WorldWideScience

Sample records for open charm meson

  1. A review of the open charm and open bottom mesons

    CERN Document Server

    Chen, Hua-Xing; Liu, Xiang; Liu, Yan-Rui; Zhu, Shi-Lin

    2016-01-01

    Since the discovery of the first charmed meson in 1976, many open-charm and open-bottom mesons were observed. In 2003 two narrow charm-strange states $D_{s0}^*(2317)$ and $D_{s1}(2460)$ were discovered by the BaBar and CLEO Collaborations, respectively. After that, more excited heavy mesons were reported. In this work, we review the experimental and theoretical progress in this field.

  2. Open charm meson production at LHC*

    Directory of Open Access Journals (Sweden)

    Luszczak Marta

    2012-12-01

    Full Text Available We discuss charm production at the LHC. The production of single cc¯$car c$ pairs is calculated in the kt-factorization approach. We use Kimber-Martin-Ryskin unintegrated gluon distributions in the proton. The hadronization is included with the help of Peterson fragmentation functions. Transverse momentum and pseudorapidity distributions of charmed mesons are presented and compared to recent results of the ALICE, LHCb and ATLAS collaborations. Furthermore we discuss production of two pairs of cc¯ $car c$ within a simple formalism of double-parton scattering (DPS. Surprisingly large cross sections, comparable to single-parton scattering (SPS, are predicted for LHC energies. We discuss perspectives how to identify the double scattering contribution. We predict much larger cross section for large rapidity distance between charm quarks from different hard parton scatterings compared to single scattering.

  3. Dynamically Generated Open and Hidden Charm Meson Systems

    CERN Document Server

    Gamermann, D; Strottman, D D; Vacas, M J V

    2006-01-01

    The lowest order chiral Lagrangian successfully applied to study the interaction of the SU(3) octet of pseudo-scalar mesons is generalized to include all mesons from the SU(4) 15-plet of pseudo-scalar mesons. Exchanges of heavy vector mesons, which are indirectly taken into account via this approach, are suppressed. Unitarization in coupled channels leads to dynamical generation of resonances in the open and hidden charm sectors. In particular, for reasonable values of the input, a new narrow scalar resonance in the hidden charm sector appears with a mass of 3.7 GeV.

  4. Open flavour charmed mesons in a quantum chromodynamics potential model

    Indian Academy of Sciences (India)

    Krishna Kingkar Pathak; D K Choudhury

    2012-12-01

    We modify the mesonic wave function by using a short distance scale 0 in analogy with hydrogen atom and estimate the values of masses and decay constants of the open flavour charm mesons , $D_{s}$ and $B_{c}$ within the framework of a QCD potential model. We also calculate leptonic decay widths of these mesons to study branching ratios and lifetime. The results are in good agreement with experimental and other theoretical values.

  5. Topological reconstruction of open charm mesons using electron tagging

    NARCIS (Netherlands)

    Mischke, A.

    2007-01-01

    We present first results on the topological reconstruction of open charm mesons in p+p collisions at $\\snn$ = 200 GeV using electron tagging. The analysis makes use of the full acceptance of the STAR electromagnetic calorimeter during Run VI data taking. A clear D$^0$ signal is obtained with a remar

  6. Dynamically generated open and hidden charm mesons

    CERN Document Server

    Gamermann, D; Strottman, D; Vacas, M J Vicente

    2007-01-01

    In this presentation I explain our framework for dynamically generating resonances from the meson meson interaction. Our model generates many poles in the T-matrix which are associated with known states, while at the same time new states are predicted.

  7. Charming quasi-exotic open-flavor mesons

    CERN Document Server

    Hilger, Thomas

    2016-01-01

    We discuss charmed mesons in the covariant Dyson-Schwinger-Bethe-Salpeter-equation approach. In particular we computed masses, leptonic decay constants, and an orbital-angular-momentum decomposition for a basic set of states. We also report an efficient way to treat the two coupled quark propagator dressing functions via a single function.

  8. Decays of open charmed mesons in the extended Linear Sigma Model

    Directory of Open Access Journals (Sweden)

    Eshraim Walaa I.

    2014-01-01

    Full Text Available We enlarge the so-called extended linear Sigma model (eLSM by including the charm quark according to the global U(4r × U(4l chiral symmetry. In the eLSM, besides scalar and pseudoscalar mesons, also vector and axial-vector mesons are present. Almost all the parameters of the model were fixed in a previous study of mesons below 2 GeV. In the extension to the four-flavor case, only three additional parameters (all of them related to the bare mass of the charm quark appear.We compute the (OZI dominant strong decays of open charmed mesons. The results are compatible with the experimental data, although the theoretical uncertainties are still large.

  9. Recent progress in lattice calculations of properties of open-charm mesons

    CERN Document Server

    Mohler, Daniel

    2015-01-01

    Recent progress in lattice calculations of properties of open-charm mesons, both regular and exotic, is reviewed, with an emphasis on spectroscopy. After reviewing recent calculations of excited state energy levels I will discuss progress in extracting hadronic masses and widths of charmed states from Lattice QCD simulations including low-lying scattering channels directly, to determine phase shift data and bound state/ resonance properties. With regard to other properties results from recent calculations of the $DD^*\\pi$ and $DD\\rho$, $D^*D^*\\rho$ couplings are presented. Beyond regular mesons, searches for explicitly exotic (tetraquark) states are also reviewed.

  10. Insight from elliptic flow of open charm mesons using quark coalescence model at RHIC and LHC energies

    CERN Document Server

    Esha, Roli; Huang, Huan Zhong

    2016-01-01

    A study of elliptic flow of open charm mesons, $D^0$ and $D_S ^\\pm$ using quark coalescence as a mechanism of hadronization within the framework of a multi-phase transport model has been presented. We have studied the transverse momentum dependence of the elliptic flow parameter at mid-rapidity ($|y|$ $<$ 1.0) for minimum bias Au+Au collisions at $\\sqrt{s_{NN}} = 200$ GeV (RHIC) and Pb+Pb collisions $\\sqrt{s_{NN}} = 2.76$ TeV (LHC) for different values of partonic interaction cross-section and QCD coupling constant. We have compared our calculations with the experimentally measured data at the LHC energy. We have also studied the effect of specific viscosity on elliptic flow of open charm mesons within the transport model approach. Our study indicates that the elliptic flow of open charmed mesons is more sensitive to viscous properties of QGP medium compared to light hadrons.

  11. Insight from elliptic flow of open charm mesons using quark coalescence model at RHIC and LHC energies

    Science.gov (United States)

    Esha, Roli; Nasim, Md.; Huang, Huan Zhong

    2017-01-01

    A study of elliptic flow of open charm mesons, D 0 and using quark coalescence as the mechanism of hadronization of heavy quarks will be presented. The coalescing partons are taken from a multi-phase transport model. The transverse momentum dependence of the elliptic flow parameter at mid-rapidity (|y| = 200 GeV (RHIC) and Pb+Pb collisions = 2.76 TeV (LHC) for different values of partonic interaction cross-section and QCD coupling constant will be discussed. We have compared our calculations with the experimentally measured data at the LHC energy. We will also present the effect of specific viscosity on elliptic flow of open charm mesons within the transport model approach. Our study indicates that the elliptic flow of open charmed mesons is more sensitive to viscous properties of QGP medium compared to light hadrons.

  12. In-medium modifications of open and hidden strange-charm mesons from spatial correlation functions

    CERN Document Server

    Bazavov, Alexei; Maezawa, Yu; Mukherjee, Swagato; Petreczky, Peter

    2014-01-01

    We calculate spatial correlation functions of in-medium mesons consisting of strange--anti-strange, strange--anti-charm and charm--anti-charm quarks in (2+1)-flavor lattice QCD using the highly improved staggered quark action. A comparative study of the in-medium modifications of mesons with different flavor contents is performed. We observe significant in-medium modifications for the $\\phi$ and $D_s$ meson channels already at temperatures around the chiral crossover region. On the other hand, for the $J/\\psi$ and $\\eta_c$ meson channels in-medium modifications remain relatively small around the chiral crossover region and become significant only above 1.3 times the chiral crossover temperature.

  13. Exlusive charmed meson pair production

    CERN Document Server

    Berezhnoy, A V

    2004-01-01

    The experimental data of BELLE Collaboration on the exclusive charmed meson pair production in the process of monophotonic $e^+e^-$-annihilation ($e^+e^-\\to \\gamma^* \\to D\\bar D$) has been studied. It has been shown that these data is described satisfactorily in the frame work of constituent quark model. Our studies have demonstrated that the central production process $e^+e^-\\to e^+e^-\\gamma\\gamma \\to e^+e^-D\\bar D +X$ and the process of monophotonic $e^+e^-$-annihilation yield comparable numbers of the charmed meson pairs.

  14. Studies of hadronic B decays to final states containing open charm mesons at LHCb

    CERN Document Server

    Martín Sánchez, A

    2012-01-01

    The LHCb experiment is a general purpose forward spectrometer operating at the Large Hadron Collider, optimized for the study of B and D hadrons. LHCb recorded 1.0 fb$^{-1}$ of integrated luminosity during 2011 data taking, collecting unprecedented large samples of B decays to final states involving charmed mesons. These decays offer several complementary measurements of CP violation and CKM matrix parameters, and serve as a laboratory for testing effective theories of hadron decays. We present a selection of new world leading results in these types of decays, including first observations of new modes, world best branching ratio measurements and studies of resonant substructures.

  15. Strong Couplings of Three Mesons with Charm(ing) Involvement

    CERN Document Server

    Lucha, Wolfgang; Sazdjian, Hagop; Simula, Silvano

    2016-01-01

    We determine the strong couplings of three mesons that involve, at least, one $\\eta_c$ or $J/\\psi$ meson, within the framework of a constituent-quark model by means of relativistic dispersion formulations. For strong couplings of $J/\\psi$ mesons to two charmed mesons, our approach leads to predictions roughly twice as large as those arising from QCD sum rules.

  16. Open charm meson production at BNL RHIC within $k_{t}$-factorization approach and revision of their semileptonic decays

    CERN Document Server

    Maciula, Rafal; Luszczak, Marta

    2015-01-01

    We discuss inclusive production of open charm mesons in proton-proton scattering at the BNL RHIC. The calculation is performed in the framework of $k_t$-factorization approach which effectively includes higher-order pQCD corrections. Different models of unintegrated gluon distributions (UGDF) from the literature are used. We focus on UGDF models favoured by the LHC data and on a new up-to-date parametrizations based on the HERA collider DIS high-precision data. Results of the $k_t$-factorization approach are compared to next-to-leading order collinear predictions. The hadronization of heavy quarks is done by means of fragmentation function technique. The theoretical transverse momentum distributions of charmed mesons are compared with recent experimental data of the STAR collaboration at $\\sqrt{s} = 200$ and $500$ GeV. Theoretical uncertainties related to the choice of renormalization and factorization scales as well as due to the quark mass are discussed. Very good description of the measured integrated cros...

  17. Development of fast and radiation hard Monolithic Active Pixel Sensors (MAPS) optimized for open charm meson detection with the CBM - vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Deveaux, Michael

    2008-03-20

    The work presented in this thesis addresses a key issue of the CBM experiment at FAIR, which aims to study charm production in heavy ion collisions at energies ranging from 10 to 40 AGeV. For the first time in this kinematical range, open charm mesons will be used as a probe of the nuclear fireball. Despite of their short decay length, which is typically in the order of few 100 {mu}m in the laboratory frame, those mesons will be identified by reconstructing their decay vertex. (orig.)

  18. Charm meson scattering cross sections by pion and rho meson

    CERN Document Server

    Lin Zi Wei; Ko, C M

    2001-01-01

    Using the local flavor SU(4) gauge invariance in the limit of vanishing vector-meson masses, we extend our previous study of charm-meson scattering cross sections by pion and rho meson, which is based only on the pseudoscalar-pseudoscalar-vector meson couplings, to include also contributions from the couplings among three vector mesons and among four particles. We find that diagrams with light-meson exchanges usually dominate the cross sections. For the processes considered previously, the additional interactions lead only to diagrams involving charm-meson exchanges and contact interactions, and the cross sections for these processes are thus not much affected. Nevertheless, these additional interactions introduce new processes with light-meson exchanges and increase significantly the total scattering cross sections of charm mesons by pion and rho meson.

  19. Single spin asymmetry for charm mesons

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez Zacarias, G. [PIMAyC, Eje Central Lazaro Cardenas No. 152, Apdo. Postal 14-805, D.F. (Mexico); Herrera, G.; Mercado, J. [Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, D.F. (Mexico)

    2007-08-15

    We study single spin asymmetries of D{sup 0} and D{sup -} mesons in polarized proton-proton collisions. A two component model is used to describe charm meson production. The production of D mesons occurs by recombination of the constituents present in the initial state as well as by fragmentation of quarks in the final state. This model has proved to describe the production of charm. The recombination component involves a mechanism of spin alignment that ends up in a single spin asymmetry. Experimental measurements of single spin asymmetry for pions at RHIC are compared with the model. Predictions for the asymmetry in D mesons are presented. (orig.)

  20. Preliminary Results on Charmed Meson Spectroscopy

    CERN Document Server

    Sarwar, S; Paolone, V S; Reyes, M; Anjos, J C; Yager, P M; Bediaga, I; Göbel, C; Magnin, J; De Miranda, J M; Pepe, I M; Dos Reis, A C; Simão, F R A; Carrillo, S; Casimiro, E; Méndez, H; Sánchez-Hernández, A; Uribe, C; Vásquez, F; Cinquini, L; Cumalat, J P; Ramírez, J E; O'Reilly, B; Vaandering, E W; Butler, J N; Cheung, H W K; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E E; Gourlay, S A; Kasper, P H; Kreymer, A E; Kutschke, R; Bianco, S; Fabbri, Franco Luigi; Sarwar, S; Cawlfield, C; Kim, D Y; Park, K S; Rahimi, A; Gardner, R; Chung, Y S; Kang, J S; Ko, B R; Kwak, J W; Lee, K B; Myung, S S; Alimonti, G; Boschini, M; Brambilla, D; Caccianiga, B; Calandrino, A; D'Angelo, P; Di Corato, M; Dini, P; Giammarchi, M G; Inzani, P; Leveraro, F; Malvezzi, S; Menasce, D; Mezzadri, M; Milazzo, L; Moroni, L; Pedrini, D; Prelz, F; Rovere, M; Sala, A; Sala, S; Arena, V; Boca, G; Bonomi, G; Gianini, G; Liguori, G; Merlo, M; Pantea, D; Ratti, S P; Riccardi, C; Torre, P; Viola, L; Vitulo, P; Hernández, Pilar; López, A M; Méndez, L; Mirles, M A; Montiel, E; Olaya, D; Quinones, J; Rivera, C; Zhang-Mayaguez, Y; Copty, N K; Purohit, M; Cho, K; Handler, T; Engh, D; Johns, W E; Hosack, M; Nehring, M S; Sales, M; Sheldon, P D; Stenson, K; Webster, M S; Sheaff, M; Kwon, Y; Sarwar, Shahzad

    2001-01-01

    We report the preliminary measurement by the FOCUS Collaboration (E831 at Fermilab) of masses and widths of the L=1 charm mesons $D_2^{*0}$ and $D_2^{*+}$. The fit of the invariant mass distribution requires an additional term to account for a broad structure over background.

  1. Strong decays of $2^+$ charm and charm-strange mesons

    CERN Document Server

    Zhang, Si-Cheng; Jiang, Yue; Li, Qiang; Wang, Guo-Li

    2016-01-01

    In this paper, we calculate the strong decays of $2^+$ heavy-light states, namely, the charmed $D^*_2(2460)^0$ meson and the charm-strange $D^*_{s2}(2573)^+$ meson. The method we adopt is the reduction formula, PCAC relation and low energy theorem, following which, the transition amplitudes are calculated. The wave functions of the heavy mesons involved are achieved by solving the instantaneous Bethe-Salpeter equation. As the OZI-allowed two-body strong decays give the dominant contribution, they can be used to estimate to total widths of mesons. Our results are: $\\Gamma[D^*_2(2460)^0]=51.3$ MeV and $\\Gamma[D^*_{s2}(2573)^+]=19.6$ MeV. The ratios of branching ratios of two main channels are $Br[D^*_2(2460)^0\\rightarrow D^+\\pi^-]/Br[D^*_2(2460)^0\\rightarrow D^{\\ast+}\\pi^-]=2.13$ and $Br[D^*_{s2}(2573)^+\\rightarrow D^{\\ast 0} K^+]/Br[D^*_{s2}(2573)^+\\rightarrow D^0K^+]=0.08$, respectively.

  2. Molecular Structures in Hidden Charm Meson and Charmed Baryon Spectrum

    CERN Document Server

    Fernandez, F; Ortega, P G

    2013-01-01

    Using a constituent quark model we study the mass and decay channels of meson meson and meson baryon structures in the charm sector. We show that the $X(3872)$ and $X(3940)$ resonances can be described as mixed charmonium-molecular states with $J^{PC}=1^{++}$, whereas the $X(3915)$ and the $Y(3940)$ can be assigned to similar mixed states with $J^{PC}=0^{++}$. In the baryon spectrum we identify the $\\Lambda^+_c(2940)$ as a $D^*N$ molecule with $(I)J^P=(0)3/2^-$ and the recently reported $X_c(3250)$ as a $D^*\\Delta$ resonance with $(I)J^P=(1)5/2^-$ or $(I)J^P=(2)3/2^-$.

  3. Charmed-strange mesons revisited: mass spectra and strong decays

    CERN Document Server

    Song, Qin-Tao; Liu, Xiang; Matsuki, Takayuki

    2015-01-01

    Inspired by the present experimental status of charmed-strange mesons, we perform a systematic study of the charmed-strange meson family, in which we calculate the mass spectra of the charmed-strange meson family by taking a screening effect into account in the Godfrey-Isgur model and investigate the corresponding strong decays via the quark pair creation model. These phenomenological analyses of charmed-strange mesons not only shed light on the features of the observed charmed-strange states, but also provide important information on future experimental search for the missing higher radial and orbital excitations in the charmed-strange meson family, which will be valuable task in LHCb, forthcoming BelleII and PANDA.

  4. Measurement of Charm Meson Lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J. [Wayne State University, Detroit, Michigan 48202 (United States); Chan, S.; Eigen, G.; Lipeles, E.; Schmidtler, M.; Shapiro, A.; Sun, W.M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F. [California Institute of Technology, Pasadena, California 91125 (United States); Jaffe, D.E.; Masek, G.; Paar, H.P.; Potter, E.M.; Prell, S.; Sharma, V. [University of California, San Diego, La Jolla, California 92093 (United States); Asner, D.M.; Eppich, A.; Gronberg, J.; Hill, T.S.; Korte, C.M.; Lange, D.J.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Roberts, D.; Tajima, H. [University of California, Santa Barbara, California 93106 (United States); Behrens, B.H.; Ford, W.T.; Gritsan, A.; Krieg, H.; Roy, J.; Smith, J.G. [University of Colorado, Boulder, Colorado 80309-0390 (United States); Alexander, J.P.; Baker, R.; Bebek, C.; Berger, B.E.; Berkelman, K.; Boisvert, V.; Cassel, D.G.; Crowcroft, D.S.; Dickson, M.; von Dombrowski, S.; Drell, P.S.; Dumas, D.J.; Ecklund, K.M.; Ehrlich, R.; Foland, A.D.; Gaidarev, P.; Gibbons, L.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Henderson, S.; Hopman, P.I.; Katayama, N.; Kreinick, D.L.; Lee, T.; Liu, Y.; Meyer, T.O.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Thayer, J.G.; Thies, P.G.; Valant-Spaight, B.; Warburton, A.; Ward, C. [Cornell University, Ithaca, New York 14853 (United States); Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Prescott, C.; Rubiera, A.I.; Yelton, J.; Zheng, J. [University of Florida, Gainesville, Florida 32611 (United States); Brandenburg, G.; Briere, R.A.; Ershov, A.; Gao, Y.S.; Kim, D.Y.; Wilson, R. [Harvard University, Cambridge, Massachusetts 02138 (United States); Browder, T.E.; Li, Y.; Rodriguez, J.L.; Yamamoto, H. [University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Bergfeld, T.; Eisenstein, B.I.; Ernst, J.; Gladding, G.E.; Gollin, G.D; and others

    1999-06-01

    We report measurements of the D{sup 0} , D{sup +} , and D{sup +}{sub s} meson lifetimes using 3.7 fb{sup {minus}1} of e{sup +}e{sup {minus}} annihilation data collected near the {Upsilon}(4S) resonance with the CLEO detector. The measured lifetimes of the D{sup 0} , D{sup +} , and D{sup +}{sub s} mesons are 408.5{plus_minus}4.1{sup +3.5}{sub {minus}3.4} fs , 1033.6{plus_minus}22.1{sup +9.9}{sub {minus}12.7} fs , and 486.3{plus_minus}15.0{sup +4.9}{sub {minus}5.1} fs . The precisions of these lifetimes are comparable to those of the best previous measurements, and the systematic errors are very different. In a single experiment we find that the ratio of the D{sup +}{sub s} and D{sup 0} lifetimes is 1.19{plus_minus}0.04 . {copyright} {ital 1999} {ital The American Physical Society}

  5. Higher radial and orbital excitations in the charmed meson family

    CERN Document Server

    Song, Qin-Tao; Liu, Xiang; Matsuki, Takayuki

    2015-01-01

    Considering abundant experimental information of charmed mesons and the present research status, in this work we systematically study higher radial and orbital excitations in the charmed meson family by analyzing the mass spectrum and calculating their two-body OZI-allowed decay behaviors. This phenomenological analysis not only reveals underlying propertes of the newly observed charmed states $D(2550)$, $D^*(2600)$, $D^*(2760)$, $D(2750)$, $D_J(2580)$, $D^*_J(2650)$, $D^*_J(2760)$, $D_J(2740)$, $D_J(3000)$ and $D^*_J(3000)$, but also provides valuable information of the charmed mesons still missing in experiments.

  6. Observation of a new charmed strange meson

    CERN Document Server

    Hinson, J W; Lee, J; Miller, D H; Pavlunin, V; Rangarajan, R; Sanghi, B; Shibata, E I; Shipsey, I P J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Dambasuren, E; Dorjkhaidav, O; Mountain, R; Muramatsu, H; Nandakumar, R; Skwarnicki, T; Stone, S; Wang, J C; Csorna, S E; Danko, I; Bonvicini, G; Cinabro, D; Dubrovin, M; McGee, S; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Sun, W M; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G T; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Mistry, N B; Patterson, J R; Peterson, D; Pivarski, J; Richichi, S J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Thayer, J G; Urner, D; Wilksen, T; Warburton, A; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stöck, H; Yelton, J; Benslama, K; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Plager, C; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Anderson, S; Frolov, V V; Gong, D T; Kubota, Y; Li, S Z; Poling, R A; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z V; Seth, K K; Tomaradze, A G; Zweber, P; Ahmed, S; Alam, M S; Ernst, J; Jian, L; Saleem, M; Wappler, F; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Honscheid, K; Kagan, H; Kass, R; Pedlar, T K; Von Törne, E; Severini, H; Skubic, P L; Dytman, S A; Müller, J A; Nam, S; Savinov, V

    1994-01-01

    Using the CLEO-II detector, we have obtained evidence for a new meson decaying to D^0 K^+. Its mass is 2573.2^{+1.7}_{-1.6}\\pm 0.8\\pm 0.5 {}~MeV/c^2 and its width is 16^{+5}_{-4}\\pm 3~MeV/c^2. Although we do not establish its spin and parity, the new meson is consistent with predictions for an L=1, S=1, J_P=2^+ charmed strange state. hardcopies with figures can be obtained upon written request to: Pam Morehouse preprint secretary Newman Lab Cornell University Ithaca, NY 14853 or by sending mail to: preprints@lns62.lns.cornell.edu

  7. Open charm spectroscopy at LHCb

    CERN Document Server

    Whitehead, Mark

    2015-01-01

    Recent charm spectroscopy results from Dalitz plot analyses of $B$ decays to open charm final states at LHCb are presented. The decay modes used are $B^{+} \\to D^{-} K^{+} \\pi^{+}$, $B^{0} \\to \\overline{D}{}^{0} \\pi^{+} \\pi^{-}$ and $B^{0} \\to \\overline{D}{}^{0} K^{+} \\pi^{-}$.

  8. Mesonic Decay of Charm Hypernuclei $\\Lambda^+_c$

    CERN Document Server

    Ghosh, Sabyasachi; Krein, Gastão

    2016-01-01

    $\\Lambda^+_c$ hypernuclei are expected to have binding energies and other properties similar to those of strange hypernuclei in view of the similarity between the quark structures of the strange and charmed hyperons, namely $\\Lambda(uds)$ and $\\Lambda^+_c (udc)$. One striking difference however occurs in their mesonic decays, as there is almost no Pauli blocking in the nucleonic decay of a charm hypernucleus because the final-state nucleons leave the nucleus at high energies. The nuclear medium nevertheless affects the mesonic decays of charm hypernucleus because the nuclear mean fields modify the masses of the charm hyperon. In the present communication we present results of a first investigation of the effects of finite baryon density on different weak mesonic decay channels of the $\\Lambda^+_c$ baryon. We found a non-negligible reduction of the decay widths as compared to their vacuum values.

  9. Possible hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon

    Institute of Scientific and Technical Information of China (English)

    YANG Zhong-Cheng; SUN Zhi-Feng; HE Jun; LIU Xiang; ZHU Shi-Lin

    2012-01-01

    Using the one-boson-exchange model,we studied the possible existence of very loosely bound hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon.Our numerical results indicate that the ∑c(D)* and ∑c(D) states exist,but that the ∑c(D) and ∑c(D)* molecular states do not.

  10. Dark photons from charm mesons at LHCb

    Science.gov (United States)

    Ilten, Philip; Thaler, Jesse; Williams, Mike; Xue, Wei

    2015-12-01

    We propose a search for dark photons A' at the LHCb experiment using the charm meson decay D*(2007 )0→D0A'. At nominal luminosity, D*0→D0γ decays will be produced at about 700 kHz within the LHCb acceptance, yielding over 5 trillion such decays during Run 3 of the LHC. Replacing the photon with a kinetically mixed dark photon, LHCb is then sensitive to dark photons that decay as A'→e+e-. We pursue two search strategies in this paper. The displaced strategy takes advantage of the large Lorentz boost of the dark photon and the excellent vertex resolution of LHCb, yielding a nearly background-free search when the A' decay vertex is significantly displaced from the proton-proton primary vertex. The resonant strategy takes advantage of the large event rate for D*0→D0A' and the excellent invariant-mass resolution of LHCb, yielding a background-limited search that nevertheless covers a significant portion of the A' parameter space. Both search strategies rely on the planned upgrade to a triggerless-readout system at LHCb in Run 3, which will permit the identification of low-momentum electron-positron pairs online during data taking. For dark photon masses below about 100 MeV, LHCb can explore nearly all of the dark photon parameter space between existing prompt-A' and beam-dump limits.

  11. Production of excited charm and charm-strange mesons at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2008-07-15

    The production of excited charm, D{sub 1}(2420){sup 0} and D{sup *}{sub 2}(2460){sup 0}, and charm-strange, D{sub s1}(2536){sup {+-}}, mesons in ep collisions was measured with the ZEUS detector at HERA using an integrated luminosity of 126 pb{sup -1}. Masses, widths and helicity parameters were determined. The measured yields were converted to the rates of c quarks hadronising as a given excited charm meson and to the ratios of the dominant D{sup *}{sub 2}(2460){sup 0} and D{sub s1}(2536){sup {+-}} branching fractions. A search for the radially excited charm meson, D{sup *'}(2640){sup {+-}}, was also performed. The results are compared with those measured previously and with theoretical expectations. (orig.)

  12. Production of excited charm and charm-strange mesons at HERA

    CERN Document Server

    Chekanov, S; Magill, S; Musgrave, B; Nicholass, D; Repond, J; Yoshida, R; Mattingly, M C K; Antonioli, P; Bari, G; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Cindolo, F; Corradi, M; Iacobucci, G; Margotti, A; Nania, R; Polini, A; Antonelli, S; Basile, M; Bindi, M; Cifarelli, L; Contin, A; De Pasquale, S; Sartorelli, G; Zichichi, A; Bartsch, D; Brock, I; Hartmann, H; Hilger, E; Jakob, H P; Jüngst, M; Nuncio-Quiroz, A E; Paul, E; Samson, U; Schönberg, V; Shehzadi, R; Wlasenko, M; Brook, N H; Heath, G P; Morris, J D; Capua, M; Fazio, S; Mastroberardino, A; Schioppa, M; Susinno, G; Tassi, E; Kim, J Y; Ibrahim, Z A; Kamaluddin, B; Wan-Abdullah, W A T; Ning, Y; Ren, Z; Sciulli, F; Chwastowski, J; Eskreys, A; Figiel, J; Galas, A; Gil, M; Olkiewicz, K; Stopa, P; Zawiejski, L; Adamczyk, L; Bold, T; Grabowska-Bold, I; Kisielewska, D; Lukasik, J; Przybycie, M; Suszycki, L; Kotanski, A; Slomiski, W; Behrens, U; Blohm, C; Bonato, A; Borras, K; Ciesielski, R; Coppola, N; Fang, S; Fourletova, J; Geiser, A; Göttlicher, P; Grebenyuk, J; Gregor, I; Haas, T; Hain, W; Hüttmann, A; Januschek, F; Kahle, B; Katkov, I I; Klein, U; Kötz, U; Kowalski, H; Lobodzinska, E; Löhr, B; Mankel, R; Melzer-Pellmann, I A; Miglioranzi, S; Montanari, A; Namsoo, T; Notz, o D; Parenti, A; Rinaldi, L; Roloff, P; Rubinsky, I; Santamarta, R; Schneekloth, U; Spiridonov, A; Szuba, D; Szuba, J; Theedt, T; Wolf, G; Wrona, K; Yagues-Molina, A G; Youngman, C; Zeuner, W; Drugakov, V; Lohmann, W; Schlenstedt, S; Barbagli, G; Gallo, E; Pelfer, P G; Bamberger, A; Dobur, D; Karstens, F; Vlasov, N N; Bussey, P J; Doyle, A T; Dunne, W; Forrest, M; Rosin, M; Saxon, D H; Skillicorn, I O; Gialas, I; Papageorgiu, K; Holm, U; Klanner, R; Lohrmann, E; Schleper, P; Schörner-Sadenius, T; Sztuk, J; Stadie, H; Turcato, o M; Foudas; Fry, C; Long, K R; Tapper, A D; Matsumoto, T; Nagano, K; Tokushuku, K; Yamada, S; Yamazaki, Y; Barakbaev, A N; Boos, E G; Pokrovskiy, N S; Zhautykov, B O; Aushev, V; Bachynska, O; Borodin, M; Kadenko, I; Kozulia, A; Libov, V; Lisovyi, M; Lontkovskyi, D; Makarenko, I; Sorokin, Iu; Verbytskyi, A; Volynets, O; Son, D; De Favereau, J; Piotrzkowski, K; Barreiro, F; Glasman, C; Jiménez, M; Labarga, L; Del Peso, J; Ron, E; Soares, M; Terrón, J; Zambrana, M; Corriveau, F; Liu, C; Schwartz, J; Walsh, R; Zhou, C; Tsurugai, T; Antonov, A; Dolgoshein, B A; Gladkov, D; Sosnovtsev, V; Stifutkin, A; Suchkov, S; Dementiev, R K; Ermolov, P F; Gladilin, L K; Golubkov, Yu A; Khein, L A; Korzhavina, I A; Kuzmin, V A; Levchenko, B B; Lukina, O Yu; Proskuryakov, A S; Shcheglova, L M; Zotkin, D S; Caldwell, A; Kollar, D; Reisert, B; Schmidke, W B; Grigorescu, G; Keramidas, A; Koffeman, E; Kooijman, P; Pellegrino, A; Tiecke, H; Vázquez, M; Wiggers, L; Brümmer, N; Bylsma, B; Durkin, L S; Lee, A; Ling, T Y; Allfrey, P D; Bell, M A; Cooper-Sarkar, A M; Devenish, R C E; Ferrando, J; Foster, B; Korcsak-Gorzo, K; Oliver, K; Robertson, A; Uribe-Estrada, C; Walczak, R; Bertolin, A; Dal Corso, F; Dusini, S; Longhin, A; Stanco, L; Bellan, P; Brugnera, R; Carlin, R; Garfagnini, A; Limentani, S; Oh, B Y; Raval, A; Ukleja, J; Whitmore, J J; Iga, Y; D'Agostini, G; Marini, G; Cole, A Nigro J E; Hart, J C; Abramowicz, H; Ingbir, R; Kananov, S; Levy, A; Stern, A; Kuze, M; Maeda, J; Hori, R; Kagawa, S; Okazaki, N; Shimizu, S; Tawara, T; Hamatsu, R; Kaji, H; Kitamura, S; Ota, O; Costa, Y D Ri M; Ferrero, M I; Monaco, V; Sacchi, R; Solano, A; Arneodo, M; Ruspa, M; Fourletov, S; Martin, J F; Stewart, T P; Boutle, S K; Butterworth, J M; Gwenlan, C; Jones, T W; Loizides, J H; Wing, M; Brzozowska, B; Ciborowski, J; Grzelak, G; Kulinski, P; Luniak, P; Malka, J; Nowak, R J; Pawlak, zarnecki J M; Tymieniecka, T; Ukleja, A; Zarnecki, A F; Adamus, M; Plucinsky, P P; Eisenberg, Y; Hochman, D; Karshon, U; Brownson, E; Danielson, T; Everett, A; Kçira, D; Reeder, D D; Ryan, P; Savin, A A; Smith, W H; Wolfe, H; Bhadra, S; Catterall, C D; Cui, Y; Hartner, G; Menary, S; Noor, U; Standage, J; Whyte, J

    2008-01-01

    The production of excited charm, D_1(2420)^0 and D_2^*(2460)^0, and charm-strange, D_{s1}(2536)^+-, mesons in ep collisions was measured with the ZEUS detector at HERA using an integrated luminosity of 126 pb^-1. Masses, widths and helicity parameters were determined. The measured yields were converted to the rates of c quarks hadronising as a given excited charm meson and to the ratios of the dominant D_2^*(2460)^0 and D_{s1}(2536)^+- branching fractions. A search for the radially excited charm meson, D^{*'}(2640)^+-, was also performed. The results are compared with those measured previously and with theoretical expectations.

  13. Dynamically generated open charmed baryons beyond the zero range approximation

    CERN Document Server

    Jimenez-Tejero, C E; Vidaña, I

    2009-01-01

    The interaction of the low lying pseudo-scalar mesons with the ground state baryons in the charm sector is studied within a coupled channel approach using a t-channel vector-exchange driving force. The amplitudes describing the scattering of the pseudo-scalar mesons off the ground-state baryons are obtained by solving the Lippmann--Schwinger equation. We analyze in detail the effects of going beyond the $t=0$ approximation. Our model predicts the dynamical generation of several open charmed baryon resonances in different isospin and strangeness channels, some of which can be clearly identified with recently observed states.

  14. Open Charm Production at STAR

    CERN Document Server

    Zhang, H

    2005-01-01

    We present the open charm spectra at mid-rapidity from direct reconstruction of D0, D* and D+/- in d+Au collisions at sqrt(sNN)=200 GeV using the STAR detector at RHIC. The indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions are also reported. The total c\\bar(c) cross section per nucleon-nucleon collision is extracted from both direct and indirect measurements and are consistent with each other. By combining the D0 and semileptonic measurements together, the cross section of 1.4+/-0.2+/-0.4 mb is higher than expectations from PYTHIA and other pQCD calculations. The open charm pT distribution from direct measurements covers the pT range up to ~10 GeV/c and follows a power-law distribution.

  15. New results in charm meson spectroscopy from FOCUS and SELEX

    Science.gov (United States)

    Cooper, Peter S.

    2005-01-01

    I will review recent results in charmed meson spectroscopy from the Fermilab fixed target charm photo-production and hadro-production experiments, FOCUS and SELEX. FOCUS reports new measurements of the masses and widths of the D2*+ and D2* mesons, evidence for D0*+ and D0* broad states and a confirming observation of the DsJ+(2317) and other recently observed high mass DsJ+ states. SELEX has recently reported evidence for a new DsJ+(2632) state in both the Ds+η0 and D0K+ final states.

  16. Charge asymmetry in the photonic production of charmed mesons

    CERN Document Server

    Berezhnoy, A V

    2006-01-01

    Charge asymmetries for the charm meson production ($D^{*+}$--$D^{*-}$, $D^{*0}$--$\\bar D^{*0}$ and $D^+_s$--$\\bar D^-_s$) have been estimated for the COMPASS kinematic conditions in the framework of perturbative recombination model. Mass corrections have been taken into account in the calculations. The large asymmetry for $D^+_s$--$\\bar D^-_s$ production has been predicted.

  17. Inclusive b Decays to Wrong Sign Charmed mesons

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crawley, B; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Geralis, T; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Hansen, J; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, Borut P; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Meyer, W T; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Schwanda, C; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verbeure, F; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zimin, N I; Zinchenko, A I; Zupan, M

    2003-01-01

    The production of wrong sign charmed mesons b -> Dbar_(s)X, D_(s) = (D0, D+, Ds), is studied using the data collected by the DELPHI experiment in the years 1994 and 1995. Charmed mesons in Z -> bbbar events are exclusively reconstructed by searching for the decays D0 -> K-pi+, D+ -> K-pi+pi+ and D+_s -> phipi+ -> K+K-pi+. The wrong sign contribution is extracted by using two discriminant variables: the charge of the b-quark at decay time, estimated from the charges of identified particles, and the momentum of the charmed meson in the rest frame of the b-hadron. The inclusive branching fractions of b-hadrons into wrong sign charm mesons are measured to be: B(b -> Dbar0X) + B(b -> D^- X) = (9.3+- 1.7(stat) +- 1.3(syst) +- 0.4(B))%, B(b -> D^-_s X) = (10.1 +- 1.0(stat) +- 0.6(syst) +- 2.8(B))% where the first error is statistical, the second and third errors are systematic.

  18. Single and double charmed meson production at the LHC

    CERN Document Server

    Maciula, Rafal

    2014-01-01

    We discuss production of charmed mesons in proton-proton collisions at the LHC. The cross section for inclusive production of $c \\bar c$ pairs is calculated in the framework of the $k_{\\perp}$-factorization approach which effectively includes next-to-leading order corrections. Theoretical uncertainties of the model related to the choice of renormalization and factorization scales as well as due to the quark mass are discussed. Results of the $k_{\\perp}$-factorization approach are compared to NLO parton model predictions. The hadronization of charm quarks is included with the help of the Peterson fragmentation functions. Inclusive differential distributions in transverse momentum for several charmed mesons ($D^0$, $D^{\\pm}$, $D^{\\pm}_{S}$) are calculated and compared to recent results of the ALICE, ATLAS and LHCb collaborations. Furthermore, we also discuss production of two pairs of $c \\bar c$ within a simple formalism of double-parton scattering (DPS). Surprisingly large cross sections, comparable to single-...

  19. Observation of double charm production involving open charm in pp collisions at $\\sqrt{s}$=7 TeV

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Waldi, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-01-01

    The production of $J/\\psi$ mesons accompanied by open charm, and of pairs of open charm hadrons are observed in pp collisions at a centre-of-mass energy of 7 TeV using an integrated luminosity of $355pb^{-1}$ collected with the LHCb detector. Model independent measurements of absolute cross-sections are given together with ratios to the measured $J/\\psi$ and open charm cross-sections. The properties of these events are studied and compared to theoretical predictions.

  20. Charmed meson production and decay properties at the psi(3770)

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    A remeasurement of the resonance near E/sub cm/ = 3.77 GeV in the e/sup +/e/sup -/ annihilation is presented. The properties of the resonance are used to deduce branching fractions of charmed mesons into hadronic final states. Several previously unseen decay modes are reported. Decays into Cabibbo suppressed final states are observed. The inclusive properties of D meson decays are studied, including strangeness and charged particle multiplicity. The semileptonic branching fractions for D/sup 0/ and D/sup -+/ are measured, providing a determination of the relative lifetimes of these particles.

  1. New results in charm meson spectroscopy from FOCUS and SELEX

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Peter S [Fermi National Accelerator Laboratory, PO Box 500 Batavia, Illinois 60510 (United States)

    2005-01-01

    I will review recent results in charmed meson spectroscopy from the Fermilab fixed target charm photo-production and hadro-production experiments, FOCUS and SELEX. FOCUS reports new measurements of the masses and widths of the D{sub 2}{sup *+} and D{sub 2}* mesons, evidence for D{sub 0}{sup *+} and D{sub 0}* broad states and a confirming observation of the D{sub sJ}{sup +}(2317) and other recently observed high mass D{sub sJ}{sup +} states. SELEX has recently reported evidence for a new D{sub sJ}{sup +}(2632) state in both the D{sub s}{sup +}{eta}{sup 0} and D{sup 0}K{sup +} final states.

  2. New results in charm meson spectroscopy from FOCUS and SELEX

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Peter S.; /Fermilab

    2005-01-01

    I will review recent results in charmed meson spectroscopy from the Fermilab fixed target charm photo-production and hadro-production experiments, FOCUS and SELEX. FOCUS reports new measurements of the masses and widths of the D*{sub 2}{sup +} and D*{sub 2} mesons, evidence for D*{sub 0}{sup +} and D*{sub 0} broad states and a confirming observation of the D{sub sJ}{sup +}(2317) and other recently observed high mass D{sub sJ}{sup +} states. SELEX has recently reported evidence for a new D{sub sJ}{sup +}(2632) state in both the D{sub s}{sup +} {eta}{sup 0} and D{sup 0}K{sup +} final states.

  3. Exclusive semileptonic decays of charmed and b-flavored mesons

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Tripathy, S.K. [Physics Department, Utkal University, Bhubaneswar-751004 (India); Kar, S.; Dash, P.C. [Physics Department, Prananath College, Khurda-752057 (India)

    1997-10-01

    We investigate the exclusive semileptonic decays of (B,B{sub s};D,D{sub s}) mesons into less heavy as well as light mesons in a field-theoretic framework based on the independent quark model with a confining potential in scalar-vector-harmonic form. With the recoil effect properly taken into account, the present model describes consistently the semileptonic decays of charmed and b-flavored mesons, agreeing well with the experimental data. The transition form factors in the heavy to heavy decays, in particular, comply with the heavy quark symmetry relations expected from HQET. The CKM parameters extracted in this formalism are close to the existing data. The model prediction also satisfies the Isgur-Wise relation connecting the form factors of the semileptonic (B{r_arrow}{rho}e{nu}) and that of rare radiative decay (B{r_arrow}{rho}{gamma}). {copyright} {ital 1997} {ital The American Physical Society}

  4. Charmed Mesons Produced in e+e- Annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Goldhaber, G.; Wiss, J. E.

    1980-12-01

    We shall begin our review by summarizing the first experimental indications for the existence of charm as obtained from experiments in e{sup +}e{sup -} annihilation. This will include a brief discussion of the role of charm in the understanding of the {psi} mesons, as well as the unraveling of the intricate structure present in the e{sup +} e{sup -} total hadronic cross section. Next we shall discuss the discovery of the D{sup 0}, and D{sup +}, and detail those properties crucial to their identification as charmed particles. Following will be a review of the properties of the D{sup 0} and D{sup +} learned through studies at the {psi}(3770) resonance, Compelling evidence will be summarized indicating that this state decays nearly exclusively into D{bar D}, thus making it particularly useful in establishing inclusive and exclusive D branching fractions. Our discussion of branching fractions will include two particularly important D decay modes, D{sup 0}{yields}{pi}{sup +}{pi}{sup -} and D{sup 0}{yields}K{sup +}{sup -}. These processes are suppressed relative to D{sup 0}{yields}K{sup -}{pi}{sup +} in the standard charm model, and thus serve as a critical test of that theory. This will be followed by a discussion of the D semileptonic decay modes which provide useful information on the D{sup 0} and D{sup +} lifetimes. Turning our attention to the data collected beyond the {psi}(3770) we will discuss the properties and production mechanisms of the excited charm mesons, the D*{sup 0} and the D*{sup +}. D production just above the {psi}(3770) appears to be dominated by the three quasi-two-body processes e{sup +} e{sup -} {yields} D{bar D}, D*{bar D} + {bar D}*D, and D*{bar D}*, in accordance with early theoretical predictions. The relative amounts of each process, on the other hand, is somewhat surprising, and has led to considerable theoretical speculation. Finally, we will summarize evidence for the existence of the F meson which is as yet not on as solid a footing as

  5. Charmed mesons with a symmetry-preserving contact interaction

    Science.gov (United States)

    Serna, Fernando E.; El-Bennich, Bruno; Krein, Gastão

    2017-07-01

    A symmetry-preserving treatment of a vector-vector contact interaction is used to study charmed heavy-light mesons. The contact interaction is a representation of nonperturbative kernels used in Dyson-Schwinger and Bethe-Salpeter equations of QCD. The Dyson-Schwinger equation is solved for the u , d , s and c quark propagators and the bound-state Bethe-Salpeter amplitudes respecting spacetime-translation invariance and the Ward-Green-Takahashi identities associated with global symmetries of QCD are obtained to calculate masses and electroweak decay constants of the pseudoscalar π , K , D and Ds and vector ρ , K*, D*, and Ds* mesons. The predictions of the model are in good agreement with available experimental and lattice QCD data.

  6. Open charm production at HERA-B

    Science.gov (United States)

    Dujmic, Denis

    A proton beam with a momentum of 920 GeV/c is collided with a carbon wire target ( s = 42 GeV) at a rate of 2--5 MHz during the commissioning of the HERA-B experiment. Events that had a lepton candidate with a transverse momentum greater than 1 GeV/c (1.5 GeV/c) are reconstructed and written to tape. The analysis uses 2.6 million events triggered in the muon channel. Performance of the Ring Imaging Cerenkov detector is described in detail, as well as the algorithm for positive particle identification, its efficiency, and pion-kaon separation. Detection of charm decays is carried out in two decay channels: D0 → piK and D + → pipiK. Signals obtained in the measurement are statistically significant with cross sections for all xF of sD0+D¯ 0 = 80 +/- 27(stat) +/- 61(syst) mub/nucleon for D0 + D¯0, and sD++D- = 52 +/- 20(stat) +/- 39(syst) mub/nucleon for D+ + D-. For comparison with other experiments, these measurements are converted into the total forward cross section for cc¯ production scc¯ = 39 +/- 10(stat) +/- 21(syst) mub/nucleon for xF > 0. This value is consistent with an estimate based on QCD calculations and other measurements. The production cross sections for two control channels J/psi → mumu and KS → pipi are also measured. The reconstructed J/psi signal leads to a cross section of (420 +/- 80) nb/nucleon, with nuclear dependence taken as A0.92. KS signal has cross section of 19.1 +/- 1.8 mb/nucleon, with A 0.718. Both measurements are in a good agreement with expectations. A set of detected D mesons was used to search for additional vertices that belong to B meson decays. It allows setting a limit for bb¯ production at <150 nb. This work presents a contribution to the commissioning of the HERA-B experiment, and an extension of its research program to the physics of open charm decays.

  7. Search for Popcorn Mesons in Events with Two Charmed Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Hartfiel, Brandon; /SLAC

    2006-07-07

    The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.

  8. Classification of the scalar mesons: a strange pole expedition into charm and beauty territory

    CERN Document Server

    Van Beveren, E; Beveren, Eef van; Rupp, George

    2004-01-01

    The classification of scalar and vector mesons is reviewed within the framework of the Resonance-Spectrum Expansion (RSE). This method allows a simple and straightforward description of non-exotic meson-meson scattering, incorporating the effects of quark confinement and OZI-allowed decay in a fully nonperturbative way. Results for resonances and bound states are compared to experiment, on the basis of computed pole positions and cross sections. New predictions for open-charm and -bottom scalar mesons are presented. Concretely, observed vector states for u-ubar/d-dbar, s-sbar, c-cbar, and b-bbar are reproduced, and others are predicted. In the light scalar sector, the now established two nonets, one below 1 GeV and one in the region 1.3 - 1.5 GeV, are easily described, through the appearance of extra poles in the scattering matrix. The recently found Ds0*(2317) meson is accurately reproduced by the same mechanism, as a quasi-bound state in the coupled c-sbar/DK system. In S-wave D-pion and B-pion scattering, ...

  9. Observation of a New Charmed-Strange Meson

    Science.gov (United States)

    Kutschke, Robert Kenneth

    The ARGUS detector at the DORIS II e^+e ^- storage ring at DESY has been used to search for new charmed strange mesons. A new state has been observed at a mass of 2535.8 +/- 0.6 +/- 0.7 MeV/c^2. It decays into rm D^{*+ }K^0 but not into rm D ^+K^0. Its width is less than 3.5 MeV/c^2 at the 90% confidence level. Various arguments suggest that this state is one of the two J ^{P}=1^+ states which are expected in the lowest lying P-wave cs multiplet. A search was also made for other members of the multiplet and for other decay modes of the observed state. No signals were found in these searches.

  10. Theoretical update on two non-resonant three-body channels in charmed meson decays

    CERN Document Server

    Zhang, D X

    1996-01-01

    Predictions of two channels in the three-bod decays of the charmed mesons are made within the heavy hadron chiral perturbation theory. There still exists the problem that the theoretical expectation is too small compared to the experimental data.

  11. Charmed and strange pseudoscalar meson decay constants from HISQ simulations

    CERN Document Server

    Bazavov, A; Bouchard, C; DeTar, C; Du, D; El-Khadra, A X; Foley, J; Freeland, E D; Gamiz, E; Gottlieb, Steven; Heller, U M; Kim, J; Komijani, J; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Neil, E T; Simone, J N; Sugar, R L; Toussaint, D; Van de Water, R S; Zhou, R

    2013-01-01

    We update our determinations of $f_{D^+}$, $f_{D_s}$, $f_K$, and quark mass ratios from simulations with four flavors of HISQ dynamical quarks. The availability of ensembles with light quarks near their physical mass means that we can extract physical results with only small corrections for valence- and sea-quark mass mistunings instead of a chiral extrapolation. The adjusted valence-quark masses and lattice spacings may be determined from an ensemble-by-ensemble analysis, and the results for the quark mass ratios then extrapolated to the continuum limit. Our central values of the charmed meson decay constants, however, come from an alternative analysis, which uses staggered chiral perturbation theory for the heavy-light mesons, and allows us to incorporate data at unphysical quark masses where statistical errors are often smaller. A jackknife analysis propagated through all of these steps takes account of the correlations among all the quantities used in the analysis. Systematic errors from the finite spatia...

  12. Regarding the charmed-strange member of the 2³S₁ meson state.

    Science.gov (United States)

    Feng, Xue-Chao; Chen, Jing

    2013-01-01

    By employing the mass relations derived from the mass matrix and Regge trajectory, we investigate the masses of charmed and charmed-strange members of the 2³S₁ meson. The masses are compared with the values predicted by other theoretical approaches and experimental data. The results may be useful for the discovery of the unobserved meson and the determination of the quantum number of the newly discovered states.

  13. Strong couplings and form factors of charmed mesons in holographic QCD

    Science.gov (United States)

    Ballon-Bayona, Alfonso; Krein, Gastão; Miller, Carlisson

    2017-07-01

    We extend the two-flavor hard-wall holographic model of Erlich, Katz, Son, and Stephanov [Phys. Rev. Lett. 95, 261602 (2005), 10.1103/PhysRevLett.95.261602] to four flavors to incorporate strange and charm quarks. The model incorporates chiral and flavor symmetry breaking and provides a reasonable description of masses and weak decay constants of a variety of scalar, pseudoscalar, vector, and axial-vector strange and charmed mesons. In particular, we examine flavor symmetry breaking in the strong couplings of the ρ meson to the charmed D and D* mesons. We also compute electromagnetic form factors of the π , ρ , K , K*, D and D* mesons. We compare our results for the D and D* mesons with lattice QCD data and other nonperturbative approaches.

  14. Hadronic $b$ decays to open charm and a measurement of the CKM angle $\\gamma$

    CERN Document Server

    Gligorov, V V

    2013-01-01

    The LHCb detector is a general purpose forward spectrometer at the Large Hadron Collider, which exploits the $\\approx$ 300 b cross-section for $b\\bar{b}$ production in 7 TeV proton-proton collisions to make precise measurements of b-hadron properties. The following results, all based on a $1 fb^{-1}$ data sample, are presented here : precision measurements of branching fractions and first observations of B meson decays to doubly charmed nal states; searches for rare B meson decays to open charm nal states; and a measurement of the CKM angle $\\gamma$.

  15. Experimental Sensitivities on Searching for Rare and Forbidden Decays of Charm Mesons at BES-Ⅲ

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ming-Gang; RONG Gang; MA Hai-Long

    2009-01-01

    We discuss the Monte Carlo studies of searching for the rare and forbidden pure-leptonic and semi-leptonic decays of D,0 and D+8 mesons, based on a full Monte Carlo simulation for the BES-Ⅲ detector, with the BES-Ⅲ Offline Software System. The experimental sensitivities of searching for 36 rare and forbidden charm meson decays are estimated.

  16. The X(3872) and other X,Y,Z Resonances as Hidden Charm Meson-Meson Molecules

    CERN Document Server

    Oset, E; Molina, R; Nieves, J M; Arriola, E Ruiz; Branz, T; Liang, Wei Hong

    2011-01-01

    We report on some ideas concerning the nature of the X(3872) resonance and the need for approximately equal charged and neutral components of $D \\bar{D}^* +cc$. Then we discuss how some hidden charm states are obtained from the interaction between vector mesons with charm and can be associated to some of the charmonium-like X,Y,Z states. Finally we discuss how the nature of these states could be investigated through different types of radiative decay.

  17. Quenched Charmed Meson Spectra Using Tadpole Improved Quark Action on Anisotropic Lattices

    Institute of Scientific and Technical Information of China (English)

    LIU Liu-Ming; SU Shi-Quan; LI Xin; LIU Chuan

    2005-01-01

    @@ Charmed meson charmonium spectra are studied with improved quark actions on anisotropic lattices. We measured the pseudo-scalar and vector meson dispersion relations for four lowest lattice momentum modes with quark mass values ranging from the strange quark to charm quark with three different values of gauge coupling β and four different values of bare speed of light v. With the bare speed of light parameter v tuned in a mass-dependent way, we study the mass spectra of D, Ds, ηc, D*, Ds* and J/ψ mesons. The results extrapolated to the continuum limit are compared with the experiment, and a qualitative agreement is found.

  18. Strong decays of the charmed mesons $D_1^*(2680)$, $D^*_3(2760)$, $D_2^*(3000)$

    CERN Document Server

    Wang, Zhi-Gang

    2016-01-01

    In this article, we assign the higher charmed mesons $D^*_1(2680)$, $D_3^*(2760)$ and $D_2^*(3000)$ to be the 2S $1^-$, 1D $3^-$ and 1F $2^+$ states, respectively, and study the two-body strong decays to the ground state charmed mesons and light pseudoscalar mesons with the heavy meson effective theory. We obtain the ratios among the strong decays, which can be confronted to the experimental data in the future and shed light on the nature of those higher charmed mesons.

  19. Search for T violation in charm meson decays

    Energy Technology Data Exchange (ETDEWEB)

    Link, J.M.; Yager, P.M.; /UC, Davis; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; /Rio de Janeiro, CBPF; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; /CINVESTAV, IPN; Agostino, L.; Cinquini, L.; Cumalat,; /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN,

    2005-06-01

    Using data from the FOCUS (E831) experiment, they have searched for T violation in charm meson decays using the four-body decay channels D{sup 0} {yields} K{sup -}K{sup +} {pi}{sup -}{pi}{sup +}, D{sup +} {yields} K{sub S}{sup 0}K{sup +}{pi}{sup -}{pi}{sup +}, and D{sub s}{sup +} {yields} K{sub S}{sup 0}K{sup +}{pi}{sup -}{pi}{sup +}. The T violation asymmetry is obtained using triple-product correlations and assuming the validity of the CPT theorem. They find the asymmetry values to be A{sub T{sub viol}}(D{sup 0}) = 0.010 {+-} 0.057(stat.) {+-} 0.037(syst.), A{sub T{sub viol}}(D{sup +}) = 0.023 {+-} 0.062(stat.) {+-} 0.022(syst.), and A{sub T{sub viol}}(D{sub s}{sup +}) = -0.036 {+-} 0.067(stat.) {+-} 0.023(syst.). Each measurement is consistent with no T violation. New measurements of the CP asymmetries for some of these decay modes are also presented.

  20. Mixing and CP Violation in Charm Meson Decays

    Energy Technology Data Exchange (ETDEWEB)

    Meadows, B; /Cincinnati U.

    2010-08-26

    Mixing and CP violation (CPV ) in the neutral D system were first discussed over thirty years ago but mixing was observed for the first time only very recently. Since then, these observations have been confirmed in other experiments and in other D{sup 0} decay modes. Unlike the K, B and B{sub s} systems, for which mixing was observed years earlier, the short distance ({Delta}C = 2) amplitude contributing to mixing in the D system arises from box diagrams with down- rather than up-type quarks in the loops. The d and s components are GIM-suppressed, and the b component is suppressed by the small V{sub ub} CKM coupling. In the standard model (SM), therefore, long range, non-perturbative effects, a coherent sum over intermediate states accessible to both D{sup 0} and {bar D}{sup 0}, are the main contribution to mixing. These are hard to compute reliably, however. The phenomenon of mixing in neutral meson systems has now been observed in all flavours, but only in the past year in the D{sup 0} system. The standard model anticipated that, for the charm sector, the mixing rate would be small, and also that CP violation, either in mixing or in direct decay, would be below the present levels of observability. It is hoped that further study of these phenomena might reveal signs of new physics. A review of recently available, experimental results is given.

  1. Open Charm and Beauty Production at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Olaf [DESY, Notkestrasse 85, 22607 Hamburg (Germany)

    2012-01-15

    A review is provided of open charm and beauty production at HERA and its description by perturbative QCD (pQCD). Four years after the end of the data taking there is still a steady flow of new charm and beauty results from HERA. Among the results reported here are the first combined H1 and ZEUS measurements on the contribution from charm production to deep inelastic scattering (DIS), represented by the structure function F{sub 2}{sup cc{sup {sup M{sup a{sup c{sup r{sup o{sup n{sup }}}}}}}}}, as well as new precise results on the corresponding structure function for beauty production, F{sub 2}{sup bb{sup {sup M{sup a{sup c{sup r{sup o{sup n{sup }}}}}}}}}. Furthermore the situation of charm and beauty production in the photoproduction kinematic regime is reviewed. Since it is a related field also the first hadroproduction results from LHC are presented. A brief outlook is given on open heavy flavour prospects at possible future ep colliders, with a focus on the LHeC.

  2. Open-charm physics opportunities at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Prencipe, Elisabetta; Cao, Lu; Herten, Andreas; Ritman, James [IKP, Forschungszentrum Juelich (Germany); Kang, Donghee [Johannes Gutenberg Universitaet Mainz (Germany); Pitka, Andreas [Justus-Liebig Universitaet Giessen (Germany); Collaboration: PANDA-Collaboration

    2015-07-01

    Open-charm physics is of high interest for the weak and the strong interactions. New observations in spectroscopy and the recent constraining limits on CP violation in the D sector strongly motivate the study of open-charm physics. The experiment PANDA at FAIR (Darmstadt) will investigate fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei. Among other topics, original contributions are planned from PANDA in the open-charm sector. With high average reaction rates up to 2.10{sup 7} interactions/s, and a factor 20 higher mass resolution than attained at B-factories, PANDA is in a privileged position to perform measurements of widths of narrow states, such as the D{sub s}(2317){sup +} and the D{sub s}(2460){sup +}, and form factors in semileptonic D{sub s} decays. Very rare processes (e.g. D{sup 0} → γγ) can be accessible with unprecedented accuracy. In addition, the search for new physics is a challenge that PANDA can take, for example with the study of the mixing in the D sector, analyzing the channel anti pp → ψ(3770) → anti D{sup 0}D{sup 0}. PANDA is expected to be decisive to answer on these and second-order open questions. A general overview of the benchmark channels in the D sector with PANDA is given in this report, showing the results of recent PandaRoot simulations.

  3. New insights into the Ds0 *(2317 ) and other charm scalar mesons

    Science.gov (United States)

    Guo, Zhi-Hui; Meißner, Ulf-G.; Yao, De-Liang

    2015-11-01

    Through the scattering of light-pseudoscalar mesons (π ,K ,η ,η' ) off charmed mesons (D ,Ds) , we study the Ds0 *(2317 ) state and other relevant charm scalar mesons in a unitarized chiral effective field theory approach. We investigate the charm scalar meson poles with different strangeness (S ) and isospin (I ) quantum numbers as well as their corresponding residues, which provide the coupling strengths of the charm scalar mesons. Both the light-quark mass and NC dependences of the pole positions of the Ds0 *(2317 ) and the poles with (S ,I )=(0 ,1 /2 ) are analyzed in detail in this work. Interestingly we observe quite similar pion mass trajectories for the resonance pole at around 2.1 GeV with (S ,I )=(0 ,1 /2 ) to those of the f0(500 ) given in the literature. When increasing the values of NC we find that a bound state and a virtual state in the (S ,I )=(1 ,0 ) channel asymmetrically approach the D K threshold for NC6 , the bound and virtual states move into the complex plane on the second Riemann sheet and become a symmetric pair of resonance poles. For large enough values of NC, neither the Ds0 *(2317 ) pole nor the poles with (S ,I )=(0 ,1 /2 ) tend to fall down to the real axis, indicating that they do not behave like a standard quark-antiquark meson at large NC.

  4. Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions

    CERN Document Server

    Husemann, U; Albrecht, H; Aleksandrov, A; Amaral, V S; Amorim, A; Aplin, S J; Aushev, V; Bagaturia, Yu S; Balagura, V; Bargiotti, M; Barsukova, O; Bastos, J; Batista, J; Bauer, C; Bauer, T S; Belkov, A A; Bertin, A; Bobchenko, B M; Böcker, M; Bogatyrev, A; Böhm, G; Brauer, M; Bruinsma, M; Bruschi, M; Buchholz, P; Büchler, M C; Buran, T; Carvalho, J; Conde, P; Cruse, C; Dam, M; Danielsen, K M; Danilov, M; De Castro, S; Deppe, H; Dong, X; Dreis, H B; Egorytchev, V; Ehret, K; Eisele, F; Emeliyanov, D; Essenov, S; Fabbri, Franco Luigi; Faccioli, P; Feuerstack-Raible, M; Flammer, J; Fominykh, B A; Funcke, M; Garrido, L; Giacobbe, B; Glass, J; Goloubkov, D; Golubkov, Yu A; Golutvin, A; Golutvin, I A; Gorbounov, I; Gorisek, A; Gouchtchine, O; Goulart, D C; Gradl, S; Gradl, W; Grimaldi, F; Guilitsky, Yu; Hansen, J D; Harr, R; Hernández, J M; Hofmann, W; Hott, T; Hulsbergen, W D; Husemann, U; Igonkina, O; Ispiryan, M; Jagla, T; Jiang, C; Kapitza, H; Karabekyan, S; Karchin, P; Karpenko, N; Keller, S; Kessler, J; Khasanov, F M; Kiryushin, Yu T; Knöpfle, K T; Kolanoski, H; Korpar, S; Krauss, C; Kreuzer, P; Krizan, P; Krücker, D; Kupper, S; Kvaratskheliia, T; Lanyov, A V; Lau, K; Lewendel, B; Lohse, T; Lomonosov, B N; Männer, R; Masciocchi, S; Massa, I; Matchikhilian, I; Medin, G; Medinnis, M; Mevius, M; Michetti, A; Mikhailov, Yu; Mizuk, R; Muresan, R; Nam, S; Zur Nedden, M; Negodaev, M A; Nörenberg, M; Nowak, S; Núñez-Pardo de Vera, M T; Ouchrif, M; Ould-Saada, F; Padilla, C; Peralta, D; Pernack, R; Pestotnik, R; Piccinini, M; Pleier, M A; Poli, M; Popov, V; Pose, A; Pose, D; Prystupa, S; Pugatch, V; Pylypchenko, Y; Pyrlik, J; Reeves, K; Ressing, D; Rick, H; Riu, I; Robmann, P; Rybnikov, V; Sánchez, F; Sbrizzi, A; Schmelling, M; Schmidt, B; Schreiner, A T; Schröder, H; Schwartz, A J; Schwarz, A S; Schwenninger, B; Schwingenheuer, B; Sciacca, F; Semprini-Cesari, N; Shiu, J; Shuvalov, S M; Silva, L; Smirnov, K V; Sozuer, L; Solunin, S A; Somov, A; Somov, S; Spengler, J; Spighi, R; Spiridonov, A A; Stanovnik, A; Staric, M; Stegmann, C; Subramanian, H S; Symalla, M; Tikhomirov, I; Titov, M; Tsakov, I; Uwer, U; Van Eldik, C; Vasilev, Yu; Villa, M; Vitale, A; Vukotic, I; Wahlberg, H; Walenta, Albert H; Walter, M; Wang, J J; Wegener, D; Werthenbach, U; Wolters, H; Wurth, R; Wurz, A; Zaitsev, Yu; Zavertyaev, M V; Zeuner, T; Zhelezov, A; Zheng, Z; Zimmermann, R; Zivko, T; Zoccoli, A

    2006-01-01

    The HERA-B collaboration has studied the production of charmonium and open charm states in collisions of 920 GeV protons with wire targets of different materials. The acceptance of the HERA-B spectrometer covers negative values of xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8 GeV/c. The studies presented in this paper include J/psi differential distributions and the suppression of J/psi production in nuclear media. Furthermore, production cross sections and cross section ratios for open charm mesons are discussed.

  5. Model-Independent Analysis of CP Violation in Charmed Meson Decays

    CERN Document Server

    Dhir, Rohit; Oh, Sechul

    2015-01-01

    We present a model-independent analysis of CP violation, inspired by recent experimental observations, in charmed meson decays. The topological diagram approach is used to study direct CP asymmetries for singly Cabibbo-suppressed two-body hadronic decays of charmed mesons. We extract the magnitudes and relative phases of the corresponding topological amplitudes from available experimental information. In order to get more precise and reliable estimates of direct CP asymmetries, we take into account contributions from all possible strong penguin amplitudes, including the internal $b$-quark penguin contributions. We also study flavor SU(3) symmetry breaking effects in these decay modes and consequently, predict direct CP asymmetries of unmeasured modes.

  6. New insights into the $D^{*}_{s0}(2317)$ and other charm scalar mesons

    CERN Document Server

    Guo, Zhi-Hui; Yao, De-Liang

    2015-01-01

    Through the scattering of light-pseudoscalar mesons ($\\pi,K,\\eta,\\eta'$) off charmed mesons ($D, D_s$), we study the $D^{*}_{s0}(2317)$ state and other relevant charm scalar mesons in a unitarized chiral effective field theory approach. We investigate the charm scalar meson poles with different strangeness ($S$) and isospin ($I$) quantum numbers as well as their corresponding residues, which provide the coupling strengths of the charm scalar mesons. Both the light-quark mass and $N_C$ dependences of the pole positions of the $D^{*}_{s0}(2317)$ and the poles with $(S,I)=(0,1/2)$ are analyzed in detail in this work. Interestingly we observe quite similar pion mass trajectories for the resonance pole at around 2.1 GeV with $(S,I)=(0,1/2)$ to those of the $f_0(500)$ given in the literature. When increasing the values of $N_C$ we find that a bound state and a virtual state in the $(S,I)=(1,0)$ channel asymmetrically approach the $D K$ threshold for $N_C6$, the bound and virtual states move into the complex plane o...

  7. Search for rare and forbidden decays of charm and charmed-strange mesons to final states h^+- e^-+ e^+

    CERN Document Server

    Rubin, P; Mehrabyan, S; Selen, M; Wiss, J; Libby, J; Kornicer, M; Mitchell, R E; Shepherd, M R; Tarbert, C M; Besson, D; Pedlar, T K; Xavier, J; Cronin-Hennessy, D; Hietala, J; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Xiao, T; Brisbane, S; Martin, L; Powell, A; Spradlin, P; Wilkinson, G; Mendez, H; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Hu, D; Moziak, B; Napolitano, J; Ecklund, K M; Insler, J; Muramatsu, H; Park, C S; Pearson, L J; Thorndike, E H; Yang, F; Ricciardi, S; Thomas, C; Artuso, M; Blusk, S; Mountain, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Lincoln, A; Smith, M J; Zhou, P; Zhu, J; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Randrianarivony, K; Tatishvili, G; Briere, R A; Vogel, H; Onyisi, P U E; Rosner, J L; Alexander, J P; Cassel, D G; Das, S; Ehrlich, R; Fields, L; Gibbons, L; Gray, S W; Hartill, D L; Heltsley, B K; Kreinick, D L; Kuznetsov, V E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Sun, W M; Yelton, J

    2010-01-01

    We have searched for flavor-changing neutral current decays and lepton-number-violating decays of D^+ and D^+_s mesons to final states of the form h^+- e^-+ e^+, where h is either \\pi or K. We use the complete samples of CLEO-c open-charm data, corresponding to integrated luminosities of 818 pb^-1 at the center-of-mass energy E_CM = 3.774 GeV containing 2.4 x 10^6 D^+D^- pairs and 602 pb^-1 at E_CM = 4.170 GeV containing 0.6 x 10^6 D^*+-_s D^-+_s pairs. No signal is observed in any channel and we obtain 90% confidence level upper limits on branching fractions B(D^+ --> \\pi^+ e^+ e^-) \\pi^- e^+ e^+) K^+ e^+ e^-) K^- e^+ e^+) \\pi^+ e^+ e^-) \\pi^- e^+ e^+) K^+ e^+ e^-) K^- e^+ e^+) < 1.7 x 10^-5.

  8. Soft-gluon effects in nonleptonic decays of charmed mesons

    Energy Technology Data Exchange (ETDEWEB)

    Shizuya, Ken-ichi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1981-03-19

    In this paper, soft-gluon effects in nonleptonic decays of D and F mesons are studied nonperturbatively by use of a QCD multipole expansion. Finally, for reasonable values of D-meson bound-state parameters, the soft-gluon effects lead to a significant difference in the lifetimes of the D0 and D+ mesons.

  9. Measurement of gluon polarization through spin asymmetry in the production of charmed mesons; Mesure de la polarisation des gluons par l'asymetrie de spin dans la production de mesons charmes

    Energy Technology Data Exchange (ETDEWEB)

    Panebianco, St

    2005-09-15

    The main aim of the COMPASS experiment is the measurement of the gluon polarization in the nucleon, which can be accessed by the spin asymmetry in the scattering of a polarized muon beam on a polarized nucleon target. The process sensitive to the gluon polarization is the photon-gluon fusion, which can be tagged in the cleanest way by looking at the production of D{sup 0} mesons. At COMPASS, D{sup 0} mesons are reconstructed from the invariant mass of their decay products. However, it is a rare process, dominated by a large combinatorial background. This thesis presents some studies devoted to the improvement of the charmed mesons reconstruction. The measurement of the efficiency and the space resolution of the 3 drift chamber stations of the COMPASS spectrometer is a necessary step in understanding the performances of the reconstruction of particle trajectories. The hadron identification, which is fundamental in the reconstruction of charmed meson decay, is performed by a RICH detector. A statistical treatment of signal and background, together with an upgrade project to replace the present front-end electronics, have been developed in order to improve the particle identification performances. The second part of this work concerns the spin asymmetry measurement, which requires the application of event selection criteria in order to minimize the noise over signal ratio in the D{sup 0} invariant mass, and the development of event-weighting methods to reduce the statistical error. This work presents a preliminary result, based on 2002-2004 statistics, which is the {delta}G/G measurement from open charm production. Although the error bars are large, the measured gluon polarization is compatible with zero. Given the present accuracy, this result is compatible with the existing direct measurements from other channels. However, it does not allow to distinguish between different theoretical models. (author)

  10. Open charm production and spectroscopy at CMS and ATLAS

    CERN Document Server

    Hou, George Wei-Shu

    2016-01-01

    The central and general purpose experiments at the LHC have contributed to open charm physics, complementing LHCb in ${\\rm B}_{\\rm c}$ property studies, and ATLAS has discovered a ${\\rm B}_{\\rm c}$ excitation that is consistent with ${\\rm B}_{\\rm c}$(2S). ATLAS has studied charged D$_{\\rm (s)}$ meson production, while CMS has studied D$^0$ production. In particular, CMS measured the nuclear modification factor $R_{\\rm AA}$ in PbPb collisions at 5.02 TeV, finding strong medium suppression in PbPb compared with pp collisions over a broad range of $p_T$, and consistent with the ALICE result scaled to similar energy. An important tool has been developed to identify charm jets, complementing b-tagging algorithms. CMS has developed a 2D c-tagger to discriminate c-jet from light jet and b-jet, respectively. After training on simulated data, the c-tagger has been validated with W$+$c and t$\\bar {\\rm t}$ events using 2015 data at 13 TeV, with extracted scale factor $SF_{\\rm c}$ close to 1. A similar c-tagger has been ...

  11. Ground state charmed meson spectra for N_f=2+1+1

    CERN Document Server

    Rae, T D

    2015-01-01

    We present a preliminary study of the charmed meson spectra using the electrically neutral subset of the new Budapest-Marseille-Wuppertal N_f=2+1+1 gauge configurations that utilise the 3-HEX smeared clover action. The analysis is performed with a focus on the hyperfine splitting.

  12. Heavy mesons in dense matter

    NARCIS (Netherlands)

    Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; LlanesEstrada, FJ; Pelaez,

    2011-01-01

    Charmed mesons in dense matter are studied within a unitary coupled-channel approach which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense medium, and discuss their implications on hidden c

  13. Study of Charm Fragmentation into $D^{*\\pm}$ Mesons in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wunsch, E.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-01-01

    The process of charm quark fragmentation is studied using $D^{*\\pm}$ meson production in deep-inelastic scattering as measured by the H1 detector at HERA. Two different regions of phase space are investigated defined by the presence or absence of a jet containing the $D^{*\\pm}$ meson in the event. The parameters of fragmentation functions are extracted for QCD models based on leading order matrix elements and DGLAP or CCFM evolution of partons together with string fragmentation and particle decays. Additionally, they are determined for a next-to-leading order QCD calculation in the fixed flavour number scheme using the independent fragmentation of charm quarks to $D^{*\\pm}$ mesons.

  14. Study of Charm Fragmentation into $D^{*\\pm}$ Mesons in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F D; Andreev, V; Antunovic, B; Aplin, S; Asmone, A; Astvatsatourov, A; Bacchetta, A; Backovic, S; Baghdasaryan, A; Barrelet, E; Bartel, W; Beckingham, M; Begzsuren, K; Behnke, O; Belousov, A; Berger, N; Bizot, J C; Boenig, M O; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cozzika, G; Cvach, J; Dainton, J B; Daum, K; Deak, M; de Boer, Y; Delcourt, B; Del Degan, M; Delvax, J; De Roeck, A; De Wolf, E A; Diaconu, C; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eliseev, A; Elsen, E; Essenov, S; Falkiewicz, A; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, S; Glazov, A; Glushkov, I; Goerlich, L; Goettlich, M; Gogitidze, N; Gouzevitch, M; Grab, C; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Hansson, M; Helebrant, C; Henderson, R C W; Hennekemper, E; Henschel, H; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hovhannisyan, A; Hreus, T; Jacquet, M; Janssen, M E; Janssen, X; Jemanov, V; Jonsson, L; Jung, Andreas Werner; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Klimkovich, T; Kluge, T; Knutsson, A; Kogler, R; Korbel, V; Kostka, P; Kraemer, M; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Kruger, K; Kutak, K; Landon, M P J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Li, G; Lipka, K; Liptaj, A; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Lucaci-Timoce, A I; Lytkin, L; Makankine, A; Malinovski, E; Marage, P; Marti, Ll; Martyn, H U; Maxfield, S J; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, Matthias Ulrich; Mudrinic, M; Muller, K; Murin, P; Nankov, K; Naroska, B; Naumann, Th; Newman, Paul R; Niebuhr, C; Nikiforov, A; Nowak, G; Nowak, K; Nozicka, M; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G.D; Pejchal, O; Peng, H; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pitzl, D; Placakyte, R; Polifka, R; Povh, B; Preda, T; Radescu, V; Rahmat, A J; Raicevic, N; Raspiareza, A; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rurikova, Z; Rusakov, S; Salek, D; Salvaire, F; Sankey, D P C; Sauter, M; Sauvan, E; Schmidt, S; Schmitt, S; Schmitz, C; Schoeffel, L; Schoning, A; Schultz-Coulon, H C; Sefkow, F; Shaw-West, R N; Sheviakov, I; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, Ivan; Smirnov, P; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, Arnd E; Staykova, Z; Steder, M; Stella, B; Straumann, U; Sunar, D; Sykora, T; Tchoulakov, V; Thompson, G; Thompson, P.D; Toll, T; Tomasz, F; Tran, T H; Traynor, D; Trinh, T N; Truol, P; Tsakov, I; Tseepeldorj, B; Tsurin, I; Turnau, J; Tzamariudaki, E; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Vargas Trevino, A; Vazdik, Y; Vinokurova, S; Volchinski, V; Wegener, D; Wessels, M; Wissing, Ch; Wunsch, E; Yeganov, V; Zacek, J; Zalesak, J; Zhang, Z; Zhelezov, A; Zhokin, A; Zhu, Y C; Zimmermann, T; Zohrabyan, H; Zomer, F

    2009-01-01

    The process of charm quark fragmentation is studied using $D^{*\\pm}$ meson production in deep-inelastic scattering as measured by the H1 detector at HERA. Two different regions of phase space are investigated defined by the presence or absence of a jet containing the $D^{*\\pm}$ meson in the event. The parameters of fragmentation functions are extracted for QCD models based on leading order matrix elements and DGLAP or CCFM evolution of partons together with string fragmentation and particle decays. Additionally, they are determined for a next-to-leading order QCD calculation in the fixed flavour number scheme using the independent fragmentation of charm quarks to $D^{*\\pm}$ mesons.

  15. Charm Meson Production in Au-Au Collisions at √ SNN = 200 Gev at Rhic

    Science.gov (United States)

    Vanfossen, Joseph A., Jr.

    dense surrounding medium, as the quarks traverse it. Such suppression is an indicator that the medium generated in relativistic heavy-ion collisions is strongly interacting. Theoretical models were successful in describing the suppression of light quarks but under-predicted the observed heavy-flavor suppression. The data triggered a new effort in modeling where theorists started taking into account the energy loss due to elastic collisions between the traversing parton and the surrounding medium. To fully understand the interplay between elastic and inelastic collision mechanisms of light and heavy partons and the hot medium, we needed precise data on heavy flavor production. Also, in order to be able to access the parent's kinematic information, one needs to perform a full topological reconstruction of the parent's decay. This will also allow for the separation of charm and bottom mesons. The study of D0 mesons, the lightest mesons with a charm quark, can be used to study the properties of the medium created in collisions, such as the density, flow, and thermalization of the medium. This dissertation presents an attempt to measure D0/D0bar ratios and D0 meson production in Au+Au collisions at sqrt(s_NN) = 200 GeV from fully reconstructed decays. For this purpose, we used a silicon tracker in STAR consisting of the Silicon Vertex Tracker (SVT) and the Silicon Strip Detector (SSD), along with the Time Projection Chamber (TPC) in a special run in the year 2007. We have developed new calibration and microvertexing techniques in the data analysis. We performed full secondary vertex reconstruction, to topologically reconstruct the secondary vertex of the D0 meson in the decay channel D0 -> K- + pi+ (B.R. = 3.89% and ct = 123 µm) and then performed a standard invariant mass analysis. At the same time we used a new tool (TMVA) in high energy physics for optimizing the signal to background ratio. However, precise measurements of open heavy flavor are difficult to obtain with

  16. Charmonium spectroscopy and mixing with light quark and open charm states from nF=2 lattice QCD

    CERN Document Server

    Bali, Gunnar S; Ehmann, Christian

    2011-01-01

    We study the charmonium spectrum including higher spin and gluonic excitations. We determine an upper limit on the mixing of the eta_c ground state with light pseudoscalar flavour-singlet mesons and investigate the mixing of charmonia near open charm thresholds with pairs of (excited) D and anti-D mesons. For charm and light valence quarks and nF=2 sea quarks, we employ the non-perturbatively improved Sheikholeslami-Wohlert (clover) action. Excited states are accessed using the variational technique, starting from a basis of suitably optimised operators. For some aspects of this study, the use of improved stochastic all-to-all propagators was essential.

  17. Observation and study of bottom-meson decays to a charm meson, a proton-antiproton pair, and pions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tae Min [Univ. of California, Santa Barbara, CA (United States)

    2010-04-27

    Bottom-meson decays with baryons show two unusual features—the branching fractions are enhanced for multibody decays and the baryon-antibaryon subsystem recoils against the other decay products—and their reasons are not yet well understood. Moreover, measurements using explicit reconstruction techniques constitute only about 1% out of about 8% of such decays. This Dissertation reports the study of ten bottom-meson decays (labeled 0– 9) to a proton-antiproton pair, a charm meson, and a system of up to two pions, using the BABAR Experiment’s 455×106 BB pairs produced with the PEP-II asymmetric-energy e+e- collider at the Stanford Linear Accelerator Center.

  18. Molecular components in P -wave charmed-strange mesons

    Science.gov (United States)

    Ortega, Pablo G.; Segovia, Jorge; Entem, David R.; Fernández, Francisco

    2016-10-01

    Results obtained by various experiments show that the Ds0 *(2317 ) and Ds 1(2460 ) mesons are very narrow states located below the D K and D*K thresholds, respectively. This is markedly in contrast with the expectations of naive quark models and heavy quark symmetry. Motivated by a recent lattice study which addresses the mass shifts of the c s ¯ ground states with quantum numbers JP=0+ [Ds0 *(2317 )] and JP=1+ [Ds 1(2460 )] due to their coupling with S -wave D(*)K thresholds, we perform a similar analysis within a nonrelativistic constituent quark model in which quark-antiquark and meson-meson degrees of freedom are incorporated. The quark model has been applied to a wide range of hadronic observables, and thus the model parameters are completely constrained. The coupling between quark-antiquark and meson-meson Fock components is done using a 3P0 model in which its only free parameter γ has been elucidated, performing a global fit to the decay widths of mesons that belong to different quark sectors, from light to heavy. We observe that the coupling of the 0+ (1+) meson sector to the D K (D*K ) threshold is the key feature to simultaneously lower the masses of the corresponding Ds0 *(2317 ) and Ds 1(2460 ) states predicted by the naive quark model and describe the Ds 1(2536 ) meson as the 1+ state of the jqP=3 /2+ doublet predicted by heavy quark symmetry, reproducing its strong decay properties. Our calculation allows us to introduce the coupling with the D -wave D*K channel and the computation of the probabilities associated with the different Fock components of the physical state.

  19. Diffractive Open Charm Production in Deep-Inelastic Scattering and Photoproduction at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.I.; Lueders, H.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truoel, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, Marcel; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    Measurements are presented of diffractive open charm production at HERA. The event topology is given by ep -> eX Y where the system X contains at least one charmed hadron and is well separated by a large rapidity gap from a leading low-mass proton remnant system Y. Two analysis techniques are used for the cross section measurements. In the first, the charm quark is tagged by the reconstruction of a D*(2010) meson. This technique is used in deep-inelastic scattering (DIS) and photoproduction. In the second, a method based on the displacement of tracks from the primary vertex is used to measure the open charm contribution to the inclusive diffractive cross section in DIS. The measurements are compared with next-to-leading order QCD predictions based on diffractive parton density functions previously obtained from a QCD analysis of the inclusive diffractive cross section at H1. A good agreement is observed in the full kinematic regime, which supports the validity of QCD factorization for open charm production in...

  20. Diffractive open charm production in deep-inelastic scattering and photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Andreev, V. [Lebedev Physical Institute, Moscow (Russian Federation); Anthonis, T. [Inter-Univ. Institute for High Energies ULB-VUB, Brussels (Belgium)]|[Antwerp Univ. (BE)] (and others)

    2006-10-15

    Measurements are presented of diffractive open charm production at HERA. The event topology is given by ep{yields}eXY where the system X contains at least one charmed hadron and is well separated by a large rapidity gap from a leading low-mass proton remnant system Y. Two analysis techniques are used for the cross section measurements. In the first, the charm quark is tagged by the reconstruction of a D{sup *{+-}}(2010) meson. This technique is used in deep-inelastic scattering (DIS) and photoproduction ({gamma}p). In the second, a method based on the displacement of tracks from the primary vertex is used to measure the open charm contribution to the inclusive diffractive cross section in DIS. The measurements are compared with next-to-leading order QCD predictions based on diffractive parton density functions previously obtained from a QCD analysis of the inclusive diffractive cross section at H1. A good agreement is observed in the full kinematic regime, which supports the validity of QCD factorization for open charm production in diffractive DIS and {gamma}p. (orig.)

  1. The melting and abundance of open charm hadrons

    CERN Document Server

    Bazavov, A; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2014-01-01

    Ratios of cumulants of conserved net charge fluctuations are sensitive to the degrees of freedom that are carriers of the corresponding quantum numbers in different phases of strong interaction matter. Using lattice QCD with 2+1 dynamical flavors and quenched charm quarks we calculate second and fourth order cumulants of net charm fluctuations and their correlations with other conserved charges such as net baryon number, electric charge and strangeness. Analyzing appropriate ratios of these cumulants we probe the nature of charmed degrees of freedom in the vicinity of the QCD chiral crossover region. We show that for temperatures above the chiral crossover transition temperature, charmed degrees of freedom can no longer be described by an uncorrelated gas of hadrons. This suggests that the dissociation of open charm hadrons and the emergence of deconfined charm states sets in just near the chiral crossover transition. Till the crossover region we compare these lattice QCD results with two hadron resonance gas...

  2. Molecular components in P-wave charmed-strange mesons

    CERN Document Server

    Ortega, Pablo G.

    2016-01-01

    Results obtained by various experiments show that the $D_{s0}^{\\ast}(2317)$ and $D_{s1}(2460)$ mesons are very narrow states located below the $DK$ and $D^{\\ast}K$ thresholds, respectively. This is markedly in contrast with the expectations of naive quark models and heavy quark symmetry. Motivated by a recent lattice study which addresses the mass shifts of the $c\\bar{s}$ ground states with quantum numbers $J^{P}=0^{+}$ ($D_{s0}^{\\ast}(2317)$) and $J^{P}=1^{+}$ ($D_{s1}(2460)$) due to their coupling with $S$-wave $D^{(\\ast)}K$ thresholds, we perform a similar analysis within a nonrelativistic constituent quark model in which quark-antiquark and meson-meson degrees of freedom are incorporated. The quark model has been applied to a wide range of hadronic observables and thus the model parameters are completely constrained. The coupling between quark-antiquark and meson-meson Fock components is done using a modified version of the $^{3}P_{0}$ decay model. We observe that the coupling of the $0^{+}$ $(1^{+})$ mes...

  3. Open charm and beauty production in hadron reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lykasov, G.I.; Lyubushkin, V.V.; Bednyakov, V.A. [Joint Institute for Nuclear Research, 141980, Dubna, Moscow region (Russian Federation)

    2010-01-15

    The production of charmed and beauty hadrons in proton-proton and proton-antiproton collisions at high energies is analyzed within the modified quark-gluon string model (QGSM) including the internal motion of quarks in colliding hadrons. It is shown that using both the QGSM and NLO QCD one can describe these experimental data rather successfully in a wide region of transverse momenta. We also present some predictions for the future experiments on the beauty baryon production in pp collisions at LHC energies and on the charmed meson production in p-bar p reactions at GSI energies.

  4. Charmed decays of the B-meson in the quark model

    CERN Document Server

    Grach, I L; Ter-Martirosian, K A; Simula, S

    1996-01-01

    Exclusive and inclusive, semileptonic and non-leptonic, charmed decays of the B-meson are investigated in the context of a phenomenological quark model. Bound-state effects are taken care of by adopting a single (model-dependent) non-perturbative wave function, describing the motion of the light spectator quark in the B-meson. A nice reproduction of both exclusive and inclusive semileptonic data is obtained. Our predictions for the electron spectrum are presented and compared with those of the Isgur-Scora-Grinstein-Wise quark model. Finally, our approach is applied to the calculation of inclusive non-leptonic widths, obtaining a remarkable agreement with experimental findings.

  5. Radiative transitions in charm-strange meson from Nf = 2 twisted mass lattice QCD

    Science.gov (United States)

    Li, Ning; Wu, Ya-Jie

    2016-07-01

    We present an exploratory study on the radiative transition for the charm-strange meson: Ds∗→ D sγ using Nf = 2 twisted mass lattice quantum chromodynamics gauge configurations. The form factor for Ds meson is also determined. The simulation is performed on lattices with lattice spacings a = 0.067 fm and lattice size 323 × 64, and a = 0.085 fm and lattice size 243 × 48, respectively. Our numerical results for radiative decay width and the experimental data overlap within the margin of error.

  6. Charmed meson production by e/sup +/e- annihilation. [Branching ratios, angular distributions

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, J.E.

    1977-08-01

    Compelling evidence is presented for the production of the lying (D/sup 0/, D/sup +/) isodoublet of charmed mesons by e/sup +/e/sup -/ annihilation. A study of the recoil mass spectra against these mesons reveals the presence of more massive charmed states, the D*/sup 0/ and D*/sup +/, produced in association with the D isodoublet. Mass values and upper limits on the width of the D and D* are established, and the branching fractions for several D* decay modes are obtained. An analysis of the production and decay angular distributions shows that the D is probably a pseudoscalar state and the D* is probably a vector. Finally, upper limits are obtained for D/sup 0/-antiD/sup 0/ mixing.

  7. Charmed meson decay constants in three-flavor lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, C.; Bernard, C.; DeTar, C.; Di Pierro, M.; Freeland, Elizabeth D.; Gottlieb, Steven; Heller, U.M.; Hetrick, J.E.; El-Khadra, Aida X.; Kronfeld, Andreas S.; Levkova, L.; Mackenzie, P.B.; Menscher, D.; Maresca, F.; Nobes, M.; Okamoto, M.; Renner, D.B.; Simone, J.; Sugar, R.; Toussaint, D.; Trottier, H.D.; /Art Inst. of Chicago /Columbia

    2005-06-01

    The authors present the first lattice QCD calculation with realistic sea quark content of the D{sup +}-meson decay constant f{sub D+}. They use the MILC Collaboration's publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). They obtain f{sub D+} = 201 {+-} 3 {+-} 17 MeV, where the errors are statistical and a combination of systematic errors. They also obtain f{sub D{sub s}} = 249 {+-} 3 {+-} 16 MeV for the D{sub s} meson.

  8. Strong decay widths and coupling constants of recent charm meson states

    Energy Technology Data Exchange (ETDEWEB)

    Batra, Meenakshi; Upadhayay, Alka [Thapar University, School of Physics and Material Science, Patiala (India)

    2015-07-15

    Open charm hadrons with strange and non-strange mesons have been discovered in recent years. We study the spectra of several newly observed resonances by different collaborations like BaBar (del Amo Sanchez et al., Phys Rev D 82:111101, 2010) and LHCb (Aaij et al. [LHCb Collaboration], J High Energy Phys 1309:145, 2013) etc. Using an effective Lagrangian approach based on heavy quark symmetry and chiral dynamics, we explore the strong decay widths and branching ratios of various resonances and suggest their J{sup p} values. We try to fit the experimental data to find the coupling constants involved in the strong decays through pseudo-scalar mesons. The present work also discusses the possible spin-parity assignments of recently observed states by the LHCb Collaboration. The tentative assignment of the newly discovered state D{sub J}{sup *}(3000) can be by natural parity states (0{sup +},1{sup -},2{sup +},3{sup -},..), while D{sub J}(3000) can be identified with unnatural parity states like (0{sup +},1{sup -},2{sup +},3{sup -},..). Therefore, the missing doublets 2S, 2D, 1F, 2P, and 3S can be thought of as filled up with these states. We study the two-body strong decay widths and branching ratios of missing doublets and plot the branching ratios vs. the mass of the decaying particle. These plots are used to thoroughly analyze all assignments to D{sub J}(3000) and various possibilities for the J{sup p} values. (orig.)

  9. Charm quark and meson production in association with single-jet at the LHC

    CERN Document Server

    Maciula, Rafal

    2016-01-01

    We discuss charm quark/antiquark and charmed meson production in association with one extra jet (gluon, quark, antiquark) at the LHC. The calculations are performed both in collinear and $k_T$-factorization approaches. Different unintegrated gluon distribution functions are used in the $k_T$-factorization approach. Several predictions for the LHC are presented. We show distributions in rapidity and transverse momenta of $c$/$\\bar c$ (or charmed mesons) and the associated jet as well as some two-dimensional observables. Interesting correlation effects are predicted, \\textit{e.g.} in azimuthal angles $\\varphi_{c\\bar{c}}$ and $\\varphi_{c\\mathrm{\\textit{-jet}}}$. We have also discussed a relation of the $2 \\to 2$ and $2 \\to 3$ partonic calculations in the region of large transverse momenta of charm quarks/antiquarks as well as the similarity of the next-to-leading order collinear approach and the $k_T$-factorization approach with the KMR unintegrated parton distribution functions. Integrated cross sections for $D...

  10. Charm quark and meson production in association with single-jet at the LHC

    Science.gov (United States)

    Maciuła, Rafał; Szczurek, Antoni

    2016-12-01

    We discuss charm quark/antiquark and charmed meson production in association with one extra jet (gluon, quark, antiquark) at the LHC. The calculations are performed both in collinear and kT -factorization approaches. Different unintegrated gluon distribution functions are used in the kT-factorization approach. Several predictions for the LHC are presented. We show distributions in rapidity and transverse momenta of c /c ¯ (or charmed mesons) and the associated jet as well as some two-dimensional observables. Interesting correlation effects are predicted, e.g., in azimuthal angles φc c ¯ and φc -jet . We have also discussed a relation of the 2 →2 and 2 →3 partonic calculations in the region of large transverse momenta of charm quarks/antiquarks as well as the similarity of the next-to-leading order collinear approach and the kT-factorization approach with the Kimber-Martin-Ryskin unintegrated parton distribution functions. Integrated cross sections for D0+jet production for ATLAS detector acceptance and for different cuts on jet transverse momenta are also presented.

  11. Formation spectra of charmed meson--nucleus systems using an antiproton beam

    CERN Document Server

    Yamagata-Sekihara, J; Nieves, J; Salcedo, L L; Tolos, L

    2015-01-01

    We investigate the structure and formation of charmed meson--nucleus systems, with the aim of understanding the charmed meson--nucleon interactions and the properties of the charmed mesons in the nuclear medium. The $\\bar{D}$ mesic nuclei are of special interest, since they have tiny decay widths due to the absence of strong decays for the $\\bar{D} N$ pair. Employing an effective model for the $\\bar{D} N$ and $D N$ interactions and solving the Klein--Gordon equation for $\\bar{D}$ and $D$ in finite nuclei, we find that the $D^{-}$-${}^{11}\\rm{B}$ system has $1 s$ and $2p$ mesic nuclear states and that the $D^{0}$-${}^{11}\\rm{B}$ system binds in a $1s$ state. In view of the forthcoming experiments by the PANDA and CBM Collaborations at the future FAIR facility and the J-PARC upgrade, we calculate the formation spectra of the $[D^{-}$-${}^{11}\\rm{B}]$ and $[D^{0}$-${}^{11}\\rm{B}]$ mesic nuclei for an antiproton beam on a ${}^{12} \\rm{C}$ target. Our results suggest that it is possible to observe the $2 p$ $D^{-}...

  12. Strong decays of excited 1D charmed(-strange) mesons in the covariant oscillator quark model

    Science.gov (United States)

    Maeda, Tomohito; Yoshida, Kento; Yamada, Kenji; Ishida, Shin; Oda, Masuho

    2016-05-01

    Recently observed charmed mesons, D1* (2760), D3* (2760) and charmed-strange mesons, Ds1 * (2860), Ds3 * (2860), by BaBar and LHCb collaborations are considered to be plausible candidates for c q ¯ 13 DJ (q = u, d, s) states. We calculate the strong decays with one pion (kaon) emission of these states including well-established 1S and 1P charmed(-strange) mesons within the framework of the covariant oscillator quark model. The results obtained are compared with the experimental data and the typical nonrelativistic quark-model calculations. Concerning the results for 1S and 1P states, we find that, thanks to the relativistic effects of decay form factors, our model parameters take reasonable values, though our relativistic approach and the nonrelativistic quark model give similar decay widths in agreement with experiment. While the results obtained for 13 DJ=1,3 states are roughly consistent with the present data, they should be checked by the future precise measurement.

  13. Heavy meson production in hot dense matter

    NARCIS (Netherlands)

    Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Nieves, JM; Oset, E; Vacas, MJV

    2010-01-01

    The properties of charmed mesons in dense matter are studied using a unitary coupled-channel approach in the nuclear medium which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense nuclear env

  14. Charm-Hadron Production at Hadron Colliders

    CERN Document Server

    Watson, Miriam; The ATLAS collaboration

    2016-01-01

    Recent results on charm hadron production are presented, using data recorded in proton-proton collisions at the Large Hadron Collider and in proton-antiproton collisions at the Tevatron. These results include the production of charmonium and of open charm mesons, and their comparison with theoretical predictions. Measurements of the associated production of hidden or open charm mesons with additional quarkonium states are also presented.

  15. Factorization in Color-Favored B Meson Decays to Charm

    CERN Document Server

    Luo, Z; Luo, Zumin; Rosner, Jonathan L.

    2001-01-01

    With the improvement of data on $B$ meson decays to various channels it has become possible to test more incisively some factorization predictions made a number of years ago. A concurrent benefit is the ability to constrain the Cabibbo-Kobayashi-Maskawa matrix element $V_{cb}$. Using a simultaneous fit to the rates for the color-favored decays $\\ob \\to D^{(*)+} \\pi^-$ and $\\ob \\to D^{(*)+} \\rho^-$ and to a differential distribution $d \\Gamma(\\ob \\to D^{*+} l^- \\bar \

  16. Analysis of the charmed mesons D1*(2680 ) , D3*(2760 ), and D2*(3000 )

    Science.gov (United States)

    Yu, Guo-Liang; Wang, Zhi-Gang; Li, ZhenYu

    2016-10-01

    In this work, we systematically study the strong decay behavior of the charmed mesons D1*(2680 ), D3*(2760 ), and D2*(3000 ) reported by the LHCb Collaboration. By comparing the masses and the decay properties with the results of the experiment, we assign these newly observed mesons as the 2 S 1/2 1-, 1 D 5/2 3-, and 1 F 5/2 2+ states, respectively. As a byproduct, we also study the strong decays of the unobserved 2 P 3/2 2+, 2 F 5/2 2+, and 3 P 3/2 2+ charmed mesons, which is useful for future experiments in searching for these charmed mesons.

  17. Analysis of the charmed mesons $D_{1}^{*}(2680)$, $D_{3}^{*}(2760)$ and $D_{2}^{*}(3000)$

    CERN Document Server

    Yu, Guo Liang; Li, Zhen Yu

    2016-01-01

    In this work, we systematically study the strong decay behaviors of the charmed mesons $D_{1}^{*}(2680)$, $D_{3}^{*}(2760)$ and $D_{2}^{*}(3000)$ reported by the LHCb collaboration. By comparing the masses and the decay properties with the results of the experiment, we assigned these newly observed mesons as the $2S\\frac{1}{2}1^{-}$, $1D\\frac{5}{2}3^{-}$ and $1F\\frac{5}{2}2^{+}$ states respectively. As a byproduct, we also study the strong decays of the unobserved $2P\\frac{3}{2}2^{+}$ and $2F\\frac{5}{2}2^{+}$ charmed mesons, which is helpful to the future experiments in searching for these charmed mesons.

  18. Aspects of the low-energy constants in the chiral Lagrangian for charmed mesons

    CERN Document Server

    Du, Meng-Lin; Meißner, Ulf-G; Yao, De-Liang

    2016-01-01

    We investigate the numerical values of the low-energy constants in the chiral effective Lagrangian for the interactions between the charmed mesons and the lightest pseudoscalar mesons, the Goldstone bosons of the spontaneous breaking of chiral symmetry for QCD. This problem is tackled from two sides: estimates using the resonance exchange model, and positivity constraints from the general properties of the $S$-matrix including analyticity, crossing symmetry and unitarity. These estimates and constraints are compared with the values determined from fits to lattice data of the scattering lengths. Tensions are found, and possible reasons are discussed. We conclude that more data from lattice calculations and experiments are necessary to fix these constants better. As a by-product, we also estimate the coupling constant $g_{DDa_2}$, with $a_2$ the light tensor meson, via the QCD sum rule approach.

  19. Virtual photoproduction of hidden and open charm

    Energy Technology Data Exchange (ETDEWEB)

    Clark, A.R.; Johnson, K.J.; Kerth, L.T.

    1980-11-01

    The Berkeley-Fermilab-Princeton multimuon spectrometer and the techniques used to analyze the data which it has collected are described first. Limits on the cross section with which possible heavy neutral or doubly charged muons are produced via right-handed charged currents are presented. Turning to heavy-quark muoproduction, the author then outlines the relevant phenomenology, emphasizing the predictions of the vector dominance (VMD) and photon-gluon-fusion models. The first heavy-quark data discussed are the dimuon-mass spectrum observed in trimuon final states, which provides a limit on muoproduction of the UPSILON family. The bulk of the quarkonium results are devoted to J/psi(3100) muoproduction. After briefly reviewing the original psi results, the author focuses on a combined analysis of the polarization and Q/sup 2/ dependence of elastically produced psi's. The remainder of the paper is devoted to the muoproduction of open charm, observed in events with two muons in the final state. 57 references, 11 figures, 3 tables. (RWR)

  20. The melting and abundance of open charm hadrons

    Directory of Open Access Journals (Sweden)

    A. Bazavov

    2014-10-01

    Full Text Available Ratios of cumulants of conserved net charge fluctuations are sensitive to the degrees of freedom that are carriers of the corresponding quantum numbers in different phases of strong interaction matter. Using lattice QCD with 2+1 dynamical flavors and quenched charm quarks we calculate second and fourth order cumulants of net charm fluctuations and their correlations with other conserved charges such as net baryon number, electric charge and strangeness. Analyzing appropriate ratios of these cumulants we probe the nature of charmed degrees of freedom in the vicinity of the QCD chiral crossover region. We show that for temperatures above the chiral crossover transition temperature, charmed degrees of freedom can no longer be described by an uncorrelated gas of hadrons. This suggests that the dissociation of open charm hadrons and the emergence of deconfined charm states sets in just near the chiral crossover transition. Till the crossover region we compare these lattice QCD results with two hadron resonance gas models—including only the experimentally established charmed resonances and also including additional states predicted by quark model and lattice QCD calculations. This comparison provides evidence for so far unobserved charmed hadrons that contribute to the thermodynamics in the crossover region.

  1. The melting and abundance of open charm hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Bazavov, A. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52240 (United States); Ding, H.-T.; Hegde, P. [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan, 430079 (China); Kaczmarek, O. [Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld (Germany); Karsch, F. [Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld (Germany); Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Laermann, E.; Maezawa, Y. [Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld (Germany); Mukherjee, Swagato [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ohno, H. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Petreczky, P. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Schmidt, C. [Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld (Germany); Sharma, S., E-mail: sayantan@physik.uni-bielefeld.de [Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld (Germany); Soeldner, W. [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany); and others

    2014-10-07

    Ratios of cumulants of conserved net charge fluctuations are sensitive to the degrees of freedom that are carriers of the corresponding quantum numbers in different phases of strong interaction matter. Using lattice QCD with 2+1 dynamical flavors and quenched charm quarks we calculate second and fourth order cumulants of net charm fluctuations and their correlations with other conserved charges such as net baryon number, electric charge and strangeness. Analyzing appropriate ratios of these cumulants we probe the nature of charmed degrees of freedom in the vicinity of the QCD chiral crossover region. We show that for temperatures above the chiral crossover transition temperature, charmed degrees of freedom can no longer be described by an uncorrelated gas of hadrons. This suggests that the dissociation of open charm hadrons and the emergence of deconfined charm states sets in just near the chiral crossover transition. Till the crossover region we compare these lattice QCD results with two hadron resonance gas models—including only the experimentally established charmed resonances and also including additional states predicted by quark model and lattice QCD calculations. This comparison provides evidence for so far unobserved charmed hadrons that contribute to the thermodynamics in the crossover region.

  2. A-dependence for the charmed meson production; Dependencia em A para a producao de mesons charmosos

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Gilvan Augusto

    1992-03-01

    A report is presented of a recent direct measurement of the nucleon number ({lambda}) dependence of the production cross sections for the charmed mesons D{sup 0} and D{sup +} using {pi}{sup +-} beams incident on a segmented target of Be, Al, Cu and W. The data derive from the experiment E769 - Hadroproduction of Charm - at Fermilab. The experimental apparatus is described together with the following analysis. Starting from a sample of {approx} 1500 D mesons in the range of O < X{sub F} < 1, the data are found to be well described by the parameterization {sigma}{sub A} = {sigma}{sub O} A{sup {alpha}}, with {alpha} = 0.99 {+-} 0.03. The X{sub F} dependence of {alpha} is examined and the results obtained are compared with those of other experiments and with theoretical expectations based on perturbative QCD and on an EMC like model of nuclear shadowing. (author). 85 refs, 61 figs, 22 tabs.

  3. Factorization and polarization in two charmed-meson B decays

    CERN Document Server

    Chen, C H; Wei, Z T; Chen, Chuan-Hung; Geng, Chao-Qiang; Wei, Zheng-Tao

    2006-01-01

    We provide a comprehensive test of factorization in the heavy-heavy $B$ decays motivated by the recent experimental data from BELLE and BABAR collaborations. The penguin effects are not negligible in the B decays with two pseudoscalar mesons. The direct CP asymmetries are found to be a few percent. We give estimates on the weak annihilation contributions by analogy to the observed annihilation-dominated processes. The $N_c$ insensitivity of branching ratios indicates that the soft final state interactions are not dominant. We also study the polarizations in $B\\to D^*D_{(s)}^*$ decays. The power law shows that the transverse perpendicular polarization fraction is small. The effects of the heavy quark symmetry breaking caused by the perturbative QCD and power corrections on the transverse polarization are also investigated.

  4. Search for rare charm meson decays at FNAL E791

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Summers

    2003-08-14

    We report the results of a blind search for flavor-changing neutral current (FCNC), lepton-flavor violating, and lepton-number violating decays of D{sup +}, D{sub s}{sup +}, and D{sup 0} mesons (and their antiparticles) into 2-, 3-, and 4-body states including a lepton pair. Such decays may involve Flavor-Changing Neutral Currents, Leptoquarks, Horizontal Gauge Bosons, or Majorana Neutrinos. No evidence for any of these decays is found. Therefore, we present 90% confidence level branching-fraction upper limits, typically at the 10{sup -4} level. A total of 51 decay channels have been examined; 26 have not been previously reported and 18 are significant improvements over previous results.

  5. Study of 1D Strange Charmed Meson Family Using HQET

    Directory of Open Access Journals (Sweden)

    Pallavi Gupta

    2016-01-01

    Full Text Available Recently LHCb predicted spin 1 and spin 3 states Ds1⁎(2860 and Ds3⁎(2860 which are studied through their strong decays and are assigned to fit the 13D1 and 13D3 states in the charm spectroscopy. In this paper, using the heavy quark effective theory, we state that assigning Ds1⁎(2860 as the mixing of 13D1-23S1 states is rather a better justification to its observed experimental values than a pure state. We study its decay modes variation with hadronic coupling constant gxh and the mixing angle θ. We appoint spin 3 state Ds3⁎(2860 as the missing 1D  3-JP state and also study its decay channel behavior with coupling constant gyh. To appreciate the above results, we check the variation of decay modes for their spin partners states, that is, 1D2 and 1D2′, with their masses and strong coupling constant, that is, gxh and gyh. Our calculation using HQET approach gives mixing angle of the 13D1-23S1 state for Ds1⁎(2860 to lie in the range (-1.6 radians ≤θ≤-1.2 radians. Our calculation for coupling constant values gives gxh to lie within value range of 0.17–0.20 and gyh to be 0.40. We expect from experiments to observe this mixing angle to verify our results.

  6. Results on charmed baryons and mesons from the SLAC-LBL Mark II detector at SPEAR

    Energy Technology Data Exchange (ETDEWEB)

    Goldhaber, G.

    1979-01-01

    Results from the SLAC-LBL Mark II detector at SPEAR are presented. A few of the very recent results are emphasized, namely: (1) The observation of charmed baryons; a signal ..lambda../sub c/ ..-->.. pK/sup -/..pi../sup +/ and the charge conjugate of that channel, anti ..lambda../sub c/ ..-->.. anti pK/sup +/..pi../sup -/ are now established. Some evidence also exists for other channels, K/sub S/p, ..lambda pi../sup +/, etc. (2) The study of charmed mesons. Here some new hadronic decay modes are mentioned, and the Cabibbo-suppressed decay modes. (3) The D/sup +/ - D/sup 0/ lifetime ratio; evidence is presented that the D/sup +/ has a longer lifetime than the D/sup 0/ by about a factor of three, although the statistical error is fairly large on this number.

  7. Direct Measurement of the Gluon Polarisation in the Nucleon via Charmed Meson Production

    CERN Document Server

    Alekseev, M; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Arbuzov, A; Badelek, Barbara Maria; Balestra, F; Ball, J; Barth, J; Baum, Guenter; Bedfer, Y; Bernet, Colin; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, Franco; Brona, G; Burtin, E; Bussa, M P; Chapiro, A; Chiosso, M; Cicuttin, A; Colantoni, M; Crespo, M L; Dalla Torre, S; Dafni, T; Das, S; Dasgupta, S S; De Masi, R; Dedek, N; Dhara, L; Diaz, V; Dinkelbach, A M; Donskov, S V; Dorofeev, V A; Doshita, N; Duic, V; Dunnweber, W; Eversheim, P D; Eyrich, W; Faessler, M; Falaleev, V; Ferrero, L; Finger, M; Finger, M., Jr; Fischer, H; Franco, C; Franz, J; Friedrich, J M; Garfagnini, R; Gautheron, Fabrice; Gavrichtchouk, O P; Gazda, R; Geyer, R; Giorgi, M; Gobbo, Benigno; Gorin, A M; Grabmuller, S; Grajek, O A; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; Hannappel, J; von Harrach, D; Hasegawa, T; Heckmann, J; Hedicke, S; Heinsius, Fritz-Herbert; Hermann, R; Hess, C; Hinterberger, F; von Hodenberg, M; Horikawa, S; d'Hose, N; Ilgner, C; Ioukaev, A I; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Jahn, R; Janata, A; Jasinski, P; Joosten, R; Jouravlev, N I; Kabuss, E; Kang, D; Ketzer, Bernhard; Khaustov, G V; Khokhlov, Yu A; Klein, F; Klimaszewski, K; Koblitz, S; Kolosov, V N; Komissarov, E V; Kondo, K; Konigsmann, Kay; Konstantinov, V F; Korentchenko, A S; Koutchinski, N A; Kral, A; Kravchuk, N P; Kroumchtein, Z V; Kuhn, R; Kunne, Fabienne; Kurek, Krzysztof; Ladygin, M E; Le Goff, Jean-Marc; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Ludwig, I; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Mann, A; Marchand, C; Marroncle, J; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W.Thomas; Mikhailov, Yu V; Moinester, M A; Nagaytsev, A; Nagel, T; Nahle, O; Nassalski, J; Neliba, S; Nerling, F; Neubert, S; Neyret, D P; Nikolaenko, V I; Nikolaev, K; Olshevsky, A G; Ostrick, M; Padee, A; Pagano, P; Panebianco, S; Panknin, R; Panzieri, D; Paul, S; Pawlukiewicz-Kaminska, B; Peshekhonov, D V; Peshekhonov, V D; Piragino, G; Platchkov, Stephane; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Procureur, S; Quintans, C; Rajotte, J F; Ramos, S.; Rapatsky, V; Reicherz, G; Reggiani, D; Richter, A; Robinet, F; Rondio, Ewa; Rozhdestvensky, A M; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, Igor A; Schiavon, P; Schill, Christian; Schonmeier, P; Schroder, W; Shevchenko, O Yu; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stinzing, F; Sugonyaev, V P; Sulc, M; Sulej, R; Tchalishev, V V; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Venugopal, G; Virius, M; Vlassov, N V; Vossen, A; Webb, Robert C; Weitzel, Q; Windmolders, R; Wirth, S; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziegler, R; Zvyagin, A

    2008-01-01

    We present the first measurement of the gluon polarisation in the nucleon based on the photon-gluon fusion process tagged by charmed meson production and decay to charged K and pi. The data were collected in polarised muon scattering off a polarised deuteron target by the COMPASS collaboration at CERN during 2002-2004. The result of this LO analysis is _x = -0.47 +- 0.44 (stat) +- 0.15 (syst) at ~= 0.11 and a scale mu^2 ~ 13 (GeV/c)^2.

  8. Even- and Odd-Parity Charmed Meson Masses in Heavy Hadron Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mehen; Roxanne Springer

    2005-03-01

    We derive mass formulae for the ground state, J{sup P} = 0{sup -} and 1{sup -}, and first excited even-parity, J{sup P} = 0{sup +} and 1{sup +}, charmed mesons including one loop chiral corrections and {Omicron}(1/m{sub c}) counterterms in heavy hadron chiral perturbation theory. We show a variety of fits to the current data. We find that certain parameter relations in the parity doubling model are not renormalized at one loop, providing a natural explanation for the equality of the hyperfine splittings of ground state and excited doublets.

  9. Recent results on weak decays of charmed mesons from the Mark III experiment

    Energy Technology Data Exchange (ETDEWEB)

    Browder, T.E.

    1989-10-20

    Recent results from the Mark III experiment on weak decays of charmed mesons are presented. Measurements of the resonant substructure of D{sup 0} {yields} K{sup {minus}}{pi}{sup +}{pi}{sup {minus}}{pi}{sup +} decays, the first model independent result on D{sub s} {yields} {phi}{pi}{sup +}, as well as limits on D{sub s} {yields} {eta}{pi}{sup +} and D{sub s} {yields} {eta}{prime}{pi}{sup +} are described. The implications of these new results are also discussed. 37 refs., 7 figs., 4 tabs.

  10. Charm quark mass and D-meson decay constants from two-flavour lattice QCD

    CERN Document Server

    Heitger, Jochen; Schaefer, Stefan; Virotta, Francesco

    2013-01-01

    We present a computation of the charm quark's mass and the leptonic D-meson decay constants f_D and f_{D_s} in two-flavour lattice QCD with non-perturbatively O(a) improved Wilson quarks. Our analysis is based on the CLS configurations at two lattice spacings (a=0.065 and 0.048 fm, where the lattice scale is set by f_K) and pion masses ranging down to ~ 190 MeV at L*m_pi > 4, in order to perform controlled continuum and chiral extrapolations with small systematic uncertainties.

  11. Measurement of the open-charm contribution to the diffractive proton structure function

    CERN Document Server

    Chekanov, S; Krakauer, D A; Loizides, J H; Magill, S; Musgrave, B; Repond, J; Yoshida, R; Mattingly, M C K; Antonioli, P; Bari, G; Basile, M; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; Contin, A; Corradi, M; De Pasquale, S; Giusti, P; Iacobucci, G; Margotti, A; Nania, R; Palmonari, F; Pesci, A; Sartorelli, G; Zichichi, A; Aghuzumtsyan, G; Bartsch, D; Brock, I; Goers, S; Hartmann, H; Hilger, E; Irrgang, P; Jakob, H P; Kappes, A; Katz, U F; Kind, O; Meyer, U; Paul, E; Rautenberg, J; Renner, R; Stifutkin, A; Tandler, J; Voss, K C; Wang, M; Weber, A; Bailey, D S; Brook, N H; Cole, J E; Foster, B; Heath, G P; Heath, H F; Robins, S; Rodrigues, E; Scott, J; Tapper, R J; Wing, M; Capua, M; Mastroberardino, A; Schioppa, M; Susinno, G; Kim, J Y; Kim, Y K; Lee, J H; Lim, I T; Pac, M Y; Caldwell, A; Helbich, M; Liu, X; Mellado, B; Ning, Y; Paganis, S; Ren, Z; Schmidke, W B; Sciulli, F; Chwastowski, J; Eskreys, Andrzej; Figiel, J; Olkiewicz, K; Stopa, P; Zawiejski, L; Adamczyk, L; Bold, T; Grabowska-Bold, I; Kisielewska, D; Kowal, A M; Kowal, M; Kowalski, T; Przybycien, M B; Suszycki, L; Szuba, D; Szuba, J; Kotanski, A; Slominski, W; Bauerdick, L A T; Behrens, U; Bloch, I; Borras, K; Chiochia, V; Dannheim, D; Drews, G; Fourletova, J; Fricke, U; Geiser, A; Göbel, F; Göttlicher, P; Gutsche, O; Haas, T; Hain, W; Hartner, G F; Hillert, S; Kahle, B; Kötz, U; Kowalski, H; Kram, G; Labes, H; Lelas, D; Löhr, B; Mankel, R; Melzer-Pellmann, I A; Moritz, M; Nguyen, C N; Notz, D; Petrucci, M C; Polini, A; Raval, A; Schneekloth, U; Selonke, F; Stoesslein, U; Wessoleck, H; Wolf, G; Youngman, C; Zeuner, W; Schlenstedt, S; Barbagli, G; Gallo, E; Genta, C; Pelfer, P G; Bamberger, A; Benen, A; Coppola, N; Germany, L M; Bell, M; Bussey, P J; Doyle, A T; Glasman, C; Hamilton, J; Hanlon, S; Lee, S W; Lupi, A; Saxon, D H; Skillicorn, I O; Gialas, I; Bodmann, B; Carli, T; Holm, U; Klimek, K; Krumnack, N; Lohrmann, E; Milite, M; Salehi, H; Stonjek, S; Wick, K; Ziegler, A; Collins-Tooth, C; Foudas, C; Goncalo, R; Long, K R; Tapper, A D; Cloth, P; Filges, D; Nagano, K; Tokushuku, K; Yamada, S; Yamazaki, Y; Barakbaev, A N; Boos, E G; Pokrovskiy, N S; Zhautykov, B O; Lim, H; Son, D; Barreiro, F; González, O; Labarga, L; Del Peso, J; Tassi, E; Terron, J; Vázquez, M; Barbi, M; Corriveau, F; Gliga, S; Lainesse, J; Padhi, S; Stairs, D G; Tsurugai, T; Antonov, A; Danilov, P; Dolgoshein, B A; Gladkov, D; Sosnovtsev, V V; Suchkov, S; Dementiev, R K; Ermolov, P F; Golubkov, Yu A; Katkov, I I; Khein, L A; Korzhav--, I A; Kuzmin, V A; Levchenko, B B; Lukina, O Yu; Proskuryakov, A S; Shcheglova, L M; Vlasov, N N; Zotkin, S A; Grijpink, S; Koffeman, E; Kooijman, P; Maddox, E; Pellegrino, A; Schagen, S; Tiecke, H G; Velthuis, J J; Wiggers, L; De Wolf, E; Brümmer, N; Bylsma, B; Durkin, L S; Ling, T Y; Cooper-Sarkar, A M; Cottrell, A; Devenish, R C E; Ferrando, J; Grzelak, G; Patel, S; Sutton, M R; Walczak, R; Bertolin, A; Brugnera, R; Carlin, R; Dal Corso, F; Dusini, S; Garfagnini, A; Limentani, S; Longhin, A; Parenti, A; Posocco, M; Stanco, L; Turcato, M; Heaphy, E A; Metlica, F; Oh, B Y; Whitmore, J J; Iga, Y; D'Agostini, Giulio; Marini, G; Nigro, A; Hart, J C; McCubbin, N A; Heusch, C A; Park, I H; Pavel, N; Abramowicz, H; Gabareen, A; Kananov, S; Kreisel, A; Levy, A; Kuze, M; Abe, T; Fusayasu, T; Kagawa, S; Kohno, T; Tawara, T; Yamashita, T; Hamatsu, R; Hirose, T; Inuzuka, M; Kitamura, S; Matsuzawa, K; Nishimura, T; Arneodo, M; Ferrero, M I; Monaco, V; Ruspa, M; Sacchi, R; Solano, A; Koop, T; Levman, G M; Martin, J F; Mirea, A; Butterworth, J M; Gwenlan, C; Hall-Wilton, R; Jones, T W; Lightwood, M S; West, B J; Ciborowski, J; Ciesielski, R; Nowak, R J; Pawlak, J M; Sztuk, J; Tymieniecka, T; Ukleja, A; Ukleja, J; Adamus, M; Plucinsky, P P; Eisenberg, Y; Gladilin, L K; Hochman, D; Karshon, U; Kcira, D; Lammers, S; Li, L; Reeder, D D; Savin, A A; Smith, W H; Dhawan, S; Straub, P B; Bhadra, S; Catterall, C D; Fourletov, S; Hartner, G; Menary, S R; Soares, M; Standage, J

    2003-01-01

    Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 1.5 GeV and |\\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.

  12. Determination of the gluon polarisation from open charm production at COMPASS

    CERN Document Server

    Koblitz, Susanne

    2009-01-01

    One of the main goals of the COMPASS experiment at CERN is the determination of the gluon polarisation in the nucleon. It is determined from spin asymmetries in the scattering of 160 GeV/c polarised muons on a polarised LiD target. The gluon polarisation is accessed by the selection of photon-gluon fusion (PGF) events. The PGF-process can be tagged through hadrons with high transverse momenta or through charmed hadrons in the final state. The advantage of the open charm channel is that, in leading order, the PGF-process is the only process for charm production, thus no physical background contributes to the selected data sample. This thesis presents a measurement of the gluon polarisation from the COMPASS data taken in the years 2002-2004. In the analysis, charm production is tagged through a reconstructed D0-meson decaying in $D^{0}-> K^{-}pi^{+}$ (and charge conjugates). The reconstruction is done on a combinatorial basis. The background of wrong track pairs is reduced using kinematic cuts to the reconstruc...

  13. Possible heavy molecular states composed of a pair of excited charm-strange meson%Possible heavy molecular states composed of a pair of excited charm-strange meson

    Institute of Scientific and Technical Information of China (English)

    HU Bin; CHEN Xiao-Lin; LUO Zhi-Gang; HUANG Peng-Zhi; ZHU Shi-Lin; YU Peng-Fei; LIU Xiang

    2011-01-01

    The P-wave charm-strange mesons Ds0(2317) and Ds1(2460) lie below the DK and D*K threshold respectively. They are extremely narrow because their strong decays violate the isospin symmetry. We study the possible heavy molecular states composed of a pair of

  14. Measurement of charm meson production in Au+Au collisions at √S NN =200 GEV

    Science.gov (United States)

    Quintero, Amilkar

    The study and characterization of nuclear matter under extreme conditions of temperature and pressure, and a full understanding of deconfined partonic matter, the Quark Gluon Plasma (QGP), are major goals of modern high-energy nuclear physics. Heavy quarks (charm and bottom) are formed mainly in the early stages of the collision. Open heavy flavor measurements, e.g. D0, D+/-, DS, are excellent tools to probe and study the hot and dense medium formed in heavy ion collisions. Details of their interaction with the surrounding medium can be studied through energy loss and elliptic flow measurements thus providing valuable information about the nature of the medium and its degree of thermalization. Initial indirect reconstruction studies of heavy quark particles using the electrons from heavy flavor decays, showed a large magnitude of energy loss that was inconsistent with model predictions and assumptions, at the time. Precise measurements of fully reconstructed heavy mesons would provide better understanding of the energy loss mechanisms and the properties of the formed medium. In relativistic heavy ion collisions, the relatively low abundance of heavy quarks and their short lifetimes makes them difficult to distinguish from the event vertex and the combinatorial background; therefore the need for a high precision vertex detector to reconstruct their decay particles. In 2014 a new micro vertex detector was installed in the STAR experiment at Brookhaven National Lab. The Heavy Flavor Tracker (HFT) was designed to perform direct topological reconstruction of the weak decays of heavy flavor particles. The HFT improves STAR track pointing resolution from a few millimeters to ˜30 microns for 1 GeV/c pions, allowing direct reconstruction of short lifetime particles. Although the results of the open charm meson reconstruction using the HFT improved dramatically there is still a lot of room for optimization, especially for reconstructed particles with low transverse momentum

  15. New single- and double-parton scattering mechanisms for double charmed meson production

    CERN Document Server

    Szczurek, Antoni; Saleev, Vladimir A; Shipilova, Alexandra V

    2016-01-01

    We discuss charm meson-meson pair production recently observed by the LHCb Collaboration at $\\sqrt{s}$ = 7 TeV in proton-proton scattering. We examine double-parton scattering (DPS) mechanisms of double $c \\bar c$ production and following $cc \\to D^{0}D^{0}$ hadronization as well as double $g$ and mixed $g c\\bar c $ production with $gg \\to D^{0}D^{0}$ and $gc \\to D^{0}D^{0}$ hadronization calculated with the help of the scale-dependent KKKS08 fragmentation functions. A new single-parton scattering (SPS) mechanism of $gg$ production is also taken into consideration. Calculated differential distributions as a function of transverse momentum $p_{T}$ of one of the $D^{0}$ mesons, pair invariant mass $M_{D^{0}D^{0}}$ and azimuthal angle $\\varphi_{D^{0}D^{0}}$ distributions are confronted with the measured ones. The manifestation of the new SPS mechanisms with $g \\to D^{0}$ fragmentation within the scale-dependent fragmentation scheme change the overall picture suitable for standard scale-independent fragmentation ...

  16. Study Of Open Charm Production In Proton+proton Collisions At Center Of Mass Energies = 200 Gev

    CERN Document Server

    Butsyk, S

    2005-01-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) with its unique electron identification system enables us to perform high precision measurements of electron yields. By measuring electron production at high transverse momentum, we can disentangle the contribution of electrons originating from semi-leptonic decays of heavy quarks (charm or bottom) from the less interesting “photonic” decay modes of light mesons. D/B mesons carry single heavy valence quarks and are usually referred to as “Open Charm” and “Open Bottom” particles, differentiating them from Closed Flavor particles such as J/ψ, and Y mesons. Due to the large mass of the heavy quarks, their production mechanisms can be adequately explained by perturbative QCD (pQCD) theory. This dissertation presents the measurement of electrons from heavy flavor decays in proton + proton collisions at RHIC at collision energy s = 200 GeV over a wide range of transverse momen...

  17. Search for rare and forbidden charm meson decays at Fermilab E791

    Energy Technology Data Exchange (ETDEWEB)

    Donald J. Summers et al.

    2000-09-29

    The authors report the results of a blind search for flavor-changing neutral current, lepton-flavor violating, and lepton-number violating decays of D{sup +}, D{sub s}{sup +}, and D{sup 0} mesons (and their antiparticles) into modes containing muons and electrons. Using data from Fermilab charm hadroproduction experiment E791, they examine the {pi}{ell}{ell} and K{ell}{ell} decay modes of D{sup +} and D{sub s}{sup +} and the {ell}{sup +}{ell}{sup {minus}} decay modes of D{sup 0}. No evidence for any of these decays is found. Therefore, they present branching-fraction upper limits at 90% confidence level for the 24 decay modes examined. Eight of these modes have no previously reported limits, and fourteen are reported with significant improvements over previously published results.

  18. Charm quark mass and D-meson decay constants from two-flavour lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Hippel, Georg M. von [Mainz Univ. (Germany). Inst. fuer Kernphysik; Schaefer, Stefan; Virotta, Francesco [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-12-15

    We present a computation of the charm quark's mass and the leptonic D-meson decay constants f{sub D} and f{sub D{sub s}} in two-flavour lattice QCD with non-perturbatively O(a) improvedWilson quarks. Our analysis is based on the CLS configurations at two lattice spacings (a=0.065 and 0.048 fm, where the lattice scale is set by f{sub K}) and pion masses ranging down to {proportional_to}190 MeV at Lm{sub {pi}}>or similar 4, in order to perform controlled continuum and chiral extrapolations with small systematic uncertainties.

  19. Search for rare and forbidden charm meson decays at Fermilab E791

    Energy Technology Data Exchange (ETDEWEB)

    Donald J. Summers et al.

    2000-09-29

    The authors report the results of a blind search for flavor-changing neutral current, lepton-flavor violating, and lepton-number violating decays of D{sup +}, D{sub s}{sup +}, and D{sup 0} mesons (and their antiparticles) into modes containing muons and electrons. Using data from Fermilab charm hadroproduction experiment E791, they examine the {pi}{ell}{ell} and K{ell}{ell} decay modes of D{sup +} and D{sub s}{sup +} and the {ell}{sup +}{ell}{sup {minus}} decay modes of D{sup 0}. No evidence for any of these decays is found. Therefore, they present branching-fraction upper limits at 90% confidence level for the 24 decay modes examined. Eight of these modes have no previously reported limits, and fourteen are reported with significant improvements over previously published results.

  20. Novel approach to measure the leptonic eta(')->mu+mu- decays via charmed meson decays

    CERN Document Server

    Huong, Nguyen Thu; Viaud, Benoit

    2016-01-01

    In this article, we propose a novel approach to measure the branching ratios of the leptonic eta(')-> mu+mu- decays by using charmed meson decays, namely, D+(s)->pi+ eta(')(->mu+mu-) and D0->K-pi+eta(')(->mu+mu-). We advocate that the data available at LHCb can already yield a new measurement of Br(eta->mu+mu-) with accuracy competitive with the current world average. We also estimate that using the data collected by LHCb between 2015 and 2018 in proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.0/fb, the relative uncertainties to this branching ratio can be reduced down to ~10%. We also show that the first observation of Br(eta'->mu+mu-) may be possible with the Upgrade of the LHCb experiment.

  1. A Measurement Of The Direct Charm Meson Production Cross Section At Cdf Ii

    CERN Document Server

    Chen, C

    2003-01-01

    We present a measurement of the cross section of direct charm meson production in pp¯ collisions at s = 1.96 TeV using the CDF II detector at the Fermilab Tevatron. We use 5.8 pb−1 of early 2002 data collected with a trigger that is sensitive to the long lifetime of particles containing heavy flavor. We use fully reconstructed candidates in the following modes: D 0 → K−π+, D*+ → D0( K−π+)π+, D+ → K−π +π+, D+s → &phis;(K+K −)π+ and their charge conjugates. We subtract the contribution of secondary charm originating from B decay, and we correct for trigger and reconstruction efficiencies. We report the differential cross section dσ/dpT and the total cross section above a minimum transverse momentum p T for the rapidity range |y| ≤ 1.0. We find σ(D0, pT ≥ 5.5 GeV/c) = 13.3 ± 0.2 ± 1.5 μb, σ( D*...

  2. Constraints on Mixing and CP-Violation in the Neutral Charmed Meson System at LHCb

    CERN Document Server

    Alexander, Michael Thomas; Soler, P

    This thesis presents measurements of the charm sector mixing and CP-violation parameters yCP and AGamma, made using data collected in 2010 by the LHCb experiment at the LHC at a centre of mass energy of 7 TeV. yCP is defined as the difference from unity of the ratio of the effective lifetime of the D0 meson decaying to a CP-undefined final state to its lifetime when decaying to a CP-eigenstate. AGamma is the CP-asymmetry of the effective lifetimes of the D0 and D0bar when decaying to a CP-eigenstate. In the absence of CPV yCP will be consistent with the mixing parameter y, and AGamma will be consistent with zero. CP-violation in the charm sector is predicted to be very small in the SM, though first evidence for direct CP-violation in D0 decays has recently been observed by LHCb. Observation of significantly more CP-violation than is allowed in the SM would be a strong indication of new physics. The current world best measurements of yCP and AGamma show no evidence of CP-violation. The methods used to measure ...

  3. Determination of the gluon polarisation from open charm production at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Koblitz, Susanne

    2009-01-27

    One of the main goals of the COMPASS experiment at CERN is the determination of the gluon polarisation in the nucleon, {delta}G/G. It is determined from spin asymmetries in the scattering of 160GeV/c polarised muons on a polarised LiD target. The gluon polarisation is accessed by the selection of photon-gluon fusion (PGF) events. The PGF-process can be tagged through hadrons with high transverse momenta or through charmed hadrons in the final state. The advantage of the open charm channel is that, in leading order, the PGF-process is the only process for charm production, thus no physical background contributes to the selected data sample. This thesis presents a measurement of the gluon polarisation left angle {delta}g/g right angle from the COMPASS data taken in the years 2002-2004. In the analysis, charm production is tagged through a reconstructed D{sup 0}-meson decaying in D{sup 0}{yields} K{sup -}{pi}{sup +} (and charge conjugates). The reconstruction is done on a combinatorial basis. The background of wrong track pairs is reduced using kinematic cuts to the reconstructed D{sup 0}-candidate and the information on particle identification from the Ring Imaging Cerenkov counter. In addition, the event sample is separated into D{sup 0}-candidates, where a soft pion from the decay of the D{sup *}-meson to a D{sup 0}-meson, is found, and the D{sup 0}-candidates without this tag. Due to the small mass difference between D{sup *}-meson and D{sup 0}-meson the signal purity of the D{sup *}-tagged sample is about 7 times higher than in the untagged sample. The gluon polarisation left angle {delta}g/g right angle is measured from the event asymmetries for the for the different spin configurations of the COMPASS target. To improve the statistical precision of the final results, the events in the final sample are weighted. The use of a signal and a background weight allows the separation of left angle {delta}g/g right angle, and a possible asymmetry in the combinatorial

  4. Search for Mixing and Charge Parity Violation in Neutral Charm Mesons through Semileptonic $B$ Meson Decay

    CERN Document Server

    Davis, Adam; Meadows, Brian

    We present the measurement of mixing and Charge Parity violation parameters in the $D^0$ meson system using the decay \\begin{align} \\overline{B}\\to \\mu^- D^{*+} X\\\\ D^{*+}\\to D^0 \\pi^+\\\\ D^0\\to K \\pi \\end{align} and charge conjugate decays using the full Run I dataset collected by the LHCb Collaboration at the LHC at CERN from 2011 to 2012. By fitting the time dependent ratio of ``Wrong Sign'' $D^0$ decays to ``Right Sign'' $D^0$ decays, we extract the parameters sensitive to mixing and charge parity violation. The resulting mixing fit yields \\begin{align} R_D &= (3.48 \\pm 0.11 \\pm 0.01)\\times10^{-3}\\\\ y' &= (4.60 \\pm 3.50 \\pm 0.18)\\times 10^{-3}\\\\ x'^2&= (0.28 \\pm 3.10 \\pm 0.11)\\times 10^{-4}. \\end{align} The results for the no Direct CP Violation fits are \\begin{align} R_D &= (3.48 \\pm 0.11 \\pm 0.01)\\times 10^{-3}\\\\ y'^+ &= (2.79 \\pm 3.99 \\pm 1.17)\\times 10^{-3}\\\\ x'^{2+}&= (1.94 \\pm 3.47 \\pm 0.98)\\times 10^{-4}\\\\ y...

  5. Heavy-Quark Symmetry and the Electromagnetic Decays of Excited Charmed Strange Mesons

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mehen; Roxanne P. Springer

    2004-10-01

    Heavy-hadron chiral perturbation theory (HH{chi}PT) is applied to the decays of the even-parity charmed strange mesons, D{sub s0}(2317) and D{sub s1}(2460). Heavy-quark spin symmetry predicts the branching fractions for the three electromagnetic decays of these states to the ground states D{sub s} and D{sub s}* in terms of a single parameter. The resulting predictions for two of the branching fractions are significantly higher than current upper limits from the CLEO experiment. Leading corrections to the branching ratios from chiral loop diagrams and spin-symmetry violating operators in the HH{chi}PT Lagrangian can naturally account for this discrepancy. Finally the proposal that the D{sub s0}(2317) (D{sub s1}(2460)) is a hadronic bound state of a D (D*) meson and a kaon is considered. Leading order predictions for electromagnetic branching ratios in this molecular scenario are in very poor agreement with existing data.

  6. Study of B-Meson Decays to Final States with a Single Charm Baryon

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Stephanie A. [Stanford Univ., CA (United States)

    2007-08-01

    A study of B-meson decays to final states with a single charm baryon is presented based on data recorded by the BABAR detector at the Stanford Linear Accelerator Center. Although the B meson is the lightest bottom-flavored meson, it is heavy enough to decay to a baryon made of three quarks and an antibaryon made of three antiquarks. By studying the baryonic weak decays of the B meson, we can investigate baryon production mechanisms in heavy meson decays. In particular, we measure the rates of the decays B- → Λ+c$\\bar{p}$π- and $\\bar{B}$0 → Λ+c$\\bar{p}$. Comparing these rates, we confirm an observed trend in baryonic B decays that the decay with the lower energy release, B- → Λ+c$\\bar{p}$π-, is favored over $\\bar{B}$0 → Λ+c$\\bar{p}$. The dynamics of the baryon-antibaryon (Λ+c$\\bar{p}$) system in the three-body decay also provide insight into baryon-antibaryon production mechanisms. The B- → Λ+c$\\bar{p}$π- system is a laboratory for searches for excited #c baryon states; we observe the resonant decays B- → Σc(2455) 0$\\bar{p}$ and B- → Σc(2800) 0$\\bar{p}$. This is the first observation of the decay B- → Σc(2800) 0$\\bar{p}$; however, the mass of the observed #c(2800)0 state is inconsistent with previous measurements. Finally, we examine the angular distribution of the B- → Σc(2455) 0$\\bar{p}$ decays and measure the spin of the B- → Σc(2455) 0$\\bar{p}$ baryon to be J = 1/2, as predicted by the quark model.

  7. Measurement of the form factor ratios in semileptonic decays of charm mesons

    Energy Technology Data Exchange (ETDEWEB)

    Zaliznyak, Renata [Stanford Univ., CA (United States)

    1998-05-01

    I have measured the form factor ratios r2 = A2 (0)/A1 (0) and rV = V (0)/A1 (0) in the semileptonic charm meson decay D+ → $\\bar{K}$*0 e+ve from data collected by the Fermilab E791 collaboration. Form factors are introduced in the calculation of the hadronic current in semileptonic decays of strange, charm, or bottom mesons, such as D+ → $\\bar{K}$*0 e+ ve . Semileptonic decays provide insight into quark coupling to the W boson since the leptonic and hadronic amplitudes in the Feynman diagram for the decay are completely separate. There are no strong interactions between the final state leptons and quarks. A number of theoretical models predict the values of the form factors for D+ → $\\bar{K}$*0 e+ ve , though there is a large range of predictions. E791 is a hadroproduction experiment that recorded over 20 billion interactions with a 500 GeV π- beam incident on five thin targets during the 1991-92 Fermilab fixed-target run. Approximately 3000 D+ → $\\bar{K}$*0 e+ ve decays are fully reconstructed. In order to extract the form factor ratios from the data, I implement a multidimensional unbinned maximum likelihood fit with a large sample of simulated (Monte Carlo) D+ → $\\bar{K}$*0 e+ve events. The large E791 data sample provides the most precise measurement of the form factor ratios to date. The measured values for the form factor ratios are r2 = 0.71 ± 0.08 ± 0.09 and rV = 1.84 ± 0.11 ±} 0.08. These results are in good agreement with some Lattice Gauge calculations. However the agreement with quark model predictions is not as good.

  8. J/ψω decay channel of the X(3872) charm meson molecule

    Science.gov (United States)

    Braaten, Eric; Kang, Daekyoung

    2013-07-01

    Analyses of the J/ψπ+π- decay channel of the X(3872) resonance by the CDF, Belle, and LHCb Collaborations have established its JPC quantum numbers as 1++. An analysis of the π+π-π0 invariant mass distribution in the J/ψπ+π-π0 decay channel by the BABAR Collaboration indicated a preference for 2-+ over 1++. We point out that a proper evaluation of the χ2 in that analysis increases the probability for 1++ from 7.1% to about 18.7%. In the case of quantum numbers 1++, where the X has an S-wave coupling to J/ψω, the proximity of the J/ψω threshold to D*D¯ thresholds and the narrow width of the ω suggest that the effects of scattering between J/ψω and charm meson pairs could be significant. We derive invariant mass distributions for J/ψπ+π-π0 and π+π-π0 that take into account S-wave scattering between the D*0D¯0, D*+D-, and J/ψω channels. We also analyze the effects of scattering through the χc1(2P) charmonium resonance. We find that scattering effects are unable to produce significant changes in the shape of the π+π-π0 invariant mass distribution.

  9. Open-charm production measurements with ALICE at the LHC

    Science.gov (United States)

    Pagano, P.

    2016-11-01

    The LHC heavy-ion physics program aims at investigating the properties of strongly-interacting matter under extreme conditions of temperature and energy density where the formation of the Quark-Gluon Plasma (QGP) is expected. Heavy-flavour hadrons, containing charm and beauty quarks, are considered efficient probes to investigate the properties of the QGP produced in heavy-ion collisions. Heavy quarks are produced in hard partonic scattering processes in the initial stage of hadronic collisions and propagate through the hot and dense medium created in the collision losing energy interacting with the medium via radiative and collisional processes. The high precision tracking, good vertexing capabilities and excellent particle identification offered by the ALICE experiment allow us to measure particles containing heavy quarks in a wide transversemomentum range in pp, p-Pb and Pb-Pb collisions. A review of the main results on prompt D-mesons production, reconstructed via their hadronic decays at mid-rapidity, in pp collisions at √s = 7 TeV, p-Pb collisions at √sNN = 5.02 TeV and Pb-Pb collisions at √sNN = 2.76 TeV will be shown.

  10. Open-charm production measurements with ALICE at the LHC

    Directory of Open Access Journals (Sweden)

    Pagano P.

    2016-01-01

    Full Text Available The LHC heavy-ion physics program aims at investigating the properties of strongly-interacting matter under extreme conditions of temperature and energy density where the formation of the Quark-Gluon Plasma (QGP is expected. Heavy-flavour hadrons, containing charm and beauty quarks, are considered efficient probes to investigate the properties of the QGP produced in heavy-ion collisions. Heavy quarks are produced in hard partonic scattering processes in the initial stage of hadronic collisions and propagate through the hot and dense medium created in the collision losing energy interacting with the medium via radiative and collisional processes. The high precision tracking, good vertexing capabilities and excellent particle identification offered by the ALICE experiment allow us to measure particles containing heavy quarks in a wide transversemomentum range in pp, p-Pb and Pb-Pb collisions. A review of the main results on prompt D-mesons production, reconstructed via their hadronic decays at mid-rapidity, in pp collisions at √s = 7 TeV, p-Pb collisions at √sNN = 5.02 TeV and Pb-Pb collisions at √sNN = 2.76 TeV will be shown.

  11. Production of exotic and conventional quarkonia and open beauty/open charm at ATLAS

    CERN Document Server

    C. Bini; The ATLAS collaboration

    2016-01-01

    The ATLAS experiment at LHC is carrying on a wide programme to study the production properties of conventional and exotic quarkonium, beauty, and charm bound states. The latest results on J/$\\psi$, $\\psi$(2s) and X(3872) production at 7, 8, and 13 TeV, together with D meson production with Run-1 are presented. Studies of associated production of charmonium with vector bosons, searches for exotic states in the bottomonium sector and a new measurement of the ratio of b-quark fragmentation functions are also briefly presented.

  12. Production of exotic and conventional quarkonia and open beauty/open charm at ATLAS

    Science.gov (United States)

    Bini, C.; ATLAS Collaboration

    2016-11-01

    The ATLAS experiment at LHC is carrying on a wide programme to study the production properties of conventional and exotic quarkonium, beauty, and charm bound states. The latest results on J/ψ, ψ(2s) and X(3872) production at 7, 8, and 13 TeV, together with D meson production with Run-1 are presented. Studies of associated production of charmonium with vector bosons, searches for exotic states in the bottomonium sector and a new measurement of the ratio of b-quark fragmentation functions are also briefly presented.

  13. Study of charm production through the decay of B mesons in the BABAR experiment; Etude de la production de charme dans les desintegrations des mesons beaux avec l'experience BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Couderc, F

    2005-04-15

    The BABAR experiment, located at SLAC (Stanford, California), has been dedicated, since 1999, to the study of B meson decays produced in electron positron collisions with an energy in the center of mass frame equal to the mass of {epsilon}(4S) resonance. In this experiment, the charged particles identification is provided, in particular by the measurement of the energy loss per length unit in the drift chamber. In order to improve the calibration of this quantity, a selection of electrons/positrons from radiative Bhabha events was performed; with the new sample the charge asymmetry in the charged particles reconstruction was reduced. In B meson decays, the inclusive production of charmed particles (D{sup 0}, D{sup 0}-bar, D{sup {+-}}, D{sub s}{sup {+-}}, {lambda}{sub c}{sup {+-}}) is measured with a new analysis method, made possible by the large statistics accumulated by the BABAR experiment. B and B-bar mesons are produced simultaneously from the {epsilon}(4S) resonance. The events are selected by reconstructing completely one B in a hadronic channel. Charmed particles from the other B are then reconstructed with the remaining tracks. This enables the measurement of the total number of charm produced in B{sup +} and in B{sup 0} decays separating the correlated charm production (quark transitions: b {yields} cX) from the anti-correlated production (quark transitions: b {yields} c-bar X). The results obtained on an integrated luminosity of 210 fb{sup -1} are the following: N{sub c}{sup B{sup +}} = 0.970 {+-} 0.042; N{sub c-}bar{sup B{sup +}} 0.262 {+-} 0.034; N{sub c}{sup B{sup 0}} = 0.950 {+-} 0.057; N{sub c-}bar{sup B{sup 0}} 0.285 {+-} 0.048. This new method also allows the measurement of the momentum of the charmed particles in the B rest frame. Access to the different production mechanisms of these particles is thereby provided. (author)

  14. Study of charm production through the decay of B mesons in the BABAR experiment; Etude de la production de charme dans les desintegrations des mesons beaux avec l'experience BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Couderc, F

    2005-04-15

    The BABAR experiment, located at SLAC (Stanford, California), has been dedicated, since 1999, to the study of B meson decays produced in electron positron collisions with an energy in the center of mass frame equal to the mass of {epsilon}(4S) resonance. In this experiment, the charged particles identification is provided, in particular by the measurement of the energy loss per length unit in the drift chamber. In order to improve the calibration of this quantity, a selection of electrons/positrons from radiative Bhabha events was performed; with the new sample the charge asymmetry in the charged particles reconstruction was reduced. In B meson decays, the inclusive production of charmed particles (D{sup 0}, D{sup 0}-bar, D{sup {+-}}, D{sub s}{sup {+-}}, {lambda}{sub c}{sup {+-}}) is measured with a new analysis method, made possible by the large statistics accumulated by the BABAR experiment. B and B-bar mesons are produced simultaneously from the {epsilon}(4S) resonance. The events are selected by reconstructing completely one B in a hadronic channel. Charmed particles from the other B are then reconstructed with the remaining tracks. This enables the measurement of the total number of charm produced in B{sup +} and in B{sup 0} decays separating the correlated charm production (quark transitions: b {yields} cX) from the anti-correlated production (quark transitions: b {yields} c-bar X). The results obtained on an integrated luminosity of 210 fb{sup -1} are the following: N{sub c}{sup B{sup +}} = 0.970 {+-} 0.042; N{sub c-}bar{sup B{sup +}} 0.262 {+-} 0.034; N{sub c}{sup B{sup 0}} = 0.950 {+-} 0.057; N{sub c-}bar{sup B{sup 0}} 0.285 {+-} 0.048. This new method also allows the measurement of the momentum of the charmed particles in the B rest frame. Access to the different production mechanisms of these particles is thereby provided. (author)

  15. Search for semileptonic decays of photoproduced charmed mesons. [100 to 300 GeV, no statistically significant evidence

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, R. N.

    1977-01-01

    In the broad band neutral beam at Fermilab, a search for photoproduction of charmed D mesons was done using photons of 100 to 300 GeV. The reaction considered was ..gamma.. + Be ..-->.. DantiD + X, leptons + ..., K/sup 0//sub s/n..pi../sup +-/. No statistically significant evidence for D production is observed based on the K/sup 0//sub s/n..pi../sup +-/ mass spectrum. The sensitivity of the search is commensurate with theoretical estimates of sigma(..gamma..p ..-->.. DantiD + X) approximately 500 nb, however this is dependent on branching ratios and photoproduction models. Data are given on a similar search for semileptonic decays of charmed baryons. 48 references.

  16. Open questions in charm decays deserving an answer

    CERN Document Server

    Bigi, Ikaros I.Y.

    1994-01-01

    A list is given of those open questions concerning the dynamics of charm decays where there exists a strong need for an answer. Such a need is based on lessons to be learnt about QCD -- either in their own right or for a better understanding of B physics -- or on searches for New Physics with a small background from the Standard Model. The major items on this list are: lifetimes of the \\Xi _c^{0,+} baryons; semileptonic branching ratios of D_s, \\Lambda _c and \\Xi _c hadrons and absolute branching ratios for those states; radiative decays D\\rightarrow \\gamma K^*,\\, \\gamma \\rho /\\omega , \\, D_s \\rightarrow \\gamma \\phi /\\omega ,\\, D\\rightarrow l^+l^-K/K^*; D^0-\\bar D^0 oscillations down to a sensitivity below 10^{-4} and CP asymmetries in non-leptonic D decays down to 0.1\\%. Ongoing and already approved experiments will produce important new insights, which are unlikely to provide sufficient answers to all these questions yet. It is discussed how a third-generation fixed-target experiment like CHARM2000 or a \\ta...

  17. Interactions of Charmed Mesons with Light Pseudoscalar Mesons from Lattice QCD and Implications on the Nature of the D*s0(2317)

    Energy Technology Data Exchange (ETDEWEB)

    Liuming, Liu; Orginos, Kostas; Guo, Feng-Kun; Hanhart, Christoph; Meissner, Ulf-G

    2014-11-01

    We study the scattering of light pseudoscalar mesons ( p , K ) off charmed mesons ( D , D s ) in full lattice QCD. The S -wave scattering lengths are calculated using Luscher’s finite volume technique. We use a relativistic formulation for the charm quark. For the light quark, we use domain- wall fermions in the valence sector and improved Kogut-Susskind sea quarks. We calculate the scattering lengths of isospin-3/2 Dπ , D sπ , D s K , isospin-0 DK and isospin-1 DK channels on the lattice. For the chiral extrapolation, we use a chiral unitary approach to next-to-leading order, which at the same time allows us to give predictions for other channels. It turns out that our results support the interpretation of the D*s0( 2317 ) as a DK molecule. At the same time, we also update a prediction for the isospin breaking hadronic decay width G ( D*s0( 2317 )→ D sπ ) to ( 133± 22 ) keV.

  18. Interactions of Charmed Mesons with Light Pseudoscalar Mesons from Lattice QCD and Implications on the Nature of the D_{s0}^*(2317)

    CERN Document Server

    Liu, Liuming; Guo, Feng-Kun; Hanhart, Christoph; Meißner, Ulf-G

    2013-01-01

    We study the scattering of light pseudoscalar mesons (\\pi, K) off charmed mesons (D, D_s) in full lattice QCD. The S-wave scattering lengths are calculated using L\\"uscher's finite volume technique. We use a relativistic formulation for the charm quark. For the light quark, we use domain-wall fermions in the valence sector and improved Kogut-Susskind sea quarks. We calculate the scattering lengths of isospin-3/2 D\\pi, D_s\\pi, D_sK, isospin-0 D\\bar{K} and isospin-1 D\\bar{K} channels on the lattice. For the chiral extrapolation, we use a chiral unitary approach to next-to-leading order, which at the same time allows us to give predictions for other channels. It turns out that the interpretation of the D_{s0}^*(2317) as a DK molecule is consistent with the results. At the same time, we also update a prediction for the isospin breaking hadronic decay width \\Gamma(D_{s0}^*(2317)\\to D_s\\pi) to (89\\pm 27) keV.

  19. Measurement of prompt charm meson production cross sections in pp collisions at square root s = 1.96 TeV.

    Science.gov (United States)

    Acosta, D; Affolder, T; Ahn, M H; Akimoto, T; Albrow, M G; Ambrose, D; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Bailey, S; Barbaro-Galtieri, A; Barker, G; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Bromberg, C; Brozovic, M; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Calafiura, P; Campanelli, M; Campbell, M; Canepa, A; Carlsmith, D; Carron, S; Carosi, R; Casarsa, M; Caskey, W; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerri, C; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chu, M L; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Coca, M N; Connolly, A; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cranshaw, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; DaRonco, S; D'Auria, S; De Barbaro, P; De Cecco, S; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Frisch, H; Fujii, Y; Furic, I; Gallas, A; Gallinaro, M; Galyardt, J; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D W; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Grim, G; Grosso-Pilcher, C; Guenther, M; Guimaraes Da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hall, C; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jones, M; Jun, S Y; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khazins, D; Khotilovich, V; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Knuteson, B; Kobayashi, H; Koehn, P; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loken, J; Loreti, M; Loverre, P; Lucchesi, D; Lukens, P; Lyons, L; Lys, J; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, A; Martin, M; Martin, V; Martinez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Meyer, A; Miao, T; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mishina, M; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Moore, R; Morello, M; Moulik, T; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A-S; Nigmanov, T; Niu, H; Nodulman, L; Oesterberg, K; Ogawa, T; Oh, S; Oh, Y D; Ohsugi, T; Oishi, R; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D

    2003-12-12

    We report on measurements of differential cross sections dsigma/dp(T) for prompt charm meson production in ppmacr; collisions at sqrt[s]=1.96 TeV using 5.8+/-0.3 pb(-1) of data from the CDF II detector at the Fermilab Tevatron. The data are collected with a new trigger that is sensitive to the long lifetime of hadrons containing heavy flavor. The charm meson cross sections are measured in the central rapidity region |y|K-pi(+), D(*+)-->D0pi(+), D+-->K-pi(+)pi(+), D(+)(s)-->phipi(+), and their charge conjugates. The measured cross sections are compared to theoretical calculations.

  20. Measurement of mass and width of the excited charmed meson states $D_1^0$ and $D_2^{*0}$

    CERN Document Server

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas-Maestro, J; Culbertson, R; Cyr, D; Da Ronco, S; D'Auria, S; D'onofrio, M; Dagenhart, D; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, Mauro; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J; Di Turo, P; Dorr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; García, J E; Garcia Sciverez, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D A; Gold, M; Goldschmidt, N; Goldstein, J; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimarães da Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Höcker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P F; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Müller, T; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitine, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; Van Remortel, N; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Sjölin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tonnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A W; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobuev, I P; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, Y; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-01-01

    This paper describes a measurement of the mass and of the width of two neutral narrow resonances $D_10$ and $D_2^{0*}$, both composed of a charm quark and an up antiquark. The difference with respect to the well-known resonance $D0$, also neutral and with the same quark composition, is that the two quarks have an orbital momentum 1, which increases their binding energy. Therefore the mass is larger than that of the $D0$. Since the relative orientation of the spin is the same, in the limit of very large charm mass, the masses of these resonances should be the same; their small difference is predicted by theory and therefore important to measurement to distinguish the different models. These states have been observed in their decay into a kaon and three pions; two of these particles are required to originate from a displaced vertex with respect to the primary interaction vertex, to account for the longer lifetime of the charmed mesons. The resonances parameters have been extracted using a fitting procedure acco...

  1. $D_{s1}^*(2860)$ and $D_{s3}^*(2860)$: Candidates for $1D$ charmed-strange mesons

    CERN Document Server

    Song, Qing-Tao; Liu, Xiang; Matsuki, Takayuki

    2014-01-01

    Newly observed two charmed-strange resonances, $D_{s1}^*(2860)$ and $D_{s3}^*(2860)$, are investigated by calculating their Okubo-Zweig-Iizuka allowed strong decays, which shows that they are suitable candidates for the $1^3D_1$ and $1^3D_3$ states in the charmed-strange meson family. Our study also predicts other main decay modes of $D_{s1}^*(2860)$ and $D_{s3}^*(2860)$, which can be accessible at the future experiment. In addition, the decay behaviors of the spin partners of $D_{s1}^*(2860)$ and $D_{s3}^*(2860)$, i.e., $1D(2^-)$ and $1D^\\prime(2^-)$, are predicted in this work, which are still missing at present. Experimental search for the missing $1D(2^-)$ and $1D^\\prime(2^-)$ charmed-strange mesons is an intriguing and challenging task for further experiment.

  2. Constraints on atmospheric charmed-meson production from IceCube

    Directory of Open Access Journals (Sweden)

    Palczewski Tomasz Jan

    2016-01-01

    Full Text Available At very-high energies (100 TeV - 1 PeV, the small value of Bjorken-x (≤ 10−3 − 10−7 at which the parton distribution functions are evaluated makes the calculation of charm quark production very difficult. The charm quark has mass (~1.5±0.2 GeV significantly above the ΛQCD scale (~200 MeV, and therefore its production is perturbatively calculable. However, the uncertainty in the data and the calculations cannot exclude some smaller non-perturbative contribution. To evaluate the prompt neutrino flux, one needs to know the charm production cross-section in pN -> cc̄ X, and hadronization of charm particles. This contribution briefly discusses computation of prompt neutrino flux and presents the strongest limit on prompt neutrino flux from IceCube.

  3. Constraints on atmospheric charmed-meson production from IceCube

    CERN Document Server

    Palczewski, Tomasz

    2016-01-01

    At very-high energies (100 TeV - 1 PeV), the small value of Bjorken-x ($\\le10^{-3}-10^{-7}$) at which the parton distribution functions are evaluated makes the calculation of charm quark production very difficult. The charm quark has mass ($\\sim$1.5$\\pm$0.2 GeV) significantly above the $\\Lambda$$_{QCD}$ scale ($\\sim$200 MeV), and therefore its production is perturbatively calculable. However, the uncertainty in the data and the calculations cannot exclude some smaller non-perturbative contribution. To evaluate the prompt neutrino flux, one needs to know the charm production cross-section in pN -> c$\\bar{c}$ X, and hadronization of charm particles. This contribution briefly discusses computation of prompt neutrino flux and presents the strongest limit on prompt neutrino flux from IceCube.

  4. Gluon Polarisation in the Nucleon and Longitudinal Double Spin Asymmetries from Open Charm Muoproduction

    CERN Document Server

    Alekseev, M; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Austregisilio, A; Badelek, B; Balestra, F; Ball, J; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Chapiro, A; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Dalla Torre, S; Dafni, T; Das, S; Dasgupta, S S; Denisov, O.Yu; Dhara, L; Diaz, V; Dinkelbach, A M; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Efremov, A; El Alaoui, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger, M., jr; Fischer, H; Franco, C; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gobbo, B; Goertz, S; Grabmuller, S; Grajek, O A; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; Hagemann, R; von Harrach, D; Hasegawa, T; Heckmann, J; Heinsius, F H; Hermann, R; Herrmann, F; Hess, C; Hinterberger, F; von Hodenberg, M; Horikawa, N; Hoppner, Ch; d'Hose, N; Ilgner, C; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuss, E; Kafer, W; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu.A; Kiefer, J; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Komissarov, E V; Kondo, K; Konigsmann, Kay; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kowalik, K; Kramer, M; Kral, A; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Le Goff, J M; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Mann, A; Marchand, C; Marroncle, J; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Maximov, A N; Meyer, W; Michigami, T; Mikhailov, Yu.V; Moinester, M A; Mutter, A; Nagaytsev, A; Nagel, T; Nassalski, J; Negrini, S; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panebianco, S; Panzieri, D; Parsamyan, B; Paul, S; Pawlukiewicz-Kaminska, B; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J.-F; Ramos, S; Rapatsky, V; Reicherz, G; Reggiani, D; Richter, A; Robinet, F; Rocco, E; Rondio, E; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Santos, H; Sapozhnikov, M G; Sarkar, S; Savin, Igor A; Sbrizza, G; Schiavon, P; Schill, C; Schmitt, L; Schroder, W; Shevchenko, O.Yu; Siebert, H.-W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Takekawa, S; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Venugopal, G; Virius, M; Vlassov, N V; Vossen, A; Weitzel, Q; Wenzl, K; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhao, J; Zhuravlev, N; Zvyagin, A

    2009-01-01

    The gluon polarisation in the nucleon has been determined by detecting charm production via D0 meson decay to charged K and pi in polarised muon scattering off a longitudinally polarised deuteron target. The data were taken by the COMPASS Collaboration at CERN between 2002 and 2006 and corresponds to an integrated luminosity of 2.8 fb^-1. The dominant underlying process of charm production is the photon-gluon fusion to a cc-bar pair. A leading order QCD approach gives an average gluon polarisation of (Delta g/g)_x= -0.49 +- 0.27(stat) +- 0.11(syst) at a scale mu^2 ~ 13 (GeV/c)^2 and at an average gluon momentum fraction (x) ~ 0.11. The longitudinal cross-section asymmetry for D0 production is presented in bins of the transverse momentum and the energy of the D0 meson.

  5. Quasi-exotic open-flavor mesons

    CERN Document Server

    Hilger, T

    2016-01-01

    Meson states with exotic quantum numbers arise naturally in a covariant bound-state framework in QCD. We investigate the consequences of shifting quark masses such that the states are no longer restricted to certain C-parities, but only by J^P. Then, a priori, one can no longer distinguish exotic or conventional states. In order to identify signatures of the different states to look for experimentally, we provide the behavior of masses, leptonic decay constants, and orbital-angular-momentum decomposition of such mesons, as well as the constellations in which they could be found. Most prominently, we consider the case of charged quasi-exotic excitations of the pion.

  6. Open charm production in heavy ion collisions and the Color Glass Condensate

    CERN Document Server

    Kharzeev, Dima E

    2003-01-01

    We consider the production of open charm in heavy ion collisions in the framework of the Color Glass Condensate. In the central rapidity region at RHIC, for the charm quark yield we expect N(coll) (number of collisions) scaling in the absence of final-state effects. At higher energies, or forward rapidities at RHIC, the saturation scale exceeds the charm quark mass; we find that this results in the approximate N(part) (number of participants) scaling of charm production in AA collisions and N(part)^A scaling in p(d)A collisions, similarly to the production of high pT gluons discussed earlier. We also show that the saturation phenomenon makes spectra harder as compared to the naive parton model approach. We then discuss the energy loss of charm quarks in hot and cold media and argue that the hardness of the spectrum implies very slow dependence of the quenching factor on pT.

  7. Measurement of charmed meson azimuthal anisotropy in Au+Au collisions at √SNN = 200 GeV at RHIC

    Science.gov (United States)

    Lomnitz, Michael R.

    Previous measurements of collective motion (flow) in light quarks (u,d,s) at RHIC suggest that partonic collectivity has been achieved in the collisions. These results also seem to suggest that the dense matter produced during collisions thermalizes at very high temperatures and form a strongly coupled Quark Gluon Plasma (QGP) whose behavior is compatible with viscous hydrodynamic models with a low shear-viscosity-to-entropy-density (eta/s) ratio. The question remains as to whether or not this collective behavior applies to heavy flavor and a detailed description of the behavior of heavy flavor is essential to understand the underlying dynamics, distinguish between different energy loss mechanisms, and constrain theoretical models. In particular, if the elliptic flow of charm quarks is found to be comparable to that of lighter matter this would be indicative of frequent interactions between all quarks and would strongly support the discovery of QGP at RHIC. Understanding how this collective behavior emerges from the individual interactions between partonic matter as well as the differences between quarks species will need to be investigated further to understand this new state of matter and is at the center of the RHIC scientific program. However, precise measurements of open heavy flavor are difficult to obtain due to the low yields and short lifespan of heavy hadrons. One approach to reduce this combinatorial background and reconstruct open heavy flavor in heavy ion collisions involves distinguishing between an event's primary vertex and a hadron's decay vertex through direct topological reconstruction from the decay products. The Heavy Flavor Tracker (HFT) silicon vertex upgrade for the STAR experiment, which made its debut during the 2014 year's run together with the Muon Telescope Detector (MTD), has vastly improved the experiment's heavy flavor capabilities making STAR an ideal detector to study the hot and dense matter created in heavy ion collisions. Taking

  8. Study of charm quark fragmentation into D{sup *} mesons with the H1 detector at HERA II

    Energy Technology Data Exchange (ETDEWEB)

    Liptaj, Andrej

    2008-12-15

    In this work charm quark fragmentation into D{sup *} mesons is investigated in deep-inelastic electron proton collisions. This work is based on data collected in the years 2004 - 2007 by the H1 detector at HERA, corresponding to a total integrated luminosity of 354.1 pb{sup -1}. Three observables denoted z{sub jet},z{sub hem} and z{sub hem}{sup (jet)} are measured, each of them meant to approximate the momentum fraction of the charm quark transferred to the D{sup *} meson. In case of z{sub jet} the quark momentum is estimated as the momentum of the D{sup *} jet, for the two other observables it is approximated by the momentum of an appropriately chosen D{sup *} hemisphere. The visible range is defined by the phase space requirements on the DIS events: Q{sup 2} > 5 GeV{sup 2}, 0.05 < y < 0.6 and by the cuts applied on the reconstructed D{sup *{+-}} particles: 1.5 GeV < p{sub T}(D{sup *}) < 15.0 GeV and vertical stroke {eta}(D{sup *}) vertical stroke < 1.5. An additional constraint E{sub T}(D{sup *}jet) > 3.0 GeV enters the phase space definition in case of z{sub jet} and z{sub hem}{sup (jet)}, where a reconstructed jet containing the D{sup *} meson is required. Within this phase space the normalized single differential cross sections are measured in bins of the three observables. Two Monte Carlo models, RAPGAP and CASCADE, both interfaced with the PYTHIA program for the Lund string fragmentation, are used to make predictions of the respective cross sections for different parametrizations (Peterson and Kartvelishvili) of the charm fragmentation function. The difference in cross sections between data and Monte Carlo model predictions for different values of the fragmentation parameter is quantified by calculating values of {chi}{sup 2} in order to extract optimal parameters for the Peterson and Kartvelishvili parametrization. Using predictions from PYTHIA for e{sup +}e{sup -} annihilation optimal parameters are extracted also from the published BELLE and ALEPH data

  9. Single-diffractive production of charmed mesons at the LHC within the $k_t$-factorization approach

    CERN Document Server

    Luszczak, Marta; Szczurek, Antoni; Trzebinski, Maciej

    2016-01-01

    We discuss the single diffractive production of $c \\bar c$ pairs and charmed mesons at the LHC. For a first time we propose a $k_t$-factorization approach to the diffractive processes. The transverse momentum dependent diffractive parton distributions are obtained from standard (collinear) diffractive parton distributions used in the literature. In this calculation the transverse momentum of the pomeron is neglected with respect to transverse momentum of partons entering the hard process. We also perform the first evaluation of the cross sections at the LHC using the diffractive transverse momentum dependent parton distributions. The results of the new approach are compared with those of the standard collinear one. Significantly larger cross sections are obtained in the $k_t$-factorization approach where some part of higher-order effects is effectively included. The differences between corresponding differential distributions are discussed. Finally, we present a feasibility study of the process at the LHC usi...

  10. Production of the excited charm mesons D{sub 1} and D{sup *}{sub 2} at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science] [and others; Collaboration: ZEUS Collaboration

    2012-08-15

    The production of the excited charm mesons D{sub 1}(2420) and D{sup *}{sub 2}(2460) in ep collisions has been measured with the ZEUS detector at HERA using an integrated luminosity of 373 pb{sup -1}. The masses of the neutral and charged states, the widths of the neutral states, and the helicity parameter of D{sub 1}(2420){sup 0} were determined and compared with other measurements and with theoretical expectations. The measured helicity parameter of the D{sup 0}{sub 1} allows for some mixing of S- and D-waves in its decay to D{sup *{+-}}{pi}{sup -+}. The result is also consistent with a pure D-wave decay. Ratios of branching fractions of the two decay modes of the D{sup *}{sub 2}(2460){sup 0} and D{sup *}{sub 2}(2460){sup {+-}} states were measured and compared with previous measurements. The fractions of charm quarks hadronising into D{sub 1} and D{sup *}{sub 2} were measured and are consistent with those obtained in e{sup +}e{sup -} annihilations.

  11. Multiple-neutral-meson decays of the /tau/ lepton and electromagnetic calorimeter requirements at Tau-Charm Factory

    Energy Technology Data Exchange (ETDEWEB)

    Gan, K.K.

    1989-08-01

    This is a study of the physics sensitivity to the multiple-neutral-meson decays of the /tau/ lepton at the Tau-Charm Factory. The sensitivity is compared for a moderate and an ultimate electromagnetic calorimeter. With the high luminosity of the Tau- Charm Factory, a very large sample of the decays /tau//sup /minus// /yields/ /pi//sup /minus//2/pi//sup 0//nu//sub /tau// and /tau//sup /minus// /yields/ /pi//sup /minus//3/pi//sup 0//nu//sub /tau// can be collected with both detectors. However, with the ultimate detector, 2/pi//sup 0/ and 3/pi//sup 0/ can be unambiguously reconstructed with very little background. For the suppressed decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//pi//sup 0//nu//sub /tau//, only the ultimate detector has the sensitivity. The ultimate detector is also sensitive to the more suppressed decay /tau//sup /minus// /yields/ K/sup /minus///eta//nu//sub /tau// and the moderate detector may have the sensitivity if the hadronic background is not significantly larger than that predicted by Lund. In the case of the highly suppressed second-class-current decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//nu//sub /tau//, only the ultimate detector has sensitivity. The sensitivity can be greatly enhanced with a small-angle photon veto. 16 refs., 9 figs., 2 tabs.

  12. Tetraquarks in the 1/N expansion and meson-meson resonances

    CERN Document Server

    Maiani, L

    2016-01-01

    Diquarks are found to have the right degrees of freedom to describe the tetraquark poles in hidden-charm to open-charm meson-meson amplitudes. Compact tetraquarks result as intermediate states in non-planar diagrams of the 1/N expansion and the corresponding resonances are narrower than what estimated before. The proximity of tetraquarks to meson-thresholds has an apparent role in this analysis and, in the language of meson molecules, an halving rule in the counting of states is obtained.

  13. Multiple charm production at the LHC energy

    Energy Technology Data Exchange (ETDEWEB)

    Berezhnoy, A. V., E-mail: Alexander.Berezhnoy@cern.ch [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Likhoded, A. K., E-mail: Anatolii.Likhoded@ihep.ru; Luchinsky, A. V., E-mail: Alexey.Luchinsky@ihep.ru; Novoselov, A. A., E-mail: Alexey.Novoselov@cern.ch [Institute for High Energy Physics (Russian Federation)

    2013-01-15

    Cross sections for J/{psi} mesons produced in association with open charm and two charmed hadrons from different cc-bar pairs under LHC conditions are predicted theoretically. The respective processes are considered both in single and in double parton interactions. Particular attention is given to kinematical limits of the LHCb detector, and a comparison with the most recent experimental data is performed for them.

  14. Effect of residual Bose-Einstein correlations on the Dalitz plot of hadronic charm meson decay

    CERN Document Server

    Cuautle, E

    1998-01-01

    We show that the presence of residual Bose-Einstein correlations may affect the resonant contribution of hadronic charm decays where two identical pions appear in the final state. The distortion of the phase space of the reaction would be visible in the dalitz plot. The decay D+ --> K- pi+ pi+ is discussed but results can be generalized to any decay with identical bosons.

  15. Open charm Spectroscopy and exotic states at LHCb

    CERN Document Server

    Palano, Antimo

    2015-01-01

    We present a summary of new experimental results on the status of the charm spectroscopy using inclusive approaches and Dalitz plot analyses of $B$ and $B_s$ decays. We also report on a new determination of the $X(3872)$ quantum numbers.

  16. Measurement of Prompt Charm Meson Production Cross Sections in p anti-p Collisions at s**(1/2) = 1.96 TeV

    CERN Document Server

    Acosta, D; Ahn, M H; Akimoto, T; Albrow, M G; Ambrose, D; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J F; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W F; Bailey, S; Barbaro-Galtieri, A; Barker, G; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bell, W H; Bellettini, Giorgio; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bölla, G; Bolshov, A; Booth, P S L; Bortoletto, Daniela; Boudreau, J; Bourov, S; Bromberg, C; Brozovic, M; Brubaker, E; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Calafiura, P; Campanelli, M; Campbell, M; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Caskey, W; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerri, C; Cerrito, L; Chapman, J; Chen, Y C; Chen, C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chu, M L; Chung, J Y; Chung, Y S; Chung, W H; Ciobanu, C I; Ciocci, M A; Clark, A G; Coca, M N; Connolly, A; Convery, E; Conway, J; Cordelli, M; Cortiana, G; Cranshaw, J; Culbertson, R; Currat, C; Cyr, D; D'Auria, S; D'Onofrio, M; Da Ronco, S; Dagenhart, D; De Cecco, S; De Pedis, D; Dell'Agnello, S; Dell'Orso, Mauro; Demers, S; Demortier, L; Deninno, M; Denis, St; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R D; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Feild, R G; Feindt, M; Fernández, J P; Ferretti, C; Field, R D; Fiori, I; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A D; Forrester, S; Foster, G W; Franklin, M; Frisch, H; Fujii, Y; Furic, I; Gallas, A; Gallinaro, M; Galyardt, J; García-Sciveres, M; Garfinkel, F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D W; Giagu, S; Giannetti, P; Gibson, K; Gibson, A; Ginsburg, C; Giolo, K; Giordani, M; Giurgiu, G; Glagolev, V; Glenzinski, D A; Gold, M; Goldschmidt, N; Goldstein, J; Goldstein, D B; Gómez, G; Gómez-Ceballos, G; Goncharov, M; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Gresele, A; Grim, G; Grosso-Pilcher, C; Günther, M; Guimaraesda Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hall, C; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Höcker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jones, M; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R D; Kerzel, U; Khazins, D; Khotilovich, V; Kilminster, B; Kim, M J; Kim, B J; Kim, D H; Kim, J E; Kim, M S; Kim, S B; Kim, K; Kim, T H; Kim, H S; Kim, S H; King, T; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Knuteson, B; Kobayashi, H; Koehn, P; Kondo, K; Konigsberg, J; Kordas, K; Korn, A J; Korytov, A; Kotelnikov, K A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I V; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; LeCompte, T J; Le, Y; Lecci, C; Lee, J; Lee, S W; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loken, J; Loreti, M; Loverre, P F; Lucchesi, D; Lukens, P; Lyons, L; Lys, J; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, V; Martin, M; Martin, A; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Meyer, A; Miao, T; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mishina, M; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Moore, R; Morello, M; Moulik, T; Mukherjee, A; Mulhearn, M; Müller, T; Mumford, R; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Necula, V; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A S; Niell, F; Nielsen, J; Nigmanov, T; Niu, H; Nodulman, L; Österberg, K; Ogawa, T; Oh, Y D; Oh, S; Ohsugi, T; Oishi, R; Okusawa, T; Oldeman, R G C; Orava, Risto; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A G; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Rekovic, V; Renton, P B; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Riveline, M; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Ruiz, A; Russ, J; Ryan, D; Saarikko, H; Safonov, A; Sakumoto, W K; Saltzberg, D; Sánchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schemitz, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schofield, G L; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T G; Shepard, P F; Shimojima, M; Shochet, M J; Shon, Y; Sidoti, A; Siket, M; Sill, A; Sinervo, P; Sissakian, A N; Skiba, A; Slaughter, A J; Sliwa, K; Smith, R; Snider, F D; Snihur, R; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Stadie, H; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A C; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tamburello, P; Tanaka, M; Tanaka, R; Tanimoto, N; Tannenbaum, B; Tapprogge, Stefan; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Thurman-Keup, R M; Tipton, P; Tiwari, V K; Tkaczyk, S M; Toback, D; Tollefson, K; Tonelli, D; Tonnesmann, M; Torre, S; Torretta, D; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, T; Varganov, A V; Vataga, E; Vejcik, S; Velev, G V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Volobuev, I P; Wagner, R G; Wagner, R L; Wagner, W; Wallace, N; Walter, T; Wan, Z; Wang, M J; Wang, S M; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W; De Barbaro, P; Von der Mey, M

    2003-01-01

    We report on measurements of differential cross sections d sigma/d p_t for prompt charm meson production in p anti-p collisions at s**(1/2) = 1.96 TeV using 5.8 +/- 0.3 pb-1 of data from the CDF II detector at the Fermilab Tevatron. The data are collected with a new trigger that is sensitive to the long lifetime of hadrons containing heavy flavor. The charm meson cross sections are measured in the central rapidity region |y| \\leq 1 in four fully reconstructed decay modes: D0 --> K- pi+, D*+ -> D0 pi+, D+ --> K- pi+ pi+, D+_s--> phi pi+, and their charge conjugates. The measured cross sections are compared to theoretical calculations.

  17. Open-charm production measurements in pp, 1 p-Pb and Pb-Pb collisions with ALICE at the LHC

    Directory of Open Access Journals (Sweden)

    Meninno Elisa

    2017-01-01

    Full Text Available ALICE (A Large Ion Collider Experiment is designed to study the strongly in teracting matter, the Quark-Gluon Plasma (QGP, created in heavy-ion collisions at LHC energies. Charm and beauty quarks are powerful probes to study the QGP. Produced in hard partonic scattering processes on a short time scale, they are expected to traverse the QCD medium, interacting with its constituents and losing energy through radiative and collisional processes. In ALICE, open-charm production is studied through the reconstruction of the hadronic decays of D0, D+, D*+ and Ds+ mesons at mid-rapidity. High precision tracking, good vertexing capabilities and excellent particle identification offered by ALICE allow for the measurement of particles containing heavy quarks (particularly D mesons in a wide transverse momentum range in pp, p-Pb and Pb-Pb collisions. A review of the main results on D-meson production in pp collisions at √s = 7 TeV, p-Pb collisions at √sNN = 5.02 TeV and Pb-Pb collisions at √sNN = 2.76 TeV will be presented.

  18. Production of the excited charm mesons D{sub 1} and D{sup *}{sub 2} at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Verbytskyi, Andrii

    2013-02-15

    The production of the excited charm mesons D{sub 1}, D{sup *}{sub 2} and D{sup +}{sub s1} in ep collisions has been measured with the ZEUS detector at Hera. The data sample taken by the ZEUS detector in the years 2003-2007, corresponding to an integrated luminosity of 373 pb{sup -1} has been used. The masses of the neutral, charged and strange states, the widths of the neutral states, the helicity parameters of D{sup 0}{sub 1} and D{sup +}{sub s1} were determined and compared with other measurements and with theoretical expectations. The measured helicity parameters of the D{sup 0}{sub 1} and D{sup +}{sub s1} allows for some mixing of S- and D-waves in their decays to D{sup *{+-}}{pi}{sup -+} and D{sup *{+-}}K{sup 0} respectively. The measured value of the D{sup 0}{sub 1} helicity parameter is also consistent with a pure D-wave decay. Ratios of branching fractions of the two decay modes of the D{sup *0}{sub 2}, D{sup *{+-}}{sub 2} and D{sup +}{sub s1} states were measured and compared with previous measurements. The fractions of charm quarks hadronising into D{sub 1}, D{sup *}{sub 2} and D{sup +}{sub s1} were measured and are consistent with those obtained in e{sup +}e{sup -} annihilations. The Grid computing technology has a high importance for modern High Energy Physics. This technology has been successfully used in Zeus experiment for the MC simulations and data analysis. The dedicated infrastructure has been maintained by the author since 2010. In addition to continuous support, the author has upgraded and improved the performance of the Grid MC simulations and contributed to the Zeus data preservation project.

  19. Two-body charmed B(Bs) decays involving a light scalar meson

    CERN Document Server

    Zou, Zhi-Tian; liu, Xin

    2016-01-01

    Based on the assumption of two-quark structure for the light scalar mesons, within the framework of perturbative QCD approach, we investigate the $B_{q}\\to D_{(s)}^{(*)} S(q=u,d,s)$ decays induced by $b\\to u $ transition, where $S$ denotes a light scalar meson. Under two different scenarios, we calculate the branching ratios of 96 decay modes totally, which are in the range of $10^{-5}$ to $10^{-8}$. The comparison between our predictions and the experimental data will allow us to probe the inner structure of the scalar mesons. In the standard model, since all decays can only occur through tree operators, there are no $CP$ asymmetries. From our calculations, it has been shown that the annihilation type diagrams, especially the nonfactorizable annihilation diagrams, play important roles in the decay amplitudes, especially for these color-suppressed and pure annihilation type decay modes. We also find that the branching ratios of color-allowed type decays are sensitive to the different scenarios, so the measure...

  20. Double Charm Decays of B Mesons in mSUGRA Model

    Institute of Scientific and Technical Information of China (English)

    L(U) Lin-Xia; XIAO Zhen-Jun; WANG Shuai-Wei; LI Wen-Jun

    2011-01-01

    Based on the low energy effective Hamiltonian with naive factorization, we calculate the branching ratios (BRa) and CP asymmetries (CPAs) for the twenty three double charm decays B/Bs → D()(s)D()(s) in both the standard model (SM) and the minimal supergravity (mSUGRA) model. Within the considered parameter space, we find that (a)the theoretical predictions for the BRs, CPAs and the polarization fractions in the SM and the mSUGRA model are all consistent with the currently available data within ±2σ errors; (b) For all the considered decays, the supersymmetric contributions in the mSUGRA model are very small, less than 7% numerically. It may be difficult to observe so small SUSY contributions even at LHC.

  1. Charmed-meson fragmentation functions with finite-mass corrections and their application in various processes

    Energy Technology Data Exchange (ETDEWEB)

    Kneesch, Torben

    2010-12-15

    We have calculated the single-inclusive production cross section of massive quarks in electron-positron-annihilation with next-to-leading order QCD corrections. With these results we have extracted fragmentation functions for the fragmentation from partons into D{sup 0}, D{sup +} and D{sup *} mesons, where we have used experimental data from the B factories Belle and CLEO and from the ALEPH and OPAL experiments at the LEP collider. In our analysis we have included the masses of c and b quarks and of the D mesons and tested the evolution of fragmentation functions with a global fit spanning the B factories' center-of-mass energy of {radical}(s)=10.5 GeV to LEP's run at the Z boson resonance at M{sub Z}. We have applied this fragmentation functions in deep inelastic scattering for comparisons with HERA data using parton cross sections from the literature available in program form. We have then modified this cross section to calculate predictions for deep inelastic two-photon-scattering. By applying the Weizsaecker-Williams spectrum on the real photon we have calculated predictions for LEP1, LEP2 and the future ILC experiments. For ILC we have also included a beamstrahlung spectrum. Finally we have calculated production cross sections for the planned e{gamma} mode of the ILC with the help of a Compton spectrum. (orig.)

  2. Charm physics at BESIII

    Science.gov (United States)

    Weidenkaff, P.; BESIII collaboration

    2016-11-01

    The study of mesons and baryons which contain at least one charm quark is referred to as open charm physics. It offers the possibility to study up-type quark transitions. Since the c quark can not be treated in any mass limit, theoretical predictions are difficult and experimental input is crucial. BESIII collected large data samples of e+e- collisions at several charm thresholds. The at-threshold decay topology offers special opportunities to study open charm decays. We present a selection of recent BESIII results. The D + s decay constant is measured using the leptonic decays to μ+ν and τ+ ν. Using the semi-leptonic decays of D 0 and D± to Ke+νe and πe+νe, a measurement of the form factors f + K (q 2) and f + π (q 2) is performed and furthermore, we show preliminary results of a model independent measurement of the strong phase difference between D 0 and D 0 in the channel D 0 → K s 0π+π- which is an experimental input to the measurement of the CKM angle γ/ϕ3.

  3. D{sub s1}{sup ∗}(2860) and D{sub s3}{sup ∗}(2860): candidates for 1D charmed-strange mesons

    Energy Technology Data Exchange (ETDEWEB)

    Song, Qin-Tao [Nuclear Theory Group, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou (China); Research Center for Hadron and CSR Physics, Lanzhou University & Institute of Modern Physics of CAS, 730000, Lanzhou (China); University of Chinese Academy of Sciences, 100049, Beijing (China); Chen, Dian-Yong, E-mail: chendy@impcas.ac.cn [Nuclear Theory Group, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou (China); Research Center for Hadron and CSR Physics, Lanzhou University & Institute of Modern Physics of CAS, 730000, Lanzhou (China); Liu, Xiang, E-mail: xiangliu@lzu.edu.cn [Research Center for Hadron and CSR Physics, Lanzhou University & Institute of Modern Physics of CAS, 730000, Lanzhou (China); School of Physical Science and Technology, Lanzhou University, 730000, Lanzhou (China); Matsuki, Takayuki, E-mail: matsuki@tokyo-kasei.ac.jp [Tokyo Kasei University, 1-18-1 Kaga, Itabashi, 173-8602, Tokyo (Japan); Theoretical Research Division, Nishina Center, RIKEN, 351-0198, Saitama (Japan)

    2015-01-27

    Newly observed two charmed-strange resonances, D{sub s1}{sup ∗}(2860) and D{sub s3}{sup ∗}(2860), are investigated by calculating their Okubo–Zweig–Iizuka-allowed strong decays, which shows that they are suitable candidates for the 1{sup 3}D{sub 1} and 1{sup 3}D{sub 3} states in the charmed-strange meson family. Our study also predicts other main decay modes of D{sub s1}{sup ∗}(2860) and D{sub s3}{sup ∗}(2860), which can be accessible at the future experiment. In addition, the decay behaviors of the spin partners of D{sub s1}{sup ∗}(2860) and D{sub s3}{sup ∗}(2860), i.e., 1D(2{sup -}) and 1D{sup ′}(2{sup -}), are predicted in this work, which are still missing at present. The experimental search for the missing 1D(2{sup -}) and 1D{sup ′}(2{sup -}) charmed-strange mesons is an intriguing and challenging task for further experiments.

  4. D{sub s1}{sup *}(2860) and D{sub s3}{sup *}(2860): candidates for 1D charmed-strange mesons

    Energy Technology Data Exchange (ETDEWEB)

    Song, Qin-Tao [Chinese Academy of Sciences, Nuclear Theory Group, Institute of Modern Physics, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Chen, Dian-Yong [Chinese Academy of Sciences, Nuclear Theory Group, Institute of Modern Physics, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); Liu, Xiang [Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Matsuki, Takayuki [Tokyo Kasei University, Tokyo (Japan); RIKEN, Theoretical Research Division, Nishina Center, Saitama (Japan)

    2015-01-01

    Newly observed two charmed-strange resonances, D{sub s1}{sup *}(2860) and D{sub s3}{sup *}(2860), are investigated by calculating their Okubo-Zweig-Iizuka-allowed strong decays, which shows that they are suitable candidates for the 1{sup 3}D{sub 1} and 1{sup 3}D{sub 3} states in the charmed-strange meson family. Our study also predicts other main decay modes of D{sub s1}{sup *}(2860) and D{sub s3}{sup *}(2860), which can be accessible at the future experiment. In addition, the decay behaviors of the spin partners of D{sub s1}{sup *}(2860) and D{sub s3}{sup *}(2860), i.e., 1D(2{sup -}) and 1D'(2{sup -}), are predicted in this work, which are still missing at present. The experimental search for the missing 1D(2{sup -}) and 1D'(2{sup -}) charmed-strange mesons is an intriguing and challenging task for further experiments. (orig.)

  5. Study of 1D stranged-charm meson family using HQET

    CERN Document Server

    Gupta, Pallavi

    2015-01-01

    Recently LHCb predicted spin 1 and spin 3 states D* s1(2860) and D* s3(2860) which are studied through their strong decays, and are assigned to fit the 13D1and 13D3 states in the charm spectroscopy. In this paper,using the heavy quark effective theory, we state that assigning D*s1(2860) as the mixing of 13D1 - 23S1 states, is rather a better justification to its observed experimental values than a pure state. We study its decay modes variation with hadronic coupling constant gxh and the mixing angle . We appoint spin 3 state D* s3(2860) as the missing 1D 3- JP state, and also study its decay channel behavior with coupling constant gyh. To appreciate the above results, we check the variation of decay modes for their spin partners states i.e. 1D2 and 1D'2 with their masses and strong coupling constant i.e. gxh and gyh. Our calculation using HQET approach give mixing angle between the 13D1 - 23S1 state for D* s1(2860) to lie in the range (-1.6 radians < theta < -1.2 radians). Our calculation for coupling c...

  6. Measurement of open charm in 158-AGeV/c Pb - Au collisions

    CERN Document Server

    Ludolphs, Wilrid

    This thesis presents a measurement of an upper limit for the open charm yield in 158 AGeV/c Pb-Au collisions with the CERES spectrometer at 7% centrality. A secondary particle reconstruction scheme, based on the reconstruction of the decay vertex, is developed and tested using the decay K0short -> Pi+ Pi- as a reference measurement. An integrated K0short rapidity density of dN/dy = 19.75 +- 0.23(stat) +- 1.70(syst) is measured in the rapidity region 2.0 K+ Pi- requires careful study of the combinatorial background and resonances contributing to the invariant mass spectrum. An open charm enhancement of more than a factor 22 can be excluded at 98% confidence level. The enhancement is calculated with respect to the expected open charm yield in nucleus-nucleus collisions of = 0.21 per event, obtained by scaling the charm cross-section in proton-proton collisions with the number of binary collisions. The first part of this thesis is devoted to the development of a hit finding algorithm for the CERES TPC. Further...

  7. Open charm-bottom scalar tetraquarks and their strong decays

    CERN Document Server

    Agaev, S S; Sundu, H

    2016-01-01

    The mass and meson-current coupling of the diquark-antidiquark states with the quantum numbers $J^{P}=0^{+}$ and quark contents $Z_{q}=[cq][\\bar {b} \\bar q ]$ and $Z_{s}=[cs][\\bar {b} \\bar s]$ are calculated using two-point QCD sum rule approach. In calculations the quark, gluon and mixing condensates up to eight dimensions are taken into account. The parameters of the scalar tetraquarks extracted from this analysis are employed to explore the strong vertices $Z_q B_c \\pi $, $Z_q B_c \\eta $ and $Z_s B_c \\eta $ and compute the couplings $g_{Z_qB_c \\pi }$, $g_{Z_qB_c \\eta }$ and $g_{Z_sB_c \\eta }$. The strong couplings are obtained within the soft-meson approximation of QCD light-cone sum rule method: they form, alongside with other parameters, the basis for evaluating the widths of $Z_q \\to B_c \\pi$, $% Z_q \\to B_c \\eta$ and $Z_s \\to B_c \\eta$ decays. Obtained in this work results for the mass of the tetraquarks $Z_{q}$ and $Z_{s}$ are compared with available predictions presented in the literature.

  8. Strangeness and charm in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura, E-mail: tolos@ice.csic.es [Instituto de Ciencias del Espacio (IEEC/CSIC), Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Cabrera, Daniel [Departamento de Física Teórica II, Universidad Complutense, 28040 Madrid (Spain); Garcia-Recio, Carmen [Departamento de Física Atómica, Molecular y Nuclear, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Molina, Raquel [Research Center for Nuclear Physics (RCNP), Mihogaoka 10-1, Ibaraki 567-0047 (Japan); Nieves, Juan; Oset, Eulogio [Instituto de Física Corpuscular (Centro Mixto CSIC-UV), Institutos de Investigación de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Ramos, Angels [Departament d' Estructura i Constituents de la Matèria, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Romanets, Olena [Theory Group, KVI, University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); Salcedo, Lorenzo Luis [Departamento de Física Atómica, Molecular y Nuclear, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain)

    2013-09-20

    The properties of strange (K, K{sup ¯} and K{sup ¯⁎}) and open-charm (D, D{sup ¯} and D{sup ⁎}) mesons in dense matter are studied using a unitary approach in coupled channels for meson–baryon scattering. In the strangeness sector, the interaction with nucleons always comes through vector-meson exchange, which is evaluated by chiral and hidden gauge Lagrangians. For the interaction of charmed mesons with nucleons we extend the SU(3) Weinberg–Tomozawa Lagrangian to incorporate spin–flavor symmetry and implement a suitable flavor symmetry breaking. The in-medium solution for the scattering amplitude accounts for Pauli blocking effects and meson self-energies. On one hand, we obtain the K, K{sup ¯} and K{sup ¯⁎} spectral functions in the nuclear medium and study their behaviour at finite density, temperature and momentum. We also make an estimate of the transparency ratio of the γA→K{sup +}K{sup ⁎−}A{sup ′} reaction, which we propose as a tool to detect in-medium modifications of the K{sup ¯⁎} meson. On the other hand, in the charm sector, several resonances with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with 1/2{sup +} and 3/2{sup +} baryons. The properties of these states in matter are analyzed and their influence on the open-charm meson spectral functions is studied. We finally discuss the possible formation of D-mesic nuclei at FAIR energies.

  9. Perspectives of Open Charm Physics at $\\bar PANDA$

    CERN Document Server

    Prencipe, Elisabetta

    2014-01-01

    The $\\bar PANDA$ experiment at FAIR (Facility for Antiproton and Ion Research) in Darmstadt (Germany) is designed for $\\bar p p$ annihilation studies and it will investigate fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei. Gluonic excitations and the physics of hadrons with strange and charm quarks will be accessible with unprecedented accuracy, thereby allowing high precision tests of the strong interactions. In particular, the $D_{s0}^*(2317)^+$ and $D_{s1}(2460)^+$ are still of high interest 11 years after their discovery, because they can not be simply understood in term of potential models. The available statistics and resolution of the past experiments did not allow to clarify their nature. Recently LHCb at CERN has made progresses in this respect, but still not at the level of precision required in order to clarify the puzzle of the $cs$-spectrum. $\\bar PANDA$ will be able to achieve a factor 20 higher mass resolution than attained at the B-fa...

  10. Feasibility study on the open charm rare decay at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Donghee [Helmholtz Institut Mainz, Universitaet Mainz (Germany); Denig, Achim [Institut fuer Kernphysik, Universitaet Mainz (Germany); Collaboration: PANDA-Collaboration

    2015-07-01

    In the Standard Model (SM), Flavor Changing Neutral Currents (FCNC) are forbidden at the tree level and highly suppressed at the loop level by the GIM mechanism. Studies of such FCNC decay processes provide a sensitive probe of New Physics (NP) beyond the SM. Some of the SM extensions predict that the branching ratios of FCNC decays can be significantly enhanced by NP sources. We investigate the potential of rare charm decays to constrain the extension of the SM. A search for the FCNC decays of neutral D{sup 0} into two photons and two leptons or including radiative photon could be an opportunity to pursue with PANDA since electroweak channels involving photons in the final state are competitive with ongoing experiments. The event selection in the the environment of hadronic reactions is challenging, since the ratio between signal and background of about 10 orders of magnitude requires an effective background rejection. Results on the rare decay modes D{sup 0} → γγ and D{sup 0} → μ{sup +}μ{sup -} (γ) are presented, which were obtained using Monte Carlo simulations of the PANDA experiment. In this presentation, we perform an evaluation of upper limits of branching ratios incorporating previous experiments in sensitivity.

  11. Semileptonic $B_{(s)}$ decays to excited charmed mesons with $e,\\mu,\\tau$ and searching for new physics with $R(D^{**})$

    CERN Document Server

    Bernlochner, Florian U

    2016-01-01

    Semileptonic $B$ meson decays into the four lightest excited charmed meson states ($D_0^*$, $D_1^*$, $D_1$, and $D_2^*$) and their counterparts with $s$ quarks are investigated, including the full lepton mass dependence. We derive the standard model predictions for the differential branching fractions, as well as predictions for the ratios of the semi-tauonic and light lepton semileptonic branching fractions. These can be systematically improved using future measurements of the total or differential semileptonic rates to $e$ and $\\mu$, as well as the two-body hadronic branching fractions with a pion, related by factorization to the semileptonic rate at maximal recoil. To illustrate the different sensitivities to new physics, we explore the dependence of the ratio of semi-tauonic and light-lepton branching fractions on the type-II two-Higgs-doublet model parameters, $\\tan\\beta$ and $m_{H}^\\pm$, for all four states.

  12. Open and hidden charm in proton-nucleus and heavy-ion collisions

    CERN Document Server

    Linnyk, O; Cassing, W

    2008-01-01

    We review the collectivity and the suppression pattern of charmed mesons - produced in proton-nucleus and nucleus-nucleus collisions at SPS (158 AGeV) and RHIC energies (21 ATeV) - in comparison to dynamical and thermal models. In particular, we examine the charmonium `melting' and the `comover dissociation' scenarios - implemented in a microscopic transport approach - in comparison to the available data from the SPS and RHIC. The analysis shows that the dynamics of c, c-bar quarks at RHIC are dominated by partonic or `pre-hadronic' interactions in the strongly coupled plasma stage. Both the `charmonium melting' and the hadronic `comover absorption and recreation model' are found, however, to be compatible with the experimental observation at SPS energies; the experimental ratio of Psi'/J/Psi versus centrality clearly favors the `hadronic comover' scenario. We find that the collective flow of charm in the purely hadronic Hadron-String Dynamics (HSD) transport appears compatible with the data at SPS energies, ...

  13. Exclusive open-charm near-threshold cross sections in a coupled-channel approach

    CERN Document Server

    Uglov, T V; Nefediev, A V; Pakhlova, G V; Pakhlov, P N

    2016-01-01

    Data on open-charm channels collected by the Belle Collaboration are analysed simultaneously using a unitary approach based on a coupled-channel model in a wide energy range $\\sqrt{s}=3.7\\div 4.7$ GeV. The resulting fit provides a remarkably good overall description of the line shapes in all studied channels. Parameters of 5 vector charmonium resonances are extracted from the fit.

  14. Measurement of charm production in deep inelastic scattering using lifetime tagging for D{sup {+-}} meson decays with the ZEUS detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Lisovyi, Mykhailo

    2011-10-15

    A measurement of charm production in deep inelastic scattering at {radical}(s)=318 GeV at HERA is presented in this thesis. The analysed data were collected with the ZEUS detector during 2005-2007, corresponding to the integrated luminosity of 323 pb{sup -1}. Charm production events were identified by the reconstruction of D{sup {+-}} mesons in the D{sup {+-}}{yields}K{sup -+}{pi}{sup {+-}}{pi}{sup {+-}} decay channel. The phase space of the analysis is defined by 5charm contribution to the proton structure function F{sub 2}, F{sub c}{sup 2}, was extracted. (orig.)

  15. SU(3) flavour symmetry breaking and charmed states

    CERN Document Server

    Horsley, R; Nakamura, Y; Perlt, H; Pleiter, D; Rakow, P E L; Schierholz, G; Schiller, A; Stüben, H; Zanotti, J M

    2013-01-01

    By extending the SU(3) flavour symmetry breaking expansion from up, down and strange sea quark masses to partially quenched valence quark masses we propose a method to determine charmed quark hadron masses including possible QCD isospin breaking effects. Initial results for some open charmed pseudoscalar meson states and singly and doubly charmed baryon states are encouraging and demonstrate the potential of the procedure. Essential for the method is the determination of the scale using singlet quantities, and to this end we also give here a preliminary estimation of the recently introduced Wilson flow scales.

  16. Open charm production in Double Parton Scattering processes in the forward kinematics

    CERN Document Server

    Blok, B

    2016-01-01

    We calculate the rate of double open charm production in the forward kinematics studied recently in the LHCb experiment. We find that the mean field approximation for the double parton GPD (Generalized parton distributions), which neglects parton - parton correlations, underestimates the rate by a factor of two. The enhancement due to the perturbative QCD correlation \\12 mechanism which explains the rates of the double parton interactions at the central rapidities is found to explain 60--80 percentof the discrepancy. We argue that the nonperturbative fluctuations leading to non-factorized(correllated)contributions to the initial conditions for the DGLAP collinear evolution of the double parton GPD play an important role in this kinematics. Combined, two correlation mechanisms provide a good description of the rate of double charm production reported by the LHCb. We also give predictions for the variation of the ratio of double and square of single inclusive rates in the discussed kinematics as a function of p...

  17. Measurements of CP violation in charm decays at LHCb

    CERN Document Server

    Marino, Pietro

    2016-01-01

    The copious amount of D-meson decays collected by the LHCb experiment, opens the doors to measurements with sensitivities close to the Standard Model expectations for CP violation in charm. Latest results on CP violation searches at the LHCb experiment are reported. No hint of CP violation has been found so far.

  18. Strangeness and Charm in Nuclear Matter

    CERN Document Server

    Tolos, Laura; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Romanets, Olena; Salcedo, Lorenzo Luis

    2012-01-01

    The properties of strange ($K$, $\\bar K$ and $\\bar K^*$) and open-charm ($D$, $\\bar D$ and $D^*$) mesons in dense matter are studied using a unitary approach in coupled channels for meson-baryon scattering. In the strangeness sector, the interaction with nucleons always comes through vector-meson exchange, which is evaluated by chiral and hidden gauge Lagrangians. For the interaction of charmed mesons with nucleons we extend the SU(3) Weinberg-Tomozawa Lagrangian to incorporate spin-flavor symmetry and implement a suitable flavor symmetry breaking. The in-medium solution for the scattering amplitude accounts for Pauli blocking effects and meson self-energies. On one hand, we obtain the $K$, $\\bar K$ and $\\bar K^*$ spectral functions in the nuclear medium and study their behaviour at finite density, temperature and momentum. We also make an estimate of the transparency ratio of the $\\gamma A \\to K^+ K^{*-} A^\\prime$ reaction, which we propose as a tool to detect in-medium modifications of the $\\bar K^*$ meson....

  19. Leading and Next-to-Leading Order Gluon Polarization in the Nucleon and Longitudinal Double Spin Asymmetries from Open Charm Muoproduction

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M Jr; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmidt, A; Schmidt, K; Schmitt, L; Schmiden, H; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A

    2013-01-01

    The gluon polarisation in the nucleon was measured using open charm production by scattering 160 GeV/c polarised muons off longitudinally polarised protons or deuterons. The data were taken by the COMPASS collaboration between 2002 and 2007. A detailed account is given of the analysis method that includes the application of neural networks. Several decay channels of $D^0$ mesons are investigated. Longitudinal spin asymmetries of the D meson production cross-sections are extracted in bins of $D^0$ transverse momentum and energy. At leading order QCD accuracy the average gluon polarisation is determined as $(\\Delta g/g)^{LO}=-0.06 \\pm 0.21 (stat.) \\pm 0.08 (syst.)$ at the scale $ \\approx 13$ (GeV/c)$^2$ and an average gluon momentum fraction $\\approx$ 0.11. The average gluon polarisation is also obtained at next-to-leading order QCD accuracy as $(\\Delta g/g) NLO = -0.13 \\pm 0.15 (stat.) \\pm 0.15 (syst.)$ at the scale $ \\approx $ 13 (GeV/c)$^2$ and $ \\approx $ 0.20.

  20. Novel T-Violation observable open to any pair of decay channels at meson factories

    CERN Document Server

    Bernabeu, Jose; Nebot, Miguel

    2013-01-01

    Quantum Entanglement between the two neutral mesons produced in meson factories has allowed the first indisputable direct observation of Time Reversal Violation in the time evolution of the neutral meson between the two decays. The exceptional meson transitions are directly connected to semileptonic and CP-eigenstate decay channels. The possibility of extending the observable asymmetries to more decay channels confronts the problem of the "orthogonality condition", which can be stated with this tongue-twister: Given a decay channel $f$, Which is the decay channel $f'$ such that the meson state not decaying to $f'$ is orthogonal to the meson state not decaying to $f$? In this paper we propose an alternative $T$-Violation Asymmetry at meson factories which allows its opening to any pair of decay channels. Instead of searching which is the pair of decay channels associated to the $T$-reverse meson transition, we build an asymmetry which tags the initial states of both the Reference and the $T$-reverse meson tran...

  1. Novel T-Violation observable open to any pair of decay channels at meson factories

    Energy Technology Data Exchange (ETDEWEB)

    Bernabéu, José, E-mail: Jose.Bernabeu@uv.es; Botella, Francisco J., E-mail: Francisco.J.Botella@uv.es; Nebot, Miguel, E-mail: Miguel.Nebot@uv.es

    2014-01-20

    Quantum entanglement between the two neutral mesons produced in meson factories has allowed the first indisputable direct observation of Time Reversal Violation in the time evolution of the neutral meson between the two decays. The exceptional meson transitions are directly connected to semileptonic and CP eigenstate decay channels. The possibility of extending the observable asymmetries to more decay channels confronts the problem of the “orthogonality condition”, which can be stated with this tongue-twister: Given a decay channel f, which is the decay channel f{sup ′} such that the meson state not decaying to f{sup ′} is orthogonal to the meson state not decaying to f? In this Letter we propose an alternative T-Violation asymmetry at meson factories which allows its opening to any pair of decay channels. Instead of searching which is the pair of decay channels associated to the T-reverse meson transition, we build an asymmetry which tags the initial states of both the Reference and the T-reverse meson transitions. This observable filters the appropriate final states by means of two measurable survival probabilities. We discuss the methodology to be followed in the analysis of the new observable and the results expected in specific examples.

  2. LHCb measurements of $J/\\psi$, and open charm cross-sections at $\\sqrt{s}=13$TeV

    CERN Multimedia

    Muller, Dominik

    2016-01-01

    Prompt $J/\\psi$, $J/\\psi$ from $b$-hadrons and prompt charm meson production is studied in proton-proton collisions at a center-of-mass energy of $\\sqrt{s}=13$TeV at the LHCb detector with first application of a novel data streaming technique (Turbo steam). Cross-section measurements are performed as a function of the transverse momentum $p_T$ and the rapidity $y$ of the mesons in the region $p_T<15$GeV$/c$ and $2.0

  3. Open charm production in double parton scattering processes in the forward kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Blok, B. [Technion - Israel Institute of Technology, Department of Physics, Haifa (Israel); Strikman, M. [Pennsylvania State University, Physics Department, University Park, PA (United States)

    2016-12-15

    We calculate the rate of double open charm production in the forward kinematics studied recently in the LHCb experiment. We find that the mean field approximation for the double parton GPD (generalized parton distributions), which neglects parton-parton correlations, underestimates the rate by a factor of 2. The enhancement due to the perturbative QCD correlation 1 x 2 mechanism which explains the rate of double parton interactions at the central rapidities is found to explain 60 / 80% of the discrepancy. We argue that the nonperturbative fluctuations leading to non-factorized (correlated) contributions to the initial conditions for the DGLAP collinear evolution of the double parton GPD play an important role in this kinematics. Combined, the two correlation mechanisms provide a good description of the rate of double charm production reported by the LHCb. We also give predictions for the variation of the σ{sub eff} (i.e. the ratio of double and square of single inclusive rates) in the discussed kinematics as a function of p{sub t}. The account for two correlation mechanisms strongly reduces the sensitivity of the results to the starting point of the QCD evolution. (orig.)

  4. Recent SELEX Results on the Properties of Charmed Hadrons

    Science.gov (United States)

    Engelfried, Jürgen

    2005-04-01

    The SELEX Fixed Target Experiment (Fermilab E781) employs beams of Σ-, pions and protons to study the production and decay properties of charmed Mesons and Baryons. Here we present recent results on doubly-charmed baryons and charmed-strange mesons.

  5. EPOSHQ-a new approach to describe charmed mesons in pp, pA and AA collisions

    Science.gov (United States)

    Aichelin, J.; Guiot, B.; Ozvenschuck, V.; Nahrgang, M.; Gossiaux, P. B.; Werner, K.

    2016-12-01

    We present first results of a new approach, EPOSHQ, which combines the EPOS3 event generator with the heavy quarks physics. In this approach light and heavy quarks are simultaneously created in the elementary collisions. The heavy quarks interact by elastic and radiative collisions with the plasma constituents, given by the EPOS3 approach, employing the full Boltzmann collision integral. This approach will allow for the description of correlations between light and heavy mesons.

  6. Measurements of open-charm production in pp and p-Pb collisions with the ALICE detector at the LHC

    CERN Document Server

    Jena, Chitrasen

    2015-01-01

    Hadrons containing heavy quarks, i.e. charm and beauty, are effective probes to investigate the properties of the hot, dense and strongly-interacting medium formed in high-energy nuclear collisions. The relatively large masses of heavy quarks ensure that they are predominantly produced in the early stages of the collision and probe the complete space-time evolution of the expanding medium. The measurements of D-meson production in pp collisions provide an important test of pQCD calculations and serve as an essential baseline for the comprehensive studies in heavy-ion collisions. The study of D-meson production in p-Pb collisions is necessary to disentangle the cold nuclear matter effects from hot nuclear matter effects. The measurement of heavy-flavour production as a function of charged-particle multiplicity in pp and p-Pb collisions could provide insight into the role of multi-parton interactions at LHC energies. We present ALICE results on D-meson production in pp collisions at $\\sqrt{s} =$ 7 TeV and p-Pb ...

  7. Measurement of the mixing parameters of neutral charm mesons and search for indirect $CP$ violation with $D^0 \\to K^0_S \\pi^+ \\pi^-$ decays at LHCb

    CERN Document Server

    AUTHOR|(CDS)2082358; Gersabeck, Marco

    The hadronic decay $D^0 \\to K^0_S \\pi^+ \\pi^-$ provides direct access to the measurement of the mixing parameters of the neutral charm meson system and allows to test for indirect $CP$ violation. Mixing is a time-dependent phenomenon for which the time evolution of the transition amplitude of a $D^0 \\, (\\bar{D}^0)$ decay to the final state $K^0_S\\pi^+\\pi^-$ has to be considered. The parameters driving those time-dependent oscillations are $x \\equiv (m_1-m_2)/\\Gamma$ and $y \\equiv (\\Gamma_1-\\Gamma_2)/(2\\Gamma)$. The $CP$ violation parameters $|q/p|$ and $\\phi=\\arg(q,p)$ describe the superposition of the flavour eigenstates $D^0$ and $\\bar{D}^0$ and of the physical eigenstates $D_1$ and $D_2$, $|D_{1,2}\\rangle = p |{D^0}\\rangle \\pm q |{\\bar{D}^0}\\rangle$. By measuring the time- and phase-space dependent distribution of $D^0 \\to K^0_S \\pi^+ \\pi^-$ decays, the mixing parameters can be extracted and a search for indirect $CP$ violation can be performed. This thesis reports a measurement of the mixing parameters a...

  8. Rare Semileptonic Charm Decays

    CERN Document Server

    de Boer, Stefan

    2015-01-01

    An analysis of charm mesons decaying semileptonically via Flavor Changing Neutral Currents is presented. We calculate the Wilson coefficients within the Standard Model. A window in the decay distribution, where physics beyond the Standard Model could be measured is identified. Exemplary, we study effects of leptoquark models.

  9. D-meson nuclear modification factor and v$_2$ in Pb-Pb collisions at the LHC

    CERN Document Server

    Bruna, Elena

    2014-01-01

    We present the ALICE results on open heavy flavour, focusing on the exclusive reconstruction of charmed mesons via displaced decay topologies. These measurements benefit from the large Pb-Pb statistics collected in 2011. The results on the nuclear modification factor Raa for D mesons indicate a suppression of their yield in central collisions relative to binary-scaled pp collisions in a large momentum range. The comparison to the Raa of non-prompt J/psi (measured with CMS) indicates a difference in the suppression of charm and beauty, as expected according to the predicted mass hierarchy in energy loss models. The measurement of the azimuthal anisotropy of charmed mesons is also discussed. The observed positive second Fourier harmonic v2 for transverse momentum 2charm quarks. The results discussed above are also compared to theoretical models.

  10. The Lifetime of a beautiful and charming meson: Bc lifetime measured using the D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Welty-Rieger, Leah Christine [Indiana Univ., Bloomington, IN (United States)

    2008-09-01

    Using approximately 1.3 fb-1 of data collected by the D0 detector between 2002 and 2006, the lifetime of the Bc± meson is studied in the Bc± → J/Ψμ± + X final state. Using an unbinned likelihood simultaneous fit to J/Ψ + μ invariant mass and lifetime distributions, a signal of 810 ± 80(stat.) candidates is estimated and a lifetime measurement made of: τ(Bc±) = 0.448-0.036+0.038(stat) ± 0.032(sys) ps.

  11. Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks

    CERN Document Server

    Bazavov, A; Bouchard, C M; DeTar, C; Du, D; El-Khadra, A X; Foley, J; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Kim, J; Komijani, J; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Neil, E T; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, R

    2014-01-01

    We compute the leptonic decay constants $f_{D^+}$, $f_{D_s}$, and $f_{K^+}$, and the quark-mass ratios $m_c/m_s$ and $m_s/m_l$ in unquenched lattice QCD using the experimentally determined value of $f_{\\pi^+}$ for normalization. We use the MILC Highly Improved Staggered Quark (HISQ) ensembles with four dynamical quark flavors --- up, down, strange, and charm --- and with both physical and unphysical values of the light sea-quark masses. The use of physical pions removes the need for a chiral extrapolation, thereby eliminating a significant source of uncertainty in previous calculations. Four different lattice spacings ranging from $a\\approx 0.06$ fm to $0.15$ fm are included in the analysis to control the extrapolation to the continuum limit. Our primary results are $f_{D^+} = 212.6(0.4)({}^{+1.0}_{-1.2})\\ \\mathrm{MeV}$, $f_{D_s} = 249.0(0.3)({}^{+1.1}_{-1.5})\\ \\mathrm{MeV}$, and $f_{D_s}/f_{D^+} = 1.1712(10)({}^{+29}_{-32})$, where the errors are statistical and total systematic, respectively. The errors on ...

  12. Mass Predictions of Open-Flavour Hybrid Mesons from QCD Sum Rules

    CERN Document Server

    Ho, Jason; Steele, Tom

    2016-01-01

    Within QCD, colourless states may be constructed corresponding to exotic matter outside of the traditional quark model. Experiments have recently observed tetraquark and pentaquark states, but no definitive hybrid meson signals have been observed. With the construction of the PANDA experiment at FAIR, and with full commissioning of the GlueX experiment at JLab expected to be completed this year, the opportunity for the observation of hybrid mesons has greatly increased. However, theoretical calculations are necessary to ascertain the identity of any experimental resonances that may be observed. We present selected QCD sum rule results from a full range of quantum numbers for open-flavour hybrid mesons with heavy valence quark content, including non-perturbative condensate contributions up to six-dimensions.

  13. An open quantum system approach to the B-mesons system

    CERN Document Server

    Romano, R

    2003-01-01

    In this talk we consider a non standard evolution for the neutral B-mesons system, namely, an evolution in the open quantum systems framework. Such approach is justified by the very high sensitivity of experiments studying CP-violating phenomena in the B-mesons sector, very near to the one required to test some possible scenarios induced by quantum gravity at the Planck scale, whose effects at low energy can be described by a heat bath. We adopt a phenomenological point of view, introducing six new parameters that fully describe this kind of evolution without referring to a specific model for the microscopic interaction. We outline the main differences between this approach and the usual one in the description of evolution and decay of single mesons or correlated pairs.

  14. Finding The Charm In 800 GeV/c p-Cu and p-Be Single Muon Spectra

    CERN Document Server

    Klinksiek, S A

    2006-01-01

    Fermilab Experiment 866 took single muon data from 800 GeV/c (sqrt{s}=38.8 GeV) p-Cu and p-Be interactions in an attempt to extract the inclusive nuclear open charm/anti-charm differential cross sections as a function of transverse momentum. The muons were decay products from semi-leptonic decays of open charm mesons as well as decays from lighter non-charmed mesons (pions and kaons). Data were taken simultaneously from two interaction regions; one of two thin nuclear targets and a copper beam dump 92 inches downstream. The open decay length for hadrons produced in the targets increased the contribution to the muon spectrum from light hadron decays, relative to those from the dump. Production cross sections for light hadrons from previous experiments were used in conjunction with parameterized open charm cross sections to produce total Monte Carlo single muon spectra that were subsequently fit to the data. The sensitivity of this measurement covered an open charm hadron transverse momentum range of approximat...

  15. Non prompt D-meson measurements with ALICE at the LHC

    Science.gov (United States)

    Mazzilli, Marianna

    2016-11-01

    The production of hadrons with open heavy flavour (charm and beauty) in high-energy nucleus-nucleus collisions is a powerful tool to study the properties of the deconfined phase of strongly interacting matter known as the Quark-Gluon Plasma (QGP). The production of charm and beauty quarks occurs in hard partonic scattering processes in the early stage of the collisions. ALICE is the LHC experiment devoted to the study of heavy-ion physics. It is able to reconstruct charmed mesons in exclusive decays (e.g. D0→K-π+) and beauty hadrons in semi-inclusive decays (e.g. B→eX, B→J/ψ X) . At LHC energies a significant component of the inclusive D-meson yield originates from the decay of beauty-flavoured hadrons, whose knowledge is essential to determine the production of prompt D mesons coming from charm quarks. A precise determination of the non-prompt fraction combined with the determination of the inclusive D-meson yield would allow a measurement of beauty production. A data-driven method that exploits the different shapes of the distributions of the transverse-plane impact parameter to the primary vertex of prompt and feed-down D mesons in p-Pb collisions is used in ALICE. An alternative approach based on the D-meson decay length for Pb-Pb collisions is under study.

  16. Non prompt D-meson measurements with ALICE at the LHC

    Directory of Open Access Journals (Sweden)

    Mazzilli Marianna

    2016-01-01

    Full Text Available The production of hadrons with open heavy flavour (charm and beauty in high-energy nucleus-nucleus collisions is a powerful tool to study the properties of the deconfined phase of strongly interacting matter known as the Quark-Gluon Plasma (QGP. The production of charm and beauty quarks occurs in hard partonic scattering processes in the early stage of the collisions. ALICE is the LHC experiment devoted to the study of heavy-ion physics. It is able to reconstruct charmed mesons in exclusive decays (e.g. D0→K−π+ and beauty hadrons in semi-inclusive decays (e.g. B→eX, B→J/ψ X\t. At LHC energies a significant component of the inclusive D-meson yield originates from the decay of beauty-flavoured hadrons, whose knowledge is essential to determine the production of prompt D mesons coming from charm quarks. A precise determination of the non-prompt fraction combined with the determination of the inclusive D-meson yield would allow a measurement of beauty production. A data-driven method that exploits the different shapes of the distributions of the transverse-plane impact parameter to the primary vertex of prompt and feed-down D mesons in p-Pb collisions is used in ALICE. An alternative approach based on the D-meson decay length for Pb–Pb collisions is under study.

  17. Time-dependent CP violation measurements in neutral B meson to double-charm decays at the Japanese Belle experiment

    Energy Technology Data Exchange (ETDEWEB)

    Roehrken, Markus

    2012-07-13

    The Belle and BaBar Collaborations experimentally established the existence of CP violating phenomena in the B meson system. In this PhD thesis, the measurements of the branching fraction and the time-dependent CP violation in B{sup 0}→D{sup +}D{sup -} decays based on the final data set of the Belle experiment are presented. Furthermore, the thesis comprises the corresponding measurements in B{sup 0}→D{sup *±}D{sup -+} decays to provide a direct comparison to a related decay. The final Belle data set contains 772 x 10{sup 6} B anti B pairs recorded on the Υ(4S)-resonance at the asymmetric-energy KEKB e{sup +}e{sup -}-collider. The measurement of the time evolution allows the experimental determination of time-dependent CP violating asymmetries. The results of the measurements of branching fractions are B(B{sup 0}→D{sup +}D{sup -})=(2.12±0.16(stat.)±0.18(syst.)) x 10{sup -4}; B(B{sup 0}→D{sup *±}D{sup -+})=(6.14±0.29(stat.)±0.50(syst.)) x 10{sup -4}. The results of the measurement of time-dependent CP violation in B{sup 0}→D{sup +}D{sup -} decays are S{sub D{sup +}D{sup -}}=-1.06{sup +0.21}{sub -0.14}(stat.)±0.08(syst.); C{sub D{sup +}D{sup -}}=-0.43±0.16(stat.)±0.05(syst.). This measurement excludes the conservation of CP symmetry in B{sup 0}→D{sup +}D{sup -} decays, equivalent to S{sub D{sup +}D{sup -}}=C{sub D{sup +}D{sup -}}=0, at a confidence level of 1-2.7 x 10{sup -5} corresponding to a significance of 4.2σ. The results of the measurement of time-dependent CP violation in B{sup 0}→D{sup *±}D{sup -+} decays are A{sub D{sup *}D}=+0.06±0.05(stat.)±0.02(syst.); S{sub D{sup *}D}=-0.78±0.15(stat.)±0.05(syst.); C{sub D{sup *}D}=-0.01±0.11(stat.)±0.04(syst.); ΔS{sub D{sup *}D}=-0.13±0.15(stat.)±0.04(syst.); ΔC{sub D{sup *}D}=+0.12±0.11(stat.)±0.03(syst.). This measurement excludes the conservation of CP symmetry in B{sup 0}→D{sup *±}D{sup -+} decays, equivalent to A{sub D{sup *}D}=S{sub D{sup *}D}=C{sub D{sup *}D}=0, at a

  18. Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks

    Energy Technology Data Exchange (ETDEWEB)

    Bazavov, A.; Bernard, C.; Komijani, J.; Bouchard, C. M.; DeTar, C.; Foley, J.; Levkova, L.; Du, D.; Laiho, J.; El-Khadra, A. X.; Freeland, E. D.; Gámiz, E.; Gottlieb, Steven; Heller, U. M.; Kim, J.; Toussaint, D.; Kronfeld, A. S.; Mackenzie, P. B.; Simone, J. N.; Van de Water, R. S.; Zhou, R.; Neil, E. T.; Sugar, R.

    2014-10-30

    ="false">(10)(+29-32), where the errors are statistical and total systematic, respectively. The errors on our results for the charm decay constants and their ratio are approximately 2–4 times smaller than those of the most precise previous lattice calculations. We also obtain fK+/fπ

  19. Manifestations of Warped Extra Dimension in Rare Charm Decays and Asymmetries

    CERN Document Server

    Paul, Ayan; Bigi, Ikaros I

    2012-01-01

    Charm dynamics is moving back into focus with the established discovery of oscillations in the neutral D meson system and the sign of direct CP asymmetry in D0 to pi+ pi- / K+ K-. It opens the possibilities of finding CP violation beyond the reach of the Standard Model. In the recent past we have extensively studied charm dynamics within non-ad-hoc models with interesting flavour structures. We have shown that rare decays and CP violations are the best places to probe for New Dynamics in charm. We continue to study a different class of models, i.e., the Randall Sundrum model with a warped extras dimension to check for unusual effects in charm dynamics: namely in decays of final states with leptons and neutrinos and some asymmetries. These states should typically be accessible to experimental probes in the near future and, for certain, to any super flavour factory.

  20. Meson screening masses at finite temperature with Highly Improved Staggered Quarks

    CERN Document Server

    Maezawa, Y; Karsch, F; Petreczky, P; Mukherjee, S

    2013-01-01

    We report on the first study of the screening properties of the mesonic excitations with strange ($s$) and charm ($c$) quarks, specifically the ground states of the pseudo-scalar and vector meson excitations for the $\\bar{s}s$, $\\bar{s}c$ and $\\bar{c}c$ flavor combinations, using the Highly Improved Staggered Quark action with dynamical physical strange quark and nearly-physical up and down quarks. By comparing with their respective vacuum meson masses and by investigating the influence of the changing temporal boundary conditions of the valence quarks we study the thermal modifications of these mesonic excitations. While the $\\bar{s}s$ states show significant modifications even below the chiral crossover temperature $T_c$, the modifications of the open-charm and charmonium like states become visible only for temperatures $T\\gtrsim T_c$ and $T\\gtrsim1.2T_c$, respectively.

  1. Open charm contributions to the E1 transitions of ψ(3686) and ψ(3770) → γχ{sub cJ}

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zheng [Chinese Academy of Sciences, Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Beijing (China); Cleven, Martin [Chinese Academy of Sciences, Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Beijing (China); Universitat de Barcelona, Departament de Fisica Quantica i Astrofisica, Barcelona (Spain); Wang, Qian [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Zhao, Qiang [Chinese Academy of Sciences, Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Beijing (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)

    2016-11-15

    The E1 transitions of ψ(3686) and ψ(3770) → γχ{sub cJ} are investigated in a non-relativistic effective field theory (NREFT) where the open charm effects are included systematically as the leading corrections. It also allows a self-consistent inclusion of the S-D mixing in the same framework. We are able to show that the open charm contributions are essential for understanding the rather unexpected discrepancies between the non-relativistic leading order calculations and the experimental data for these two low-lying states. (orig.)

  2. Measurement of D mesons production in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chakanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2007-04-15

    Charm production in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb{sup -1}. Charm has been tagged by reconstructing D{sup *+}, D{sup 0}, D{sup +} and D{sup +}{sub s} (+c.c.) charm mesons. The charm hadrons were measured in the kinematic range p{sub T}(D{sup *+},D{sup 0},D{sup +})>3 GeV, p{sub T}(D{sup +}{sub s})>2 GeV and vertical stroke {eta}(D) vertical stroke <1.6 for 1.5charm fragmentation ratios and the fraction of c quarks hadronising into a particular charm meson in the kinematic range considered. The cross sections were compared to the predictions of next-to-leading-order QCD, and extrapolated to the full kinematic region in p{sub T}(D) and {eta}(D) in order to determine the open-charm contribution, F{sup c} {sup anti} {sup c}{sub 2}(x,Q{sup 2}), to the proton structure function F{sub 2}. (orig.)

  3. Charmed hadrons in nuclear medium

    NARCIS (Netherlands)

    Tolos, L.; Gamermann, D.; Garcia-Recio, C.; Molina, R.; Nieves, J.; Oset, E.; Ramos, A.

    2010-01-01

    We study the properties of charmed hadrons in dense matter within a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner We analyze the behaviour in this dense environment of dynamically-generated baryonic resonances as well as the op

  4. Nuclear Dependence of Charm Production

    CERN Document Server

    Blanco-Covarrubias, A

    2009-01-01

    With data taken by SELEX, which accumulated data during the 1996-1997 fixed target run at Fermilab, we study the production of charmed hadrons on copper and carbon targets with Sigma-, p, pi-, and pi+ beams. Parameterizing the production cross section A^alpha, A being the atomic number, we determine alpha for D+, D0, Ds+, D+(2010), Lambda_c+, and their respective anti-particles, as a function of their transverse momentum pt and scaled longitudinal momentum xF. Within our statistics there is no dependence of alpha on xF for any charm species for the interval 0.1charm production by pion beams is alpha_{meson}=0.850+/-0.028. This is somewhat larger than the corresponding average alpha_{baryon}=0.755+/-0.016 for charm production by baryon beams (Sigma-, p).

  5. X(5568) as Tetraquark State with Open Flavors and its Charmed Partners

    CERN Document Server

    Tang, Liang

    2016-01-01

    In this work, we estimate the masses of tetraquark states with four different flavors by virtue of QCD sum rules, in both $b$ and $c$ sectors. We construct four $[8_c]_{\\bar{b} s} \\otimes [8_c]_{\\bar{d} u}$ tetraquark currents with $J^P = 0^+$, and then perform analytic calculation up to dimension eight in the Operator Product Expansion (OPE). We keep terms which are linear in the strange quark mass $m_s$, and in the end find two possible tetraquark states with masses $(5.57 \\pm 0.15)$ and $(5.58 \\pm 0.15)$ GeV, which are both close to the recent D{\\O} observation of charged $X(5568)$. We find that their charmed-partner masses lie in $(2.54 \\pm 0.13)$ and $(2.55 \\pm 0.13)$ GeV, respectively and are hence accessible in experiments like BESIII and Belle.

  6. SELEX - hadroproduction of charm baryons out to large x{sub F}

    Energy Technology Data Exchange (ETDEWEB)

    Russ, J.S. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics

    1996-06-01

    Fixed target charm experiments at Fermilab up till now have concentrated on weak decay physics, especially for charm mesons. Upcoming experiments continue the program, but SELEX will expand the focus to emphasize charm baryon physics along with charm meson studies. Unique features of the detector will permit us to collect 10{sup 6} reconstructed charm events, half charm baryons, in the upcoming Fermilab run. In addition, the excellent angle and momentum resolution of the detector give rise to an additional program in small-t hadronic physics. (orig.).

  7. SELEX — Hadroproduction of charm baryons out to large x F

    Science.gov (United States)

    Russ, James S.

    1996-06-01

    Fixed target charm experiments at Fermilab up till now have concentrated on weak decay physics, especially for charm mesons. Upcoming experiments continue the program, but SELEX will expand the focus to emphasize charm baryon physics along with charm meson studies. Unique features of the detector will permit us to collect 10 6 reconstructed charm events, half charm baryons, in the upcoming Fermilab run. In addition, the excellent angle and momentum resolution of the detector give rise to an additional program in small-t hadronic physics.

  8. COMPASS experiment at CERN open charm results and future hadron program

    CERN Document Server

    Kouznetsov, O

    2009-01-01

    COMPASS (COmmon Muon and Proton Apparatus for Structure and Spectroscopy) is a fixed target experiment at CERN dedicated to studies of the spin structure of the nucleon and of the spectroscopy of hadrons. During the years 2002–2004 and 2006–2007, the COMPASS collaboration has collected a large amount of data by scattering polarized 160 GeV/c muons on polarized 6LiD and NH3 targets. These data were used to evaluate the gluon contribution to the nucleon spin. The gluon polarization was directly measured from the cross-section helicity asymmetry of D0 mesons production in the photon-gluon fusion reaction. In 2008 COMPASS will perform a search for JPC-exotic mesons, glueballs or hybrids, through light hadron spectroscopy in high energy (190 GeV/c π−) pion-proton reactions using both centrally produced and diffractive events. Preliminary results from diffractive pion dissociation into a π−π−π+ final state obtained in 2004 are also discussed.

  9. New results on CLEO`s heavy quarks - bottom and charm

    Energy Technology Data Exchange (ETDEWEB)

    Menary, S. [Univ. of California, Santa Barbara, CA (United States)

    1997-01-01

    While the top quark is confined to virtual reality for CLEO, the increased luminosity of the Cornell Electron Storage Ring (CESR) and the improved photon detection capabilities of the CLEO`s {open_quotes}heavy{close_quotes} quarks - bottom and charm. I will describe new results in the B meson sector including the first observation of exclusive b {yields} ulv decays, upper limits on gluonic penguin decay rates, and precise measurements of semileptonic and hadronic b {yields} c branching fractions. The charmed hadron results that are discussed include the observation of isospin violation in D{sub s}*{sup +} decays, an update on measurements of the D{sub s}{sup +} decay constant, and the observation of a new excited {Xi}{sub c} charmed baryon. These measurements have had a large impact on our understanding of heavy quark physics.

  10. Measurements of $\\sin 2\\,\\beta$ using charmonium and open charm decays at LHCb

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00391774

    The $C\\!P$ violation observables $S_f$ and $C_f$ in the decays of $B^0$ and $\\kern 0.18em\\overline{\\kern -0.18em B}{}^0$ mesons to the $J\\!/\\!\\psi K^0_S$ final state and to the $D^+ D^-$ final state are measured with a data sample corresponding to an integrated luminosity of $3 fb^{-1}$ collected with the LHCb experiment in proton-proton collisions at centre-of-mass energies of $7$ and $8 ~TeV$. The analysis of the decay-time evolution of $41560 ~B^0\\!\\rightarrow J\\!/\\!\\psi K^0_S$ decays yields \\begin{align*} S_{J\\!/\\!\\psi K^0_S} &= \\phantom{-}0.731 \\, \\pm 0.035 \\, \\text{(stat)} \\pm 0.020 \\, \\text{(syst)}\\,, \\\\ C_{J\\!/\\!\\psi K^0_S} &= - 0.038 \\, \\pm 0.032 \\, \\text{(stat)} \\pm 0.005 \\, \\text{(syst)}\\,, \\end{align*} which is consistent with the current world averages and with the Standard Model expectations. In a flavour-tagged, decay-time-dependent analysis of $1410 ~B^0\\!\\rightarrow D^+ D^-$ decays the following results are determined: \\begin{align*} S_{D^+ D^-} &= -0.54 \\, ^{+0.17}_{-0.16}...

  11. Studying Double Charm Decays of B_{u,d} and B_{s} Mesons in the MSSM with R-parity Violation

    OpenAIRE

    Kim, C.S.(Department of Physics, IPAP, Yonsei University, Seoul, 120-749, Republic of Korea); Wang, Ru-Min; Yang, Ya-Dong

    2008-01-01

    Motivated by the possible large direct CP asymmetry of \\bar{B}^0_d \\to D^+ D^- decay measured by Belle collaboration, we investigate double charm B_{u,d} and B_s decays in the minimal supersymmetric standard model with R-parity violation. We derive the bounds on relevant R-parity violating couplings from the current experimental data, which show quite consistent measurements among relative collaborations. Using the constrained parameter spaces, we explore R-parity violating effects on other o...

  12. Production of associated Y and open charm hadrons in pp collisions at root s=7 and 8 TeV via double parton scattering

    NARCIS (Netherlands)

    Aaij, R.; Beteta, C. Abellan; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M. -O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borisyak, M.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Gomez, M. Calvo; Campana, P.; Perez, D. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Cheung, S. -F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Torres, M. Cruz; Cunliff, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C. -T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Albor, V. Fernandez; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Garcia Pardinas, J.; Tico, J. Garra; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Giani, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Gobel, C.; Golubkov, D.; Golutvin, A.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. -P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; Meadows, B.; Meier, F.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M. -N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mueller, J.; Mueller, K.; Mueller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pila, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Casasus, M. Plo; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Molina, V. Rives; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M. -H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Coutinho, R. Silva; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, I. T.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; Waldi, R.; Wallace, C.; Wallace, R.; Wandernoth, S.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zucchelli, S.

    2016-01-01

    Associated production of bottomonia and open charm hadrons in pp collisions at root s = 7 and 8 TeV is observed using data corresponding to an integrated luminosity of 3 fb(-1) accumulated with the LHCb detector. The observation of five combinations, Y(1S)D-0, Y(2S)D-0, Y(1S)D+, Y(2S)D+ and Y(1S)D

  13. Exploring open-charm decay mode Λ _cbar{Λ }_c of charmonium-like state Y(4630)

    Science.gov (United States)

    Liu, Xuewen; Ke, Hong-Wei; Liu, Xiang; Li, Xue-Qian

    2016-10-01

    The newly observed X, Y, Z exotic states are definitely not in the standard Qbar{Q}' structures, thus their existence composes a challenge to our understanding on the fundamental principles of hadron physics. Therefore the studies on their decay patterns which are determined by the non-perturbative QCD will definitely shed light on the concerned physics. Generally the four-quark states might be in a molecular state or tetraquark or their mixture. In this work, we adopt the suggestion that Y(4630) is a charmonium-like tetraquark made of a diquark and an anti-diquark. If it is true, its favorable decay mode should be Y(4630) decaying into an open-charm baryon pair, since such a transition occurs via strong interaction and is super-OZI-allowed. In this work, we calculate the decay width of Y(4630)→ Λ _cbar{Λ }_c in the framework of the quark pair creation model. Our numerical results on the partial width computed in the tetraquark configuration coincide with the Belle data within a certain error tolerance.

  14. Charmed particles production in pA-interactions at 70 GeV

    CERN Document Server

    ,

    2016-01-01

    The results of the SERP-E-184 experiment at the U-70 accelerator (IHEP, Protvino) are presented. Interactions of the 70 GeV proton beam with carbon, silicon and lead targets were studied to detect decays of charmed $D^0$, $\\bar D^0$, $D^+$, $D^-$ mesons and $\\Lambda_c^+$ baryon near their production threshold. Measurements of lifetimes and masses have shown a good agreement with PDG data. The inclusive cross sections of charm production and their A-dependencies have been obtained. The yields of these particles are compared with the theoretical predictions and the data of other experiments. The measured cross section of the total open charm production $\\sigma(c\\bar c) = 7.1 \\pm 2.3(stat) \\pm 1.4(syst)$ $\\mu$b/nucleon at the collision c.m. energy $\\surd s$ = 11.8 GeV is well above the QCD model predictions. The contributions of different kinds of charmed particles to the total cross section of the open charm production in proton-nucleus interactions vary with energy.

  15. Measurement of D-meson azimuthal anisotropy in Au + Au 200 GeV collisions at RHIC

    Science.gov (United States)

    Lomnitz, Michael

    2016-12-01

    Heavy quarks are produced through initial hard scatterings and they are affected by the hot and dense medium created in heavy-ion collisions throughout its whole evolution. Due to their heavy mass, charm quarks are expected to thermalize much more slowly than light flavor quarks. The charm quark flow is a unique tool to study the extent of thermalization of the bulk medium dominated by light quarks and gluons. At high pT, D-meson azimuthal anisotropy is sensitive to the path length dependence of charm quark energy loss in the medium, which offers new insights into heavy quark energy loss mechanisms - gluon radiation vs. collisional processes. We present the STAR measurement of elliptic flow (v2) of D0 and D± mesons in Au+Au collisions at √{sNN} = 200 GeV, for a wide transverse momentum range. These results are obtained from the data taken in the first year of physics running of the new STAR Heavy Flavor Tracker detector, which greatly improves open heavy flavor hadron measurements by the topological reconstruction of secondary decay vertices. The D-meson v2 is finite for pT > 2 GeV/c and systematically below the measurement of light particle species at the same energy. Comparison to a series of model calculations favors scenarios where charm flows with the medium and is used to infer a range for the charm diffusion coefficient 2 πTDs.

  16. Precision charmonium and D physics from lattice QCD and determination of the charm quark mass

    CERN Document Server

    Davies, C T H

    2008-01-01

    I will describe recent results from the HPQCD collaboration using a new very accurate method for charm quarks in lattice QCD, that we have used in calculations including the full effect of u, d and s sea quarks. Multiple values of the lattice spacing and of the u, d and s sea quark masses allow us to extrapolate reliably, with a full error budget, to the real world. This opens up the field of charm physics to precision lattice QCD tests. So far we have calculated the D and D_s meson masses to 6 MeV, having fixed the charm quark mass from the eta_c meson. Our D and D_s decay constants (determined to 2%) make an interesting comparison to CLEO-c results as we await improved experimental errors. We are also able to determine the charm quark mass to an accuracy of 1% using charmonium correlators and high-order continuum QCD perturbation theory. Future calculations are briefly discussed.

  17. Charm mixing and $CP$ violation at LHCb

    CERN Document Server

    Pearce, Alex

    2016-01-01

    LHCb collected the world's largest sample of open charm decays during Run 1 of the Large Hadron Collider. This has permitted many precision measurements of charm mixing and $CP$ violation parameters, the most precise of which being $\\Delta A_{CP}$, a measurement of the relative strength of direct, time-integrated $CP$ asymmetries between two singly-Cabibbo suppressed $D^{0}$ decays. This measurement has recently been updated using promptly-produced $D^{0}$ mesons with the full Run 1 dataset, and has a precision below the per mille level. In addition, LHCb has recently made the first observation of $D^{0}$ mixing in a multi-body $D^{0}$ decay, also measuring associated coherence parameters which can be used as input to measurements of the CKM angle $\\gamma$. LHCb has also measured the mixing parameters $x$ and $y$ with a model-independent analysis of $D^{0} \\to K_{S}^{0}\\pi^{+}\\pi^{-}$ decays, and the size of direct $CP$ violation in $D^{0} \\to K_{S}^{0}K_{S}^{0}$ decays. These four analyses will be presen...

  18. A Study Of Inclusive Production Of Open Charm Particles At Hera-b Energies Using & phis ; (1020) As A Tag

    CERN Document Server

    Subramanian, H S

    2005-01-01

    A study of inclusive charm production using the channel cc¯ → Di(D¯j) + X → &phis; + X′ → K+K− has been done. Interaction triggered data from the HERA-B experiment with &phis;'s produced from pA interactions at s = 41.6 GeV are used for analysis. A detailed analysis of &phis; production at HERA-B energies has been done. The &phis; production cross-section has been measured to be s 0&phis; = ( 1.08+0.14-0.12 ) · Aα&phis; mb, where α&phis; is measured to be α&phis; = 0.92 ± 0.03. The displacement of the decay vertex of the &phis;'s produced from charm decay compared to those produced directly in the primary interaction is used to obtain the fraction of &phis;'s from charm decay which in turn is used to determine the inclusive charm cross-section, namely, the sum of all charm cross-section, each weighted by its branching ratio to &phis;. The incl...

  19. Measurement of the left-right forward-backward asymmetry for charm quarks with {ital D}{sup *}+ and {ital D}{sup +} mesons

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Allen, N.J.; Ash, W.W.; Aston, D.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D`Oliveira, A.; Damerell, C.J.S.; Daoudi, M.; De Sangro, R.; De Simone, P.; Dell`Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jackson, D.J.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.; Saxton, O.H.; Schalk, T.; (SLD Collabor...

    1995-11-13

    We present a direct measurement of {ital A}{sub {ital c}}=2{ital v}{sub {ital c}}{ital a}{sub {ital c}}/({ital v}{sup 2}{sub {ital c}}+{ital a}{sup 2}{sub {ital c}}) from the left-right forward-backward asymmetry of {ital D}{sup *}+ and {ital D}{sup +} mesons in {ital Z}{sup 0} events produced with the longitudinally polarized SLAC Linear Collider beam. These {ital Z}{sup 0}{r_arrow}{ital c} over bar events are tagged on the basis of event kinematics and decay topology from a sample of hadronic {ital Z}{sup 0} decays recorded by the SLAC Large Detector. We measure {ital A}{sup 0}{sub {ital c}} = 0.73 {plus_minus} 0.22(stat) {plus_minus} 0.10(syst). {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  20. B flavour tagging using charm decays at the LHCb experiment

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M. -O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S. -F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C. -T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Faerber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Tico, J. Garra; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.

    2015-01-01

    An algorithm is described for tagging the flavour content at production of neutral B mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a B meson with the charge of a reconstructed secondary charm hadron from the decay of the other b hadron produced in the proton

  1. Charmed particles production in pA -interactions at √s = 11.8 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Aleev, A.; Balandin, V.; Boguslavsky, M.; Dunun, V.; Gavrishchuk, O.; Furmanec, N.; Kireev, V.; Konstantinov, V.; Kosarev, I.; Kokoulina, E.; Kuzmin, N.; Lanshikov, G.; Nikitin, V.; Petukhov, Yu.; Rufanov, I.; Topuria, T.; Yukaev, A. [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation); Ardashev, E.; Afonin, A.; Bogolyubsky, M.; Golovnia, S.; Gorokhov, S.; Golovkin, V.; Kholodenko, A.; Kiriyakov, A.; Kurchaninov, L.; Mitrofanov, G.; Moiseev, A.; Petrov, V.; Pleskach, A.; Riadovikov, V.; Ronjin, V.; Senko, V.; Shalanda, N.; Soldatov, M.; Tsyupa, Yu.; Vasiliev, M.; Vorobiev, A.; Yakimchuk, V.; Zapolsky, V.; Zmushko, V. [Institute for High Energy Physics, Protvino, Moscow region (Russian Federation); Basiladze, S.; Bogdanova, G.; Grishin, N.; Grishkevich, Ya.; Ermolov, P.; Karmanov, D.; Kozlov, V.; Kramarenko, V.; Kubarovsky, A.; Larichev, A.; Leflat, A.; Lyutov, S.; Merkin, M.; Orfanitsky, S.; Popov, V.; Tikhonova, L.; Vischnevskaya, A.; Volkov, V.; Voronin, A.; Zotkin, S.; Zotkin, D.; Zverev, E. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (SINP MSU), Federal State Budget Educational Institution of Higher Education M.V. Lomonosov, Moscow (Russian Federation); Collaboration: SVD-2 Collaboration

    2017-03-15

    The results of the SERP-E-184 experiment at the U-70 accelerator (IHEP, Protvino) are presented. Interactions of the 70GeV proton beam with carbon, silicon and lead targets were studied to detect decays of charmed D{sup 0}, anti D{sup 0}, D{sup +}, D{sup -} mesons and Λ{sub c}{sup +} baryon near their production threshold. Measurements of lifetimes and masses have shown a good agreement with PDG data. The inclusive cross-sections of charm production and their A-dependences have been obtained. The yields of these particles are compared with the theoretical predictions and the data of other experiments. The measured cross-section of the total open charm production (σ{sub tot}(c anti c) = 7.1 ± 2.3(stat) ± 1.4(syst) μb/nucleon) at the collision c.m. energy √s = 11.8 GeV is well above the QCD model predictions. The contributions of different kinds of charmed particles to the total cross-section of the open charm production in proton-nucleus interactions vary with energy. (orig.)

  2. Theoretical overview: The New mesons

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab

    2004-11-01

    After commenting on the state of contemporary hadronic physics and spectroscopy, I highlight four areas where the action is: searching for the relevant degrees of freedom, mesons with beauty and charm, chiral symmetry and the D{sub sJ} levels, and X(3872) and the lost tribes of charmonium.

  3. Charming surprise

    CERN Multimedia

    Antonella Del Rosso

    2011-01-01

    The CP violation in charm quarks has always been thought to be extremely small. So, looking at particle decays involving matter and antimatter, the LHCb experiment has recently been surprised to observe that things might be different. Theorists are on the case.   The study of the physics of the charm quark was not in the initial plans of the LHCb experiment, whose letter “b” stands for “beauty quark”. However, already one year ago, the Collaboration decided to look into a wider spectrum of processes that involve charm quarks among other things. The LHCb trigger allows a lot of these processes to be selected, and, among them, one has recently shown interesting features. Other experiments at b-factories have already performed the same measurement but this is the first time that it has been possible to achieve such high precision, thanks to the huge amount of data provided by the very high luminosity of the LHC. “We have observed the decay modes of t...

  4. Charming surprise

    CERN Multimedia

    Antonella Del Rosso

    2011-01-01

    The CP violation in charm quarks has always been thought to be extremely small. So, looking at particle decays involving matter and antimatter, the LHCb experiment has recently been surprised to observe that things might be different. Theorists are on the case. The study of the physics of the charm quark was not in the initial plans of the LHCb experiment, whose letter “b” stands for “beauty quark”. However, already one year ago, the Collaboration decided to look into a wider spectrum of processes that involve charm quarks among other things. The LHCb trigger allows a lot of these processes to be selected, and, among them, one has recently shown interesting features. Other experiments at b-factories have already performed the same measurement but this is the first time that it has been possible to achieve such high precision, thanks to the huge amount of data provided by the very high luminosity of the LHC. “We have observed the decay modes of the D0, a pa...

  5. Charmed hadrons in matter and SU(4 flavor symmetry

    Directory of Open Access Journals (Sweden)

    Krein Gastão

    2014-06-01

    Full Text Available There is great recent interest in the study of bound states of charmed hadrons with atomic nuclei. The studies rely on effective interactions expressed through couplings between charmed and light-flavored hadrons whose values are fixed using SU(4 flavor symmetry. In the present communication we present results of recent studies examining the accuracy of SU(4-flavor symmetry relations between hadron-hadron couplings with particular interest in the couplings of charmed D mesons to light mesons and nucleons. We discuss results obtained from a 3P0 quark-pair creation model and from a framework based on Dyson-Schwinger equations in QCD that incorporates a consistent, direct and simultaneous description of light- and heavy-quarks. We focus on the three-meson couplings ρππ, ρKK, and ρDD and meson-baryon-brayon couplings πNN, KΛsN, and DΛcN. While the 3P0 model predicts that the SU(4 breaking is at most 40% in the charm sector, the relativistic Dyson-Schwinger framework predicts a breaking 10 times bigger. Consequences of these findings for the predictions of DN cross sections, formation of bound states of D-mesons and J/Ψ, and the formation of charmed hypernuclei are discussed.

  6. Charm physics with HISQ quarks

    CERN Document Server

    Davies, C T H; Kendall, I; McNeile, C; Lepage, G P; Allison, I; Woloshyn, R; Dalgic, E; Trottier, H; Follana, E; Horgan, R; Hornbostel, K; Shigemitsu, J

    2008-01-01

    We present an update of results from the HPQCD collaboration on charm physics using the Highly Improved Staggered Quark action. This includes a precise determination of m_c using moments of current-current correlators combined with high-order continuum QCD perturbation theory. We also include an update on the determination of alpha_s from lattice QCD, preliminary results on the determination of m_b and a summary plot of the status of the gold-plated meson spectrum. There is an appendix on tackling systematic errors in fitting using the Bayesian approach.

  7. First Charm Hadroproduction Results from SELEX

    CERN Document Server

    Russ, J

    1998-01-01

    The SELEX experiment (E781) at Fermilab is a 3-stage magnetic spectrometer for the high statistics study of charm hadroproduction out to large x_F using 600 GeV Sigma^-, p and pi beams. The main features of the spectrometer are: high precision silicon vertex system, broad-coverage particle identification with TRD and RICH, 3-stage lead glass photon detector. Preliminary results on differences in hadroproduction characteristics of charm mesons and Lambda_c^+ for x_F>0.3 are reported. For baryon beams there is a striking asymmetry in the production of baryons compared to antibaryons. Leading particle effects for all incident hadrons are discussed.

  8. Production of associated $\\Upsilon$ and open charm hadrons in $pp$ collisions at $\\sqrt{s}=7$ and $8$ TeV via double parton scattering

    CERN Document Server

    Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc

    2016-01-01

    Associated production of bottomonia and open charm hadrons in $pp$ collisions at $\\sqrt{s}=7$ and $8$TeV is observed using data corresponding to an integrated luminosity of 3$fb^{-1}$ accumulated with the LHCb detector. The observation of five combinations, $\\Upsilon(1S)D^0$, $\\Upsilon(2S)D^0$, $\\Upsilon(1S)D^+$, $\\Upsilon(2S)D^+$ and $\\Upsilon(1S)D^+_{s}$, is reported. Production cross-sections are measured for $\\Upsilon(1S)D^0$ and $\\Upsilon(1S)D^+$ pairs in the forward region. The measured cross-sections and the differential distributions indicate the dominance of double parton scattering as the main production mechanism. This allows a precise measurement of the effective cross-section for double parton scattering.

  9. Observation of associated production of a $Z$ boson with a $D$ meson in the forward region

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Callot, Olivier; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coca, Cornelia; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bonis, Isabelle; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dorosz, Piotr; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; van Eijk, Daan; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Fitzpatrick, Conor; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garosi, Paola; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Hafkenscheid, Tom; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Huse, Torkjell; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Iakovenko, Viktor; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Wallaa; Karacson, Matthias; Karbach, Moritz; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Klaver, Suzanne; Kochebina, Olga; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Ian; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luisier, Johan; Luo, Haofei; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Manzali, Matteo; Maratas, Jan; Marconi, Umberto; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Mountain, Raymond; Mous, Ivan; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Muryn, Bogdan; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neubert, Sebastian; Neufeld, Niko; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pavel-Nicorescu, Carmen; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Polok, Grzegorz; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redford, Sophie; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Roberts, Douglas; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Oksana; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teodorescu, Eliza; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Webber, Adam Dane; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiechczynski, Jaroslaw; Wiedner, Dirk; Wiggers, Leo; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    A search for associated production of a $Z$ boson with an open charm meson is presented using a data sample, corresponding to an integrated luminosity of $1.0\\mathrm{fb}^{-1}$ of proton--proton collisions at a centre-of-mass energy of 7 TeV, collected by the LHCb experiment. Seven candidate events for associated production of a $Z$ boson with a $D^0$ meson and four candidate events for a $Z$ boson with a $D^+$ meson are observed with a combined significance of 5.1 standard deviations. The production cross-sections in the forward region are measured to be $$\\sigma_{Z\\rightarrow\\mu^+\\mu^-\\!,D^0} = 2.50\\pm1.12\\pm0.22pb$$ $$\\sigma_{Z\\rightarrow\\mu^+\\mu^-\\!,D^+} = 0.44\\pm0.23\\pm0.03pb,$$ where the first uncertainty is statistical and the second systematic.

  10. Hadronic molecules with a ${\\bar{D}}$ meson in a medium

    CERN Document Server

    Caramés, T F; Klein, G; Tsushima, K; Vijande, J; Valcarce, A

    2016-01-01

    We study the effect of a hot and dense medium on the binding energy of hadronic molecules with open-charm mesons. We focus on a recent chiral quark-model-based prediction of a molecular state in the $N \\bar D$ system. We analyze how the two-body thresholds and the hadron-hadron interactions are modified when quark and meson masses and quark-meson couplings change in a function of the temperature and baryon density according to predictions of the Nambu--Jona-Lasinio model. We find that in some cases the molecular binding is enhanced in medium as compared to their free-space binding. We discuss the consequences of our findings for the search for exotic hadrons in high-energy heavy-ion collisions as well as in the forthcoming facilities FAIR or J-PARC.

  11. Charm Dalitz Plot Analysis Formalism and Results

    CERN Document Server

    Asner, David M

    2004-01-01

    Charm meson decay dynamics have been studied extensively over the last decade. We describe the Dalitz-plot analysis technique which has been applied by many experiments to three-body D0, D+ and Ds decays. We discuss experimental results from Mark II, Mark III, E687, E691, ARGUS, E791, FOCUS, CLEO and BABAR. These studies probe a variety of physics including doubly-Cabibbo suppressed decays, searches for CP violation, the properties of established light mesons and the properties of pipi and Kpi S-wave states.

  12. Charm as a domain wall fermion in quenched lattice QCD

    CERN Document Server

    Lin, H W; Soni, A; Yamada, N; Lin, Huey-Wen; Ohta, Shigemi; Soni, Amarjit; Yamada, Norikazu

    2006-01-01

    We report a study describing the charm quark by a domain-wall fermion (DWF) in lattice quantum chromodynamics (QCD). Our study uses a quenched gauge ensemble with the DBW2 rectangle-improved gauge action at a lattice cutoff of $a^{-1} \\sim 3$ GeV. We calculate masses of heavy-light (charmed) and heavy-heavy (charmonium) mesons with spin-parity $J^P = 0^\\mp$ and $1^\\mp$, leptonic decay constants of the charmed pseudoscalar mesons ($D$ and $D_s$), and the $D^0$-$\\bar{D^0}$ mixing parameter. The charm quark mass is found to be $m^{\\bar{\\rm MS}}_{c}(m_{c})=1.24(1)(18)$ GeV. The mass splittings in charmed-meson parity partners $\\Delta_{q,J=0}$ and $\\Delta_{q, J=1}$ are degenerate within statistical errors, in accord with experiment, and they satisfy a relation $\\Delta_{q=ud, J} > \\Delta_{q=s, J}$, also consistent with experiment. A C-odd axial vector charmonium state, $h_c), lies 22(11) MeV above the $\\chi_{c1}$ meson, or $m_{h_{c}} = 3533(11)_{\\rm stat.}$ MeV using the experimental $\\chi_{c1}) mass. However, in t...

  13. Measurements of charm rare decays at LHCb

    CERN Document Server

    Vacca, Claudia

    2015-01-01

    Following the intriguing hints of deviations from the Standard Model in rare B meson decays, searches for rare and forbidden decays of charm hadrons become a hot topic again. We present recent results on Flavour Changing Neutral Current $D^{0}\\rightarrow\\mu^+ \\mu^-$, $D^0 \\rightarrow\\mu^+\\mu^- \\pi^+ \\pi^-$, $D^{\\pm}_{(s)}\\rightarrow \\pi^{\\pm} \\mu^+\\mu^-$ and LFV $D^{\\pm}_{(s)}\\rightarrow \\pi^{\\mp}\\mu^{\\pm}\\mu^{\\pm}$ obtained at LHCb.

  14. New Physics from rare decays of charm

    CERN Document Server

    Petrov, Alexey A

    2016-01-01

    Abundance of charm data in the current and future low energy flavor experiments makes it possible to study rare decays of D-mesons with ever increased precision. I discuss theoretical implications of derived constraints on New Physics models from these transitions. I argue that those constraints could be competitive with results of direct searches for New Physics particles (including Dark Matter) at the Large Hadron Collider.

  15. Studies of CP violation and mixing in charm decays at LHCb

    CERN Document Server

    Contu, A

    2016-01-01

    LHCb has collected the world’s largest sample of charmed hadrons. This sample is used to search for direct and indirect CP violation in charm, and to measure D$^0$ mixing parameters. New and updated measurements are presented, with complementary time-dependent and time-integrated analyses of D$^0$ meson decays.

  16. Charmed Meson Scattering from Lattice QCD

    CERN Document Server

    Moir, Graham

    2016-01-01

    State-of-the-art lattice QCD calculations of scattering amplitudes in coupled-channel $D\\pi$, $D\\eta$ and $D_{s}\\bar{K}$ scattering, as well elastic $DK$ scattering are discussed. The methodology employed allows a determination of the relevant poles in the scattering matrix, while also providing a measure of the coupling of each channel to a given pole. By investigating $S$, $P$ and $D$ wave interactions, the nature of states with $J^{P} = 0^{+}$, relevant for the $D^{*}_{0}(2400)$ and $D^{*}_{s0}(2317)$, as well as states with $J^{P} = 1^{-}, 2^{+}$ are discussed.

  17. Pseudoscalar meson physics with four dynamical quarks

    CERN Document Server

    Bazavov, A; Bouchard, C; DeTar, C; Du, D; El-Khadra, A X; Foley, J; Freeland, E D; Gamiz, E; Gottlieb, Steven; Heller, U M; Hetrick, J E; Kim, J; Kronfeld, A S; Laiho, J; Levkova, L; Lightman, M; Mackenzie, P B; Neil, E T; Oktay, M; Simone, J N; Sugar, R L; Toussaint, D; Van de Water, R S; Zhou, R

    2012-01-01

    We present preliminary results for light, strange and charmed pseudoscalar meson physics from simulations using four flavors of dynamical quarks with the highly improved staggered quark (HISQ) action. These simulations include lattice spacings ranging from 0.15 to 0.06 fm, and sea-quark masses both above and at their physical value. The major results are charm meson decay constants f_D, f_{D_s} and f_{D_s}/f_D and ratios of quark masses. This talk will focus on our procedures for finding the decay constants on each ensemble, the continuum extrapolation, and estimates of systematic error.

  18. Charm quarks as a probe of matter produced in relativistic nucleus-nucleus collisions

    Directory of Open Access Journals (Sweden)

    Ali Yasir

    2014-04-01

    Full Text Available Direct measurement of hadrons containing charm quark carries important information about the initial stage of the nucleus-nucleus collision at relativistic energies. The study of open charm in Pb-Pb collisions at SPS energies will be a powerful tool to investigate the production of heavy flavours and their interaction with the medium produced in such collisions. A feasibility study was initiated for the measurement of the D0 mesons (open charm by its two-body decay into pion and kaon in central Pb-Pb collision at SPS energies in NA61/SHINE experiment. To generate the physical input we used AMPT (A Multi Phase Transport Model event generator and employed GEANT4 application to describe particle transport through the NA61/SHINE experimental setup supplemented by a future vertex detector (VD that will allow for precise vertex reconstruction close to the primary interaction point. The results of the simulation shows that this measurement is feasible with a dedicated VD which allows the precise tracking close to the target.

  19. 用振幅比值方法预言中性粲介子衰变到 CP本征态的CP不对称性%CP Asymmetry Prediction for Neutral Charmed Meson Decays into CP Eigenstates by Using Amplitude Ratios

    Institute of Scientific and Technical Information of China (English)

    杜东生

    2007-01-01

    用振幅比之方法计算了中性粲介子衰变到CP本征态的CP不对称性.计算了时间相关和时间积分的CP不对称性.结果表明,时间积分的CP不对称参数约为千分之一的量级.还讨论了在BESⅢ和B工厂上实验检验的可能性.%CP asymmetries for neutral charmed meson decays into CP eigenstates are calculated by using amplitude ratios. The formulas and numerical results are presented. The impact on experiments is briefly discussed.

  20. Medium modifications of mesons. Chiral symmetry restoration, in-medium QCD sum rules for D and ρ mesons, and Bethe-Salpeter equations

    Energy Technology Data Exchange (ETDEWEB)

    Hilger, Thomas Uwe

    2012-04-11

    The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes D{sub s} and D{sup *}{sub 0} mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.

  1. Charmed baryons from LHCb

    CERN Document Server

    Ogilvy, Stephen

    2015-01-01

    The vast amount of $c\\overline{c}$ production that can be recorded by the LHCb detector makes it an ideal environment to study the hadronic production of charmed baryons, along with the properties of their decays. We briefly describe the LHCb experiment and the triggering mechanisms it uses for recording charm production. Previous charmed baryon results from LHCb are detailed, with a description of the future plans for the charmed baryon programme.

  2. Measurement of Charm and Beauty Photoproduction at HERA using D* mu Correlations

    CERN Document Server

    Aktas, A; Anthonis, T; Asmone, A; Babaev, A; Backovic, S; Bähr, J; Baranov, P; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Behnke, O; Behrendt, O; Belousov, A; Berger, C; Berger, N; Berndt, T; Bizot, J C; Böhme, J; Boenig, M O; Boudry, V; Bracinik, J; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Caron, S; Cassol-Brunner, F; Cerny, K; Chekelian, V; Contreras, J G; Coppens, Y R; Coughlan, J A; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Delcourt, B; Demirchyan, R; de Roeck, A; Desch, Klaus; De Wolf, E A; Diaconu, C; Dingfelder, J; Dodonov, V; Dubak, A; Duprel, C; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Ellerbrock, M; Elsen, E; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garutti, E; Garvey, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Ginzburgskaya, S; Görlich, L; Gogitidze, N; Gorbounov, S; Grab, C; Grässler, Herbert; Greenshaw, T; Gregori, M; Grindhammer, G; Gwilliam, C; Haidt, D; Hajduk, L; Haller, J; Hansson, M; Heinzelmann, G; Henderson, R C W; Henschel, H; Henshaw, O; Herrera-Corral, G; Herynek, I; Heuer, R D; Hildebrandt, M; Hiller, K H; Hoting, P; Hoffmann, D; Horisberger, R P; Hovhannisyan, A; Ibbotson, M; Ismail, M; Jacquet, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, D P; Jung, H; Kant, D; Kapichine, M; Karlsson, M; Katzy, J; Keller, N; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Klimkovich, T; Kluge, T; Knies, G; Knutsson, A; Koblitz, B; Korbel, V; Kostka, P; Koutouev, R; Kropivnitskaya, A; Kroseberg, J; Krüger, K; Kuckens, J; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; Lindfeld, L; Lipka, K; List, B; Lobodzinska, E; Loktionova, N; López-Fernandez, R; Lubimov, V; Lüders, H; Lüke, D; Lux, T; Lytkin, L; Makankine, A; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martisikova, M; Martyn, H U; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Mikocki, S; Milcewicz-Mika, I; Milstead, D; Mohamed, A; Moreau, F; Morozov, A; Morris, J V; Mozer, M U; Müller, K; Murn, P; Nagovizin, V; Nankov, K; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebuhr, C B; Nikiforov, A; Nikitin, D K; Nowak, G; Nozicka, M; Oganezov, R; Olivier, B; Olsson, J E; Ozerov, D; Paramonov, A A; Pascaud, C; Patel, G D; Peez, M; Pérez, E; Perieanu, A; Petrukhin, A; Pitzl, D; Placakyte, R; Pöschl, R; Portheault, B; Povh, B; Raicevic, N; Reimer, P; Reisert, B; Rimmer, A; Risler, C; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rurikova, Z; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schöning, A; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V; Specka, A; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Tchoulakov, V; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Utkin, D; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Van Remortel, N; Vargas-Trevino, A; Vazdik, Ya A; Veelken, C; Vest, A; Vinokurova, S; Volchinski, V; Wacker, K; Wagner, J; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wessling, B; Winter, G G; Wissing, C; Woerling, E E; Wolf, R; Wünsch, E; Xella, S M; Yan, W; Yeganov, V; Zaicek, J; Zaleisak, J; Zhang, Z; Zhelezov, A; Zhokin, A; Zohrabyan, H G; Zomer, F

    2005-01-01

    A measurement of charm and beauty photoproduction at the electron proton collider HERA is presented based on the simultaneous detection of a D*^{\\pm} meson and a muon. The correlation between the D* meson and the muon serves to separate the charm and beauty contributions and the analysis provides comparable sensitivity to both. The total and differential experimental cross sections are compared to LO and NLO QCD calculations. The measured charm cross section is in good agreement with QCD predictions including higher order effects while the beauty cross section is higher.

  3. Charmed mesic nuclei Bound D and over D states with 208Pb

    CERN Document Server

    Tsushima, K; Thomas, A W; Saitô, K; Landau, Rubin H

    1999-01-01

    We show that the $D^-$ meson will inevitably form narrow bound states with $^{208}$Pb. The experimental confirmation and comparison with the $\\bar{D}^0$ and $D^0$ will provide distinctive information on the nature of the interaction between the charmed meson and matter.

  4. QCD sum rule study of hidden-charm pentaquarks

    CERN Document Server

    Chen, Hua-Xing; Chen, Wei; Steele, T G; Liu, Xiang; Zhu, Shi-Lin

    2016-01-01

    We study the mass spectra of hidden-charm pentaquarks having spin $J = {1\\over2},{3\\over2},{5\\over2}$ and quark contents $uud c \\bar c$. We systematically construct all the relevant local hidden-charm pentaquark currents, and select some of them to perform QCD sum rule analyses. We find that the $P_c(4380)$ and $P_c(4450)$ can be identified as hidden-charm pentaquark states composed of an anti-charmed meson and a charmed baryon. We also find the lowest-lying hidden-charm $J^P = 1/2^-$ pentaquark state of mass $4.33^{+0.17}_{-0.13}$ GeV, while the $J^P = 1/2^+$ mass prediction of 4.7--4.9 GeV is significantly higher. Similarly, the lowest-lying hidden-charm $J^P = 3/2^-$ pentaquark state mass is $4.37^{+0.18}_{-0.13}$ GeV, consistent with the $J^P = 3/2^-$ $P_c(4380)$, while the $J^P = 3/2^+$ is also significantly higher with a mass above 4.6 GeV. The hidden-charm $J^P = 5/2^-$ pentaquark state mass is 4.5--4.6 GeV, slightly larger than the $J^P = 5/2^+$ $P_c(4450)$.

  5. Exploring open-charm decay mode Λ{sub c} anti Λ{sub c} of charmonium-like state Y(4630)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuewen; Li, Xue-Qian [Nankai University, School of Physics, Tianjin (China); Ke, Hong-Wei [Tianjin University, School of Science, Tianjin (China); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China)

    2016-10-15

    The newly observed X, Y, Z exotic states are definitely not in the standard Q anti Q{sup '} structures, thus their existence composes a challenge to our understanding on the fundamental principles of hadron physics. Therefore the studies on their decay patterns which are determined by the non-perturbative QCD will definitely shed light on the concerned physics. Generally the four-quark states might be in a molecular state or tetraquark or their mixture. In this work, we adopt the suggestion that Y(4630) is a charmonium-like tetraquark made of a diquark and an anti-diquark. If it is true, its favorable decay mode should be Y(4630) decaying into an open-charm baryon pair, since such a transition occurs via strong interaction and is super-OZI-allowed. In this work, we calculate the decay width of Y(4630) → Λ{sub c} anti Λ{sub c} in the framework of the quark pair creation model. Our numerical results on the partial width computed in the tetraquark configuration coincide with the Belle data within a certain error tolerance. (orig.)

  6. Charm, Beauty and Top at HERA

    CERN Document Server

    Behnke, O; Lisovyi, M

    2015-01-01

    Results on open charm and beauty production and on the search for top production in high-energy electron-proton collisions at HERA are reviewed. This includes a discussion of relevant theoretical aspects, a summary of the available measurements and measurement techniques, and their impact on improved understanding of QCD and its parameters, such as parton density functions and charm- and beauty-quark masses. The impact of these results on measurements at the LHC and elsewhere is also addressed.

  7. Charm, Beauty and Top at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, O.; Geiser, A.; Lisovyi, M.

    2015-06-15

    Results on open charm and beauty production and on the search for top production in high-energy electron-proton collisions at HERA are reviewed. This includes a discussion of relevant theoretical aspects, a summary of the available measurements and measurement techniques, and their impact on improved understanding of QCD and its parameters, such as parton density functions and charm- and beauty-quark masses. The impact of these results on measurements at the LHC and elsewhere is also addressed.

  8. Lattice investigation of heavy meson interactions

    CERN Document Server

    Wagenbach, Björn; Wagner, Marc

    2014-01-01

    We report on a lattice investigation of heavy meson interactions and of tetraquark candidates with two very heavy quarks. These two quarks are treated in the static limit, while the other two are up, down, strange or charm quarks of finite mass. Various isospin, spin and parity quantum numbers are considered.

  9. Lattice investigation of heavy meson interactions

    Science.gov (United States)

    Wagenbach, Björn; Bicudo, Pedro; Wagner, Marc

    2015-04-01

    We report on a lattice investigation of heavy meson interactions and of tetraquark candidates with two very heavy quarks. These two quarks are treated in the static limit, while the other two are up, down, strange or charm quarks of finite mass. Various isospin, spin and parity quantum numbers are considered.

  10. Statistical hadronization of charm in heavy ion collisions

    CERN Document Server

    Kostyuk, A P

    2003-01-01

    Production of open and hidden charm hadrons in heavy ion collisions is considered within the statistical coalescence model (SCM). Charmed quark-antiquark pairs are assumed to be created at the initial stage of the reaction in hard parton collisions. The number of these pairs is conserved during the evolution of the system. At hadronization, the charmed (anti)quarks are distributed among open and hidden charm hadrons in accordance with laws of statistical mechanics. Important special cases: a system with a small number of charmed quark-antiquark pairs and charm hadronization in a subsystem of the whole system are considered. The model calculations are compared with the preliminary PHENIX data for J/psi production at RHIC. Possible influence of the in-nuclear modification of the parton distribution functions (shadowing) on the SCM results is studied.

  11. Charm CPV and rare decays at LHCb

    CERN Document Server

    Morello, Michael Joseph

    2016-01-01

    Charm physics has been playing all along a role in particle physics, by contributing to the for-mulation of the Standard Model (SM) as it is known nowadays. The level of attention on it has tremendously increased in recent years because of the first experimental observations of the slow mixing rate of the $D^0 − \\overline{D}^0$ flavour oscillations, providing definitely a full range of probes, entirely complementary to the $B$ and $K$ mesons, for mixing and $CP$- violation. In fact the charm quark is the only up-type quark that manifests flavour oscillations. Only in recent years it has been possible to collect huge and very clean samples of $D$ meson decays, several orders of magnitude larger in size than in the past, allowing also for the first time approaching the small SM expectations for $CP$-violation below the $10^{−3}$ level. Thus, the dynamics of the charm quark can be probed for the presence of New Physics with negligible SM “background”, since any generic non-SM contribu-tion would naturall...

  12. The hidden-charm pentaquark and tetraquark states

    CERN Document Server

    Chen, Hua-Xing; Liu, Xiang; Zhu, Shi-Lin

    2016-01-01

    In the past decade many charmonium-like states were observed experimentally. Especially those charged charmonium-like $Z_c$ states and bottomonium-like $Z_b$ states can not be accommodated within the naive quark model. These charged $Z_c$ states are good candidates of either the hidden-charm tetraquark states or molecules composed of a pair of charmed mesons. Recently, the LHCb Collaboration discovered two hidden-charm pentaquark states, which are also beyond the quark model. In this work, we review the current experimental progress and investigate various theoretical interpretations of these candidates of the multiquark states. We list the puzzles and theoretical challenges of these models when confronted with the experimental data. We also discuss possible future measurements which may distinguish the theoretical schemes on the underlying structures of the hidden-charm multiquark states.

  13. Introduction to Charm Physics

    CERN Document Server

    AUTHOR|(CDS)2072911

    2015-01-01

    This paper gives an overview of charm physics. It is a lecture write-up aimed at students with a minimum of prior knowledge in particle physics, but at the same time provides a state-of-the art review of the field. The main focus is on mixing and CP violation, which is a field with ever growing attention since first evidence for charm mixing was observed in 2007. Other areas covered are charm spectroscopy, production, as well as rare decays.

  14. Suppressed Charmed B Decay

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Hella Leonie [Vrije Univ., Amsterdam (Netherlands)

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  15. Measurement of charm fragmentation fractions in photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max-Planck-Institute for Physics, Munich (Germany); Abt, I. [Max-Planck-Institute for Physics, Muinch (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science] [and others; Collaboration: ZEUS Collaboration

    2013-06-15

    The production of D{sup 0}, D{sup *+}, D{sup +}, D{sub s}{sup +} and {Lambda}{sub c}{sup +} charm hadrons and their antiparticles in ep scattering at HERA has been studied with the ZEUS detector, using a total integrated luminosity of 372 pb{sup -1}. The fractions of charm quarks hadronising into a particular charm hadron were derived. In addition, the ratio of neutral to charged D-meson production rates, the fraction of charged D mesons produced in a vector state, and the strangeness-suppression factor have been determined. The measurements have been performed in the photoproduction regime. The charm hadrons were reconstructed in the range of transverse momentum p{sub T} > 3.8GeV and pseudorapidity vertical stroke {eta} vertical stroke <1.6. The charm fragmentation fractions are compared to previous results from HERA and from e{sup +}e{sup -} experiments. The data support the hypothesis that fragmentation is independent of the production process.

  16. Charmed baryons at LHCb

    CERN Document Server

    Naik, Paras

    2016-01-01

    The LHCb detector is an excellent instrument for studying the production and decay of charmed baryons in $pp$ collisions, due to efficient triggering mechanisms that capture the copious production of $c\\overline{c}$ at the Large Hadron Collider. The LHCb experiment and its charmed baryon results from LHCb are detailed, with a description of our future plans.

  17. Leptoproduction of charm revisited

    Energy Technology Data Exchange (ETDEWEB)

    Barone, V. (Dipartimento di Fisica Teorica, Universita di Torino (Italy) INFN, Torino (Italy)); Genovese, M. (Dipartimento di Fisica Teorica, Universita di Torino (Italy) INFN, Torino (Italy)); Nikolaev, N. (Institut fuer Kernphysik, Forschungszentrum Juelich, D-52425 Juelich (Germany) L.D. Landau Institute for Theoretical Physics, GSP-1, 117940, ul. Kosygina 2, Moscow V-334 (Russian Federation)); Predazzi, E. (Dipartimento di Fisica Teorica, Universita di Torino (Italy) INFN, Torino (Italy)); Zakharov, B. (L.D. Landau Institute for Theoretical Physics, GSP-1, 117940, ul. Kosygina 2, Moscow V-334 (Russian Federation))

    1994-05-26

    We calculate the energy-momentum distribution of the charmed quarks produced in neutrino reactions on protons, quantifying the importance of mass and current non-conservation effects. We study the strange and charm distributions probed in neutrino interactions in the presently accessible kinematical region. Some ambiguities inherent to the extraction of the parton densities from di-muon data are pointed out. ((orig.)).

  18. Measurement of D-meson azimuthal anisotropy in Au+Au 200 GeV collisions at RHIC

    CERN Document Server

    Lomnitz, Michael R

    2016-01-01

    Heavy quarks are produced through initial hard scatterings and they are affected by the hot and dense medium created in heavy-ion collisions throughout its whole evolution. Due to their heavy mass, charm quarks are expected to thermalize much more slowly than light flavor quarks. The charm quark flow is a unique tool to study the extent of thermalization of the bulk medium dominated by light quarks and gluons. At high $p_T$, D meson azimuthal anisotropy is sensitive to the path length dependence of charm quark energy loss in the medium, which offers new insights into heavy quark energy loss mechanisms - gluon radiation vs. collisional processes. We present the STAR measurement of elliptic flow ($v_2$) of $D^0$ and $D^{\\pm}$ mesons in Au+Au collisions at $\\sqrt{s_{NN}}$ = 200 GeV, for a wide transverse momentum range. These results are obtained from the data taken in the first year of physics running of the new STAR Heavy Flavor Tracker detector, which greatly improves open heavy flavor hadron measurements by ...

  19. Charmed baryons on the lattice

    CERN Document Server

    Padmanath, M

    2015-01-01

    We discuss the significance of charm baryon spectroscopy in hadron physics and review the recent developments of the spectra of charmed baryons in lattice calculations. Special emphasis is given on the recent studies of highly excited charm baryon states. Recent precision lattice measurements of the low lying charm and bottom baryons are also reviewed.

  20. Exotic nuclei with charm and bottom flavor

    Directory of Open Access Journals (Sweden)

    Yasui S.

    2010-04-01

    Full Text Available We discuss the possibility of existence of exotic nuclei containing charm and bottom mesons. We study the interaction between $ar{D}$ (B mesons and nucleons from view of heavy quark symmetry, and derive the one pion exchange potentials. We apply these potentials to the two body system of $ar{D}$ (B meson and nucleon N , and find there are possible stable bound states with spin JP = 1/2− and isospin I = 0. We find that the tensor interaction mixing $ar{D}$N and $ar{D}$*N (BN and B*N plays an important role. We also qualitatively discuss the possible bound states of $ar{D}$ (B meson and two nucleons.

  1. Measurement of charmed particle production in hadronic reactions

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure the production cross-section for charmed particles in hadronic reactions, study their production mechanism, and search for excited charmed hadrons.\\\\ \\\\ Charmed Mesons and Baryons will be measured in $\\pi$ and $p$ interactions on Beryllium between 100 and 200 GeV/c. The trigger will be on an electron from the leptonic decay of one charmed particle by signals from the Cerenkov counter (Ce), the electron trigger calorimeter (eCal), scintillation counters, and proportional wire chambers. The accompanying charmed particle will be measured via its hadronic decay in a two-stage magnetic spectrometer with drift chambers (arms 2, 3a, 3b, 3c), two large-area multicell Cerenkov counters (C2, C3) and a large-area shower counter ($\\gamma$-CAL). The particles which can be measured and identified include $\\gamma, e, \\pi^{\\pm}, \\pi^{0}, K^{\\pm}, p, \\bar{p}$ so that a large number of hadronic decay modes of charmed particles can be studied. \\\\ \\\\ A silicon counter telescope with 5 $\\m...

  2. Drag Effects in Charm Photoproduction

    CERN Document Server

    Norrbin, E

    1999-01-01

    We have refined a model for charm fragmentation at hadron colliders. This model can also be applied to the photoproduction of charm. We investigate the effect of fragmentation on the distribution of produced charm quarks. The drag effect is seen to produce charm hadrons that are shifted in rapidity in the direction of the beam remnant. We also study the importance of different production mechanisms such as charm in the photon and from parton showers.

  3. Study of Charm Production in Z Decays

    CERN Document Server

    Barate, R; Ghez, P; Goy, C; Lees, J P; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Pacheco, A; Park, I C; Riu, I; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Boix, G; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Greening, T C; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Leroy, O; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Teixeira-Dias, P; Thompson, A S; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Sciabà, A; Sedgbeer, J K; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Williams, M I; Giehl, I; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Wachsmuth, H W; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Etienne, F; Motsch, F; Payre, P; Rousseau, D; Talby, M; Thulasidas, M; Aleppo, M; Antonelli, M; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Veillet, J J; Videau, I; Zerwas, D; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Foà, L; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Cowan, G D; Green, M G; Medcalf, T; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Hess, J; Koob, C; Misiejuk, A; Prange, G; Sieler, U; Giannini, G; Gobbo, B; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Zobernig, G; CERN. Geneva

    2001-01-01

    The production rates of D*+-, Ds*+-, D+-, D0 / D0bar, Ds+, and Lambda_c in Z to ccbar decays are measured using the LEP I data sample recorded by the ALEPH detector. The fractional energy spectrum of the D*+- is well described as the sum of three contributions: charm hadronisation, b hadron decays and gluon splitting into a pair of heavy quarks. The probability for a c quark to hadronise into a D*+ is found to be f(c to D*+) = 0.233 +- 0.010 (stat.) +- 0.011 (syst.). The average fraction of the beam energy carried by D*+- mesons in Z to cc events is measured to be _cc = 0.4878 +- 0.0046 (stat.) +- 0.0061 (syst.). The D*+- energy and the hemisphere mass imbalance distributions are simultaneously used to measure the fraction of hadronic Z decays in which a gluon splits to a cc pair: n_{gluon to cc} = (3.23 +- 0.48 (stat.) +- 0.53 (syst.) %. The ratio of the Vector/(Vector+Pseudoscalar) production rates in charmed mesons is found to be P_V = 0.595 +- 0.045. The fractional decay width of the Z into cc pairs is de...

  4. $B$ flavour tagging using charm decays at the LHCb experiment

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Muller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Ninci, Daniele; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavorima; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zucchelli, Stefano

    2015-01-01

    An algorithm is described for tagging the flavour content at production of neutral $B$ mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a $B$ meson with the charge of a reconstructed secondary charm hadron from the decay of the other $b$ hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes $B^+ \\to J/\\psi \\, K^+$ and $B^0 \\to J/\\psi \\, K^{*0}$ using $3.0\\mathrm{\\,fb}^{-1}$ of data collected by the LHCb experiment at $pp$ centre-of-mass energies of $7\\mathrm{\\,TeV}$ and $8\\mathrm{\\,TeV}$. Its tagging power on these samples of $B \\to J/\\psi \\, X$ decays is $(0.30 \\pm 0.01 \\pm 0.01) \\%$.

  5. New physics effects in charm meson decays involving c → ul{sup +}l{sup -}(l{sub i}{sup -+}l{sub j}{sup ±}) transitions

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Suchismita; Mohanta, Rukmani [University of Hyderabad, School of Physics, Hyderabad (India)

    2017-05-15

    We study the effect of the scalar leptoquark and Z{sup '} boson on the rare decays of the D mesons involving flavour changing transitions c → ul{sup +}l{sup -}(l{sub i}{sup -+}l{sub j}{sup ±}). We constrain the new physics parameter space using the branching ratio of the rare decay mode D{sup 0} → μ{sup +}μ{sup -} and the D{sup 0} - anti D{sup 0} oscillation data. We compute the branching ratios, forward-backward asymmetry parameters and flat terms in D{sup +(0)} → π{sup +(0)} μ{sup +}μ{sup -} processes using the constrained parameters. The branching ratios of the lepton flavour violating D meson decays, such as D{sup 0} → μe, τe and D{sup +(0)} → π{sup +(0)} μ{sup -}e{sup +} are also investigated. (orig.)

  6. The Time Dependent CP Violation in Charm

    CERN Document Server

    Inguglia, Gianluca

    2012-01-01

    A model which describes the time-dependent CP formalism in $D^0$ decays has recently been proposed. There it has been highlighted a possible measurement of the angle $\\beta_c$, in the charm unitarity triangle, using the decays $D^0\\to K^+ K^-$ and $D^0\\to \\pi^+ \\pi^-$, and a measurement of the mixing phase $\\phi_{MIX}$. The same method can be used to measure the value of the parameter $x$, one of the two parameters defining charm mixing. We numerically evaluate the impact of a time-dependent analysis in terms of the possible outcomes from present and future experiments. We consider the scenarios of correlated $D^0$ mesons production at the center of mass energy of the $\\Psi(3770)$ at Super$B$, uncorrelated production at the center of mass energy of the $\\Upsilon(4S)$ at Super$B$ and Belle II, and LHCb. Recently a hint of direct CP violation in charm decays was reported by the LHCb collaboration, we estimate the rate of time-dependent asymmetry that could be achieved using their available data, and we generali...

  7. Hidden charm molecules in finite volume

    CERN Document Server

    Albaladejo, Miguel; Nieves, Juan; Oset, Eulogio

    2013-01-01

    In the present paper we address the interaction of pairs of charmed mesons with hidden charm in a finite box. We use the interaction from a recent model based on heavy quark spin symmetry that predicts molecules of hidden charm in the infinite volume. The energy levels in the box are generated within this model, and from them some synthetic data are generated. These data are then employed to study the inverse problem of getting the energies of the bound states and phase shifts for $D \\bar D$ or $D^* {\\bar D}^*$. Different strategies are investigated using the lowest two levels for different values of the box size, carrying a study of the errors produced. Starting from the upper level, fits to the synthetic data are carried out to determine the scattering length and effective range plus the binding energy of the ground state. A similar strategy using the effective range formula is considered with a simultaneous fit to the two levels, one above and the other one below threshold. This method turns out to be more...

  8. QCD sum rule study of hidden-charm pentaquarks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Xing; Cui, Er-Liang [Beihang University, School of Physics and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beijing (China); Chen, Wei; Steele, T.G. [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, Saskatchewan (Canada); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China); Zhu, Shi-Lin [Peking University, School of Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Peking University, Center of High Energy Physics, Beijing (China)

    2016-10-15

    We study the mass spectra of hidden-charm pentaquarks having spin J = (1)/(2)/(3)/(2)/(5)/(2) and quark contents uudc anti c. We systematically construct all the relevant local hidden-charm pentaquark currents, and we select some of them to perform QCD sum rule analyses. We find that the P{sub c}(4380) and P{sub c}(4450) can be identified as hidden-charm pentaquark states composed of an anti-charmed meson and a charmed baryon. Besides them, we also find (a) the lowest-lying hidden-charm pentaquark state of J{sup P} = 1/2{sup -} has the mass 4.33{sup +0.17}{sub -0.13} GeV, while the one of J{sup P} = 1/2{sup +} is significantly higher, that is, around 4.7-4.9 GeV; (b) the lowest-lying hidden-charm pentaquark state of J{sup P} = 3/2{sup -} has the mass 4.37{sup +0.18}{sub -0.13} GeV, consistent with the P{sub c}(4380) of J{sup P} = 3/2{sup -}, while the one of J{sup P} = 3/2{sup +} is also significantly higher, that is, above 4.6 GeV; (c) the hidden-charm pentaquark state of J{sup P} = 5/2{sup -} has a mass around 4.5-4.6 GeV, slightly larger than the P{sub c}(4450) of J{sup P} = 5/2{sup +}. (orig.)

  9. Leading Twist Parton Distribution Amplitudes in Heavy Vector Mesons

    Directory of Open Access Journals (Sweden)

    Gao Fei

    2016-01-01

    Full Text Available We employed QCD’s Dyson-Schwinger equations (DSEs for heavy quarks and obtained the leading twist parton distribution amplitudes (PDAs in heavy vector mesons J/Ψ and ϒ. We found that all of the amplitudes are narrower than the asymptotic form, while they deviate from δ function. This indicates that the interaction between the two continent quarks are still important in the mesons consisted of charm and bottom quarks.

  10. Beauty and charm production from Fermilab experiment 789

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, D.M.; Boissevain, J.; Carey, T.A.; Jeppesen, R.G.; Kapustinsky, J.S.; Lane, D.W.; Leitch, M.J.; Lillberg, J.W.; McGaughey, P.L.; Moss, J.M.; Peng, J.C. [Los Alamos National Lab., NM (United States); Brown, G.; Isenhower, L.D.; Keyser, J.; Sadler, M.E.; Schnathorst, R.; Schwindt, R. [Abilene Christian Univ., TX (United States); Gidal, G.; Ho, P.M.; Kowitt, M.S.I.; Luk, K.B.; Pripstein, D. [Lawrence Berkeley Lab., CA (United States); Lederman, L.M.; Schub, M.H. [Chicago Univ., IL (United States); Brown, C.N.; Cooper, W.E.; Glass, H.D.; Gounder, K.N.; Mishra, C.S. [Fermi National Accelerator Lab., Batavia, IL (United States); Kaplan, D.M.; Luebke, W.R.; Martin, V.M.; Preston, R.S.; Sa, J.; Tanikella, V. [Northern Illinois Univ., De Kalb, IL (United States); Childers, R.; Darden, C.W.; Snodgrass, D.; Wilson, J.R. [South Carolina Univ., Columbia, SC (United States); Chen, Y.C. [Academia Sinica, Taipei (Taiwan, Province of China). Inst. of Physics]|[National Cheng Kung Univ., Tainan (Taiwan, Province of China). Inst. of Physics; Kiang, G.C.; Teng, P.K. [Academia Sinica, Taipei (Taiwan, Province of China). Inst. of Physics

    1993-06-01

    Experiment 789 is a fixed-target experiment at Fermilab designed to study low-multiplicity decays of charm and beauty. During the 1991 run. E789 collected {approx} 10{sup 9} events using an 800 GeV proton beam incident upon gold and beryllium targets. Analyses of these data include searches for b {yields} J/{psi}+{Chi} decays and {Alpha}- dependence measurements of neutral D meson production. Preliminary results from the 1991 run are presented in this paper.

  11. Charm (and Beauty) Production at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Rademacker, Jonas; /Bristol U.

    2007-11-01

    The authors present recent results on heavy flavor production at Tevatron Run II for typically {approx} 1 fb{sup -1} of analyzed p{bar p} data at {radical}s = 1.96 TeV. This includes results on single and correlated open charm and bottom cross sections, charm pair production kinematics, J/{psi}, {psi}(2S) and {chi}{sub cJ} cross sections and polarization measurements in J/{psi}, {psi}(2S), {Upsilon}(1S), and {Upsilon}(2S).

  12. Sub-threshold charm production in nuclear collisions

    CERN Document Server

    Steinheimer, J; Bleicher, M

    2016-01-01

    We present the first predictions for sub-threshold open charm and charmonium production in nuclear collisions. The production mechanism is driven by multi-step scatterings of nucleons and their resonance states, accumulating sufficient energy for the production of $J/\\Psi$ and $\\Lambda_c + \\bar{D}$. Our results are of particular importance for the CBM experiment at FAIR, as they indicate that already at the SIS100 accelerator one can expect a significant number of charmed hadrons to be produced. This opens new possibilities to explore chram dynamics and the formation of charm (super-) nuclei.

  13. Charm and beauty production at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kabana, Sonia [Laboratoire de Physique Subatomique et des Technologies Associees (SUBATECH), Ecole des Mines, 4 rue Alfred Kastler, 44307 Nantes (France)

    2011-01-15

    We review selected highlights on charm and beauty production at RHIC from p+p, d+Au and A+A collisions at {radical}(s{sub NN})=200GeV, and compare them to model calculations. We focus on two particular issues, jet quenching and quarkonia. Anomalous energy loss (jet quenching) of quarks passing through the dense and hot matter built in heavy ion collisions is one of the outstanding discoveries made at RHIC. This phenomenon allows for an estimate of the initial gluon density. Furthermore, color screening of hidden charm and beauty states is a key signature of the QCD phase transition, allowing an estimate of the initial temperature. We present results on the flavour dependence of jet quenching. Heavy flavour production in A+A as compared to p+p collisions will be discussed for open and hidden charm.

  14. Single-electron analysis and open charm cross section in proton-proton collisions at √(s)=7 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Fasel, Markus

    2012-11-15

    The Large Hadron Collider (LHC) at CERN is the world's highest energy hadron collider, providing protonproton collisions currently at a centre-of-mass energy √(s)=8 TeV and Pb-Pb collisions at √(s{sub NN})=2.76 TeV. This opens a new energy regime, which allows the study of QCD in elementary pp-collisions and in the extreme environment of Pb-Pb collisions, as well as providing a discovery potential for rare and exotic particles. ALICE is the dedicated heavy-ion experiment at the LHC. The experiment is optimised to provide excellent tracking and particle identification capabilities, in particular at low-p{sub t}, where the bulk of the particles is produced in heavy-ion collisions as well as in proton-proton collisions. The production of heavy quarks is described in proton-proton collisions by next-to-leading order perturbative QCD (pQCD) calculations. Thus, the measurement of heavy-quark production in proton-proton collisions serves as a test of pQCD. Measurements performed at SPS, RHIC, and Tevatron experiments showed a good agreement with pQCD, where the data were usually at the upper limit of the prediction. In addition, measurements in proton-proton collisions serve as reference for heavy-ion collisions, in which heavy quarks are essential probes for parton energy loss in a deconfined medium. Heavy-quark production can be studied either with hadronic or in semi-leptonic decay channels. The analysis presented in this thesis is performed in the semi-electronic decay channel with the ALICE apparatus. A crucial device for the electron selection is the Transition Radiation Detector (TRD), which provides an important contribution to the electron-pion separation for momenta larger than 1 GeV/c. In November 2010, the first data were recorded with the experiment. The electron selection performance was studied for the first time on real data using data-driven methods. A pion-rejection factor of 23 at a momentum of 2 GeV/c was obtained using a likelihood method on

  15. Study of the open charm and Drell-Yan production in p + p collisions at 200 GeV with the Phenix detector at RHIC; Etude de la production de charme ouvert et de Drell-Yan dans les collisions p + p a 200 GeV avec le detecteur Phenix a RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gadrat, S

    2005-09-15

    Ultra-relativistic heavy ions collisions allow the study of nuclear matter under extreme conditions of temperature and pressure and, more specifically, of a new phase of nuclear matter: the quarks and gluons plasma (QGP). The RHIC collider, located at the Brookhaven National Laboratory (Usa), produces such collisions. PHENIX, one of the four operational detectors at the collider, is the only one capable of measuring muons. In this dissertation, we present a dimuon data analysis, which data have been collected by PHENIX in p + p collisions during two data taking runs (3 and 4). p + p collisions provide a requisite reference for the understanding of heavy ions collisions. The aim of the analysis discussed in this dissertation is to extract the cross sections of the main physical components of the dimuon spectrum observed at RHIC for p + p collisions: J/{psi}, open charm and Drell-Yan. This analysis is based on a global line shape fit of the dimuon mass spectrum. This fit has been possible thanks to prior simulation study of the mass distribution shapes of these different components. Production yields were obtained from the fit. Lastly, the response function study for each components and the use of various efficiencies led to the estimate of the different production cross sections. The results have been compared to other existing measurements and show an overall good agreement. The work presented in this dissertation offers a first estimate of the open charm production cross section in the dimuon channel, as well as a first estimate of the Drell-Yan production cross section at RHIC for p + p collisions: {sigma}(J/{psi} {yields} {mu}{mu}) = (2.9 {+-} 0.1) {mu}b; {sigma}(cc-bar {yields} {mu}{mu}) = (0.96 {+-} 0.18) mb; {sigma}(Drell-Yan {yields} {mu}{mu}) = (0.20 {+-} 0.04) {mu}b.

  16. Measurements of charm production and $CP$ violation with the LHCb detector

    CERN Document Server

    Pearce, Alex; Easo, Sajan

    This thesis presents two measurements made using data collected by the LHCb detector, operating at the Large Hadron Collider accelerator at the CERN particle physics laboratory. The first is a measurement of the production rates of promptly produced $D^{0}$, $D^{+}$, $D_{s}^{+}$, and $D^{*+}$ open charm mesons, using data collected in 2015 at a proton-proton centre-of-mass energy of $\\sqrt{s} = 13\\,\\mathrm{TeV}$. The second is a search for direct $CP$ violation in two three-body decays of the $\\Lambda_{c}^{+}$ charm baryon, $pK^{-}K^{+}$ and $p\\pi^{-}\\pi^{+}$, using data collected in 2011 at $\\sqrt{s} = 7\\,\\mathrm{TeV}$ and in 2012 at $\\sqrt{s} = 8\\,\\mathrm{TeV}$. For each measurement, motivation and context are given from the standpoint of improving the theoretical understanding of the Standard Model and searching for signs of physics that cannot be explained by it, and then the various statistical analysis techniques used to extract physical quantities from the data are explained. The systematic limitations...

  17. Measurement of the D{sup *{+-}} meson cross section and extraction of the charm contribution, F{sup c}{sub 2}(x, Q{sup 2}), to the proton structure in deep inelastic ep scattering with the H1 detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Andreas Werner

    2009-01-15

    Inclusive production of D{sup *} mesons in deep inelastic scattering at HERA is studied using data taken with the H1 detector in the years 2004 to 2007 corresponding to an integrated luminosity of 347 pb{sup -1}. The measurement covers the region 5meson is restricted in transverse momentum and pseudorapidity to p{sub T}(D{sup *})>1.5 GeV and vertical stroke {eta}(D{sup *}) vertical stroke < 1.5. The present measurement is based on an eightfold increased statistics compared to the previous H1 publication and provides a significantly reduced systematic error. Single and double-differential cross sections are compared to leading and next-to-leading order perturbative QCD predictions. The charm contribution, F{sup c}{sub 2} (x,Q{sup 2}), to the proton structure in different QCD evolution schemes is derived from the D{sup *} cross sections and compared to next-to-leading order perturbative QCD predictions. This F{sup c}{sub 2} measurement is performed using a factor of 18 more data compared to the previous H1 publication. The present thesis additionally describes a successfully completed hardware project: The commissioning and optimisation of the third level of the H1 Fast Track Trigger (FTT), which was fully operational from 2006 onwards. The FTT is integrated in the first three levels of the H1 trigger system and provides enhanced selectivity for events with charged particles. The third trigger level of the FTT performs a track-based event reconstruction within a latency of about 100 {mu}s. The third trigger level of the FTT is realised by a farm of PowerPC boards. Furthermore, the FTT simulation is now incorporated into the H1 trigger simulation. (orig.)

  18. Charmed Life in Contemporary London

    DEFF Research Database (Denmark)

    2011-01-01

    Documentary film produced for the Miracles and Charms exhibition at the Wellcome Collection, London......Documentary film produced for the Miracles and Charms exhibition at the Wellcome Collection, London...

  19. CDF results on CP violation in charm

    CERN Document Server

    Leo, Sabato

    2015-01-01

    I discuss the measurement of CP-violating asymmetries ($A_{\\Gamma}$) between effective lifetimes of $D^0$ or $\\bar{D}^0$ mesons. Fully reconstructed $D^0\\to K^+ K^-$ and $D^0\\to \\pi^+\\pi^-$ decays collected in $p\\bar{p}$ collisions by the Collider Detector at Fermilab experiment and corresponding to a data set of $9.7$~fb$^{-1}$ of integrated luminosity are used. The flavor of the charm meson at production is determined by exploiting the decay $D^{*+} \\to D^0 \\pi^+$. Contamination from mesons originated in $b$-hadron decays is subtracted from the sample. Signal yields as functions of the observed decay-time distributions are determined using likelihood fits and used to measure the asymmetries. The results, $A_\\Gamma (K^+K^-) = \\bigl(-1.9 \\pm 1.5~(stat) \\pm 0.4~(syst) \\bigr)\\times10^{-3}$ and $A_\\Gamma (\\pi^+\\pi^-)= \\bigl(-0.1 \\pm 1.8~(stat) \\pm 0.3~(syst) \\bigr)\\times10^{-3}$, and their combination, $A_\\Gamma = \\bigl(-1.2 \\pm 1.2 \\bigr)\\times10^{-3}$, are consistent with the SM predictions and other experimen...

  20. Baryons with open beauty dynamically generated from meson-baryon interaction in the extended local hidden gauge approach

    Science.gov (United States)

    Liang, Wei-Hong; Xiao, C. W.; Oset, E.

    2016-05-01

    In this talk we review the results about the interaction of B ¯N , B ¯Δ, B ¯*N and B ¯*Δ states with beauty B = 1, together with their coupled channels, using the extended local hidden gauge approach. The Λb(5912) and Λb(5920) observed in the experiment are dynamically generated from the meson-baryon interaction, and they couple mostly to B ¯*N , which are degenerate with the Weinberg-Tomozawa interaction. In addition, three more states with I = 0 and eight more states with I = 1 are predicted.

  1. Pi and PiPi Decays of Excited D Mesons

    OpenAIRE

    Lahde, T. A.; Riska, D. O.

    2001-01-01

    The $\\pi$ and $\\pi\\pi$ decay widths of the excited charm mesons are calculated using a Hamiltonian model within the framework of the covariant Blankenbecler-Sugar equation. The pion-light constituent quark coupling is described by the chiral pseudovector Lagrangian.

  2. Charmed Tetraquarks Tcc and Tcs from Dynamical Lattice QCD Simulations

    CERN Document Server

    Ikeda, Yoichi; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2013-01-01

    Charmed tetraquarks $T_{cc}=(cc\\bar{u}\\bar{d})$ and $T_{cs}=(cs\\bar{u}\\bar{d})$ are studied through the S-wave meson-meson interactions, $D$-$D$, $\\bar{K}$-$D$, $D$-$D^{*}$ and $\\bar{K}$-$D^{*}$, on the basis of the (2+1)-flavor lattice QCD simulations with the pion mass $m_{\\pi} \\simeq $410, 570 and 700 MeV. For the charm quark, the relativistic heavy quark action is employed to treat its dynamics on the lattice. Using the HAL QCD method, we extract the S-wave potentials in lattice QCD simulations, from which the meson-meson scattering phase shifts are calculated. The phase shifts in the isospin triplet ($I$=1) channels indicate repulsive interactions, while those in the $I=0$ channels suggest attraction, growing as $m_{\\pi}$ decreases. This is particularly prominent in the $T_{cc} (J^P=1^+,I=0)$ channel, though neither bound state nor resonance are found in the range $m_{\\pi} =410-700$ MeV. We make a qualitative comparison of our results with the phenomenological diquark picture.

  3. Charmed tetraquarks Tcc and Tcs from dynamical lattice QCD simulations

    Science.gov (United States)

    Ikeda, Yoichi; Charron, Bruno; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2014-02-01

    Charmed tetraquarks Tcc=(ccubardbar) and Tcs=(csubardbar) are studied through the S-wave meson-meson interactions, D-D, Kbar-D, D-D* and Kbar-D*, on the basis of the (2+1)-flavor lattice QCD simulations with the pion mass mπ≃410, 570 and 700 MeV. For the charm quark, the relativistic heavy quark action is employed to treat its dynamics on the lattice. Using the HAL QCD method, we extract the S-wave potentials in lattice QCD simulations, from which the meson-meson scattering phase shifts are calculated. The phase shifts in the isospin triplet (I=1) channels indicate repulsive interactions, while those in the I=0 channels suggest attraction, growing as mπ decreases. This is particularly prominent in the Tcc (JP=1+,I=0) channel, though neither bound state nor resonance are found in the range mπ=410-700 MeV. We make a qualitative comparison of our results with the phenomenological diquark picture.

  4. Charmed Bottom Baryon Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-01

    The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.

  5. Recent ARGUS results on τ/charm physics

    Science.gov (United States)

    Hölscher, Andreas

    1992-06-01

    The recent experimental results on τ and charm decays obtained by the ARGUS collaboration are presented in this talk. The results include new measurements of many exclusive decay modes of the τ lepton and of the inclusive three prong decay mode. They confirm the current world averages and stress the τ decay problem. A study of the hadronic τ decays into π-π0ντ and π-π-π+ντ performed. We searched in 29 different channels for neutrinoless τ d ecays. No evidence was found for these decays. The decay D+ → K∗+overlineK*0, which is observed for the first time, is shown together with th e decay of the D s+ meson into the same final state. These decays represent one of the few known decays of D mesons into two vector mesons. Furthermore a measurement of the semileptonic Λc+ decay is shown.

  6. The QCD equation of state with charm quarks from lattice QCD

    Science.gov (United States)

    Cheng, Michael

    Recently, there have been several calculations of the QCD equation of state (EoS) on the lattice. These calculations take into account the two light quarks and the strange quark, but have ignored the effects of the charm quark, assuming that the charm mass (mc ≈ 1300 MeV) is exponentially suppressed at the temperatures which are explored. However, future heavy ion collisions, such as those planned at the LHC, may well probe temperature regimes where the charm quarks play an important role in the dynamics of the QGP. We present a calculation of the charm quark contribution to the QCD EoS using p4-improved staggered fermions at Nt = 4, 6, 8. This calculation is done with a quenched charm quark, i.e. the relevant operators are measured using a valence charm quark mass on a 2+1 flavor gauge field background. The charm quark masses are determined by calculating charmonium masses (metac and mJ/Psi) and fixing these mesons to their physical masses. The interaction measure, pressure, energy density, and entropy density are calculated. We find that the charm contribution makes a significant contribution, even down to temperatures as low as the pseudo-critical temperature, Tc. However, there are significant scaling corrections at the lattice spacings that we use, preventing a reliable continuum extrapolation.

  7. Charm Lifetimes and Mixing

    CERN Document Server

    Cheung, H W K

    2002-01-01

    A review of the latest results on charm lifetimes and D-mixing is presented. The e+e- collider experiments are now able to measure charm lifetimes quite precisely, however comparisons with the latest results from fixed-target experiments show that possible systematic effects could be evident. The new D-mixing results from the B-factories have changed the picture that is emerging. Although the new world averaged value of y_CP is now consistent with zero, there is still a very interesting and favoured scenario if the strong phase difference between the Doubly-Cabibbo-suppressed and the Cabibbo-flavoured D0 -> Kpi decay is large.

  8. Charm production in SIBYLL

    CERN Document Server

    Engel, Ralph; Gaisser, Thomas K; Riehn, Felix; Stanev, Todor

    2015-01-01

    SIBYLL 2.1 is an event generator for hadron interactions at the highest energies. It is commonly used to analyze and interpret extensive air shower measurements. In light of the first detection of PeV neutrinos by the IceCube collaboration the inclusive fluxes of muons and neutrinos in the atmosphere have become very important. Predicting these fluxes requires understanding of the hadronic production of charmed particles since these contribute significantly to the fluxes at high energy through their prompt decay. We will present an updated version of SIBYLL that has been tuned to describe LHC data and extended to include the production of charmed hadrons.

  9. A time-dependent measurement of charm CP violation at LHCb

    CERN Multimedia

    Smith, M

    2014-01-01

    A time dependent analysis of CP violation in charm mesons is presented through the measurement of the observable $A_{\\Gamma}$. This observable involves precise measurements of the D0 lifetime as it decays to a CP eigenstate. The results presented are the most precise to date. No CP violation is observed.

  10. Measurement of the Semileptonic Branching Ratio of Charm Hadrons Produced in $Z^{0} \\to c\\bar{c}$ Decays

    CERN Document Server

    Abbiendi, G; Alexander, Gideon; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kühl, T; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mader, W F; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Surrow, B; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01

    The inclusive charm hadron semileptonic branching fractions B(c to e) and B(c to mu) in Z to ccbar events have been determined using 4.4 million hadronic Z decays collected with the OPAL detector at LEP. A charm-enriched sample is obtained by selecting events with reconstructed D*+- mesons. Using leptons found in the hemisphere opposite that of the D*+- mesons, the semileptonic branching fractions of charm hadrons are measured to be B(c to e) = 0.103 +-0.009 +0.009 -0.008 and B(c to mu) = 0.090 +-0.007 +0.007 -0.006 where the first errors are in each case statistical and the others systematic. Combining these measurements, an inclusive semileptonic branching fraction of charm hadrons of B(c to l) = 0.095 +-0.006 +0.007 -0.006 is obtained.

  11. A Phase 1 Randomized, Open Label, Rectal Safety, Acceptability, Pharmacokinetic, and Pharmacodynamic Study of Three Formulations of Tenofovir 1% Gel (the CHARM-01 Study.

    Directory of Open Access Journals (Sweden)

    Ian Mcgowan

    Full Text Available The CHARM-01 study characterized the safety, acceptability, pharmacokinetics (PK, and pharmacodynamics (PD of three tenofovir (TFV gels for rectal application. The vaginal formulation (VF gel was previously used in the CAPRISA 004 and VOICE vaginal microbicide Phase 2B trials and the RMP-02/MTN-006 Phase 1 rectal safety study. The reduced glycerin VF (RGVF gel was used in the MTN-007 Phase 1 rectal microbicide trial and is currently being evaluated in the MTN-017 Phase 2 rectal microbicide trial. A third rectal specific formulation (RF gel was also evaluated in the CHARM-01 study.Participants received 4 mL of the three TFV gels in a blinded, crossover design: seven daily doses of RGVF, seven daily doses of RF, and six daily doses of placebo followed by one dose of VF, in a randomized sequence. Safety, acceptability, compartmental PK, and explant PD were monitored throughout the trial.All three gels were found to be safe and acceptable. RF and RGVF PK were not significantly different. Median mucosal mononuclear cell (MMC TFV-DP trended toward higher values for RF compared to RGVF (1136 and 320 fmol/106 cells respectively. Use of each gel in vivo was associated with significant inhibition of ex vivo colorectal tissue HIV infection. There was also a significant negative correlation between the tissue levels of TFV, tissue TFV-DP, MMC TFV-DP, rectal fluid TFV, and explant HIV-1 infection.All three formulations were found to be safe and acceptable. However, the safety profile of the VF gel was only based on exposure to one dose whereas participants received seven doses of the RGVF and RF gels. There was a trend towards higher tissue MMC levels of TFV-DP associated with use of the RF gel. Use of all gels was associated with significant inhibition of ex vivo tissue HIV infection.ClinicalTrials.gov NCT01575405.

  12. Measurement of Charm Production Cross Sections in e^+e^- Annihilation at Energies between 3.97 and 4.26 GeV

    CERN Document Server

    Cronin-Hennessy, D; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A G; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; López, A; Méndez, H; Ramírez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K

    2008-01-01

    Using the CLEO-c detector at the Cornell Electron Storage Ring, we have measured inclusive and exclusive cross sections for the production of D+, D0 and Ds+ mesons in e+e- annihilations at thirteen center-of-mass energies between 3.97 and 4.26 GeV. Exclusive cross sections are presented for final states consisting of two charm mesons (DD, D*D, D*D*, Ds+Ds-, Ds*+Ds-, and Ds*+Ds*-) and for processes in which the charm-meson pair is accompanied by a pion. No enhancement in any final state is observed at the energy of the Y(4260).

  13. Masses and decay widths of radially excited Bottom mesons

    CERN Document Server

    Gupta, Pallavi

    2016-01-01

    Inspired from the experimental information coming from LHC [2,3] and Babar [4] for radially higher excited charmed mesons, we predict the masses and decays of the n=2 S-wave and P- wave bottom mesons using the effective lagrangian approach. Using heavy quark effective theory approach, non-perturbative parameters (?, ?1 and ?2) are fitted using the available experimental and theoretical informations on charm masses. Using heavy quark symmetry and the values of these fitted parameters, the masses of radially excited even and odd parity bottom mesons with and without strangness are predicted. These predicted masses led in constraining the decay widths of these 12 states, and also shed light on the unknown values of the higher hadronic coupling constants eeg 2 SH and eeg 2 TH. Studying the properties like masses, decays of 2S and 2P states and some hadronic couplings would help forthcoming experiments to look into these states in future.

  14. Couplings between the ρ and D and D* mesons

    Science.gov (United States)

    El-Bennich, Bruno; Paracha, M. Ali; Roberts, Craig D.; Rojas, Eduardo

    2017-02-01

    We compute couplings between the ρ -meson and D and D* mesons—D(*)ρ D(*)—that are relevant to phenomenological meson-exchange models used to analyze nucleon-D -meson scattering and explore the possibility of exotic charmed nuclei. Our framework is built from elements constrained by Dyson-Schwinger equation studies in QCD, and therefore expresses a simultaneous description of light- and heavy-quarks and the states they constitute. We find that all interactions, including the three independent D*ρ D* couplings, differ markedly amongst themselves in strength and also in range, as measured by their evolution with ρ -meson virtuality. As a consequence, it appears that one should be cautious in using a single coupling strength or parametrization for the study of interactions between D(*) mesons and matter.

  15. Search for charmed particles

    Energy Technology Data Exchange (ETDEWEB)

    Ascoli, G.; Cooper, J.; Francis, W.; Holloway, L.; Kirk, T.; Koester, L.; Kruse, U.; Sard, R.; /Illinois U., Urbana; Loomis, A.; Sessoms, A.; Wilson, R.; /Harvard U.

    1975-10-01

    We propose to use the CCM spectrometer to carry out a sensitive search for charmed particles produced in strong interactions at a nominal beam energy of 150 GeV/c. We limit ourselves to production in the beam diffraction region for reasons of acceptance and reconstruction. We present results of a test run undertaken in April 1975 to demonstrate the feasibility of K{sub S}{sup 0} trigger, which we incorporate in the present proposal. Results of the test are combined with new insights which increase our sensitivity to charmed particle production by a large factor. We request a total of 2 x 10{sup 11} negative pions at a rate of 10{sup 6} per pulse. With this illumination we estimate that we can measure a large number of hadronic decay modes. We make estimates of enhancements in mass spectra from charmed particle production and decay and calculate expected backgrounds using data from existing experiments. With conservative assumptions about the charmed particle model, we calculate effects corresponding to ten or more standard deviations in our most favorable channels.

  16. Charm physics at LHCb

    CERN Document Server

    Di Canto, A

    2015-01-01

    An overview of the latest LHCb’s measurements in the charm physics sector is presented. This includes searches for rare decays, measurements of direct and indirect CP -violating observables and precise determination of mixing parame- ters using “wrong-sign” D 0 → K + π − decays

  17. Charm Physics Performance Studies for PANDA

    CERN Document Server

    Biegun, Aleksandra

    2010-01-01

    The study of the charmonium (cbar c) system is a powerful tool to understand the strong interaction. In pbar p annihilations studied with PANDA, the mass and width of the charmonium state, such as h_c, will be measured with an excellent accuracy, determined by the very precise knowledge of the momentum, p, beam resolution (dp/p=10e(-4)-10e(-5)) and not limited by the resolution of the detector. The analysis of h_c demonstrates the feasibility to accurately determine a specific final state in the spectrum of charmed mesons. The preliminary background analysis of the pbar p -> pi0 pi0 pi0 decay competing with a signal channel pbar p -> h_c -> eta_c + gamma -> (pi0 + pi0 + eta) + gamma is under control. A comparison of three decay modes of charmonium h_c via the electromagnetic transition is presented.

  18. Observation of associated production of a Z boson with a D meson in the forward region

    Energy Technology Data Exchange (ETDEWEB)

    Aaij, R. [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Adeva, B. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Adinolfi, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol (United Kingdom); Affolder, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool (United Kingdom); Collaboration: The LHCb Collaboration; and others

    2014-04-14

    A search for associated production of a Z boson with an open charm meson is presented using a data sample, corresponding to an integrated luminosity of 1.0 fb{sup −1} of proton-proton collisions at a centre-of-mass energy of 7 TeV, collected by the LHCb experiment. Seven candidate events for associated production of a Z boson with a D{sup 0} meson and four candidate events for a Z boson with a D{sup +} meson are observed with a combined significance of 5.1 standard deviations. The production cross-sections in the forward region are measured to be σ{sub Z→μ{sup +}μ{sup −},D{sup 0}} = 2.50±1.12±0.22 pb and σ{sub Z→μ{sup +}μ{sup −},D{sup +}} = 0.44±0.23±0.03 pb, where the first uncertainty is statistical and the second systematic.

  19. Charm Production and QCD Analysis at HERA and LHC

    CERN Document Server

    Zenaiev, Oleksandr; Foster, Brian; McNulty, Ronan

    2015-01-01

    In this thesis the study of charm production in ep and pp collisions is presented. The heavy- quark masses provide a hard scale, allowing the application of perturbative QCD. A measurement of D + -meson production in deep inelastic scattering with the ZEUS detector at HERA is presented. The analysis was performed using a data sample with an integrated luminosity of 354 pb-1. Di erential cross sections were measured as a function of virtuality Q 2 , inelasticity y , transverse momentum and pseudorapidity of the D + mesons. Lifetime infor- mation was used to reduce the combinatorial background significantly. Next-to-leading-order QCD predictions in the fixed-flavour-number scheme were compared to the data. This measurement was combined with other H1 and ZEUS measurements of charm produc- tion. The combination was performed at inclusive level for the reduced charm cross sections, which were obtained from the measured visible cross sections, extrapolated to the full phase space using the shape of the theoretical ...

  20. Lattice calculation of nonleptonic charm decays

    Energy Technology Data Exchange (ETDEWEB)

    Simone, J.N.

    1991-11-01

    The decays of charmed mesons into two body nonleptonic final states are investigated. Weak interaction amplitudes of interest in these decays are extracted from lattice four-point correlation functions using a effective weak Hamiltonian including effects to order G{sub f} in the weak interactions yet containing effects to all orders in the strong interactions. The lattice calculation allows a quantitative examination of non-spectator processes in charm decays helping to elucidate the role of effects such as color coherence, final state interactions and the importance of the so called weak annihilation process. For D {yields} K{pi}, we find that the non-spectator weak annihilation diagram is not small, and we interpret this as evidence for large final state interactions. Moreover, there is indications of a resonance in the isospin {1/2} channel to which the weak annihilation process contributes exclusively. Findings from the lattice calculation are compared to results from the continuum vacuum saturation approximation and amplitudes are examined within the framework of the 1/N expansion. Factorization and the vacuum saturation approximation are tested for lattice amplitudes by comparing amplitudes extracted from lattice four-point functions with the same amplitude extracted from products of two-point and three-point lattice correlation functions arising out of factorization and vacuum saturation.

  1. Lattice calculation of nonleptonic charm decays

    Energy Technology Data Exchange (ETDEWEB)

    Simone, James Nicholas [Univ. of California, Los Angeles, CA (United States)

    1991-11-01

    The decays of charmed mesons into two body nonleptonic final states are investigated. Weak interaction amplitudes of interest in these decays are extracted from lattice four-point correlation functions using a effective weak Hamiltonian including effects to order Gf in the weak interactions yet containing effects to all orders in the strong interactions. The lattice calculation allows a quantitative examination of non-spectator processes in charm decays helping to elucidate the role of effects such as color coherence, final state interactions and the importance of the so called weak annihilation process. For D → Kπ, we find that the non-spectator weak annihilation diagram is not small, and we interpret this as evidence for large final state interactions. Moreover, there is indications of a resonance in the isospin 1/2 channel to which the weak annihilation process contributes exclusively. Findings from the lattice calculation are compared to results from the continuum vacuum saturation approximation and amplitudes are examined within the framework of the 1/N expansion. Factorization and the vacuum saturation approximation are tested for lattice amplitudes by comparing amplitudes extracted from lattice four-point functions with the same amplitude extracted from products of two-point and three-point lattice correlation functions arising out of factorization and vacuum saturation.

  2. SU(4) flavor symmetry breaking in D-meson couplings to light hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Fontoura, C.E. [Instituto Tecnologico da Aeronautica, DCTA, Sao Jose dos Campos, SP (Brazil); Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil); Haidenbauer, J. [Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Krein, G. [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)

    2017-05-15

    The validity of SU(4)-flavor symmetry relations of couplings of charmed D-mesons to light mesons and baryons is examined with the use of {sup 3}P{sub 0} quark-pair creation model and nonrelativistic quark-model wave functions. We focus on the three-meson couplings ππρ, KKρ and DDρ and baryon-baryon-meson couplings NNπ, NΛK and NΛ{sub c}D. It is found that SU(4)-flavor symmetry is broken at the level of 30% in the DDρ tree-meson couplings and 20% in the baryon-baryon-meson couplings. Consequences of these findings for DN cross sections and existence of bound states D-mesons in nuclei are discussed. (orig.)

  3. Photoproduction of charmed baryons

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J. J.

    1980-01-01

    The results of a search for the photoproduction of charmed baryons in the broad-band neutral beam at Fermi National Accelerator Laboratory are reported. The lowest lying charmed baryon ({lambda}/sub c//sup +/) is observed through its decay to p-anti K/sup 0/. The cross section times branching ratio of {gamma} + C --> {lambda}/sub c//sup +/ + X, {gamma} + C --> p + anti K/sup 0/ is measured to be sigma B = 3 nanobarns/nucleon. The total error on this measurement is estimated to be -20% to +40%. The mass of the {lambda}/sub c//sup +/ is found to be 2.284 +- 0.001 GeV/c/sup 2/, in good agreement with the Mark II result from SPEAR. Upper limits (90% confidence level) are set on sigma B for the modes {lambda}/sup 0/π, {lambda}/sup 0/πππ, pKπ.

  4. Results and prospects for Charm Physics for LHCb

    CERN Document Server

    Borghi, S

    2011-01-01

    Precision measurements in charm physics offer a window into a unique sector of potential New Physics interactions. LHCb is well equipped to take advantage of the enormous production cross-section of charm mesons in $pp$ collisions at $\\sqrt{s}=7$ TeV. The measurement of the $D^0 -\\bar{D}^0$ mixing parameters and the search for CP-violation in the charm sector are key physics goals of the LHCb programme. The first CP violation measurements in the charm sector, with 37 pb$^{-1}$ of data collected in 2010, are discussed. The study of $D^+ \\rightarrow K^- K^+ \\pi^+$ decays shows no indication of CP violation. The measurement of the proper time asymmetry in the time dependent analysis of $D^0\\rightarrow K^-K^+$ and $\\bar{D}^0\\rightarrow K^-K^+$ is evaluated to be $A_{\\Gamma}=(-5.9 \\pm 5.9_{stat} \\pm 2.1_{syst})$. The difference of CP asymmetry in the time integrated rates of $D^0\\rightarrow K^-K^+$ and $D^0\\rightarrow \\pi^- \\pi^+$ decays is measured to be $(-0.28 \\pm 0.70_{stat} \\pm 0.25_{syst})%$.

  5. Results and prospects for Charm Physics at LHCb

    CERN Document Server

    Borghi, S

    2011-01-01

    Precision measurements in charm physics offer a window into a unique sector of potential New Physics interactions. LHCb is well equipped to take advantage of the enormous production cross-section of charm mesons in $pp$ collisions at $\\sqrt{s}=7$ TeV. The measurement of the $D^0 -\\bar{D}^0$ mixing parameters and the search for CP-violation in the charm sector are key physics goals of the LHCb programme. The first CP violation measurements in the charm sector, with 37 pb$^{-1}$ of data collected in 2010, are discussed. The study of $D^+ \\rightarrow K^- K^+ \\pi^+$ decays shows no indication of CP violation. The measurement of the proper time asymmetry, $A_{\\Gamma}$, in the time dependent analysis is evaluated to be $(-5.9 \\pm 5.9_{stat} \\pm 2.1_{syst})$. The difference of CP asymmetry in the time integrated rates of $D^0\\rightarrow K^-K^+$ and $D^0\\rightarrow \\pi^- \\pi^+$ decays is measured to be $(-0.28 \\pm 0.70_{stat} \\pm 0.25_{syst})%$.

  6. Charmed Scalar Resonances

    OpenAIRE

    Terasaki, Kunihiko

    2008-01-01

    It is pointed out that assigning D_{s0}^+(2317) to an iso-triplet tetra-quark meson is favored by experiments. It also is discussed why its neutral and doubly charged partners have never been observed in inclusive e^+e^- annihilation. To search for them, hadronic weak decays of B mesons would be better, and their production rates, Br(B_u^+ -> D^-D_{s0}^{++}(2317)) and Br(B_d^0 ->antiD^0D_{s0}^{0}(2317)), would be around 10^{-3}.

  7. Open heavy–flavour and quarkonium measurements with ALICE at the LHC

    CERN Document Server

    INSPIRE-00249244

    2013-01-01

    The ALICE detector provides excellent capabilities to study heavy quark (i.e. charm and beauty) production in proton{proton (pp) and heavy{ion collisions (AA) at the Large Hadron Collider (LHC). In ALICE, open heavy{ avour hadron production is studied through the hadronic decays of D mesons at central rapidity ( j y j < 0 : 9), and in the semi{leptonic decays of charm and beauty hadrons both at mid{rapidity and at forward rapidity (2 : 5 < y < 4). Quarkonia are measured in their di{electron and di{muon decay channels in the central barrel and in the muon spectrometer respectively, reaching in both cases zero transverse momentum. The latest results on open heavy{ avour and quarkonium production in pp ( p s = 2.76 TeV and p s = 7 TeV) and PbPb ( p s NN = 2.76 TeV) collisions are presented

  8. Charm and beauty production from Fermilab experiment 789

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.N.; Cooper, W.E.; Glass, H.D.; Gounder, K.N.; Mishra, C.S. [Fermi National Accelerator Lab., Batavia, IL (United States); Boissevain, J.; Carey, T.A.; Jansen, D.M.; Jeppesen, R.G.; Kapustinsky, J.S. [Los Alamos National Lab., NM (United States)] [and others

    1994-12-31

    Fermilab E789 is a fixed-target charm and beauty experiment which uses a 2-arm spectrometer outfitted with a silicon vertex detector to look for 2-body decays of charm and beauty. The differential cross section for production and the nuclear dependence of neutral D meson production, and the D{sup 0}/D{sup 0}-bar production asymmetry has been measured. Evidence has been seen for beauty production via the inclusive decay B {yields} J/{psi}X, by observing J/{psi} decays well downstream of the target, and have measured a differential cross section for J/{psi} from b or b-bar for 800 GeV pN collisions. (author). 4 refs., 4 figs.

  9. The neutron EDM vs up and charm flavour violation

    CERN Document Server

    Sala, Filippo

    2014-01-01

    We derive a strong bound on the chromo-electric dipole moment of the charm quark, and we quantify its impact on models that allow for a sizeable flavour violation in the up quark sector. In particular we show how the constraints coming from the charm and up CEDMs limit the size of new physics contributions to direct flavour violation in D meson decays. We also specialize our analysis to the cases of split-families Supersymmetry and composite Higgs models. The results we expose motivate an increase in experimental sensitivity to fundamental hadronic dipoles, and a further exploration of the SM contribution to both flavour violating D decays and nuclear electric dipole moments.

  10. D mesons in a magnetic field

    CERN Document Server

    Gubler, Philipp; Lee, Su Houng; Oka, Makoto; Ozaki, Sho; Suzuki, Kei

    2015-01-01

    We investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral ans\\"atze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension--5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixing effects almost completely saturate the mass shifts obtained in our sum rule analysis.

  11. D¯ D meson pair production in antiproton-nucleus collisions

    Science.gov (United States)

    Shyam, R.; Tsushima, K.

    2016-10-01

    We study the D ¯D (D¯0D0 and D-D+) charm meson pair production in antiproton (p ¯) induced reactions on nuclei at beam energies ranging from threshold to several GeV. Our model is based on an effective Lagrangian approach that has only the baryon-meson degrees of freedom and involves the physical hadron masses. The reaction proceeds via the t -channel exchanges of Λc+, Σc+, and Σc++ baryons in the initial collision of the antiproton with one of the protons of the target nucleus. The medium effects on the exchanged baryons are included by incorporating in the corresponding propagators, the effective charm baryon masses calculated within a quark-meson coupling (QMC) model. The wave functions of the bound proton have been determined within the QMC model as well as in a phenomenological model where they are obtained by solving the Dirac equation with appropriate scalar and vector potentials. The initial- and final-state distortion effects have been approximated by using an eikonal approximation-based procedure. Detailed numerical results are presented for total and double differential cross sections for the D¯0D0 and D-D+ production reactions on 16O and 90Zr targets. It is noted that at p ¯ beam momenta of interest to the P ¯ ANDA experiment, medium effects lead to noticeable enhancements in the charm meson production cross sections.

  12. Electrons from decays of open charm and beauty hadrons in p-Pb collisions at √(s{sub NN})=5.02 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Jan

    2016-10-17

    Charm and beauty quarks serve as a probe to study the deconfined medium of a quark-gluon plasma observed in A-A collisions. Due to their large mass they are produced in the first moments of the collision and interact with the expanding medium. Cold nuclear matter effects such as the modification of the nuclear Parton Distribution Functions in the Pb nuclei, parton momentum (k{sub T}) broadening from soft scattering processes and initial- and final-state parton energy loss play a role in nuclear collisions. These effects can be studied by a reference measurement in p-A collisions, where an extended medium is not believed to be formed. In this work the measurement of the production of electrons from semi-leptonic decays of heavy-flavor hadrons as function of the transverse momentum in p-Pb collisions at √(s{sub NN})=5.02 TeV with ALICE at the LHC is presented. The measurement of electrons from heavy-flavor hadron decays requires a precise determination of the electron background. For the first time in this kind of measurement with ALICE the main contribution to the electron background is estimated by tagging electrons from e{sup +}e{sup -}γ Dalitz decays and γ-conversions, leading to a substantial reduction of the relative systematic uncertainties compared to previous measurements in pp collisions. A reference measurement for pp collisions at √(s)=5.02 TeV was interpolated from measurements in pp collisions at √(s)=2.76 TeV and √(s)=7 TeV. The determined nuclear modification factor of electrons measured in the p{sub T}-range 0.5

  13. Study of no-charmed semi-leptonic decays of B mesons and measurement of the V{sub ub} term of the CKM matrix in the experiment BABAR; Etude des desintegrations semi-leptoniques non charmees des mesons B et mesure de l'element V{sub ub} de la matrice CKM dans l'experience BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Serfass, B

    2001-09-01

    The aim of this work is to improve the accuracy of the measurement of the |V{sub ub}| term of the Cabibbo-Kobayashi-Maskawa matrix. |V{sub ub}| has been determined from the branching ratio of the decay: B{sup 0} {yields} {rho}{sup -}l{sup +}{nu} and experimental data from 22 millions BB-bar pairs has been used. We propose: branching ratio = (3.79{+-}0.41{sub -0.64}{sup +0.53}{+-}0.41).10{sup -4} and |V{sub ub}| = (3.83{+-}0.20{sub -0.34}{sup +0.26}{+-}0.60).10{sup -3}. The first part of this work explains how an accurate value of |V{sub ub}| can allow the standard model to be tested. The second part gives a description of the PEP-II collider and of the BABAR detector. The measurement of |V{sub ub}| is based on semi-leptonic decays, so an appropriate identification of leptons is required. This identification is made by the electromagnetic calorimeter and by the instrumented flux return (IFR) for electrons and muons respectively. The third part presents the analysis of exclusive semi-leptonic decays and the extraction of |V{sub ub}|. 5 modes of decay have been selected, the main difficulties rise from the presence of a neutrino that can not be detected and from the decay: b {yields} cl{nu} for which the branching ratio is about 100 times greater than that of decay: b {yields} ul{nu}. The quark c being heavier than the quark u, this implies the existence of an energy range for leptons that is not accessible to charmed decays. (A.C.)

  14. Mass Spectra of Heavy-Light Mesons in Heavy Hadron Chiral Perturbation Theory

    CERN Document Server

    Alhakami, Mohammad H

    2016-01-01

    We study the masses of the low-lying charm and bottom mesons within the framework of heavy- hadron chiral perturbation theory. We work to third order in the chiral expansion, where meson loops contribute. In contrast to previous approaches, we use physical meson masses in evaluating these loops. This ensures that their imaginary parts are consistent with the observed widths of the D-mesons. The lowest odd- and even-parity, strange and nonstrange charm mesons provide enough constraints to determine only certain linear combinations of the low-energy constants (LECs) in the effective Lagrangian. We comment on how lattice QCD could provide further information to disentangle these constants. Then we use the results from the charm sector to predict the spectrum of odd- and even-parity of the bottom mesons. The predicted masses from our theory are in good agreement with experimentally measured masses for the case of the odd-parity sector. For the even-parity sector, the B-meson states have not yet been observed; thu...

  15. Top mesons

    Energy Technology Data Exchange (ETDEWEB)

    Fabiano, N. [Perugia, Univ. (Italy)]|[INFN, Frascati (Italy). Laboratori Nazionali di Frascati

    1997-03-01

    The possibility of formation for a bound state of a t quark and a lighter one is investigated using potential model predictions and heavy quark effective theory approach. Resulting estimates for the 1S-2S splitting of the energy levels are compared to the total top decay width {Gamma}{sub t}. As for the case of toponium, their conclusions show that the probability of formation for T-mesons is negligibly small due to the high top mass value.

  16. The Role and Detectability of the Charm Contribution to Ultra High Energy Neutrino Fluxes

    CERN Document Server

    Gandhi, Raj; Watanabe, Atsushi

    2009-01-01

    It is widely believed that charm meson production and decay may play an important role in high energy astrophysical sources of neutrinos, especially those that are baryon-rich, providing an environment conducive to pp interactions. Using slow-jet supernovae (SJS) as an example of such a source, we study the detectability of high-energy neutrinos, paying particular attention to those produced from charmed-mesons. We highlight important distinguishing features in the ultra-high energy neutrino flux which would act as markers for the role of charm in the source. In particular, charm leads to significant event rates at higher energies, after the conventional (pi, K) neutrino fluxes fall off. We calculate event rates both for a nearby single source and for diffuse SJS fluxes for an IceCube-like detector. By comparing muon event rates for the conventional and prompt fluxes in different energy bins, we demonstrate the striking energy dependence in the rates induced by the presence of charm. We also show that it lead...

  17. Charm production in Pb+Pb collisions at the Large Hadron Collider energy

    CERN Document Server

    Song, Taesoo; Cabrera, Daniel; Cassing, Wolfgang; Bratkovskaya, Elena

    2015-01-01

    We study charm production in Pb+Pb collisions at $\\sqrt{s_{\\rm NN}}=$2.76 TeV in the Parton-Hadron-String-Dynamics transport approach and the charm dynamics in the partonic and hadronic medium. The charm quarks are produced through initial binary nucleon-nucleon collisions by using the PYTHIA event generator taking into account the (anti-)shadowing incorporated in the EPS09 package. The produced charm quarks interact with off-shell massive partons in the quark-gluon plasma and are hadronized into $D$ mesons through coalescence or fragmentation close to the critical energy density, and then interact with hadrons in the final hadronic stage with scattering cross sections calculated in an effective Lagrangian approach with heavy-quark spin symmetry. The PHSD results show a reasonable $R_{\\rm AA}$ and elliptic flow of $D$ mesons in comparison to the experimental data for Pb+Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV from the ALICE Collaboration. We also study the effect of temperature-dependent off-shell charm q...

  18. The total charm cross section

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R

    2007-09-14

    We assess the theoretical uncertainties on the total charm cross section. We discuss the importance of the quark mass, the scale choice and the parton densities on the estimate of the uncertainty. We conclude that the uncertainty on the total charm cross section is difficult to quantify.

  19. Measurements of $D_{S}^{\\pm}$-meson production in Au+Au collisions at $\\sqrt{s_{NN}}$ = 200 GeV in STAR

    CERN Document Server

    ,

    2016-01-01

    We present the first measurement of the nuclear modification factor $R_{AA}$ and elliptic flow $v_{2}$ of $D_{s}$ in Au+Au collisions at $\\sqrt{s_{NN}}$ = 200 GeV with the STAR detector. These results have been compared with those of other open charm mesons and strange mesons to determine how the (possibly) strangeness equilibrated partonic matter affects the $D_{s}$ meson production. We find that the nuclear modification factor of $D_{S}$ are systematically higher than unity and $D^{0}$ $R_{\\rm{AA}}$. The ratio $D_{s}/D^{0}$ is shown as a function of transverse momentum for the 10-40$\\%$ most central Au+Au collisions and compared with that in $p+p$ collisions obtained from PYTHIA. It is also compared with that in Pb-Pb collisions at 2.76 TeV by the ALICE experiment. Our measurement indicates a hint of enhancement of $D_{S}$ production in Au+Au collisions with respect to $p+p$ collisions as compared to non-strange $D$ mesons.

  20. Hadronic Decays of Charm

    CERN Document Server

    Stenson, K

    2002-01-01

    Recent hadronic charm decay results from fixed-target experiments are presented. New measurements of the D0 to K-K+K-pi+ branching ratio are shown as are recent results from Dalitz plot fits to D+ to K-K+pi+, pi+pi-pi+, K-pi+pi+, K+pi-pi+ and D_s+ to pi+pi-pi+, K+pi-pi+. These fits include measurements of the masses and widths of several light resonances as well as strong evidence for the existence of two light scalar particles, the pipi resonance sigma and the Kpi resonance kappa.

  1. Azimuthal anisotropy of D -meson production in Pb-Pb collisions at sNN =2.76 TeV

    NARCIS (Netherlands)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.|info:eu-repo/dai/nl/371577810; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.|info:eu-repo/dai/nl/371578248; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.|info:eu-repo/dai/nl/355079615; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.|info:eu-repo/dai/nl/070139032; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.|info:eu-repo/dai/nl/411885812; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A R; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.|info:eu-repo/dai/nl/411888056; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; De Caro, A.; De Cataldo, G.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Rooij, R.|info:eu-repo/dai/nl/315888644; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, O.; Dobrin, A.|info:eu-repo/dai/nl/372618715; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.|info:eu-repo/dai/nl/355502488; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Hilden, T. E.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.|info:eu-repo/dai/nl/326052577; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.

    2014-01-01

    The production of the prompt charmed mesons D0, D+, and D∗+ relative to the reaction plane was measured in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon collision of sNN=2.76TeV with the ALICE detector at the CERN Large Hadron Collider. D mesons were reconstructed via their

  2. Studies of Excited $D$ mesons in $B$ meson decays

    CERN Document Server

    AUTHOR|(CDS)2082679

    This thesis documents the studies of several three-body B + meson decays, each with a charged charmed meson in the final state. All analyses presented use a data sample recorded by the LHCb detector in 2011 and 2012, corresponding to an integrated luminosity of 3.0 $fb^{-1}$ of $pp$ collision data. The $B^{+} \\to D^{-}K^{+}\\pi^{+}$ and $B^{+} \\to D^{+}K^{+}\\pi^{-}$ decay modes are observed for the first time. The branching fraction of the favoured $B^{+} \\to D^{-}K^{+}\\pi^{+}$ decay mode is measured relative to the topologically similar $B^{+} \\to D^{-}\\pi^{+}\\pi^{+}$ decay and the $B^{+} \\to D^{-}K^{+}\\pi^{+}$ final state is used as a normalisation channel for the suppressed $B^{+} \\to D^{+}K^{+}\\pi^{-}$ decay branching fraction measurement. Searches are performed for the quasi-two-body decays $B^{+} \\to D^{+}K^{*}(892)^{0}$ and $B^{+} \\to D_{2}^{*}(2460)^{0}K^{+}$, using the sample of $B^{+} \\to D^{+}K^{+}\\pi^{-}$ candidate decays. No significant signals are observed for either decay mode and upper limits a...

  3. D-meson observables in heavy-ion collisions at LHC with EPOSHQ model

    Science.gov (United States)

    Ozvenchuk, Vitalii; Aichelin, Joerg; Gossiaux, Pol-Bernard; Guiot, Benjamin; Nahrgang, Marlene; Werner, Klaus

    2016-11-01

    We study the propagation of charm quarks in the quark-gluon plasma (QGP) created in ultrarelativistic heavy-ion collisions at LHC within EPOSHQ model. The interactions of heavy quarks with the light partons in ultrarelativistic heavy-ion collisions through the collisional and radiative processes lead to a large suppression of final D-meson spectra at high transverse momentum and a finite D-meson elliptic flow. Our results are in a good agreement with the available experimental data.

  4. Probing new CP violating observables in D meson decays

    Science.gov (United States)

    Liu, Yong-Feng; Kang, Xian-Wei

    2016-08-01

    CP violation in the charm quark sector has not been examined very well as the case for strange and beauty ones. Some novel insights into the issue on the CP violation in D meson decay are discussed. Specifically, i) the T-violating observables in D → VV decays are constructed. Assuming CPT invariance T violation implies CP violation. This is a new idea and an alternative way for probing CP violation in D decays; ii) the decay of quantum correlated DD̅ pair to vector mesons (denoted by V) is explored, which offers the new CP violating observables that have not been noticed before;

  5. Looking for charming asymmetries

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    New results presented by the LHCb collaboration on the decay of particles containing a “charm” quark delve deeper into the mystery of matter-antimatter asymmetry.   A view of the LHCb experimental cavern. (Photo: Maximilien Brice/CERN) One of the biggest challenges in physics is to understand why everything we see in our universe seems to be formed only of matter, whereas the Big Bang should have created equal amounts of matter and antimatter. CERN’s LHCb experiment is one of the best hopes for physicists looking to solve this longstanding mystery. At the VIII International Workshop on Charm Physics, which took place in Bologna earlier this month, the LHCb Collaboration presented the most precise measurement to date of a phenomenon called Charge-Parity (CP) violation among particles that contain a charm quark. CP symmetry states that laws of physics are the same if a particle is interchanged with its anti-particle (the “C” part) and if its spatia...

  6. Study of semileptonic decays of B mesons to charmed baryons

    Energy Technology Data Exchange (ETDEWEB)

    Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J. [Wayne State University, Detroit, Michigan 48202 (United States); Chadha, M.; Chan, S.; Eigen, G.; Miller, J.S.; OGrady, C.; Schmidtler, M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F. [California Institute of Technology, Pasadena, California 91125 (United States); Bliss, D.W.; Masek, G.; Paar, H.P.; Prell, S.; Sharma, V. [University of California, San Diego, La Jolla, California 92093 (United States); Asner, D.M.; Gronberg, J.; Hill, T.S.; Lange, D.J.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Roberts, D.; Ryd, A. [University of California, Santa Barbara, California 93106 (United States); Balest, R.; Behrens, B.H.; Ford, W.T.; Park, H.; Roy, J.; Smith, J.G. [University of Colorado, Boulder, Colorado 80309-0390 (United States); Alexander, J.P.; Baker, R.; Bebek, C.; Berger, B.E.; Berkelman, K.; Bloom, K.; Boisvert, V.; Cassel, D.G.; Crowcroft, D.S.; Dickson, M.; von Dombrowski, S.; Drell, P.S.; Ecklund, K.M.; Ehrlich, R.; Foland, A.D.; Gaidarev, P.; Gibbons, L.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Hopman, P.I.; Kandaswamy, J.; Kim, P.C.; Kreinick, D.L.; Lee, T.; Liu, Y.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Valant-Spaight, B.; Ward, C. [Cornell University, Ithaca, New York 14853 (United States); Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Patton, S.; Prescott, C.; Yelton, J.; Zheng, J. [University of Florida, Gainesville, Florida 32611 (United States); Brandenburg, G.; Briere, R.A.; Ershov, A.; Gao, Y.S.; Kim, D.Y.; Wilson, R.; Yamamoto, H. [Harvard University, Cambridge, Massachusetts 02138 (United States); Browder, T.E.; Li, Y.; Rodriguez, J.L. [University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Bergfeld, T.; Eisenstein, B.I.; Ernst, J.; Gladding, G.E.; Gollin, G.D.; Hans, R.M.; Johnson, E.; Karliner, I.; Marsh, M.A.; Palmer, M.; Selen, M.; Thaler, J.J.; and others

    1998-06-01

    Using data collected by the CLEO II detector at a center-of-mass energy on or near the {Upsilon}(4S) resonance, we have determined the 90{percent} confidence level upper limit B({bar B}{r_arrow}{Lambda}{sub c}{sup +}e{sup {minus}}X)/B{bold (}{bar B}{r_arrow}({Lambda}{sub c}{sup +} or {bar {Lambda}}{sub c}{sup {minus}})X{bold )}{lt}0.05 for electrons with momentum above 0.6GeV/c. We have also obtained the limit B(B{sup {minus}}{r_arrow}{Lambda}{sub c}{sup +}{bar p}e{sup {minus}}{bar {nu}}{sub e})/B({bar B}{r_arrow}{Lambda}{sub c}{sup +}{bar p}X){lt}0.04 at the 90{percent} confidence level and measured the ratio B({bar B}{r_arrow}{Lambda}{sub c}{sup +}{bar p}X)/B{bold (}{bar B}{r_arrow}({Lambda}{sub c}{sup +} or {bar {Lambda}}{sub c}{sup {minus}})X{bold )}=0.57{plus_minus}0.05{plus_minus}0.05. {copyright} {ital 1998} {ital The American Physical Society}

  7. Measurement of semileptonic B decays into orbitally excited charmed mesons.

    Science.gov (United States)

    Aubert, B; Bona, M; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Cahn, R N; Jacobsen, R G; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Walker, D; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Ulmer, K A; Wagner, S R; Ayad, R; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Karbach, M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Mader, W F; Nogowski, R; Schubert, K R; Schwierz, R; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Verderi, M; Clark, P J; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Adametz, A; Marks, J; Schenk, S; Uwer, U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Nash, J A; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Firmino da Costa, J; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; George, K A; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Schott, G; Alwyn, K E; Bailey, D; Barlow, R J; Chia, Y M; Edgar, C L; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Li, X; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Wang, W F; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Del Amo Sanchez, P; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; Hamon, O; Leruste, Ph; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Escalier, M; Esteve, L; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Benitez, J F; Cenci, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Gabareen, A M; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; West, C A; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Majewski, S A; Miyashita, T S; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Pierini, M; Prepost, R; Vuosalo, C O; Wu, S L

    2009-07-31

    We present a study of B decays into semileptonic final states containing charged and neutral D1(2420) and D_{2};{*}(2460). The analysis is based on a data sample of 208 fb;{-1} collected at the Upsilon(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. With a simultaneous fit to four different decay chains, the semileptonic branching fractions are extracted from measurements of the mass difference Deltam=m(D;{**})-m(D) distributions. Product branching fractions are determined to be B(B;{+}-->D_{1};{0}l;{+}nu_{l})xB(D_{1};{0}-->D;{*+}pi;{-})=(2.97+/-0.17+/-0.17)x10;{-3}, B(B;{+}-->D_{2};{*0}l;{+}nu_{l})xB(D_{2};{*0}-->D;{(*)+}pi;{-})=(2.29+/-0.23+/-0.21)x10;{-3}, B(B;{0}-->D_{1};{-}l;{+}nu_{l})xB(D_{1};{-}-->D;{*0}pi;{-})=(2.78+/-0.24+/-0.25)x10;{-3} and B(B;{0}-->D_{2};{*-}l;{+}nu_{l})xB(D_{2};{*-}-->D;{(*)0}pi;{-})=(1.77+/-0.26+/-0.11)x10;{-3}. In addition we measure the branching ratio Gamma(D_{2};{*}-->Dpi;{-})/Gamma(D_{2};{*}-->D;{(*)}pi;{-})=0.62+/-0.03+/-0.02.

  8. Measurement of Semileptonic B Decays into Orbitally Excited Charmed Mesons

    Science.gov (United States)

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Walker, D.; Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.; Klose, V.; Lacker, H. M.; Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Clarke, C. K.; George, K. A.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Del Amo Sanchez, P.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Gladney, L.; Biasini, M.; Covarelli, R.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.

    2009-07-01

    We present a study of B decays into semileptonic final states containing charged and neutral D1(2420) and D2*(2460). The analysis is based on a data sample of 208fb-1 collected at the Υ(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. With a simultaneous fit to four different decay chains, the semileptonic branching fractions are extracted from measurements of the mass difference Δm=m(D**)-m(D) distributions. Product branching fractions are determined to be B(B+→D10ℓ+νℓ)×B(D10→D*+π-)=(2.97±0.17±0.17)×10-3, B(B+→D2*0ℓ+νℓ)×B(D2*0→D(*)+π-)=(2.29±0.23±0.21)×10-3, B(B0→D1-ℓ+νℓ)×B(D1-→D*0π-)=(2.78±0.24±0.25)×10-3 and B(B0→D2*-ℓ+νℓ)×B(D2*-→D(*)0π-)=(1.77±0.26±0.11)×10-3. In addition we measure the branching ratio Γ(D2*→Dπ-)/Γ(D2*→D(*)π-)=0.62±0.03±0.02.

  9. Charmed and light pseudoscalar meson decay constants from HISQ simulations

    CERN Document Server

    Bazavov, A; Bouchard, C; DeTar, C; Du, D; El-Khadra, A X; Foley, J; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Kim, J; Komijani, J; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Neil, E T; Simone, J N; Sugar, R L; Toussaint, D; Van de Water, R S; Zhou, R

    2014-01-01

    We compute the leptonic decay constants $f_{D^+}$, $f_{D_s}$, and $f_{K^+}$, and the quark-mass ratios $m_c/m_s$ and $m_s/m_l$ in unquenched lattice QCD. We use the MILC highly improved staggered quark (HISQ) ensembles with four dynamical quark flavors. Our primary results are $f_{D^+} = 212.6(0.4)({}^{+1.0}_{-1.2})\\ \\mathrm{MeV}$, $f_{D_s} = 249.0(0.3)({}^{+1.1}_{-1.5})\\ \\mathrm{MeV}$, and $f_{D_s}/f_{D^+} = 1.1712(10)({}^{+29}_{-32})$, where the errors are statistical and total systematic, respectively. We also obtain $f_{K^+}/f_{\\pi^+} = 1.1956(10)({}^{+26}_{-18})$, updating our previous result, and determine the quark-mass ratios $m_s/m_l = 27.35(5)({}^{+10}_{-7})$ and $m_c/m_s = 11.747(19)({}^{+59}_{-43})$. When combined with experimental measurements of the decay rates, our results lead to precise determinations of the CKM matrix elements $|V_{us}| = 0.22487(51) (29)(20)(5)$, $|V_{cd}|=0.217(1) (5)(1)$ and $|V_{cs}|= 1.010(5)(18)(6)$, where the errors are from this calculation of the decay constants, th...

  10. Non-leptonic decays of charmed mesons into two Pseudoscalars

    CERN Document Server

    Biswas, Aritra; Abbas, Gauhar

    2015-01-01

    We examine the role of resonant coupled channel final state interactions (FSI), as well as weak annihilation and exchange contributions in explaining all the two body hadronic $D\\rightarrow PP$ decay modes data. In the un-unitarized amplitudes we include modified Wilson coefficients with non-factorizable corrections as parameters. For the hadronic form factors the z-series expansion method is used to get the $q^2$ dependence. The FSI effects are incorporated via a phenomenological approach with widths of resonances to various channels taken from observations where available, and others as additional parameters to be determined from fits of all the theoretical rates to the measured ones. Our results for the rather hard to explain $D^0\\rightarrow K^+K^-, \\pi^+\\pi^- $ are in agreement with measured values. We demonstrate that both weak exchange as well as FSI effects are required to get the correct branching ratio for the $D^0\\rightarrow K^0\\bar{K^0}$ mode. Using our unitarized amplitudes we evaluate the strong ...

  11. Nonleptonic decays of charmed mesons into two pseudoscalars

    Science.gov (United States)

    Biswas, Aritra; Sinha, Nita; Abbas, Gauhar

    2015-07-01

    We examine the role of resonant coupled channel final state interactions (FSIs), as well as weak annihilation and exchange contributions, in explaining all the two-body hadronic D →P P decay modes. In the un-unitarized amplitudes we include modified Wilson coefficients with nonfactorizable corrections as parameters. For the hadronic form factors, the z-series expansion method is used to get the q2 dependence. The FSI effects are incorporated via a phenomenological approach with widths of resonances to various channels taken from observations where available, and others as additional parameters to be determined from fits of all the theoretical rates to the measured ones. Our results for the rather hard to explain D0→K+K-,π+π- are in agreement with measured values. We demonstrate that both weak exchange and FSI effects are required to get the correct branching ratio for the D0→K0K0¯ mode. Using our unitarized amplitudes we evaluate the strong phase difference between the amplitudes for D0→K-π+ and D0→K+π- and find it to be in complete agreement with the recent BES III result.

  12. Charmed and light pseudoscalar meson decay constants from HISQ simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bazavov, Alexei; et al.

    2014-11-16

    We compute the leptonic decay constants $f_{D^+}$, $f_{D_s}$, and $f_{K^+}$, and the quark-mass ratios $m_c/m_s$ and $m_s/m_l$ in unquenched lattice QCD. We use the MILC highly improved staggered quark (HISQ) ensembles with four dynamical quark flavors. Our primary results are $f_{D^+} = 212.6(0.4)({}^{+1.0}_{-1.2})\\ \\mathrm{MeV}$, $f_{D_s} = 249.0(0.3)({}^{+1.1}_{-1.5})\\ \\mathrm{MeV}$, and $f_{D_s}/f_{D^+} = 1.1712(10)({}^{+29}_{-32})$, where the errors are statistical and total systematic, respectively. We also obtain $f_{K^+}/f_{\\pi^+} = 1.1956(10)({}^{+26}_{-18})$, updating our previous result, and determine the quark-mass ratios $m_s/m_l = 27.35(5)({}^{+10}_{-7})$ and $m_c/m_s = 11.747(19)({}^{+59}_{-43})$. When combined with experimental measurements of the decay rates, our results lead to precise determinations of the CKM matrix elements $|V_{us}| = 0.22487(51) (29)(20)(5)$, $|V_{cd}|=0.217(1) (5)(1)$ and $|V_{cs}|= 1.010(5)(18)(6)$, where the errors are from this calculation of the decay constants, the uncertainty in the experimental decay rates, structure-dependent electromagnetic corrections, and, in the case of $|V_{us}|$, the uncertainty in $|V_{ud}|$, respectively.

  13. Couplings between the $\\rho$ and $D$- and $D^\\ast$-mesons

    CERN Document Server

    El-Bennich, Bruno; Roberts, Craig D; Rojas, Eduardo

    2016-01-01

    We compute couplings between the $\\rho$-meson and $D$- and $D^\\ast$-mesons - $D^{(\\ast)}\\rho D^{(\\ast)}$ - that are relevant to phenomenological meson-exchange models used to analyse nucleon-$D$-meson scattering and explore the possibility of exotic charmed nuclei. Our framework is built from elements constrained by Dyson-Schwinger equation studies in QCD, and therefore expresses a consistent, simultaneous description of light- and heavy-quarks and the states they constitute, We find that all interactions, including the three independent $D^{\\ast} \\rho \\,D^{\\ast}$ couplings, differ markedly amongst themselves in strength and also in range, as measured by their evolution with $\\rho$-meson virtuality. As a consequence, it appears that no single coupling strength or parametrization can realistically be employed in the study of interactions between $D^{(\\ast)}$-mesons and matter.

  14. Masses of heavy-light mesons in Regge phenomenology

    Institute of Scientific and Technical Information of China (English)

    QIN Zhen; DONG Xin-Ping; WEI Ke-Wei

    2013-01-01

    The masses of some orbitally and radially excited heavy-light mesons are calculated in Regge phenomenology.The results are in reasonable agreement with the experimental data and those given in many other theoretical approaches.Based on the calculation,we suggest that the recently observed D(2550),D(2600) and D(2760) can be assigned as the charmed members of the 21S0,23S1 and 13D1 multiplets,respectively.D*s1 (2700)+ may be assigned as the charm-strange member of the 23S1 state.The results may be helpful in understanding the nature of current and future experimentally observed heavy-light mesons.

  15. Meson photoproduction (CLAS)

    Energy Technology Data Exchange (ETDEWEB)

    Steffen Strauch

    2009-10-01

    This is a brief and selective discussion of meson photoproduction measurements with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Meson photo- production is being used as a tool for various investigations, including the spectroscopy of baryons and mesons and the search for vector-meson medium modifications.

  16. Meson photoproduction (CLAS)

    Energy Technology Data Exchange (ETDEWEB)

    Steffen Strauch

    2009-10-01

    This is a brief and selective discussion of meson photoproduction measurements with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Meson photo- production is being used as a tool for various investigations, including the spectroscopy of baryons and mesons and the search for vector-meson medium modifications.

  17. Recent progress on intrinsic charm

    Science.gov (United States)

    Hobbs, T. J.

    2017-03-01

    Over the past ˜10 years, the topic of the nucleon's nonperturbative or intrinsic charm (IC) content has enjoyed something of a renaissance, largely motivated by theoretical developments involving quark modelers and PDF-fitters. In this talk I will briefly describe the importance of intrinsic charm to various issues in high-energy phenomenology, and survey recent progress in constraining its overall normalization and contribution to the momentum sum rule of the nucleon. I end with the conclusion that progress on the side of calculation has now placed the onus on experiment to unambiguously resolve the proton's intrinsic charm component.

  18. Charm production in flux tubes

    CERN Document Server

    Aguiar, C E; Nazareth, R A M S; Pech, G

    1996-01-01

    We argue that the non-perturbative Schwinger mechanism may play an important role in the hadronic production of charm. We present a flux tube model which assumes that the colliding hadrons become color charged because of gluon exchange, and that a single non-elementary flux tube is built up as they recede. The strong chromoelectric field inside this tube creates quark pairs (including charmed ones) and the ensuing color screening breaks the tube into excited hadronic clusters. On their turn these clusters, or `fireballs', decay statistically into the final hadrons. The model is able to account for the soft production of charmed, strange and lighter hadrons within a unified framework.

  19. Charm production in flux tubes

    Science.gov (United States)

    Aguiar, C. E.; Kodama, T.; Nazareth, R. A. M. S.; Pech, G.

    1996-01-01

    We argue that the nonperturbative Schwinger mechanism may play an important role in the hadronic production of charm. We present a flux tube model which assumes that the colliding hadrons become color charged because of gluon exchange, and that a single nonelementary flux tube is built up as they recede. The strong chromoelectric field inside this tube creates quark pairs (including charmed ones) and the ensuing color screening breaks the tube into excited hadronic clusters. In their turn these clusters, or ``fireballs,'' decay statistically into the final hadrons. The model is able to account for the soft production of charmed, strange, and lighter hadrons within a unified framework.

  20. Charm counting in b decays

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Carrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Bauer, C; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Walsh, J; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    The inclusive production of charmed particles in Z -> bb decays has been measured from the yield of D^0, D^+, D^+_s and Lambda_{c}^+ decays in a sample of qq events with high b purity collected with the ALEPH detector from 1992 to 1995. From these measurements, adding the charmonia production rate and an estimate of the charmed strange baryon contribution, the average number of charm quarks per b decay is determined to be n_c = 1.230 \\pm 0.036 \\pm 0.038 \\pm 0.053 where the uncertainties are due to statistics, systematic effects and branching ratios, respectively.

  1. Charm Decays With Photons In The Final State And Trigger Counter Efficiencies Study

    CERN Document Server

    Paris Davila, A

    2003-01-01

    This thesis presents a study done on the strong decay of the D0* meson using data taken with the FOCUS spectrometer at Fermi National Laboratory Accelerator at Batavia, IL. FOCUS is a fixed target experiment designed to study photo-production of charmed states. The D0* branching ratio is measured to understand D meson decays with photons in the final state. The work done in the calibration and simulation of the trigger counter efficiencies for the HxV and OH detectors that form part of the first level trigger of the spectrometer is also presented.

  2. Masses of Open-Flavour Heavy-Light Hybrids from QCD Sum-Rules

    CERN Document Server

    Ho, J; Steele, T G

    2016-01-01

    We use QCD Laplace sum-rules to predict masses of open-flavour heavy-light hybrids where one of the hybrid's constituent quarks is a charm or bottom and the other is an up, down, or strange. We compute leading-order, diagonal correlation functions of several hybrid interpolating currents, taking into account QCD condensates up to dimension-six, and extract mass predictions for all $J^P\\in\\{0^{\\pm},\\,1^{\\pm}\\}$. Within theoretical uncertainties, we find degeneracy between the heavy-nonstrange and heavy-strange hybrids in all $J^P$ channels. Also, our mass predictions are nearly degenerate under parity flips. For the charm-light hybrids there is a clear mass hierarchy of heavier scalar states which becomes less pronounced for the bottom-light hybrids. Possible effects of mixing with conventional quark-antiquark mesons are also explored.

  3. Many-Body Coulomb Gauge Exotic and Charmed Hybrids

    CERN Document Server

    Llanes-Estrada, F J; Llanes-Estrada, Felipe J.; Cotanch, Stephen R.

    2001-01-01

    Utilizing a QCD Coulomb gauge Hamiltonian with linear confinement specified by lattice, we report a relativistic many-body calculation for the light exotic and charmed hybrid mesons. The Hamiltonian successfully describes both quark and gluon sectors, with vacuum and quasiparticle properties generated by a BCS transformation and more elaborate TDA and RPA diagonalizations for the meson ($q\\bar{q}$) and glueball ($gg$) masses. Hybrids entail a computationally intense relativistic three quasiparticle ($q\\bar{q}g$) calculation with the 9 dimensional Hamiltonian matrix elements evaluated variationally by Monte Carlo techniques. Our new TDA spectrum for the nonexotic $1^{--}$ charmed ($c\\bar{c}$ and $c\\bar{c}g$) system provides an explanation for the overpopulation of the observed $J/\\psi$ states. For the important $1^{-+}$ light exotic channel we obtain hybrid masses above 2 $GeV$, in broad agreement with lattice and flux tube models, indicating that the recently observed resonances at 1.4 and 1.6 $GeV$ are of di...

  4. Charm mixing from BABAR

    Institute of Scientific and Technical Information of China (English)

    N.Neri

    2008-01-01

    We present recent results from BABAR experiment for D0-D0 mixing measurements. Mixing parameters can be measured in different ways using different D0 decay modes, here we discuss the most sensitive analyses such as DO→K+π- where we had the first evidence of charm mixing, the measurement of the ratio of lifetimes of the decays DO→K+K-and DO→π- relative to D0→K-π+, the time dependent Dalitz plot analysis of D0→K+π-π0.New limits on CP-violating time-integrated asymmetries in D0→K+K- and D0→π+π- are also discussed. The analyses presented are based on 384 fb-1 data collected with the BABAR detector at the PEP-Ⅱ asymmetric B Factory.

  5. Observation of doubly-charmed B decays at LEP

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Merle, E; Minard, M N; Nief, J Y; Pietrzyk, B; Alemany, R; Boix, G; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Bright-Thomas, P G; Casper, David William; Cattaneo, M; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Cerutti, F; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Halley, A W; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Williams, M I; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Etienne, F; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Kroha, H; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Zobernig, G

    1998-01-01

    A search for doubly-charmed B decays with both charmed mesons reconstructed is performed, using about 3.8 million hadronic Z decays recorded with the ALEPH detector at LEP. A clear signal is observed in the channels ${\\mathrm B\\rightarrow D_s \\bar D}(X)$ and ${\\mathrm B\\rightarrow D \\bar D}(X)$ (where D can be either a D$^0$, a D$^+$ or a D$^{*+}$), providing the first direct evidence for doubly-charmed B decays involving no ${\\mathrm D_s}$ production. Evidence for associated ${\\mathrm K^0_S}$ and ${\\mathrm K^{\\pm}}$ production in the decays ${\\mathrm B\\rightarrow D \\bar D}(X)$ is also presented and some candidates for completely reconstructed decays ${\\mathrm B\\rightarrow D_s \\bar D}(n\\pi)$, ${\\mathrm B\\rightarrow D \\bar D K^0_S}$ and ${\\mathrm B\\rightarrow D \\bar D K^\\pm}$ are observed. Furthermore, candidates for the two-body Cabibbo suppressed decays ${\\mathrm B^0\\rightarrow D^{*-}D^{*+}}$ and ${\\mathrm B^-\\rightarrow D^{(*)0}D^{(*)-}}$ are also observed. Measurements of the corresponding branching fracti...

  6. A model of charmed baryon-nucleon potential and 2- and 3-body bound states with charmed baryon

    CERN Document Server

    Maeda, Saori; Yokota, Akira; Hiyama, Emiko; Liu, Yan-Rui

    2015-01-01

    Potential models of the interaction between a charmed baryon ($Y_c$) and the nucleon ($N$) are constructed on the basis of a long-range meson ($\\pi$ and $\\sigma$) exchange potential as well as a short-distance quark exchange interaction. The quark cluster model is used to evaluate the short-range repulsion between $Y_c$ and $N$, while the meson exchange potentials are modified by a form factor at short distances. We determine the cutoff parameters of the form factors so as to fit the $NN$ scattering data with the same approach. The ground state charmed baryons, $\\Lambda_c$, $\\Sigma_c$ and $\\Sigma_c^*$, are included as $Y_c$, and channel couplings of relevant $Y_c N$ channels are taken into account. We propose four sets of parameters (a -- d), among which the most attractive potential (d) predicts bound $\\Lambda_c N$ $J^\\pi= 0^+$ and $1^+$ states. In order to apply the potential to a many-body problem, we construct an effective $\\Lambda_c N$ one-channel potential for the parameter set (d). It is applied to the...

  7. B Decay Charm Counting Via Topological Vertexing

    CERN Document Server

    Chou, Aaron Sze Ting

    2002-01-01

    We present a new and unique measurement of the branching fractions of b hadrons to states with 0, 1, and 2 open charm hadrons, using a sample of 350,000 hadronic Z0 decays collected during the SLD/SLC 97–98 run. The analysis takes advantage of the excellent vertexing resolution of the VXD3, a pixel-based CCD vertex detector, which allows the separation of B and cascade D decay vertices. A fit of the vertex count and the decay length distributions to distribution shapes predicted by Monte Carlo simulation allows the extraction of the inclusive branching fractions. We measure: BRB→0D X=3.7±1.1 stat±2.1 syst% BRB→2D X=17.9±1.4 stat±3.3 syst% where B, and D represent mixtures of open b and open c hadrons. The corresponding charm count, Nc = 1.188 ± 0.010 ± 0.040 ± 0.006 is consistent with previous measurement averages but slightly closer to theoretical expectations.

  8. B Decay Charm Counting via Topological Vertexing

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Aaron S

    2001-10-15

    We present a new and unique measurement of the branching fractions of b hadrons to states with 0, 1, and 2 open charm hadrons, using a sample of 350,000 hadronic Z{sup 0} decays collected during the SLD/SLC 97-98 run. The method takes advantage of the excellent vertexing resolution of the VXD3, a pixel-based CCD vertex detector, which allows the separation of B and cascade D decay vertices. A fit of the vertex count and the decay length distributions to distribution shapes predicted by Monte Carlo simulation allows the extraction of the inclusive branching fractions. We measure: BR(B {yields} (0D)X) = (3.7{+-}1.1(stat) {+-} 2.1(syst))%; and BR(B {yields} (2D)X) = (17.9{+-}1.4(stat) {+-} 3.3(syst))% where B and D represent mixtures of open b and open c hadrons. The corresponding charm count, N{sub c} = 1.188 {+-} 0.010 {+-} 0.040 {+-} 0.006 is consistent with previous measurement averages but slightly closer to theoretical expectations.

  9. Survival of Bc mesons in a hot plasma within a potential model

    CERN Document Server

    Alberico, W M; Czerski, P; De Pace, A; Nardi, M; Ratti, C

    2013-01-01

    We extend a previous work on the study of heavy charmonia and bottomonia in a deconfined quark-gluon plasma by considering the Bc family of mesons. With the introduction of this bound state of a charm and a beauty quark, we investigate at finite temperature the behavior of the quarkonium, in an energy region between the {\\psi} and the {\\Upsilon} states.

  10. Exclusive Semileptonic Decays of B Mesons to Orbitally and Radial Excited D

    CERN Document Server

    Di Pierro, Massimo; Pierro, Massimo Di; Leibovich, Adam K.

    2002-01-01

    In this paper we compute, within in the context of a relativistic quark model, the Isgur-Wise functions for exclusive semileptonic $\\bar B \\to X_c$ decays, where $X_c$ is any charmed mesons with total spin $J=0,1,2$ or one of their first excited states. The relevant matrix elements are computed by a direct numerical integration, in coordinate space, of the convolution of the wave function of the $B$ meson at rest and the wave function of the $X_c$ meson, boosted according with its recoil factor. Our results are compared with other predictions found in the existing literature.

  11. Penta-Quark States with Strangeness, Hidden Charm and Beauty

    Science.gov (United States)

    Wu, Jia-Jun; Zou, Bing-Song

    The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow N* and Λ* resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such N* with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.

  12. Penta-quark States with Strangeness, Hidden Charm and Beauty

    CERN Document Server

    Wu, Jia-Jun

    2015-01-01

    The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow $N^*$ and $\\Lambda^*$ resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such $N^*$ with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.

  13. Detection of $D^{\\pm}$ mesons production in pA-interactions at 70 GeV

    CERN Document Server

    :,; Ardashev, E; Afonin, A; Balandin, V; Basiladze, S; Berezhnev, S; Bogdanova, G; Bogolyubsky, M; Ermakov, G; Ermolov, P; Furmanec, N; Golovkin, V; Golovnia, S; Gorokhov, S; Grishin, N; Grishkevich, Ya; Karmanov, D; Kholodenko, A; Kireev, V; Kiriakov, A; Kouzmine, N; Kramarenko, V; Kubarovsky, A; Kurchaninov, L; Lanshikov, G; Leflat, A; Lyutov, S; Merkin, M; Mitrofanov, G; Petrov, V; Petukhov, Yu; Pleskach, A; Popov, V; Ronjin, V; Ryadovikov, V; Senko, V; Shalanda, N; Soldatov, M; Tikhonova, L; Tsyupa, Yu; Vischnevskaya, A; Volkov, V; Vorobiev, A; Voronin, A; Yakimchuk, V; Yukaev, A; Zapolsky, V; Zverev, E

    2013-01-01

    The results of analysis SERP-E-184 experiment data, obtained with 70 GeV proton beam irradiation of active target with carbon, silicon and lead plates are presented. For 3-prongs charged charmed mesons decays, event selection criteria were developed and detection efficiency was calculated with detailed simulation using FRITIOF7.02 and GEANT3.21 programs. Signals of decays were found and charm production inclusive cross sections estimated at near threshold energy. The lifetimes and A-dependence of cross section were measured. Yields of D mesons and their ratios in comparison with data of other experiments and theoretical predictions are presented.

  14. Another source of baryons in B meson decays

    CERN Document Server

    Dunietz, Isard; Falk, A F; Wise, M B; Isard Dunietz; Peter S Cooper; Adam F Falk; Mark B Wise

    1994-01-01

    It is usually assumed that the production of baryons in B meson decays is induced primarily by the quark level process b\\to c\\bar ud, where the charm quark hadronizes into a charmed baryon. With this assumption, the \\Lambda_c momentum spectrum would indicate that the transition B\\to\\Lambda_c X is dominated by multi-body B decays. However, a closer examination of the momentum spectrum reveals that the mass m_X against which the \\Lambda_c is recoiling almost always satisfies m_X\\agt m_{\\Xi_c}. This fact leads us to examine the hypothesis that the production of charmed baryons in B decays is in fact dominated by the underlying transition b\\to c\\bar cs, and is seen primarily in modes with two charmed baryons in the final state. We propose a number of tests of this hypothesis. If this mechanism is indeed important in baryon production, then there are interesting consequences and applications, including potentially important implications for the ``charm deficit'' in B decays.

  15. Single-electron analysis and open charm cross section in proton-proton collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Fasel, Markus

    The Large Hadron Collider (LHC) at CERN is the world’s highest energy hadron collider, providing protonproton collisions currently at a centre-of-mass energy $\\sqrt{s}$ = 8 TeV and Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV. This opens a new energy regime, which allows the study of QCD in elementary pp-collisions and in the extreme environment of Pb-Pb collisions, as well as providing a discovery potential for rare and exotic particles. ALICE is the dedicated heavy-ion experiment at the LHC. The experiment is optimised to provide excellent tracking and particle identification capabilities, in particular at low-$p_{t}$, where the bulk of the particles is produced in heavy-ion collisions as well as in proton-proton collisions. The production of heavy quarks is described in proton-proton collisions by next-to-leading order perturbative QCD (pQCD) calculations. Thus, the measurement of heavy-quark production in proton-proton collisions serves as a test of pQCD. Measurements performed at SPS, RHIC, and Tevat...

  16. Charm and Beauty Production from Secondary Vertexing at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Paul [University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)

    2010-07-01

    in events with a jet have been extracted using the decay length significance and invariant mass of secondary decay vertices. Differential cross sections as a function of Q{sup 2}, Bjorken x, p{sub T}(jet) and {eta}(jet) were measured and compared to theoretical predictions. The open charm and beauty contributions to the proton structure function F{sub 2} are extracted. Measurement of charm and beauty photoproduction from inclusive secondary vertexing at HERA-II Photoproduction of beauty and charm quarks in events with two jets has been measured with the ZEUS detector at HERA using an integrated luminosity of 130 pb{sup -1}. The beauty and charm content was extracted using the decay-length significance of the b and c hadrons and the invariant mass of the decay vertices. Differential cross sections as functions of pT(Jet) and {eta}(Jet) are compared with the Pythia leading order plus parton shower (LO+PS) Monte Carlo and QCD predictions calculated at next-to-leading order. (author)

  17. Theory overview on amplitude analyses with charm decays

    CERN Document Server

    Loiseau, B

    2016-01-01

    This contribution about amplitude analyses in multibody hadronic charm decays deals with some attempts to introduce theoretical constraints. Different effective hadronic formalism approaches are mentioned. A recent work, based on a basic weak interaction process and a Chiral unitary model to account for the final state interaction, is described in details for the $f_0(980)$ production in $D_s^+ \\to \\pi^+ \\pi^+ \\pi^-$ and $D_s^+ \\to \\pi^+ K^+ K^- $ decays. Within the framework of the diagrammatic approach and flavor symmetry, a global analysis of two-body $D$ decays into a vector meson and a pseudoscalar meson is presented. A quasi-two-body QCD factorization model for $D$ decays into three mesons and its recent application to $D^0 \\to K_S^0 \\pi^+ \\pi^-$ is outlined. For processes with final-state pions and kaons and as an alternative to the sum of Breit-Wigner amplitudes, often used in experimental Dalitz-plot analyses, amplitude parametrizations, in term of unitary $\\pi \\pi$, $\\pi K$ and $K \\bar K$ form facto...

  18. Compositeness of the strange, charm and beauty odd parity $\\Lambda$ states

    CERN Document Server

    Garcia-Recio, C; Nieves, J; Salcedo, L L; Tolos, L

    2015-01-01

    We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon states. Thus, we pay attention to $\\Lambda-$like states in the strange, charm and beauty, sectors which are dynamically generated using a unitarized meson-baryon model. In the strange sector we use an SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are involved. In the three examined flavor sectors, we obtain two $J^P=1/2^-$ and one $J^P=3/2^-$ $\\Lambda$ states. We find that the $\\Lambda$ states which are bound states (the three $\\Lambda_b$) or narrow resonances (one $\\Lambda(1405)$ and one $\\Lambda_c(2595)$) are well described as molecular states composed of $s$-wave meson-baryon pairs. The $\\frac{1}{2}^-$ wide $\\Lambda(1405)$ and $\\Lambda_c(2595)$ as well as the $\\frac{3}{2}^-$ $\\Lambda(1520)$ and $\\Lambda_c(2625)$ states display smaller compositeness and so they...

  19. Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA

    NARCIS (Netherlands)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Alexa, C.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Baghdasaryan, A.; Baghdasaryan, S.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartel, W.; Bartosik, N.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Belov, P.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Boudry, V.; Bozovic-Jelisavcic, I.; Bold, T.; Bruemmer, N.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Brock, I.; Brownson, E.; Brugnera, R.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Bussey, P. J.; Bylinkin, A.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Cantun Avila, K. B.; Capua, M.; Carlin, R.; Catterall, C. D.; Ceccopieri, F.; Cerny, K.; Chekanov, S.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J. G.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Cvach, J.; D'Agostini, G.; Dainton, J. B.; Dal Corso, F.; Daum, K.; Delvax, J.; Dementiev, R. K.; Derrick, M.; Devenish, R. C. E.; De Pasquale, S.; De Wolf, E. A.; del Peso, J.; Diaconu, C.; Dobre, M.; Dobur, D.; Dodonov, V.; Dolgoshein, B. A.; Dolinska, G.; Dossanov, A.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eckerlin, G.; Egli, S.; Eisenberg, Y.; Elsen, E.; Ermolov, P. F.; Eskreys, A.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Fischer, D. -J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gabathuler, E.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gogota, O.; Golubkov, Y. A.; Goettlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bold, I.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Huettmann, A.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K. H.; Hladky, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H. -P.; Janssen, X.; Januschek, F.; Jones, T. W.; Jonsson, L.; Juengst, M.; Jung, A. W.; Jung, H.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, P.; Kaur, M.; Kenyon, I. R.; Keramidas, A.; Khein, L. A.; Kiesling, C.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Kleinwort, C.; Koetz, U.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, I.; Korzhavina, I. A.; Kostka, P.; Kotanski, A.; Kowalski, H.; Kraemer, M.; Kretzschmar, J.; Krueger, K.; Kuprash, O.; Kuze, M.; Landon, M. P. J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Lendermann, V.; Levchenko, B. B.; Levonian, S.; Libov, V.; Limentani, S.; Ling, T. Y.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Loehr, B.; Lohmann, W.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Maeda, J.; Magill, S.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martyn, H. -U.; Mastroberardino, A.; Mattingly, M. C. K.; Maxfield, S. J.; Mehta, A.; Melzer-Pellmann, I. -A.; Mergelmeyer, S.; Meyer, A. B.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Idris, F. Mohamad; Monaco, V.; Montanari, A.; Moreau, F.; Mujkic, K.; Mueller, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, T.; Niebuhr, C.; Nigro, A.; Nikitin, D.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Olsson, J. E.; Onishchuk, Y.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G. D.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perez, E.; Perlanski, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piotrzkowski, K.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Plucinski, P.; Pokorny, B.; Pokrovskiy, N. S.; Polifka, R.; Polini, A.; Povh, B.; Proskuryakov, A. S.; Przybycien, M.; Radescu, V.; Raicevic, N.; Raval, A.; Ravdandorj, T.; Reeder, D. D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Tabasco, J. E. Ruiz; Rusakov, S.; Ruspa, M.; Sacchi, R.; Salek, D.; Samson, U.; Sankey, D. P. C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schoeffel, L.; Schoenberg, V.; Schoening, A.; Schoerner-Sadenius, T.; Schultz-Coulon, H. -C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shcheglova, L. M.; Shehzadi, R.; Shushkevich, S.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Smith, W. H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, J.; Szuba, D.; Tapper, A. D.; Tassi, E.; Terron, J.; Theedt, T.; Thompson, P. D.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Traynor, D.; Truoel, P.; Trusov, V.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Vazquez, M.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Abdullah, W. A. T. Wan; Wegener, D.; Whitmore, J. J.; Wichmann, K.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wuensch, E.; Yaguees-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Zacek, J.; Zalesak, J.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zlebcik, R.; Zohrabyan, H.; Zolkapli, Z.; Zomer, F.; Zotkin, D. S.; Zarnecki, A. F.

    2013-01-01

    Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections sigma(c (c) over bar)(red) for charm production are obtained in the kinematic range of photon virtuality 2.5

  20. A Tau-Charm Factory at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Seth, K.K. [Northwestern Univ., Evanston, IL (United States)

    1994-04-01

    It is proposed that a Tau Charm Factory represents a natural extension of CEBAF into higher energy domains. The exciting nature of the physics of charm quarks and tau leptons is briefly reviewed and it is suggested that the concept of a linac-ring collider as a Tau Charm Factory at CEBAF should be seriously studied.

  1. Tau and Charm physics highlights

    CERN Document Server

    Roudeau, Patrick

    2002-01-01

    In tau physics, we are at the frontier between the completion of the LEP program and the start of analyses from b-factories, which are expected to produce results in the coming years. Nice results from CLEO are steadily delivered in the meantime. For charm, impressive progress have been achieved by fixed target experiments in the search for CP violation and D^0 - \\bar D^0 oscillations. First results from b-factories demonstrate the power of these facilities in such areas. The novel measurement of the D* width by CLEO happens to be rather different from current expectations. The absence of a charm factory explains the lack or the very slow progress in the absolute scale determinations for charm decays.

  2. The study of D{sup {+-}} and D{sup 0} meson production in deep inelastic scattering at HERA II with the ZEUS detector

    Energy Technology Data Exchange (ETDEWEB)

    Nicholass, Daniel

    2008-12-15

    Installed in 2000/2001, the ZEUS micro vertex detector provided the capability to reconstruct secondary vertices displaced from the primary by distances of the order 100 {mu}m. In order to be useful for tagging heavy flavour mesons the micro vertex detector was aligned with a combination of tracks from cosmic events and ep events in the HERA collider. This thesis presents measurements of D{sup {+-}} and D{sup 0} meson production obtained with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb{sup -1}. The measurements cover the kinematic range 5 < Q{sup 2} < 1000 GeV{sup 2}, 0.02 < y < 0.7, 1.5 < p{sub T}{sup D} < 15 GeV and vertical stroke {eta}{sup D} vertical stroke < 1.6. Combinatorial background to the D meson signals is reduced by using the ZEUS micro vertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading order QCD which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open charm contribution, F{sub 2}{sup c} {sup anti} {sup c}, to the proton structure function, F{sub 2}. (orig.)

  3. Charm hadroproduction results from Selex

    CERN Document Server

    Iori, M

    2000-01-01

    The SELEX experiment (E781) is 3-stage magnetic spectrometer for a high statistics study of hadroproduction of charm baryons out to large x_F using 650 Gev Sigma-, pi- and p beams. The main features of the spectrometer are: a high precision silicon vertex system, powerful particle identification provided by TRD and RICH, forward Lambda decay spectrometer and 3-stage lead glass photon detector. An experiment overview and spectrometer features are shown. Reconstructed charm states and results on Lambda_c, D+ particles and antiparticles produced by Sigma-, pi- and p beams at x_F>0.3 and asymmetry for Lambda_c are presented.

  4. Baryon to meson transition distribution amplitudes and their spectral representation

    CERN Document Server

    Pire, Bernard; Szymanowski, Lech

    2011-01-01

    We consider the problem of construction of a spectral representation for nucleon to meson transition distribution amplitudes (TDAs), non-diagonal matrix elements of nonlocal three quark light-cone operators between a nucleon and a meson states. We introduce the notion of quadruple distributions and generalize Radyshkin's factorized Ansatz for this issue. Modelling of baryon to meson TDAs in the complete domain of their definition opens the way to quantitative estimates of cross-sections for various hard exclusive reactions.

  5. Semi-Leptonic and Non-Leptonic B Meson Decays to Charmed Mesons

    Institute of Scientific and Technical Information of China (English)

    付慧峰; 王国利; 王志会; 陈相君

    2011-01-01

    We study the semi-leptonic and non-Ieptonic B weak decays that are governed by the B→D(*) transitions. The branching ratios, CP asymmetries (CPAs) and polarization fractions of non-leptonic decays are investigated in the factorization approximation (FA). The B →D(*) form factors are estimated in the Salpeter method. Our estimation on branching ratios is in general agreement with existing experimental data. For CPAs and polarizations, comparisons among the FA results, the perturbative QCD predictions and experimental data are presented.%We study the semi-leptonic and non-leptonic B weak decays that are governed by the B → D(*)transitions.The branching ratios,CP asymmetries(CPAs)and polarization fractions of non-leptonic decays are investigated in the factorization approximation(FA).The B →* D(*)form factors are estimated in the Salpeter method.Our estimation on branching ratios is in general agreement with existing experimental data.For CPAs and polarizations,comparisons among the FA results,the perturbative QCD predictions and experimental data are presented.

  6. Open heavy flavour and quarkonium production as a function of the multiplicity in pp and p-Pb collisions with ALICE at the LHC arXiv

    CERN Document Server

    Valencia Palomo, Lizardo

    Due to the large masses of beauty and charm quarks, their production cross sections can be computed in the framework of perturbative Quantum Chromodynamics. The correlation of quarkonium and open heavy-flavour hadron yields with charged particles produced in proton-proton (pp) and proton-lead (p-Pb) collisions can shed light on the interplay between hard and soft mechanisms in particle production. In this proceeding the results from D-meson and J/$\\psi$ yields as a function of the charged-particle multiplicity in pp and p-Pb collisions are presented. Comparisons to theoretical models are also discussed.

  7. Measurement of azimuthal correlations between D mesons and charged hadrons with ALICE at the LHC

    Directory of Open Access Journals (Sweden)

    Colamaria Fabio

    2014-01-01

    Full Text Available The comparison of angular correlations between charmed mesons and charged hadrons produced in pp, p-Pb and Pb-Pb collisions can give insight into the mechanisms through which charm quarks lose energy in a QGP medium, produced in ultra-relativistic heavy-ion collisions, and can help to recognize possible modifications of their hadronization induced by the presence of the QGP. The analysis of pp and p-Pb data and the comparison with predictions from pQCD calculations, besides constituting the necessary reference for interpreting Pb-Pb data, can provide relevant information on charm production and fragmentation processes. In addition, possible differences between the results from pp and p-Pb collisions can give information on the presence of cold nuclear matter effects, affecting the charm production and hadronization in the latter collision system. A study of azimuthal correlations between D0, D+, and D*+ mesons and charged hadrons in pp collisions at √s = 7 TeV and p-Pb collisions at √sNN = 5.02 TeV are presented. D mesons were reconstructed from their hadronic decays at central rapidity in the transverse-momentum range 3 ≤ pTD ≤ 16 GeV/c and were correlated to charged particles reconstructed in the pseudorapidity range |η| < 0.8. Perspectives for the measurement in Pb-Pb collisions at √sNN = 2.76 TeV will also be presented.

  8. Pentaquark states with hidden charm

    Science.gov (United States)

    Bijker, Roelof

    2017-07-01

    I develop an extension of the usual three-flavor quark model to four flavors (u, d, s and c), and discuss the classification of pentaquark states with hidden charm. This work is motivated by the recent observation of such states by the LHCb Collatoration at CERN.

  9. Measurements of prompt charm production cross-sections in $pp$ collisions at $\\sqrt{s} = 5$ TeV

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baszczyk, Mateusz; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Bordyuzhin, Igor; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Déléage, Nicolas; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Furfaro, Emiliano; Färber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David

    2017-06-28

    Production cross-sections of prompt charm mesons are measured using data from $pp$ collisions at the LHC at a centre-of-mass energy of $5\\,$TeV. The data sample corresponds to an integrated luminosity of $8.60\\pm0.33\\,$pb$^{-1}$ collected by the LHCb experiment. The production cross-sections of $D^0$, $D^+$, $D_s^+$, and $D^{*+}$ mesons are measured in bins of charm meson transverse momentum, $p_{\\text{T}}$, and rapidity, $y$. They cover the rapidity range $2.0 < y < 4.5$ and transverse momentum ranges $0 < p_{\\text{T}} < 10\\, \\text{GeV}/c$ for $D^0$ and $D^+$ and $1 < p_{\\text{T}} < 10\\, \\text{GeV}/c$ for $D_s^+$ and $D^{*+}$ mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of $1 < p_{\\text{T}} < 8\\, \\text{GeV}/c$ are determined to be \\begin{equation*} \\sigma(pp\\rightarrow D^0 X) = 1190 \\pm 3 \\pm 64\\,\\mu\\text{b} \\end{equation*} \\begin{equation*} \\sigma(pp\\rightarrow D^+ X) = 456 \\pm 3 \\pm 34\\,\\mu\\text{b} \\end{equation*} \\beg...

  10. Measurement of charm production at central rapidity in proton-proton collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Abelev, B.; Adamova, D.; Adare, A.M.; Aggarwal, M.M.; Aglieri Rinella, G.; Agocs, A.G.; Agostinelli, A.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, N.; Masoodi, A.Ahmad; Ahn, S.U.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Molina, R.Alfaro; Alici, A.; Alkin, A.; Almaraz Avina, E.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Andrei, C.; Andronic, A.; Anguelov, V.; Anson, C.; Anticic, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshauser, H.; Arbor, N.; Arcelli, S.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I.C.; Arslandok, M.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T.C.; Aysto, J.; Azmi, M.D.; Bach, M.; Badala, A.; Baek, Y.W.; Bailhache, R.; Bala, R.; Ferroli, R.Baldini; Baldisseri, A.; Baldit, A.; Baltasar Dos Santos Pedrosa, F.; Ban, J.; Baral, R.C.; Barbera, R.; Barile, F.; Barnafoldi, G.G.; Barnby, L.S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I.G.; Beck, H.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergmann, C.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A.K.; Bianchi, N.; Bianchi, L.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Boggild, H.; Bogolyubsky, M.; Boldizsar, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bortolin, C.; Bose, S.; Bossu, F.; Botje, M.; Bottger, S.; Boyer, B.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G.E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Bugaiev, K.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, W.; Carena, F.; Carlin Filho, N.; Carminati, F.; Carrillo Montoya, C.A.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J.F.; Casula, E.A.R.; Catanescu, V.; Cavicchioli, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J.L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D.D.; Chochula, P.; Chojnacki, M.; Christakoglou, P.; Christensen, C.H.; Christiansen, P.; Chujo, T.; Chung, S.U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Coccetti, F.; Coffin, J.P.; Colamaria, F.; Colella, D.; Conesa Balbastre, G.; Conesa del Valle, Z.; Constantin, P.; Contin, G.; Contreras, J.G.; Cormier, T.M.; Corrales Morales, Y.; Cortese, P.; Cortes Maldonado, I.; Cosentino, M.R.; Costa, F.; Cotallo, M.E.; Crescio, E.; Crochet, P.; Alaniz, E.Cruz; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dalsgaard, H.H.; Danu, A.; Das, D.; Das, I.; Das, K.; Dash, S.; Dash, A.; De, S.; De Azevedo Moregula, A.; de Barros, G.O.V.; De Caro, A.; De Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; Delagrange, H.; Del Castillo Sanchez, E.; Deloff, A.; Demanov, V.; De Marco, N.; Denes, E.; De Pasquale, S.; Deppman, A.; Erasmo, G.D.; de Rooij, R.; Di Bari, D.; Dietel, T.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Divia, R.; Djuvsland, O.; Dobrin, A.; Dobrowolski, T.; Dominguez, I.; Donigus, B.; Dordic, O.; Driga, O.; Dubey, A.K.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, M.R.; Dutta Majumdar, A.K.; Elia, D.; Emschermann, D.; Engel, H.; Erdal, H.A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feofilov, G.; Fernandez Tellez, A.; Ferretti, A.; Ferretti, R.; Figiel, J.; Figueredo, M.A.S.; Filchagin, S.; Fini, R.; Finogeev, D.; Fionda, F.M.; Fiore, E.M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhoje, J.J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D.R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garishvili, I.; Gerhard, J.; Germain, M.; Geuna, C.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Girard, M.R.; Giubellino, P.; Gladysz-Dziadus, E.; Glassel, P.; Gomez, R.; Ferreiro, E.G.; Gonzalez-Trueba, L.H.; Gonzalez-Zamora, P.; Gorbunov, S.; Goswami, A.; Gotovac, S.; Grabski, V.; Graczykowski, L.K.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, S.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J.F.; Grossiord, J.Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra Gutierrez, C.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Gutbrod, H.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Han, B.H.; Hanratty, L.D.; Hansen, A.; Harmanova, Z.; Harris, J.W.; Hartig, M.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, N.; Hetland, K.F.; Hicks, B.; Hille, P.T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hrivnacova, I.; Huang, M.; Huber, S.; Humanic, T.J.; Hwang, D.S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, P.G.; Innocenti, G.M.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jacholkowski, A.; Jacobs, P.M.; Jancurova, L.; Jangal, S.; Janik, M.A.; Janik, R.; Jayarathna, P.H.S.Y.; Jena, S.; Jimenez Bustamante, R.T.; Jirden, L.; Jones, P.G.; Jung, H.; Jung, W.; Jusko, A.; Kaidalov, A.B.; Kakoyan, V.; Kalcher, S.; Kalinak, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kanaki, K.; Kang, J.H.; Kaplin, V.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M.M.; Khan, S.A.; Khan, P.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, S.; Kim, D.W.; Kim, J.H.; Kim, J.S.; Kim, M.; Kim, S.H.; Kim, T.; Kim, B.; Kim, D.J.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J.L.; Klein, J.; Klein-Bosing, C.; Kliemant, M.; Kluge, A.; Knichel, M.L.; Koch, K.; Kohler, M.K.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kottachchi Kankanamge Don, C.; Kour, R.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Kralik, I.; Kramer, F.; Kraus, I.; Krawutschke, T.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P.G.; Kurashvili, P.; Kurepin, A.B.; Kurepin, A.; Kuryakin, A.; Kushpil, V.; Kushpil, S.; Kvaerno, H.; Kweon, M.J.; Kwon, Y.; Ladron de Guevara, P.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; La Rocca, P.; Larsen, D.T.; Lazzeroni, C.; Lea, R.; Le Bornec, Y.; Lee, S.C.; Lee, K.S.; Lefevre, F.; Lehnert, J.; Leistam, L.; Lenhardt, M.; Lenti, V.; Leon, H.; Leon Monzon, I.; Leon Vargas, H.; Levai, P.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M.A.; Liu, L.; Loenne, P.I.; Loggins, V.R.; Loginov, V.; Lohn, S.; Lohner, D.; Loizides, C.; Loo, K.K.; Lopez, X.; Lopez Torres, E.; Lovhoiden, G.; Lu, X.G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luquin, L.; Luzzi, C.; Ma, R.; Ma, K.; Madagodahettige-Don, D.M.; Maevskaya, A.; Mager, M.; Mahapatra, D.P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mares, J.; Margagliotti, G.V.; Margotti, A.; Marin, A.; Markert, C.; Martashvili, I.; Martinengo, P.; Martinez, M.I.; Martinez Davalos, A.; Martinez Garcia, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z.L.; Matyja, A.; Mayani, D.; Mayer, C.; Mazzoni, M.A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Perez, J.; Meres, M.; Miake, Y.; Michalon, A.; Midori, J.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A.N.; Miskowiec, D.; Mitu, C.; Mlynarz, J.; Mohanty, A.K.; Mohanty, B.; Molnar, L.; Montano Zetina, L.; Monteno, M.; Montes, E.; Moon, T.; Morando, M.; Moreira De Godoy, D.A.; Moretto, S.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Muller, H.; Munhoz, M.G.; Musa, L.; Musso, A.; Nandi, B.K.; Nania, R.; Nappi, E.; Nattrass, C.; Naumov, N.P.; Navin, S.; Nayak, T.K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nicassio, M.; Nielsen, B.S.; Niida, T.; Nikolaev, S.; Nikolic, V.; Nikulin, V.; Nikulin, S.; Nilsen, B.S.; Nilsson, M.S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyanin, A.; Nyatha, A.; Nygaard, C.; Nystrand, J.; Obayashi, H.; Ochirov, A.; Oeschler, H.; Oh, S.K.; Oleniacz, J.; Oppedisano, C.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paic, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S.K.; Palaha, A.; Palmeri, A.; Papikyan, V.; Pappalardo, G.S.; Park, W.J.; Passfeld, A.; Pastircak, B.; Patalakha, D.I.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Perales, M.; Pereira De Oliveira Filho, E.; Peresunko, D.; Perez Lara, C.E.; Perez Lezama, E.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Petracek, V.; Petran, M.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Piyarathna, D.B.; Ploskon, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta-Lerma, P.L.M.; Poghosyan, M.G.; Polak, K.; Polichtchouk, B.; Pop, A.; Porteboeuf-Houssais, S.; Pospisil, V.; Potukuchi, B.; Prasad, S.K.; Preghenella, R.; Prino, F.; Pruneau, C.A.; Pshenichnov, I.; Puddu, G.; Pulvirenti, A.; Punin, V.; Putis, M.; Putschke, J.; Quercigh, E.; Qvigstad, H.; Rachevski, A.; Rademakers, A.; Radomski, S.; Raiha, T.S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramirez Reyes, A.; Raniwala, S.; Raniwala, R.; Rasanen, S.S.; Rascanu, B.T.; Rathee, D.; Read, K.F.; Real, J.S.; Redlich, K.; Reichelt, P.; Reicher, M.; Renfordt, R.; Reolon, A.R.; Reshetin, A.; Rettig, F.; Revol, J.P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R.A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rodriguez Cahuantzi, M.; Rohr, D.; Rohrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Roy, C.; Roy, P.; Rubio Montero, A.J.; Rui, R.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Safarik, K.; Sahu, P.K.; Saini, J.; Sakaguchi, H.; Sakai, S.; Sakata, D.; Salgado, C.A.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sandor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Scapparone, E.; Scarlassara, F.; Scharenberg, R.P.; Schiaua, C.; Schicker, R.; Schmidt, H.R.; Schmidt, C.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Scott, P.A.; Segato, G.; Selyuzhenkov, I.; Senyukov, S.; Seo, J.; Serci, S.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Sinha, T.; Sinha, B.C.; Sitar, B.; Sitta, M.; Skaali, T.B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Sogaard, C.; Soltz, R.; Son, H.; Song, J.; Song, M.; Soos, C.; Soramel, F.; Spyropoulou-Stassinaki, M.; Srivastava, B.K.; Stachel, J.; Stan, I.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A.A.P.; Subieta Vasquez, M.A.; Sugitate, T.; Suire, C.; Sukhorukov, M.; Sultanov, R.; Sumbera, M.; Susa, T.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Tagridis, C.; Takahashi, J.; J.Tapia Takaki, D.; Tauro, A.; Tejeda Munoz, G.; Telesca, A.; Terrevoli, C.; Thader, J.; Thomas, J.H.; Thomas, D.; Tieulent, R.; Timmins, A.R.; Tlusty, D.; Toia, A.; Torii, H.; Toscano, L.; Tosello, F.; Traczyk, T.; Truesdale, D.; Trzaska, W.H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T.S.; Ulery, J.; Ullaland, K.; Ulrich, J.; Uras, A.; Urban, J.; Urciuoli, G.M.; Usai, G.L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; Vande Vyvre, P.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernekohl, D.C.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.P.; Vodopyanov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Ovrebekk, G.; Vrlakova, J.; Vulpescu, B.; Vyushin, A.; Wagner, V.; Wagner, B.; Wan, R.; Wang, Y.; Wang, D.; Wang, Y.; Wang, M.; Watanabe, K.; Wessels, J.P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilk, A.; Williams, M.C.S.; Windelband, B.; Karampatsos, L.Xaplanteris; Yang, H.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I.K.; Yoon, J.; Yu, W.; Yuan, X.; Yushmanov, I.; Zach, C.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Zavada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zelnicek, P.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, F.; Zhou, D.; Zhou, Y.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zinovjev, G.; Zoccarato, Y.; Zynovyev, M.

    2012-01-01

    The pt-differential inclusive production cross sections of the prompt charmed mesons D0, D+, and D*+ in the rapidity range |y|K-pi+, D+->K-pi+pi+, D*+->D0pi+, and their charge conjugates, about 8,400 D0, 2,900 D+, and 2,600 D*+ mesons with 1

  11. Search for a narrow charmed baryonic state decaying to $D^{*\\pm}p^{\\mp}$ in ep collisions at HERA

    CERN Document Server

    Chekanov, S; Abramowicz, H; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Bauerdick, L A T; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bodmann, B; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Catterall, C D; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Cottrell, A; D'Agostini, Giulio; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fricke, U; Fusayasu, T; Gabareen, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Gliga, S; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jones, T W; Kagawa, S; Kahle, B; Kaji, H; Kananov, S; Kappes, A; Kataoka, Y; Yamazaki, M; Katkov, I I; Katz, U F; Kcira, D; Khein, L A; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D; Kramberger, G; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lainesse, J; Lammers, S; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukina, O Yu; Lupi, A; Luzniak, P; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Milite, M; Mirea, A; Monaco, V; Montanari, A; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Nishimura, T; Notz, D; Nowak, R J; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Patel, S; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Petrucci, M C; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Riveline, U; Karshon, M; Robins, S; Rodrigues, E; Rosin, M; Rurua, L; Ruspa, M; Sacchi, R; Salehi, H; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stoesslein, U; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walsh, R; Wang, M; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yoshida, R; Youngman, C; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J

    2004-01-01

    A resonance search has been made in the D^*+/- p^-/+ invariant-mass spectrum with the ZEUS detector at HERA using an integrated luminosity of 126 pb^-1. The decay channels D^*+ -> D^0 pi^+_s -> (K^- pi^+) pi^+_s and D^*+ -> D^0 pi^+_s -> (K^- pi^+ pi^+ pi^-) pi^+_s (and the corresponding antiparticle decays) were used to identify D^*+/- mesons. No resonance structure was observed in the D^*+/- p^-/+ mass spectrum from more than 60000 reconstructed D^*+/- mesons. The results are not compatible with a report of the H1 Collaboration of a charmed pentaquark, Theta^0_c.

  12. Measurement of charm and beauty production in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Roloff, Philipp

    2011-12-15

    In this thesis two measurements of heavy quark production in deep inelastic scattering at HERA are presented. Cross sections for the production of heavy quarks can be calculated in quantum chromodynamics (QCD). The heavy quark masses represent hard scales, which allow to apply perturbative methods. Charm production has been measured with the ZEUS detector using an integrated luminosity of 120 pb{sup -1}. The hadronic decay channels D{sup +} {yields} K{sup 0}{sub S}{pi}{sup +}, {lambda}{sup +}{sub c} {yields} pK{sup 0}{sub S} and {lambda}{sup +}{sub c} {yields} {lambda}{pi}{sup +} were reconstructed. The presence of a neutral strange hadron in the final state reduces the combinatorial background and extends the measured sensitivity into the region p{sub T}(D{sup +}, {lambda}{sup +}{sub c}) < 1.5 GeV. The inclusive cross section and differential cross sections in p{sub T}{sup 2} (D{sup +}), {eta}(D{sup +}), Q{sup 2} and x for the production of D{sup +} mesons are in reasonable agreement with predictions from perturbative QCD. The fraction of c quarks hadronising into {lambda}{sup +}{sub c} baryons was extracted from a combination of both investigated {lambda}{sup +}{sub c} decay channels. The result is consistent with a previous measurement in the photoproduction regime and with the average e{sup +}e{sup -} value. The production of charm and beauty quarks has been measured with the ZEUS detector using the data collected between 2004 and 2007. This data sample corresponds to an integrated luminosity of 354 pb{sup -1}. The charm and beauty contents in events with a jet were determined using the decay-length significance and invariant mass of the reconstructed secondary decay vertices. Differential cross sections in E{sup jet}{sub T}, {eta}{sup jet}, Q{sup 2} and x are in reasonable agreement with predictions for perturbative QCD. The open charm and beauty contributions to the inclusive proton structure function F{sub 2} were extracted from double differential cross

  13. Electrons and kaons in charmed particle decays. [Branching ratio, 3. 9 to 7. 4 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Feller, J.M.

    1979-05-01

    Inclusive studies of the electron content, kaon content, and associated electron-kaon content of the decays of D mesons and other charmed particles produced in electron-positron annihilation are presented. At the psi(3772) resonance the following inclusive branching ratios for D meson decays to charged kaons were measured. Also at the psi(3772) resonance the average semileptonic branching ratio for D/sup 0/ and D/sup +/ decays to electrons has been measured to be .076 +- .028. The average semileptonic branching ratio of charmed particles produced in e/sup +/e/sup -/ annihilation at center-of-mass energies from 3.9 to 7.4 GeV is found to be equal within errors to that of the D's. At all energies the electron momentum spectra are consistent with a combination of the decays D ..-->.. Ke nu and D ..-->.. K*e nu. 84 references.

  14. D-meson observables in Pb-Pb and p-Pb collisions at LHC with EPOSHQ model

    Science.gov (United States)

    Ozvenchuk, V.; Aichelin, J.; Gossiaux, P. B.; Guiot, B.; Nahrgang, M.; Werner, K.

    2017-01-01

    We study the propagation of charm quarks in the quark-gluon plasma (QGP) created in ultrarelativistic heavy-ion and proton-nucleus collisions at LHC within EPOSHQ model. The interactions of heavy quarks with the light partons in ultrarelativistic heavy-ion collisions through the collisional and radiative processes lead to a large suppression of nal D-meson spectra at high transverse momentum and a nite D-meson elliptic ow, v 2, whereas in proton-nucleus collisions the D-meson nuclear modi cation factor, RpA , at high transverse momentum is compatible with unity. Our results are in good agreement with the available experimental data.

  15. New FOCUS results on charm mixing and CP violation

    CERN Document Server

    Bianco, S; Paolone, V S; Reyes, M; Yager, P M; Anjos, J C; Bediaga, I; Göbel, C; Magnin, J; De Miranda, J M; Pepe, I M; Dos Reis, A C; Simão, F R A; Carrillo, S; Casimiro, E; Méndez, H; Sánchez-Hernández, A; Uribe, C; Vásquez, F; Cinquini, L; Cumalat, J P; Ramírez, J E; O'Reilly, B; Butler, J N; Vaandering, E W; Cheung, H W K; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E E; Gourlay, S A; Kasper, P H; Kreymer, A E; Kutschke, R; Fabbri, Franco Luigi; Sarwar, S; Zallo, A; Cawlfield, C; Kim, D Y; Park, K S; Rahimi, A; Gardner, R; Wiss, J; Chung, Y S; Kang, J S; Ko, B R; Kwak, J W; Lee, K B; Myung, S S; Park, H; Alimonti, G; Boschini, M; Brambilla, D; Caccianiga, B; Calandrino, A; D'Angelo, P; Di Corato, M; Dini, P; Giammarchi, M G; Inzani, P; Leveraro, F; Malvezzi, S; Menasce, D; Mezzadri, M; Milazzo, L; Moroni, L; Pedrini, D; Prelz, F; Rovere, M; Sala, A; Sala, S; Arena, V; Davenport, T F; Boca, G; Bonomi, G; Gianini, G; Liguori, G; Merlo, M; Pantea, D; Ratti, S P; Riccardi, C; Torre, P; Viola, L; Vitulo, P; Hernández, H; López, A M; Méndez, L; Mirles, M A; Montiel, E; Olaya, D; Quinones, J; Rivera, C; Zhang, Y; Copty, N K; Purohit, M; Wilson, J R; Cho, K; Handler, T; Engh, D; Johns, W E; Hosack, M; Nehring, M S; Sales, M; Sheldon, P D; Stenson, K; Webster, M S; Sheaff, M; Kwon, Y; Bianco, Stefano

    2001-01-01

    We present a summary of recent results on CP violation and mixing in the charm quark sector based on a high statistics sample collected by photoproduction experiment FOCUS (E831 at Fermilab). We have measured the difference in lifetimes for the $D^0$ decays: $D^0 \\to K^-\\pi^+$ and $D^0 \\to K^-K^+$. This translates into a measurement of the $y_{CP}$ mixing parameter in the $\\d0d0$ system, under the assumptions that $K^-K^+$ is an equal mixture of CP odd and CP even eigenstates, and CP violation is negligible in the neutral charm meson system. We verified the latter assumption by searching for a CP violating asymmetry in the Cabibbo suppressed decay modes $D^+ \\to K^-K^+\\pi^+$, $D^0 \\to K^-K^+$ and $D^0 \\to \\pi^-\\pi^+$. We show preliminary results on a measurement of the branching ratio $\\Gamma(D^{*+}\\to \\pi^+ (K^+\\pi^-))/\\Gamma(D^{*+}\\to \\pi^+ (K^-\\pi^+))$.

  16. Prospects of discovering new physics in rare charm decays

    Energy Technology Data Exchange (ETDEWEB)

    Fajfer, Svjetlana, E-mail: svjetlana.fajfer@ijs.si [Department of Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana (Slovenia); J. Stefan Institute, P. O. Box 3000, Jamova 39, 1001, Ljubljana (Slovenia); Košnik, Nejc, E-mail: nejc.kosnik@ijs.si [J. Stefan Institute, P. O. Box 3000, Jamova 39, 1001, Ljubljana (Slovenia)

    2015-11-30

    The LHCb bounds on the branching ratio of the rare decay D{sup 0}→μ{sup +}μ{sup -} and the constraints on the branching ratio of D{sup +}→π{sup +}μ{sup +}μ{sup -} in the nonresonant regions enable us to improve constraints on new physics contributions. Using the effective Lagrangian approach we determine the sizes of the Wilson coefficients allowed by the existing LHCb bounds on rare charm decays. Then we discuss contributions to rare charm meson decay observables in several models of new physics: a model with an additional spin-1 weak triplet, leptoquark models, Two Higgs doublets model of type III, and a Z{sup ′} model. Here we complement the discussion by D{sup 0}–D{sup -bar0} oscillations data. Among the considered models, only leptoquarks can significantly modify the Wilson coefficients. Assuming that the differential decay width for D{sup +}→π{sup +}μ{sup +}μ{sup -} receives a NP contribution, while the differential decay width for D{sup +}→π{sup +}e{sup +}e{sup -} is Standard Model-like, we find that lepton flavor universality can be violated and might be observed at high dilepton invariant mass.

  17. Elliptic flow and nuclear modification factors of D-mesons at FAIR in a Hybrid-Langevin approach

    CERN Document Server

    Lang, Thomas; Steinheimer, Jan; Bleicher, Marcus

    2013-01-01

    The Compressed Baryonic Matter (CBM) experiment at the Facility for Anti-proton and Ion Research (FAIR) will provide new possibilities for charm-quark ($D$-meson) observables in heavy-ion collisions at low collision energies and high baryon densities. To predict the collective flow and nuclear modification factors of charm quarks in this environment, we apply a Langevin approach for the transport of charm quarks in the UrQMD (hydrodynamics + Boltzmann) hybrid model. Due to the inclusion of event-by-event fluctuations and a full (3+1) dimensional hydrodynamical evolution, the UrQMD hybrid approach provides a realistic evolution of the matter produced in heavy-ion collisions. As drag and diffusion coefficients we use a resonance approach for elastic heavy-quark scattering and assume a decoupling temperature of the charm quarks from the hot medium of $130\\, \\MeV$. Hadronization of the charm quarks to $D$-mesons by coalescence is included. Since the initial charm-quark distribution at FAIR is unknown, we utilize ...

  18. Identifying Exotic Hidden-Charm Pentaquarks.

    Science.gov (United States)

    Chen, Rui; Liu, Xiang; Li, Xue-Qian; Zhu, Shi-Lin

    2015-09-25

    The LHCb Collaboration at the Large Hadron Collider at CERN discovered two pentaquark states P_{c}(4380) and P_{c}(4450). These two hidden-charm states are interpreted as the loosely bound Σ_{c}(2455)D^{*} and Σ_{c}^{*}(2520)D^{*} molecular states in the boson exchange interaction model, which provides an explanation for why the experimental width of P_{c}(4450) is much narrower than that of P_{c}(4380). The discovery of the new resonances P_{c}(4380) and P_{c}(4450), indeed, opens a new page for hadron physics. The partners of P_{c}(4380) and P_{c}(4450) should be pursued in future experiments.

  19. Light axial vector mesons

    CERN Document Server

    Chen, Kan; Liu, Xiang; Matsuki, Takayuki

    2015-01-01

    Inspired by the abundant experimental observation of axial vector states, we study whether the observed axial vector states can be categorized into the conventional axial vector meson family. In this paper we carry out analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial vector mesons, which are valuable to further experimental exploration of the observed and predicted axial vector mesons.

  20. Spin O decay angular distribution for interfering mesons in electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Funsten, H.; Gilfoyle, G.

    1994-04-01

    Self analyzing meson electroproduction experiments are currently being planned for the CEBAF CLAS detector. These experiments deduce the spin polarization of outgoing unstable spin s (?)0 mesons from their decay angular distribution, W({theta},{psi}). The large angular acceptance of the CLAS detector permits kinematic tracking of a sufficient number of these events to accurately determine electroproduction amplitudes from the deduced polarization. Maximum polarization information is obtained from W({theta},{psi}) for decay into spin 0 daughters. The helicity of the decaying meson is transferred to the daughter`s relative orbital angular momentum m-projection; none is {open_quotes}absorbed{close_quotes} into daughter helicities. The decaying meson`s helicity maximally appears in W({theta},{psi}). W({theta},{psi}) for spin 0 daughters has been derived for (1) vector meson electroproduction and (2) general interfering mesons produced by incident pions. This paper derives W({theta},{psi}) for electroproduction of two interfering mesons that decay into spin 0 daughters. An application is made to the case of interfering scalar and vector mesons. The derivation is an extension of work by Schil using the general decay formalism of Martin. The expressions can be easily extended to the case of N interfering mesons since interference occurs pairwise in the observable W ({theta},{psi}), a quadratic function of the meson amplitudes. The derivation uses the virtual photon density matrix of Schil which is transformed by a meson electroproduction transition operator, T. The resulting density matrix for the interfering mesons is then converted into a corresponding statistical tensor and contracted into the efficiency tensor for spin 0 daughters.

  1. Diffractive hadronic production of D mesons

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, William Wallace [Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Physcis

    1980-01-01

    This thesis reports on data taken in experiment E369 using the Chicago Cyclotron Spectrometer at Fermilab. A search for charmed D mesons was made using a beam of 217 GeV π- incident on a liquid hydrogen target. The trigger required a recoil proton and a prompt muon. A total of 50 ± 12 charged D events were seen in the K±ππ channels and were split between the two channels in about equal amounts. Cuts were made which selected diffractive events, but when these cuts were removed the signal remained the same although the background was greatly increased. The Feynman x and angular distributions were consistent with diffractive production. A diffractive model yields a cross section of (6 -10) + 4 µb.

  2. Production of Doubly Charmed Baryons at the SELEX: double intrinsic charm approach

    CERN Document Server

    Koshkarev, Sergey

    2016-01-01

    In this paper we study the role of the double intrinsic charm mechanism in the production of the doubly charmed baryons at the SELEX experiment. The predictions of the cross section and related production properties are presented.

  3. Charm physics results from SELEX

    Energy Technology Data Exchange (ETDEWEB)

    SELEX Collaboration

    1999-02-01

    The SELEX experiment (ET781) [1] at Fermilab is a new fixed target multistage spectrometer with high acceptance for forward interactions and decays. It took data in 1996{endash}97 with 600 GeV {Sigma}{sup {minus}}, {pi}{sup {minus}} and 540 GeV {ital p} beams, collecting large sample of charm decays. Preliminary results on charm{emdash}anticharm production asymmetries, {Lambda}{sub c}{sup +} production x{sub F} dependence in different beams, {Lambda}{sub c}{sup +} lifetime, and the first observation of the Cabibbo-suppressed decay {Xi}{sub c}{sup +}{r_arrow}pK{sup {minus}}{pi}{sup +} are presented. {copyright} {ital 1999 American Institute of Physics.}

  4. Calculation of hadronic transition amplitudes in charm physics; Berechnung hadronischer Uebergangsamplituden in der Charm-Physik

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Christoph

    2011-09-23

    Transitions of charmed hadrons are of significant importance, since they provide possibilities to extract the CKM matrix elements V{sub cd} and V{sub cs} from experimental data as well as interesting channels to search for new physics effects. However, quarks are bound in hadrons, and it is necessary to describe this effect in a reliable way, to study the underlying flavour dynamics. For this, one has to use nonperturbative tools, to determine the corresponding transition amplitudes. The results of such calculations can furthermore be of use, to test the predictions of QCD and to contribute to a deeper understanding of the structure of hadrons. In this thesis two topics are investigated using the method of QCD light-cone sum rules (LCSRs). The first topic consists in the form factors of the semileptonic decays D {yields} {pi}l{nu}{sub l} and D {yields} Kl{nu}{sub l}, for which new results are calculated using up-to-date input values. Since LCSRs are not applicable in the whole range of kinematics, they are extrapolated by the use of appropriate parametrisations and the results agree well with experimental data. The second topic are the transitions of charmed baryons to a nucleon. Here the corresponding transition form factors and in addition the hadronic {lambda}{sub c}D{sup (*)}N and {sigma}{sub c}D{sup (*)}N coupling constants are calculated - the latter by the consideration of double dispersion relations. These coupling constants are of special interest for the description of hadronic interactions, like open charm production in proton-antiprotoncollisions. Furthermore there appears the problem, that both parity states of a baryon contribute to the considered functional representation, for which a consistent way to separate them is presented. (orig.)

  5. Strange and charm baryon masses with two flavors of dynamical twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-Based Science and Technology Research Center; Carbonell, J. [CEA-Saclay, Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Christaras, D.; Gravina, M. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Papinutto, M. [UFJ/CNRS/IN2P3, Grenoble (France). Laboratoire de Physique Subatomique et Cosmologie; Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Universidad Autonoma de Madrid UAM/CSIC (Spain). Inst. de Fisica Teorica

    2012-10-15

    The masses of the low-lying strange and charm baryons are evaluated using two degenerate flavors of twisted mass sea quarks for pion masses in the range of about 260 MeV to 450 MeV. The strange and charm valence quark masses are tuned to reproduce the mass of the kaon and D-meson at the physical point. The tree-level Symanzik improved gauge action is employed. We use three values of the lattice spacing, corresponding to {beta}=3.9, {beta}=4.05 and {beta}=4.2 with r{sub 0}/a=5.22(2), r{sub 0}/a=6.61(3) and r{sub 0}/a=8.31(5) respectively. We examine the dependence of the strange and charm baryons on the lattice spacing and strange and charm quark masses. The pion mass dependence is studied and physical results are obtained using heavy baryon chiral perturbation theory to extrapolate to the physical point.

  6. Strange and charm baryon masses with two flavors of dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, C; Christaras, D; Drach, V; Gravina, M; Papinutto, M

    2012-01-01

    The masses of the low-lying strange and charm baryons are evaluated using two degenerate flavors of twisted mass sea quarks for pion masses in the range of about 260 MeV to 450 MeV. The strange and charm valence quark masses are tuned to reproduce the mass of the kaon and D-meson at the physical point. The tree-level Symanzik improved gauge action is employed. We use three values of the lattice spacing, corresponding to $\\beta=3.9$, $\\beta=4.05$ and $\\beta=4.2$ with $r_0/a=5.22(2)$, $r_0/a=6.61(3)$ and $r_0/a=8.31(5)$ respectively. %spacings $a=0.0855(5)$ and $a=0.0667(3)$ determined from the pion decay constant. We examine the dependence of the strange and charm baryons on the lattice spacing and strange and charm quark masses. The pion mass dependence is studied and physical results are obtained using heavy baryon chiral perturbation theory to extrapolate to the physical point.

  7. Measurement of the cross section of charmed hadrons and the nuclear dependence alpha

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Covarrubias, Ernesto Alejandro [Autonomous Univ. of San Luis Potosi, San Luis Potosi (Mexico)

    2009-12-03

    With data from the SELEX experiment we study charm hadro-production. We report the differential production cross sections as function of the longitudinal and transverse momentum, as well as for two different target materials, of 14 charmed hadron and/or their decay modes. This is the most extensive study to date. SELEX is a fixed target experiment at Fermilab with high forward acceptance; it took data during 1996-1997 with 600 GeV/c Σ- and π-, and 540 GeV/c proton and π+ beams. It used 5 target foils (two copper and three diamond). We use the results to determine α, used in parametrizing the production cross section as ∞ Aα, where A is the mass number of the target nuclei. We found within our statistics that α is independent of the longitudinal momentum fraction xF in the interval 0.1 < xF < 1.0, with α = 0.778 ± 0.014. The average value of α} for charm production by pion beams is α meson = 0.850 ± 0.028. This is somewhat larger than the corresponding average αbaryon = 0.755 ± 0.016 for charm production by baryon beams (Σ- and protons).

  8. Inclusive Production of D^+, D^0, D_s^+ and D^*+ Mesons in Deep Inelastic Scattering at HERA

    CERN Document Server

    Aktas, A; Anthonis, T; Asmone, A; Babaev, A; Backovic, S; Bähr, J; Baranov, P; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Behnke, O; Behrendt, O; Belousov, A; Berger, C; Berger, N; Berndt, T; Bizot, J C; Böhme, J; Boenig, M O; Boudry, V; Bracinik, J; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Caron, S; Cassol-Brunner, F; Cerny, K; Chekelian, V; Contreras, J G; Coppens, Y R; Coughlan, J A; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Delcourt, B; Demirchyan, R; de Roeck, A; Desch, Klaus; De Wolf, E A; Diaconu, C; Dingfelder, J; Dodonov, V; Dubak, A; Duprel, C; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Ellerbrock, M; Elsen, E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garutti, E; Garvey, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Ginzburgskaya, S; Görlich, L; Gogitidze, N; Gorbounov, S; Grab, C; Grässler, Herbert; Greenshaw, T; Gregori, M; Grindhammer, G; Gwilliam, C; Haidt, D; Hajduk, L; Haller, J; Hansson, M; Heinzelmann, G; Henderson, R C W; Henschel, H; Henshaw, O; Herrera-Corral, G; Herynek, I; Heuer, R D; Hildebrandt, M; Hiller, K H; Hoting, P; Hoffmann, D; Horisberger, R P; Hovhannisyan, A; Ibbotson, M; Ismail, M; Jacquet, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, D P; Jung, H; Kant, D; Kapichine, M; Karlsson, M; Katzy, J; Keller, N; Kennedy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Klimkovich, T; Kluge, T; Knies, G; Knutsson, A; Koblitz, B; Korbel, V; Kostka, P; Koutouev, R; Kropivnitskaya, A; Kroseberg, J; Krüger, K; Kuckens, J; Kuhr, T; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; Lindfeld, L; Lipka, K; List, B; Lobodzinska, E; Loktionova, N A; López-Fernandez, R; Lubimov, V; Lüders, H; Lüke, D; Lux, T; Lytkin, L; Makankine, A; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martisikova, M; Martyn, H U; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Mikocki, S; Milcewicz-Mika, I; Milstead, D; Mohamed, A; Moreau, F; Morozov, A; Morozov, I; Morris, J V; Mozer, M U; Müller, K; Murn, P; Nagovizin, V; Nankov, K; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebuhr, C B; Nikiforov, A; Nikitin, D K; Nowak, G; Nozicka, M; Oganezov, R; Olivier, B; Olsson, J E; Ossoskov, G; Ozerov, D; Paramonov, A A; Pascaud, C; Patel, G D; Peez, M; Pérez, E; Perieanu, A; Petrukhin, A; Pitzl, D; Placakyte, R; Pöschl, R; Portheault, B; Povh, B; Raicevic, N; Reimer, P; Reisert, B; Rimmer, A; Risler, C; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A A; Rurikova, Z; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schöning, A; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V; Specka, A; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Tchoulakov, V; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Utkin, D; Valkárová, A; Vallée, C; Van Mechelen, P; Van Remortel, N; Vargas, A; Trevino; Vazdik, Ya A; Veelken, C; Vest, A; Vinokurova, S; Volchinski, V; Wacker, K; Wagner, J; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wessling, B; Winter, G G; Wissing, C; Woerling, E E; Wolf, R; Wünsch, E; Xella, S M; Yan, W; Yeganov, V; Zaicek, J; Zaleisak, J; Zhang, Z; Zhelezov, A; Zhokin, A; Zohrabyan, H G; Zomer, F

    2004-01-01

    Inclusive production cross sections are measured in deep inelastic scattering at HERA for meson states composed of a charm quark and a light antiquark or the charge conjugate. The measurements cover the kinematic region of photon virtuality 2 2.5 GeV and pseudorapidity |eta(D)| < 1.5. The identification of the D-meson decays and the reduction of the combinatorial background profit from the reconstruction of displaced secondary vertices by means of the H1 silicon vertex detector. The production of charmed mesons containing the light quarks u, d and s is found to be compatible with a description in which the hard scattering is followed by a factorisable and universal hadronisation process.

  9. Measurements of direct CP violation in charm decays at LHCb

    CERN Document Server

    INSPIRE-00257861

    2013-01-01

    Two searches for direct CP violation in D 0 ! h h + (where h = K or ) are presented using data corresponding to an integrated luminosity of 1.0 fb 1 collected in 2011 by LHCb in pp collisions at a centre-of-mass energy of 7 TeV. One analysis uses D 0 mesons produced via a D resonance and the other analysis uses D 0 mesons originating from semileptonic b - decays. In the rst case the avour is tagged by the charge of the accompanying pion and in the latter by the muon charge. The dierence of the CP -violating asymmetries ( A CP = A CP ( K K + ) A CP ( + )) in the two decay channels is measured to be A CP (muon tagged) = (0 : 49 0 : 30 (stat) 0 : 14 (syst))% ; A CP (pion tagged) = ( 0 : 35 0 : 15 (stat) 0 : 10 (syst))% ; A CP (LHCb) = ( 0 : 15 0 : 16)% : These results do not conrm evidence for CP violation in the charm sector

  10. Rare beauty and charm decays with the CMS experiment

    Directory of Open Access Journals (Sweden)

    Chen Kai-Feng

    2013-05-01

    Full Text Available Rare beauty meson decays Bs0 → µ+µ−, B0 → μ+μ−, and charm meson decays D0 → μ+μ− are searched in pp collisions at √s = 7 TeV. A data sample corresponding to an integrated luminosity of 5 fb−1 collected by the CMS experiment is used for the B → μ+μ− study, while the data sample used for D0 → μ+μ− search is 90 pb−1. The number of events observed after applying the full selection criteria is consistent with the expectations from the sum of background and standard model signal. The resulting upper limits on the branching fractions are ℬ(Bs0 → µ+µ− < 7.7 × 10−9, ℬ(B0 µ+ µ− < 1.8 × 10−9 at 95% confidence level, and ℬ(D0 → μ+μ− < 5.4 × 10−7 at 90% confidence level.

  11. Fitting EMC structure functions with intrinsic charm

    CERN Document Server

    Rottoli, Luca

    2016-01-01

    A detailed study of the impact of the data collected by the European Muon Collaboration (EMC) on the parton distribution function (PDF) of the charm quark is presented. The analysis is performed in the NNPDF framework, and the charm PDF is freely parametrized on equal footing as light quark and gluon distributions. We find that variations in the treatment of EMC data do not modify the charm PDF and do not affect our previous conclusion on the presence of an intrinsic component in the charm PDF.

  12. The three good brothers charm : some historical points / Lea Olsan

    Index Scriptorium Estoniae

    Olsan, Lea T.

    2011-01-01

    Ravimise loitsudest: keskajal levinud legendaarsest kolme venna (tres boni fratres - lad. k.) loitsust haava parandamiseks; ettekanne rahvusvahelisel konverentsil "Charms, charmers and charming" Bukarestis 2010. a.

  13. The three good brothers charm : some historical points / Lea Olsan

    Index Scriptorium Estoniae

    Olsan, Lea T.

    2011-01-01

    Ravimise loitsudest: keskajal levinud legendaarsest kolme venna (tres boni fratres - lad. k.) loitsust haava parandamiseks; ettekanne rahvusvahelisel konverentsil "Charms, charmers and charming" Bukarestis 2010. a.

  14. D -meson production in p -Pb collisions at √{sNN}=5.02 TeV and in p p collisions at √{s }=7 TeV

    Science.gov (United States)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovska, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohler, C.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ravasenga, I.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-11-01

    Background: In the context of the investigation of the quark gluon plasma produced in heavy-ion collisions, hadrons containing heavy (charm or beauty) quarks play a special role for the characterization of the hot and dense medium created in the interaction. The measurement of the production of charm and beauty hadrons in proton-proton collisions, besides providing the necessary reference for the studies in heavy-ion reactions, constitutes an important test of perturbative quantum chromodynamics (pQCD) calculations. Heavy-flavor production in proton-nucleus collisions is sensitive to the various effects related to the presence of nuclei in the colliding system, commonly denoted cold-nuclear-matter effects. Most of these effects are expected to modify open-charm production at low transverse momenta (pT) and, so far, no measurement of D -meson production down to zero transverse momentum was available at mid-rapidity at the energies attained at the CERN Large Hadron Collider (LHC). Purpose: The measurements of the production cross sections of promptly produced charmed mesons in p -Pb collisions at the LHC down to pT=0 and the comparison to the results from p p interactions are aimed at the assessment of cold-nuclear-matter effects on open-charm production, which is crucial for the interpretation of the results from Pb-Pb collisions. Methods: The prompt charmed mesons D0,D+,D*+, and Ds+ were measured at mid-rapidity in p -Pb collisions at a center-of-mass energy per nucleon pair √{sN N}=5.02 TeV with the ALICE detector at the LHC. D mesons were reconstructed from their decays D0→K-π+ ,D+→K-π+π+, D*+→D0π+ ,Ds+→ϕ π+→K-K+π+ , and their charge conjugates, using an analysis method based on the selection of decay topologies displaced from the interaction vertex. In addition, the prompt D0 production cross section was measured in p p collisions at √{s }=7 TeV and p -Pb collisions at √{sN N}=5.02 TeV down to pT=0 using an analysis technique that is based

  15. Decay constants and spectroscopy of mesons in lattice QCD using domain-wall fermions

    CERN Document Server

    Fahy, B; Hashimoto, S; Kaneko, T; Noaki, J; Tomii, M

    2015-01-01

    We report results of masses and decay constants of light and charmed pseudo-scalar mesons using lattice QCD with M\\"obius domain-wall fermions. Using this formulation we are able to compute pseudo-scalar decay constants through the pseudo-scalar density operator as well as with the axial-vector current. Results are shown from several lattice spacings and pion masses between 230 MeV and 500 MeV. We present an analysis of these results at different quark masses to show the chiral properties of the light mesons masses and decay constants.

  16. D-meson observables in heavy-ion collisions at LHC with EPOSHQ model

    Directory of Open Access Journals (Sweden)

    Ozvenchuk Vitalii

    2016-01-01

    Full Text Available We study the propagation of charm quarks in the quark-gluon plasma (QGP created in ultrarelativistic heavy-ion collisions at LHC within EPOSHQ model. The interactions of heavy quarks with the light partons in ultrarelativistic heavy-ion collisions through the collisional and radiative processes lead to a large suppression of final D-meson spectra at high transverse momentum and a finite D-meson elliptic flow. Our results are in a good agreement with the available experimental data.

  17. Measurement of diffractive production of D*+-(2010) mesons in deep inelastic scattering at HERA

    CERN Document Server

    Abe, T; Adamczyk, L; Adamus, M; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bodmann, B; Bokel, C; Boogert, S; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Cartiglia, N; Catterall, C D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Costa, M; Crittenden, James Arthur; D'Agostini, Giulio; Dagan, S; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Engelen, J; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fox-Murphy, A; Fricke, U; Fusayasu, T; Gabareen, A; Galea, R; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Göbel, F; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Hughes, V W; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jelen, K; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Katkov, I I; Katz, U F; Kcira, D; Kerger, R; Khein, L A; Kim, C L; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav--, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D A; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lammers, S; Lane, J B; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lopez-Duran Viani, A; Lukina, O Yu; Lupi, A; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Martínez, M; Maselli, S; Mastroberardino, A; Mat, T; Matsuzawa, K; Mattingly, M C K; Mc, G J; McCubbin, N A; Mellado, B; Menary, S R; Metlica, F; Meyer, A; Milite, M; Miller, D B; Mindur, B; Mirea, A; Monaco, V; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Ochs, A; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pellmann, I A; Peroni, C; Pesci, A; Petrucci, M C; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Raach, H; Rautenberg, J; Raval, A; Redondo, I; Reeder, D D; Renner, R; Repond, J; Rigby, M; Robins, S; Rodrigues, E; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Salehi, H; Sartorelli, G; Saull, P R B; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smalska, B; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Saint-Laurent, M G; Staiano, A; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Surrow, B; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tap, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Tuning, N; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Umemori, K; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walker, R; Weber, A; Wes, H; West, B J; Whitmore, J J; Wichmann, R; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yamazaki, Y; Yoshida, R; Youngman, C; Zakrzewski, J A; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J

    2002-01-01

    Diffractive production of D*+-(2010) mesons in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 44.3 pb-1. Diffractive charm production is identified by the presence of a large rapidity gap in the final state of events in which a D*+-(2010) meson is reconstructed in the decay channel D*+ -> (D0 -> K-pi+) pi+ (+ charge conjugate). Differential cross sections when compared with theoretical predictions indicate the importance of gluons in such diffractive interactions.

  18. Leptonic B- and D-Meson Decay Constants with 2+1 Flavors of Asqtad Fermions

    Energy Technology Data Exchange (ETDEWEB)

    Neil, Ethan T.; Simone, James N.; Van de Water, Ruth S.; Kronfeld, Andreas S.

    2015-01-08

    We present the status of our updated D- and B-meson decay-constant analysis, based on the MILC Nf =2+1 asqtad gauge ensembles. Heavy quarks are incorporated using the Wilson clover action with the Fermilab interpretation. This analysis includes ensembles at five lattice spacings from α ≈ 0.045 to 0.15 fm, and light sea-quark masses down to 1/20th of the strange-quark mass. Projected error budgets for ratios of decay constants, in particular between bottom- and charm-meson decay constants, are presented.

  19. Measurement of D^(*+-) Meson Production and F_2^c in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, C.; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Merkel, P.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Straumann, U.; Swart, M.; Tasevsky, M.; Tchernyshov, V.; Chetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassiliev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wallny, R.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, C.; Werner, M.; Werner, N.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2002-01-01

    The inclusive production of D^{*+-}(2010) mesons in deep-inelastic scattering is studied with the H1 detector at HERA. In the kinematic region 11.5 GeV and |\\eta_(D^*)|<1.5. Single and double differential inclusive D^(*+-) meson cross sections are compared to perturbative QCD calculations in two different evolution schemes. The charm contribution to the proton structure, F_2^c(x,Q^2), is determined by extrapolating the visible charm cross section to the full phase space. This contribution is found to rise from about 10% at Q^2 = 1.5 GeV^2 to more than 25% at Q^2 = 60 GeV^2 corresponding to x values ranging from 5*10^(-5) to 3*10^(-3)$.

  20. Up sector of minimal flavor violation: top quark properties and direct D meson CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yang; Berger, Joshua; Hewett, JoAnne L.; Li, Ye

    2013-07-01

    Minimal Flavor Violation in the up-type quark sector leads to particularly interesting phenomenology due to the interplay of flavor physics in the charm sector and collider physics from flavor changing processes in the top sector. We study the most general operators that can affect top quark properties and D meson decays in this scenario, concentrating on two CP violating operators for detailed studies. The consequences of these effective operators on charm and top flavor changing processes are generically small, but can be enhanced if there exists a light flavor mediator that is a Standard Model gauge singlet scalar and transforms under the flavor symmetry group. This flavor mediator can satisfy the current experimental bounds with a mass as low as tens of GeV and explain observed D-meson direct CP violation. Additionally, the model predicts a non-trivial branching fraction for a top quark decay that would mimic a dijet resonance.

  1. Vector-meson dominance revisited

    Directory of Open Access Journals (Sweden)

    Terschlüsen Carla

    2012-12-01

    Full Text Available The interaction of mesons with electromagnetism is often well described by the concept of vector-meson dominance (VMD. However, there are also examples where VMD fails. A simple chiral Lagrangian for pions, rho and omega mesons is presented which can account for the respective agreement and disagreement between VMD and phenomenology in the sector of light mesons.

  2. Charm production in the forward region: constraints on the small-x gluon and backgrounds for neutrino astronomy

    CERN Document Server

    Gauld, Rhorry; Rottoli, Luca; Talbert, Jim

    2015-01-01

    The recent observation by the IceCube experiment of cosmic neutrinos at energies up to a few PeV heralds the beginning of neutrino astronomy. At such high energies, the conventional neutrino flux is suppressed and the prompt component from charm meson decays is expected to become the dominant background to astrophysical neutrinos. Charm production at high energies is however theoretically uncertain, both since the charm mass is at the boundary of applicability of perturbative QCD, and also because the calculations are sensitive to the poorly-known gluon PDF at small-x. In this work we provide detailed perturbative QCD predictions for charm and bottom production in the forward region, and validate them by comparing with recent data from the LHCb experiment at 7 TeV. Finding good agreement between data and theory, we use the LHCb measurements to constrain the small-x gluon PDF, achieving a substantial reduction in its uncertainties. Using these improved PDFs, we provide predictions for charm and bottom producti...

  3. Low-lying charmed and charmed-strange baryon states

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bing [Anyang Normal University, Department of Physics, Anyang (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China); Wei, Ke-Wei [Anyang Normal University, Department of Physics, Anyang (China); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China); Matsuki, Takayuki [Tokyo Kasei University, Tokyo (Japan); Nishina Center, RIKEN, Theoretical Research Division, Saitama (Japan)

    2017-03-15

    In this work, we systematically study the mass spectra and strong decays of 1P and 2S charmed and charmed-strange baryons in the framework of non-relativistic constituent quark models. With the light quark cluster-heavy quark picture, the masses are simply calculated by a potential model. The strong decays are studied by the Eichten-Hill-Quigg decay formula. Masses and decay properties of the well-established 1S and 1P states can be reproduced by our method. Σ{sub c}(2800){sup 0,+,++} can be assigned as a Σ{sub c2}(3/2{sup -}) or Σ{sub c2}(5/2{sup -}) state. We prefer to interpret the signal Σ{sub c}(2850){sup 0} as a 2S(1/2{sup +}) state although at present we cannot thoroughly exclude the possibility that this is the same state as Σ{sub c}(2800){sup 0}. Λ{sub c}(2765){sup +} or Σ{sub c}(2765){sup +} could be explained as the Λ{sub c}{sup +}(2S) state or Σ{sup +}{sub c1}(1/2{sup -}) state, respectively. We propose to measure the branching ratio of B(Σ{sub c}(2455)π)/B(Σ{sub c}(2520)π) in the future, which may disentangle the puzzle of this state. Our results support Ξ{sub c}(2980){sup 0,+} as the first radial excited state of Ξ{sub c}(2470){sup 0,+} with J{sup P} = 1/2{sup +}. The assignment of Ξ{sub c}(2930){sup 0} is analogous to Σ{sub c}(2800){sup 0,+,++}, i.e., a Ξ{sup '}{sub c2}(3/2{sup -}) or Ξ{sup '}{sub c2}(5/2{sup -}) state. In addition, we predict some typical ratios among partial decay widths, which are valuable for experimental search for these missing charmed and charmed-strange baryons. (orig.)

  4. Strange and charmed baryons using N{sub f}=2 twisted mass QCD

    Energy Technology Data Exchange (ETDEWEB)

    Papinutto, Mauro; Carbonell, Jaume [UJF, CNRS/IN2P, INPG (France). Lab. de Physique Subatomique et de Cosmologie; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics

    2010-12-15

    We compute the mass spectrum for strange/charmed baryons in the partially quenched approach using N{sub f}=2 twisted mass QCD configurations. We investigate two main issues: the size of lattice artefacts using three values of the lattice spacing (the smallest of which is approximately 0.05 fm) and the dependence of baryon masses on meson (or quark) masses. We thus perform a global fit in order to extrapolate simultaneously to the continuum limit and to the physical point. We estimate the masses of {omega}{sub sss}, {xi}{sub dss}, {lambda}{sub uds}, {omega}{sub ccc}, {xi}{sub dcc}, {lambda}{sub udc}. (orig.)

  5. Strange and charmed baryons using N_f=2 twisted mass QCD

    CERN Document Server

    Papinutto, Mauro; Drach, Vincent; Alexandrou, Constantia

    2010-01-01

    We compute the mass spectrum for strange/charmed baryons in the partially quenched approach using N_f=2 twisted mass QCD configurations. We investigate two main issues: the size of lattice artefacts using three values of the lattice spacing (the smallest of which is approximately 0.05 fm) and the dependence of baryon masses on meson (or quark) masses. We thus perform a global fit in order to extrapolate simultaneously to the continuum limit and to the physical point. We estimate the masses of Omega_{sss}, Xi_{dss}, Lambda_{uds}, Omega_{ccc}, Xi_{dcc}, Lambda_{udc}.

  6. Measurements of prompt charm production cross-sections in $pp$ collisions at $\\sqrt{s}$ = 13 TeV

    CERN Document Server

    Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavorima; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zucchelli, Stefano

    2016-01-01

    Production cross-sections of prompt charm mesons are measured with the first data from $pp$ collisions at the LHC at a centre-of-mass energy of $13\\,\\mathrm{TeV}$. The data sample corresponds to an integrated luminosity of $4.98 \\pm 0.19\\,\\mathrm{pb}^{-1}$ collected by the LHCb experiment. The production cross-sections of $D^{0}$, $D^{+}$, $D_{s}^{+}$, and $D^{*+}$ mesons are measured in bins of charm meson transverse momentum, $p_{\\mathrm{T}}$, and rapidity, $y$, and cover the range $0 < p_{\\mathrm{T}} < 15\\,\\mathrm{GeV}/c$ and $2.0 < y < 4.5$. The inclusive cross-sections for the four mesons, including charge conjugation, within the range of $1 < p_{\\mathrm{T}} < 8\\,\\mathrm{GeV}/c$ are found to be \\begin{align*} \\begin{array}{lcr} \\sigma(pp \\to D^{0} X) &=& 2460 \\pm \\phantom{1}3 \\pm 130\\,\\mu\\mathrm{b} \\\\ \\sigma(pp \\to D^{+} X) &=& 1000 \\pm \\phantom{1}3 \\pm 110\\,\\mu\\mathrm{b} \\\\ \\sigma(pp \\to D_{s}^{+} X) &=& 460 \\pm 13 \\pm 100\\,\\mu\\ma...

  7. A Measurement of the Pseudoscalar DecayConstant fDs using Charm-Tagged Events in e+e- Collisions at the Y(4S)

    Energy Technology Data Exchange (ETDEWEB)

    Stelzer, Jorg; /Stanford U., Phys. Dept. /SLAC

    2006-10-10

    The decay constant f{sub D{sub s}} of the pseudoscalar strange charm meson D{sub s}{sup +} is an important benchmark test of the theoretical methods that quantitatively describe the nonperturbative low-energy regime of QCD, the theory of the strong interaction. A confirmation of the validity of these predictive methods, foremost lattice QCD, in the sector of heavy-light meson decay constants increases trust in the calculation of f{sub B}, which is an important number for the measurement of the CKM matrix element V{sub td} in B{sup 0}{bar B}{sup 0}-mixing events. From October 1999 through July 2004, the BABAR experiment, located at the PEP-II storage ring at the Stanford Linear Accelerator Center, collected 230.2 fb{sup -1} of data in e{sup +}e{sup -} collision at {radical}s = 10.58 GeV. In this thesis, these data are searched for e{sup +}e{sup -} {yields} c{bar c} events by identifying sets of charged and neutral pions and charged kaons, consistent with the decay of a charm meson, D{sup 0}, D{sup +}, D{sub s}{sup +}, or D*{sup +}. A sample of 510,000 charmed mesons with a momentum consistent with e{sup +}e{sup -} {yields} c{bar c} events is identified.

  8. Lattice QCD Study of $B$-meson Decay Constants from ETMC

    CERN Document Server

    Bussone, A; Dimopoulos, P; Frezzotti, R; Giménez, V; Herdoíza, G; Lami, P; Lubicz, V; Michael, C; Picca, E; Riggio, L; Rossi, G C; Sanfilippo, F; Shindler, A; Simula, S; Tarantino, C

    2014-01-01

    We discuss a lattice QCD computation of the $B$-meson decay constants by the ETM collaboration where suitable ratios allow to reach the bottom quark sector by combining simulations around the charm-quark mass with an exactly known static limit. The different steps involved in this ratio method are discussed together with an account of the assessment of various systematic effects. A comparison of results from simulations with two and four flavour dynamical quarks is presented.

  9. Light vector meson production in pp collisions at sqrt(s) = 7 TeV

    DEFF Research Database (Denmark)

    Collaboration, ALICE; Abelev, B.; Abrahantes Quintana, A.

    2012-01-01

    The ALICE experiment has measured low-mass dimuon production in pp collisions at \\sqrt{s} = 7 TeV in the dimuon rapidity region 2.5y\\eta^{}, \\phi) into muons and semi-leptonic decays of charmed mesons. The measured production cross sections for \\omega and \\phi are \\sigma_\\omega (1p_t5 GeV/c,2.5y4...

  10. Double-parton scattering effects in double charm production within gluon fragmentation scenario

    CERN Document Server

    Maciula, Rafal

    2016-01-01

    We discuss charm $D^0 D^0$ meson-meson pair production in the forward rapidity region related to the LHCb experimental studies at $\\sqrt{s}$ = 7 TeV. We consider double-parton scattering mechanisms of double $c \\bar c$ production and subsequent standard $cc \\to D^{0}D^{0}$ scale-independent hadronization as well as new double $g$ and mixed $g c\\bar c $ production mechanisms with $gg \\to D^{0}D^{0}$ and $gc \\to D^{0}D^{0}$ scale-dependent hadronization. The new scenario with gluon fragmentation components results also in a new single-parton scattering mechanism of $gg$ production which is also taken here into account. Results of the numerical calculations are compared with the LHCb data for several correlation observables. The new mechanisms lead to a larger cross sections and to slightly different shapes of the calculated correlation observables.

  11. Prompt Neutrino Flux from Forward Charm Production

    CERN Document Server

    Halzen, Francis

    2016-01-01

    We revisit the calculation of charm particle production in hadron collisions, focusing on the production of charm particles that carry a large fraction of the momentum of the incident proton. In the case of strange particles, such a component is familiar from the abundant production of $K^+\\Lambda$ pairs. Modern collider experiments have no coverage in the very large rapidity region where the forward pair production dominates. While forward charm particles are produced inside the LHC beampipe, they dominate the high-energy atmospheric neutrino flux in underground experiments because long-lived pions and kaons interact before decaying into neutrinos. The fragmentation of the spectator quark in the partonic subprocesses $qc \\rightarrow qc$ and $gc \\rightarrow gc$ is responsible for the forward component of charm production in perturbative QCD. We use this phenomenological framework to construct a charm cross section that saturates available accelerator and cosmic ray data, i.e., it represents an upper limit on ...

  12. Charm physics results from SELEX

    Science.gov (United States)

    Kushnirenko, Alexander Y.

    1999-02-01

    The SELEX experiment (ET781) [1] at Fermilab is a new fixed target multistage spectrometer with high acceptance for forward interactions and decays. It took data in 1996-97 with 600 GeV Σ-, π- and 540 GeV p beams, collecting large sample of charm decays. Preliminary results on charm—anticharm production asymmetries, Λc+ production xF dependence in different beams, Λc+ lifetime, and the first observation of the Cabibbo-suppressed decay Ⅺc+→pK-π+ are presented.

  13. Vector Meson Production in Collisions of Nucleons

    Science.gov (United States)

    Brinkmann, K.-Th.; Abdel-Bary, M.; Abdel-Samad, S.; Clement, H.; Doroshkevich, E.; Dshemuchadse, S.; Dutz, H.; Ehrhardt, K.; Erhardt, A.; Eyrich, W.; Filippi, A.; Freiesleben, H.; Fritsch, M.; Georgi, J.; Gillitzer, A.; Gonser, P.; Jäkel, R.; Karsch, L.; Kilian, K.; Koch, H.; Kreß, J.; Kuhlmann, E.; Marcello, S.; Meyer, W.; Michel, P.; Morsch, H. P.; Möller, K.; Mörtel, H.; Naumann, L.; Pinna, L.; Pizzolotto, L.; Roderburg, E.; Schamlott, A.; Schönmeier, P.; Schroeder, W.; Schulte-Wissermann, M.; Sefzick, T.; Steinke, M.; Stinzing, F.; Sun, G. Y.; Ucar, A.; Ullrich, W.; Wagner, G. J.; Wagner, M.; Wilms, A.; Wintz, P.; Wirth, S.; Wüstner, P.; Zupranski, P.

    The production of vector mesons in collisions between nucleons is studied in order to address a variety of issues concerning nucleon-nucleon interaction, reaction mechanism and properties of baryons. These studies are summarized with emphasis on the most recent experiments at the Time-of-Flight spectrometer TOF and results obtained at the COoler SYnchrotron COSY in Jülich. While currently the open questions regarding the so-called OZI violation, its relation to the meson exchange picture and the relative importance of contributions to the production mechanism from various channels within this formalism are still unresolved, the present-day experiments hold the potential to clarify the situation greatly. Possible extensions of the experimental program on vector mesons using 4π detection techniques for charged as well as neutral particles, in particular π0, are discussed.

  14. Charm production in the Z{sup 0} decay in ALEPH experiment; Production du charme dans les desintegrations du Z{sup 0} dans l`experience ALEPH

    Energy Technology Data Exchange (ETDEWEB)

    Ferdi, Catherine [Clermont-Ferrand-2 Univ., 63 - Aubiere (France)

    1998-09-11

    This document summarizes the measurements of the production rates for charmed mesons obtained at LEP1 using e{sup +}e{sup -} collisions recorded by the ALEPH detector. Several decay channels of D{sup *+},D{sup 0} and D{sup +} mesons have been considered to increase the precision on the measurements and all decay channels have been treated in a coherent way using the same selection variables. A technique allowing to separate the two production mechanisms Z{sup 0} {yields} cc-bar and Z{sup 0} {yields} bb-bar with a purity of the order of 90%, and to evaluate precisely this purity from data has been developed. This approach allowed to measure the production rates of D{sup 0} and D{sup +} in charm hadronization with a high precision. It allowed also to observe and measure the decay fractions and the production rates, both in charm hadronization and in b decays, for the charm excited states D{sub 1} and D{sub 2}{sup *}. Using about 12,000 observed c {yields} D{sup 0},D{sup +}, we have measured the following production rates: R{sub c} x f(c{yields}D{sup 0}) = 0.0966 {+-} 0.0029 {+-} 0.0055 {+-} 0.0030(BR) and R{sub c} x f(c{yields}D{sup +}) = 0.0404 {+-} 0.0013 {+-} 0.0023 {+-} 0.0027(BR). Seven hundreds c {yields} D{sup **} and 250 b {yields} D{sup **} have been seen in the events recorded by the ALEPH detector, leading to: c {yields} D{sub 1} = (3.2 {+-} 0.9)%; c {yields} D{sub 2}{sup *} (9.4 {+-} 1.9)%; b{yields} D{sub 1} = (4.6 {+-} 1.4)%; b {yields} D{sub 2}{sup *} < 3.9% (95% C.L.); B(D{sub 2}{sup *}{yields}D{pi})/B(D{sub 2}{sup *}{yields}D{sup *}{pi} = 1.6 {+-} 0.4{sub stat} {+-} 0.3{sub syst}. As the mechanism for producing D{sup **} in the process Z{sup 0} {yields} cc-bar and Z{sup 0} {yields} bb-bar is different, their relative production rate for the spin 2 states (D{sub 2}{sup *}) with respect to the spin 1 states (D{sub 1}) can be different. Thus, no significant production is observed for the D{sub 2}{sup *} state in B decays, while the production of this

  15. Transversity and Meson Photoproduction

    CERN Document Server

    Goldstein, G R; Goldstein, Gary R.; Gamberg, Leonard

    2002-01-01

    Both meson photoproduction and semi-inclusive deep inelastic scattering can potentially probe transversity in the nucleon. We explore how that potential can be realized dynamically. The role of rescattering in both exclusive and inclusive meson production as a source for transverse polarization asymmetry is examined. We use a dynamical model to calculate the asymmetry and relate that to the transversity distribution of the nucleon.

  16. Properties of c meson

    Indian Academy of Sciences (India)

    Ajay Kumar Rai; P C Vinodkumar

    2006-05-01

    The mass spectrum of $c\\bar{b}$ meson is investigated with an effective quark-antiquark potential of the form $\\dfrac{-_{c}}{r} + Ar^{}$ with varying from 0.5 to 2.0. The and -wave masses, pseudoscalar decay constant, weak decay partial widths in spectator model and the lifetime of c meson are computed. The properties calculated here are found to be in good agreement with other theoretical and experimental values at potential index, = 1.

  17. Measurements of observables in the pion-nucleon system, nuclear a- dependence of heavy quark production and rare decays of D and B mesons

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, M.E.; Isenhower, L.D.

    1992-02-15

    This report discusses research on the following topics: pion-nucleon interactions; detector tomography facility; nuclear dependence of charm and beauty quark production and a study of two-prong decays of neutral D and B mesons; N* collaboration at CEBAF; and pilac experiments. (LSP)

  18. Transverse momentum dependence of D-meson production in Pb-Pb collisions at √sNN=2.76TeV

    NARCIS (Netherlands)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Bourjau, C.; Braun-munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; De Cataldo, G.; De Conti, C.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-oetringhaus, J. F.; Grossiord, J.-y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.

    2016-01-01

    The production of prompt charmed mesons D0, D+ and D∗+, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the centre-of-mass energy per nucleon pair, √sNN, of 2.76 TeV. The production yields for rapidity |y| < 0.5 are presented as a function of transverse momentum,

  19. CHARM 2010: Experiment summary and future charm facilities

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Jeffrey A.; /Fermilab

    2010-12-01

    The CHARM 2010 meeting had over 30 presentations of experimental results, plus additional future facilities talks just before this summary talk. Since there is not enough time to even summarize all that has been shown from experiments and to recognize all the memorable plots and results - tempting as it is to reproduce the many clean signals and data vs theory figures, the quantum correlations plots, and the D-mixing plots before and after the latest CLEO-c data is added. So, this review will give only my personal observations, exposing my prejudices and my areas of ignorance, no doubt. This overview will be at a fairly high level of abstraction - no re-showing individual plots or results. I ask the forgiveness of those who will have been slighted in this way - meaning all the presents.

  20. Probing flavor and CP in decays of beauty and charm

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, Stefan

    2013-07-10

    In order to probe for new physics beyond the Standard Model of particle physics, we explore decays of beauty and charm mesons. In the b sector we find ourselves in the realm of precision physics so that we can improve significantly the bounds on supersymmetric flavor violation from new theoretical and experimental progress in anti B → anti K{sup (*)}l{sup +}l{sup -}. From these bounds we derive several phenomenological implications, as bounds on Radiative Flavor Violation models that are partly even sharper than the ones from Kaon physics. In order to improve the bounds on new physics models from anti B → anti K{sup (*)}l{sup +}l{sup -} even more in the future, we extract subsequently anti B → anti K{sup *} form factor ratios from data at high invariant lepton pair masses. These are the current bottleneck for the advancement in precision. In the charm sector unexpectedly large CP violation was measured recently. Currently, the experimental situation is unsettled. We work here on the main problem that one cannot reliably calculate the hadronic part from first principles, i.e., cannot exclude possible enhancements from this source. We perform for the first time a comprehensive SU(3){sub F} analysis of D → P{sub 8}P{sub 8} decays including linear breaking in full generality. We find the SU(3){sub F} expansion to be indeed working. Furthermore, the fit shows a large triplet matrix element enhancement that cannot be excluded for sure without having a dynamical theory at hand. We show as a proof of principle that with significantly improved data we could disentangle the triplet model including the Standard Model from other new physics models. Using reasonable theoretical input from QCD factorization we can eliminate some of the many degrees of freedom of the pure SU(3){sub F} analysis. This can sharpen partially the correlation between D-decay CP asymmetries and branching ratios.

  1. Single electrons from heavy-flavor mesons in relativistic heavy-ion collisions

    Science.gov (United States)

    Song, Taesoo; Berrehrah, Hamza; Torres-Rincon, Juan M.; Tolos, Laura; Cabrera, Daniel; Cassing, Wolfgang; Bratkovskaya, Elena

    2017-07-01

    We study the single electron spectra from D - and B - meson semileptonic decays in Au+Au collisions at √{sNN}=200 , 62.4, and 19.2 GeV by employing the parton-hadron-string dynamics (PHSD) transport approach that has been shown to reasonably describe the charm dynamics at Relativistic Heavy Ion Collider and Large Hadron Collider energies on a microscopic level. In this approach the initial charm and bottom quarks are produced by using the PYTHIA event generator which is tuned to reproduce the fixed-order next-to-leading logarithm calculations for charm and bottom production. The produced charm and bottom quarks interact with off-shell (massive) partons in the quark-gluon plasma with scattering cross sections which are calculated in the dynamical quasiparticle model that is matched to reproduce the equation of state of the partonic system above the deconfinement temperature Tc. At energy densities close to the critical energy density (≈0.5 GeV /fm3 ) the charm and bottom quarks are hadronized into D and B mesons through either coalescence or fragmentation. After hadronization the D and B mesons interact with the light hadrons by employing the scattering cross sections from an effective Lagrangian. The final D and B mesons then produce single electrons through semileptonic decay. We find that the PHSD approach well describes the nuclear modification factor RAA and elliptic flow v2 of single electrons in d +Au and Au+Au collisions at √{sNN}=200 GeV and the elliptic flow in Au+Au reactions at √{sNN}=62.4 GeV from the PHENIX Collaboration, however, the large RAA at √{sNN}=62.4 GeV is not described at all. Furthermore, we make predictions for the RAA of D mesons and of single electrons at the lower energy of √{sNN}=19.2 GeV . Additionally, the medium modification of the azimuthal angle ϕ between a heavy quark and a heavy antiquark is studied. We find that the transverse flow enhances the azimuthal angular distributions close to ϕ =0 because the heavy

  2. D-meson production by muons in the COMPASS experiment at CERN

    CERN Document Server

    Zvyagin, A

    One of the physics goals of the COMPASS experiment at CERN was to measure the contribution of gluons to the nucleon spin. To achieve this, it was proposed to scatter polarized 160 GeV=c muons on a polarized deuteron target and to detect D mesons in the nal state. The underlying process in this D meson production is supposed to be the Photon-Gluon Fusion (PGF), where a virtual photon emitted by the muon interacts with a gluon from the target nucleon, producing a charm-anticharm quark pair. Fragmentation of a charm (anticharm) quark leads with high probability to the creation of a D0 or D meson, which COMPASS detects via the D0 ! K and D ! D0 ! K decay modes. From the longitudinal cross section spin asymmetries of the D meson production and theoretical predictions for the PGF cross section, the gluon contribution to the nucleon spin has been measured by the COMPASS experiment. The results presented in the thesis are the following. Based on data from the year 2004 a total visible cross section of 1:8 0:4 nb, fo...

  3. D-meson measurements in Pb-Pb collisions with the ALICE detector at the LHC

    CERN Document Server

    Bala, Renu

    2015-01-01

    Heavy quarks (charm and beauty) are effective probes to investigate the properties of the hot and dense strongly-interacting medium created in heavy-ion collisions as they are produced in partonic scattering processes occurring in the early stages of the collision. Due to their long life time, they probe all the stages of the medium evolution and they interact with its constituents, losing energy via gluon radiation and elastic collisions. The measurement of the D-meson nuclear modification factor provides a key test of parton energy-loss models. These models predict that beauty quarks lose less energy than charm quarks and the latter experience less in-medium energy loss than light quarks and gluons. D-meson production was measured with ALICE in Pb–Pb collisions at √ s NN = 2.76 TeV. D mesons were reconstructed via their hadronic decays at central rapidity. We will discuss the latest results of the measurement of the D-meson nuclear modification factor as a function of transverse momentum ( p T ) and col...

  4. Production of the doubly charmed baryons at the SELEX experiment - The double intrinsic charm approach

    Science.gov (United States)

    Koshkarev, Sergey; Anikeev, Vladimir

    2017-02-01

    The high production rate and > 0.33 of the doubly charmed baryons measured by the SELEX experiment is not amenable to perturbative QCD analysis. In this paper we calculate the production of the doubly heavy baryons with the double intrinsic charm Fock states whose existence is rigorously predicted by QCD. The production rate and the longitudinal momentum distribution are both reproduced. We also show that the production rates of the doubly charmed baryons and double J / ψ production observed by NA3 collaboration are comparable. Recent experimental results are reviewed. The production cross section of the doubly charmed baryons at a fixed-target experiment at the LHC is presented.

  5. A study of charm quark correlations in ultra-relativistic $p$ + $p$ collisions with PYTHIA

    CERN Document Server

    Shi, Shusu; Mustafa, Mustafa

    2015-01-01

    Measurements of heavy flavor quark (charm and bottom) correlations in heavy ion collisions are instrumental to understand the flavor dependence of energy loss mechanisms in hot and dense QCD media. Experimental measurements of these correlations in baseline $p$+$p$ collisions are crucial to understand the contributions of perturbative and non-perturbative QCD processes to the correlation functions and further help in interpreting correlation measurements in heavy ion collisions. In this paper, we investigate $D$-$\\bar{D}$ meson correlations and $D$ with one particle from $D$ meson decay daughter correlations using PYTHIA Event Generator in $p$ + $p$ collisions at $\\sqrt{s}$ = 200, 500 and 5500 GeV. Charm/bottom events are found to contribute mainly to the away side/near side pattern of $D$-electron correlations, respectively. In the energy region of RHIC, $D$-$\\bar{D}$ correlations inherit initial $c$-$\\bar{c}$ correlations and $B\\rightarrow DX$ decay contribution is insignificant. Furthermore, Bottom quark c...

  6. Measurement of charm production at central rapidity in proton-proton collisions at $\\sqrt{s}$ = 2.76 TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK

    2012-01-01

    The pt-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0, D+, and D*+ in the rapidity range |y| K- pi+, D+ -> K- pi+ pi+, D*+ -> D0 pi+, and their charge conjugates, and was performed on a L_int = 1.1 nb^-1 event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at sqrt(s)= 2.76 TeV and at 7 TeV was evaluated by extrapolating to the full phase space the pt-differential production cross sections at sqrt(s) = 2.76 TeV and our previous measurements at sqrt(s) = 7 TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of c dbar D mesons produced in a vector state was also determined.

  7. Measurement of $D^{*\\pm}$ production and the charm contribution to $F_{2}$ in deep inelastic scattering at HERA

    CERN Document Server

    Abbiendi, G; Abramowicz, H; Acosta, D; Adamczyk, L; Adamus, M; Ahn, S H; Amelung, C; An Shiz Hong; Anselmo, F; Antonioli, P; Arneodo, M; Bacon, Trevor C; Badgett, W F; Bailey, D C; Bailey, D S; Bamberger, A; Barbagli, G; Bari, G; Barreiro, F; Barret, O; Bashindzhagian, G L; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Bellagamba, L; Bertolin, A; Bhadra, S; Bienlein, J K; Blaikley, H E; Bohnet, I; Bokel, C; Boogert, S; Bornheim, A; Borzemski, P; Boscherini, D; Botje, M; Breitweg, J; Brock, I; Brook, N H; Brugnera, R; Bruni, A; Bruni, G; Brümmer, N; Burgard, C; Burow, B D; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carlin, R; Cartiglia, N; Cashmore, R J; Castellini, G; Catterall, C D; Chapin, D; Chekanov, S; Chwastowski, J; Ciborowski, J; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Coboken, K; Coldewey, C; Cole, J E; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cor, M; Cormack, C; Corriveau, F; Costa, M; Cottingham, W N; Crittenden, J; Cross, R; D'Agostini, G; Dagan, S; Dal Corso, F; Dardo, M; De Pasquale, S; De Wolf, E; Deffner, R; Del Peso, J; Deppe, O; Derrick, M; Deshpande, Abhay A; Desler, K; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Dondana, S; Dosselli, U; Doyle, A T; Drews, G; Dulinski, Z; Durkin, L S; Dusini, S; Eckert, M; Edmonds, J K; Eisenberg, Y; Eisenhardt, S; Engelen, J; Epperson, D E; Ermolov, P F; Eskreys, Andrzej; Fagerstroem, C P; Fernández, J P; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fox-Murphy, A; Fricke, U; Frisken, W R; Fusayasu, T; Gadaj, T; Galea, R; Gallo, E; García, G; Garfagnini, A; Gendner, N; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Glasman, C; Göbel, F; Golubkov, Yu A; Grabosch, H J; Graciani, R; Grosse-Knetter, J; Grzelak, G; Göttlicher, P; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanna, D S; Harnew, N; Hart, H; Hart, J C; Hartmann, J; Hartner, G F; Hasell, D; Hayes, M E; Heaphy, E A; Heath, G P; Heath, H F; Hebbel, K; Heinloth, K; Heinz, L; Hernández, J M; Heusch, C A; Hilger, E; Hirose, T; Hochman, D; Holm, U; Homma, K; Hong, S J; Howell, G; Hughes, V W; Iacobucci, G; Iannotti, L; Iga, Y; Inuzuka, M; Ishii, T; Jakob, H P; Jelen, K; Jeoung, H Y; Jing, Z; Johnson, K F; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Kasemann, M; Katz, U F; Kcira, D; Kerger, R; Khakzad, M; Khein, L A; Kim, C L; Kim, J Y; Kisielewska, D; Kitamura, S; Klanner, Robert; Klimek, K; Ko, I A; Koch, W; Koffeman, E; Kooijman, P; Koop, T; Korotkova, N A; Kotanski, A; Kowal, A M; Kowalski, H; Kowalski, T; Krakauer, D; Kreisel, A; Kuze, M; Kuzmin, V A; Kötz, U; Labarga, L; Lamberti, L; Lane, J B; Laurenti, G; Lee, J H; Lee, S B; Lee, S W; Levi, G; Levman, G M; Levy, A; Lim, H; Lim, I T; Limentani, S; Lindemann, L; Ling, T Y; Liu, W; Lohrmann, E; Long, K R; Lopez-Duran Viani, A; Lukina, O Yu; Löhr, B; Ma, K J; MacDonald, N; Maccarrone, G; Magill, S; Mallik, U; Margotti, A; Marini, G; Markun, P; Martin, J F; Martínez, M; Maselli, S; Massam, Thomas; Mastroberardino, A; Matsushita, T; Mattingly, M C K; Mattingly, S E K; McCance, G J; McCubbin, N A; McFall, J D; Mellado, B; Menary, S R; Meyer, A; Meyer-Larsen, A; Milewski, J; Milite, M; Miller, D B; Monaco, V; Monteiro, T; Morandin, M; Moritz, M; Murray, W N; Musgrave, B; Mönig, K; Nagano, K; Nam, S W; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Noyes, V A; Nylander, P; Ochs, A; Oh, B Y; Okrasinski, J R; Olkiewicz, K; Orr, R S; Pac, M Y; Padhi, S; Palmonari, F; Park, I H; Park, S K; Parsons, J A; Paul, E; Pavel, N; Pawlak, J M; Pawlak, R; Pelfer, Pier Giovanni; Pellegrino, A; Pelucchi, F; Peroni, C; Pesci, A; Petrucci, M C; Pfeiffer, M; Pic, D; Piotrzkowski, K; Poelz, G; Polenz, S; Polini, A; Posocco, M; Prinias, A; Proskuryakov, A S; Przybycien, M B; Puga, J; Quadt, A; Raach, H; Raso, M; Rautenberg, J; Re, J; Redondo, I; Reeder, D D; Ritz, S; Riveline, M; Rohde, M; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Sadrozinski, H F W; Saint-Laurent, M; Salehi, H; Samp, S; Sartorelli, G; Saull, P R B; Savin, A A; Saxon, D H; Schechter, A; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Schwarzer, O; Sciulli, F; Scott, J; Sedgbeer, J K; Seiden, A; Selonke, F; Shah, T P; Shcheglova, L M; Sideris, D; Sievers, M; Simmons, D; Sinclair, L E; Skillicorn, I O; Smalska, B; Smith, W H; Solano, A; Solomin, A N; Son, D; Staiano, A; Stairs, D G; Stanco, L; Stanek, R; Stifutkin, A; Stonjek, S; Straub, P B; Strickland, E; Stroili, R; Susinno, G; Suszycki, L; Sutton, M R; Suzuki, I; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Toothacker, W S; Tsurugai, T; Tuning, N; Tymieniecka, T; Umemori, K; Vaiciulis, A W; Van Sighem, A; Velthuis, J J; Verkerke, W; Voci, C; Vossebeld, Joost Herman; Votano, L; Walczak, R; Walker, R; Wang, S M; Waters, D S; Waugh, R; Weber, A; Whitmore, J J; Wichmann, R; Wick, K; Wieber, H; Wiggers, L; Wildschek, T; Williams, D C; Wing, M; Wodarczyk, M; Wolf, G; Wollmer, U; Wróblewski, A K; Wölfle, S; Yamada, S; Yamashita, T; Yamauchi, K; Yamazaki, Y; Yoshida, R; Youngman, C; Zajac, J; Zakrzewski, J A; Zamora Garcia, Y; Zawiejski, L; Zetsche, F; Zeuner, W; Zhu, Q; Zichichi, A; Zotkin, S A

    2000-01-01

    The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1charm-fragmentation models which take into account the interaction of the charm quark with the proton remnant. The observed cross section is extrapolated to the full kinematic region in pT(D*+-) and eta(D*+-) in order to determine the charm contribution, F^ccbar_2(x,Q^2), to the proton structure function. The ratio F^ccbar_2/F_2 rises from ~10% at Q^2 ~1.8 GeV^2 to ~30% at Q^2 ~130 GeV^2 for x values in the ra...

  8. Charm and beauty production in D{sup *}{mu} events at H1/HERA

    Energy Technology Data Exchange (ETDEWEB)

    Lucaci-Timoce, A.I.

    2007-07-15

    Charm and beauty photoproduction is investigated with the H1 detector at HERA using events with a reconstructed D{sup *} meson and a muon. Data taken during the years 1999-2000 and 2004-2006, corresponding to a total integrated luminosity of 320 pb{sup -1}, are analysed. The D{sup *} mesons with transverse momentum p{sub t}(D{sup *})>1.5 GeV and pseudorapidity vertical stroke {eta}(D{sup *}) vertical stroke <1.5 are reconstructed via the decay channel D{sup *{+-}}{yields}D{sup (-)0}{pi}{sub s}{sup {+-}}{yields}(K{sup -+}{pi}{sup {+-}}){pi}{sub s}{sup {+-}}. In addition, muons with momentum p({mu})>2 GeV and vertical stroke {eta}({mu}) vertical stroke <1.735 are selected. With this selection, the contribution of light quark initiated events is negligible. The fractions of charm and beauty events in data are extracted exploiting the charge and azimuthal angle correlation between the D{sup *} meson and the muon. The charm and beauty cross sections were measured in photoproduction, i.e. for photon virtualities Q{sup 2}<1 GeV{sup 2}, and for inelasticities 0.05charm and beauty, respectively. Differential cross sections for the variables describing the D{sup *}{mu} system like transverse momentum p{sub t}(D{sup *}{mu}), pseudorapidity {eta}(D{sup *}{mu}), invariant mass M(D{sup *}{mu}) and inelasticity y(D{sup *}{mu}) are measured and compared to the PYTHIA and the CASCADE Monte Carlo event generators. The theoretical models describe the shape of the differential distributions. Transverse momentum studies of the D

  9. Charmed hadron photoproduction at COMPASS

    CERN Document Server

    Wang, Xiao-Yun

    2016-01-01

    Photoproduction of the charmonium-like state $Z_{c}(4200)$ and the charmed baryon $\\Lambda_{c}^{\\ast }(2940)$ is investigated with an effective Lagrangian approach and the Regge trajectories applying to the COMPASS experiment. Combining the experimental data from COMPASS and our theoretical model we estimate the upper limit of $\\Gamma_{Z_{c}(4200)\\rightarrow J/\\psi \\pi }$ to be of about 37 MeV. Moreover, the possibility to produce $\\Lambda_{c}^{\\ast }(2940)$ at COMPASS is discussed. It seems one can try to search for this hadron in the missing mass spectrum since the $t$-channel is dominating for the $\\Lambda_{c}^{\\ast }(2940)$ photoproduction.

  10. Measurement of the Charm structure Function $F_{2}^{\\gamma},c$ of the Photon at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Busser, K.; Burckhart, H.J.; Cammin, J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Cohen, I.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; de Roeck, A.; De Wolf, E.A.; Desch, K.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; Von Krogh, J.; Krop, D.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisian, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.; Zivkovic, Lidija

    2002-01-01

    The production of charm quarks is studied in deep-inelastic electron-photon scattering using data recorded by the OPAL detector at LEP at normal e+e- centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D0pi with the D0 observed in two decay modes with charged particle final states, Kpi and K3pi. The cross-section sigma(D*) for production of charged D* in the reaction e+e- -> e+e-D*X is measured in a restricted kinematical region using two bins in Bjorken x, 0.0014 e+e- ccbar X) and the charm structure function of the photon F 2,c are determined in the region 0.0014 0.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x < 0.1 the measured cross-section is 43.8 +- 14.3 +- 6.3 +- 2.8 pb with a next-to-leading order prediction of 17.0+2.9-2.3 p.b.

  11. Charm production in charged current deep inelastic e{sup +}p scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.

    2006-03-15

    The measurement of charm production in charged current deep inelastic positron-proton scattering is investigated with the ZEUS detector at the HERA collider. The data used has been collected from 1995 to 2000, corresponding to an integrated luminosity of 110 pb{sup -1}. Charged D{sup *} mesons decaying in the channel D{sup *+}{yields}D{sup 0}{pi}{sup +}{sub s} with D{sup 0}{yields}K{sup -}{pi}{sup +} and the charge conjugated channel are reconstructed to tag charm quarks. The visible cross section for D{sup *}, {sigma}{sup D*}{sub vis}=12.8{+-}4.0(stat){sup +4.7}{sub -1.5}(sys) pb, is measured in the kinematic range of Q{sup 2}>200 GeV{sup 2} and y<0.9, and of p{sup D{sup *}}{sub T}>1.5 GeV and vertical stroke {eta}{sup D{sup *}} vertical stroke <1.5. The upper-limit for the charm production in the same DIS kinematic range is determined to be {sigma}{sup e{sup +}}{sup p{yields}} {sup anti} {sup {nu}{sub e}}{sup cX} < 109 pb at 90% confidence level. (orig.)

  12. Discovery of charmed particles : Sam Ting

    CERN Multimedia

    1974-01-01

    The great physics event of the year was the discovery of charmed particles in the USA. One of the co-discoverers, Sam Ting, was at CERN involved in an ISR experiment and described the discovery to a packed auditorium.

  13. Study of the machine background induced by the PEP-II collider with a mini-TPC. Study of the doubly-charmed decay of the B meson with the detector BaBar; Etude du bruit de fond engendre par la machine PEP-2 a l'aide d'une mini-TPC. Etude de la desintegration doublement charmee du meson B avec le detecteur BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Trincaz-Duvoid, S

    2001-01-01

    The work presented in this thesis is divided into two parts. The first one deals with the machine background induced by the PEP-II collider. This study has been performed with a mini-TPC before the start of the BaBar experiment. The second part concerns the measurements of the branching ratio of the decay modes B{sup 0} {yields} D{sup *-}D(*){sup 0}K{sup +} and of the inclusive branching ratio Br(B{sup 0} {yields} K{sup {+-}}X). These measurements have been obtained with the first BaBar data. During the commissioning of the PEP-II collider, the charged tracks rate close to the interaction point has been measured with the mini-TPC. This study has pointed to the fact that the machine background was much higher than predicted by the simulation. These bad background conditions were due to the poor quality of the vacuum in the rings. This relatively high pressure in the rings produces electro-magnetic showers at the interaction point due to beam gas interactions. The potential risks for the BaBar detector due to the machine backgrounds have been clearly pointed out by the studies performed for this thesis. The addition of some collimators and a deep understanding of the machine have greatly reduced the background. Nevertheless, the radiation level in BaBar is continuously monitored in order to protect the detector. The study of the b {yields} cc-bar channel is an important point for the understanding of the overall picture of the B meson decay. With an integrated luminosity of 17.3 fb{sup -1} recorded by the BaBar detector the following branching ratio using exclusive reconstruction technique have been measured: Br(B{sup 0} {yields} D{sup *-}D{sup 0}K{sup +}) = (0.29 {+-} 0.06 (stat) {+-} (syst)) % Br(B{sup 0} {yields} D{sup *-}D{sup *0}K{sup +}) = (1.16 {+-} 0.15 (stat) {+-} 0.16 (syst)) % A partial reconstruction has also been developed. With an integrated luminosity of 8.9 fb{sup -1}, the branching ratio of B{sup 0} into D{sup *-}D{sup 0}K{sup +} has been measured

  14. Open heavy-flavour production in pp and Pb-Pb collisions at the LHC, measured with ALICE at central rapidity

    CERN Document Server

    Rossi, A

    2013-01-01

    The ALICE experiment studies nucleus-nucleus collisions at the LHC in order to investigate the properties of QCD matter at extreme energy densities. The measurement of open charm and open beauty production allows to investigate the interaction of heavy quarks with the hot and dense medium formed in high-energy nucleus-nucleus collisions. In particular, in-medium energy loss is predicted to be different for gluons, light quarks and heavy quarks and to depend on the medium energy density and size. ALICE has measured open heavy-flavour particle production at central rapidity in several decay channels in Pb-Pb and pp collisions at sqrt{s_NN} = 2.76 TeV and sqrt{s} = 2.76, 7 TeV respectively. The results obtained from the reconstruction of D meson decays at central rapidity and from electrons from heavy-flavour hadron decay will be presented.

  15. Triggers for a high sensitivity charm experiment

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.C.

    1994-07-01

    Any future charm experiment clearly should implement an E{sub T} trigger and a {mu} trigger. In order to reach the 10{sup 8} reconstructed charm level for hadronic final states, a high quality vertex trigger will almost certainly also be necessary. The best hope for the development of an offline quality vertex trigger lies in further development of the ideas of data-driven processing pioneered by the Nevis/U. Mass. group.

  16. Observation of D0 meson nuclear modifications in Au+Au collisions at sqrt[s(NN)] = 200 GeV.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-10-03

    We report the first measurement of charmed-hadron (D(0)) production via the hadronic decay channel (D(0) → K(-) + π(+)) in Au+Au collisions at sqrt[s(NN)] = 200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, N(bin), from p+p to central Au+Au collisions. The D(0) meson yields in central Au + Au collisions are strongly suppressed compared to those in p+p scaled by N(bin), for transverse momenta p(T) > 3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate p(T) is also observed. Model calculations including strong charm-medium interactions and coalescence hadronization describe our measurements.

  17. Observation of $D^0$ meson nuclear modifications in Au+Au collisions at $\\sqrt{s_{_{\\mathrm{NN}}}}$ = 200 GeV

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; B{ü}ltmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-01-01

    We report the first measurement of charmed-hadron ($D^0$) production via the hadronic decay channel ($D^0\\rightarrow K^- + \\pi^+$) in Au+Au collisions at $\\sqrt{s_{_{\\mathrm{NN}}}}$ = 200\\,GeV with the STAR experiment. The charm production cross-section per nucleon-nucleon collision at mid-rapidity scales with the number of binary collisions, $N_{bin}$, from $p$+$p$ to central Au+Au collisions. The $D^0$ meson yields in central Au+Au collisions are strongly suppressed compared to those in $p$+$p$ scaled by $N_{bin}$, for transverse momenta $p_{T}>3$ GeV/$c$, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate $p_{T}$ is also observed. Model calculations including strong charm-medium interactions and coalescence hadronization describe our measurements.

  18. Isospin violating decays of positive parity $B_s$ mesons in HM$\\chi$PT

    CERN Document Server

    Brdnik, Anita Prapotnik

    2016-01-01

    Recent lattice QCD results suggest that the masses of the first two positive parity $B_s$ mesons lie below the BK threshold, similar to the case of $D^*_{s0}(2317)^+$ and $D_{s1}(2460)^+$ mesons. The mass spectrum of $B_s$ mesons seems to follow pattern of $D_s$ mass spectrum. As in the case of charmed mesons, the structure of positive parity $B_s$ mesons is very intriguing. To shed more light on this issue, we investigate strong isospin violating decays $B_s(0^+) \\to B_s^0 \\pi^0$, $B_s(1^+) \\to B_s^{*0} \\pi^0$ and $B_s(1^+) \\to B_s^0 \\pi \\pi$ within heavy meson chiral perturbation theory. The two body decay amplitude arises at the tree level and we show that the loop corrections give significant contributions. On the other hand, in the case of three body decay $B_s(1^+) \\to B_s^0 \\pi \\pi$ amplitude occurs only at the loop level. We find that the decay widths for these decays are: $\\Gamma (B_s(1^+) \\to B_s^0 \\pi \\pi)\\sim 10^{-3}\\,$keV and $\\Gamma (B_s(0^+) \\to B_s^0 \\pi^0) \\leq 55\\,$keV, $\\Gamma (B_s(1^+) \\to...

  19. A Study of Double-Charm and Charm-Strange Baryons inElectron-Positron Annihilations

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Adam J.; /SLAC

    2007-10-15

    In this dissertation I describe a study of double-charm and charm-strange baryons based on data collected with the BABAR Detector at the Stanford Linear Accelerator Center. In this study I search for new baryons and make precise measurements of their properties and decay modes. I seek to verify and expand upon double-charm and charm-strange baryon observations made by other experiments. The BABAR Detector is used to measure subatomic particles that are produced at the PEP-II storage rings. I analyze approximately 300 million e+e- {yields} c{bar c} events in a search for the production of double-charm baryons. I search for the double-charm baryons {Xi}{sup +}{sub cc} (containing the quarks ccd) and {Xi}{sup ++}{sub cc} (ccu) in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +} and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}{pi}{sup +}, respectively. No statistically significant signals for their production are found, and upper limits on their production are determined. Statistically significant signals for excited charm-strange baryons are observed with my analysis of approximately 500 million e+e- {yields} c{bar c} events. The charged charm-strange baryons {Xi}{sub c}(2970){sup +}, {Xi}{sub c}(3055){sup +}, {Xi}{sub c}(3123){sup +} are found in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}, the same decay mode used in the {Xi}{sup +}{sub cc} search. The neutral charm-strange baryon {Xi}{sub c}(3077){sup 0} is observed in decays to {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}. I also search for excited charm-strange baryon decays to {Lambda}{sup +}{sub c}K{sub 8}, {Lambda}{sup +}{sub c}K{sup -}, {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}{pi}{sup +}, and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup -}{pi}{sup +}. No significant charm-strange baryon signals a f h these decay modes. For each excited charm-strange baryon state that I observe, I measure its mass, natural width (lifetime), and production rate. The properties of these excited charm-strange baryons and their

  20. Single Muon Production And Implications For Charm In Center Of Mass Energies = 20 Gev Gold+gold Collisions

    CERN Document Server

    Glenn, A M

    2004-01-01

    The PHENIX experiment, located at the Brookhaven National Laboratory's Relativistic Heavy Ion Collider, is designed to study high energy proton+proton and nucleus+nucleus collisions in order to characterize hot and dense nuclear matter. This dissertation presents the first analysis of single muon production in sNN = 200 GeV Au+Au reactions. Implications of the forward rapidity measurements for charm production are discussed. Motivation for charm production measurements and the role of open charm in characterizing the medium created in relativistic heavy ion collisions are presented, and the importance of measurements at forward rapidity is established. The results of this study are compared to relevant calculations and related measurements at RHIC. The number of muons produced from charm decays is found to scale with the number of binary collisions within large experimental errors over the studied kinematic region.

  1. Computing K and D meson masses with N{sub f}=2+1+1 twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Remi [CEA, Centre de Saclay, 91 - Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Blossier, Benoit; Boucaud, Philippe [Paris XI Univ., 91 - Orsay (FR). Lab. de Physique Theorique] (and others)

    2010-05-15

    We discuss the computation of the mass of the K and D mesons within the framework of N{sub f}=2+1+1 twisted mass lattice QCD from a technical point of view. These quantities are essential, already at the level of generating gauge configurations, being obvious candidates to tune the strange and charm quark masses to their physical values. In particular, we address the problems related to the twisted mass flavor and parity symmetry breaking, which arise when considering a non-degenerate (c,s) doublet. We propose and verify the consistency of three methods to extract the K and D meson masses in this framework. (orig.)

  2. Computing K and D meson masses with N_f = 2+1+1 twisted mass lattice QCD

    CERN Document Server

    Baron, Remi; Carbonell, Jaume; Drach, Vincent; Farchioni, Federico; Herdoiza, Gregorio; Jansen, Karl; Michael, Chris; Montvay, Istvan; Pallante, Elisabetta; Pene, Olivier; Reker, Siebren; Urbach, Carsten; Wagner, Marc; Wenger, Urs

    2010-01-01

    We discuss the computation of the mass of the K and D mesons within the framework of N_f = 2+1+1 twisted mass lattice QCD from a technical point of view. These quantities are essential, already at the level of generating gauge configurations, being obvious candidates to tune the strange and charm quark masses to their physical values. In particular, we address the problems related to the twisted mass flavor and parity symmetry breaking, which arise when considering a non-degenerate (c,s) doublet. We propose and verify the consistency of three methods to extract the K and D meson masses in this framework.

  3. Study of correlations between photoproduced pairs of charmed particles at Experiment E831/FOCUS

    Energy Technology Data Exchange (ETDEWEB)

    Castromonte Flores, Cesar Manuel [Brazilian Center for Physics Research, Rio de Janeiro (Brazil)

    2008-08-01

    The authors present the study of the charm-pair correlations produced in photon-nucleon interactions at $\\langle$Eγ$\\rangle$ = 175 GeV/c, by the Fermilab fixed target experiment E831/FOCUS. The E831/FOCUS experiment produced and reconstructed over one million charm particles. This high statistics allows the reconstruction of more than 7000 charm-pair mesons D$\\bar{D}$, 10 times the statistic of former experiments, and also allows to get, for the first time, about 600 totally reconstructed charm-pairs in the DDs and DΛc channels. They were able to study, with some detail, the kinematical correlations between the charm and anticharm particle forming a pair, in the square transverse momentum (pT2), azimuthal angle difference (ΔΦ), rapidity difference (Δy) and the charm-pair mass variables. They observe some correlation for the longitudinal momenta, and a significant correlation for the transverse momenta of the charm and anticharm particles. They compare the experimental distributions with theoretical predictions based on the photon-gluon fusion model (PGF), for the production of c$\\bar{c}$ quarks, and the standard Lund hadronization model. These models are implemented by the PYTHIA Monte Carlo event generator. The PYTHIA program allows the inclusion, in the simulation, of non-perturbative effects that have been shown to be important for charm production. In order to compare data and simulation, they have generated two Monte Carlo samples, the first one set to favor the production of D$\\bar{D}$ pairs (MCDD2), and the second one set to favor the production of DDsand DΛc pairs, where each one uses different functions and parameters values for the theoretical models in the simulation. They observe, for the correlation distributions, that the set of parameters used by the MCDD2 model together with the intrinsic transverse momentum (k$\\perp$) of the partons inside the

  4. Search for doubly charmed baryons and study of charmed strange baryons at Belle

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Y.; Iijima, T.; Adachi, I.; Aihara, H.; Asner, D. M.; Aushev, T.; Bakich, A. M.; Bala, A.; Ban, Y.; Bhardwaj, V.; Bhuyan, B.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Doležal, Z.; Drásal, Z.; Drutskoy, A.; Dutta, D.; Dutta, K.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Gaur, V.; Gabyshev, N.; Ganguly, S.; Garmash, A.; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hayasaka, K.; Hayashii, H.; He, X. H.; Horii, Y.; Hoshi, Y.; Hou, W. -S.; Hsiung, Y. B.; Inami, K.; Ishikawa, A.; Iwasaki, Y.; Iwashita, T.; Jaegle, I.; Julius, T.; Kang, J. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, J. H.; Kim, M. J.; Kim, Y. J.; Klucar, J.; Ko, B. R.; Kodyš, P.; Korpar, S.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y. -J.; Lee, S. -H.; Li, J.; Li, Y.; Li Gioi, L.; Libby, J.; Liu, Y.; Liventsev, D.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Moll, A.; Muramatsu, N.; Mussa, R.; Nagasaka, Y.; Nakano, E.; Nakao, M.; Nakazawa, H.; Nayak, M.; Nedelkovska, E.; Ng, C.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Pedlar, T. K.; Peng, T.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Ritter, M.; Röhrken, M.; Rostomyan, A.; Sahoo, H.; Saito, T.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Semmler, D.; Senyo, K.; Seon, O.; Shapkin, M.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Sibidanov, A.; Sohn, Y. -S.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Steder, M.; Sumihama, M.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Tatishvili, G.; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Wagner, M. N.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamashita, Y.; Yashchenko, S.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.

    2014-03-17

    We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider.

  5. Decay Constants of Beauty Mesons from QCD Sum Rules

    CERN Document Server

    Lucha, Wolfgang; Simula, Silvano

    2014-01-01

    Our recently completed analysis of the decay constants of both pseudoscalar and vector beauty mesons reveals that in the bottom-quark sector two specific features of the sum-rule predictions show up: (i) For the input value of the bottom-quark mass in the $\\overline{\\rm MS}$ scheme $\\overline{m}_b(\\overline{m}_b)\\approx4.18\\;\\mbox{GeV},$ the sum-rule result $f_B\\approx210$-$220\\;\\mbox{MeV}$ for the $B$ meson decay constant is substantially larger than the recent lattice-QCD finding $f_B\\approx190\\;\\mbox{MeV}.$ Requiring QCD sum rules to reproduce the lattice-QCD value of $f_B$ yields a significantly larger $b$-quark mass: $\\overline{m}_b(\\overline{m}_b)=4.247\\;\\mbox{GeV}.$ (ii) Whereas QCD sum-rule predictions for the charmed-meson decay constants $f_D,$ $f_{D_s},$ $f_{D^*}$ and $f_{D_s^*}$ are practically independent of the choice of renormalization scale, in the beauty sector the results for the decay constants - and especially for the ratio $f_{B^*}/f_B$ - prove to be very sensitive to the specific scale s...

  6. Decay Constants of Beauty Mesons from QCD Sum Rules

    Directory of Open Access Journals (Sweden)

    Lucha Wolfgang

    2014-01-01

    Full Text Available Our recently completed analysis of the decay constants of both pseudoscalar and vector beauty mesons reveals that in the bottom-quark sector two specific features of the sum-rule predictions show up: (i For the input value of the bottom-quark mass in the M̅S̅ scheme m̅b(m̅b ≈ 4:18 GeV; the sum-rule result fB ≈ 210–220 MeV for the B meson decay constant is substantially larger than the recent lattice-QCD finding fB ≈ 190 MeV: Requiring QCD sum rules to reproduce the lattice-QCD value of fB yields a significantly larger b-quark mass: m̅b(m̅b = 4:247 GeV: (ii Whereas QCD sum-rule predictions for the charmed-meson decay constants fD; fDs, fD* and fDs* are practically independent of the choice of renormalization scale, in the beauty sector the results for the decay constants—and especially for the ratio fB* / fB—prove to be very sensitive to the specific scale setting.

  7. Measurement of Indirect CP Violation in Charm at LHCb

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00342046

    This thesis describes two pieces of work. The first is a study of the resolution of the LHCb vertex locator throughout Run 1. The second comprises analyses to measure the charm mixing and $CP$ violation observables $A_{\\Gamma}$ and $y_{CP}$. An estimate of the resolution of the LHCb vertex locator is required for use in the track fits. A method to measure the resolution with collision data has been developed and tested. The performance of the sub-detector throughout Run 1 of the LHC has been assessed. A significant degrading of the resolution has been seen. The effects of this on the track reconstruction has been examined with little change in the measured quantities being observed. The measurement of indirect $CP$ violation in neutral $D$ meson transitions has been measured through the observables $A_{\\Gamma}$ and $y_{CP}$, using $fb^{-1}$ of $pp$ collisions with a centre of mass energy $7 TeV$, collected by the LHCb detector in 2011. $A_{\\Gamma}$ describes the $CP$ asymmetry of the lifetime of the $D^0$ dec...

  8. Searches for CP violation in two-body charm decays

    CERN Document Server

    AUTHOR|(CDS)2073698

    2015-01-01

    The LHCb experiment recorded data corresponding to an integrated luminosity of 3.0 $fb^{-1}$ during its first run of data taking. These data yield the largest samples of charmed hadrons in the world and are used to search for CP violation in the $D^0$ system. Among the many measurements performed at LHCb, a measurement of the direct CP asymmetry in $D^0 \\rightarrow K_S^0 K_S^0$ decays is presented and is found to be $A_{CP}(D^0 \\rightarrow K_S^0 K_S^0) = (-2.9 \\pm 5.2 \\pm 2.2)\\, \\%, $ where the first uncertainty is statistical and the second systematic. This represents a significant improvement in precision over the previous measurement of this parameter. Measurements of the parameter $A^\\Gamma$, defined as the CP asymmetry of the $D^0$ effective lifetime when decaying to a CP eigenstate, are also presented. Using semi-leptonic b-hadron decays to tag the flavour of the $D^0$ meson at production with the $K^+K^-$ and $\\pi^+\\pi^-$ final states yields $A^\\Gamma(K^+K^-) = (-0.134 \\pm 0.077^{+0.026}_{-0.034})\\, \\%...

  9. Diffractive production of mesons

    CERN Document Server

    Schicker, R

    2014-01-01

    The interest in the study of diffractive meson production is discussed. The description of diffraction within Regge phenomenology is presented, and the QCD-based understanding of diffractive processes is given. Central production is reviewed, and the corresponding main results from the COMPASS experiment and from the experiments at the ISR, RHIC, TEVATRON and LHC collider are summarised.

  10. Mesonic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Frederic D. R. Bonnet; Robert G. Edwards; George T. Fleming; Randal Lewis; David Richards

    2003-07-22

    We have started a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present preliminary results computed with domain wall valence fermions on MILC asqtad lattices, as well as Wilson fermions on quenched lattices. These methods can easily be extended to rho-to-gamma-pi transition form factors.

  11. Diffractive production of mesons

    Directory of Open Access Journals (Sweden)

    Schicker Rainer

    2014-01-01

    Full Text Available The interest in the study of diffractive meson production is discussed. The description of diffraction within Regge phenomenology is presented, and the QCD-based understanding of diffractive processes is given. Central production is reviewed, and the corresponding main results from the COMPASS experiment and from the experiments at the ISR, RHIC, TEVATRON and LHC collider are summarised.

  12. Holographic scalar mesons

    CERN Document Server

    Nicotri, Stefano

    2009-01-01

    A holographic description of scalar mesons is presented, in which two- and three-point functions are holographically reconstructed. Mass spectrum, decay constants, eigenfunctions and the coupling of the scalar states with two pseu- doscalars are found. A comparison of the results with current phenomenology is discussed.

  13. Gluonic Excitations in Mesons

    OpenAIRE

    Page, Philip R.

    1998-01-01

    We report on some interesting recent theoretical and experimental advances on J^PC exotics and hybrid mesons. These are the decay selection rules governing J^PC exotic decay, the experimental evidence for a J^PC = 1^-+ exotic in eta pi and rho pi, and the production of charmonium hybrids at forthcoming B-factories.

  14. Charm quark pair correlations with D{sup *}-muon tag at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Gladkov, D.

    2007-07-15

    This thesis presents a measurement of double-tagged charm quark pair production via the process ep{yields}e' ccX{yields}e' D*{mu}X' in lepton-proton collisions at HERA, using an integrated luminosity of 114 pb{sup -1} gated by the ZEUS detector in the years 1996-2000. Since the charm quark mass provides a large enough energy scale, the perturbative Quantum Chromo-Dynamics approach can be used to calculate the cross section for charm D*-muon pairs. Using the D*-muon pair to tag the charm quark pair, the measurement is sensitive not only to properties of the leading order hard scattering process but also to the hadronisation and the parton density in the proton as well as higher order effects. Employing the angular and charge correlations between the D* meson and the muon, the fraction of charm events is extracted from the data. Cross sections for charm D*-muon pair production in the visible range of the D* transverse momentum p{sub T}{sup D*}>1.5 GeV, the D* pseudorapidity vertical stroke {eta}{sup D*} vertical stroke <1.5, the muon transverse momentum p{sub T}{sup {mu}}>1.0 GeV and the muon pseudorapidity vertical stroke {eta}{sup {mu}} vertical stroke <2.2 are measured for the inclusive, photoproduction (inelasticity 0.052 GeV{sup 2}) regimes. For the inclusive and photoproduction regimes differential cross sections in various kinematic variables of the D*-muon pair are measured as well. The differential cross sections for the inclusive regime are compared to the leading order plus parton shower MC approach, while the differential cross sections for the photoproduction regime are compared to next-to leading order calculations. The momentum fraction carried by the gluon in the proton is also measured. The possibility of extending the Global Track Trigger of the ZEUS DAQ/trigger system with a forward trigger algorithm is the technical task of this thesis. A forward

  15. D-meson production by muons in the COMPASS experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Zvyagin, Alexander

    2011-01-21

    One of the physics goals of the COMPASS experiment at CERN was to measure the contribution of gluons to the nucleon spin. To achieve this, it was proposed to scatter polarized 160 GeV/c muons on a polarized deuteron target and to detect D mesons in the final state. The underlying process in this D meson production is supposed to be the Photon-Gluon Fusion (PGF), where a virtual photon emitted by the muon interacts with a gluon from the target nucleon, producing a charm-anticharm quark pair. Fragmentation of a charm (anticharm) quark leads with high probability to the creation of a D{sup 0} or D{sup *} meson, which COMPASS detects via the D{sup 0}{yields}K{pi} and D{sup *}{yields}D{sup 0}{pi}{yields}K{pi}{pi} decay modes. From the longitudinal cross section spin asymmetries of the D meson production and theoretical predictions for the PGF cross section, the gluon contribution to the nucleon spin has been measured by the COMPASS experiment. The results presented in the thesis are the following. Based on data from the year 2004 a total visible cross section of 1.8{+-}0.4 nb, for the D{sup *} meson production, has been measured, with the error being dominated by systematic effects. It is validated that the D mesons are indeed produced through the PGF process, by comparison of measured D meson kinematic distributions to the ones predicted by a theory (AROMA generator). A good agreement was found for the distribution shapes, which confirms that PGF plays a major role. However, a 20% difference was found in the number of produced D{sup 0} and D{sup 0} mesons (and for the D{sup *+} and D{sup *-} mesons as well) which is significantly larger than predicted by AROMA. Kinematic distributions of D{sup 0} and D{sup *} mesons were compared with the background and also with the nearby K{sup *}{sub 2}(1430){sup 0} resonance, using all longitudinal data taken in 2002-2006. The particle-antiparticle asymmetry has been studied as a function of several kinematic variables. The 20

  16. Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD

    CERN Document Server

    McNeile, C; Follana, E; Hornbostel, K; Lepage, G P

    2012-01-01

    We determine masses and decay constants of heavy-heavy and heavy-charm pseudoscalar mesons as a function of heavy quark mass using a fully relativistic formalism known as Highly Improved Staggered Quarks for the heavy quark. We are able to cover the region from the charm quark mass to the bottom quark mass using MILC ensembles with lattice spacing values from 0.15 fm down to 0.044 fm. We obtain f_{B_c} = 0.427(6) GeV; m_{B_c} = 6.285(10) GeV and f_{\\eta_b} = 0.667(6) GeV. Our value for f_{\\eta_b} is within a few percent of f_{\\Upsilon} confirming that spin effects are surprisingly small for heavyonium decay constants. Our value for f_{B_c} is significantly lower than potential model values being used to estimate production rates at the LHC. We discuss the changing physical heavy-quark mass dependence of decay constants from heavy-heavy through heavy-charm to heavy-strange mesons. A comparison between the three different systems confirms that the B_c system behaves in some ways more like a heavy-light system t...

  17. Searches for CP Violation in charm at LHCb

    CERN Document Server

    Naik, Paras P

    2015-01-01

    LHCb has collected the world's largest sample of charmed hadrons. This sample is used to search for direct and indirect CP Violation in charm. Recent and updated measurements from several decay modes are presented.

  18. Measurement of the charm fragmentation function in D{sup *} photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., IL (US)] (and others)

    2008-12-15

    The charm fragmentation function has been measured in D{sup *} photoproduction with the ZEUS detector at HERA using an integrated luminosity of 120 pb{sup -1}. The fragmentation function is measured versus z=(E+p {sub parallel}){sup D{sup *}}/2E{sup jet}, where E is the energy of the D{sup *} meson and p {sub parallel} is the longitudinal momentum of the D{sup *} meson relative to the axis of the associated jet of energy E{sup jet}. Jets were reconstructed using the k{sub T} clustering algorithm and required to have transverse energy larger than 9 GeV. The D{sup *} meson associated with the jet was required to have a transverse momentum larger than 2 GeV. The measured function is compared to different fragmentation models incorporated in leading-logarithm Monte Carlo simulations and in a next-to-leading-order QCD calculation. The free parameters in each fragmentation model are fitted to the data. The extracted parameters and the function itself are compared to measurements from e{sup +}e{sup -} experiments. (orig.)

  19. Charm and strange quark masses and $f_{D_s}$ from overlap fermions

    CERN Document Server

    Yang, Yi-Bo; Alexandru, Andrei; Dong, Shao-Jing; Draper, Terrence; Gong, Ming; Lee, Frank X; Li, Anyi; Liu, Keh-Fei; Liu, Zhaofeng