elevation, from which glacier mass balance can be inferred. Such methods are particularly useful in remote areas with limited field-based glaciological measurements. This paper reviews advances in the use of visible and infrared remote sensing combined with field methods for estimating glacier parameters, with emphasis on volume/area changes and glacier mass balance. The focus is on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor and its applicability for monitoring Himalayan glaciers. The methods reviewed are: volumetric changes inferred from digital elevation models (DEMs), glacier delineation algorithms from multi-spectral analysis, changes in glacier area at decadal time scales, and AAR/ELA methods used to calculate yearly mass balances. The current limitations and on-going challenges in using remote sensing for mapping characteristics of mountain glaciers also discussed, specifically in the context of the Himalaya. PMID:27879883

  8. Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra

    Science.gov (United States)

    Medina, José M.; Pereira, Luís M.; Correia, Hélder T.; Nascimento, Sérgio M. C.

    2011-07-01

    We report a hyperspectral imaging system to measure the reflectance spectra of real human irises with high spatial resolution. A set of ocular prosthesis was used as the control condition. Reflectance data were decorrelated by the principal-component analysis. The main conclusion is that spectral complexity of the human iris is considerable: between 9 and 11 principal components are necessary to account for 99% of the cumulative variance in human irises. Correcting image misalignments associated with spontaneous ocular movements did not influence this result. The data also suggests a correlation between the first principal component and different levels of melanin present in the irises. It was also found that although the spectral characteristics of the first five principal components were not affected by the radial and angular position of the selected iridal areas, they affect the higher-order ones, suggesting a possible influence of the iris texture. The results show that hyperspectral imaging in the iris, together with adequate spectroscopic analyses provide more information than conventional colorimetric methods, making hyperspectral imaging suitable for the characterization of melanin and the noninvasive diagnosis of ocular diseases and iris color.

  9. Synthesis of Manganese Tetroxide Nanoparticles Using Precipitation and Study of Its Structure and Optical Characteristics

    Directory of Open Access Journals (Sweden)

    Reza Shokoohi

    2016-12-01

    Full Text Available Considering extensive applications of manganese tetroxide nanoparticles in various industries due to its special properties, conducting studies on how to achieve more suitable ways to produce smaller nanoparticles is of great importance. In this study, nanoparticles of manganese tetroxide (Mn3O4 were synthesized by a co-precipitation method. In order to determine the characteristics of the structure, size, and specific surface of the resulting nanoparticles, techniques such as XRD, BET, BJH, FESEM, and FTIR were employed. Also, the nanoparticles were quantified with EDS and their colony size was examined using DLS experiments. The findings revealed a production of crystalline manganese tetroxide nanoparticles with a space group of 141/amd (S.G. (141 and a molecular weight of 228.81 with the international code of ICSD Card # 89 - 4837. The specific surface area was 32.147 m2/g with a pore volume of 0.1041 cm3/g. The XRD and EDX analyses verify the production of the Mn3O4 nanoparticles. The size of the nanostructures is approximately 19 nm. The method used in this study could produce the Mn3O4 nanoparticles in a much easier way without the need for surfactants. Compared to the nanoparticles produced in other studies, the size of the nanoparticles produced in the present study is remarkably smaller. Moreover, less amount of the metal salt was used.

  10. Topological, chemical and electro-optical characteristics of riboflavin-doped artificial and natural DNA thin films

    Science.gov (United States)

    Gnapareddy, Bramaramba; Dugasani, Sreekantha Reddy; Son, Junyoung; Park, Sung Ha

    2018-02-01

    DNA is considered as a useful building bio-material, and it serves as an efficient template to align functionalized nanomaterials. Riboflavin (RF)-doped synthetic double-crossover DNA (DX-DNA) lattices and natural salmon DNA (SDNA) thin films were constructed using substrate-assisted growth and drop-casting methods, respectively, and their topological, chemical and electro-optical characteristics were evaluated. The critical doping concentrations of RF ([RF]C, approx. 5 mM) at given concentrations of DX-DNA and SDNA were obtained by observing the phase transition (from crystalline to amorphous structures) of DX-DNA and precipitation of SDNA in solution above [RF]C. [RF]C are verified by analysing the atomic force microscopy images for DX-DNA and current, absorbance and photoluminescence (PL) for SDNA. We study the physical characteristics of RF-embedded SDNA thin films, using the Fourier transform infrared spectrum to understand the interaction between the RF and DNA molecules, current to evaluate the conductance, absorption to understand the RF binding to the DNA and PL to analyse the energy transfer between the RF and DNA. The current and UV absorption band of SDNA thin films decrease up to [RF]C followed by an increase above [RF]C. By contrast, the PL intensity illustrates the reverse trend, as compared to the current and UV absorption behaviour as a function of the varying [RF]. Owing to the intense PL characteristic of RF, the DNA lattices and thin films with RF might offer immense potential to develop efficient bio-sensors and useful bio-photonic devices.

  11. Land-ocean contrast on electrical characteristics of lightning discharge derived from satellite optical measurements

    Science.gov (United States)

    Adachi, T.; Said, R.; Cummer, S. A.; Li, J.; Takahashi, Y.; Hsu, R.; Su, H.; Chen, A. B.; Mende, S. B.; Frey, H. U.

    2010-12-01

    Comparative studies on the electrical properties of oceanic and continental lightning are crucial to elucidate air discharge processes occurring under different conditions. Past studies however have primarily focused on continental lightning because of the limited coverage of ground-based instruments. Recent satellite measurements by FORMOSAT-2/ISUAL provided a new way to survey the global characteristics of lightning and transient luminous events regardless of land and ocean. In this study, we analyze ISUAL/spectrophotometer data to clarify the electrical properties of lightning on a global level. Based on the results obtained by Cummer et al. [2006] and Adachi et al. [2009], the OI-777.4nm emission intensity is used to infer lightning electrical parameters. Results show a clear land-ocean contrast on the parameters of lightning discharge: in oceanic lightning, peak luminosity is 60 % higher and the time scale of return stroke is 30 % shorter. These results suggest higher peak current in oceanic lightning, which is consistent with the fact that elves, EMP-driven phenomena, also tend to occur over the ocean [Chen et al., 2008]. Further analysis of lightning events occurring around the Caribbean Sea shows that the transition-line of lightning electrical properties is precisely located along the coastline. We suggest that the differences in these electrical properties may be due to the boundary conditions (conductivity, surface terrain, etc). In this talk, based on the calibration with NLDN and Duke magnetometer data, current moment change and charge moment change will be globally evaluated using a complete set of the ISUAL-observed lightning events.

  12. Investigation of the Optical and Sensing Characteristics of Nanoparticle Arrays for High Temperature Applications

    Science.gov (United States)

    Dharmalingam, Gnanaprakash

    The monitoring of polluting gases such as CO and NOx emitted from gas turbines in power plants and aircraft is important in order to both reduce the effects of such gases on the environment as well as to optimize the performance of the respective power system. The need for emissions monitoring systems is further realized from increased regulatory requirements that are being instituted as a result of the environmental impact from increased air travel. Specifically, it is estimated that the contributions from aircraft emissions to total NOx emissions will increase from 4% to 17% between 2008 and 2020. Extensive fuel cost savings as well as a reduced environmental impact would therefore be realized if this increased air traffic utilized next generation jet turbines which used a emission/performance control sensing system. These future emissions monitoring systems must be sensitive and selective to the emission gases, reliable and stable under harsh environmental conditions where the operation temperatures are in excess of 500 °C within a highly reactive environment. Plasmonics based chemical sensors which use nanocomposites comprised of a combination of gold nano particles and Yttria Stabilized Zirconia (YSZ) has enabled the sensitive (PPM) and stable detection (100s of hrs) of H2, NO2 and CO at temperatures of 500 °C. The detection method involves measuring the change in the localized Surface Plasmon Resonance (LSPR) characteristics of the Au- YSZ nano composite and in particular, the plasmon peak position. Selectivity remains a challenging parameter to optimize and a layer by layer sputter deposition approach has been recently demonstrated to modify the resulting sensing properties through a change in the morphology of the deposited films. The material properties of the films have produced a unique sensing behavior in terms of a preferential response to H2 compared to CO. Although this is a very good benefit, it is expected that further enhancements would be

  13. Three-Dimensional Physical and Optical Characteristics of Aerosols over Central China from Long-Term CALIPSO and HYSPLIT Data

    Directory of Open Access Journals (Sweden)

    Xin Lu

    2018-02-01

    Full Text Available Aerosols greatly influence global and regional atmospheric systems, and human life. However, a comprehensive understanding of the source regions and three-dimensional (3D characteristics of aerosol transport over central China is yet to be achieved. Thus, we investigate the 3D macroscopic, optical, physical, and transport properties of the aerosols over central China based on the March 2007 to February 2016 data obtained from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO mission and the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT model. Our results showed that approximately 60% of the aerosols distributed over central China originated from local areas, whereas non-locally produced aerosols constituted approximately 40%. Anthropogenic aerosols constituted the majority of the aerosol pollutants (69% that mainly distributed less than 2.0 km above mean sea level. Natural aerosols, which are mainly composed of dust, accounted for 31% of the total aerosols, and usually existed at an altitude higher than that of anthropogenic aerosols. Aerosol particles distributed in the near surface were smaller and more spherical than those distributed above 2.0 km. Aerosol optical depth (AOD and the particulate depolarization ratio displayed decreasing trends, with a total decrease of 0.11 and 0.016 from March 2007 to February 2016, respectively. These phenomena indicate that during the study period, the extinction properties of aerosols decreased, and the degree of sphericity in aerosol particles increased. Moreover, the annual anthropogenic and natural AOD demonstrated decreasing trends, with a total decrease of 0.07 and 0.04, respectively. This study may benefit the evaluation of the effects of the 3D properties of aerosols on regional climates.

  14. Research on optical properties of dental enamel for early caries diagnostics using a He-Ne laser

    Science.gov (United States)

    Tang, Jing; Liu, Li; Li, Song-zhan

    2008-12-01

    A new and non-invasive method adapted for optical diagnosis of early caries is proposed by researching on the interaction mechanism of laser with dental tissue and relations of remitted light with optical properties of the tissue. This method is based on simultaneous analyses of the following parameters: probing radiation, backscattering and auto-fluorescence. Investigation was performed on 104 dental samples in vitro by using He-Ne laser (λ=632.8nm, 2.0+/-0.1mW) as the probing. Spectrums of all samples were obtained. Characteristic spectrums of dental caries in various stages (intact, initial, moderate and deep) were given. Using the back-reflected light to normalize the intensity of back-scattering and fluorescence, a quantitative diagnosis standard for different stages of caries is proposed. In order to verify the test, comparison research was conducted among artificial caries, morphological damaged enamel, dental calculus and intact tooth. Results show that variations in backscattering characteristic changes in bio-tissue morphological and the quantity of auto-fluorescence is correlated with concentration of anaerobic microflora in hearth of caries lesion. This method poses a high potential of diagnosing various stages of dental caries, and is more reliability to detect early caries, surface damage of health enamel and dental calculus.

  15. An MLC-based version for the ecliptic method for the determination of backscatter into the beam monitor chambers in photon beams of medical accelerators

    International Nuclear Information System (INIS)

    Nelli, Flavio Enrico

    2016-01-01

    A very simple method to measure the effect of the backscatter from secondary collimators into the beam monitor chambers in linear accelerators equipped with multi-leaf collimators (MLC) is presented here. The backscatter to the monitor chambers from the upper jaws of the secondary collimator was measured on three beam-matched linacs by means of three methods: this new methodology, the ecliptic method, and assessing the variation of the beam-on time per monitor unit with dose rate feedback disabled. This new methodology was used to assess the backscatter characteristics of asymmetric over-traveling jaws. Excellent agreement between the backscatter values measured using the new methodology introduced here and the ones obtained using the other two methods was established. The experimental values reported here differ by less than 1 % from published data. The sensitivity of this novel technique allowed differences in backscatter due to the same opening of the jaws, when placed at different positions on the beam path, to be resolved. The introduction of the ecliptic method has made the determination of the backscatter to the monitor chambers an easy procedure. The method presented here for machines equipped with MLCs makes the determination of backscatter to the beam monitor chambers even easier, and suitable to characterize linacs equipped with over-traveling asymmetric secondary collimators. This experimental procedure could be simply implemented to fully characterize the backscatter output factor constituent when detailed dosimetric modeling of the machine’s head is required. The methodology proved to be uncomplicated, accurate and suitable for clinical or experimental environments.

  16. Acoustic backscatter at a Red Sea whale shark aggregation site

    KAUST Repository

    Hozumi, Aya; Kaartvedt, Stein; Rø stad, Anders; Berumen, Michael L.; Cochran, Jesse E.M.; Jones, Burton

    2018-01-01

    An aggregation of sexually immature whale sharks occurs at a coastal submerged reef near the Saudi Arabian Red Sea coast each spring. We tested the hypothesis that these megaplanktivores become attracted to a prey biomass peak coinciding with their aggregation. Acoustic backscatter of the water column at 120 kHz and 333 kHz –a proxy for potential prey biomass –was continuously measured spanning the period prior to, during, and subsequent to the seasonal whale shark aggregations. No peak in acoustic backscatter was observed at the time of the aggregation. However, we observed a decrease in acoustic backscatter in the last days of deployment, which coincided the trailing end of whale shark season. Organisms forming the main scattering layer performed inverse diel vertical migration, with backscatter peaking at mid-depths during the day and in the deeper half of the water column at night. Target strength analyses suggested the backscatter was likely composed of fish larvae. Subsurface foraging behavior of the whale sharks within this aggregation has not been described, yet this study does not support the hypothesis that seasonal peaks in local whale shark abundance correspond to similar peaks in prey availability.

  17. Acoustic backscatter at a Red Sea whale shark aggregation site

    KAUST Repository

    Hozumi, Aya

    2018-03-28

    An aggregation of sexually immature whale sharks occurs at a coastal submerged reef near the Saudi Arabian Red Sea coast each spring. We tested the hypothesis that these megaplanktivores become attracted to a prey biomass peak coinciding with their aggregation. Acoustic backscatter of the water column at 120 kHz and 333 kHz –a proxy for potential prey biomass –was continuously measured spanning the period prior to, during, and subsequent to the seasonal whale shark aggregations. No peak in acoustic backscatter was observed at the time of the aggregation. However, we observed a decrease in acoustic backscatter in the last days of deployment, which coincided the trailing end of whale shark season. Organisms forming the main scattering layer performed inverse diel vertical migration, with backscatter peaking at mid-depths during the day and in the deeper half of the water column at night. Target strength analyses suggested the backscatter was likely composed of fish larvae. Subsurface foraging behavior of the whale sharks within this aggregation has not been described, yet this study does not support the hypothesis that seasonal peaks in local whale shark abundance correspond to similar peaks in prey availability.

  18. X-ray backscatter imaging with a spiral scanner

    International Nuclear Information System (INIS)

    Bossi, R.H.; Cline, J.L.; Friddell, K.D.

    1989-01-01

    X-ray backscatter imaging allows radiographic inspections to be performed with access to only one side of the object. A collimated beam of radiation striking an object will scatter x-rays by Compton scatter and x-ray fluorescence. A detector located on the source side of the part will measure the backscatter signal. By plotting signal strength as gray scale intensity vs. beam position on the object, an image of the object can be constructed. A novel approach to the motion of the collimated incident beam is a spiral scanner. The spiral scanner approach, described in this paper, can image an area of an object without the synchronized motion of the object or detector, required by other backscatter imaging techniques. X-ray backscatter is particularly useful for flaw detection in light element materials such as composites. The ease of operation and the ability to operate non-contact from one side of an object make x-ray backscatter imaging of increasing interest to industrial inspection problems

  19. Evaluation of the photon monitor backscatter in medical electron accelerators

    International Nuclear Information System (INIS)

    Zrenner, M.; Krieger, H.

    1999-01-01

    Background: Modern linear accelerators permit the use of irregular fields due to their flexible collimator systems with separately movable jaws or multileaf collimators. When using such irregular fields in the clinical practice output factors have to be corrected for enhanced backscatter to the dose monitor as compared with the conventional block shieldings. Methods: A method is presented to detect the monitor backscatter contributions to the output factor for irregular field settings. Results: The monitor backscatter factors have been measured using a telescopic device for 2 different treatment head geometries (Varian Clinac 2100C/D, General Electric Saturne 15) and for 3 photon radiation qualities (nominal energies X6, X18, X12). A method is introduced to calculate the monitor backscatter for arbitrary irregular treatment fields from the experimental data for square or rectangular fields. Conclusions: Besides the corrections for changes in phantom scatter and changes in the aperture, corrections for monitor backscatter have to be taken into account in many clinical cases. They can contribute up to more than 10% compared with the monitor values for free regular fields. (orig.) [de

  20. Jet-Tagged Back-Scattering Photons For Quark Gluon Plasma Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J., E-mail: rjfries@comp.tamu.edu [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77845 (United States); De, S. [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77845 (United States); Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata - 700064 (India); Srivastava, D.K. [Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata - 700064 (India)

    2013-08-15

    Several sources of direct photons are known to contribute to the total photon yield in high energy nuclear collisions. All of these photons carry characteristic and important information on the initial nuclei or the hot and dense fireball created in the collision. We investigate the possibility to separate photons from back-scattering of high momentum quarks off quark gluon plasma from other sources. Their unique kinematics can be utilized through high energy jet triggers on the away-side. We discuss the basic idea and estimate the feasibility of such a measurement at RHIC and LHC.

  1. Laser beam smoothing and backscatter saturation processes in plasmas relevant to national ignition facility hohlraums

    International Nuclear Information System (INIS)

    MacGowan, B.J.; Berger, R.L.; Cohen, B.I.

    2001-01-01

    We have used gas-filled targets irradiated by the Nova laser to simulate National Ignition Facility (NIF) hohlraum plasmas and to study the dependence of Stimulated Raman (SRS) and Brillouin (SBS) Scattering on beam smoothing at a range of laser intensities (3ω, 2-410 15 Wcm -2 ) and plasma conditions. We have demonstrated the effectiveness of polarization smoothing as a potential upgrade to the NIF. Experiments with higher intensities and higher densities characteristic of 350eV hohlraum designs indicate that with appropriate beam smoothing the backscatter from such hohlraums may be tolerable. (author)

  2. Raman scattering and Rutherford backscattering studies on InN films grown by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chung, Yee Ling; Peng Xingyu; Liao, Ying Chieh; Yao Shude; Chen, Li Chyong; Chen, Kuei Hsien; Feng, Zhe Chuan

    2011-01-01

    A series of InN thin films was grown on sapphire substrates via plasma-assisted molecular beam epitaxy (PA-MBE) with different nitrogen plasma power. Various characterization techniques, including Hall, photoluminescence, Raman scattering and Rutherford backscattering, have been employed to study these InN films. Good crystalline wurtzite structures have been identified for all PA-MBE grown InN films on sapphire substrate, which have narrower XRD wurtzite (0002) peaks, showed c-axis Raman scattering allowed longitudinal optical (LO) modes of A 1 and E 1 plus E 2 symmetry, and very weak backscattering forbidden transverse optical (TO) modes. The lower plasma power can lead to the lower carrier concentration, to have the InN film close to intrinsic material with the PL emission below 0.70 eV. With increasing the plasma power, high carrier concentration beyond 1 x 10 20 cm -3 can be obtained, keeping good crystalline perfection. Rutherford backscattering confirmed most of InN films keeping stoichiometrical In/N ratios and only with higher plasma power of 400 W leaded to obvious surface effect and interdiffusion between the substrate and InN film.

  3. Concurrent improvement in optical and electrical characteristics by using inverted pyramidal array structures toward efficient Si heterojunction solar cells

    KAUST Repository

    Wang, Hsin Ping

    2016-03-02

    The Si heterojunction (SHJ) solar cell is presently the most popular design in the crystalline Si (c-Si) photovoltaics due to the high open-circuit voltages (V). Photon management by surface structuring techniques to control the light entering the devices is critical for boosting cell efficiency although it usually comes with the V loss caused by severe surface recombination. For the first time, the periodic inverted pyramid (IP) structure fabricated by photolithography and anisotropic etching processes was employed for SHJ solar cells, demonstrating concurrent improvement in optical and electrical characteristics (i.e., short-circuit current density (J) and V). Periodic IP structures show superior light-harvesting properties as most of the incident rays bounce three times on the walls of the IPs but only twice between conventional random upright pyramids (UPs). The high minority carrier lifetime of the IP structures after a-Si:H passivation results in an enhanced V by 28 mV, showing improved carrier collection efficiency due to the superior passivation of the IP structure over the random UP structures. The superior antireflective (AR) ability and passivation results demonstrate that the IP structure has the potential to replace conventional UP structures to further boost the efficiency in solar cell applications.

  4. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    Science.gov (United States)

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  5. BATS - Backscattering And Time-of-flight Spectrometer

    International Nuclear Information System (INIS)

    Van Eijck, L.; Seydel, T.; Frick, B.; Schober, H.

    2011-01-01

    The new backscattering spectrometer IN16b will go into commissioning end 2011, providing in its final state about ten times higher count rate than its predecessor, IN16. Here we propose to increase its dynamic range by a factor of 7 with the TOF mode extension, BATS. This will make IN16b the leading high resolution backscattering spectrometer for incoherent quasi-elastic and inelastic neutron scattering; it will be competitive to the coarser resolution inverted geometry backscattering spectrometers that are being brought online at spallation sources. The increased dynamic range will extend the scope of science addressed on IN16b, generating considerable potential in fields such as the hydrogen economy (proton conduction, fuel cells, hydrogen storage), soft matter, biology and nano-science (nano-scale confinement, functionalized polymers). Such a large impact can be achieved using only a moderate investment. (authors)

  6. Light backscattering efficiency and related properties of some phytoplankters

    Science.gov (United States)

    Ahn, Yu-Hwan; Bricaud, Annick; Morel, André

    1992-11-01

    By using a set-up that combines an integrating sphere with a spectroradiometer LI-1800 UW, the backscattering properties of nine different phytoplankters grown in culture have been determined experimentally for the wavelengths domain ν = 400 up to 850 nm. Simultaneously, the absorption and attenuation properties, as well as the size distribution function, have been measured. This set of measurements allowed the spectral values of refractive index, and subsequently the volume scattering functions (VSF) of the cells, to be derived, by operating a scattering model previously developed for spherical and homogeneous cells. The backscattering properties, measured within a restricted angular domain (approximately between 132 and 174°), have been compared to theoretical predictions. Although there appear some discrepancies between experimental and predicted values (probably due to experimental errors as well as deviations of actual cells from computational hypotheses), the overall agreement is good; in particular the observed interspecific variations of backscattering values, as well as the backscattering spectral variation typical of each species, are well accounted for by theory. Using the computed VSF, the measured backscattering properties can be converted (assuming spherical and homogeneous cells) into efficiency factors for backscattering ( overlineQbb) . Thhe spectral behavior of overlineQbb appears to be radically different from that for total scattering overlineQb. For small cells, overlineQ (λ) is practically constant over the spectrum, whereas overlineQb(λ) varies approximately according to a power law (λ -2). As the cell size increases, overlineQbb conversely, becomes increasingly featured, whilst overlineQb becomes spectrally flat. The chlorophyll-specific backscattering coefficients ( b b∗ appear highly variable and span nearly two orders of magnitude. The chlorophyll-specific absorption and scattering coefficients, a ∗ and b ∗, are mainly ruled by

  7. Polarization phenomena on coherent particle backscattering by random media

    International Nuclear Information System (INIS)

    Gorodnichev, E.E.; Dudarev, S.L.; Rogozkin, D.B.

    1990-01-01

    An exact solution is found for the problem of coherent enhanced backscattering of spin 1/2 particles by random media with small-radius scatterers. The polarization features in the angular spectrum are analyzed for particles reflected by three- and two-dimensional disordered systems and by medium with Anderson disorder (periodic system of random scatterers). The analysis is carried out in the case of magnetic and spin-orbit interaction with the scattering centers. The effects predicted have not any analogues on coherent backscattering of light and scalar waves

  8. Tropospheric aerosol backscatter background mode at CO2 wavelengths

    Science.gov (United States)

    Rothermel, Jeffry; Bowdle, David A.; Menzies, Robert T.; Post, Madison J.; Vaughan, J. Michael

    1989-01-01

    A comparison is made between three climatologies of backscatter measurements in the troposphere and lower stratosphere at CO2 wavelengths. These were obtained from several locations using ground-based and airborne lidar systems. All three measurement sets show similar features, specifically, a high frequency of occurrence of low backscatter over a limited range of values in the middle and upper atmosphere (the 'background mode'). This background mode is important for the design and performance simulation of the prospective satellite sensors that rely on atmospheric aerosols as scattering targets.

  9. Electron backscattering for process control in electron beam welding

    International Nuclear Information System (INIS)

    Ardenne, T. von; Panzer, S.

    1983-01-01

    A number of solutions to the automation of electron beam welding is presented. On the basis of electron backscattering a complex system of process control has been developed. It allows an enlarged imaging of the material's surface, improved adjustment of the beam focusing and definite focus positioning. Furthermore, both manual and automated positioning of the electron beam before and during the welding process has become possible. Monitoring of the welding process for meeting standard welding requirements can be achieved with the aid of a control quantity derived from the results of electronic evaluation of the high-frequency electron backscattering

  10. Transportable gamma backscattering TOR-3 gauge

    International Nuclear Information System (INIS)

    Lakhmanov, P.G.; Skoblo, Yu.A.; Timofeev, V.B.

    1976-01-01

    A portable reflection gamma thickness meter TOR-3 is described having a greater measurement accuracy and wider operation temperature interval as compared to earlier serial instrument TOR-1. Integrated circuits are used in the TOR-3 construction. The principal electric diagram and technical characteristics of TOR-3 are presented

  11. Estimating Snow Water Equivalent with Backscattering at X and Ku Band Based on Absorption Loss

    Directory of Open Access Journals (Sweden)

    Yurong Cui

    2016-06-01

    Full Text Available Snow water equivalent (SWE is a key parameter in the Earth’s energy budget and water cycle. It has been demonstrated that SWE can be retrieved using active microwave remote sensing from space. This necessitates the development of forward models that are capable of simulating the interactions of microwaves and the snow medium. Several proposed models have described snow as a collection of sphere- or ellipsoid-shaped ice particles embedded in air, while the microstructure of snow is, in reality, more complex. Natural snow usually forms a sintered structure following mechanical and thermal metamorphism processes. In this research, the bi-continuous vector radiative transfer (bi-continuous-VRT model, which firstly constructs snow microstructure more similar to real snow and then simulates the snow backscattering signal, is used as the forward model for SWE estimation. Based on this forward model, a parameterization scheme of snow volume backscattering is proposed. A relationship between snow optical thickness and single scattering albedo at X and Ku bands is established by analyzing the database generated from the bi-continuous-VRT model. A cost function with constraints is used to solve effective albedo and optical thickness, while the absorption part of optical thickness is obtained from these two parameters. SWE is estimated after a correction for physical temperature. The estimated SWE is correlated with the measured SWE with an acceptable accuracy. Validation against two-year measurements, using the SnowScat instrument from the Nordic Snow Radar Experiment (NoSREx, shows that the estimated SWE using the presented algorithm has a root mean square error (RMSE of 16.59 mm for the winter of 2009–2010 and 19.70 mm for the winter of 2010–2011.

  12. Synthesis, surface properties and optical characteristics of CuV{sub 2}O{sub 6} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fengyun, E-mail: fywang@qdu.edu.cn [College of Physics and Cultivation Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Zhang, Hongchao [College of Physics and Cultivation Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Liu, Lei [School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Shin, Byoungchul [Electronic Ceramics Center, Dong-Eui University, Busan, 614-714 (Korea, Republic of); Shan, Fukai, E-mail: fkshan@qdu.edu.cn [College of Physics and Cultivation Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China)

    2016-07-05

    In{sup 3+}-doped CuV{sub 2}O{sub 6} nanofibers were prepared via the hydrothermal synthesis method, which produced fibers with a typical diameter of 100 nm, and a length of 1–5 μm. The nanofibers grew in a preferred [020] direction. The crystal phase together with the structure was studied via X-ray polycrystalline diffraction (XRD) and the Rietveld refinement. The surface characteristics of this nanostructure were measured with a scanning electron microscope (SEM), energy dispersive spectra (EDS), transmission electron microscopy (TEM), and N{sub 2}–adsorption–desorption isotherms. Photo-activities were evaluated by optical absorption, luminescence, and decay behaviors. The band-gap structures and positions were investigated. The vanadate has an efficient optical absorption from the UV to the visible wavelength region with an indirect allowed transition characterized by the narrow gap energy of 1.96 eV. The photocatalysis was investigated by the photo-degradation of RhB solutions irradiated by visible light. Correspondingly, CuV{sub 2}O{sub 6}:In{sup 3+} nanofibers possess quenched luminescence and have a more efficient photocatalytic activity on the RhB degradation. Photocatalytic mechanisms were proposed based on the experimental results, the band-energy positions, and the trapping experiments. The coexistence of V{sup 4+}/V{sup 5+} ions and induced-color centers was discussed on the proposed photocatalytic mechanism. The results demonstrated the promising potency of such In{sup 3+}-doped CuV{sub 2}O{sub 6} nanofibers for technological applications due to their high photo-activity and good cycling performance with the fiber morphology. - Highlights: • Recyclable α-CuV{sub 2}O{sub 6} nanofibers were successfully prepared via hydrothermal synthesis. • In-doped α-CuV{sub 2}O{sub 6} as a visible-light-driven photocatalyst was firstly developed. • The nanofibers display typical indirect allowed transitions with narrow band of 1.96 eV. • It presents

  13. Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography.

    Science.gov (United States)

    Wang, Hui; Magnain, Caroline; Sakadžić, Sava; Fischl, Bruce; Boas, David A

    2017-12-01

    Quantification of tissue optical properties with optical coherence tomography (OCT) has proven to be useful in evaluating structural characteristics and pathological changes. Previous studies primarily used an exponential model to analyze low numerical aperture (NA) OCT measurements and obtain the total attenuation coefficient for biological tissue. In this study, we develop a systematic method that includes the confocal parameter for modeling the depth profiles of high NA OCT, when the confocal parameter cannot be ignored. This approach enables us to quantify tissue optical properties with higher lateral resolution. The model parameter predictions for the scattering coefficients were tested with calibrated microsphere phantoms. The application of the model to human brain tissue demonstrates that the scattering and back-scattering coefficients each provide unique information, allowing us to differentially identify laminar structures in primary visual cortex and distinguish various nuclei in the midbrain. The combination of the two optical properties greatly enhances the power of OCT to distinguish intricate structures in the human brain beyond what is achievable with measured OCT intensity information alone, and therefore has the potential to enable objective evaluation of normal brain structure as well as pathological conditions in brain diseases. These results represent a promising step for enabling the quantification of tissue optical properties from high NA OCT.

  14. Gas pressure of extractive system from the high power ion source and effect of compound materials on the optical characteristics of ion

    International Nuclear Information System (INIS)

    Pan Zudong; Chen Miaosun; Wang Shouhu; Chen Xingqin; Ge Yisan; Fu Peng

    1991-01-01

    The mechanism of extractive beam from the ion source and the ion optical condition of a minimal divergence angle were introduced briefly. Two problems in researching 15 cm Duo Penning Ion Source (extractive voltage-25 kV, current-20 A) are expounded: (1) The pulse admission way makes the extractive system keeping optimum vacuum; (2) The insulating rings are made of a compound material, therefore, insulating characteristic is improved. Both the described points (1) and (2) will make a contribution to the ion optics

  15. Site location and optical properties of Eu implanted sapphire

    International Nuclear Information System (INIS)

    Marques, C.; Wemans, A.; Maneira, M.J.P.; Kozanecki, A.; Silva, R.C. da; Alves, E.

    2005-01-01

    Synthetic colourless transparent (0 0 0 1) sapphire crystals were implanted at room temperature with 100 keV europium ions to fluences up to 1 x 10 16 cm -2 . Surface damage is observed at low fluences, as seen by Rutherford backscattering spectrometry under channelling conditions. Optical absorption measurements revealed a variety of structures, most probably related to F-type defects characteristic of implantation damage. Thermal treatments in air or in vacuum up to 1000 deg. C do not produce noticeable changes both in the matrix or the europium profiles. However, the complete recovery of the implantation damage and some redistribution of the europium ions is achieved after annealing at 1300 deg. C in air. Detailed lattice site location studies performed for various axial directions allowed to assess the damage recovery and the incorporation of the Eu ions into well defined crystallographic sites, possibly in an oxide phase also inferred from optical absorption measurements

  16. Characteristic optical coherence tomography findings in patients with primary vitreoretinal lymphoma: a novel aid to early diagnosis.

    Science.gov (United States)

    Barry, Robert J; Tasiopoulou, Anastasia; Murray, Philip I; Patel, Praveen J; Sagoo, Mandeep S; Denniston, Alastair K; Keane, Pearse A

    2018-01-06

    The diagnosis of primary vitreoretinal lymphoma (PVRL) poses significant difficulties; presenting features are non-specific and confirmation usually necessitates invasive vitreoretinal biopsy. Diagnosis is often delayed, resulting in increased morbidity and mortality. Non-invasive imaging modalities such as spectral domain optical coherence tomography (SD-OCT) offer simple and rapid aids to diagnosis. We present characteristic SD-OCT images of patients with biopsy-positive PVRL and propose a number of typical features, which we believe are useful in identifying these lesions at an early stage. Medical records of all patients attending Moorfields Eye Hospital between April 2010 and April 2016 with biopsy-positive PVRL were reviewed. Pretreatment SD-OCT images were collected for all eyes and were reviewed independently by two researchers for features suggestive of PVRL. Pretreatment SD-OCT images of 32 eyes of 22 patients with biopsy-proven PVRL were reviewed. Observed features included hyper-reflective subretinal infiltrates (17/32), hyper-reflective infiltration in inner retinal layers (6/32), retinal pigment epithelium (RPE) undulation (5/32), clumps of vitreous cells (5/32) and sub-RPE deposits (3/32). Of these, the hyper-reflective subretinal infiltrates have an appearance unique to PVRL, with features not seen in other diseases. We have identified a range of SD-OCT features, which we believe to be consistent with a diagnosis of PVRL. We propose that the observation of hyper-reflective subretinal infiltrates as described is highly suggestive of PVRL. This case series further demonstrates the utility of SD-OCT as a non-invasive and rapid aid to diagnosis, which may improve both visual outcomes and survival of patients with intraocular malignancies such as PVRL. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Lattice constant measurement from electron backscatter diffraction patterns

    DEFF Research Database (Denmark)

    Saowadee, Nath; Agersted, Karsten; Bowen, Jacob R.

    2017-01-01

    Kikuchi bands in election backscattered diffraction patterns (EBSP) contain information about lattice constants of crystallographic samples that can be extracted via the Bragg equation. An advantage of lattice constant measurement from EBSPs over diffraction (XRD) is the ability to perform local ...

  18. Effect of the stimulated Brillouin backscattering on selffocusing threshold

    International Nuclear Information System (INIS)

    Rubenchik, A.M.; Shapiro, E.G.; Turitsyn, S.K.

    1994-03-01

    In many physical problems stimulated Brillouin scattering (SBS) and selffocusing are manifested simultaneously. We consider effect of the stimulated Brillouin backscattering (SBS) on self-focusing of laser radiation in plasmas. It was found that the self-focusing may be supressed substantionally by the SBS effect

  19. Simulation of Neutron Backscattering applied to organic material detection

    International Nuclear Information System (INIS)

    Forero, N. C.; Cruz, A. H.; Cristancho, F.

    2007-01-01

    The Neutron Backscattering technique is tested when performing the task of localizing hydrogenated explosives hidden in soil. Detector system, landmine, soil and neutron source are simulated with Geant4 in order to obtain the number of neutrons detected when several parameters like mine composition, relative position mine-source and soil moisture are varied

  20. Ultrasonic characterization of cancellous bone using apparent integrated backscatter

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, B K [Department of Physics, Rhodes College, 2000 North Parkway, Memphis, TN 38112 (United States); III, C I Jones [Department of Physics, Rhodes College, 2000 North Parkway, Memphis, TN 38112 (United States); Caldwell, G J [Department of Physics, Rhodes College, 2000 North Parkway, Memphis, TN 38112 (United States); Kaste, S C [Department of Diagnostic Imaging, St Jude Children' s Research Hospital, Memphis, TN 38105 (United States)

    2006-06-07

    Apparent integrated backscatter (AIB) is a measure of the frequency-averaged (integrated) backscattered power contained in some portion of a backscattered ultrasonic signal. AIB has been used extensively to study soft tissues, but its usefulness as a tissue characterization technique for cancellous bone has not been demonstrated. To address this, we performed measurements on 17 specimens of cancellous bone over two different frequency ranges using a 1 MHz and 5 MHz broadband ultrasonic transducer. Specimens were obtained from bovine tibiae and prepared in the shape of cubes (15 mm side length) with faces oriented along transverse (anterior, posterior, medial and lateral) and longitudinal (superior and inferior) principal anatomic directions. A mechanical scanning system was used to acquire multiple backscatter signals from each direction for each cube. AIB demonstrated highly significant linear correlations with bone mineral density (BMD) for both the transverse (R{sup 2} = 0.817) and longitudinal (R{sup 2} = 0.488) directions using the 5 MHz transducer. In contrast, the correlations with density were much weaker for the 1 MHz transducer (R{sup 2} = 0.007 transverse, R{sup 2} = 0.228 longitudinal). In all cases where a significant correlation was observed, AIB was found to decrease with increasing BMD.

  1. Ultrasonic Characterization of Tissues via Backscatter Frequency Dependence

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Sommer, F.G.

    1997-01-01

    , significantly lower mean frequency of ultrasound backscattered from cirrhotic, compared to normal, liver tissue was noted, Studies of benign and malignant liver tumors (hemangiomas and metastases, respectively) indicated differences in frequency content of these tumors, compared to the adjacent normal liver...

  2. Method and Apparatus for Computed Imaging Backscatter Radiography

    Science.gov (United States)

    Shedlock, Daniel (Inventor); Meng, Christopher (Inventor); Sabri, Nissia (Inventor); Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor)

    2013-01-01

    Systems and methods of x-ray backscatter radiography are provided. A single-sided, non-destructive imaging technique utilizing x-ray radiation to image subsurface features is disclosed, capable of scanning a region using a fan beam aperture and gathering data using rotational motion.

  3. Power Control for Passive QAM Multisensor Backscatter Communication Systems

    Directory of Open Access Journals (Sweden)

    Shengbo Hu

    2017-01-01

    Full Text Available To achieve good quality of service level such as throughput, power control is of great importance to passive quadrature amplitude modulation (QAM multisensor backscatter communication systems. First, we established the RF energy harvesting model and gave the energy condition. In order to minimize the interference of subcarriers and increase the spectral efficiency, then, the colocated passive QAM backscatter communication signal model is presented and the nonlinear optimization problems of power control are solved for passive QAM backscatter communication systems. Solutions include maximum and minimum access interval, the maximum and minimum duty cycle, and the minimal RF-harvested energy under the energy condition for node operating. Using the solutions above, the maximum throughput of passive QAM backscatter communication systems is analyzed and numerical calculation is made finally. Numerical calculation shows that the maximal throughput decreases with the consumed power and the number of sensors, and the maximum throughput is decreased quickly with the increase of the number of sensors. Especially, for a given consumed power of sensor, it can be seen that the throughput decreases with the duty cycle and the number of sensors has little effect on the throughput.

  4. About the information depth of backscattered electron imaging

    Czech Academy of Sciences Publication Activity Database

    Piňos, Jakub; Mikmeková, Šárka; Frank, Luděk

    2017-01-01

    Roč. 266, č. 3 (2017), s. 335-342 ISSN 0022-2720 Institutional support: RVO:68081731 Keywords : backscattered electrons * information depth * penetration of electrons Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Materials engineering Impact factor: 1.692, year: 2016

  5. Simulation of multistatic and backscattering cross sections for airborne radar

    Science.gov (United States)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  6. Transport properties and superconductivity in presence of backscattering

    International Nuclear Information System (INIS)

    Chen, H.; Mattis, D.

    1992-01-01

    In this paper, the authors achieve an exact evaluation of the Kubo formula for electrical resistivity, with a model in which random impurity scattering is parametrized by random back-scattering matrix elements. If the alloy is a superconductor, our theory allows us to correlate T c with the normal-phase resistivity. The results are in nice agreement with experiment

  7. A proportional counter for efficient backscatter Moessbauer effect spectroscopy

    International Nuclear Information System (INIS)

    Pawlowski, Z.; Marzec, J.; Cudny, W.; Holnicka, J.; Walentek, J.

    1979-01-01

    The authors present a novel gas-tight proportional counter with flat beryllium windows for backscatter Moessbauer spectroscopy. The krypton-filled counter has a geometry that approaches 2π and a resolution of 12% fwhm for the 14.4 keV line of 57 Fe, and is easy to manufacture. (Auth.)

  8. Investigation of the Static and Dynamic Characteristics for a Wafer-Fused C-band VCSEL in the Mode of the Optical-Electric Converter

    Science.gov (United States)

    Belkin, M. E.

    2018-01-01

    The results of an experimental study for a long wavelength vertical cavity surface-emitting laser of a wafer-fused construction as an effective resonant cavity enhanced photodetector of analog optical signals are described. The device is of interest for a number of promising microwave photonics applications and for creation of a low-cost photoreceiver in a high-speed fiber optics telecommunication system with dense wavelength division multiplexing. The schematic of the testbed, the original technique allowing to calculate the passband of the built-in optical cavity, and the results of measuring dark current, current responsivity, amplitude- and phase-frequency characteristics during the process of photo-detection are demonstrated.

  9. Effects of Biota on Backscatter: Experiments with the Portable Acoustic Laboratory (PAL)

    National Research Council Canada - National Science Library

    Jones, Christopher

    2003-01-01

    .... Monitoring showed a sudden drop in backscatter, but this was short lived. Abundant mysid shrimp appeared to have caused microtopographic changes that quickly raised backscatter intensity to near-background levels...

  10. Super-virtual Interferometric Separation and Enhancement of Back-scattered Surface Waves

    KAUST Repository

    Guo, Bowen

    2015-08-19

    Back-scattered surface waves can be migrated to detect near-surface reflectors with steep dips. A robust surface-wave migration requires the prior separation of the back-scattered surface-wave events from the data. This separation is often difficult to implement because the back-scattered surface waves are masked by the incident surface waves. We mitigate this problem by using a super-virtual interferometric method to enhance and separate the back-scattered surface waves. The key idea is to calculate the virtual back-scattered surface waves by stacking the resulting virtual correlated and convolved traces associated with the incident and back-scattered waves. Stacking the virtual back-scattered surface waves improves their signal-to-noise ratio and separates the back-scattered surface-waves from the incident field. Both synthetic and field data results validate the robustness of this method.

  11. Structural and optical characteristics of in-situ sputtered highly oriented 15R-SiC thin films on different substrates

    Science.gov (United States)

    Mourya, Satyendra; Jaiswal, Jyoti; Malik, Gaurav; Kumar, Brijesh; Chandra, Ramesh

    2018-01-01

    In this work, we have reported the in-situ fabrication of nanocrystalline rhombohedral silicon carbide (15R-SiC) thin films by RF-magnetron sputtering at 800 °C substrate temperature. The structural and optical properties were investigated for the films grown on four different substrates (ZrO2, MgO, SiC, and Si). The contact angle measurement was performed on all the substrates to investigate the role of interfacial surface energy in nucleation and growth of the films. The XRD measurement revealed the growth of (1 0 10) orientation for all the samples and demonstrated better crystallinity on Si substrate, which was further corroborated by the TEM results. The Raman spectroscopy confirmed the growth of rhombohedral phase with 15R polytype. Surface characteristics of the films have been investigated by energy dispersive x-ray spectroscopy, FTIR, and atomic force microscope (AFM) to account for chemical composition, bonding, and root mean square surface roughness (δrms). The optical dispersion behavior of 15R-SiC thin films was examined by variable angle spectroscopic ellipsometry in the wide spectral range (246-1688 nm), including the surface characteristics in the optical model. The non-linear optical parameters (χ3 and n2) of the samples have been calculated by the Tichy and Ticha relation using a single effective oscillator model of Wemple and Didomenico. Additionally, our optical results provided an alternative way to measure the ratio of carrier concentration to the effective mass (N/m*). These investigated optical parameters allow one to design and fabricate optoelectronic, photonic, and telecommunication devices for deployment in extreme environment.

  12. The Optic Nerve Head in Primary Open-Angle Glaucoma Eyes With High Myopia: Characteristics and Association With Visual Field Defects.

    Science.gov (United States)

    Chen, Li-Wei; Lan, Yu-Wen; Hsieh, Jui-Wen

    2016-06-01

    To evaluate the morphologic characteristics of optic neuropathy and its association with visual field (VF) defects in primary open-angle glaucoma (POAG) eyes with high myopia. In this cross-sectional study, we reviewed data from 375 Taiwanese patients (375 eyes) of POAG, ages 20 to 60 years. Optic disc photographs were used for planimetric measurements of morphologic variables. The myopic refraction was divided into high myopia (<-6.0 D) and nonhigh myopia (moderate myopia to hyperopia). The optic disc area was classified as moderate (1.59 to 2.85 mm), large, and small. Differences in characteristics between groups, correlations with the disc area, and factors associated with VF defects were determined. Of the 142 highly myopic eyes, 33 (23%) had a large disc, 26 (18%) had a small disc, and 55 (39%) had a tilted disc. Large discs had a higher cup-to-disc (C/D) area ratio and a higher tilt ratio; small discs had a smaller rim area and a lower tilt ratio (all P<0.05). Characteristics associated with high myopia included a smaller rim area, a higher C/D area ratio, and a lower tilt ratio (all P<0.001). In logistic regression, the refraction, the C/D area ratio, the rim area, and the tilt ratio (all P<0.05) were associated with VF defects. In Taiwanese individuals with POAG, our study found that tilted, large, or small discs were prevalent in highly myopic eyes. Of these characteristics, only the disc tilt and high myopia by itself were associated with the severity of glaucomatous optic neuropathy.

  13. Random phase plate hot spots and their effect on stimulated Brillouin backscatter and self-focusing

    International Nuclear Information System (INIS)

    Rose, H.A.

    1995-01-01

    Laser hot spots, as determined by Random Phase Plate (RPP) hot spots, control the critical value of the average intensity, I c , at which there is a rapid onset of stimulated scatter in the strongly damped convective regime of three wave parametric instabilities. For the case of stimulated Brillouin backscatter in a long scale length plasma, nascent hot spot ponderomotive self-focusing is shown to reduce the value of I c in the regime of very strongly damped acoustic waves. RPP hot spots have two, intrinsically nonlinear, thresholds for ponderomotive self-focusing. Large intensity amplifications occur in the hot spot neighborhood when the hot spot power exceeds a certain critical power, P c , which is independent of the optic's f number, F. When the second, F-dependent, hot spot power threshold is exceeded, a filament emerges from the far side of the hot spot, whose extent grows erratically in time

  14. A Micropulse eye-safe all-fiber molecular backscatter coherent temperature lidar

    Directory of Open Access Journals (Sweden)

    Abari Cyrus F.

    2016-01-01

    Full Text Available In this paper, we analyze the performance of an all-fiber, micropulse, 1.5 μm coherent lidar for remote sensing of atmospheric temperature. The proposed system benefits from the recent advances in optics/electronics technology, especially an all-fiber image-reject homodyne receiver, where a high resolution spectrum in the baseband can be acquired. Due to the presence of a structured spectra resulting from the spontaneous Rayleigh-Brillouine scattering, associated with the relevant operating regimes, an accurate estimation of the temperature can be carried out. One of the main advantages of this system is the removal of the contaminating Mie backscatter signal by electronic filters at the baseband (before signal conditioning and amplification. The paper presents the basic concepts as well as a Monte-Carlo system simulation as the proof of concept.

  15. Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modelling

    Directory of Open Access Journals (Sweden)

    M. Brabec

    2012-10-01

    Full Text Available Advanced measurement and modelling techniques are employed to estimate the partitioning of atmospheric water between the gas phase and the condensed phase in and around cirrus clouds, and thus to identify in-cloud and out-of-cloud supersaturations with respect to ice. In November 2008 the newly developed balloon-borne backscatter sonde COBALD (Compact Optical Backscatter and AerosoL Detector was flown 14 times together with a CFH (Cryogenic Frost point Hygrometer from Lindenberg, Germany (52° N, 14° E. The case discussed here in detail shows two cirrus layers with in-cloud relative humidities with respect to ice between 50% and 130%. Global operational analysis data of ECMWF (roughly 1° × 1° horizontal and 1 km vertical resolution, 6-hourly stored fields fail to represent ice water contents and relative humidities. Conversely, regional COSMO-7 forecasts (6.6 km × 6.6 km, 5-min stored fields capture the measured humidities and cloud positions remarkably well. The main difference between ECMWF and COSMO data is the resolution of small-scale vertical features responsible for cirrus formation. Nevertheless, ice water contents in COSMO-7 are still off by factors 2–10, likely reflecting limitations in COSMO's ice phase bulk scheme. Significant improvements can be achieved by comprehensive size-resolved microphysical and optical modelling along backward trajectories based on COSMO-7 wind and temperature fields, which allow accurate computation of humidities, homogeneous ice nucleation, resulting ice particle size distributions and backscatter ratios at the COBALD wavelengths. However, only by superimposing small-scale temperature fluctuations, which remain unresolved by the numerical weather prediction models, can we obtain a satisfying agreement with the observations and reconcile the measured in-cloud non-equilibrium humidities with conventional ice cloud microphysics. Conversely, the model-data comparison provides no evidence that additional

  16. Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: Features attributed to ice-crystals corner reflection

    Science.gov (United States)

    Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.

    2017-11-01

    The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.

  17. Threshold and maximum power evolution of stimulated Brillouin scattering and Rayleigh backscattering in a single mode fiber segment

    International Nuclear Information System (INIS)

    Sanchez-Lara, R; Alvarez-Chavez, J A; Mendez-Martinez, F; De la Cruz-May, L; Perez-Sanchez, G G

    2015-01-01

    The behavior of stimulated Brillouin scattering (SBS) and Rayleigh backscattering phenomena, which limit the forward transmission power in modern, ultra-long haul optical communication systems such as dense wavelength division multiplexing systems is analyzed via simulation and experimental investigation of threshold and maximum power. Evolution of SBS, Rayleigh scattering and forward powers are experimentally investigated with a 25 km segment of single mode fiber. Also, a simple algorithm to predict the generation of SBS is proposed where two criteria of power thresholds was used for comparison with experimental data. (paper)

  18. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    Science.gov (United States)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  19. Comparative study of macrotexture analysis using X-ray diffraction and electron backscattered diffraction techniques

    International Nuclear Information System (INIS)

    Serna, Marilene Morelli

    2002-01-01

    The macrotexture is one of the main characteristics in metallic materials, which the physical properties depend on the crystallographic direction. The analysis of the macrotexture to middles of the decade of 80 was just accomplished by the techniques of Xray diffraction and neutrons diffraction. The possibility of the analysis of the macrotexture using, the technique of electron backscattering diffraction in the scanning electronic microscope, that allowed to correlate the measure of the orientation with its location in the micro structure, was a very welcome tool in the area of engineering of materials. In this work it was studied the theoretical aspects of the two techniques and it was used of both techniques for the analysis of the macrotexture of aluminum sheets 1050 and 3003 with intensity, measured through the texture index 'J', from 2.00 to 5.00. The results obtained by the two techniques were shown reasonably similar, being considered that the statistics of the data obtained by the technique of electron backscatter diffraction is much inferior to the obtained by the X-ray diffraction. (author)

  20. Looking for Multiple Scattering Effects in Backscattered Ultrasonic Grain Noise from Jet-Engine Nickel Alloys

    International Nuclear Information System (INIS)

    Margetan, F.J.; Haldipur, Pranaam; Yu Linxiao; Thompson, R.B.

    2005-01-01

    For pulse/echo inspections of metals, models which predict backscattered noise characteristics often make a 'single-scattering' assumption, i.e., multiple-scattering events in which sound is scattered from one grain to another before returning to the transducer are ignored. Models based on the single-scattering assumption have proven to be very useful in simulating inspections of engine-alloy billets and forgings. However, this assumption may not be accurate if grain scattering is too 'strong' (e.g., if the mean grain diameter and/or the inspection frequency is too large). In this work, backscattered grain noise measurements and analyses were undertaken to search for evidence of significant multiple scattering in pulse/echo inspections of jet-engine Nickel alloys. At or above about 7 MHz frequency and 50 micron grain diameter, problems were seen with single-scattering noise models that are likely due to the neglect of multiple scattering by the models. The modeling errors were less severe for focused-probe measurements in the focal zone than for planar probe inspections. Single-scattering noise models are likely adequate for simulating current billet inspections which are carried out using 5-MHz focused transducers. However, multiple scattering effects should be taken into account in some fashion when simulating higher-frequency inspections of Nickel-alloy billets having large mean grain diameters (> 40 microns)

  1. Geomorphology, acoustic backscatter, and processes in Santa Monica Bay from multibeam mapping.

    Science.gov (United States)

    Gardner, James V; Dartnell, Peter; Mayer, Larry A; Hughes Clarke, John E

    2003-01-01

    Santa Monica Bay was mapped in 1996 using a high-resolution multibeam system, providing the first substantial update of the submarine geomorphology since the initial compilation by Shepard and Emery [(1941) Geol. Soc. Amer. Spec. Paper 31]. The multibeam mapping generated not only high-resolution bathymetry, but also coregistered, calibrated acoustic backscatter at 95 kHz. The geomorphology has been subdivided into six provinces; shelf, marginal plateau, submarine canyon, basin slope, apron, and basin. The dimensions, gradients, and backscatter characteristics of each province is described and related to a combination of tectonics, climate, sea level, and sediment supply. Fluctuations of eustatic sea level have had a profound effect on the area; by periodically eroding the surface of Santa Monica plateau, extending the mouth of the Los Angeles River to various locations along the shelf break, and by connecting submarine canyons to rivers. A wetter glacial climate undoubtedly generated more sediment to the rivers that then transported the increased sediment load to the low-stand coastline and canyon heads. The trends of Santa Monica Canyon and several bathymetric highs suggest a complex tectonic stress field that has controlled the various segments. There is no geomorphic evidence to suggest Redondo Canyon is fault controlled. The San Pedro fault can be extended more than 30 km to the northwest by the alignment of a series of bathymetric highs and abrupt changes in direction of channel thalwegs.

  2. Estimation of Single-Crystal Elastic Constants of Polycrystalline Materials from Back-Scattered Grain Noise

    International Nuclear Information System (INIS)

    Haldipur, P.; Margetan, F. J.; Thompson, R. B.

    2006-01-01

    Single-crystal elastic stiffness constants are important input parameters for many calculations in material science. There are well established methods to measure these constants using single-crystal specimens, but such specimens are not always readily available. The ultrasonic properties of metal polycrystals, such as velocity, attenuation, and backscattered grain noise characteristics, depend in part on the single-crystal elastic constants. In this work we consider the estimation of elastic constants from UT measurements and grain-sizing data. We confine ourselves to a class of particularly simple polycrystalline microstructures, found in some jet-engine Nickel alloys, which are single-phase, cubic, equiaxed, and untextured. In past work we described a method to estimate the single-crystal elastic constants from measured ultrasonic velocity and attenuation data accompanied by metallographic analysis of grain size. However, that methodology assumes that all attenuation is due to grain scattering, and thus is not valid if appreciable absorption is present. In this work we describe an alternative approach which uses backscattered grain noise data in place of attenuation data. Efforts to validate the method using a pure copper specimen are discussed, and new results for two jet-engine Nickel alloys are presented

  3. Application of neutron backscatter techniques to level measurement problems

    International Nuclear Information System (INIS)

    Leonardi-Cattolica, A.M.; McMillan, D.H.; Telfer, A.; Griffin, L.H.; Hunt, R.H.

    1982-01-01

    We have designed and built portable level detectors and fixed level monitors based on neutron scattering and detection principles. The main components of these devices, which we call neutron backscatter gauges, are a neutron emitting radioisotope, a neutron detector, and a ratemeter. The gauge is a good detector for hydrogen but is much less sensitive to most other materials. This allows level measurements of hydrogen bearing materials, such as hydrocarbons, to be made through the walls of metal vessels. Measurements can be made conveniently through steel walls which are a few inches thick. We have used neutron backscatter gauges in a wide variety of level measurement applications encountered in the petrochemical industry. In a number of cases, the neutron techniques have proven to be superior to conventional level measurement methods, including gamma ray methods

  4. RFID tag modification for full depth backscatter modulation

    Science.gov (United States)

    Scott, Jeffrey Wayne [Pasco, WA; Pratt, Richard M [Richland, WA

    2010-07-20

    A modulated backscatter radio frequency identification device includes a diode detector configured to selectively modulate a reply signal onto an incoming continuous wave; communications circuitry configured to provide a modulation control signal to the diode detector, the diode detector being configured to modulate the reply signal in response to be modulation control signal; and circuitry configured to increase impedance change at the diode detector which would otherwise not occur because the diode detector rectifies the incoming continuous wave while modulating the reply signal, whereby reducing the rectified signal increases modulation depth by removing the reverse bias effects on impedance changes. Methods of improving depth of modulation in a modulated backscatter radio frequency identification device are also provided.

  5. Transition to turbulence via spatiotemporal intermittency in stimulated Raman backscattering

    International Nuclear Information System (INIS)

    Skoric, M.M.; Jovanovic, M.S.; Rajkovic, M.R.

    1996-01-01

    The spatiotemporal evolution of stimulated Raman backscattering in a bounded, uniform, weakly dissipative plasma is studied. The nonlinear model of a three-wave interaction involves a quadratic coupling of slowly varying complex amplitudes of the laser pump, the backscattered and the electron plasma wave. The corresponding set of coupled partial differential equations with nonlinear phase detuning that is taken into account is solved numerically in space time with fixed nonzero source boundary conditions. The study of the above open, convective, weakly confined system reveals a quasiperiodic transition to spatiotemporal chaos via spatiotemporal intermittency. In the analysis of transitions a dual scheme borrowed from fields of nonlinear dynamics and statistical physics is applied. An introduction of a nonlinear three-wave interaction to a growing family of paradigmatic equations which exhibit a route to turbulence via spatiotemporal intermittency is outlined in this work. copyright 1996 The American Physical Society

  6. Measurement of the thickness of thin films by backscattered protons

    International Nuclear Information System (INIS)

    Samaniego, L.E.Q.

    1976-07-01

    The method of backscattered protons has been used to measure the thickness of thin films. A monoenergetic beam of protons is directed on the film to be measured and the backscattered protons are detected with a particle detector. The film thickness is calculated from the energy spectrum of the protons. In the case of films consisting of several layers of elements with well separated atomic masses, it is possible to separate the spectra of protons scattered from the different elements, permitting a measurement of the thicknesses of the different layers. The method consists of calculating the energy loss of the protons throughout their trajectory, from the point of incidence on the film to the final detection. Thicknesses were measured for the following film combinations: gold on mylar, chromium on mylar, gold on chromium on mylar, and pure mylar. (Author) [pt

  7. Model for H- and D- production by hydrogen backscattering

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Schneider, P.J.

    1980-01-01

    The Marlowe Monte-Carlo backscattering code has been used to calculate particle reflection coefficients and energy distributions for H, D incident upon Li, K, Ni, Cu, Mo, Ag, Cs, Hf, W, Pt, and U surfaces. The backscattered energy and angular distributions are combined with a model for formation and survival probabilities for H - , D - leaving the surface. A least-squares fit of experimental measurements of H - yields from the composite surface, Cs/Cu, has been used to obtain two semi-empirical constants, α, β which enter into the formation and survival probabilities. These probabilities are used to calculate the production probability which in turn provides an upper limit to the negative ion yield. The choice of electrode material is discussed as a function of atomic number

  8. Stimulated brillouin backscatter of a short-pulse laser

    International Nuclear Information System (INIS)

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.

    1994-01-01

    Stimulated Brillouin backscattering (SBBS) from a short-pulse laser, where the pulse length is short compared to the plasma length, is found to be qualitatively different than in the long pulse regime, where the pulse length is long compared to the plasma length. We find that after an initial transient of order the laser pulse length transit time, the instability reaches a steady state in the variables x' = x - V g t, t' = t, where V g is the pulse group velocity. In contrast, SBBS in a long pulse can be absolutely unstable and grows indefinitely, or until nonlinearities intervene. We find that the motion of the laser pulse induces Doppler related effects that substantially modify the backscattered spectrum at higher intensities, where the instability is strongly coupled (i.e. , has a growth rate large compared to the ion acoustic frequency)

  9. Validation Test of Geant4 Simulation of Electron Backscattering

    CERN Document Server

    Kim, Sung Hun; Basaglia, Tullio; Han, Min Cheol; Hoff, Gabriela; Kim, Chan Hyeong; Saracco, Paolo

    2015-01-01

    Backscattering is a sensitive probe of the accuracy of electron scattering algorithms implemented in Monte Carlo codes. The capability of the Geant4 toolkit to describe realistically the fraction of electrons backscattered from a target volume is extensively and quantitatively evaluated in comparison with experimental data retrieved from the literature. The validation test covers the energy range between approximately 100 eV and 20 MeV, and concerns a wide set of target elements. Multiple and single electron scattering models implemented in Geant4, as well as preassembled selections of physics models distributed within Geant4, are analyzed with statistical methods. The evaluations concern Geant4 versions from 9.1 to 10.1. Significant evolutions are observed over the range of Geant4 versions, not always in the direction of better compatibility with experiment. Goodness-of-fit tests complemented by categorical analysis tests identify a configuration based on Geant4 Urban multiple scattering model in Geant4 vers...

  10. Standard-target calibration of an acoustic backscatter system

    Science.gov (United States)

    Foote, Kenneth G.; Martini, Marinna A.

    2010-01-01

    The standard-target method used to calibrate scientific echo sounders and other scientific sonars by a single, solid elastic sphere is being adapted to acoustic backscatter (ABS) systems. Its first application, to the AQUAscat 1000, is described. The on-axis sensitivity and directional properties of transducer beams at three operating frequencies, nominally 1, 2.5, and 4 MHz, have been determined using a 10-mm-diameter sphere of tungsten carbide with 6% cobalt binder. Preliminary results are reported for the 1-MHz transducer. Their application to measurements of suspended sediment made in situ with the same device is described. This will enable the data to be expressed directly in physical units of volume backscattering.

  11. Comparison of SeaWinds Backscatter Imaging Algorithms

    Science.gov (United States)

    Long, David G.

    2017-01-01

    This paper compares the performance and tradeoffs of various backscatter imaging algorithms for the SeaWinds scatterometer when multiple passes over a target are available. Reconstruction methods are compared with conventional gridding algorithms. In particular, the performance and tradeoffs in conventional ‘drop in the bucket’ (DIB) gridding at the intrinsic sensor resolution are compared to high-spatial-resolution imaging algorithms such as fine-resolution DIB and the scatterometer image reconstruction (SIR) that generate enhanced-resolution backscatter images. Various options for each algorithm are explored, including considering both linear and dB computation. The effects of sampling density and reconstruction quality versus time are explored. Both simulated and actual data results are considered. The results demonstrate the effectiveness of high-resolution reconstruction using SIR as well as its limitations and the limitations of DIB and fDIB. PMID:28828143

  12. Eyes with Suspicious Appearance of the Optic Disc and Normal Intraocular Pressure: Using Clinical and Epidemiological Characteristics to Differentiate Those with and without Glaucoma.

    Directory of Open Access Journals (Sweden)

    Diego T Dias

    Full Text Available Among all glaucoma suspects, eyes with optic nerve head features suspicious or suggestive of early glaucoma are probably those that offer the greatest challenge for clinicians. In contrast with the robust longitudinal data published on ocular hypertension, there is no specific management guideline for these patients. Therefore, evaluating eyes with suspicious optic disc appearance and normal intraocular pressure (IOP, we sought to investigate potential differences in clinical and epidemiological characteristics to differentiate those with normal-tension glaucoma (NTG from those with presumed large physiological optic disc cups (pLPC. In this observational case-control study, we consecutively enrolled individuals with pLPC and NTG. All eyes had vertical cup-to-disc ratio (VCDR≥0.6 and untreated IOP<21 mmHg. Glaucomatous eyes had reproducible visual field defects. Eyes with pLPC required normal visual fields and ≥30 months of follow-up with no evidence of glaucomatous neuropathy. Clinical and epidemiological parameters were compared between groups. Eighty-four individuals with pLPC and 40 NTG patients were included. Regarding our main results, NTG patients were significantly older and with a higher prevalence of Japanese descendants (p<0.01. Not only did pLPC eyes have smaller mean VCDR, but also larger optic discs (p≤0.04. There were no significant differences for gender, central corneal thickness, and spherical equivalent (p≥0.38. Significant odds ratios (OR were found for race (OR = 2.42; for Japanese ancestry, age (OR = 1.05, VCDR (OR = 5.03, and disc size (OR = 0.04; p≤0.04. In conclusion, in patients with suspicious optic disc and normal IOP, those with older age, Japanese ancestry, smaller optic discs, and larger VCDR are more likely to have NTG, and therefore, deserve deeper investigation and closer monitoring.

  13. Influence of Cd-content on structural and optical dispersion characteristics of nanocrystalline Zn1−xCdxS (0 ⩽ x ⩽ 0.9) films

    International Nuclear Information System (INIS)

    Farag, A.A.M.; Abdel Rafea, M.; Roushdy, N.; El-Shazly, O.; El-Wahidy, E.F.

    2015-01-01

    Highlights: • Highly uniform and good adhesion of nanocrystalline Zn 1−x Cd x S films were synthesized. • Small magnitude of optical electronegativity was calculated. • Third-order nonlinear optical susceptibility and molar polarizability were considered. - Abstract: Low cost dip coating technique was successfully used to deposit highly uniform and good adhesive nanocrystalline Zn 1−x Cd x S (0 ⩽ x ⩽ 0.9) thin films. The surface morphology and crystalline structural characteristics of Zn 1−x Cd x S were achieved by using atomic force microscopy (AFM) and transmission electron microscopy (TEM), respectively. Transmission spectra show red shifting of absorption edge as the Cd content increased. The optical constants were accurately determined by using reflectance and transmittance spectra. The effect of Cd-content on refractive index, extinction index and other optical dispersion parameters were also investigated. The dispersion of the refractive index was discussed in terms of single oscillator model. In addition, the ratio of free carrier concentration to its effective mass was estimated. The calculated value of oscillator energy E o obeys the empirical relation (E o ≈ 2 E g ), obtained from single oscillator model. Small magnitude of optical electronegativity (χ ∗ ) for Zn 1−x Cd x S (0 ⩽ x ⩽ 0.9) thin films and relatively high refractive index can be attributed to covalent nature, in agreement with β value, obtained from dispersion energy analysis. Moreover, molar polarizability and third-order nonlinear optical susceptibility were also considered

  14. Using Backscattering to Enhance Efficiency in Neutron Detectors

    DEFF Research Database (Denmark)

    Kittelmann, T.; Kanaki, K.; Klinkby, Esben Bryndt

    2017-01-01

    The principle of using strongly scattering materials to recover efficiency in detectors for neutron instruments, via backscattering of unconverted thermal neutrons, is discussed in general. The feasibility of the method is illustrated through Geant4-based simulations involving thermal neutrons im......, respectively, centimeters and tens of microseconds. Potential mitigation techniques to contain the impact on resolution are investigated and are found to alleviate the issues to some degree, at a cost of reduced gain in efficiency....

  15. High-precision thickness measurements using beta backscatter

    International Nuclear Information System (INIS)

    Heckman, R.V.

    1978-11-01

    A two-axis, automated fixture for use with a high-intensity Pm-147 source and a photomultiplier-scintillation beta-backscatter probe for making thickness measurements has been designed and built. A custom interface was built to connect the system to a minicomputer, and software was written to position the tables, control the probe, and make the measurements. Measurements can be made in less time with much greater precision than by the method previously used

  16. Quantitative analysis of Moessbauer backscatter spectra from multilayer films

    International Nuclear Information System (INIS)

    Bainbridge, J.

    1975-01-01

    The quantitative interpretation of Moessbauer backscatter spectra with particular reference to internal conversion electrons has been treated assuming that electron attenuation in a surface film can be satisfactorily described by a simple exponential law. The theory of Krakowski and Miller has been extended to include multi-layer samples, and a relation between the Moessbauer spectrum area and an individual layer thickness derived. As an example, numerical results are obtained for a duplex oxide film grown on pure iron. (Auth.)

  17. Time of flight spectrometry in heavy ions backscattering analysis

    International Nuclear Information System (INIS)

    Chevarier, A.; Chevarier, N.

    1983-05-01

    Time of flight spectrometry for backscattering analysis of MeV heavy ions is proposed. The capabilities and limitations of this method are investigated. Depth and mass resolution obtained in measurements of oxide films thickness as well as in GaAs layers analysis are presented. The importance of minimizing pile-up without significant loss of resolution by use of an adequate absorber set just in front of the rear detector is underlined

  18. Prediction of Backscatter and Emissivity of Snow at Millimeter Wavelengths.

    Science.gov (United States)

    1980-01-01

    AD-AI16 9A MASSACHUISETTS IMST OF TECH CAMBRIDGE RESEARCH LAB OF-ETC F/6 17/9 PREDICTION OF BACKSCATTER AND EMISSIVITY OF SNOW AT MILLETER --ETC(U...emitting media such as snow. The emissivity in the Ray- leigh- Jeans approximation is then the microwave brightness tempera- ture T divided by an effective...resistivity, and thermal tempera- ture. Jean et al. (Reference 125) compared a theoretical expression for the total apparent temperature of a smooth surface

  19. Bottom Backscattering Strengths Measured in Shallow and Deep Water

    Science.gov (United States)

    2017-01-18

    Reverberation Experiment 2005 (OREX-05); 0.6−5 kHz • Deep Water o Scotian Continental Rise, August 1993 (19 sites)  Low -Frequency Active 11 (LFA 11...reprocessed cross-CST- experiment results are shown (along with some physics -based model comparisons) in Figs. 9.A-2 and 9.A-3 (Gauss et al., 2008...Backscattering Measured Off the Carolina Coast During Littoral Warfare Advanced Development 98-4 Experiment ,” NRL Memorandum Report 7140- -98-8339

  20. The Backscattering of Gamma Radiation from Plane Concrete Walls

    Energy Technology Data Exchange (ETDEWEB)

    Leimdoerfer, M

    1962-12-15

    Monte Carlo calculations have been performed for source energies from 1 to 10 MeV, and normally incident radiation, showing that 90 % of the infinite-barrier energy flux albedo is reached with a 40 cm concrete wall. The spectrum of backscattered energy flux is presented for the above sources and wall thicknesses ranging from 5 to 50 cm, An analytical expression, based on a single-scattering approximation, is shown to produce good fits to the Monte Carlo results.

  1. Distribution of uranium in kolm. Evidence from backscattered electron imagery

    Energy Technology Data Exchange (ETDEWEB)

    Parnell, J [Dep. of Geology, Belfast (Northern Ireland)

    1985-02-06

    The distribution of uranium in kolm from Upper Cambriam alum shales has been studied using backscattered electron imagery, and found to be concentrated in discrete mineral phases. Authigenic minerals in kolm include pyrite, galena, and a cerium-bearing mineral referable to monazite. Uranium occurs within the monazite and generally shows a close relationship with phosphorus. Uranium bearing monazite has also been identified within the host alum shale.

  2. Users guide to the HELIOS backscattering spectrometer (BSS)

    International Nuclear Information System (INIS)

    Bunce, L.J.

    1986-10-01

    The BSS is a backscattering spectrometer installed on the Harwell 136 Mev electron linear accelerator, HELIOS. A general description of the instrument is given, along with the time of flight scales, and the run and sample changer control units. The sample environment, vacuum system and detectors of the BSS are described, as well as the preparation, starting and running of an experiment using the BSS. (UK)

  3. Ion backscattering techniques applied in materials science research

    International Nuclear Information System (INIS)

    Sood, D.K.

    1978-01-01

    The applications of Ion Backscattering Technique (IBT) to material analysis have expanded rapidly during the last decade. It is now regarded as an analysis tool indispensable for a versatile materials research program. The technique consists of simply shooting a beam of monoenergetic ions (usually 4 He + ions at about 2 MeV) onto a target, and measuring their energy distribution after backscattering at a fixed angle. Simple Rutherford scattering analysis of the backscattered ion spectrum yields information on the mass, the absolute amount and the depth profile of elements present upto a few microns of the target surface. The technique is nondestructive, quick, quantitative and the only known method of analysis which gives quantitative results without recourse to calibration standards. Its major limitations are the inability to separate elements of similar mass and a complete absence of chemical-binding information. A typical experimental set up and spectrum analysis have been described. Examples, some of them based on the work at the Bhabha Atomic Research Centre, Bombay, have been given to illustrate the applications of this technique to semiconductor technology, thin film materials science and nuclear energy materials. Limitations of IBT have been illustrated and a few remedies to partly overcome these limitations are presented. (auth.)

  4. Feedback effects in optical communication systems: characteristic curve for single-mode InGaAsP lasers.

    Science.gov (United States)

    Brivio, F; Reverdito, C; Sacchi, G; Chiaretti, G; Milani, M

    1992-08-20

    An experimental analysis of InGaAsP injection lasers shows an unexpected decrease of the differential quantum efficiency as a function of injected current when optical power is fed back into the active cavity of a diode inserted into a long transmission line. To investigate the response of laser diodes to optical feedback, we base our analysis on a microscopic model, resulting in a set of coupled equations that include the microscopic parameters that characterize the material and the device. This description takes into account the nonlinear dependence of the interband carrier lifetime on the level of optical feedback. Good agreement between the analytical description and experimental data is obtained for threshold current and differential quantum efficiency as functions of the feedback ratio.

  5. Near-field characteristics of highly non-paraxial subwavelength optical fields with hybrid states of polarization

    International Nuclear Information System (INIS)

    Chen Rui-Pin; Gao Teng-Yue; Chew Khian-Hooi; Dai Chao-Qing; Zhou Guo-Quan; He Sai-Ling

    2017-01-01

    The vectorial structure of an optical field with hybrid states of polarization (SoP) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal components of evanescent waves are illustrated and compared with those of the transverse components from the vectorial structure. Our results indicate that the relative weight integrated over the transverse plane of the evanescent wave depends strongly on the number of the polarization topological charges. The shapes of the intensity profiles of the longitudinal components are different from those of the transverse components, and it can be manipulated by changing the initial SoP of the field cross-section. The longitudinal component of evanescent wave dominates the near-field region. In addition, it also leads to three-dimensional shape variations of the optical field and the optical spin angular momentum flux density distributions. (paper)

  6. Nonlinear Optical Characteristics of Crystal VioletDye Doped Polystyrene Films by Using Z-Scan Technique

    Directory of Open Access Journals (Sweden)

    Mahasin F. Hadi

    2017-07-01

    Full Text Available Z-scan technique was employed to study the nonlinear optical properties (nonlinear refractive index and nonlinear absorption coefficient for crystal violet doped polystyrene films as a function of doping ratio in chloroform solvent. Samples exhibits in closed aperture Z-scan positive nonlinear refraction (self-focusing. While in the open aperture Z-scan gives reverse saturation absorption (RSA (positive absorption for all film with different doping ratio making samples candidates for optical limiting devices for protection of sensors and eyes from energetic laser light pulses under the experimental conditions.

  7. Retrieving forest stand parameters from SAR backscatter data using a neural network trained by a canopy backscatter model

    International Nuclear Information System (INIS)

    Wang, Y.; Dong, D.

    1997-01-01

    It was possible to retrieve the stand mean dbh (tree trunk diameter at breast height) and stand density from the Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) backscatter data by using threelayered perceptron neural networks (NNs). Two sets of NNs were trained by the Santa Barbara microwave canopy backscatter model. One set of the trained NNs was used to retrieve the stand mean dbh, and the other to retrieve the stand density. Each set of the NNs consisted of seven individual NNs for all possible combinations of one, two, and three radar wavelengths. Ground and multiple wavelength AIRSAR backscatter data from two ponderosa pine forest stands near Mt. Shasta, California (U.S.A.) were used to evaluate the accuracy of the retrievals. The r.m.s. and relative errors of the retrieval for stand mean dbh were 6.1 cm and 15.6 per cent for one stand (St2), and 3.1 cm and 6.7 per cent for the other stand (St11). The r.m.s. and relative errors of the retrieval for stand density were 71.2 treesha-1 and 23.0 per cent for St2, and 49.7 treesha-1 and 21.3 per cent for St11. (author)

  8. Method of separation of air showers initiated by γ-quanta and protons using Cherenkov light angular characteristics in combination and angular resolution estimate for an array of several optical telescopes

    International Nuclear Information System (INIS)

    Anokhina, A.M.; Galkin, V.I.; Ivanenko, I.P.; Roganova, T.M.

    1990-01-01

    Computer simulation of optical characteristics of air showers was carried out. On the basis of multidimensional analysis of Cherenkov light angular distribution possibility is considered to distinguish γ-showers from proton showers. Also an estimate for angular resolution is given for an array of five optical telescopes situated at Mt.Aragats. 7 refs.; 10 figs.; 11 tabs

  9. Provenance study through analysis of microstructural characteristics using an optical microscope and scanning electron microscopy for Goryeo celadon excavated from the seabed.

    Science.gov (United States)

    Min-su, Han

    2013-08-01

    This paper aims at identifying the provenance of Goryeo celadons by understanding its microstructural characteristics, such as particles, blisters, forms and amount of pores, and the presence of crystal formation, bodies, and glazes and its boundary, using an optical microscope and scanning electron microscopy (SEM). The analysis of the reproduced samples shows that the glazed layer of the sherd fired at higher temperatures has lower viscosity and therefore it encourages the blisters to be combined together and the layer to become more transparent. In addition, the result showed that the vitrification and melting process of clay minerals such as feldspars and quartzs on the bodies was accelerated for those samples. To factor such characteristics of the microstructure and apply it to the sherds, the samples could be divided into six categories based on status, such as small particles with many small pores or mainly large and small circular pores in the bodies, only a limited number of varied sized blisters in the glazes, and a few blisters and needle-shaped crystals on the boundary surface. In conclusion, the analysis of the microstructural characteristics using an optical microscope and SEM have proven to be useful as a categorizing reference factor in a provenance study on Goryeo celadons.

  10. An Improved Semi-Empirical Model for Radar Backscattering from Rough Sea Surfaces at X-Band

    Directory of Open Access Journals (Sweden)

    Taekyeong Jin

    2018-04-01

    Full Text Available We propose an improved semi-empirical scattering model for X-band radar backscattering from rough sea surfaces. This new model has a wider validity range of wind speeds than does the existing semi-empirical sea spectrum (SESS model. First, we retrieved the small-roughness parameters from the sea surfaces, which were numerically generated using the Pierson-Moskowitz spectrum and measurement datasets for various wind speeds. Then, we computed the backscattering coefficients of the small-roughness surfaces for various wind speeds using the integral equation method model. Finally, the large-roughness characteristics were taken into account by integrating the small-roughness backscattering coefficients multiplying them with the surface slope probability density function for all possible surface slopes. The new model includes a wind speed range below 3.46 m/s, which was not covered by the existing SESS model. The accuracy of the new model was verified with two measurement datasets for various wind speeds from 0.5 m/s to 14 m/s.

  11. Amplitude calibration of an acoustic backscattered signal from a bottom-moored ADCP based on long-term measurement series

    Science.gov (United States)

    Piotukh, V. B.; Zatsepin, A. G.; Kuklev, S. B.

    2017-05-01

    A possible approach to, and preliminary results of, amplitude calibration of acoustic signals backscattered from an ADCP moored at the bottom of the near-shelf zone of the Black Sea is considered. The aim of this work is to obtain vertical profiles of acoustic scattering signal levels, showing the real characteristics of the volume content of suspended sediments in sea water in units of conventional acoustic turbidity for a given signal frequency. In this case, the assumption about the intervals of maximum acoustic transparency and vertical homogeneity of the marine environment in long-term series of ADCP measurements is used. According to this hypothesis, the intervals of the least values of acoustic backscattered signals are detected, an empirical transfer function of the ADCP reception path is constructed, and it is calibrated. Normalized sets of acoustic backscattered signals relative to a signal from a level of conventionally clear water are obtained. New features in the behavior of vertical profiles of an acoustic echo-signal are revealed due to the calibration. The results of this work will be used in subsequent analysis of the vertical and time variations in suspended sediment content in the near-shelf zone of the Black Sea.

  12. Semiconductor thin films directly from minerals—study of structural, optical, and transport characteristics of Cu2O thin films from malachite mineral and synthetic CuO

    International Nuclear Information System (INIS)

    Balasubramaniam, K.R.; Kao, V.M.; Ravichandran, J.; Rossen, P.B.; Siemons, W.; Ager, J.W.

    2012-01-01

    We demonstrate the proof-of-concept of using an abundantly occurring natural ore, malachite (Cu 2 CO 3 (OH) 2 ) to directly yield the semiconductor Cu 2 O to be used as an active component of a functional thin film based device. Cu 2 O is an archetype hole-conducting semiconductor that possesses several interesting characteristics particularly useful for solar cell applications, including low cost, non-toxicity, good hole mobility, large minority carrier diffusion length, and a direct energy gap ideal for efficient absorption. In this article, we compare the structural, optical, and electrical transport characteristics of Cu 2 O thin films grown from the natural mineral malachite and synthetic CuO targets. Growth from either source material results in single-phase, fully epitaxial cuprous oxide thin films as determined by x-ray diffraction. The films grown from malachite have strong absorption coefficients ( 10 4 cm −1 ), a direct allowed optical bandgap ( 2.4 eV), and majority carrier hole mobilities ( 35 cm 2 V −1 s −1 at room temperature) that compare well with films grown from the synthetic target as well as with previously reported values. Our work demonstrates that minerals could be useful to directly yield the active components in functional devices and suggests a route for the exploration of low cost energy conversion and storage technologies. - Highlights: ► Semiconductor thin films directly from minerals ► Chemistry and structure evolution of the films obtained from mineral target is very similar to that films obtained from high-purity synthetic targets. ► Quite interestingly, transport and optical characteristics are also found to be similar.

  13. Evaluation of the Oh, Dubois and IEM Backscatter Models Using a Large Dataset of SAR Data and Experimental Soil Measurements

    Directory of Open Access Journals (Sweden)

    Mohammad Choker

    2017-01-01

    Full Text Available The aim of this paper is to evaluate the most used radar backscattering models (Integral Equation Model “IEM”, Oh, Dubois, and Advanced Integral Equation Model “AIEM” using a wide dataset of SAR (Synthetic Aperture Radar data and experimental soil measurements. These forward models reproduce the radar backscattering coefficients ( σ 0 from soil surface characteristics (dielectric constant, roughness and SAR sensor parameters (radar wavelength, incidence angle, polarization. The analysis dataset is composed of AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR, ERS, RADARSAT, ASAR and TerraSAR-X data and in situ measurements (soil moisture and surface roughness. Results show that Oh model version developed in 1992 gives the best fitting of the backscattering coefficients in HH and VV polarizations with RMSE values of 2.6 dB and 2.4 dB, respectively. Simulations performed with the Dubois model show a poor correlation between real data and model simulations in HH polarization (RMSE = 4.0 dB and better correlation with real data in VV polarization (RMSE = 2.9 dB. The IEM and the AIEM simulate the backscattering coefficient with high RMSE when using a Gaussian correlation function. However, better simulations are performed with IEM and AIEM by using an exponential correlation function (slightly better fitting with AIEM than IEM. Good agreement was found between the radar data and the simulations using the calibrated version of the IEM modified by Baghdadi (IEM_B with bias less than 1.0 dB and RMSE less than 2.0 dB. These results confirm that, up to date, the IEM modified by Baghdadi (IEM_B is the most adequate to estimate soil moisture and roughness from SAR data.

  14. Design and investigation of sectoral circular disc monopole fractal antenna and its backscattering

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2017-02-01

    Full Text Available This article presents the design of sectoral circular disc fractal antenna. The proposed antenna has been excited using CPW – feed. The measured result of this antenna offers the ultra wideband characteristics from 3.265 GHz to 15.0 GHz. The measured and simulated results are compared and found in good agreement. The impedance match of the antenna throughout the band is improved by incorporating the rectangular slots in the ground plane. The measured radiation patterns of this antenna are nearly omni-directional in H-plane and bidirectional in E-plane. The backscattering of antenna is also discussed and calculated for antenna mode and structural mode scattering. This type of antenna is useful for UWB system, microwave imaging and vehicular radar, precision positioning location.

  15. Preliminary Thermal Characterization of a Fully-Passive Wireless Backscattering Neuro-Recording Microsystem

    Science.gov (United States)

    Schwerdt, H. N.; Xu, W.; Shekhar, S.; Chae, J.; Miranda, F. A.

    2011-01-01

    We present analytical and experimental thermal characteristics of a battery-less, fully-passive wireless backscattering microsystem for recording of neuropotentials. A major challenge for cortically implantable microsystems involves minimizing the heat dissipated by on-chip circuitry, which can lead to permanent brain damage. Therefore, knowledge of temperature changes induced by implantable microsystems while in operation is of utmost importance. In this work, a discrete diode appended to the neuro-recording microsystem has been used to indirectly monitor the aforesaid temperature changes. Using this technique, the maximum temperature rise measured for the microsystem while in operation was 0.15 +/- 0.1 C, which is significantly less than current safety guidelines. Specific absorption ratio (SAR) due to the microsystem was also computed to further demonstrate fully-passive functionality of the neuro-recording microsystem.

  16. Electron and ion currents relevant to accurate current integration in MeV ion backscattering spectrometry

    International Nuclear Information System (INIS)

    Matteson, S.; Nicolet, M.A.

    1979-01-01

    The magnitude and characteristics of the currents which flow in the target and the chamber of an MeV ion backscattering spectrometer are examined. Measured energy distributions and the magnitude of high-energy secondary electron currents are reported. An empirical universal curve is shown to fit the energy distribution of secondary electrons for several combinations of ion energy, targets and ion species. The magnitude of tertiary electron currents which arise at the vacuum vessel walls is determined for various experimental situations and is shown to be non-negligible in many cases. An experimental arrangement is described which permits charge integrations to 1% arruracy without restricting access to the target as a Faraday cage does. (Auth.)

  17. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure

    Directory of Open Access Journals (Sweden)

    Thomas Kowoll

    2017-01-01

    Full Text Available This study is concerned with backscattered electron scanning electron microscopy (BSE SEM contrast of complex nanoscaled samples which consist of SiO2 nanoparticles (NPs deposited on indium-tin-oxide covered bulk SiO2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC- simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  18. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure.

    Science.gov (United States)

    Kowoll, Thomas; Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO 2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO 2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  19. Modelling of atmospheric effects on the angular distribution of a backscattering peak

    International Nuclear Information System (INIS)

    Powers, B.J.; Gerstl, S.A.W.

    1987-01-01

    If off-nadir satellite sensing of vegetative surfaces is considered, understanding the angular distribution of the radiance exiting the atmosphere in all upward directions is of interest. Of particular interest is the discovery of those reflectance features which are invariant to atmospheric perturbations. When mono-directional radiation is incident on a vegetative scene a characteristic angular signature called the hot-spot is produced in the solar retro-direction. The remotely sensed hot-spot is modified by atmospheric extinction of the direct and reflected solar radiation, atmospheric backscattering, and the diffuse sky irradiance incident on the surface. It is demonstrated, however, by radiative transfer calculations through model atmospheres that at least one parameter which characterizes the canopy hot-spot, namely its angular half width, is invariant to atmospheric perturbations. 7 refs., 4 figs., 1 tab

  20. Remote sensing of PM2.5 during cloudy and nighttime periods using ceilometer backscatter

    Science.gov (United States)

    Li, Siwei; Joseph, Everette; Min, Qilong; Yin, Bangsheng; Sakai, Ricardo; Payne, Megan K.

    2017-06-01

    Monitoring PM2.5 (particulate matter with aerodynamic diameter d ≤ 2.5 µm) mass concentration has become of more importance recently because of the negative impacts of fine particles on human health. However, monitoring PM2.5 during cloudy and nighttime periods is difficult since nearly all the passive instruments used for aerosol remote sensing are not able to measure aerosol optical depth (AOD) under either cloudy or nighttime conditions. In this study, an empirical model based on the regression between PM2.5 and the near-surface backscatter measured by ceilometers was developed and tested using 6 years of data (2006 to 2011) from the Howard University Beltsville Campus (HUBC) site. The empirical model can explain ˜ 56, ˜ 34 and ˜ 42 % of the variability in the hourly average PM2.5 during daytime clear, daytime cloudy and nighttime periods, respectively. Meteorological conditions and seasons were found to influence the relationship between PM2.5 mass concentration and the surface backscatter. Overall the model can explain ˜ 48 % of the variability in the hourly average PM2.5 at the HUBC site when considering the seasonal variation. The model also was tested using 4 years of data (2012 to 2015) from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site, which was geographically and climatologically different from the HUBC site. The results show that the empirical model can explain ˜ 66 and ˜ 82 % of the variability in the daily average PM2.5 at the ARM SGP site and HUBC site, respectively. The findings of this study illustrate the strong need for ceilometer data in air quality monitoring under cloudy and nighttime conditions. Since ceilometers are used broadly over the world, they may provide an important supplemental source of information of aerosols to determine surface PM2.5 concentrations.

  1. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  2. Relationship of college student characteristics and inquiry-based geometrical optics instruction to knowledge of image formation with light-ray tracing

    Science.gov (United States)

    Isik, Hakan

    This study is premised on the fact that student conceptions of optics appear to be unrelated to student characteristics of gender, age, years since high school graduation, or previous academic experiences. This study investigated the relationships between student characteristics and student performance on image formation test items and the changes in student conceptions of optics after an introductory inquiry-based physics course. Data was collected from 39 college students who were involved in an inquiry-based physics course teaching topics of geometrical optics. Student data concerning characteristics and previous experiences with optics and mathematics were collected. Assessment of student understanding of optics knowledge for pinholes, plane mirrors, refraction, and convex lenses was collected with, the Test of Image Formation with Light-Ray Tracing instrument. Total scale and subscale scores representing the optics instrument content were derived from student pretest and posttest responses. The types of knowledge, needed to answer each optics item correctly, were categorized as situational, conceptual, procedural, and strategic knowledge. These types of knowledge were associated with student correct and incorrect responses to each item to explain the existences and changes in student scientific and naive conceptions. Correlation and stepwise multiple regression analyses were conducted to identify the student characteristics and academic experiences that significantly predicted scores on the subscales of the test. The results showed that student experience with calculus was a significant predictor of student performance on the total scale as well as on the refraction subscale of the Test of Image Formation with Light-Ray Tracing. A combination of student age and previous academic experience with precalculus was a significant predictor of student performance on the pretest pinhole subscale. Student characteristic of years since high school graduation

  3. Analysis of Backscatter and Seafloor Acoustical Properties across deepwater sandwaves in Cook Strait, New Zealand

    Science.gov (United States)

    Lurton, X.; Lamarche, G.

    2011-12-01

    Central Cook Strait, New Zealand presents a variety of geological landforms subjected to intense hydrodynamic conditions. A comprehensive EM300 multibeam coverage of the strait was used to develop a method to objectively characterise the seafloor substrate. Specific post-processing was applied to the backscatter data to correct the signal from sensor bias, and was completed by correlating a quantitative description of backscatter with the field data. The final calibrated Backscattering Strength (BS) provides information on the physical characteristics of the seafloor. The BS imagery was used for both qualitative and quantitative interpretation, and give access to a level of detail higher than with conventional multibeam bathymetry. We developed a functional descriptive model of the physical BS angular response, describing satisfactorily the various typical BS responses met over Cook Strait and providing a first-order interpretation of the substrate composition. The full model needs 6 input parameters, but a practical classification can be obtained with only two (the BS value at 45° and the specular-to-oblique contrast). We analyse the BS angular response of sandwaves and erosional bedforms typically met in the central Cook Strait. The sandwave fields occur in 200-350 m of water depth and exhibit large-scale topographical features (wavelengths 100 - 250 m; vertical amplitudes 2 - 10 m). They are conspicuous in the backscatter imagery, and analysing their BS variations according to topography is specially informative. The BS level has a sharp minimum at the wave crests and is maximal inside the troughs, with a typical dynamics of 6 dB. Such a variation cannot be explained by the dependence on incident angle retrieved from local high-resolution bathymetry. Hence we infer that the reflectivity variations observed on the sandwaves are due to sediment facies changes, from fine to coarse sand in this case. This is corroborated by the fact that some sandwave fields with

  4. Optical characteristics of Tl0.995Cu0.005InS2 single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; Abu-Samaha, F. S. H.

    2013-04-01

    Optical properties of Tl0.995Cu0.005InS2 single crystals were studied using transmittance and reflectance measurements in the spectral wavelength range of 300-2500 nm. The optical constants (n and k) were calculated at room temperature. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed indirect transition. The refractive index dispersion data were analyzed in terms of the single oscillator model. Dispersion parameters such as the single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε∞), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the effective mass (N/m*) were estimated. The third order nonlinear susceptibility (χ(3)) was calculated according to the generalized Miller's rule. Also, the real and imaginary parts of the complex dielectric constant were determined.

  5. Utilisation of optical radiation in the study of space time characteristics of an electron beam. Applications to TTF

    International Nuclear Information System (INIS)

    Variola, Alessandro

    1998-01-01

    This thesis contains six chapters divided into three parts. After a brief presentation of the TTF project, the first part describes the theoretical basis of the thesis. We have applied the virtual photon method to the subject of transition radiation and compared our results with those obtained by L. Wartski. The description of the beam-emittance measurement method and the definition of the main optical functions set out in the following chapters constitutes the second part. We have analyzed the three gradient technique that allows one, thanks to a statistical approach, to determine the emittance and the associated error. As regards to optics, we have introduced and measured the main functions that gives the resolution of the measurement of the beam, optimized the optical line for the bunch-length measurement and calculated contributions to the optical resolution. The last chapter contains the results and the analysis of the transverse emittance and bunch length measurements. The results obtained in the energy range 8 - 12 MeV are shown. We present also the results for the emittance measurements performed by taking slices of 8μs within the 30μs macro-pulse. The second part is devoted to an analysis of the beam profiles taken in 1μs slices. These observation allows us to create a 'moving film' and to highlight the importance of certain parameters on the dynamical behaviour of the beam. In the last part we present the bunch length measurements performed by means of Cherenkov radiation coupled to a streak camera. We show the longitudinal profiles for different settings of the TTF injector. These measurements, combined with measurements of the energy spread, provide us with the value of 6 D emittance. (author)

  6. Analysis and investigation of temperature and hydrostatic pressure effects on optical characteristics of multiple quantum well slow light devices.

    Science.gov (United States)

    Abdolhosseini, Saeed; Kohandani, Reza; Kaatuzian, Hassan

    2017-09-10

    This paper represents the influences of temperature and hydrostatic pressure variations on GaAs/AlGaAs multiple quantum well slow light systems based on coherence population oscillations. An analytical model in non-integer dimension space is used to study the considerable effects of these parameters on optical properties of the slow light apparatus. Exciton oscillator strength and fractional dimension constants have special roles on the analytical model in fractional dimension. Hence, the impacts of hydrostatic pressure and temperature on exciton oscillator strength and fractional dimension quantity are investigated theoretically in this paper. Based on the achieved results, temperature and hydrostatic pressure play key roles on optical parameters of the slow light systems, such as the slow down factor and central energy of the device. It is found that the slope and value of the refractive index real part change with alterations of temperature and hydrostatic pressure in the range of 5-40 deg of Kelvin and 1 bar to 2 kbar, respectively. Thus, the peak value of the slow down factor can be adjusted by altering these parameters. Moreover, the central energy of the device shifts when the hydrostatic pressure is applied to the slow light device or temperature is varied. In comparison with previous reported experimental results, our simulations follow them successfully. It is shown that the maximum value of the slow down factor is estimated close to 5.5×10 4 with a fine adjustment of temperature and hydrostatic pressure. Meanwhile, the central energy shift of the slow light device rises up to 27 meV, which provides an appropriate basis for different optical devices in which multiple quantum well slow light is one of their essential subsections. This multiple quantum well slow light device has potential applications for use as a tunable optical buffer and pressure/temperature sensors.

  7. Derivation of capture and reaction cross sections from experimental quasi-elastic and elastic backscattering probabilities

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Adamian, G.G.; Antonenko, N.V.; Gomes, P.R.S.

    2014-01-01

    We suggest simple and useful methods to extract reaction and capture (fusion) cross sections from the experimental elastic and quasi-elastic backscattering data.The direct measurement of the reaction or capture (fusion) cross section is a difficult task since it would require the measurement of individual cross sections of many reaction channels, and most of them could be reached only by specific experiments. This would require different experimental setups not always available at the same laboratory and, consequently, such direct measurements would demand a large amount of beam time and would take probably some years to be reached. Because of that, the measurements of elastic scattering angular distributions that cover full angular ranges and optical model analysis have been used for the determination of reaction cross sections. This traditional method consists in deriving the parameters of the complex optical potentials which fit the experimental elastic scattering angular distributions and then of deriving the reaction cross sections predicted by these potentials. Even so, both the experimental part and the analysis of this latter method are not so simple. In the present work we present a much simpler method to determine reaction and capture (fusion) cross sections. It consists of measuring only elastic or quasi-elastic scattering at one backward angle, and from that, the extraction of the reaction or capture cross sections can easily be performed. (author)

  8. Physical and Optical Characteristics of the October 2010 Haze Event Over Singapore: A Photometric and Lidar Analysis

    Science.gov (United States)

    Salinas, Santo V.; Chew, Boon Ning; Miettinen, Jukka; Campbell, James R.; Welton, Ellsworth J.; Reid, Jeffrey S.; Yu, Liya E.; Liew, Soo Chin

    2013-01-01

    Trans-boundary biomass burning smoke episodes have increased dramatically during the past 20-30 years and have become an annual phenomenon in the South-East-Asia region. On 15th October 2010, elevated levels of fire activity were detected by remote sensing satellites (e.g. MODIS). On the same date, measurements of fine particulate matter (PM2.5) at Singapore and Malaysia found high levels of fine mode particles in the local environment. All these observations were indicative of the initial onset of a smoke episode that lasted for several days. In this work, we investigate the temporal evolution of this smoke episode by analyzing the physical and optical properties of smoke particles with the aid of an AERONET Sun photometer, an MPLNet micropulse lidar, and surface PM2.5 measurements. Elevated levels of fire activity coupled with high aerosol optical depth and PM2.5 were observed over a period of nine days. Increased variability of parameters such as aerosol optical depth, Angstrom exponent number and its fine mode equivalents all indicated high levels of fine particulate presence in the atmosphere. Smoke particle growth due to aging, coagulation and condensation mechanisms was detected during the afternoons and over several days. Retrieved lidar ratios were compatible with the presence of fine particulate within the boundary/aerosol layer. Moreover, retrieved particle size distribution as well as single scattering albedo indicated the prevalence of the fine mode particulate regime as well as particles showing enhanced levels of absorption respectively.

  9. Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges.

    Science.gov (United States)

    Alayed, Mrwan; Deen, M Jamal

    2017-09-14

    Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.

  10. Aerosol spectral optical depths and size characteristics at a coastal industriallocation in India - effect of synoptic and mesoscale weather

    Directory of Open Access Journals (Sweden)

    K. Niranjan

    2004-06-01

    Full Text Available The aerosol spectral optical depths at ten discrete channels in the visible and near IR bands, obtained from a ground-based passive multi-wavelength solar radiometer at a coastal industrial location, Visakhapatnam, on the east coast of India, are used to study the response of the aerosol optical properties and size distributions to the changes in atmospheric humidity, wind speed and direction. It is observed that during high humidity conditions, the spectral optical depths show about 30% higher growth factors, and the size distributions show the generation of a typical new mode around 0.4 microns. The surface wind speed and direction also indicate the formation of new particles when the humid marine air mass interacts with the industrial air mass. This is interpreted in terms of new particle formation and subsequent particle growth by condensation and self-coagulation. The results obtained on the surface-size segregated aerosol mass distribution from a co-located Quartz Crystal Microbalance during different humidity conditions also show a large mass increase in the sub-micron size range with an increase in atmospheric humidity, indicating new particle formation at the sub-micron size range.

  11. Comparative analysis of frequency and noise characteristics of Fabry – Perot and distributed feedback laser diodes with external optical injection locking

    Energy Technology Data Exchange (ETDEWEB)

    Afonenko, A A; Dorogush, E S [Belarusian State University, Minsk (Belarus); Malyshev, S A; Chizh, A L [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)

    2015-11-30

    Using a system of coupled travelling wave equations, in the small-signal regime we analyse frequency and noise characteristics of index- or absorption-coupled distributed feedback laser diodes, as well as of Fabry – Perot (FP) laser diodes. It is shown that the weakest dependence of the direct modulation efficiency on the locking frequency in the regime of strong external optical injection locking is exhibited by a FP laser diode formed by highly reflective and antireflective coatings on the end faces of a laser structure. A reduction in the dependence of output characteristics of the laser diode on the locking frequency can be attained by decreasing the reflection coefficient of the antireflective FP mirror. (control of laser radiation parameters)

  12. Application of electron back-scatter diffraction to texture research

    International Nuclear Information System (INIS)

    Randle, V.

    1996-01-01

    The application of electron back-scatter diffraction (EBSD) to materials research is reviewed. A brief history of the technique is given, followed by a description of present-day operation. The methodology of 'microtexture', i.e. spatially specific orientations, is described and recent examples of its application using EBSD are given, in particular to interstitial-free steel processing, growth of phases in a white iron and grain boundary phenomena in a superplastic alloy. The advantages and disadvantages of EBSD compared to use of X-rays for texture determination are discussed in detail

  13. The diurnal pattern of microwave backscattering by wheat

    International Nuclear Information System (INIS)

    Brisco, B.; Brown, R.J.; Koehler, J.A.; Sofko, G.J.; McKibben, M.J.

    1990-01-01

    A truck-mounted Ku-, C-, and L-band scatterometer system was used to obtain diurnal multiparameter radar backscatter measurements of wheat in August 1987 and June and July 1988. Concurrent field measurements of plant and soil moisture content were made in support of the radar data. Analyses of these data demonstrate the sensitivity of the microwave signals to the daily movement of water in the soil/plant system. The dependence of frequency, incidence angle, and polarization are discussed in relationship to the diurnal and seasonal changes in the soil and plant water content. The results are used to identify potential agronomic applications and future research requirements. (author)

  14. Combined backscatter and transmission method for nuclear density gauge

    Directory of Open Access Journals (Sweden)

    Golgoun Seyed Mohammad

    2015-01-01

    Full Text Available Nowadays, the use of nuclear density gauges, due to the ability to work in harsh industrial environments, is very common. In this study, to reduce error related to the ρ of continuous measuring density, the combination of backscatter and transmission are used simultaneously. For this reason, a 137Cs source for Compton scattering dominance and two detectors are simulated by MCNP4C code for measuring the density of 3 materials. Important advantages of this combined radiometric gauge are diminished influence of μ and therefore improving linear regression.

  15. Wave propagation through disordered media without backscattering and intensity variations

    Institute of Scientific and Technical Information of China (English)

    Konstantinos G Makris; Andre Brandst(o)tter; Philipp Ambichl; Ziad H Musslimani; Stefan Rotter

    2017-01-01

    A fundamental manifestation of wave scattering in a disordered medium is the highly complex intensity pattern the waves acquire due to multi-path interference.Here we show that these intensity variations can be entirely suppressed by adding disorder-specific gain and loss components to the medium.The resulting constant-intensity waves in such non-Hermitian scattering landscapes are free of any backscattering and feature perfect transmission through the disorder.An experimental demonstration of these unique wave states is envisioned based on spatially modulated pump beams that can flexibly control the gain and loss components in an active medium.

  16. The Backscattering of Gamma Radiation from Spherical Concrete Walls

    Energy Technology Data Exchange (ETDEWEB)

    Leimdoerfer, M

    1962-12-15

    The Monte Carlo technique has been applied to investigate the effect of wall curvature on the backscattering properties of concrete. The wall was considered infinitely thick and the source radiation was normally incident. Monte Carlo calculations were only performed at 1 MeV source energy but an analytical formula was derived to facilitate extrapolations to other energies as well as materials. The results show that for practical purposes the plane wall albedo is a sufficient, and conservative, approximation, 90 % of its value being reached at a concrete wall radius of about 100 cm for source energies up to 10 MeV.

  17. Backscattering measurement device for measuring the thickness of a layer

    International Nuclear Information System (INIS)

    Weinstock, J.; Lieber, D.; Hay, W.D.

    1978-01-01

    There is provided for a measuring wheel on the run of which backscattering probes are mounted, serving for irradiation and measurement of the radiation reflected from a strip of substrate tape coated e.g. with Au. The probes are of the model HH-3 of Unit Process Assemblies Inc. The material strip is guided on the outside of the wheel run. The measuring wheel is rotating with such speed that the tangential velocity of a point on the run is equal to the speed of the strip. Therefore the movement of the strip need not be stopped during measurement (on-line measurement). (DG) [de

  18. Rutherford backscattering spectrometry of thin NiCr layers

    International Nuclear Information System (INIS)

    Anklam, H.J.

    1984-01-01

    The possibilities and problems of characterizing thin films of NiCr by means of Rutherford backscattering spectrometry (RBS) are demonstrated. Thin resistor films of NiCr (10 to 30 nm thick) are deposited on SiO 2 by sputtering in air or oxygen. The electrical properties depend both on integral chemical composition of films and on local distribution of elements. The determination of composition (Ni-Cr ratio, oxygen content) and of depth profiles of elements by the aid of RBS is described. For solving special analytical problems different substrates as amorphous SiO 2 , Si monocrystals, and glassy carbon are used

  19. Backscattering from dental restorations and splint materials during therapeutic radiation

    International Nuclear Information System (INIS)

    Farman, A.G.; Sharma, S.; George, D.I.; Wilson, D.; Dodd, D.; Figa, R.; Haskell, B.

    1985-01-01

    Models were constructed to simulate as closely as possible the human oral cavity. Radiation absorbed doses were determined for controls and various test situations involving the presence of dental restorative and splint materials during cobalt-60 irradiation of the models. Adjacent gold full crowns and adjacent solid dental silver amalgam cores both increased the dose to the interproximal gingivae by 20%. Use of orthodontic full bands for splinting the jaws increased the dose to the buccal tissues by an average of 10%. Augmentation of dose through backscatter radiation was determined to be only slight for intracoronal amalgam fillings and stainless steel or plastic bracket splints

  20. Bulk media assay using backscattered Pu-Be neutrons

    CERN Document Server

    Csikai, J

    1999-01-01

    Spectral yields of elastically backscattered Pu-Be neutrons measured for graphite, water, polyethylene, liquid nitrogen, paraffin oil, SiO sub 2 , Al, Fe, and Pb slabs show a definite correlation with the energy dependence of the elastic scattering cross sections, sigma sub E sub L (E sub n). The C, N and O can be identified by the different structures in their sigma sub E sub L (E sub n) functions. The integrated spectral yields versus thickness exhibit saturation for each sample. The interrogated volume is limited by the presence of hydrogen in the sample. (author)

  1. DUNBID, the Delft University neutron backscattering imaging detector

    International Nuclear Information System (INIS)

    Bom, V.R.; Eijk, C.W.E. van; Ali, M.A.

    2005-01-01

    In the search for low-metallic land mines, the neutron backscattering technique may be applied if the soil is sufficiently dry. An advantage of this method is the speed of detection: the scanning speed may be made comparable to that of a metal detector. A two-dimensional position sensitive detector is tested to obtain an image of the back scattered thermal neutron radiation. Results of experiments using a radionuclide neutron source are presented. The on-mine to no-mine signal ratio can be improved by the application of a window on the neutron time-of-flight. Results using a pulsed neutron generator are also presented

  2. A new backscatter lidar for the whole-year study of temperatures and clouds in the polar stratosphere and mesosphere; Ein neues Rueckstreu-Lidar zur ganzjaehrigen Untersuchung von Temperaturen und Wolkenphaenomenen in der polaren Strato- und Mesosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K P

    2000-01-01

    Temperatures in the polar middle atmosphere can fall to extremely low values leading to cloud formation in otherwise cloud-free regions: in summer near the mesopause i.e. noctiluent clouds (NLC) and in winter in the lower stratosphere, i.e. polar stratospheric clouds (PSC). Both clouds are environmentally important, PSCs in the ozone problem and NLCs as early indicators of climate change. To investigate these clouds and to measure temperature profiles the atmospheric physics group set up a backscatter lidar on the Esrange in northern Sweden. Based on our experience with a lidar in Norway the mechanics and optics were redesigned to allow for simultaneous measurements of the depolarization of the backscattered light, three colour measurements and measurements in daylight. A numerical simulation of the daylight filter characteristics suggests that the presently used tuning method should be replaced. The first measurements with this new lidar design on the Esrange were obtained in January 1997. PSCs were observed on 19 days from January to March. Surprisingly, PSCs of type 2 were detected several times even when though synoptic stratospheric temperatures were too warm for such clouds to exist. Temperatures in the lee of the Scandinavian mountains had been lowered by internal waves sufficiently to generate PSC type 2 clouds. Among the previous PSC-observations in January 1995 when the lidar was located on the Norwegian island Andoeya was a singular PSC of type 2 on on January 14, 1995, which had a surface area density two orders of magnitudes higher than typically assumed in theoretical models describing ozone depletion. (orig.)

  3. Tunable optical properties of plasmonic Au/Al2O3 nanocomposite thin films analyzed by spectroscopic ellipsometry accounting surface characteristics.

    Science.gov (United States)

    Jaiswal, Jyoti; Mourya, Satyendra; Malik, Gaurav; Chandra, Ramesh

    2018-05-01

    In the present work, we have fabricated plasmonic gold/alumina nanocomposite (Au/Al 2 O 3 NC) thin films on a glass substrate at room temperature by RF magnetron co-sputtering. The influence of the film thickness (∼10-40  nm) on the optical and other physical properties of the samples was investigated and correlated with the structural and compositional properties. The X-ray diffractometer measurement revealed the formation of Au nanoparticles with average crystallite size (5-9.2 nm) embedded in an amorphous Al 2 O 3 matrix. The energy-dispersive X ray and X-ray photoelectron spectroscopy results confirmed the formation of Au/Al 2 O 3 NC quantitatively and qualitatively and it was observed that atomic% of Au increased by increasing thickness. The optical constants of the plasmonic Au/Al 2 O 3 NC thin films were examined by variable angle spectroscopic ellipsometry in the wide spectral range of 246-1688 nm, accounting the surface characteristics in the optical stack model, and the obtained results are expected to be unique. Additionally, a thickness-dependent blueshift (631-590 nm) of surface plasmon resonance peak was observed in the absorption spectra. These findings of the plasmonic Au/Al 2 O 3 NC films may allow the design and fabrication of small, compact, and efficient devices for optoelectronic and photonic applications.

  4. Study of the effect of the deposition parameters on the structural, electric and optical characteristics of polymorphous silicon films prepared by low frequency PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M., E-mail: mmoreno@inaoep.mx [Instituto Nacional de Astrofisica, Optica y Electronica, INAOE, Puebla (Mexico); Torres, A. [Instituto Nacional de Astrofisica, Optica y Electronica, INAOE, Puebla (Mexico); Ambrosio, R. [Universidad Autonoma de Ciudad Juarez, Electrical Deparment, Chihuahua (Mexico); Zuniga, C.; Torres-Rios, A.; Monfil, K.; Rosales, P.; Itzmoyotl, A. [Instituto Nacional de Astrofisica, Optica y Electronica, INAOE, Puebla (Mexico)

    2011-10-25

    In this work we present our results on the deposition and characterization of polymorphous silicon (pm-Si:H) films prepared by low frequency plasma enhanced chemical vapor deposition (LF-PECVD). We have studied the effect of the plasma deposition parameters (as the chamber pressure and gas flow rates of SiH{sub 4} and H{sub 2}) on the structural, electric, and optical characteristics of the films. The temperature dependence of conductivity ({sigma}(T)), activation energy (E{sub a}), optical band gap (E{sub g}) and deposition rate (V{sub d}) were extracted for pm-Si:H films deposited at different pressure values and different gas flow rates. We observed that the chamber pressure is an important parameter that has a significant effect on the electric characteristics, and as well on the morphology of the pm-Si:H films (deduced from atomic force microscopy). It was found an optimal pressure range, in order to produce pm-Si:H films with high E{sub a} and room temperature conductivity, {sigma}{sub RT}, which are key parameters for thermal detection applications.

  5. Study of the effect of the deposition parameters on the structural, electric and optical characteristics of polymorphous silicon films prepared by low frequency PECVD

    International Nuclear Information System (INIS)

    Moreno, M.; Torres, A.; Ambrosio, R.; Zuniga, C.; Torres-Rios, A.; Monfil, K.; Rosales, P.; Itzmoyotl, A.

    2011-01-01

    In this work we present our results on the deposition and characterization of polymorphous silicon (pm-Si:H) films prepared by low frequency plasma enhanced chemical vapor deposition (LF-PECVD). We have studied the effect of the plasma deposition parameters (as the chamber pressure and gas flow rates of SiH 4 and H 2 ) on the structural, electric, and optical characteristics of the films. The temperature dependence of conductivity (σ(T)), activation energy (E a ), optical band gap (E g ) and deposition rate (V d ) were extracted for pm-Si:H films deposited at different pressure values and different gas flow rates. We observed that the chamber pressure is an important parameter that has a significant effect on the electric characteristics, and as well on the morphology of the pm-Si:H films (deduced from atomic force microscopy). It was found an optimal pressure range, in order to produce pm-Si:H films with high E a and room temperature conductivity, σ RT , which are key parameters for thermal detection applications.

  6. Correlation and uncertainties evaluation in backscattering of entrance surface air kerma measurements

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, G.J.; Sousa, C.H.S.; Peixoto, J.G.P., E-mail: gt@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The air kerma measurement is important to verify the applied doses in radiodiagnostic. The literature determines some methods to measure the entrance surface air kerma or entrance surface dose but some of this methods may increase the measurement with the backscattering. Were done setups of measurements to do correlations between them. The expanded uncertainty exceeded 5% for measurements with backscattering, reaching 8.36%, while in situations where the backscattering was avoided, the uncertainty was 3.43%. (author)

  7. Passive amplification of a fiber laser in a Fabry-Perot cavity: application to gamma-ray production by Compton backscattering

    International Nuclear Information System (INIS)

    Labaye, F.

    2012-01-01

    One of the critical points of the International Linear Collider (ILC) is the polarized positrons source. Without going through further explanation on the physical process of polarized positrons production, we point out that they are produced when circularly polarized gamma rays interact with mater. Thus, the critical point is the circularly polarized gamma-ray source. A technical solution for this source is the Compton backscattering and in the end, this thesis takes place in the framework for the design of a high average power laser systems enslaved to Fabry-Perot cavities for polarized gamma-ray production by Compton backscattering. In the first part, we present this thesis context, the Compton backscattering principle and the choice for an optical architecture based on a fiber laser and a Fabry-Perot cavity. We finish by enumerating several possible applications for Compton backscattering which shows that the work presented here might benefits from technology transfer through others research fields. In the second part, we present the different fiber laser architecture studied as well as the results obtained. In the third part, we remind the operating principle of a Fabry-Perot cavity and present the one used for our experiment as well as its specificities. In the fourth part, we address the Compton backscattering experiment which enables us to present the joint utilization of a fiber laser and a Fabry-Perot cavity in a particles accelerator to generate gamma rays for the first time to our knowledge. This experiment took place in the Accelerator Test Facility (ATF). The experimental apparatus as well as the results obtained are thus presented. In the end, we summarize the results presented in this manuscript and propose different evolution possibilities for the system in a general conclusion. (author)

  8. Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain

    Science.gov (United States)

    Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang

    2018-05-01

    Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light

  9. Control of the optical properties of silicon and chromium mixed oxides deposited by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Vergara, L.; Galindo, R. Escobar; Martinez, R.; Sanchez, O.; Palacio, C.; Albella, J.M.

    2011-01-01

    The development of mixed-oxide thin films allows obtaining materials with better properties than those of the different binary oxides, which makes them suitable for a great number of applications in different fields, such as tribology, optics or microelectronics. In this paper we investigate the deposition of mixed chromium and silicon oxides deposited by reactive magnetron sputtering with a view to use them as optical coatings with an adjustable refractive index. These films have been characterized by means of Rutherford backscattering spectrometry, Auger electron spectroscopy, X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy and spectroscopic ellipsometry so as to determine how the deposition conditions influence the characteristics of the material. We have found that the deposition parameter whose influence determines the properties of the films to a greater extent is the amount of oxygen in the reactive sputtering gas.

  10. Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation

    International Nuclear Information System (INIS)

    Jovanović, Željka; Radosavljević, Aleksandra; Šiljegović, Milorad; Bibić, Nataša; Mišković-Stanković, Vesna; Kačarević-Popović, Zorica

    2012-01-01

    Silver nanoparticles (AgNPs) were synthesized in situ by γ-irradiation using poly(N-vinyl-2-pyrrolidone) (PVP) as a capping agent. The concentration, molecular weight and the structure (crosslinked and interpenetrated network) of PVP were varied, in order to determine the influence of the capping agent in the radiolytic synthesis of the Ag/PVP nanosystems. Transmission electron microscopy (TEM) showed that AgNPs obtained from the solutions containing higher PVP concentration and higher molecular weight were spherical in shape, with narrow size distribution and a diameter of∼6 nm, while slightly larger rod-shaped silver agglomerates, with bimodal nanoparticle size distribution and diameters of ∼10 nm and ∼20 nm were obtained from the solutions containing lower PVP concentration and lower molecular weight. Strong plasmon coupling and extending of plasmon resonance was observed by UV–vis spectroscopy, as a result of formation of nanorod-like agglomerates. Crosslinked and interpenetrated network did not affect the structure of synthesized AgNPs. Ag/PVP nanocomposite, in the form of thin film, was obtained by solvent evaporation from Ag/PVP colloid solution with 10 wt% of PVP, and characterized by FTIR spectroscopy. The interactions in Ag/PVP nanocomposite are shown to be the result of the coordination bonding between AgNPs and nitrogen from pyrrolidone ring of PVP. The optical properties of investigated Ag/PVP nanosystems, as measured by the values of optical band gap, E g , are mainly the consequence of the interparticle distance as a result of the concentration and the structure of surrounding PVP macromolecules. - Highlights: ► AgNPs of different structure and optical properties were obtained by γ-irradiation. ► Different PVP concentration and molecular weight induced different structure. ► Rod-shaped AgNPs were obtained with lower PVP concentration and molecular weight. ► Stabilization by coordination bonding between AgNPs and N from pyrrolidone

  11. A Preliminary Study Associated with the Experimental Measurement of the Aero-Optic Characteristics of Hypersonic Configurations

    Science.gov (United States)

    1992-06-01

    and Neubauer , R.A., "Experimental Studies of Pulsed Microwave Breakdown Effects in a Hypersonic Air Plasma," Calspan Report No. AA-2053-Y-2, AFCRL...perhaps 100 jim intervals. For example 16 images will be exposed on 128 x 128 pixels sectors of a 512 x 512 pixel CCD camera , all during a 3.2 ms period of...device uses a laser and CCD camera . Acoustic-optic beam deflectors will scan the LOS during the short duration test, allowing image exposure durations

  12. Detection of leak-defective fuel rods using the circumferential Lamb waves excited by the resonance backscattering of ultrasonic pulses

    International Nuclear Information System (INIS)

    Choi, M.S.; Yang, M.S.; Kim, H.C.

    1992-01-01

    A new ultrasonic technique for detecting the infiltrated water in leaked fuel rods is developed. Propagation characteristics of the circumferential Lamb waves in the cladding tubes are estimated by the resonance scattering theory. The Lamb waves are excited by the resonance backscattering of ultrasonic pulses. In sound fuel rods, the existence of the Lamb waves is revealed by a series of periodic echoes. In leaked fuel rods, however, the Lamb waves are perturbed strongly by the scattered waves from the surface of fuel pellets, thus the periodic echoes are not observed. (author)

  13. Transport equation theory of electron backscattering and x-ray production

    International Nuclear Information System (INIS)

    Fathers, D.J.; Rez, P.

    1978-02-01

    A transport equation theory of electron backscattering and x ray production is derived and applied to energy dissipation of 30-KeV electrons for copper as a function of depth and to the energy distribution of backscattered electrons for copper, aluminum, and gold. These results are plotted and compared with experiment. Plots for variations of backscattering with atomic number and with angle of incidence, and polar plots of backscattering for 30-keV electrons at normal incidence are also presented. 10 references, seven figures

  14. Effects of palladium on the optical and hydrogen sensing characteristics of Pd-doped ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Anh-Thu Thi Do

    2014-08-01

    Full Text Available The effect of palladium doping of zinc oxide nanoparticles on the photoluminescence (PL properties and hydrogen sensing characteristics of gas sensors is investigated. The PL intensity shows that the carrier dynamics coincides with the buildup of the Pd-related green emission. The comparison between the deep level emission and the gas sensing response characteristics allows us to suggest that the dissociation of hydrogen takes place at PdZn-vacancies ([Pd 2+(4d9]. The design of this sensor allows for a continuous monitoring in the range of 0–100% LEL H2 concentration with high sensitivity and selectivity.

  15. ILC beam energy measurement by means of laser Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Muchnoi, N. [Budker Inst. for Nuclear Physics, Novosibirsk (Russian Federation); Schreiber, H.J.; Viti, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-10-15

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered {gamma}-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10{sup -4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  16. Rutherford backscatter measurements on tellurium and cadmium implanted gallium arsenide

    International Nuclear Information System (INIS)

    Bell, E.C.

    1979-10-01

    The primary aim of the work described in this thesis was to examine implanted layers of the dopant impurities cadmium and tellurium in gallium arsenide and to experimentally assess their potential for producing electrically active layers. 1.5 MeV Rutherford backscattering measurements of lattice disorder and atom site location have been used to assess post implantation thermal annealing and elevated temperature implantations to site the dopant impurities on either gallium or arsenic lattice positions in an otherwise undisordered lattice. Pyrolitically deposited silicon dioxide was used as an encapsulant to prevent thermal dissociation of the gallium arsenide during annealing. It has been shown that high doses of cadmium and tellurium can be implanted without forming amorphous lattice disorder by heating the gallium arsenide during implantation to relatively low temperatures. Atom site location measurements have shown that a large fraction of a tellurium dose implanted at 180 0 C is located on or near lattice sites. Channeled backscatter measurements have shown that there is residual disorder or lattice strain in gallium arsenide implanted at elevated temperatures. The extent of this disorder has been shown to depend on the implanted dose and implantation temperature. The channeling effect has been used to measure annealing of the disorder. (author)

  17. Data analysis of backscattering LIDAR system correlated with meteorological data

    International Nuclear Information System (INIS)

    Uehara, Sandro Toshio

    2009-01-01

    In these last years, we had an increase in the interest in the monitoring of the effect of the human activity being on the atmosphere and the climate in the planet. The remote sensing techniques has been used in many studies, also related the global changes. A backscattering LIDAR system, the first of this kind in Brazil, has been used to provide the vertical profile of the aerosol backscatter coefficient at 532 nm up to an altitude of 4-6 km above sea level. In this study, data has was collected in the year of 2005. These data had been correlated with data of solar photometer CIMEL and also with meteorological data. The main results had indicated to exist a standard in the behavior of these meteorological data and the vertical distribution of the extinction coefficient gotten through LIDAR. In favorable periods of atmospheric dispersion, that is, rise of the temperature of associated air the fall of relative humidity, increase of the atmospheric pressure and low ventilation tax, was possible to determine with good precision the height of the Planetary Boundary Layer, as much through the vertical profile of the extinction coefficient how much through the technique of the vertical profile of the potential temperature. The technique LIDAR showed to be an important tool in the determination of the thermodynamic structure of the atmosphere, assisting to characterize the evolution of the CLP throughout the day, which had its good space and secular resolution. (author)

  18. ILC beam energy measurement by means of laser Compton backscattering

    International Nuclear Information System (INIS)

    Muchnoi, N.; Schreiber, H.J.; Viti, M.

    2008-10-01

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered γ-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10 -4 or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  19. Variation of backscatter as an indicator of boundary layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, M. [UMIST, Dept. of Chemical Engineering, Manchester (United Kingdom); Hunter, G.C. [National Power, Swindon (United Kingdom)

    1997-10-01

    In this work we have developed software to display cross-sections of the variance of backscatter over a given sampling period in addition to its absolute mean. We have analyzed a series of Lidar cross-sections of elevated plumes dispersing into a convective BL and have then derived profiles both of the mean backscatter, , as a function of height and of its relative, shot-to-shot, variation, {radical} /. The latter is a measure of the homogeneity of the aerosol. There is no cheap device for measuring BL depths so we were interested in comparing depths estimated using our Lidar with those predicted by the current ADMS atmospheric dispersion model. This is based on integrating an energy budget to predict the BL development and as such relies on values for the initial lapse rate and for the surface sensible heat flux. A major shortcoming of the model appears to be that, in the absence of measurements, it must assume a default value for the former; the latter may be estimated from surface measurements but is very sensitive to the assumed availability of surface moisture. (LN)

  20. Investigation of sheared liquids by neutron backscattering and reflectivity

    CERN Document Server

    Wolff, M; Hock, R; Frick, B; Zabel, H

    2002-01-01

    We have investigated by neutron scattering structural and dynamical properties of water solutions of the triblock copolymer P85 under shear. To this end a shear cell that suits the requirements for neutron backscattering and another for reflectivity experiments have been built. In reflectivity measurements we find the polymer concentration (nominal concentration of 33% by weight) to vary right at the surface between 12% and 52% for hydrophilic or hydrophobic coated silicon wavers, for temperatures between 18 C and 73 C and for shear rates up to 2500 s sup - sup 1. Additional structural changes deeper in the bulk are also observed. On the backscattering instrument (IN10 at ILL) we find that the liquid appears to stick to the plates of the shear cell, implying an unusual macroscopic velocity distribution that differs from that found earlier for lubrication oils. We report further on changes of the quasielastic line width in the direction of the shear gradient for different temperatures and shear rates. (orig.)

  1. Optical and electrical characteristics of plasma enhanced chemical vapor deposition boron carbonitride thin films derived from N-trimethylborazine precursor

    Energy Technology Data Exchange (ETDEWEB)

    Sulyaeva, Veronica S., E-mail: veronica@niic.nsc.ru [Department of Functional Materials Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Kosinova, Marina L.; Rumyantsev, Yurii M.; Kuznetsov, Fedor A. [Department of Functional Materials Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, Valerii G. [Laboratory of Physical Principles for Integrated Microelectronics, Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Kirienko, Viktor V. [Laboratory of Nonequilibrium Semiconductors Systems, Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation)

    2014-05-02

    Thin BC{sub x}N{sub y} films have been obtained by plasma enhanced chemical vapor deposition using N-trimethylborazine as a precursor. The films were deposited on Si(100) and fused silica substrates. The grown films were characterized by ellipsometry, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, spectrophotometry, capacitance–voltage and current–voltage measurements. The deposition parameters, such as substrate temperature (373–973 K) and gas phase composition were varied. Low temperature BC{sub x}N{sub y} films were found to be high optical transparent layers in the range of 300–2000 nm, the transmittance as high as 93% has been achieved. BC{sub x}N{sub y} layers are dielectrics with dielectric constant k = 2.2–8.9 depending on the synthesis conditions. - Highlights: • Thin BC{sub x}N{sub y} films have been obtained by plasma enhanced chemical vapor deposition. • N-trimethylborazine was used as a precursor. • Low temperature BC{sub x}N{sub y} films were found to be high optical transparent layers (93%). • BC{sub x}N{sub y} layers are dielectrics with dielectric constant k = 2.2–8.9.

  2. Optical and electrical characteristics of plasma enhanced chemical vapor deposition boron carbonitride thin films derived from N-trimethylborazine precursor

    International Nuclear Information System (INIS)

    Sulyaeva, Veronica S.; Kosinova, Marina L.; Rumyantsev, Yurii M.; Kuznetsov, Fedor A.; Kesler, Valerii G.; Kirienko, Viktor V.

    2014-01-01

    Thin BC x N y films have been obtained by plasma enhanced chemical vapor deposition using N-trimethylborazine as a precursor. The films were deposited on Si(100) and fused silica substrates. The grown films were characterized by ellipsometry, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, spectrophotometry, capacitance–voltage and current–voltage measurements. The deposition parameters, such as substrate temperature (373–973 K) and gas phase composition were varied. Low temperature BC x N y films were found to be high optical transparent layers in the range of 300–2000 nm, the transmittance as high as 93% has been achieved. BC x N y layers are dielectrics with dielectric constant k = 2.2–8.9 depending on the synthesis conditions. - Highlights: • Thin BC x N y films have been obtained by plasma enhanced chemical vapor deposition. • N-trimethylborazine was used as a precursor. • Low temperature BC x N y films were found to be high optical transparent layers (93%). • BC x N y layers are dielectrics with dielectric constant k = 2.2–8.9

  3. Structural and optical characteristics of InN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Je Won; Lee, Kyu Han; Hong, Sangsu

    2007-01-01

    The structural and electrical properties of InN/GaN multiple quantum wells, which were grown by metalorganic chemical vapor deposition, were characterized by transmission electron microscopy (TEM) and electroluminescence measurements. From the TEM micrographs, it was shown that the well layer was grown like a quantum dot. The well layer is expected to be the nano-size structures in the InN multiple quantum well layers. The multi-photon confocal laser scanning microscopy was used to investigate the optical properties of the light emitting diode (LED) structures with InN active layers. It was found that the two-photon excitation was possible in InN system. The pit density was measured by using the far-field optical technique. In the varied current conditions, the blue LED with the InN multiple quantum well structures did not have the wavelength shift. With this result, we can expect that the white LEDs with the InN multiple quantum well structures do not show the color temperature changes with the variations of applied currents

  4. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  5. The synthesis of CdSe quantum dots with carboxyl group and study on their optical characteristics

    International Nuclear Information System (INIS)

    Ye, Chen; Park, Sangjoon; Kim, Jongsung

    2009-01-01

    Quantum dots are nanocrystal semiconductors which attract lots of research interests due to their peculiar optical properties. CdSe/ZnS quantum dots have been synthesized via pyrolysis of organometallic reagents. The color of the quantum dot changes from yellow-green to red as their size increases with reaction time. Photoluminescence quantum efficiency of CdSe quantum dots have been enhanced by passivating the surface of CdSe quantum dots with ZnS layers. Quantum dots are nanocrystal semiconductors which attract lots of research interests due to their peculiar optical properties. CdSe/ZnS quantum dots have been synthesized via pyrolysis of organometallic reagents. The color of the quantum dot changes from yellow-green to red as their size increases with reaction time. Photoluminescence quantum efficiency of CdSe quantum dots have been enhanced by passivating the surface of CdSe quantum dots with ZnS layers. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Decadal trends and common dynamics of the bio-optical and thermal characteristics of the African Great Lakes.

    Directory of Open Access Journals (Sweden)

    Steven Loiselle

    Full Text Available The Great Lakes of East Africa are among the world's most important freshwater ecosystems. Despite their importance in providing vital resources and ecosystem services, the impact of regional and global environmental drivers on this lacustrine system remains only partially understood. We make a systematic comparison of the dynamics of the bio-optical and thermal properties of thirteen of the largest African lakes between 2002 and 2011. Lake surface temperatures had a positive trend in all Great Lakes outside the latitude of 0° to 8° south, while the dynamics of those lakes within this latitude range were highly sensitive to global inter-annual climate drivers (i.e. El Niño Southern Oscillation. Lake surface temperature dynamics in nearly all lakes were found to be sensitive to the latitudinal position of the Inter Tropical Convergence Zone. Phytoplankton dynamics varied considerably between lakes, with increasing and decreasing trends. Intra-lake differences in both surface temperature and phytoplankton dynamics occurred for many of the larger lakes. This inter-comparison of bio-optical and thermal dynamics provides new insights into the response of these ecosystems to global and regional drivers.

  7. The influence of curvature configuration on the characteristic of alcohol gel insertion jacket of polymer optical fiber liquid level sensor

    Science.gov (United States)

    Arumnika, N.; Kuswanto, H.

    2018-04-01

    This study aimed to determine the effect of curvature configuration to sensitivities and linearities of Polymer Optical Fiber (POF) water level sensor. POF type SH-4001-1.3 has been used in this study. The jacket of POF of 20 cm was removed. Transparent piped inserted by alcohol gel has been used to replace the jacket. This is head of a sensor. The head of a sensor is curved with variations of the specified path length, peel length, the width of curvature, the height of curvature and waveform. Configuration A (20 cm, 34 cm, 6 cm, 2 cm, 1 wave), configuration B (20 cm, 34 cm, 8 cm, 2 cm, 1 wave), configuration C (20 cm, 34 cm, 9 cm, 2 cm, ½ wave), configuration D (20 cm, 34 cm, 10 cm, 2 cm, ½ wave). The head of a sensor inserted into the water tank. The light source inserted to one end POF is a He-Ne laser light with a power of 5 mW and a wavelength of 632.8 nm. Power output at the other end received by the Optical Power Meter (OPM). The curvature configuration the head sensor of POF affects the output. Configuration A has good sensitivity, however good linearity given by configuration.

  8. Growth and optical characteristics of Tm-doped AlGaN layer grown by organometallic vapor phase epitaxy

    Science.gov (United States)

    Takatsu, J.; Fuji, R.; Tatebayashi, J.; Timmerman, D.; Lesage, A.; Gregorkiewicz, T.; Fujiwara, Y.

    2018-04-01

    We report on the growth and optical properties of Tm-doped AlGaN layers by organometallic vapor phase epitaxy (OMVPE). The morphological and optical properties of Tm-doped GaN (GaN:Tm) and Tm-doped AlGaN (AlGaN:Tm) were investigated by Nomarski differential interference contrast microscopy and photoluminescence (PL) characterization. Nomarski images reveal an increase of surface roughness upon doping Tm into both GaN and AlGaN layers. The PL characterization of GaN:Tm shows emission in the near-infrared range originating from intra-4f shell transitions of Tm3+ ions. In contrast, AlGaN:Tm also exhibits blue light emission from Tm3+ ions. In that case, the wider band gap of the AlGaN host allows energy transfer to higher states of the Tm3+ ions. With time-resolved PL measurements, we could distinguish three types of luminescent sites of Tm3+ in the AlGaN:Tm layer, having different decay times. Our results confirm that Tm ions can be doped into GaN and AlGaN by OMVPE, and show potential for the fabrication of novel high-color-purity blue light emitting diodes.

  9. Acoustic backscattering and radiation force on a rigid elliptical cylinder in plane progressive waves.

    Science.gov (United States)

    Mitri, F G

    2016-03-01

    This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Diurnal and seasonal characteristics of the optical properties and direct radiative forcing of different aerosol components in Seoul megacity.

    Science.gov (United States)

    Song, Sang-Keun; Shon, Zang-Ho; Park, Yeon-Hee

    2017-12-01

    The temporal variations (diurnal and seasonal) of the optical properties and direct aerosol radiative forcing (DARF) of different aerosol components (water-soluble, insoluble, black carbon (BC), and sea-salt) were analyzed using the hourly resolution data (PM 2.5 ) measured at an urban site in Seoul, Korea during 2010, based on a modeling approach. In general, the water-soluble component was predominant over all other components (with a higher concentration) in terms of its impact on the optical properties (except for absorbing BC) and DARF. The annual mean aerosol optical depth (AOD, τ) at 500nm for the water-soluble component was 0.38±0.07 (0.06±0.01 for BC). The forcing at the surface (DARF SFC ) and top of the atmosphere (DARF TOA ), and in the atmosphere (DARF ATM ) for most aerosol components (except for BC) during the daytime were highest in spring and lowest in late fall or early winter. The maximum DARF SFC occurred in the morning during most seasons (except for the water-soluble components showing peaks in the afternoon or noon in summer, fall, or winter), while the maximum DARF TOA occurred in the morning during spring and/or winter and in the afternoon during summer and/or fall. The estimated DARF SFC and DARF ATM of the water-soluble component were in the range of -49 to -84Wm -2 and +10 to +22Wm -2 , respectively. The DARF SFC and DARF ATM of BC were -26 to -39Wm -2 and +32 to +51Wm -2 , respectively, showing highest in summer and lowest in spring, with morning peaks regardless of the season. This positive DARF ATM of BC in this study area accounted for approximately 64% of the total atmospheric aerosol forcing due to strong radiative absorption, thus increasing atmospheric heating by 2.9±1.2Kday -1 (heating rate efficiency of 39K day -1 τ -1 ) and then causing further atmospheric warming. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Investigating the backscatter contrast anomaly in synthetic aperture radar (SAR) imagery of the dunes along the Israel-Egypt border

    Science.gov (United States)

    Rozenstein, Offer; Siegal, Zehava; Blumberg, Dan G.; Adamowski, Jan

    2016-04-01

    The dune field intersected by the Israel-Egypt borderline has attracted many remote sensing studies over the years because it exhibits unique optical phenomena in several domains, from the visual to the thermal infrared. These phenomena are the result of land-use policies implemented by the two countries, which have differing effects on the two ecosystems. This study explores the surface properties that affect radar backscatter, namely the surface roughness and dielectric properties, in order to determine the cause for the variation across the border. The backscatter contrast was demonstrated for SIR-C, the first synthetic aperture radar (SAR) sensor to capture this phenomenon, as well as ASAR imagery that coincides with complementary ground observations. These field observations along the border, together with an aerial image from the same year as the SIR-C acquisition were used to analyze differences in vegetation patterns that can affect the surface roughness. The dielectric permittivity of two kinds of topsoil (sand, biocrust) was measured in the field and in the laboratory. The results suggest that the vegetation structure and spatial distribution differ between the two sides of the border in a manner that is consistent with the radar observations. The dielectric permittivity of sand and biocrust was found to be similar, although they are not constant across the radar spectral region (50 MHz-20 GHz). These findings support the hypothesis that changes to the vegetation, as a consequence of the different land-use practices in Israel and Egypt, are the cause for the radar backscatter contrast across the border.

  12. Emission characteristics of the Yb3+-sensitized Tm3+-doped optical fiber upon pumping with infrared LED

    International Nuclear Information System (INIS)

    Htein, Lin; Fan, Weiwei; Han, Won-Taek

    2014-01-01

    Near infrared emissions at 975, 1040 and 1450 nm of the Yb 3+ -sensitized Tm 3+ -doped optical fiber were obtained upon simultaneous excitation of Yb 3+ and Tm 3+ ions using the infrared LED. -- Highlights: • A novel pumping scheme for 1450 nm emission from 3 H 4 → 3 F 4 transition of Tm was demonstrated. • The absorption bands of Yb and Tm located within 690–970 nm were simultaneously excited with the IR LED. • Near infrared emissions at 975, 1040 and 1450 nm were obtained. • The Yb 3+ /Tm 3+ -codoped fiber showed the good spectroscopic quality and the increase of radiative lifetime of 3 H 4 level. • This LED pumping scheme can be useful for low-cost S-band fiber laser/amplifier applications

  13. Determining optical and radiation characteristics of cathode ray tubes' glass to be reused as radiation shielding glass

    International Nuclear Information System (INIS)

    Zughbi, A.; Kharita, M.H.; Shehada, A.M.

    2017-01-01

    A new method of recycling glass of Cathode Ray Tubes (CRTs) has been presented in this paper. The glass from CRTs suggested being used as raw materials for the production of radiation shielding glass. Cathode ray tubes glass contains considerable amounts of environmentally hazardous toxic wastes, namely heavy metal oxides such as lead oxide (PbO). This method makes CRTs glass a favorable choice to be used as raw material for Radiation Shielding Glass and concrete. The heavy metal oxides increase its density, which make this type of glass nearly equivalent to commercially available shielding glass. CRTs glass have been characterized to determine heavy oxides content, density, refractive index, and radiation shielding properties for different Gamma-Ray energies. Empirical methods have been used by using the Gamma-Ray source cobalt-60 and computational method by using the code XCOM. Measured and calculated values were in a good compatibility. The effects of irradiation by gamma rays of cobalt-60 on the optical transparency for each part of the CRTs glass have been studied. The Results had shown that some parts of CRTs glass have more resistant to Gamma radiation than others. The study had shown that the glass of cathode ray tubes could be recycled to be used as radiation shielding glass. This proposed use of CRT glass is only limited to the available quantity of CRT world-wide. - Highlights: • A new method of recycling glass of Cathode Ray Tubes (CRTs) has been presented. • The glass from CRTs used as raw materials for radiation shielding glass. • The resulted glass have good optical properties and stability against radiations.

  14. Optical coherence tomography of the newborn airway.

    Science.gov (United States)

    Ridgway, James M; Su, Jianping; Wright, Ryan; Guo, Shuguang; Kim, David C; Barretto, Roberto; Ahuja, Gurpreet; Sepehr, Ali; Perez, Jorge; Sills, Jack H; Chen, Zhongping; Wong, Brian J F

    2008-05-01

    Acquired subglottic stenosis in a newborn is often associated with prolonged endotracheal intubation. This condition is generally diagnosed during operative endoscopy after airway injury has occurred. Unfortunately, endoscopy is unable to characterize the submucosal changes observed in such airway injuries. Other modalities, such as magnetic resonance imaging, computed tomography, and ultrasound, do not possess the necessary level of resolution to differentiate scar, neocartilage, and edema. Optical coherence tomography (OCT) is an imaging modality that produces high-resolution, cross-sectional images of living tissue (8 to 20 microm). We examined the ability of this noninvasive technique to characterize the newborn airway in a prospective clinical trial. Twelve newborn patients who required ventilatory support underwent OCT airway imaging. Comparative analysis of intubated and non-intubated states was performed. Imaging of the supraglottis, glottis, subglottis, and trachea was performed in 12 patients, revealing unique tissue characteristics as related to turbidity, signal backscattering, and architecture. Multiple structures were identified, including the vocal folds, cricoid cartilage, tracheal rings, ducts, glands, and vessels. Optical coherence tomography clearly identifies in vivo tissue layers and regional architecture while offering detailed information concerning tissue microstructures. The diagnostic potential of this technology makes OCT a promising modality in the study and surveillance of the neonatal airway.

  15. Anthropogenic impacts on the optical characteristics and biodegradability of dissolved and particulate organic matter in the Han River watershed, South Korea

    Science.gov (United States)

    Shirina Begum, Most; Jin, Hyojin; Yoon, Tae Kyung; Park, Ji-Hyung

    2016-04-01

    To understand how anthropogenic perturbations such as dams and pollution modify the chemical characteristics and biological transformations of riverine organic matter during transit through urbanized watersheds, we compared the optical characteristics and biodegradability of dissolved organic matter (DOM) and particulate organic matter (POM) along different reaches and urban tributary streams of the Han River watershed during short-term incubations. Laboratory incubations were conducted for 5-7 days at 20-25 oC with filtered or unfiltered water samples collected from up-, mid-, and downstream reaches with different levels of anthropogenic perturbations and three urban streams along the downstream reach that receive effluents from waste water treatment facilities in the metropolitan Seoul. Optical parameters such as ultraviolet absorbance at 254 nm, absorption coefficients at 254 nm and 350 nm, fluorescence index, humic-like fluorescence, microbial humic-like fluorescence, and protein-like fluorescence, and spectral slope at 350-400 nm were significantly correlated with increasing concentration of biodegradable dissolved organic carbon (BDOC) in filtered and unfiltered sample along the Han River up-, mid-, down-, and urban streams. The concentrations of BDOC in the urban streams were 6-12 times higher than in the filtered and unfiltered main-stem river samples, with significantly higher values in presence of POM in the unfiltered samples than in the filtered samples. In a separate 5-day incubation experiment with the unfiltered water sample from a downstream location of the Han River and its urban tributary water in isolation or mixed , the rate of concurrent biodegradation of both DOM and POM, as measured by the cumulative rate of CO2 production, was higher in the mixture than the average rate of the separately incubated samples, indicating the priming effect of mixed organic materials on the biodegradation of allochthonous organic materials from the other site

  16. Dissolved organic matter and its optical characteristics in the Laptev and East Siberian seas: spatial distribution and interannual variability (2003-2011)

    Science.gov (United States)

    Pugach, Svetlana P.; Pipko, Irina I.; Shakhova, Natalia E.; Shirshin, Evgeny A.; Perminova, Irina V.; Gustafsson, Örjan; Bondur, Valery G.; Ruban, Alexey S.; Semiletov, Igor P.

    2018-02-01

    The East Siberian Arctic Shelf (ESAS) is the broadest and shallowest continental shelf in the world. It is characterized by both the highest rate of coastal erosion in the world and a large riverine input of terrigenous dissolved organic matter (DOM). DOM plays a significant role in marine aquatic ecosystems. The chromophoric fraction of DOM (CDOM) directly affects the quantity and spectral quality of available light, thereby impacting both primary production and ultraviolet (UV) exposure in aquatic ecosystems. A multiyear study of CDOM absorption, fluorescence, and spectral characteristics was carried out over the vast ESAS in the summer-fall seasons. The paper describes observations accomplished at 286 stations and 1766 in situ high-resolution optical measurements distributed along the nearshore zone. Spatial and interannual CDOM dynamics over the ESAS were investigated, and driving factors were identified. It was shown that the atmospheric circulation regime is the dominant factor controlling CDOM distribution on the ESAS. This paper explores the possibility of using CDOM and its spectral parameters to identify the different biogeochemical regimes in the surveyed area. The analysis of CDOM spectral characteristics showed that the major part of the Laptev and East Siberian seas shelf is influenced by terrigenous DOM carried in riverine discharge. Western and eastern provinces of the ESAS with distinctly different DOM optical properties were also identified; a transition between the two provinces at around 165-170° E, also consistent with hydrological and hydrochemical data, is shown. In the western ESAS, a region of substantial river impact, the content of aromatic carbon within DOM remains almost constant. In the eastern ESAS, a gradual decrease in aromaticity percentage was observed, indicating contribution of Pacific-origin waters, where allochthonous DOM with predominantly aliphatic character and much smaller absorption capacity predominates. In addition, we

  17. Recent optimization of the beam-optical characteristics of the 6 MV van de Graaff accelerator for high brightness beams at the iThemba LABS NMP facility

    Science.gov (United States)

    Conradie, J. L.; Eisa, M. E. M.; Celliers, P. J.; Delsink, J. L. G.; Fourie, D. T.; de Villiers, J. G.; Maine, P. M.; Springhorn, K. A.; Pineda-Vargas, C. A.

    2005-04-01

    With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples.

  18. Comparison of coronary arterial lumen dimensions on angiography and plaque characteristics on optical coherence tomography images and their changes induced by statin

    International Nuclear Information System (INIS)

    Dong, Nana; Xie, Zulong; Wang, Wei; Dai, Jiannan; Sun, Meng; Pu, Zhongyue; Tian, Jinwei; Yu, Bo

    2016-01-01

    Coronary angiography (CAG) is widely used to assess lumen dimensions, and optical coherence tomography (OCT) is used to evaluate the characteristics of atherosclerotic plaque. This study was aimed to compare coronary lumen dimensions using CAG and plaque characteristics using OCT and their changes during statin therapy. We identified 97 lipid-rich plaques from 69 statin-naïve patients, who received statin therapy in the following 12 months. CAG and OCT examinations were conducted at baseline and 12-month follow-up period. Lesion length, as measured by CAG, was closely correlated with lipid length by OCT (baseline: r = 0.754, p < 0.001; follow-up: r = 0.639, p < 0.001). However, no significant correlations were found between the other findings on OCT and data on CAG. With 12-month statin therapy, microstructures of lipid-rich plaques were significantly improved, but CAG-derived lumen dimensions were not improved. Moreover, we found no significant relationship between changes in OCT measurements and changes in CAG data over time. Lipid length on OCT and lesion length on CAG were closely correlated. However, plaque microstructural characteristics on OCT showed no significantly statistically correlations with lumen dimensions on CAG, neither did their evolutionary changes induced by statin over time. Clinical trial registry: ClinicalTrial.gov. Registered number: NCT01023607. Registered 1 December 2009

  19. Recent optimization of the beam-optical characteristics of the 6 MV van de Graaff accelerator for high brightness beams at the iThemba LABS NMP facility

    International Nuclear Information System (INIS)

    Conradie, J.L.; Eisa, M.E.M.; Celliers, P.J.; Delsink, J.L.G.; Fourie, D.T.; Villiers, J.G. de; Maine, P.M.; Springhorn, K.A.; Pineda-Vargas, C.A.

    2005-01-01

    With the aim of improving the reliability and stability of the beams delivered to the nuclear microprobe at iThemba LABS, as well as optimization of the beam characteristics along the van de Graaff accelerator beamlines in general, relevant modifications were implemented since the beginning of 2003. The design and layout of the beamlines were revised. The beam-optical characteristics through the accelerator, from the ion source up to the analysing magnet directly after the accelerator, were calculated and the design optimised, using the computer codes TRANSPORT, IGUN and TOSCA. The ion source characteristics and optimal operating conditions were determined on an ion source test bench. The measured optimal emittance for 90% of the beam intensity was about 50π mm mrad for an extraction voltage of 6 kV. These changes allow operation of the Nuclear Microprobe at proton energies in the range 1 MeV-4 MeV with beam intensities of tenths of a pA at the target surface. The capabilities of the nuclear microprobe facility were evaluated in the improved beamline, with particular emphasis to bio-medical samples

  20. Frequency characteristic measurement of a fiber optic gyroscope using a correlation spectrum analysis method based on a pseudo-random sequence

    International Nuclear Information System (INIS)

    Li, Yang; Chen, Xingfan; Liu, Cheng

    2015-01-01

    The frequency characteristic is an important indicator of a system’s dynamic performance. The identification of a fiber optic gyroscope (FOG)’s frequency characteristic using a correlation spectrum analysis method based on a pseudo-random sequence is proposed. Taking the angle vibrator as the source of the test rotation stimulation and a pseudo-random sequence as the test signal, the frequency characteristic of a FOG is calculated according to the power spectral density of the rotation rate signal and the cross-power spectral density of the FOG’s output signal and rotation rate signal. A theoretical simulation is done to confirm the validity of this method. An experiment system is built and the test results indicate that the measurement error of the normalized amplitude–frequency response is less than 0.01, that the error of the phase–frequency response is less than 0.3 rad, and the overall measurement accuracy is superior to the traditional frequency-sweep method. By using this method, the FOG’s amplitude–frequency response and phase–frequency response can be measured simultaneously, quickly, accurately, and with a high frequency resolution. The described method meets the requirements of engineering applications. (paper)